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Summary. This paper describes the application of the method of “Multiple Interacting Continua’ (MINC) to the simulation of

oil recovery in naturally fractured reservoirs. A generalization of the double
transient description of interporosity flow by numerical methods. We presen

method for modeling oil

-porosity technique, the MINC method permits a fully
t examples to demonstrate the utility of the MINC

-recovery mechanisms by water imbibition and field applications for five-spot waterflooding and water

coning problems in fractured reservoirs. All tesults show that the MINC method provides accurate predictions of the behavior of -

naturally fractured reservoirs, while requirin
method. The double

g only a modest increase in computation work compared with the double-porosity
-porosity method may result in large errors for matrix blocks of low permeability or large size.

introduction
The study of fluid flow in naturally fractured petroleum reservoirs
has been a challenging task. Considerable progress has been made
since the 1960’s because many fractured hydrocarbon reservoirs
have been discovered and put into development in the past decades.
Most papers treating flow in fractured reservoirs consider that global
flow occurs primarily through the high-permeability, low-effective-
porosity fracture system surrounding matrix rock blocks. The matrix
blocks contain the majority of the reservoir storage volume and act
~ as local source or sink terms to the fracture system. The fractures
are interconnected and provide the main fluid flow path to injection
and production wells. .2

Because of the complexity of the pore structure of fractured reser-
voirs, no universal method for the simulation of reservoir behavior
exists. Several different double-porosity models (DPM’s) have been
developed to describe single-phase and multiphase flow in fractured
media.3-!! Usually, analytic approximations are introduced for the
coupling between fracture and matrix continua. For example, it is
commonly assumed that a quasisteady state exists in the primary-
porosity matrix elements at all times.

Very little work has been done so far in studying transient flow
in the matrix blocks or between matrix and fracture systems either
numerically or experimentally. As a generalization of the double-
porosity concept, Pruess and Narasimhan’ developed the MINC
method, which treats the multiphase and multidimensional transient
flow in both fractures and matrix blocks by a numerical approach.
This method was successfully applied to a number of geothermal

reservoir problems. 51213 The MINC method of Pruess and

Narasimhan’ involves discretization of matrix blocks into a se-
quence of nested volume elements, which are defined on the basis
of distance from the block surface (Fig. 1a). In this way, it is pos-
sible to resolve in detail the gradients (of pressure, temperature,
efc.) that drive interporosity flow. This discretization technique was
later adopted by Gilman!! for flow in fractured hydrocarbon reser-
voirs and by Neretnieks and Rasmuson'# for chemical transport
in fractured groundwater systems.

In the present paper, we apply the MINC method to study oil-
recovery mechanisms in fractured reservoirs and to obtain insight
into the behavior of water/oil flow during the imbibition process.

Imbibition is regarded as a very important mechanism of oil pro- -

duction in waterflooding or water coning of fractured reser-
voirs. 13:16 For muitiphase flow, pressure, viscous, gravitational,
and capillary forces should all be taken into account. To under-
stand the roles played by the three kinds of forces, we have studied
the imbibition process with the MINC method, the conventional
DPM, and with a detailed explicit discretization of matrix blocks.
Copyright 1888 Society of Petroleum Engineers
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The comparison of the results from the three methods shows that
the MINC method can give an accuracy of better than 1% at all
times, while the DPM approximation with quasisteady interporosity
flow can produce large errors, especially for matrix blocks with
low permeability or large size. ) )

We also apply the MINC method to match published data of a -
five-spot waterflood*-? and the observed coning behavior of a well
with bottomwater drive in a fractured oil reservoir. 17 Satisfactory
results have been obtained for the two examples. In both the imbj-
bition study of individual matrix blocks and field-scale applications,
the MINC method is found to give more reliable history matching
and behavior predictions for the simulation of fractured reservoir
than the conventional DPM. '

In most previous analytical or numerical studies of multiphase
flow in porous media, it has been taken for granted that the matrix
system can be treated as a single continuum with (locally) uniform
pressure and fluid saturation distributions. To'the best of our knowl-
edge, no studies for multiphase flow have been published concern-
ing how much error will be introduced by this treatment and under
what conditions the quasisteady approximation for interporosity flow
is acceptable for engineering applications. The applicability of the
DPM method is discussed by analyzing the results from individizal
block imbibition studies and field-scale examples with MINC and
DPM in this paper. Through the work of this paper, it is found
that the DPM method is often unsuitable for the simulation of
oil/water imbibition processes in naturally fractured reservoirs. De-
pending on reservoir fluid and rock properties, DPM may either
overestimate or underestimate imbibition oil recovery from matrix
blocks, especially for matrix blocks with low permeability and large
size or for high oil viscosity. In some special cases, the results from
MINC and DPM calculations are very close, either because of
similarities in individual block response predicted from either
method or because of the compensatory effect of global flow in

