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Abstract. This paper presents an analytical Buckley-Leverett-type solution for one-dimensional immis-
cible displacement of a Newtonian fluid by a non-Newtonian fluid in porous media. The non-Newtonian
fluid viscosity is assumed to be a function of the flow potential gradient and the non-Newtonian phase
saturation. To apply this method to field problems a practical procedure has been developed which is
based on the analytical solution and is similar to the graphic technique of Welge. Our solution can be
regarded as an extension of the Buckley—Leverett method to Non-Newtonian fluids. The analytical
result reveals how the saturation profile and the displacement efficiency are controlled not only by the
relative permeabilities, as in the Buckley—Leverett solution, but also by the inherent complexities of the
non-Newtonian fluid. Two examples of the application of the solution are given. One application is the
verification of a numerical model, which has been developed for simulation of flow of immiscible
non-Newtonian and Newtonian fluids in porous media. Excellent agreement between the numerical and
analytical results has been obtained using a power-law non-Newtonian fluid. Another application is to
examine the effects of non-Newtonian behavior on immiscible displacement of a Newtonian fluid by a
power-law non-Newtonian fluid.

Key words. Non-Newtonian fluids, Buckley—Leverett, immiscible displacement, power-law fluids, rheo-
logical models, Welge method, fractional flow theory, enhanced oil recovery.

1. Nomenclature

Roman Letters
A cross-sectional area (m?)
fue  fractional flow of Newtonian phase

fan  fractional flow of non-Newtonian phase

g gravitational acceleration vector (m/s?)

g magnitude of the gravitational acceleration (m/s*)
H power law coefficient (Pa s%)

K absolute permeability (m?)

k. relative permeability of non-Newtonian phase
n power-law exponential index

N, cumulative displaced Newtonian fluid (m?)

P pressure (Pa)

P, capillary pressure (Pa)

P,. pressure of Newtonian phase (Pa)

P, pressure of non-Newtonian phase (Pa)
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g(f) injection rate of non-Newtonian fluid (m?/s)
O(t) cumulative injection rate (m?®)
St saturation at moving front (m)
S,e Newtonian phase saturation
Speir  irreducible Newtonian phase saturation
S,, non-Newtonian saturation
Sanir connate non-Newtonian saturation
. average saturation of non-Newtonian phase in swept zone

X distance from inlet, coordinate (m)
Xr distance to shock saturation front (m)
5., distance of saturation S, from the inlet (m)
t time (s)
u Darcy velocity (m/s)

u(z) total flux (m/s)
u,.  Darcy velocity of Newtonian phase (m/s)
u,, Darcy velocity of non-Newtonian phase (m/s)

Greek Letters

o angle between horizontal plane and flow direction
¥ shear rate (s

Happ  apparent viscosity (Pa s)

leg  effective viscosity (Pa s”m!~")

Une  viscosity of Newtonian fluid (Pa s)

Unn  €quivalent viscosity of non-Newtonian fluid (Pa s)
Pne  density of Newtonian fluid (kg/m?)

Onn  density of non-Newtonian fluid (kg/m?)

T shear stress (Pa)

¢ porosity of porous media
0} flow potential (Pa)
Subscripts

app apparent

eff  effective

f front

ne Newtonian

nn  non-Newtonian

rne relative to Newtonian phase

ran  relative to non-Newtonian phase

2. Introduction

Immiscible flow of multiple phase fluids through porous media occurs in many
subsurface systems. The behavior of multiple-phase flow, as compared with single-
phase flow, is much more complicated and is not well understood in many areas due
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to the complex interactions of different fluid phases. A fundamental understanding
of immiscible displacement of Newtonian fluids in porous media was contributed by
Buckley and Leverett (1942) in their classical study of the fractional flow theory.
The Buckley—Leverett solution gave a saturation profile with a sharp front by
ignoring the capillary pressure and gravity effects. A frequently encountered prop-
erty of the Buckley—Leverett method is that the saturation becomes a multiple-
valued function of the distance coordinate, x. This difficulty can be overcome by
considering a material balance. Following the work of Buckley and Leverett (1942),
a simple graphic approach was invented by Welge (1952), which can easily
determine the sharp saturation front without the difficulty of the multiple-valued
saturation problem for a uniform initial saturation distribution. More recently,
some special analytical solutions for immiscible displacement, including the effects
of capillary pressure, were obtained by Yortsos and Fokas (1983) and Chen (1983).

