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Surmmary. This paper presents a new analytical solution for wellbore heat transmission. Previous treatments of the wellbore hea-

transfer problem are improved in several aspects: (1) nonhomogeneous formations are approximated as layered formations with different
physical properties; (2) closed-form analytical solutions are obtained in both real and Laplace space; and (3) a more accurate formula

is provided for the transient heat-conduction function, f (tp).

introduction

Heat is transferred to or from the wellbore when there is a difference
in temperaiure between the surrounding formation and the injected
(or produced) fluid. To evaluate the feasibility of a thermal recovery
project, it is necessary to estimate the heat losses or gains of the
flowing fluid in wellbores, the changes in temperature with time
and depth, and the heat-transfer conditions between wellbore and
formation. A guantitative description of heat exchange between a
wellbore and surrounding formations often is also required when
one attempts to estimate formation temperatures from wellbore
measurements. o : ,
Studies of wellbore heat transmission during hot or cold fluid
injection have appeared in the literature since the 1950’s. The tech-
niques availeble for dealing with wellbore heat transmission include
. analytical and numerical methods, Tessem ef al.1 and Squier et

 al.? derived and solved similar systems of differential equations

describing the temperature behavior of gas and hot-water injection
wells. Théy neglected wellbore thermal resistance and made the
following assumptions. ’ , '

1. No. condnctive heat transfer occurs in the vertical direction
of either the flowing fluid or the formation. .

2. The mass flow rate of gas or water is constant throughout the
injection or production system.

3. The volumetric heat capacities of fluids and formation are
constant. ’

4. The formation is homogeneous and isotropic with constant ther-
mal conductivity.

5. The fluid temperature is the same as the formation temperature
on the wellbore surface. .

Subsequent work introduced another assumption, that vertical heat
transfer in the wellbore was considered steady state. -

The classic study by Ramey3 on wellbore heat transmission im-
proved Moss and White’s# approach to incorporate an overall heat-
transfer coefficient. Ramey presented an approximate solution for
the temperatures of fluids, tubing, and casing as a function of time
and depth in a well nsed for hot-fluid injection. Satterd suggested

. a similar method for analyzing wellbore heat loss when condensing

steam flow is considered and provided a sample procedure for a
given set of reservoir properties. Ramey? and W. ilthite6 gave an
expression for the overall heat-transfer coefficient for any well com-
pletion and the early-time values of the transient heat-conduction
function. Durrant and Thambynayagam’s’ more rtecent work
provided an iterative procedure for the wellbore heat-transmission
problem during flow of steam/water mixtures that includes vertical
heat conduction.

The numerical models by Farouq Ali8 and Wooley® were more
comprehensive than the analytical models. They include both hori-
zontal and vertical heat conduction in the formation and can deal
with different well operation conditions. The numerical methods,
however, are often too complicated for field applications or for
reservoir simulation studies because many of the required wellbore
and formation heat-transfer properties are rarely known precisely.
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The mathematical model for wellbore heat transmission presented
in this paper adopts assumptions similar to those of Lessem et al. 1o

The main differences are that we introduce an overall heat-transfer
coefficient to consider the wellbore heat resistance and that we treat
the surrounding earth as ¢consisting of an arbitrary number of layers
with different thermal and physical properties and arbitrary initial
temperature distributions (Fig. 1). An analytical solution has been
obtained in both real and Laplace space for prediction of wellbore
heat transmission. The numerical results calculated from the analyti-
cal solutions are compared with Ramey’s long-time approximation.
Tlustrative applications are given for predicting wellbore heat trans-
mission for engineering designs or reservoir simulation studies in
petroleum and geothermal reservoir development.

Brathematical Model

The transient heat-transmission problem under consideration is illus-
trated in Fig. 1. The injection (or production) well is cased to the
top of the injection (or production) interval. Heat is transferred along
the wellbore solely by convection and then by conduction into the

formation. The formation consists of n layers with different thermal-

and physical properties. The system is composed %®f three parts,
as Fig.'1 shows: (1) fluid-flow conduit inside the tubing; (2) tubing/
casing annulus, casing wall, and cement; and (3) infinite formation
surrounding the casing. The major assumptions and approximations
are as follows. )