 the fractures on individual block imbibition response in field-scale

modeling. In general, it will be difficult to determine the suitability
of DPM for a given reservoir problem. It is suggested that individual
matrix imbibition studies be carried out with various possible reser-
voir parameters with DPM approximation as well as explicit dis-
cretization before DPM is applied to actual reservoir simulation.
Comparison between DPM and EDM results for individual matrix
blocks may provide clues for the accuracy to be expected from the
DPM approximation in field studies. When changes in water satu-
ration in the fractures are rapid, as may often happen in coning
problems or in response to rate changes, it is usually necessary to

account for the transient flow inside the matrix blocks and between
matrix and fractures.
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1—Discretization of matrix blocks (schematic): (a) MINC, (b) double porosity,

(c) explicit discretization.

TABLE 1—RELATIVE PERMEABILITIES AND
CAPILLARY PRESSURES FOR DATA SET 14

0.000

) Pc Pc
‘Sw krmf krof (PSi) krwm kmm (pSi)
0.000. 0.000 1.000 4.000 —_ — —
0100 0,050 0.770 1.850 -_— — —
0.200 0.110 0.587 0.900 — — —
0250 0.145 0.519 0.725 0.000 0.920 4.000
0.300 0.180 0.450 0.550 0.020. 0.705 2.950
0.400 '0.280 0.330 0.400 0.055 0.420 1.650
0.500 0.355 0.240 0.290 0.100 0.240 0.850
0.600 0475 0.173 0.200 0.145 0.110  0.300
.0.7000 0585 0.102 0.160 0.200 0.000 0.000
0.800 0.715° 0.057 0.110 — _— —_
0.900 0.850 0.021 0.050 — — —
1.000 1.000 0.000 —_ — —

MINC Method

The MINC method, a generalization of the double-porosity tech-
nique. is applicable for numerical simulation of heat and multiphase
fluid flow in multidimensional fractured porous media. The method
permits treatment of multiphase fluids with large and variable com-
pressibility and allows for phase transitions with latent heat effects,
as well as for coupling between fluid and heat flow. By dividing
the matrix into subdomains, the transient interaction between matrix
and fractures is treated in a realistic way. The numerical implemen-
tation of the MINC method is accomplished most easily by means

-of an integral finite-difference formulation, 18

An important point of the MINC method is the generation of com-
putational grids. ! A fractured reservoir is at first partitioned into
*‘primary”’ volume elements (or gridblocks), such as would usually
be used for a porous medium. On the basis of the assumption that
global flow occurs only through the network of well-connected frac-
tures, the interblock flow connections are then assigned to the frac-
ture continuum. Each primary gridblock is subdivided into a
sequence of *‘secondary’’ nested volume elements, which are de-
fined on the basis of distance from the matrix block surfaces (Fig.

TABLE 2—PARAMETERS FOR DATA SET 2°°

Matrix permeability, md 1

Pe
'Sw krw kruw (pSi)
0.200 0.000 1.000 50.00
0.250 0.005 0.860 9.000
0.300 0.010 0.732 2.000
0.350 0.020 0.600 0.500
0.400 0.030 . 0.4982. 0.000
0.450 0.045 0.392 - 0.40
0.500 0.060 0.304 - 1.20
0.600 -0.110 0.154 - 4.00
0.700 0.185 0.042 -10.0
0.750 - 0.230 0.000 -40.0
QOriginal bubblepoint, psig 5,545
‘Slope of B, above p,,, volivol-psi 12x10-8
Density of stock-tank oil, Ibm/it® 51.14
Slope of u, above p,, cp/psi. 17.2x10-8
Gas density at standard conditions, :
Ibmyft3 0.058
Water FVF, psig 1.07
Water compressibility, volivol-psi 3.5x%x10-8
Water viscosity, cp 0.35
Water density at standard conditions,
Ibmy/ft3 85
Matrix compressibility, volivol-psi 3.5x10-8
Fracture compressibility, volivol-psi 3.5x10-8
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Matrix porosity, % 30