The Buckley—Leverett fractional flow theory has been applied and generalized by
various authors to study the enhanced oil recovery (EOR) problems (Pope, 1980),
surfactant flooding (Larson and Hirasaki, 1978) polymer flooding (Patton et al,
1971), mechanism of chemical methods (Larson et al., 1982), detergent flooding
(Fayers and Perrine, 1959), displacement of oil and water by alcohol (Wachmann,
1964; Taber et al., 1961), displacement of viscous oil by hot water and chemical
additive (Karakas et al., 1986), and alkaline flooding (DeZabala, et al., 1982). An
extension to more than two immiscible phases dubbed ‘coherence theory’ was
described by Helfferich (1981). However, no non-Newtonian behavior has been
considered in any of these works.

Non-Newtonian and Newtonian fluid immiscible displacement occurs in many
EOR processes involving the injection of non-Newtonian fluids, such as polymer
solutions, microemulsions, macroemulsions, and foam solutions. Almost all the
theoretical and experimental studies performed on non-Newtonian fluid flow in
porous media have focused on single non-Newtonian phase flow. Savins (1969)
presented a comprehensive review of the flow of a non-Newtonian fluid through
porous media. Scheidegger (1974) and Bird ez al. (1960) summarized many rheolog-
ical models for different non-Newtonian fiuids. A very important contribution to
study non-Newtonian flow in porous media was made by Gogarty {1967), who
showed experimentally that the effective viscosity of pseudo-plastic fluid flow in a
core depends upon the average shear rate, which is a function of pore velocity only,
for a given porous material. The first analytical solutions, for a power-law non-
Newtonian fluid were given simultaneously by Tkoku and Ramey (1979), and Odeh
and Yang (1979) by using a linearization assumption. Their solutions have been
extended by many authors to more complicated problems (Gencer and Ikoku, 1984;
Tkoku, 1982, Tkoku and Ramey, 1980; Lund and Ikoku, 1981; and Vongvuthiporn-
chai and Raghavan, 1987). A numerical method was also used to model non-New-
tonian flow problems (Van Poolen and Jargon, 1969; McDonald, 1979).

Very little research has been published on multiple-phase flow of non-Newtonian
and Newtonian fluids through porous media. To the best of our knowledge, there
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is no analytical solution available. Even using numerical methods, very few studies
have been conducted (Gencer and Ikoku, 1984). Therefore, the mechanism of
immiscible displacement involving non-Newtonian fluids in porous media is still not
well understood.

In this paper, an analytical solution describing the displacement mechanism of.
non-Newtonian/Newtonian fluid flow in porous media has been developed for
one-dimensional linear flow. Our approach follows the classical work of Buckley
and Leverett (1942) for the immiscible displacement of Newtonian fluids. The only
important difference due to non-Newtonian behavior is in the fractional flow
curve, which because of the velocity-dependent effective viscosity of a non-
Newtonian fluid, now becomes dependent on the injection rate. A practical proce-
dure for evaluating the behavior of non-Newtonian and Newtonian displacement
is provided, based on the analytical solution, which is similar to the graphic
method by Welge (1952). The resulting procedure can be regarded as an extension
of the Buckley—Leverett theory to the flow problem of non-Newtonian fluids in
porous media. The analytical results reveal how the saturation profile and the
displacement efficiency are controlled not only by the relative permeabilities, as
in the Buckley—Leverett solution, but also by the inherent complexities of non-
Newtonian fluids. .

