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Abstract

Seismic interpretation is an important step when developing a model of the subsur-
face. In past decades, this process involved interpreting 2D seismic sections on paper with
colored pencils. Over time, seismic surveys evolved to three dimensions and computational
power allowed for processing on workstations. Interpreters then found it easier to interpret
seismic horizons, or the boundaries between geologic layers, rather than geologic formations
themselves. Unfortunately, horizons are tedious to assemble and may contain holes where
the image is poor. It may be more efficient and useful to interpret volumes directly through
3D painting.

3D painting attempts to expedite the interpretation process by painting volumes with
a digital 3D paintbrush. Multiple seismic slices are interpreted simultaneously as features
within the image control the paintbrush’s shape and orientation. This paintbrush is op-
erated by a human interpreter who controls its location and maximum size. In this way,

geologic formations are interpreted by painting voxels (3D pixels) within the seismic image.



ii



Table of Contents

Abstract i
Acknowledgements \
Chapter 1 Introduction 1
1.1 What is 3D painting? . . . . . . . . . .. 3
1.2 Predictive painting with lateral prediction filters . . . . . .. ... ... .. 3
1.3 Seismic volume “visulation” . . . ... .. ... ... ..o 0. 4
1.4 A 3D image-guided paintbrush . . . . .. ... ... .. 0oL 4
Chapter 2 Constructing the paintbrush 7
2.1 Structure tensors S(X) . . . . .. ..o e 7
2.2 Tensor-guided paintbrush . . . . . ... .. ... .. ..o L 9
2.3 Metric tensors D(X) . . . . . ... 11
2.4 Visualizing metric tensors D(x) as ellipsoids . . . . ... ... ... .. ... 16
Chapter 3 Representing painted volumes 19
3.1 Implicit vs. explicit surface rendering . . . . . . . ... .. .. ... ... .. 19
3.2 Painting with sub-voxel precision . . . .. ... ... o000 20
3.3 Assigning colors to formations . . . . ... ..o oo oo 22
Chapter 4 Examples 25
4.1 Teapot Dome . . . . . . . . . e 25



4.2 Paintingsalt . ... .. ... ...

Chapter 5 Conclusions

References

iv



Acknowledgements

I would first like to thank my wife Jennifer for her unending support and love during
my studies. I thank my advisor Dave Hale for his guidance and invaluable assistance with
this research. Deepest gratitude are also due to the members of my advisory committee,
Andrzej Szymczak, Paul Sava and Terry Young. Thanks to the Rocky Mountain Oilfield
Testing Center and Department of Energy for providing the Teapot Dome seismic data.
Also thanks to Don Herron and PGS for providing the 3D salt data shown in this thesis.
Special thanks also to the students and faculty at the Center for Wave Phenomena for

sharing the literature and their indispensable collaboration.






Chris Engelsma / Painting seismic images in 3D 1

Chapter 1

Introduction

For decades, geophysicists and geologists interpreted seismic sections using colored pen-
cils and paper, where different colors were used for different geologic layers. When painting
software became widely available on personal computers in the 1980’s, one could use such
software to perform seismic interpretation. Digital paint has advantages over drawing on
paper: it can be applied in multiple overlays that can be toggled on and off, and mistakes in
digital paint are easy to undo. However, limitations in technology have allowed the geosci-
entist to interpret only geologic horizons, or the boundaries between geologic layers. These
horizons are constructed through a process either of manual picking or using auto-tracking
software, both of which involve selecting points along geologic boundaries in a seismic image.
By moving through each 2D slice within a 3D seismic image, an interpreter meticulously

constructs the surface which defines the boundary between two different geologic layers.

important tool for mapping the subsurface. Because of this demand, and the increased
computational power that offers faster processing, seismic surveys have grown increasingly
larger. The interpreter must interpret hundreds or even thousands of 2D slices of 3D images,
picking along a geologic boundary while attempting to maintain consistency from slice to
slice. Hence, the process of manually picking horizons for geologic interpretation is slow
and tedious, especially for large data sets. Semi-automatic picking algorithms expedite
the process of horizon construction, but build incomplete models that must be gonstantly

updated to improve accuracy.
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In geophysical exploration, geoscientists are ultimately interested in mapping geologic
layers, for it is geologic volumes that may contain hydrocarbons or minerals of interest.
Horizons are therefore incomplete because they define only the boundaries between lay-
ers. Because the interpreter relies on geologic layering apparent in noisy seismic images,
these horizons are incomplete. Figure 1.1 shows a sample picked horizon. Note that the
horizon contains holes which may exist because of either shortcomings in an automated
tracking process or human error involved with manual picking. An alternative approach to

interpretation is to interpret the geologic volumes directly using 3D painting.

| km

Figure 1.1. An example of a seismic horizon. Gaps in the horizon exist because of either
shortcomings in automatic tracking or manual picking errors.
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1.1 What is 3D painting?

