Buckley-Leverett Flow in Composite Porous Media

An analytical solution for two-phase immiscible displacement in one-dimensional heterogeneous media
indicates that saturation discontinuities are present when capillarity is neglected.
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ABSTRACT

This paper presents a Buckley-Leverett—type analytical solution for
one-dimensjonal immiscible displacement in a licear composite
porous medium. The classical Buckley-Leverett theory, applicable
only to flow in a homogeneous porous medium, has been extended to
flow in-an inhomogeneous porous medium, in which the formation
system is treated as consisting of a'number of flow domains with dif-
ferent rock properties. The analytical solution, obtained under the con-
ditions for the Buckley-Leverett solution for each flow domain, can be
used to determine the complete saturation profile in the composite sys-
tem at all times. The analytical results indicate that noncapillary
immiscible displacement of two fluids in a composite system is

characterized by discontinuities in saturation profiles across the inter-

faces between adjacent flow domains,

INTRODUCTION

Immiscible flow and displacement of multiple phase fluids in porous
media are of fundamental importance to many problems relating to
underground natural resource recovery and (o storage projects, and
waste disposal and contamination transport evaluation. Immiscible

flow of multiple phase fluids through porous media, as compared with

single phase flow, is much more camplicated and is not well under-
stood in many areas due to the complex interactions of the different
fluid phases. Many contributions to this subject have been made since
the 1940°s. A fundamental understanding of immiscible displacement
of Newtonian fluids in porous media was contributed by Buckley and
Leverett (1942) in their classical study of the fractional flow theory.
The Buckley-Leverett solution gives a saturation profile with a sharp
front along the flow direction, but ignores capillary pressure and grav-
ity effects. As time Drogresses, the saturation becomes 2 multiple-
valued function of the distance coordinate, x, which can be overcome
by material balance considerations. Where the initial saturation is unj-
form, 2 simple graphic approach developed by Welge (1952) can be
used to determine the sharp saturation front without difficulty. Shel-
don et al. (1959) solved the Buckley-Leverett problem with the
method of characteristics. Effects of gravity and capillary pressure on
a linear waterflood were included by Fayers and Sheldon (1959), and
Hovanessian and Fayers (1961), by numerical models. Codreanu et al.
(1966) presented a treatment of non-capillary immiscible displacement
in heterogenecus media. Some special analytical solutions of immis-
cible displacement including the effects of capillary pressure were
obtained in the Russian and Chinese literature in the 1960's (Chen,
1988), and more recently by Yortsos and Fokas (1983) and
McWhorter and Sunada (1990).

In this paper, we extend the Buckley-Leverett theory to the flow
problem in a composite porous medium, which is used to approximate
more complicated formations. Qur formulation considers a ope-
dimensional linear flow system, consisting of two flow domains with
different rock properties, but an extension to an arbitrary number of
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- domains is straightforward. A new analytical solution for displace-

ment of two immiscible fluids in this composite system is developed.
Immiscible displacement in composite systems is found to give rise to
complex saturation profiles, which consist of different-shape segments
with discontinuities at the interfaces of adjacent flow domains.

MATHEMATICAL FORMULATION AND ANALYTICAL
' SOLUTION

Two-phase flow of immiscible fluids is considered in an incompressi-
ble composite system, consisting of two flow domains (=1, 2) with
each domain having different rock properties. The mathematical for-
mulation of immiscible multiple phase flow in porous media has been
discussed extensively in the literature (Willhite, 1986). For the deriva-
tion of the analytical solution, the same assumptions as used for the
Buckley-Leverett solution are made for each flow domain, namely, ]

1. the two fluids and the porous medium are incompressible,

2. the capillary pressure gradient is negligible, -

3. the flow is one-dimensional linear,

4. the fluid and rock properties are constant within each domain, -

and additionally,

3. the formation properties change in discontinuous fashion at the
contact between domains 1 and 2.