The analytical solution developed here will find application in two areas: (1) it
can be employed to study the displacement mechanisms of non-Newtonian and
Newtonian fluid in porous media, and (2) it may be used to check numerical
solutions from a simulator of non-Newtonian flow.

In addition, a numerical method has been used to simulate non-Newtonian and
Newtonian multiple phase flow using the integral finite difference approach (Pruess
and Wu; 1988). The numerical model can take into account all the important
factors which affect the flow behavior of non-Newtonian and Newtonian fluids,
such as capillary pressure, complicated flow geometry and operation conditions.
The different rheological models for non-Newtonian fiuid flow in porous media can
easily be incorporated in the code. The validity of the numerical method has been
checked by comparing the numerical results with those of the analytical solution,

and excellent agreement has been obtained using a power-law, non-Newtonian
fiuid.

3. Mathematical Formulation

The two-phase flow of non-Newtonian and Newtonian fluids is considered in a
homogeneous and isotropic porous medium. There is no mass transfer between the
non-Newtonian and Newtonian phases, and dispersion and adsorption on rock are
ignored. Then, the governing equations are given by

0
-V (pneune) = 5‘2 (pne Sned)) (1)
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for the Newtonian fluid, and

0
-V (pnnunn) = b—i(pnn‘snn(ﬁ) (2)

for the non-Newtonian fluid. The Darcy velocities for the Newtonian and the
non-Newtonian phase are described by a multiphase extension of Darcy’s law as

ke
Uy = “KT(VPne_pneg) (3)
and
kme
Uy = —Kr (VPnu - pnng)‘ (4)

The pressures in the two phases are related by means of the capillary pressure
Pc(Snn) =Pne_Pnn- (5)

The relative permeabilities, ke, knn, and the capillary pressure P, are assumed to
be functions of saturation only. Also, from the definition of saturation, we have

Spe + San = 1.

4. Analytical Solution

For the derivation of the analytical solution, the following additional assumptions
are made
(1) the two fluids and the porous medium are incompressible,
(2) the capillary pressure gradient is negligible,
(3) the apparent viscosity of non-Newtonian fluids is a function of the flow
potential and saturation,

Han = f(San> VD), (N

where V@ is the flow potential gradient, a vector. Its component in the x
coordinate is

o® or ,
5;=a+pm,g sin a. (8)

By definition, the viscosity of a non-Newtonian fluid is a function of the shear
rate. For flow through porous media, it has been shown that the shear rate depends
only on the pore velocity for a given porous material (Gogarty, 1967). The pore
velocity is determined by the local potential gradient and by the local saturation
within the two-phase fluid. We assume that the viscosity of the non-Newtonian fluid
is described by Equation (7) for multiple-phase flow, which should be determined
by experiment for the non-Newtonian fluid and the porous medium of interest.



120 Y.-5. WU ET AL.

The flow system considered is a semi-infinite linear reservoir, shown in Figure 1.
It is further assumed that gravity segregation is negligible and that stable displace-
ment exists near the displacement front. Then, Equations (1) and (2) become

ou oS,
. Be 4L DE 9
_ ox ¢ ot ©)
and
ou, oS
_ nn mn 10
dx ¢ ot (10)
For the Newtonian phase, the flow rate is
Kene [OP
Upe = _K_E<—_+pneg sin OC> (11)
Hoe \OX :
and for the non-Newtonian phase,
Kupn [OP .
Uppy = -—Ku—nn—<ax + Ppng SIN oc). (12)

To complete the mathematical description, the initial and boundary conditions
must be specified. Initially, a Newtonian fluid is at its maximum saturation in the
systeml.

Thus,

Sne(xs 0) =1- Snnir: (13)

where S, is the initial immobile non-Newtonian fluid saturation. For practical
field problems, Sy is usually zero, which can be treated as a special case. In this
problem, we are concerned with continuously injecting a non-Newtonian fluid from
the inlet x =0, at a known rate ¢(r), which can be a function of injection time, .