Many painting software packages offer a variety of tools for creating and editing images.
Most of these tools assign color values to pixels of a 2D image displayed on a 2D computer
screen. Painting in 3D requires painting voxels (3D pixels) of a 3D image displayed on a
2D computer screen. Painting in 3D is inherently more difficult, in part because of the
projection from 3D to 2D, but also because 3D space-filling images can seldom be displayed
in their entirety. Usually one can only visualize 2D slices of 3D images and paintings.

However, recent techniques enable painting on a 2D screen with a simulated 3D en-
vironment. For example, an artist’s brush stroke may be realistically reproduced by con-
structing virtual brushes, thereby transforming the user’s cursor into a convincing paint-
brush (Baxter et al., 2001; Baxter & Lin, 2004). Another simulated 3D painting method
involves interactively painting texture directly onto a triangulated surface with perspective
projection on a 2D screen. This method enables an artist to paint textures directly onto
scanned surfaces in real-time (Hanrahan & Haeberli, 1990; Agrawala et al., 1995).

The techniques mentioned above use virtual brushes and surfaces to paint. While
the painting environment is almost 3D, the user is unable to paint anything that does not
lie within the surface in which the paintbrush is confined. Confinement of the paintbrush
to a single surface inhibits efficient painting of 3D volumes, such as those filled by 3D
seismic images. As suggested above, when interpreting 3D geologic structures one should
paint volumes directly. Here, I refer to the process of painting seismic volumes directly as
painting in 3D or simply 3D painting.

In recent years, others have proposed methods for 3D painting of subsurface geol-
ogy. Like the method described in this thesis, these other painting methods employ image

processing algorithms to guide the painting of imaged geologic structures.

1.2 Predictive painting with lateral prediction filters

Fomel (2008) proposed a method for 3D painting using local estimates of slopes of
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reflections in seismic images. The method he uses is called predictive painting because it
uses lateral (trace-to-trace) prediction filters. This method uses reflection slopes to guide
extrapolation of painted values from any reference trace to other traces in the seismic image.
The method described by Fomel (2008) is interactive in that a user specifies one or more
reference traces. Paint then automatically flows from the reference traces to other traces
along seismic reflections. When multiple reference traces are specified, this method averages
painting values extrapolated from different reference traces. In effect, paint flows laterally
in directions that minimize lateral prediction errors. Therefore, this painting method works
best when traces in a seismic image can be well-predicted by adjacent traces. However, this
method works less well when painting across faults, unconformities, or folds. Furthermore,
steeply dipping layers, salt diapirs, and stratigraphic features such as channels, are poorly

described by lateral trace-to-trace prediction of seismic reflections.

1.3 Seismic volume “visulation”

A different visualization and simulation (“visulation”) method described by Kadlec
(2009) uses structure tensors (van Vliet & Verbeek, 1995) computed from 3D seismic images
to guide 3D painting. For example, an interpreter might first pick seed points on 2D slices
of 3D seismic images. These seed points then serve as sources of paint in a simulation of
an anisotropic fluid flow that is guided by the structure tensors. At each time step of the
flow simulation, paint diffuses from the source voxels to other voxels in the 3D image. An
interpreter may interactively stop the simulation when paint has spread far enough or when
new seed points must be specified to fill in unpainted regions. After each iteration of the

simulation, painted surfaces are rendered as a triangular mesh.

1.4 A 3D image-guided paintbrush

In this thesis, I describe a new method for interpreting 3D seismic images by directly

painting seismic volumes. Like the two methods summarized above, this 3D painting al-
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gorithm includes three features: an ability to interactively select and paint a 3D voxel, a
mechanism for automatically painting nearby voxels, and a user-friendly interface. Of the
methods outlined above, this algorithm is most similar to that of Kadlec (2009) in that the
paint is guided by structure tensors computed from a 3D seismic image.

The proposed method is primarily focused on seismic interpretation in that it uses a
paintbrush to directly interpret geologic structures within seismic images. The paintbrush is
guided by structure tensors computed from a seismic image and is a digital representation
of an interpreter’s tool; it is analogous to a colored pencil for interpretation on paper.
Because the paintbrush is guided by structure tensors, the brush takes the shape of features
in an image. The advantage of using a 3D digital paintbrush is that it enables the user to
paint outside of a plane, enabling interpretation of multiple slices of a 3D seismic image
simultaneously. The user then has the ability to render 3D formations from the painted
voxels.