The flow system under consideration (See Figure 1) is a linear one-
dimensional composite flow tube with a constant cross-sectional area
A. The system is initially saturated uniformly with a mixture of a
non-wetting phase fluid (such as oil) and a wetting phase fluid (such as
water), and at time t = 0 injection of the same wetting fluid is started at
the inlet (x = 0). It is further assumed that gravity segregation is negli-
gible and that stable displacement exists near the displacement front
(no viscous fingering). The fractional flow function for the wetting
phase in domain J G=1, 2) may be written in the following form
(Willhite, 1986):

Akk (S R
Fani(5) (Pi—Pw) g sin()
fi= ) 1 Uni(t)
= T+ (1
1+ ka(S) & 1+ ka(S) . }i_
kni(S) | | 1y Ewi(S) | [ Hq

where kg, (S) and K i(S) are relative permeabilities of domain jG=1,
2)to non-wetting and wetting phases, respectively, as functions of
wetting phase saturation, S: Hnand &, are viscosities of non-wetting
and wetting fluids, respectively; k; is absolute permeabilities of
domain j; i(t) is the volumetric injection rate of wetting fluid at the
inlet; p, and Pw are densities of non-wetting and wetting fluids; and o,
is the angle of the flow direction with the horizontal plane.

The partial differential flow equation for the wetting phase in each
domain can be expressed in terms of saturation and fractional flow as
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‘here ¢ is the formation porosity in domain j. As shown by Buckley
and Leverett, this equation describes propagation of different satura-
fions at different characteristic speeds, given by (Willhite, 1986)

x| _i0 P
{dt} ¢3A[] forj=1,2 3)

The interface at X = L between domain 1 and 2 is a discontinuity
‘surface for porosity and absolute and relative permeability., This sur-
face is fixed in space, so that the volumetric flow rates for both phases
;must be continuous atx = L at all times. Thus

fi(87) = £4(859)

at x=L 4)

where S, and S," are saturations of the wetting phase on the interface
L =L-g L*=L+¢ in domains 1 and 2, respectively (£ is an
infinitesimally small increment). '

The complete saturation solution for immiscible displacement in a
‘composite medium is obtained in this paper by solving the frontal
advance equation (3) in both domains, subject to the continuity condi-
tion Equation (4).

Since the downstream conditions of the system have no effects on
the upstream flow, the saturation distribution in domain 1 at all times
is given by the Buckley-Leverett theory. Suppose that at t=t", the
displacement shock front with saturation S = Sg; in domain 1 reaches
the interface. For t>t", the injected wetting fluid has entered domain
2. The total volume of the injected fluid remaining in domain 1 at time
t can be calculated as

L

Q)= an!'[S(x, D-5) & ®)

where S;! is the initial saturation in domain 1.

The volume of injected fluid that has crossed the interface x =
L into domain 2 is then given from mass balance considerations as

Qa(t) = Q1) — Qu(H) ©®

t

where Q(t) = J'i('t) dr, the total injected fluid volume. Equation (6)
i)
will be used to find the moving shock saturation front in domain 2.

Consider a particular saturation S in domain 2, which begins to pro-
pagate from the interface x = L at t=ts. Multiplying Equation (3)
with dt and integrating from ts to t, we have

t

S S |4 P 7
Xg= ¢2A e (T)T )

where xs is the travelling distance of saturation S at time t from the
inlet.

As normally done for evaluation of the Buckley-Leverett solution,
we pick a value of saturation in domain 2, and then use (7) to calculate
its location at the given time. The starting time tg for each saturation
$=8," at the interface can be determined by using the continuity con-
dition (4). Indeed, for each value S," of saturation at x = L in domain
2, there exists a unique corresponding saturation S, at x=L" in
domain 1 (see Figure 2), §;” = §,7(S;"), implicitly defined by (4), and
there are two possibilities:

i) for §;” 2 8¢, i.e., for a value of §;” larger than that of the sharp
front saturation in domain 1, the time tg for S = S,7(S5;7) to start
travelling into domain 2 is equal to the time at which the
corresponding saturation Sy~ reaches the interface of domain 1,
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given by ;
ts
: AL
!i(’:) ar=N (8)
af,
ds |-

if) for §,” < 8¢, ie., for values of the comesponding saturation in
domain 1 smaller than or equal to that of the sharp front satura-
tion, the actual starting time tg is the time when the sharp front -
arrives at the interface,

tg=t | ©)