1. Fluid flow in the tubing is 1D, vertical, and steady with con-
stant mass flow rate. :

2. The well fluid temperature is lumped radially. :

3. The vertical heat conduction is neglected compared with heat
convection by the flowing fluid. ‘ ‘

4. Radial heat flow between the wellbore and the formation is
steady state. .

5. In the surrounding earth, the initial geothermal gradient is a
known function of depth. :

6. The vertical heat conduction in the formation can be ignored
compared with the horizontal heat flow.

All other assumptions are similar to those of previous work.
Therefore, the heat-transfer equation in the tubing can be written as

0., (0T1; /1) + Q211r,)gf" +0,€v(T1; /02)=0,

JL20 @ SEE) woeaeeee e )
for liquid flow and .

p.c; (3T ;;/00) +Q2/r)g"+pC vl (0T /82) £ (g/c)1=0;

j=1,2...n(zj_1<z<zj) ........................... )

for gas flow, where the plus sign on the potential-energy term is
used for flow down the well and the negative sign is used for flow
up the well.3

The heat conduction in Layer j of the formation is described by

- (Ur)(@/8r[rky; (313 /o) =p;c; (3T; /9t),
J=L20 n (g1 <EKZ)e v 3)
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Fig. 1-—Schematic‘of weilbore and formation system.

The heat flux across the tubing surface is

g/ =U;(T1y=Tojlrar)s -ovvveerinmeeieees S )

where U;=overall heat-transfer coefficient defined by Ramey3 and
Willhite. 6

The initial condition in the well are

Ty (z,t=0)=T};(z)(known functions), j=1,2...n ;1 <z=%),

..................................... (5)
and initial conditions in the formation are

Ty; (r;z,t=0)=Tij(z),j=1,2. .n (o1 =z =577 NENP 6)
In Egs. 5 and 6 it is required that

() o (T R LRREERER @)
i.e., the temperature on the ground is assumed constant.

The boundary conditions are

Ty @=0,E) =Ty e ovvenee e e eniee e enieaen 8)
and lim sz(r,z,t)=T,-j(z),j=l,2. B P )]

r—oo

Analytical Solution

The dimensionless parameters for radial distance, time, and depth
are

PO Ty« oveear et 10)
B =10 /D, o et (11)
and Zp=z/D. ... (12)

e~

The dimensionless temperature functions are . ,
8 (zp,tp)=[T1j@ D~ Tj@V (T~ Tair)s j=1,2. . .n, ... (13)
in the wellbore and - A DL

in the formation.

The unsteady-state solution of this system in Laplace space be-
comes (Appendix A)

8;(zp.5)=C;j(&)exp{ ~[s+B; —D; <)lzp}
FXj@p) J=L20 oM, coe.(15)
where Cl(s)=(1/s)+[61(zD)]/s[s+Bl—Dl(s)], T (16)

G (s)={§jv"l(ZDj_1 )+ ﬁ%&}
xexp{ls+8; —D; (s)j;Dj_l}, F=230m, e AD)
and &; (rp.zp.5)=[w;8; ep.Ko(Nazs o))/ v
[0 KoNoys ) 4o Ky(Vays )], j=1.2.. Bierte il (18)

The functions ¥;(z,s), D; (s), and §;(zp) and the parameters Bjs
w; , and g; are defined in Appendix A. The temperature function,
8;, in Laplace space can be determined recursively from Layer j
toj+1 (j=1,2...n—1) because it is assumed that there is no ver-
tical heat conduction in either the wellbore or the formation. There-
fore, downstream wellbore fluid or formation temperatures have
no effect on upstream temperatures. . o

Another important variable of interest for wellbore heat transmis-
sion is the heat flow rate transferred into (or from) the formation.
For a linear initial temperature distribution in each layer of the for-
mation, o

TU(Z)=TC] +ggJ~z, .......... e e e he e e (19)

where the T; are constant. Continuity at the interfaces of layers
requires that

T =Tty v evereenrnerannenaen e eaaanns 20)
and T +8,2j =Tgj+1+8gj+1%, =12 n=10 oo 2D
Then Tjj(Z)=ggj - rrerrrrernrrerseereereneioen. 22)
and Yj(zD,s)=—[6j/s(s+ﬁj “Di®] e 23)

For the heat flux into (or from) the formation, in Laplace space,

77@9)=—U; (T~ Tu[®; (12p,5)~0; cp.5)), J=1.2. . ..