In the following chapter, I explain how to construct a 3D image-guided paintbrush. I
first discuss a method for computing structure tensors proposed by van Vliet & Verbeek
(1995), and expanded upon by Fehmers & Hocker (2003). From these tensors I then define
a new metric that allows paint to conform to features within an image. In the third chap-
ter, I show how to represent these painted formations in 3D with sub-voxel precision by
introducing a 3D painting data structure. In the fourth chapter, I show examples obtained

from painting 3D seismic images.



Chapter 1. Introduction
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Chapter 2

Constructing the paintbrush

In traditional painting software, the user is given a digital canvas (a 2D image) and
a set of painting tools. (See Figure 2.1). These tools may include various shapes (or
glyphs) for the paintbrush, different sizes to apply to these glyphs, and a color palette.
With any of these tools, painting is interactive because the user selects pixels with a cursor,
but software automatically paints the selected pixels and other pixels nearby. Automatic
painting of nearby voxels is essential because users rarely want to paint every pixel one at
a time.

To paint a 3D image, we should use a 3D paintbrush. We can easily extend the concept
of a 2D glyph into 3D. For example, a circle in 2D becomes a sphere in 3D. However, a
sphere is inadequate for complex seismic images. A spherical paintbrush is therefore difficult
and cumbersome to use. It is practical and convenient to use a paintbrush that conforms to
the features within a 3D seismic image. To construct this brush, I first compute structure

tensors from the image.

2.1 Structure tensors S(x)

Before painting a 3D seismic image, I first compute a structure tensor field. By defi-
nition, structure tensors characterize anisotropic patterns that exhibit a single local orien-
tation. As described by van Vliet & Verbeek (1995) and Fehmers & Hocker (2003), each
structure tensor in a 3D tensor field is a smoothed outer-product of image gradients.

Let g(x) = V f(x) denote the gradient vector field computed from an image f(x). Both
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Figure 2.1. A seismic section being painted using GIMP, an open-source 2D paint program.
In traditional painting software, paintbrush shapes are presented in the form of glyphs, such
as circles (shown here).

the gradient g(x) and image f(x) are uniformly sampled functions of x, which represents
the spatial coordinates of image voxels. The structure (or gradient-squared) tensor field

S(x) is defined by

S(x) = (8(x) g” (%)), (2.1)

where ( - ) denotes Gaussian smoothing along all spatial coordinate axes.

Gradient vectors g(x) represent estimates of both the magnitudes and directions of
greatest change in the image f(x). Structure tensors S(x) represent much of the same
information averaged within Gaussian windows. This spatial averaging improves the fidelity

of orientations and other attributes that I estimate from structure tensors, but it also
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decreases our ability to detect abrupt changes in these attributes.
As originally demonstrated by Fehmers & Hécker (2003), the eigen-decomposition of
a 3D structure tensor S provides a measure of orientation and dimensionality. In 3D, the

eigen-decomposition of S is

S = AuuT + AvvT + A, wwT, (2.2)

where u, v, and w are orthonormal eigenvectors and corresponding eigenvalues A, A, and

Aw are sorted so that

A=Ay > Ay 20 (2.3)

As stated earlier, each structure tensor S is positive semi-definite, so every eigenvalue is
non-negative.

For any image voxel, the eigenvector u, which corresponds to the largest eigenvalue A,
indicates the direction in which the image changes most. In a seismic image, the eigenvector
u is generally orthogonal to imaged geologic layers. The eigenvector w, which corresponds
to the smallest eigenvalue )\, indicates the direction in which the image changes least; it
may be aligned with images of buried channels. Both eigenvectors v and w tend to lie in

planes of locally planar features in 3D seismic images, as shown in Figure 2.2.

2.2 Tensor-guided paintbrush

A 3D image-guided paintbrush is computed from a metric tensor field that is derived
from the structure tensor field S(x). A metric tensor field defines a measure of distance

between two points. For a constant metric tensor D, the distance ¢(x) to any point x is

t(x) = VxTD-1x. ) (2.4)

When D equals the identity matrix, ¢(x) is simply Euclidean distance.
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Figure 2.2. A visual representation of a 3D structure tensor computed near planar features.
In a seismic image, this is analogous to a structure tensor computed within a geologic
layer. The eigenvector u points in the direction of the greatest change which happens to be
orthogonal to geologic layers. The remaining eigenvectors v and w lie within the layer.