TABLE 3—PARAMETERS FOR DATA SET 3
(Scuthern California Oil Field)
Pe

Sy K im K rom (psi)
0.000 1.000 0.000 356.66
0.037 0.850 0.000 - 141.69
0.040: 0.840 9.42x10-" 124.26
0.049 0.811 -2.41x10 -8 105.77
0.059 0.779 - 2.72x10-7 88.27
0.073 - 0.735 . 1.95%10-8 70.85
0.095 0.671 1.32x10-5 53.42
0.099 0.659 1.72%x10-5 51.77
0.133 0.568 9.85x10-5 35.92
0.201 0.411 8.41x10-* 21.54
0.259 0.303 2.82x10-2 14.38
0.351 0.173 1.13%x10-2 7.155
0.380 0.142 1.61x102 5.668
0.455 0.0786 3.55%x10-2 3.082
0.554 0.0285. 8.31x10-2 1.643
0.624 0.0104 0.138 1.232
0.800 "0.000 0.405 0.872
0.900 0.000 0.677 0.730
1.000 0.000 1.000 0.206
Matrix porosity, % 20
Matrix permeability, md 1
Fracture permeability, md 10,000
Rock compressibility, vol/vol-psi 3x10-5
Initial oil saturation " 0.60
Oil density, ibm/ft® 60.99
Oil viscosity, cp 30
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Fig. 2—Discreétization of a cylindrical matrix block for MINC
and EDM.
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Fig. 3—Imbibition recovery and rate from a cylindrical matrix

block—Kazemi et al.* data): (a) imbibition recovery, (b} im-
bibition rate.

1a). With these subcontinua, it is possible to represent the transient
flow in the matrix blocks and transient interporosity flow between
matrix and fractures. o » v

The assumption that global flow occurs only through the frac-
tures breaks down for multiphase systems with strong capillary ef-
fects. Depending on overall phase composition, the wetting phase(s)
will preferentially occupy the small pores in the rock matrix. while
the nonwetting phase(s) will tend to reside in the largest voids, i.e.,
in the fractures.20 If the phases tend to be highly segregated be-

tween primary and secondary porosity, then global flow of the wet-

ting phase will take place through the primary porosity, crossing
fractures at asperity contacts. Furthermore, if there are large den-

sity differences between segregated phases, interporosity flow will

be subject to strong gravity effects. Such conditions can arise in
gas/oil drainage, in water imbibition in large matrix blocks, and
in vapor-dominated geothermal reservoirs where the fractures con-
tain only steam while mobile liquid water is present in the matrix
blocks. S Global matrix/matrix flow and gravity effects in inter-
porosity flow can be described by first discretizing matrix blocks
into horizontal layers and then applying nested subregions within
each layer.8

The MINC method contains the double-porosity approximation
as a special case. It can be implemented simply by defining only
one matrix continuum and using an appropriate nodal distance for
matrix/fracture flow (see Appendix A). '

The simulations reported in this paper were carried out with a
code STMFLD1,* which solves simultaneous mass-balance equa-
tions for two hydrocarbon components and water, as well as a heat

*Developed by K. Pruess.
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balance. STMFLD1 uses an integral finite-difference technique for
space discretization and a fully implicit first-order time discretiza-
tion. The resultant nonlinear algebraic equations are solved by
Newton-Raphson iteration that uses a sparse version of LU-

. decomposition for the set of linear equations arising at each iiera-

tion step.?! STMFLDI has a capability for simulating thermally en-
hanced oil recovery in fractured reservoirs, but in the present work
was used only for isothermal oil/water two-phase flow.

imbibition Oil Recovery

Imbibition displacement of oil by water in relatively tight matrix
blocks is a basic oil-recevery mechanism in fractured reservoirs
because most of the oil in place is present in the low-permeability
matrix system, and flows into the fracture system under viscous,
gravity, and capillary forces during oil production. Detailed simu-
lations of individual matrix blocks surrounded by water and oil are
presented in this section to study oil-recovery mechanisms and to
demonstrate the validity of the MINC method. The MINC results -
are compared with predictions from DPM and explicit discretiza-
tion methods (EDM) (see Figs. 1b and 1c). Two kinds of matrix
blocks, cubic and cylindrical, are modeled and similar results are
obtained. Relative permeability and capillary pressure data and other
parameters used are shown in Tables 1 through 3.

Results. EDM is used as a comparison standard for MINC and DPM
because EDM can take into account all the mechanisms: viscous,
gravity, and capillary effects. Fig. 2 shows a schematic profile of
a matrix block of cylindrical shape for MINC and EDM calculations.
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block—Thomas et al.® data: (a) imbibition recovery, (b) im-
bibition rate.
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Comparisons are shown in Figs. 3 through 5. Oil recovery vs.
time is shown in Figs. 3a, 4a, and 5a, calculated from MINC, DPM,
and EDM, respectively, for the three data sets given in Tables 1
through 3. In Fig. 6 we present oil-recovery results for a cubic
miatrix block with the data set of Thomias et al.9 This is virtually
identical to the resulfs for a cylindrical blo¢k given in Fig. 4a. After
many calculations with various matrix sizes and parameters, we
have found that there is almost no difference in flow behavior be-
tween cubic and cylindrical matrix blocks.