.................................... @4)
. The cumulative heat flow rate is- .
24r. DT ~T..) * U D,
Qc(s)= 7y ( inj au') E —il:l-— ](s)j|
Vin j=1 s ﬁ]'
x[i@' ( )+ Ui }
. i 1,8 e
Iy L 8, ~D(5)]
x(1-exp{~ls+8; ~D; Nep; ~zpy DY)
=I5+ . —D. ——-——————J o - s ] ..... 25
[f B; —D;(5)] S48, D0 (&pj ~zpj-1) 25)

The solutions in Laplace space can be evaluated by numerical
inversion techniques. 10 Analytical solutions in real space are de-
sirable for validating the numerical inversion results and for predict-
ing the early-time transient behavior of the system because the
numerical Laplace transform cannot be expected to give accurate
results for early time. We have obtained solutions in real space for
a linear initial temperature distribution in each formation layer in
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TABLE 1--CALCULATION DATA

gy, °Cim [°Fi] 0.03 [0.018]

T °C [°F] 100 [212]
Q, m¥d [{t°D] - 100 [3,531]
P, ka/m® [lomy/it3] 958 [59.8]
U, Wi(m2 -°C) [Btu/(it2-°F)] 978 [172)
Tars °C [°F] 20 [68]
D, m [f] 1,000 [3,281]
I, M [f] 0.08 [0.26]*
0.y, Jikg-°C) [Btu/(lom-°F)] 4196 [1.00]

Sandstone

0, ka/m?® [lbm/ft3] 2200 [137.3]

¢, Ji(kg-°C) [Btu/(bm-°F)] 740 {0.167]

K, Wi(m-°C) [Btu/(ft-hr-°F)] . 2.8 [1.62]
Clay .

0, kaim?® [lbm/ft3] 1500 [93.6]

¢, Jl(kg-°C) [Btu/(lbm-°F)] 800 [0.191]

K, Wi(m-°C) [Btul(ft-hr-°F)]

1.4 [0.81]

*16.08-cm [6.33-in.] ID.

Appendix B. For Layer 1 (0=<zp =<zp;) or for a homogeneous for-
mation we have

Iy (tp=zp)
GI(ZDJD)':{ LR R R RE (26)
Il +Iz +13 ‘ (tD >ZD)
where
| Jol(-0)
' expl ——1p |— l:l
45 =D () N .
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. (5] ™
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0p=Bizp « o {1 —EXP[— ';l‘(fp —'ZD):B
IZ = S
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For Layer j=2,3. . .n, the dimensionless wellbore temperatures are

t
0;@p.tp)=4; (tD)+S D[ej—l(ZDj—lyT)—Aj (M1B; @p,tp—n)dr,
0

where gi(rp,tp)=
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Fig. 2—Comparison of numerical inversion of Laplace trans-
formation with exact solution and Ramey’s solution.

46] oo
where 4; (1p)= —S
. w2
o)
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Dj*(u) o -
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and B; @p.tp)=

0 (p=zp—zpj-1)

2 : ® 2@zp—zp; 1)
__exp[—ﬁj(zD—sz_l)]S usm[_P_L_J

wo; 0 7D} (W)

u? ‘
XCXP[(ZD —Zpj _1)Rj (u)/Dj* w)——@p—2zp +sz _1)]du,
g;
. J -
Ip>Zp—Ipj-1-

R;(u) and Dj* (u) in Egs. 27 through 32 are defined in Appendix
B. The dimensionless temperature function in Layer j is given by

tp .
$,p2potp)=|  Oep, g rp.tp =),
0

2 S = U < u? >
expl ——¢
D) o 0

LTI i

¢ { Yo urp)eo; o)+l )] —J o (urp) ¥ (1) +; Yo ()] .
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Discussion

A series of tests were conducted to validate the analytical solunons
The numerical inversion results of the Laplace—transformed solution
of Bq. 15 were compared with the numerical integration of the exact
solution of Eq. 26 and with Ramey’s long-time solution. The
integrals in Eq. 26 were calculated with the numerical integral-
evaluation routine from the NAG Fortran Library!! on a CRAY
computer. Convergence of the numerical integration was very rapid
and smooth.

The example problem is a hot-water injection at a constant rate.
Table 1 gives the fluid and formation data for the calculation. As
Fig. 2 shows, the numerical Laplace inversion results are in excellent
agreement with the exact solution, and at long times, both the so-
lution and Ramey’s solution converge to the same curve.