Q (horizontal)

Fig. 1. Schematic of displacement of a Newtonian fluid by a non-Newtonian fluid.
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The boundary conditions at x =0 are

a0, 0 = () = 2, (14)

(0, 1) =0, (15)

where A is the cross-sectional area for flow. Finally, in a semi-infinite system, the
following conditions must be imposed at x — o,

Spe—1 = Soni ' (16)

and

snn - Snnir' (17)

The governing equations (9), (10) with the boundary and initial conditions
(13)—(17), can be solved to obtain the following solution (see Appendix A):

dx)  _ () [ fun
<E>sm 94 <aS,m>,' (%)

This is the frontal advance equation for the non-Newtonian displacement, and is
the same in form as the Buckley—Leverett equation. The difference is the depen-
dence of the fractional flow f, for the non-Newtonian displacement on saturation
not only through the relative permeability, but also through the non-Newtonian
phase viscosity, which is a function of both potential gradient and saturation. For
a given time, a given injection rate, and given fluid and rock properties, the
potential gradient can be shown using Equation (A6) to be a function of saturation
only. Equation (18) shows that a particular non-Newtonian fluid saturation profile
propagates through the porous medium at a constant velocity for a given time and
injection rate. As in the Buckley—Leverett theory, the saturation for a vanishing
capillary pressure gradient will, in general, become a triple-valued function of
distance near the displacement front. Equation (18) will then fail to describe the
velocity of the shock saturation front, since Jfy,/0S,, does not exist on the front.
Consideration of material balance across the shock front (Sheldon et al., 1959)
provides the velocity of the front

dx q(1) — o
(&)~ 5] 09

where S; is the front saturation of the displacing non-Newtonian phase. The
superscripts ‘4’ and ‘— refer to values ahead of and behind the shock, respec-
tively.

The location xg_ of any saturation Sp, traveling from the inlet can be determined
by integrating Equation (18) with respect to time, which yields

o =20 (U
')”S,m B A¢ <6Snn>snn’ (20)
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where Q(f) is the cumulative volume of injected fluid
o) = | ath . (21)
0

A direct use of Equation (20), given x and #, will result in a multiple-valued
saturation distribution, which can be handled by a mass balance calculation, as in
the Buckley—Leverett solution. An alternative graphical method of evaluating the
above solution will be discussed in the next section.

5. Graphical Evaluation Method

The fractional flow of the displacing non-Newtonian phase is a function of its
saturation only, after taking into account the constraint condition (A6). Therefore,
the Welge (1952) graphic method can be shown to apply for evaluation of
non-Newtonian fluid displacement by an integration of the mass balance of
injection into the system and incorporation of Equation (20). The only additional
constraint is the need to take into account the contribution of a velocity-dependent,
effective viscosity of non-Newtonian fluids on the fractional flow curve. At the
moving saturation front, we have (see Appendix B).

af;m =.f;ln|Sf_fnn1Snnir
a‘S'rm Sy

22
Sf - Snnir ( )

and the average saturation in the displaced zone is given by

af, 1
nn - 23
<aSnn>Sf Snn - Snuir ’ ( )

where S, is the average saturation of the non-Newtonian phase in the swept zone.
To satisfy Equations (22) and (23), a simple geometric construction can be used
(see Figure 2). On a curve of fractional flow f;, versus saturation S,_, draw the
tangent to the fractional flow curve, from the point (S,; = Synir» fan = 0). The point
of tangency has coordinates (Sp, = St, fon = fun| s;)» and the extrapolated tangent
must intercept the line £, = 1 at the point (S = Sy, fon = 1). Therefore, the graphic
method of Welge applies if the fractional flow curves are provided for the
non-Newtonian displacement process. The only difference is in the determination of
the non-Newtonian fractional flow curve because we have to include the effects of
the apparent viscosity of non-Newtonian fluids, which are also a function of
saturation.