Comparing the oil recovery calctlated by the three methods, it
can be found that the MINC method is accurate enough to simulate
the water/oil imbibition process, while the DPM approach can give
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Fig. 6—Imbibition recovery from a cubic mairix biock—
Thomas ef al.® data.
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very large errors because it neglects transient flow in the matrix.
In all cases we have studied, there is excellent agreement between
the MINC and EDM results. It is interesting to note that the MINC
method requires orily a modest increase in computational work com- .
pared with DPM because of the one-dimensional treatment of flow
in the matrix and saves much more computer time and storage than -
EDM.

As shown in Figs. 3 through 6, there is a large difference in oil

. recovery between the MINC (or EDM) and DPM results. From

the.curve of imbibition rates (flow rate of 6il from matrix into frac-
tures) vs. time in Figs. 3b, 4b, and 5b, the cause of the difference
is apparent. The imbibition rates are quite different between the
two methods at early time because DPM underestimates the capil-
lary gradient near the matrix block surface. In fact, in DPM the
initial differences in capillary pressures between matrix and fractures
are assumed to-occur over a quasisteady flow distance, d, which

is much large'r than the nodal distance we use for the first matrix

continuum in the MINC method (see Appendix A). Subsequently,
the MINC method predicts a buildup of water saturation near the
matrix block surface, which diminishes the capillary pressure gra-
dient driving mterporosny flow, as well as oil relative permeability.
This results in a steeper decline in imbibition rate than that pre-
dicted from the DPM approximation, in which all saturation changes
are averaged over the entire matrix block. Therefore, at intermediate
times, DPM overpredicts imbibition rates. Eventually, for very large
times, the DPM imbibition rates decline below the MINC predlc-
tions. This occurs simply because for t— oo, all approximations must
converge to the same total oil recovery, corresponding to attainment
of capillary equilibrium between matrix and fractures. The rela-
tive lengths of the early, intermediate, and late time periods and
the magnitude of deviation between MINC and DPM depend on
formation parameters, PVT properties, and. initial conditions.

SPE Reservoir Engineering, February 1988
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Fig. 7—Saturation distribution in a cylindrical matrix block.

Fig. B—Eﬁect of matrix block size and rock absolute perme-

The agreement between MINC and EDM is éxcellent throughout.
This is further substantiated in Fig. 7, which compares the water
saturations calculated in MINC approximation for a certain distance
from the surface of a cylindrical block (see Fig. 2) with the de-
tailed predictions of EDM. It is seen that the MINC method under-
predicts water saturations near the ‘‘corners,”” where imbibition

_effects through the cylinder mantle overlap with those through the

upper (or lower) cylinder surface. Away from the corners, imbibi--

tion effects are slightly overpredicted by the MINC method. The
deviations are such that the saturations computed in MINC approx-
imation agree extremely well with the average saturation at a given
distance from the block: surface obtained in EDM. Fig. 7 shows
that this holds true even when gravity effects are included as long
as saturations are uniform over the block surface. This result con-
firms a theoretical prediction by Pruess.!?

Effects of Matrix Block Size and Permeability. In Appendlx B,
we show that as far as 1nterporos1ty flow is concerned, a change
in linear matrix block size by a factor « 1s equivalent to a change
in block permeability by a factor 1/a?, provided that gravity
effects are small compared with capillary effects. We have veri-
fied this by comparing calculations for cylindrical and cube-
shaped matrix blocks of widely different permeabilities and sizes.
This result makes it possible to plot imbibition oil recovery in terms
of a dimensionless time, tD, which is proportional to (k/L?)z (see
Fig. 8).

One of the most d1fﬁcu1t problems in h1story matching and per-
formance prediction of fractured reservoirs is to determine the
mairix block size. It cannot be measured directly, so the parameter

ability on imbibition ofl recovery vs. dimensionless time.

'

usually has to be established after tedious history-matching calcu-
lations. The equivalence between changes in matrix block size and
permeability facilitates practical application of the MINC method
to actual reservoir problems and history matching. A computational
grid for a MINC model of a flow system needs to be generated
only once for a given matrix block shape; changes in matrix block
sizes can then be implemented simply by appropriate adjustments
in matrix permeability.

The same holds true when considering not just one kind of block
shape but a distribution of block shapes and sizes based on some
stochastic fracture distribution. As was shown by Pruess  and
Karasaki, 22 the effective shape of a distribution of block sizes can
be conveniently represented by means of a “proxxmlty function”’

' PROX(x), which represents the fraction of matrix material present -

within a distance x from the fractures. Knowledge of the proxim-
ity function is sufficient for defining all geometric parameters of -

"a computationial grid in the MINC method. On the basis of the

discussion in Appendix B, it is clear that scaling of all matrix block
dimensions in any distribution of shapes and sizes by a factor «
will be equwalent to a change in matrix block permeability by a

factor 1/0:- (prov1ded gravity effects in interporosity flow are
small).