The results from the numerical Laplace inversion by the Stehfest
algorithm generally need to be checked against some other solution,
particularly for early times. We have found that the numerical in-
version gives very poor results for the early times when 7p <zp.
This probably occurs because of the rapidly changing condition at
the sandface until the entire wellbore is full of injected water when
tp>1. At later times, the numerical inversion will give very ac-
curate results. Therefore, the exact solution in real space, instead
of that in Laplace space, should be used for applications in which
early-time transient behavior is important, such as in temperature
well logging analysis. 12

As in most studies on wellbore heat transfer, the vertical heat
conduction is ignored here because it is negligible compared with
horizontal flow. We examine this approximation by comparing the
horizontal and vertical temperature gradients in the formation de-
rived from the solutions obtained above. As Fig. 3 shows, the ratio
of vertical and horizontal temperature gradients is always smaller
than 1%, and reaches its maximum around the temperature penetra-
tion fronts. A larger vertical heat flow may occur on the interface
of formation layers with different properties where the temperatures
obtained by neglecting vertical flow are vertically discontinuous.
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We found that the difference in temperatures is very small on the
interface of the sandstone and clay whose properties are given in
Table 1. These results should be conservative because vertical tem-
perature differences are overestimated if vertical flow is neglected.
Therefore, the assumption that the vertical heat flow in the forma-
tion is negligible is probably acceptable for most engineering cal-
culations.

A steady-state approximation for vertical heat transfer in the well-
bore has been made in almost all previous wellbore heat-transfer
models. This approximation is not needed here. It has been shown
that the steady-state treatment overestimates the temperature increase
in the wellbore at early times but that the differences disappear at
long times.

The transient heat-conduction functxon J(tp), discussed in detail
by Ramey? and Willhite,5 is widely used for wellbore heat-transfer

. calculations. However, only an approximate analytical expression

for f(zp), which is based on the long-time line-source solution from
Ramey, is available in the literature. We obtain an accurate formula
for f(tp) as a special case of applications of the analytical solution
to a uniform and homogeneous formation (subscripts omitted):

é(1,zp.tp)
wl0p,tp) ~6(1,2p.tp)]

27Ky = ro— T3]
dq "fdz

fp)=

It is interesting to note that in a more rigorous formulation, f(tp)
is a function not only of dimensionless time, ¢p, but also of dimen-
sionless depth, zp. This can be seen explicitly from Fig. 4, in



a

which f(tp) from Eq. 35 is plotted for different zp. Only after
152500 (2,500 hours for this case) does f(fp) become indepen-
dent of zp,. This means that the use of an f(¢p) independent of zp
will not give accurate results during the early transient time for well-
bore heat-transfer problems.

Heat loss (or gain) from wells is important for evaluating a thermal
recovery project. Figs. 5 and 6 show the behavior of heat flux and
cumulative heat transfer into the surrounding formation for hot-water
injection into a well in a homogeneous sandstone formation. Table 1
gives the calculation parameters. Fig. 6 clearly shows that the heat
losses from the well and the temperatures never reach a steady state
because the formation is modeled: as an infinite radial system.

In an actual reservoir, formations are neither uniform nor
homogeneous, and layered formations may be a realistic approxima-
tion. To take into account effects of formation heterogeneity on well-
bore heat transfer, the temperature distribution along the wellbore
was calculated for hot-water injection into a formation consisting
of two layers. The upper 500 m [1,640 ft] is sandstone, and the
lower 500 m [1,640 ft] is clay. Table 1 gives the problem parame-
ters. As Fig. 7 shows, if only sandstone properties are used, well
temperatures are underestimated because thermal diffusivity in sand-
stone is larger than that in clay. Fig. 7 suggests that the assumption
of constant formation properties introduces errors for nonhomogene-
OuS reservoirs.

Conclusions

An analytical solution for determining wellbore heat transfer has
been developed that is applicable to field predictions and reservoir
simulation studies of wellbore heat transmission in uniform and
layered formations. Hllustrative examples were given for temperature
distributions along the wellbore and in the formation, and for heat-
transfer rates and cumulative heat loss (or gain) between wellbore
and formation. Analysis of the calculated results of the analytical
solution leads to the following conclusions. '

1. Vertical heat conduction in the formation may be ignored for
engineering applications.

2. The use of a depth-independent heat-conduction function,
ftp), will introduce large errors at early times in calculations of
wellbore temperature. ]

3. Effects of formation heterogeneity should be included for more
accurate predictions of wellbore heat transmission in nonhomogene-
ous formations.