With given relative permeability data and the rheological model y,,, the general
procedure for evaluating the flow behavior of non-Newtonian one-dimensional
linear displacement is as follows:

(1) Solve pressure gradients —dP/dx, from Equation (A6) for different injection

rate and plot the relationship between pressure gradient and saturation
corresponding to the injection rate, as shown in Figure 3. This requires use
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Fig. 2. Method of determining shock front and average displacing non-Newtonian phase saturations
from fractional flow curves.

of the equivalent non-Newtonian viscosity as derived in Appendix C, Equation
(C8).

(2) Calculate the fractional flow, fu,, by Equation (AS8), using the pressure
gradients from Figure 3 to calculate the corresponding potential gradients,
then, using Equation (C8), to compute the non-Newtonian phase viscosity. An
example of fractional flow curves is shown in Figure 4,

(3) Calculate the derivatives of fractional flow, Ofn /0S4, With respect to satura-
tion from Figure 4. These are shown in Figure 5.

(4) Determine the shock front saturation from Figure 4, as illustrated in Figure
2.

(5) Calculate the saturation profile for Sy < Sp, < 1 =8 from x =0 to x =x;
according to Equation (20) for a given injection rate and using the correspond-
ing potential gradients from Figure 5. This profile is shown in Figure 6.
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Fig. 3. Pressure gradients versus displacing non-Newtonian phase saturation for different injection

rates.

(6) Determine the average saturation in the swept zone from Figure 4, as
illustrated in Figure 2. This can be used to calculate the cumulative Newto-
nian fluid displaced, N,

Np = A¢xf(S—nn -

Snnir)'

(24)

The above procedure has been programmed for use in this work.

6. Comparison with Numerical Simulation

A numerical simulator (MULKOM-GWF), which is a modified version of
MULKOM (Pruess, 1983; Pruess and Wu, 1988), has been developed for modeling
multiple-phase flow of non-Newtonian and Newtonian fluids in porous media
under a wide range of operating conditions and with different rheological models
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Fig. 4. Fractional flow curves of non-Newtonian fluids for different injection rates.

for the non-Newtonian fluid behavior. We have programmed an equivalent non-
Newtonian viscosity given by Equation (C8) into the simulator. The validity of the
numerical results from this code has been tested for immiscible displacement of a
Newtonian fluid by a non-Newtonian fluid by comparison with the Buckley—
Leverett type solution obtained above. The example of interest is a one-dimensional
linear flow problem of incompressible two-phase fluids in a semi-infinite, horizontal
homogeneous and isotropic porous medium. A constant injection rate is maintained
at the inlet (x =0) from time ¢ = 0. Initially, the reservoir is fully saturated with
only the Newtonian liquid. The relative permeability curve used for both the
analytical and numerical calculations is shown in Figure 7. Capillary effects are

assumed to be negligible.

In order to reduce the effects of discretization in a finite system, very fine mesh
spacing (Ax =0.0125m) was chosen for the first 240 elements, then the mesh
spacing was increased by a factor of 1.5 to the 290th element. The non-Newtonian
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Fig. 5. Derivatives of fractional flow with respect to non-Newtonian phase saturation for different
injection rates. ’

displacement analytical solution was evaluated by using the computer-graphic
method outlined in the previous section. The power-law non-Newtonian fluid has
been used extensively in the study of non-Newtonian fluid flow through porous
media both theoretically and experimentally. To demonstrate the applicability of
the analytical solution, a power-law liquid was used as a displacing agent to drive
the initially saturated Newtonian liquid in the porous medium.

The properties of rock and fluids are given in Table 1. If we assume a power-law
index of = 0.5, then the pressure gradients for horizontal flow can be derived from
Equation (A6) as

5 1/2
<~qum_E>' Kk e
oP 1 Hae 4q Fne
T x 2 K. T (23)

o (Kk,,,n>1/2 "(IGcm)‘/z
l‘teﬂ‘ iueﬂ' :u'eﬁ'
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Table I. Parameters for linear power-law fluid displacement

Porosity ¢ =0.20

Permeability K =1 darcy
Cross-sectional area 1m?