As in the Buckley-Leverett solation, a direct use of (7) to calculate
saturation profiles in domain 2 will result in a multi-valued sclution at
the displacement front. Physically, this corresponds to the develop-
ment of a moving saturation shock front in domain 2. The location x¢;
and sataration Sg; of the shock front can be obtained from the mass

balance constraint,

Xz

Qz(t)=¢2AI (560,05 ax 10)

where S;, is the initial saturation in domain 2. Then, the saturation
profile in domain 2 at any injection time t (t2t") is determined by
Equations (7) and (10), with the starting time given by Equation (8), or
9.

DISCUSSION OF IMMISCIBLE DISPLACEMENT

The fundamental displacement behavior of two immiscible fluids in a
composite system can be discussed using the analytical solution
obtained above. For simplicity, let us consider a linear horizontal
composite system with a constant cross-sectional area A. Initially, the
system is saturated with only a non-wetting phase, and a wetting fluid
is injected at a constant volumetric rate, i , at the inlet X =0 from t = 0.
Then, the solution (7) for the saturation distribution in domain 2 ( x >

L) is simplified as
i |df .
=L+ E‘Z[ :\ [t—-t] (11)

where the starting time tg for this saturation at x = L in domain 2 is,
from Equation (8), '

b AL
fat
s

Here S; = 5,(S) is the interface saturation in domain 1, corresponding
to S in domain 2 according to Equation (4). When S| < S¢y, we have

tg = ~————g— for SI > Sm (12)

tg=t (13)

From Equations (5), (6) and (10), the mass balance for determining the
sharp displacement front in domain 2 becomes

Xz

Q) = ¢A ‘I{S(X t) - Slq] dz=it— AL [Sl— 11] (14)

where §1 is the average saturation in domain 1, which can be deter-
mined by the graphic method (Willhite, 1986). The detailed procedure
for calculating saturation profiles is given in Appendix A.

Note that the saturation profile in domain 2, described by Equations
(11)~(13), is determined from formation porosity and fractional flow
curves which, for horizontal flow, depend only on relative permeabili-
ties and viscosities of fluids. Thus we have the important result that,
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under the approximations of Buckley-L everett flow, saturation profiles
in a composite medium are dependent only on formation porosities
and relative permeabilities, and are completely independent of abso-
lute permeabilities. In heterogeneous geological systems, the relative
permeabilities may be quite different in different flow domains, result-
ing in a diverse variety of possible saturation profiles.

The fluid and rock properties for illustrative examples are given in
Table 1, in which the relative permeability functions were chosen typi-
cal for oil and water flow in different media (Honarpour et al, 1986).
The fractional flow functions for the domains are shown in Figure 2,
and the predicted saturation profile after an injection time of t =
8,143.3 seconds is given in Figure 3. The distinguishing features of
immiscible displacement in a composite porous medium, as shown in

Figure 3, are that there exists a saturation discontinuity at the interface

of the domains, and that the derivative dS/ox has a discontinuity at a
point (x", S”) in domain 2, at which the value of S” corresponds to the
shock front saturation Sg; of domain 1, £5(S7) =f;(Ss,). The discon-

tinuity in 0S/0x appears to have been overlooked in the work of

Codreanu et al. (1966).

The wave-traveling behavior of saturation profiles in a two-domam
composite medium can be represented by characteristics in the (%, t)
space, as shown in Figure 4. Each straight line represents a constant
saturation, and travels at different velocity, which is described by the
slope of the straight lines. Each value of saturations (8, Sy, or S:) in
domain 1 corresponds to a unique saturation wave (S°j, S™, or 5%5)
across the interface x = L if § > S~ in domain 2. For saturations in the
range Sgz €S < S in domain 2, the starting times for a saturation to
travel from the interface are the same, corresponding to the time when
the sharp moving front in domain 1 reaches the interface. For a given
time t = T (T >t") , the intersections of characteristic straight lines
with the vertical line (t = T) on Figure 4 give the complete saturation
profile, such as given by Figure 3 in S-x space.