More generally, if D = D(x) is a non-constant metric tensor field, we must compute

distances numerically by solving an eikonal equation:

Vi(x) D(x) - Vi(x) =1 (2.5)

with the boundary condition ¢(0) = 0. In this case, t(x) denotes non-Euclidean distance
between two points in a seismic image. Distances ¢(x) are computed by solving a finite-
difference approximation to equation 2.5 using a fast iterative method similar to that pro-

posed by Jeong et al. (2007).

By rendering a surface of constant distance ¢(X) = t;42, Where t,,q, denotes a user-
specified maximum brush size in voxels, I obtain the surface outline of the 3D paintbrush,

as shown in Figure 2.3. In this example, the maximum brush size is £, = 58 voxels.

To compute distances t(x), the user first selects one voxel within a 3D seismic image.
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(b)

Figure 2.3. A seismic image painted using a 3D digital paintbrush that conforms to features
within the image. The rendered paintbrush is a contour of constant time computed by
solving an eikonal equation.

This voxel acts as the origin where distance ¢(0) = 0. Voxels for which t(x) < tmas lie
inside the 3D paintbrush, and voxels for which ¢(x) > tmqz lie outside.

In geophysics, eikonal equations are often used to compute traveltimes. The eikonal
equation 2.5, with anisotropic and spatially varying coefficients D(x), is the same as that
used by Hale (2009a) for image-guided interpolation. In that application, as with the 3D
painting algorithm, “time” is a synonym for “non-Euclidean distance” computed in a metric

tensor field.

2.3 Metric tensors D(x)

Because paint is guided by tensors, I alter the eigenvalues of the structure tensors
S(x) so that paint is confined by features in the image. Although structure tensors S(x)
define the local orientation of these features, the eigenvalues Ay, Ay, and A, correspond to
the amount of change in the direction of their eigenvectors u, v, and w. As paint spreads
within an image, the direction and rate of flow is governed directly by these eigenvector and
eigenvalue pairs. The derived eigenvalues would guide paint across, not along, [eatures in

an image. For the purpose of interpretation, we want paint to flow anisotropically within
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geologic layers. I construct an anisotropic paintbrush, like that shown in Figure 2.3, by
computing an anisotropic metric tensor field D(x). The new eigenvalues are computed
using structure-oriented semblance (Hale, 2009b). Semblances are useful, in part, because
they are an amplitude-independent measure of the coherence of features in seismic images.
Semblances and, hence, the eigenvalues of D are normalized in the range [0,1].

I choose the eigenvectors of each metric tensor D to be the same as those for their corre-
sponding structure tensor S. The difference between D and S lies only in their eigenvalues.

Specifically, the eigen-decomposition of D is

D = szuu’ + sovv? + s;ww?, (2.6)

where eigenvalues s1, 82, and s3 are semblances such that

0<s3<sp<s1 <L (2.7)

Structure-oriented semblance measures local coherency in a given dimension and direc-
tion. More generally, semblance can be defined as the ratio between the squared-smoothed
image and the smoothed-squared image. Using a method proposed by Hale (2009b), I com-
pute structure-oriented semblance by smoothing along features in an image. Semblances

81, S2, and s3 are computed as

2
2
= A (29)
and
_ <f>12ww (210)

8 (f2>uvw ‘
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where { - ) denotes smoothing, and the associated subscript describes the direction of that
smoothing. With structure-oriented semblance, there is a second smoothing operation per-
formed in the directional orthogonal to the initial smoothing direction. For s; and sz, these
smoothing directions occur in the plane of uv and in the direction of u, respectively. Note
there is only one smoothing operation for s3 because it already smooths in all directions.
In this way, the largest eigenvalue s, corresponding to the eigenvector w, is semblance
computed within a locally curvilinear (1D) set of voxels aligned with w. Each eigenvalue
sg, corresponding to an eigenvector v, is semblance computed within a locally curvipla-
nar (2D) set of voxels orthogonal to eigenvectors u. (The plane orthogonal to u contains
the eigenvectors v and w). Finally, each eigenvalue s3 represents semblance for a locally

spherical (3D) set of voxels. Figure 2.4 graphically represents equations 2.8, 2.9, and 2.10.