Nomenclature
Aj(tp) = defined in Eq. 31
Aj(s) = defined in Eq. B-2
B;(zp,tp) = defined in Eq. 32
B;(zp,s) = defined in Eq. B-3
¢; = formation specific heat of Layer j, J/kg-°C
[Btu/(Ibm-°F)]

¢; = fluid specific heat in tubing, J/(kg- °C)
[Btu/(lbm-°F)] '

C; = constant in Eqs. A-23 and-A-24

D = depth to top of permeable interval, m [ft]

D;(s) = defined in Eq. A-25
Dj*(u) = defined in Eq. B-15
f(zp) = tramsient heat-conduction function defined in
Eq. 35
f;(tp) = defined in Eq. B-7
fj (s) = defined in Eq. B-2
g = acceleration of gravity, m/s? [ft/sec2]
8g,; = geothermal gradient of Layer j, °C/m [°F/it]
g;{rp,tp) = defined in Eq. B-12
g;(rp,s) = defined in Eq. B-6
i = injection rate, m3/s [B/D]
I; = defined in Eqgs. 27 through 29 (j=1,2,3)

Jo = zero-order Bessel function of first kind
J, = first-order Bessel function of first kind
k;, = thermal conductivity of formation, W/(m-°C)

[Btu/(br-ft2-°F/in.)]
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' ky; = thermal conductivity of Layer j formation,
W/(m- °C) [Btu/(hr-ft2-°F/in.)]
zero-order modified Bessel function of
second kind
Ky = first-order modified Bessel function of second
kind
n = total formation layer number with different
physical properties
= heat flux between tubing and sandface,
W/m? [Btu/ft2 -hr]
cfj”(z,s) defined in Eq. 24
" @, = cumulative heat exchange between well and
formation, J [Btu]

&
!

(=Y

" 0,(s) = defined in Eq. 25
= radius, m [ft]
rp = dimensionless radius deﬁned in Eq. 10
r; = inside radius of tubing, m [t} ‘
r,, = outside radius of cement zone, m [£]
R (1) = defined in Eq. B-14

s = Laplace transform variable
t = time, seconds
tp = dimensionless time defined in Eq. 11

T = temperature, °C [°F]
T,; = surface temperature, °C [°F]
T, = constant temperatuge in T,-j @), °C [°F]
T;(z) = initial temperature as a function of depth,
°oC [DF]
Ty = surface injection fluid temperature, °C [°F]
Ty;(z,f) = temperature along tubing, °C [°F]
sz (r,z,t) = temperature in formation, °C [°F]
) = overall heat-transfer coefficient, W/(m?2 -°C)
[Btw/(hr-ft2-°F)] .
v,, = mean flow speed inside tubing, m/s [ft/sec}
Y;(zp.s) = particular solution in Eq. 21
_ ¥, = zero-order Bessel function of second kind

Y; = first-order Bessel function of second kind
z = vertical coordinate, m [ft]
zp = dimensionless vertical coordinate defined in

Eq. 12
zpj = %j/H, dimensionless depth of Layer j,
g=12...n

Z = depth of bottom of Layerj, (j=L1,2...n,29=0)
o = thermal diffusivity of formatlon (a=K/pc),
m?2/s {ft2/sec]
B = dimensionless constant (Eq. A-3)
6;(zp) = defined in Eq. A-4
8;(zp,tp) = dimensionless temperature functions of
wellbore
£i@p) = dimensionless function (Eq. A-S)
o = density, kg/m3 [Ibm/fi3]
p; = fluid density in tubing, kg/m3 [Ibm/ft3]
o; = dimensionless constant (Eq. A-6)
¢;(rp.zp,tp) = dimensionless temperature function of
formation
= defined in Eq. A-13

Subscripts
‘ D = dimensionless

j = formation layer index (j=1,2...n)

1 = in tubing

2 = in formation

Superscripts ,
— = Laplace space
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Appendix A—Analytical Solution in Laplace Space

In terms of the dimensionliess variables defined in Eqs. 10 through
14, the problem becomes