A Five-Spot Exampie

To demonstrate the application of the MINC method to a field-scale
problem, we present a comparison with previous calculations of

Kazemi et al.# and Thomas et al. 9 for five-spot waterflood. In this

TABLE 4—DATA FOR FIVE-SPOT PROBLEM
OF KAZEM! et al.®

Initial pressure, psia 3,959.89
Thickness, ft : 30
Grid dimensions ’ 8x8
Grid spacing, Ax=Ay, ft " 75
Fracture porosity, % 1
Matrix porosity, % 19
Fracture effective permeability, md 500
Matrix permeability, md 1
Matrix shape factor, ft -2 . 0.08
Water compressibility, vol/vol-psi 3.03x10 -8
Bubblepoint pressure, psia 0
Water and oil FVF at bubblepoint, HB/STB : 1.0

Slope of B, above p,; vol/vol-psi 10.3093x 10 —8

Fracture compressibility, vol/vol-psi 3x10-8
Water viscosity, cp 0.4444
Water density, psi/ft® 0.3611
Water injection rate, STB/D 200
Total production rate, STB/D ’ 210

SPE Reservoir Engineering, February 1988
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TABLE 5—PARAMETERS FOR THE CONING PROBLEM®
Fracture Matrix
_‘S_V\L kl’W kl‘D PC SW kI'W kro PC
0.0 0.0 1.0 3.868 0.280 0.0 0.240 3.869
0.1 0.052 0.764 1.806 0.324 0.016 0.705 2.773
02 0.111 0592 0.896 0.368 0.034 0.544 2.077
03 0.182 0.438 0.540 0.412 0.052 0.431 1.579
04 0271 0.328 0.370 0.456 0.070 0.348 1.195
05 0.367 0.239 0.277 0.500 0.092 0.276 0.868
06 0470 0.163 0.205 0.544 0.113 0.207 0.612
07 0.586 0.103 0.135 0.588 0.131 0.149 0.384
08 0.715 0.057 0.085 0.832 0.154 0,092 0.213
08 0.854. 0.017 0.043 0.676 0.178 0.034 0.085
10 1.0 0.0 0.0 0.720 0.200 0.0 0.0
Perforated thickness, fi : 68.2
Thickness of oil zone, ft 369.1
Thickness of water zone, ft 984.2
Well radius, ft 0.328
Well drainage radius, ft 984.2
Radius of the impervious break, ft 439.6.
‘Fracture Matrix .
Porosity 0.008 0.05
Permeability, md 3,500 5
Compressibility, psi 1 0.0056 0.0
- Vertical/horizontal permeability ratic  0.55

Matrix shape factor, ft -2~ 0.1068
. : Qil - Water
Viscosity, cp o 15.8 0.3
- Specific gravity 0.8456 1.02
Compressibility, psi~? 4x10-6 0.0
FVF, RB/STB 1.053 : 1.0.

problem, water is injected into one-quarter of a five-spot pattern
at arate of 200 STB/D [31.8 stock-tank m3/d] and the production
rate of total liquid is sét at 210 STB/D [33.4 stock-tank m3/d].
Reservoir dimensions and properties are given in Table 4.

For the treatment of the flow between matrix and fractures,
Warren and Root? have derived an equation for the shape factor

for single-phase flow, o, based on the quasisteady flow assumption
that - '

AN(+2)
= —-L—z-——, ........... RN e REREEREEREY (1)

g

where N is number of normal sets of fractures (N=1, 2 or 3) and

L v for N=1
L={2L,L /(L +L,) for N=2 :
L LyL (L Ly+L,L,+L,L) for N=3. ........ @

Kazemi et al. and Thomas et al. both used the quasisteady ap-
proximation, introduced by Warren and Root, and gave different
formiulas for the matrix shape factor, ¢. Kazemi et al. proposed

1 1 1 S
o=4|l —— - ———— | 3)
L2 L2 L2/ v

and Thomas ef al. suggested

Note that the shape factors calculated from the above three equa-
tions for a cubic matrix block are quite different. As mentioned
in the previous sections, the matrix block size makes a difference
in flow behavior of imbibitjon oil displacement and so does the shape
factor, because it is related closely to the matrix block size. The
simulation results for different ¢ may lead to remarkable differences
in the performance prediction.