The relationship described in equation 2.7 holds true due to the anisotropic nature
of a 3D seismic image with zero mean. Because s; describes curvilinear coherency within
an image, similar voxels that lie along a curvilinear path yield higher semblance values.
This typically occurs within linear features such as buried channels, or within the plane
of a geologic bed, as well as in areas with more isotropy such as salt bodies. Semblance
so describes curviplanar coherency within an image, meaning that locally planar (but not
linear) features yield higher semblance values. Therefore, features such as geologic beds have
higher values for s3. Moreover, sy values are typically low at fault regions because faults
interrupt the planar coherency within geologic layers. Finally, semblance values s3 describe
volumetric coherency within an image. These s3 values tend to be lower throughout a seismic
image because the average of image voxels within a 3D window with a radius greater than
a seismic wavelength will be nearly zero. In fact, only in volumes of nearly constant values
would s3 have a value closer to one. Figure 2.5 gives a visual representation of a 3D metric

tensor D with eigenvectors u, v, and w scaled by s3, s2, and s, respectively.

Because the eigenvalues of D are bounded between [0,1], distances ¢(x) computed by

solving equation 2.5 never exceed distances computed for a constant identity tensor D = L.
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Figure 2.4. Visual representation of equation 2.8 (a), 2.9 (b), and 2.10 (¢). For s, local
coherency is measured in the direction of eigenvector w. For s9, local coherency is measured
within a plane perpendicular to eigenvector u, which contains eigenvectors v and w. Finally,
for ss3, coherency is computed within a sphere that contains all three eigenvectors.
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- S1W
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Figure 2.5. Visual representation of a 3D metric tensor computed between two bounding
planes similar to Figure 2.2. The only difference between the two figures is that the metric
tensor has eigenvalues computed using semblance. These eigenvalues allow paint to flow
faster within geologic layers, and much slower across.

In other words, non-Euclidean distances ¢(x) will always be less than or equal to Euclidean
distances. Therefore, when specifying the maximum distance t,,q, one may think intuitively
of Euclidean distance and know that the 3D paintbrush, like that shown in Figure 2.6, lies
inside a sphere with radius ¢,;,4,. In noisy inc'oherent regions of a 3D seismic image, where
all three semblances are low, the brush will be much smaller than that sphere.

!

The upper bound t,,4; also speeds up computation of distances t(x). When a user
selects a voxel in the 3D seismic image, that point becomes the origin for the eikonal
equation 2.5. In solving that equation, I need only consider voxels at locations x that lie
inside a sphere centered at the origin with radius ¢;,q;. For any voxels outside that sphere,

ke
distances t(x) must exceed tmaq. )
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Vi(x)eD(x)eVi(x) =1

Figure 2.6. An example.paintbrush within a bounding sphere with radius t;,4;. Because
the eigenvalues are bounded between [0,1], the 3D paintbrush always lies within this sphere.

2.4 Visualizing metric tensors D(x) as ellipsoids

To visualize metric tensors, I display them as ellipsoid glyphs (Engelsma & Hale, 2010).
While many methods have been proposed for rendering tensor information, such as assem-
bling hyperstreamlines (Delmarcelle & Hesselink, 1993), deforming volume meshes (Zheng
& Pang, 2002), and constructing superquadric glyphs (Kindlmann, 2004), ellipsoid glyphs
give a discretized and intuitive representation of metric tensors. These glyphs show local
directions in which paint will flow. Furthermore, I use ellipsoid glyphs because there is a
unique geometric relationship between ellipsoids and symmetric positive-definite matrices.

Consider the definition of a non-axis-aligned ellipsoid to be

xID1x =1, (2.11)
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where x represents any point along the surface of an ellipsoid, and D is a metric tensor as
defined in equation 2.6. In this definition, the eigenvectors of D define the principle axes
of an ellipsoid, and the inverses of the square roots of the eigenvalues define the equatorial

radii (Strang, 2003), as shown in Figure 2.7.

Figure 2.7. Geometric relationship between eigenvalues and eigenvectors and the three
principle radii of an ellipsoid. Each principle axis of an ellipsoid is an eigenvector scaled by
the square root of the corresponding eigenvalue.

Figure 2.8 illustrates three image-aligned panels of evenly-sampled ellipsoids superim-
posed on a 3D seismic image. The displayed ellipsoids represent only a subset of the tensors
D(x) computed for every image sample. The shapes of ellipsoids represent pertinent struc-
tural geologic information. For example, in areas of a seismic image that exhibit flat geologic
layering, ellipsoids tend to be oblate. In areas of dipping layers, ellipsoids exhibit the local
dips of geologic structures. In areas where features are more isotropic, ellipsoids are more

spherical.
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Figure 2.8. Visualization of a metric tensor field D(x). Each ellipsoid represents the local
directions that paint will flow within an image. A closeup of the seismic image shows how
paint will tend to flow within (rather than across) geologic layers.
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Chapter 3

Representing painted volumes

In this chapter, I discuss a method for representing painted (interpreted) volumes.
Painting these volumes involves using a data structure that paints the formations with
sub-voxel precision. This data structure is used in conjunction with the marching cubes
algorithm (Lorenson & Cline, 1987) to render painted volumes as 3D meshes. Furthermore,
I discuss different techniques for coloring the formations, including a method that gives

painted volumes the appearance of being carved from an image.