If we switch the fractional flow curves for the two domains, the
saturation profile after time t = 29,927 seconds of injection is shown in
Figure 5. In this case, the mass balance (14) is satisfied before the
moving front reaches the point (x°, 87, and there is no d15contmu1ty in
9S/0x versus x in domain 2.

The values of saturation on the interface for both domains are
always increasing with time. Equation (11) indicates that the travel-
ling distance of a particular saturation S from the interface in domain 2
is proportional to derivatives of the fractional flow function of domain
2 with respect to saturation. In the above two examples, saturation
variations happen to be in a range over which (df,/dS) decreases as S,
increases, i.e., a higher saturation, later departing from the interface,
has a lower velocity (see Figure 6). The physical range for saturations
in domain 1 is the range with f; 2 £,(Sg,;), or S 2 S¢;, and for domain 2,
as shown in Figure 6, the physical range at a given time when § =5;"
at the interface is given by £2(Sgs) £ £ £ £5(S77), or Sg2 < S < S

Since the relative permeabilities in different regions of a composite
medium are generally independent, we may have a situation in which
the travelling velocity inmcreases in domain 2 as the saturation
increases. An example of fractional flow curves with this behavior is
given in Figure 7, and the corresponding correlation of the fractional
flow and its derivatives is shown in Figure 8. The derivatives of frac-
tional flow with respect to saturation increase as saturation and frac-
tional flow increases in domain 2. The resulting saturation distribution
is shown in Figure 9. In this case, S;3 2 S7, so that there is no discon-
" tinuity for 0S/0x in domain 2. The saturation profile in domain 2 has a

negative curvature since the derivative df;/dS decreases as S decreases

in domain 2.

CONCLUSICN
A Buckley-Leverett type analytical solution for one-dimensional two-
phase immiscible displacement in a composite porous medium has

been developed. Qur treatment has considered a composite medium
consisting of two domains with uniform initial conditions; an exten-

sion to an arbitrary number of domains, to non-uniform initial satura-
tion distribution, and to one-dimensional horizontal flow in a compo-
site system with non-constant cross-sectional areas would be straight-
forward.

Immiscible displacement in composite porous media is found to be
characterized by discontinuities in saturation profiles across the inter-
faces of adjacent flow domains, and by discontinuous saturation
derivatives. Saturation profiles for horizontal displacement depend
only on relative permeability curves and ratio of fluid viscosities, and
are independent of absolute permeability.

ACKNOWLEDGMENT

For a critical review of the manuscript the authors are grateful to
Yvonne Tsang and Kenzie Karasaki. This work was supported by the
Office of Basic Sciences, U. S. Department of Energy, under Contract
No. DE-AC03-76SF00098.

NOMENCLATURE

Symbol Description » Units
A Cross-sectional area m?
fj Fractional flow of wetting phase in domain j

G=1,2) : :

Magnitude of the gravitational acceleration m/s
i, i(t) Volumetric injection rate m*/s
k; Absolute permeability in domain j m?
knj Relative permeability to non-wetting phase
Kewj Relative permeability to wetting phase
L Length of Domain 1 m
Q) Cumulative injected fluid volume m?
Q0 Fluid volume injected into domain j m?
S Saturation of wetting phase
Sgy Sharp front saturation of domain j
Sy Initial wetting phase saturation in domain j (j=1,2)
s* Distributed saturation in domain 2
S, Average wetting phase saturation in domain 1
Sy ‘Wetting phase saturation at interface in domain 1
Syt ‘Wetting phase saturation at interface in domain 2
t Time
ts Time for saturation S to begin to propagate into-