332

In the present five-spot example, Kazemi er al. used a value of
o=0.08%, 'which, according to Eq. A-5, corresponds to a nodal
distance of d=5.833 ft [1.78 m]. A comparison of our simulated
WOR’s with the results of Kazemi er al. and Thomas et al.9 is
shown in Fig. 9. For the first 2 years, our calculation using ¢=0.08
is in excellent agreement with the curves of Kazemi er al. and
Thomas et al., and shows slight deviations at later time. The curve
for ¢=0.36 in Fig. 9, based on Warren and Root’s shape factor,
is lower for the first 3 years and has a more rapid increase during
the later production period. We also carried out a MINC calculation
for this problem with a discretization of five continua. Surprisingly,
the results for produced WOR turned out to be virtually indistin-
guishable from those obtained in DPM approximation with ¢=0.36,
even though the saturation distributions over much of the five-spot
pattern are quite different in both cases. How can a transient and
a quasisteady approximation for interporosity flow, which give sub-
stantially different imbibition response for individual matrix blocks

.(compare Fig. 3a), end up yielding nearly indistinguishable WOR s

in a five-spot flood? The answer is that the aggregate response of
many matrix blocks in a flood problem tends to compensate for
differences in individual block response. In the present case, the
DPM approximation gives more rapid oil recovery from an individu-
al block over virtually the entire period of interest (see Fig. 3a).
Therefore, in the DPM calculation, matrix blocks near the injector
will take up more water and deliver more oil than predicted from
the MINC method, so that blocks farther downstream from the in-
jector will “‘see’” more oil and less water in the fractures. There-
fore, those more distant blocks will give smaller imbibition rates.
From this consideration, it is clear that there will be a general ten-
dency for aggregate effects of blocks to compensate for differences
in individual block response. The fact that this compensation is vir-

tually quantitative in the present case is to be considered fortuitous.

A Coning Problem .

In this section, the MINC approximation is used to match the ob-
served coning behavior of a well in the north China oil field. The
data have been previously analyzed by Chen, !” whose basic reser-
voir model is axially symmetric—the symmetry axis coincides with
the well. The upper part of the reservoir is the oil zone, the middle -
is the transition zone, and the lower part is the water zone. Near
the top of the water zone there is a horizontal thin impervious break.
The bottomwater is supplied from the lowest surface of the cylinder
on which the pressure is maintained at a constant value. The top
and the external border of the cylinder are sealed—i.e., there is
no flow across the boundaries. The data used are shown in Table 5.

As given in Table 5, Chen used 0=0.1068, which corresponds
to a cubic matrix block with L=23.7 ft [7.2 m]. In the history-
match simulation, parameters are calibrated from the water-cut data
of the first 200 days of production, and the water-cut data after
200 days are used for checking the predicted results.

The results of the history matching and the behavior prediction
computed by MINC and DPM from the data of Table 5, respec-
tively, are shown in Fig. 10. Both models give a reasonable match

for observed performance; differences between DPM and MINC
are small in this case.

On the Validity of DPM

For practical simulatjon applications it would be preferable to use
the simpler DPM approximation whenever possible and to resort
to the more complex MINC description only in cases where the
accuracy of DPM is poor. In this section, we examine in more de-
tail the conditions for which acceptable accuracy can be attained
with the DPM method. The limitations of DPM can be seen best
when comparing the temporal evolution of imbibition rates in in-
dividual matrix blocks with the more accurate MINC prediction.
As was discussed above, one can distinguish three time periods.

Stage 1—An early period in which DPM underpredicts imbibi-
tion rate because it underpredicts the capillary gradients at the matrix
block surface.

Stage 2—An intermediate period in which DPM overpredicts im-
bibition rate because it underestimates buildup of water saturation
near the matrix block surface.
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Stage 3— A late time period in which DPM again underpredicts
imbibition rate because in the intermediate time period (Stage 2)
the block has moved closer to eventual capillary equilibrium with
the fractures than would be predicted from MINC.

'The relative lengths of these time perlods and the magnitude of
deviation between DPM and MINC in them depend on formation
and, ﬂmd propemes Generally speaking, differences tend to be
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Fig. 12—Comparison of WOR from MINC and DPM—modified
Chen’s data.

larger (DPM less accurate) for small matrix permeability, large
matrix block dimensions, large matrix porosity, or large. oil vis-
cosity. This can be seen by comparing the imbibition results ob-
tained for Chen’s data!” (Figs. 10 and 11) with those calculated
for a modified data set in which matrix permeability was decreased
from 5 to 0.1 md and porosity was increased from 5 to 20% (Figs.