Injection rate g =10.8233 x 107> m¥/s
Injection time T=10h

Displaced phase viscosity He=35¢Cp

Irreducible Newtonian saturation Speir = 0.20

Initial non-Newtonian saturation Smir = 0.00

Power-law index n=105

Power-law coefficient H =0.001 Pas"

Equation (25) was used in calculating the fractional flow f,, to incorporate the
non-Newtonian flow effects in the analytical solution. A comparison of the satura-
tion profiles from the numerical and analytical calculations after 10 h of non-New-
tonian fluid injection into the system is given in Figure 8. This shows that the
numerical results are in excellent agreement with the analytical prediction. Consid-
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ering the complexity introduced when non-Newtonian fluids are involved in a
multiple phase flow problem, Figure 8 provides a very encouraging indication that
the numerical model is correct in describing the multiple phase immiscible displace-
ment of non-Newtonian and Newtonian fluid flow in porous media. The viscosity
profiles of the non-Newtonian fluid are given in Figure 9, and show good agreement
between the analytical and numerical results over the whole non-Newtonian fluid
swept region, x <Xx;. Only at the shock advancing saturation front does the
numerical solution deviate somewhat from the analytical solution, which is a typical
‘smearing front’ effect from numerical dispersion there.

7. Discussion of Non-Newtonian Displacement

For a given operating condition, non-Newtonian fluid displacement in porous
media is controlled not only by relative permeability effects, as in Newtonian fluid
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displacement, but also by the non-Newtonian fluid rheological properties. Some
fundamental behavior of power-law non-Newtonian fluid displacement will be
disussed in this section by using results from the analytical solution.

7.1. EFFECTS OF INJECTION RATE

For Newtonian displacement in porous media based on Buckley-Leverett solu-
tions, the injection rate has no effect on displacement efficiency or sweep efficiency.
When a non-Newtonian fluid is involved, changes in the injection rate will result in
changes in the pore velocity, which will affect the viscosity of the non-Newtonian
phase and fractional flow curve. The fluid and rock parameters used for the
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calculations in this section are similar to those used in the previous section, and any
differences are indicated on the figures to follow. Figure 10 gives non-Newtonian
viscosity versus saturation curves for three different injection rates in a semi-infinite
linear horizontal system. Considering the constraint condition (A6), the viscosity of
non-Newtonian fluids depends only on the non-Newtonian phase saturation. The
resulting saturation profiles corresponding to the injection rates are shown in
Figure 11. The horizontal lines are the average saturations in the swept zone, which
reflect the sweep efficiency. Since the only variable parameter in this calculation is
the injection rate, the saturation distributions in Figure 11 indicate that injection
rate has a significant effect on displacement. For a displacement process with this
type of shear thinning fluid, the lower the injection rate, the higher the displacement
efficiency becomes.
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Fig. 10 Non-Newtonian phase apparent viscosities versus non-Newtonian phase saturation for different
injection rates.

7.2. EFFECTS OF POWER-LAW INDEX-n

There are two parameters that characterize the flow behavior of a power-law fluid,
the exponential index, 7, and coefficient, H. For a pseudoplastic fluid, 0 <n < 1. If
n =1, the fluid is Newtonian. The effect of the power-law index, »n, on linear
horizontal displacement can be quite significant. Figure 12 shows that pressure
gradients are changed tremendously as a function of saturation for different values
of n. The apparent viscosities of several non-Newtonian fluids are given in Figure
13, and the resulting fractional flow curves are shown in Figure 14. Saturation
profiles after a 10 h injection period in the system are plotted in Figure 15. Note the
significant differences in sweep efficiency.

Since the power-law index, n is usually determined from an experiment or from
well test analysis, some errors cannot be avoided in determining the values of n.



132 Y.-S. WU ET AL.

1.0 T T ] ]
0.9 n =05 5 _
u, =05x 150 m/s
0.8 u, = 1x 10_5m/s |
Uy =2x10"m/s
. a =0
0.7 Iy Loe=5cp 1

Non-Newtonian Phase Saturation

0.2

0.1

| |
0 2 4 6

Distance from Inlet (m)

0.0

[o2]

10

Fig. 11. Non-Newtonian phase saturation distributions for different injection rates after 10h of
injection.