3.1 Implicit vs. explicit surface rendering

In graphics and visualization, contours may be extracted from volumetric data as
either implicit or explicit surfaces. Implicit surfaces are rendered directly on the GPU. In
practice, volume rendering involves using a ray casting algorithm that accumulates density
values from an array of floating point numbers to render a surface. One limitation for
volume rendering is that it does not allow extraction of an isosurface for further processing.
Because volume rendering is simply a rendering technique, it is used only for visualization.
Furthermore, the computational cost of rendering implicit surfaces is much higher compared
to extracting an isosurface using an explicit surface method such as marching cubes (Kadlec,
2009; Lorenson & Cline, 1987). Another benefit of using marching cubes is that it creates
a 3D mesh that can be extracted for further processing.

Marching cubes (Lorenson & Cline, 1987) is a popular method used to extract explicit

#
surfaces from volume data. The algorithm involves scanning through each voxel within a
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3D volume. At each voxel, the values of the adjacent eight voxels (or cube) are compared
with a contour value to construct interpolated edge intersections. These edge intersections
are then connected to form triangulated meshes. For convenience, the topology of these
triangulated meshes can be determined using a table-lookup scheme. Because each cube

can be processed independently, this technique can be easily run with parallel concurrency.

3.2 Painting with sub-voxel precision

Because the paintbrush is rendered from a smooth range of times computed using
equation 2.5, employing a basic marching cubes algorithm renders a paintbrush with sub-
voxel precision, as seen in Figure 2.3. The paintbrush is, hence, a contour of constant time,
where t(X) = tjqz- Each voxel within the paintbrush where ¢(x) < tpq, is assigned a value

indicating that it has been painted.

(a) (b)

Figure 3.1. A spherical formation represented using voxel-precision (a) and sub-voxel
precision (b). Sub-voxel precision is accomplished through using a 3D painting data
structure.

Consider painting a sphere within a 3D grid of voxels. Ideally, the painted formation
should appear identical to the paintbrush used to construct it. Using the marching cubes

algorithm to render the painted voxels yields formations which appear terraced, as seen
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in Figure 3.1(a). Typically, interpreted horizons are always represented using sub-voxel
precision, because it is important to model the subterrain with high accuracy, as shown
in Figure 1.1. Like horizons, the boundaries of painted volumes must be represented with
sub-voxel resolution. I accomplish this by implementing a special data structure for 3D

paintings.

(a) (b)
X X
7S X A X

X 1 x X x T %
X X
% % ! % %
e > X R

X S G X & T

X X X X

(c) (d)

Figure 3.2. 2D demonstration of the painting data structure. A painted area represented
as marked samples (a) produces a terracing artifact (b). By maintaining edge intersections
that bound the painted area (c) sub-pixel precision is achieved (d).

Painting with sub-voxel precision requires more bookkeeping. By definition, a painted

volume is the union of every paintbrush used to paint that formation. Each time I build
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a paintbrush, I compute its boundary in terms of edge intersections within the 3D mesh.
Finding each intersection requires the same procedure used in marching cubes. Once the
times are constructed using equation 2.5, I compare each voxel’s time to the target contour
value tnez. If two adjacent voxels lie on both sides of ¢,,4,, then the intersection of 4z
between these two samples is found using linear interpolation. Because I am using a 3D
mesh, I store edge intersections in three separate arrays. For example, arrays e, es, and
e3 may store edge intersections in the first, second, and third dimensions, respectively. All
computed intersections are mutable if, for example, the user continues to paint the image.
Figure 3.2 shows a 2D example of this painting data structure.

The computed intersections ej, ez, and eg are later used for visualizing the painted
image in 3D. The marching cubes algorithm is applied, only I now incorporate the precom-
puted edge intersections stored in the 3D painting data structure. Ju et al. (2002) have
proposed dual contouring methods for rendering surfaces from Hermite data, or data that
contains existing intersection points and normals. While dual contouring is not used in
this thesis, it may be an alternative approach to rendering painted structures. Figure 3.3
shows a painted formation represented as painted voxels (a) and the same painted formation
represented using the 3D painting data structure that stores edge intersections ej, e, and
e3 (b). While both formations appear very similar, a closer inspection of these formations

reveals terraced topography (c), and a smooth surface (d), respectively.