12 and 13). For the original data of Chen, most matrix blocks are
in the intermediate time period (Stage 2) during the water-coning
process, with relatively minor differences between DPM and MINC
(see Fig. 11b). For the modified data, most matrix blocks are in
Stage 1 (see Fig. 13b), with very large differences between DPM
and MINC. -

Reservoir response is in general more comphcated than individual
block response because it involves a superposition of effects from
many matrix blocks. Dependmg on their location in the reservoir
relative to the water table and to injection and productlon wells,
different blocks will be at different periods of the imbibition cycle.
Aggregate imbibition response of many blocks in a TEServoir may
be similar in DPM and MINC, even if individual block responses
are rather different. This behavior was observed in our simulations
of Kazemi’s five-spot waterflood example, where DPM and MINC
gave virtually indistinguishable results even though individual block
response predicted from DPM differs considerably from the MINC
results (Figs. 14a and 14b). The explanation is that, with time, the
matrix blocks near the injector move into Stage 2 or 3 of the imbi-
bition cycle, while the blocks closer to the production well remain
in Stage 1 for a longer time. Overall reservoir response then tends
to average ‘out the differences existing in each stage.

For practical reservoir simulation problems, it would be desir-
able to be able t6 evaluate the accuracy to be expected from DPM
without actually going through a reservoir-wide MINC calculation.
It may be possible to accomplish this by plotting individual block
imbibition data as shown in Fig. 15. Here we have shown the ratio
of recovery predictions from MINC and DPM as a function of total
recovery. This presentation of the data removes the somewht
spurious dependence on real (physical) time, instead emphasizing
the connection between total recovery and accuracy of DPM. (Note
that an explicit discretization calculation for.an individual block
could be used instead of the MINC calculation with virtnally in-
dlstlnc'mshable results.) Fig. 15 shows why DPM for the modified
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data of Chen strongly underestimates oil recovery (overestimates
WOR): all matrix blocks are in conditions that plot above
Npum/Npp=1. For Chen’s original data, as well as for Kazemni’s
data, the Ny /N, ratio reaches 1 for substantially smaller oil
recovery. In these cases, therefore, some matrix blocks will have
Npu/Nyp>1 while others will have Nopy/Npp <1 after a relatively
modest recovery period. In this situation, differences in individual
block response will-tend to average out, giving a favorable situation
for applying DPM.

Conclusions

1. The conventional DPM can give large errors for simulation
of oil recovery from individual matrix blocks or from a reservoir
by water/oil imbibition mechanisms. The errors increase rapidly
with enlargement of matrix blocks or fluid viscosity and with
decrease in rock permeability.

2. The MINC method takes into account the transient flow of
fluids both in the matrix system and in the fractures. Comparisons



with calculations made with a detailed explicit discretization of
matrix blocks have shown that the MINC method gives accurate
predictions for water imbibition.

3. Results of five-spot waterflood and coning simulations indicate
that the aggregate response of many matrix blocks in a reservoir
has a general tendency to compensate for differences in individual
block response. This suggests that the DPM with quasisteady ap-
proximation for interporosity flow may be applicable even in cases
where its basic assumptions are poorly justified.

4. An estimation of the suitability of the DPM approximation for
waterflooding and water coning problems can be obtained by com-
paring quasisteady and transient imbibition predictions for individual
matrix blocks.

Nomenclaiure

A = interface area of matrix block, ft2 [m2]

4, = interface area between Volume Elements n and m,
ft [m?]

H

B = FVF, bbl/bbl [m3/m3]
¢ = compressibility, psi~! [Pa~!]
d = distance between nodal points, ft [m]
d; = nodal distance for the innermost matrix node, ft [m]
h = time level index '
H = height, ft [m]
i = component index (i=oil, water)
k = absolute matrix permeability, md
kg = relative permeability to the 8 phase »
[ = length coordinate for explicitly discretized matrix

block (Fig. 2; I=Ar+Z~0.75 ft [0.23 m]), ft [m]
L = characteristic dimension of matrix block, ft [m]
L, = matrix block length, ft [m]
L, = matrix block width, ft [m]
L, = matrix block height, ft [m]
M = accumulation term in mass-balance equation, Ibm/ft3
[kg/m3]
N = number of normal sets of fracture (N=1, 2, or 3)
N,p = oil recovery from DPM, bbl [m?]
Nyy = oil recovery from MINC, bbl [m?]
p = pressure, psi [Pa]
P, = capillary pressure, psi [Pa]
Ar = radial distance, ft [m]
S = saturation '
t = time, seconds
tp = dimensionless tine )
u = mass flux, Ibm/ft2~sec [kg/m?-s]
\» = matrix-block volume, ft3 [m3]
volume of Gridblock n, ft> [m3]
distance between two points in matrix blocks, ft [m]
mass fraction
vertical distance, ft [m]
scale factor (Appendix A)
viscosity, cp [Pa-s]
mass density of fluid, tbm/ft® [kg/m?3]
matrix shape factor, =2 [m ~2]
porosity

<
nn
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Subscripts
b = bubblepoint
D = dimensionless
fracture
= matrix
index number of volume element
oil
relative
water
phase
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Appendix A—Relationship Between
Double-Porosity Matrix Shape Factor
and Geometric Parameters of the Integral

Finite-Difference Method

Warren and Root? wrote a quasisteady approximation for inter-
porosity flow in single-phase conditions as follows:

oD, k
i = O (Br=Bp)e e S (A-1)
ot W

¢
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The overbars indicate averages over matrix and fracture continua,
respectively. The parameter o (Warren and Root used the notation
«) is a ‘‘matrix shape factor,”’® which characterizes the matrix
block surface area per unit volume.