These results show how difficult it will be to use a numerical code to match
experimental data from non-Newtonian displacement investigations in the labora-
tory, because of the extreme sensitivity of the core saturation distribution to #. The
sensitivity of the displacement behavior to the power-index n suggests that in
determining the index n, it may be helpful to match experimental saturation profiles
using the analytical solution.

7.3. EFFECTS OF GRAVITY

It is expected that gravity may have more significant effects on non-Newtonian
displacement than on Newtonian displacement, because it influences mobility by
affecting the non-Newtonian phase viscosity, in addition to the effect on the
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Fig. 12. Effects of the power-law index on pressure gradients.

potential gradient as in Newtonian displacement. This can be demonstrated by the
following example. A power-law non-Newtonian fluid is injected upwards (¢ =7 /2),
horizontally (x =0), and downwards (x = —x/2), to displace a heavier in-situ
Newtonian fluid. The fractional flow curves are given in Figure 16. Since coun-
terflow may occur physically at very low or very high displacing phase saturations
under gravity effects, we will have the situations that £, > 1 for upflow and f,, <0
for downflow. The final saturation distributions in Figure 17 show the significance
of effects of gravity on non-Newtonian displacement in porous media.

8. Conclusions

An analytical solution for describing the displacement of a Newtonian fluid by a
non-Newtonian fluid through porous media has been developed. A general viscosity
function for non-Newtonian fluids is proposed and used in the solution, which
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Fig. 13. Effects of the power-law index on non-Newtonian phase equivalent viscosity.

relates non-Newtonian phase viscosity to the local potential gradient and satura-
tion, and is suitable for different rheological models of non-Newtonian fluids. The
analytical solution is applicable to displacement of a non-Newtonian fluid by a
Newtonian fluid or to displacement of a non-Newtonian fluid by another non-
Newtonian fluid.

Two examples of application of the analytical solution are presented. First, it
is used to verify a numerical simulator for multiple-phase flow involving a
non-Newtonian fluid. Secondly, it is used to obtain insight into the physics of
non-Newtonian displacement in porous media. The calculated analytical results
reveal that non-Newtonian dispacement is a complicated process, controlied by
the rheological properties of non-Newtonian fluids used, and the injection condi-

tion, in addition to relative permeability, and is more sensitive to gravity effects as
well.
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Fig.

Appendix A: Derivation of Buckley—Leverett-Type Solution

The sum of equations (9) and (10) gives

a(une + unn) . d -
- dx ”¢at(Sne+Snn) = 0.

135

(Al)

This means that at a given time, the total volumetric flow rate through any

cross-section in the flow system is independent of the distance coordinate, x.

Upe + Upy = 1u(D).

Physically, this follows from the incompressible assumption.
The fractional flow of a phase is defined as the volume fraction of the phase flowing

at a distance x and time ¢ compared to the total flowing phase volume. For the

(A2)
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Fig. 15. Non-Newtonian phase saturation distributions; effects of the power-law index on displacement
efficiency.

Newtonian phase,

U 122

ne

= me _ ne A3)
fne une + unn zl(t) ( )

and, for the non-Newtonian phase,

U U

nn

oot ) (A4)

fnn=

From a volume balance, the sum of Equations (A3) and (A4) yields

JaetJon=1. (A5)
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Using Equations (11) and (12), Equation (A2) can be written as

() + K[— +

+

ke | fenn | OP
ox

ne #'ﬂn

k k
+ K[pua ne + pnn mn]g Sin(fx) — O.

ALLUE nn

1.0
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(A6)

Noting that p,, is a function of both flow potential gradient and saturation from
Equation (7), Equation (A6) indicates that at any given time, the potential gradient,
d®/dx, or the pressure gradient, 0P/0x, is implicitly expressed as a function of
saturation S,, only (which depends on the constant angle ), or

oP oP

ox Ox

(San)

(A7)

which is determined by the injection rate, relative permeability data, and non-
Newtonian fluid behavior through Equation (A6).
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Fig. 17. Non-Newtonian phase saturation distributions; effects of gravity on displacement efficiency.