3.3 Assigning colors to formations

Each formation consists of painted voxels whose boundary is defined by pre-computed
edge intersections. One option for coloring these formations is to use a solid color so
that each formation is easy to distinguish within the image. (See Figure 3.3). Because
each formation is assigned a single paint value, that value may be trivially mapped to a
color scale. Rendering formations with constant color is equally useful when distinguishing

different lithologies within an image (e.g., sands versus shales).
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Figure 3.3. A painted formation is represented using simple marching cubes (a) and the 3D
painting data structure that incorporates pre-computed edge intersections (b). The top-
left surface displays a terracing artifact, which is easily observed in the close-up (c). The
top-right surface is rendered with much higher precision, as shown in the close-up (d).
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Figure 3.4. Seismic amplitudes applied to a painted sphere.

Another approach, as well as a useful quality control (QC) tool, is to apply the seismic
amplitudes to the painted volume directly. Since every computed vertex lies on an edge
between voxels, I need only to linearly interpolate color values from the two adjacent sam-
ples. By using the same color scale as the seismic image, this technique gives the formation
the appearance of being carved from the seismic volume. Figure 3.4 shows a sample sphere
formation that has been represented in this way.

One can use this carving effect as a QC tool to check a 3D painting. Assuming that
an interpreter has painted a seismic image with well-imaged layers, one would expect that
the top and bottom boundaries of the formation would have a constant color. This color is
the seismic amplitude at the boundary between layers. It is therefore easy to identify areas
where the paint has extended beyond the formation by observing the color. For example,
portions of the painted volume that extend beyond their geologic boundaries may appear
to have rings. Furthermore, regions that are painted where there is no geologic information
within an image are easy to identify because the formation will have the same background

color as the image.
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Chapter 4

Examples

4.1- Teapot Dome

I have applied seismic painting to data acquired at Teapot Dome which is located in
Natrona County, Wyoming, about 55 miles north of Casper. These data were provided by
the Rocky Mountain Qilfield Testing Center, which is part of the US Department of Energy.
The data show a sequence of anticlinal layers cut by normal faults.

Picked horizons were also provided with these data, as seen in Figure 4.1(a). To
compare my 3D painting technique with horizon picking, I painted formations corresponding
to three provided horizons, as shown in Figure 4.1(b). The formation in Figure 4.2 has been
rendered using seismic amplitudes as color values. Figure 4.3 shows a top-down view of the
middle formation in Figure 4.2. Note that each rendered volume appears bulbous because
every formation is the union of all paintbrushes used. Hence, the sparsity and size of
paintbrushes affects the structure and appearance of the resulting volume. Also note that
the horizons have more topographic detail than the painted formations. When picking
horizons, an interpreter shifts each pick to the nearest zero-crossing using an automated
method. The painted volumes do not have the same level of rugosity as horizons because
each formation is ultimately constructed using metric tensors computed from the seismic
image. Therefore, the shape and smoothness of each painted volume is dependent on these
tensors. However, shifting to the nearest zero-crossing is achievable since zero-crossings are
visible in the image. There are several ways to perform this shift. One approach is to

shift the boundal')" of the volume in the vertical direction. This shift involves scanning the
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Figure 4.1. Three horizons (a) that were picked using the Teapot Dome data are shown
alongside three painted formations (b). Horizons have more detail and appear more rugose
than painted formations because they are typically snapped to zero-crossing. However,
picked horizons contain holes because of either the lack of information visible to the in-
terpreter or the inability of auto-tracking software to identify coherent trends. Painted
formations appear smoother and fill in the holes that horizon picking misses. However,
painted formations contain a bubbling artifact that is a result of the size and distribution
of paintbrushes used.
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Figure 4.2. A painted formation colored using amplitudes from the seismic image. The
purpose of representing geologic layers in this way is to highlight painted voxels that lie
outside the layers.
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Figure 4.3. A closer examination of the formation shown in Figure 4.2. The dashed arrow
points out an area where the outline of the paintbrush is obvious. This artifact is a result
of the size and sparsity of paintbrushes used. The dotted arrow highlights regions of the
volume that were painted where there was no information in the image. The solid arrow
points at the fault region which is left as a hole in the picked horizon.

boundaries of the volume and then searching for the nearest zero-crossing within a vertical
window. This method may fail for steeply dipping layers or noisy parts of an image. Another
approach is to adjust the boundary of the painted volume in the direction perpendicular to
the layers (in the direction of eigenvector u). This may produce artifacts in areas where the
shift requires a large jump, but placing a threshold on this shift would reduce these artifacts.
A third approach is to update the tensors at zero-crossings during paint construction. This
process requires the eikonal solver to set the eigenvalue A, to zero at zero-crossings before
continuing further iterations. In this way, paint will stop flowing across geologic boundaries

and continue to flow within the geologic layer.