To obtain the relationship between ¢ and the geometric parame-
ters used in an integral finite-difference description of i 1nterpor051ty
flow, c0n51der the point differential equation for flow in the matrix
blocks:

op k
B =V D (A-2)
ot K .
Integrating over one matrix block, we obtain
o, k
Vi mCrm - a; = A (T surface- oo (A-3)
” .

In double-porosity approximation (two contmua) the pressure gra-
dient at the block surface is approximated by the following finite-

difference expression:

PfPm
(VPm ) surface = IR (A-4)

with d Béing the distance of the matrix nodal point from the block
surface. Comparing Egs. A-1, A-3, and A-4, we obtain

g=—

T R (A-5)
vd

For matrix blocks in the shape of cubes, Warren and Root give
o=60/L2. Noting that A/V=6/L in this case, we obtam a nodal dis-
tance d=L/10 for quasisteady flow. Different values of o proposed
for multiphase flow can be accommodated in the integral finite-
difference representation by simply calculatmg the correspondmg
nodal distance d from Eq.-A-5.

Appendix B—Dependence of In&erporos:ty
Flow on Matrix Block Size

Let us consider a- scale chancve for the matrix blocks in ' which all

distances. between. points change by the same common ‘factor,

Such a scale change will not affect the shape of the blocks To evalu-
ate its effect on interporosity flow, we consider the governing mass-
balance equations for matrlx/matrlx or matrix/fracture flow. Ig-
noring gravity effects, we have

el " Ar )
MY Ml —— 3 Al =0, (B-2)
n m ; .
where
k k '
. kg
url1m=-——~ ZXIﬁv“"Pﬁ(PB,m —-pﬁ?n)' e e (B-3)
nm B K

Thus, the permeability and geometry parameters appear in Eq. B-2
in the group,

A nm

= (B-4)
V.d . _

nm

Suppose that the total number of matrix blocks in gridblock V,, is

v. Under the scale change (Eq. B-1) this number will change to

»'=v/a3. The surface area per matrix block will change from
Apmlv 10 0?4, /v, so that the total surface area will become

, o2y, 1
A=V ———== A (B-5)
All nodal distances in the matrix will change according to
Qo' =0 oo e (B-6)

Note that for a matrix/fracture connection, the same equation holds
because the fracture nodal point will bé on the block surface, so
that the entire group (Eq. B-4) will change as follows:

I\_ Anm' =__k_ Amn

V dﬂlﬂ az V)’l dnm

Thus, an increase in linear matrix block size by a factor « is equiva-
lent to a reduction in matrix permeability by a factor o2. This re-
sult holds for arbitrary (fixed) block shapes and, in fact, for arbitrary
distributions of block sizes. Nowhere in the above discussion did
we need to require matrix block sizes to be identical.

When gravity effects are included; no sunple block—sue/perme-
ability relationship is p0551b1e For a gravity term in u},,, the ge-
ometric data would appear in the’ group

A A kA
e g Snm

V)I Vl’l

nm

o V,,

For gravity contribution to flow, an increase in linear matrix block
size by a factor « is equivalent to a decrease in permeability by
the same factor. As matrix block sizes increase, therefore, the con-
tribution of pressure forces to flow will diminish more rapidly than
the contribution of gravity forces. This 1nd1cates that gravity forces
may often be unimportant for imbibition in small matrix blocks but
may be very 1mportant for large matr1x blocks

s Metnc c@nversmn Faciars -

bbl X 1.589873  E—01 = m3

cp X 1.0% E-03 = Pa's

f X 3.048% E-0l = m

fi3 x 2.831685 E—02 = m3
Ibm/ft3 X 1.601 846 . -E+01 = kg/m3

psi X 6.894757 E+00 = kPa .
psi=! x 1.450377 E-01 = kPa~—!

*Conversion factor is exact.

SPERE

Original SPE manuscript received for review April 2, 1986. Paper accepted for publication
May 28, 1987. Revised manuscript received July 10, 1987. Paper (SPE 15129) first presented
at the 1986 Cahfc:rma Heglonal Meeting held in Oakiand, April 2-4,