‘ a—6"—+-Ml+3-(9-—¢.l “O+6:@Ep)=0 ........... (A-1)
dtp  Bzp N T Riirp=1/TE D
o 24 +-—1—%-=0-%, ....................... (A-2)
arﬁ rp orp / otp
where j=1,2...n and
B; =2U;D/piCr Vs vvoeeeie (A-3)
. £;(zp) for liquid flow
g (ZD)={5,- (@)D /Ty~ Tyir)ey for gas flow
................................... (A-4)
£;@p)=DT @/(Tigj=Tair)s +vvvvvnnrnrnsrererenes (A-5)
and o; =pCj VP F/Dkpjy v (A-6)
with initial conditions
8;Zpitp=0)=0 ....\ooiiiiiii (AT
and ¢;(rp,zp,tp=0)=0 ......... ...l (A-8)
and boundary conditions
O1Ep=0tp)=1, .. (A-9)
8; @pj—1:tD) =0; _1@pj —1,tp) J=2,3. .1 i (A-10)
a¢j/arD|,D=1=wj(¢jl,D=1—oj), ................. (A-11)
and lim ¢;(rp,2p.tp)=0. ...oooiiiiiiii (A-12)

rp—®
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In Eq. A-11,
OJJ =Ujr,/kj.

The Laplace transforms of 8; (zp,fp) and ¢; {(rp,zp,!p) are defined
as follows13:

— =
5 Gp.s)| OGpipletotdip, j=12...n oo (A-14)
. . 0 .
and ¢; (rD,zD,s)=§ ¢;(rp.zp,tple ~'p%dip, j=1,2...n.
. 2 4
.................................. (A-15)

Application of the Laplace transformation to partial-differential
Egs. A-1 and A-2 and boundary conditions in Eqs A-9 through
A-12 with incorporation of the initial conditions in Eqs. A- 7 and
A-8 yields

dB; /dzp+(s+B;)0; —B; 6 |,D=l +[5j @p)/s1=0, ....(A-16)
(A28, /drf)+(Urp)dd; /drp)—oysd; =0, .......... (A-17)
d;ldrplp=1=0; @) lrp=1-07), e (AR18)
B1Gp=0,8)=1/s, «evvvriniiiiiiii (A-19)
and 8 @pj— 1) =0, 1@pj—158)s - v ereieeeen (A-20)
where j=1,2. . .n. The solutions of Eqs. A-16 and A-17 in Laplace

space, satisfying the boundary condition of Egs. A-18 through A-20,
are

§; zp.5)=C;(s)exp{~[s+B; —D;(s\ep} +¥; @p.s) .-

(A—Zl)
and $j (rp.z2p,8)=
(ZD:S)KO(‘/_—"D)/ [w; K (\/— )+‘/_K1 (\/_ )l
.................................. (A-22)

where the Y;(zp,s) are the particular solutions of Eq. A-16 that
depend on the initial temperature profile.

Ci=(/)—Y1Zp=0,8)s -ocvrvrririiiiil, (A-23)
G; =[§j—1(ZDj—1ys)—Yj(ZDj—hS)]
Xexp{[s+ﬁ_, —D] (S)]ZDj—l}’ j=2,3- [ £ 7 (A-24)

and D; (5)=B;w; Ko(Noy5 )[[w; Ko(Noys )+~ ays Ky (Noys )]

Heat flux into (or from) the formation in Layer j is defined as
. 271, (2.t)= =277, K; 3T /00 =,
so that g/ (z,8) =[—K; (Tipy — Toir)/7:1(3¢; Arp)lyp=1

= —Uy(Tig; — Tai); (Lzp,1p) —0;zpatp)l. e (A-27)

Total cumulative heat transfer is

Qc(t)=g t[ E S zj27rr;q]'"(zp7')d2}d7'.
0

i=1
J Zj-)

For linear vertical-initial-temperature distributions in each layer of
the formation, we can obtain the explicit form of the particular so-
lution Y} (z,5) from Eq. 23. Then, the expressions for heat flux and
total cumulatwe heat transfer in the Laplace-transformed space can
be derived with Egs. 24 and 25, respectively.