domain 2
\% Injected flnid volume in domain 2 m*
X Distance from inlet, coordinate m
Xgj Distance to shock saturation front in domain j m
Xg Distance to saturation S o
xg Distance to saturation S* in domain 2 m
Greek Symbols
o Angle with horizontal plane
Ky Non-wetting phase viscosity
He Wetting phase viscosity
P Density of non-wetting fluid
Pw Density of wetting fluid
o Porosity of domain j
Subscripts
f.j Shock front in domain j
j Domain index, j=1, 2
n Non-wetting phase
w Wetting phase
I, Relative to non-wetting phase in domain j
I'W,j Relative to wetting phase in domain j
t Time
t Total
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APPENDIX A.
EVALUATION OF SATURATION PROFILES IN DOMAIN 2

Determine the sharp front saturation Sy; in domain 1 by the
© Welge method or the mass balance calculation. Calculate the time
-t at which S¢ reaches the interface by

= ¢1AL

. el (A1)
| 46
ll:dSLM

For a given time t (t > t*), calculate S~ at the interface in domain
= Lby
AL
it= —L (A.2)
af;
-

ds

Then solve for S-_,*__in domain 2 by Equation (4). Calculate the
average satiration S; in domain 1 by

_ [1-ts0)]

Sl = Slv+
dfy
ds IE

1¢Blate the saturation profile in domain 2 as follows:

" Choose a saturation S* (k =0, 1, 2, ... N), in which
Sf=8'>8ls 82580, s

(A3)
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if)  calculate the travelling distance xg of a saturation S¥ from
x=Lby (11);

i)  calculate the injected fluid volume V contained from x = L

‘ to X =X+ in the portion of domain 2 with S > S¥ by

K

V= Aq)z ! [Sw - ka,g} dx
x=L
=&

= Aq;z}; [SJ - si,zJ Ax, (A4)

where Axj=x;-X;), and xo=L. o

vi) compare V with Qu(t) as given by Equation ( 14). If
V < Qqt), the saturation shock front has not been reached
yet, and the process is continued with the next saturation
value S¥!. If V > Qu(t), stop the calculation, and set

Sf. 2= Sk (A.S)
and-
Xf.z =X (AG)

If S5~ 8¥* is taken to be sufficiently small, the calculation of the
sharp front will be accurate. In this work, we have used ASk= 001.
The abave procedure has been programmed and carried out by com-
puter. '

The above procedure can be easily extended to composite media
with an arbitrary number of domains, because saturation profiles are

solely determined from upstream conditions. Given the time-

dependence of saturations at the interface between domains N and N +
1, our method will yield the saturation distribution in domain N + 1,
which in turn defines the time dependence of saturations at the inter-
face to domain N + 2, etc.
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Table 1. Parameters for Immiscible Displacement in a Composite

Displacing wetting-p-hase saturation

System
Porosity of Domain 1 $=0.20
Porosity of Domain 2 $,=0.20
Cross-Sectional Area A=1m?
Injection Rate i=1x10"m%/s
Wetting Phase Viscosity He=1cp
Non-Wetting Phase Viscosity fp=5¢p
Permeability of Domain 1 k,;=100md
Permeability of Domain 2 k,=10md
Initial Wetting-Phase Saturation S;,=0.00
Initial Wetting-Phase Saturation 5;,=0.00
Length of Domain 1 L=035051m
Relative Permeability ey, = 1.8318¢
. —— ke = 0.75(1~1.258)?
Relative Permeability [1-1.6525%
Relative Permeability Koy 2= 0.468752
Relative Permeability ky,=0.5[1~1.258]
* S §
1 S °f1. 24 -
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0.9 = Range"
Domain 2
Hn
—_— 5
Hw
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2 ~—Domain 1
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Figure 2. Fractional flow curves for the two-domain composite sys-
tem; the range of physically possible saturations is indicated by a bold

Displacing wetting-phase saturation

line — ‘‘physical range.”

40

Figure 1. Schematic of a two-domain composite porous medium sy
tem.
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