The fractional flow function for the non-Newtonian phase may be written as
follows (Wilthite, 1986)

1

k 2
14| —me || Con
N I:krnn] [.uneil

Loe ll(t) (pne — Pon )g Sil’l(OC)

k 7
1 4| Zeme || Koo
* [kmnii |:une:|

Jon = +

(A8)
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which is a function of S_, only after considering the constraint by Equation
(A6). Then, by the exact same procedure as for the Buckley and Leverett solution,
we can obtain the analytical solution for non-Newtonian displacement, Equation

(18).

Appendix B: Graphic Method

The mass conservation in the system for a given time of injection gives

o) = Jr q(4) di = r (Snn — Shnir)pA dx

o] 0

= G Ax(Sc — Somir) — j " $Ax dS,,. (B1)

0

Substituting Equation (20) into (B1) yields

O
Q(t) = Q(t)(Sf—“ Snnir) [ag il - Q(t)(fuulsr _fnnlo)' (BQ‘)
nn_{Sy¢
Noting that at x =0, Sy =1 — Spmy, and f;, = 1, therefore
fan
1= (Sf'— Snnir) <6Sun>Sf—fnnle+ 1 (B3)

or,

afnn _fnnlsf_fﬂnlsnmr
<55,m>sf T Si— S (22)

in which f,, = 0 at S, = Sy is used, and both f, and 8f,,/0S,, are evaluated at
the shock saturation Si.

Similarly, the average saturation in the displaced zone is defined as

- [5tSumdgp dx @A J‘xf
Sa=itomC 2 P2 g dx B4
frdd & o, ) B9
then
¢Axf(§nn - Snnir) = qu J\ ' (Srm - Srmir) dx = Q(t) (BS)
0

Using Equation (20) again, we will have

o, 1 '
nn — . 2
<aSnn>Sr Snn - Srmir ( 3)
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Appendix C: Equivalent Darcy’s Law Viscosity

For a power-law non-Newtonian fluid, one describes the relationship of shear stress
7 and shear rate y as,

T = Hy", (CI)
where n and H are parameters, called power-law index and consistency of the
power-law fluid. The power-law index is a dimensionless constant, and for pseudo-

plastic fluids ranges over 0 < n < 1. The consistency H has units (Pa s"), depending

on the index n. For a Newtonian fluid, » = 1 and the viscosity equals the constant
H.

‘Apparent viscosity’ for a power-law non-Newtonian fluid is defined as (Ikoku
and Ramey, 1980)
Happ = Hy" . (C2)

For single-phase flow, the modified Blake~Kozeny equation for one-dimensional

flow of power-law fluids gives (Savins, 1969; Bird et al., 1960; Christopher et al.,
1965)

K oP \V=
={—| —— C
! <ﬂeﬁ[ 0x D ’ ()
where ‘effective viscosity’ p.q is defined as
H 3 n
T (9 + ;) (150K ) —mr2, (CH

For the two-phase flow problem, we extend Equation (C4) by replacing K by Kk,
and ¢ by ¢(S,, — Sonir) to obtain

H 3 n
Her = ”13 (9 =+ ;> [ISOKkmn(Snn)¢(Snn - Snm'r)] a=mp (CS)

In the numerical simulation, we wish to relate the volumetric flow rate to the
pressure gradient as is normally done in multiple-phase extension of Darcy’s law,
with all of the nonlinearities combined into an equivalent non-Newtonian viscosity.
Thus, we write

opP
U= — Ko 0P (C6)
Pon 0X
and require that this volumetric flux be equal to the expression of Equation (C3)
Kk,..0P [Kk oP |\
— __kf_nﬂ__ = mot . (cn
Hnn dx Hesr ax

Solving for u,,, we obtain

op Kk 1 (San) P\ |or—Vin
o )] S
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