Appendix B—Analytical Solutions in Real Space:

For a linear initial-temiperature distribution in each layer of the for-
mation, Eq. A-21 can be written as
0, zp.s)=A;()+10;-1Gpj—1,5) A ()1B; p,s),
j=12...n (ZDj—l =Zp SZDJ‘);

QDL Dacarunit Dnainearine Novemher 1000

where A; (s)=—{§; /s[s+ﬁ, —D; (s)]} (lls)f,(s)

x[fJ(s) =sA; ()], - (132)
B;(zp,s)=expl—B; (zp—zp; ~1Jexpl—5zp ~2zpj _1)]
Xexp[Dj(s)(zD—sz_l)], ....... e .(B-3)

and 84(zpg,s)=1/s.
The dimensioniess temperature functions in the formation are

$;(rp.2pitp)=0;@p.9E; rp.s), j=1.2. . .n,
and g; (rp.5)= S

w; Ko(Naps rp)[w; (\/‘“ )+\/_' Kl(x/”— )] ..... (B-6)

Because the functions A ), B (zp,s), and §; ; (rD,s) have a
branch point at the origin, we have to use the inversion theorem
for Laplace transformations by evaluating the contour integral. 13
The following inversion can be proven after some algebraic oper-
ations. 14

fit 5" 1f6) 2—’§ -fu%f(xe-m)—f f heimy]an
0

_ 4261 Sme—(uz/g‘];)tD u-Dj (u)z . dd
e {D*(u)(ﬁj—f—>R,-<u)] o
[+ .
.................... SOUUURRRR -
1 o
£~ explD; (Vep—2py ]} =—] e~
ady

x {expD; (he =) (ep ~2pj—1)] ~exp[D; (hei)ep —2p; - )] dh

2 e .I:z(ZD"ZDj—l)}
usmy ——

Agj g xD ;" (w)

u2
X eXP[(ZD ~zpj—1)R; W)/D}* ) - —fu}du-
12

......... (B-8)
J
‘ 1. 48, - @ D*
Then, 4; (tD)=£—1[“fj (S)}=S tDJS‘ (T)d‘F:_JX ()
s 0 n2 0 U
—@?le)tp -
X [ 2o -1} e (B-9)
’ u2 2 4
[Dj* (“)<5j‘—> —R; (u)] +—
9

and B; (zp,1p) =8 ~1[B; Gp, )] =expl—B; @p—2p; ~1)]L L
x {exp[—s(zp —zp;—1)1expID; (s)&p —zp;— 1)1}

0 (tDSZD—'ZDj—l)

2 © 2 —Zn
——expl~6;(ep~zp; 1) usm[ﬁ——zl’—’—l—)]

no; , H 7D (u)

u?
X exp[(zD —2zpj-1)R; (u)/Dj* (wy——@p—zp+ipj- 1)}du,

Ip>Zp—Zpj-1-

Taking the inverse Laplace transform of Eq. B-1 and using Egs.
B-9 and B-10 and the convolution property of the Laplace trans-
form, we have

6;Gp.1p)=£71[8;@p.9)]=4; (tD)+E tD[Gj -1@pj—1,1)=4;(D]

XBj@p tp =TT <. (B-11)



Yu-Shu Wu, post-
doctoral fellow with
the Earth Sciences
Div. of the Lawrence
Berkeley Labora-
tory, has research
interests in mathe-
matical modeling
and transport phe-

phase and multi-
component fliuids
in porous media.
He holds BS and MS degrees in petroleum engineering from
the Petroleum Inst. in China, and MS and PhD degrees in
hydrogeology from the U. of California, Berkeley. Karsten
Pruess is a staff scientist in the Earth Sciences Div. of
Lawrence Berkeley Laboratory. His research interests include
modeling subsurface flow systems. He previously was a re-
searcher and lecturer at the U. of Bremen and the U. of Frank-
furt in West Germany, He holds a PhD degree in physics from
the U. of Frankfurt. Pruess was 2 member of the 1985-89
Editorial Review Committee and is on the program commit-
tee for the 1991 Symposium on Reservoir Simuiation.

nomena of multi-

538

. ) 1 po :
and g;(rp,tp)=£1g; (TD»S)]=‘2‘T§ e ~'DMZ; (rp,he ~iT)

i §
. 2 @ ue —(ltzl&j)tD
—g;(rp,Ae'm)Jdh=
70 B 5 D*(u)

X {Yo(urD)[ijO(u) +llJl(ll)] —Jo(urD)[qu (u) +0Jj Yo(u)]}du

.................................. (B-12)

- t

Then, &;(p.2ptp)=| 0@, rpitp=)dr. ....(B-13)

0
In the above solutions,

R; () =To()[w;J o) +u ()] + Yo@)leo; Yo () +1Y1 ()]

.................................. B-14)
 and Dj* (1) ={[w; Yo(w) +u¥10)]?
+[w]Jo(u)+u71(u)]2}/ijj ..................... (B-15)
For Layer 1, the solution in Eq. B-11 is simplified to Eq. 26.
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