4.2 Painting salt

I have applied 3D painting to a seismic image of subsurface salt. These data were

provided by Don Herron and PGS. Typically, salt is interpreted in two parts: a top-salt and
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Figure 4.4. A 2D section of the painted salt body. The painted area is shown in red, and
areas where the paint is not completely confined to the salt body are shown by the arrows.

a bottom-salt. While some geologic entities may be easily defined by their top and bottom
boundaries, salt bodies tend to be more complex. For example, salt bodies may be steeply
dipping or have multiple overhangs that can not have a defined top or bottom boundary.
Furthermore, salt bodies may resemble vertical pillars that are equally difficult to define in
this way. Therefore, defining a salt body by its vertical boundaries is insufficient in some
cases. Defining a salt body by its volume is more intuitive, and we can quickly define that
volume by employing 3D painting.

Figure 4.4 shows a 2D section of painted 3D salt data. The red painted area represents
the interpreted salt. While some boundaries of the salt are well-defined, there are some
areas that are problematic. Each arrow in Figure 4.4 points to an area where the paint
has extended into the surrounding layers. One reason for these leaks is that the semblance
parameters were poorly chosen for this geologic setting, creating a poor definjtion of the

local coherency. Another reason is simple human error. As Figure 4.4 is intended to show,
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because this method involves a level of interactivity, the result is subject to mistakes. As 1
previously mentioned, one of the benefits of digital paint is that it can be easily undone.
Figure 4.5 shows the salt body rendered in 3D. Seismic amplitudes were used to color
the formation. As with the Teapot Dome data, the formation lacks a high level of detail.
The resolution of the painted volume may be improved by shifting the boundaries of the
formation to the nearest zero-crossing. Figure 4.6 shows a top-down view of the same for-
mation in Figure 4.5. The marble appearance of the formation is caused by paint extending
outside the boundaries of the salt. The white portions of the volume indicate regions where

the salt boundary was not well defined and paint extended into the layers above.



Chris Engelsma / Painting seismic images in 3D 31

Figure 4.5. A salt body that has been painted using 3D painting. Seismic amplitudes have
been used to color the formation. While the volume demonstrates a generic shape of the
salt body, it still lacks a fine level of detail.
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Figure 4.6. A top-down view of the same salt body in Figure 4.5. Using the seismic ampli-
tudes to color the formation helps identify areas that were poorly painted. The boundary of
a poorly painted formation deviates from zero-crossing. Some deviations include the white
areas on the formation. For a volume that is properly painted, we expect to see the same
color along the boundary of the formation.
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Chapter 5

Conclusions

I have proposed a method to paint images in 3D. This method requires the construction
of a 3D paintbrush that conforms to features within an image. The local orientations of
features in the image are first estimated by computing structure tensors S(x) (van Vliet &
Verbeek, 1995). The eigenvalues of structure tensors are replaced with structure-oriented
semblance values, thereby constructing a new metric D(x) (Hale, 2009b). By solving an
anisotropic eikonal equation, I compute non-Euclidean distances that paint voxels within
an image. Rendering a contour of constant time will display a paintbrush in 3D.

Painted volumes are represented with sub-voxel precision for accuracy comparable to
picked seismic horizons. This sub-voxel precision is maintained by a 3D painting data
structure that stores edge intersections in a 3D grid. Using seismic amplitudes to color the
formation gives the formation the appearance of being carved from the image. This coloring
technique may be used as a QC tool to check painted formations for potential errors.

Painting 3D images has numerous applications. Painting seismic images could be a
useful interpretation tool. By painting geologic volumes directly, geologic entities such as
salt become easier to define. In seismic interpretation, salt bodies are traditionally picked as
a top-salt horizon, and a bottom-salt horizon. 3D painting instead considers the entire salt
body as one entity. Furthermore, because this method paints volumes directly, estimating
the quantity of economic resources can be trivially accomplished. Assuming an interpreter
has identified a volume of interest, directly painting the volume results in a fast computation

of resource volumes.
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Chapter 5. Conclusions



Chris Engelsma / Painting seismic images in 3D 35

References

Agrawala, M., Beers, A.C., & Levoy, M. 1995 (April). 3D painting on scanned surfaces.
Pages 145-150 of: Proceedings of the Symposium on Interactive 3D Graphics SI3D.

Baxter, W.V., & Lin, M.C. 2004. A versatile interactive 3D brush model. Proceedings of
Pacific Graphics 2004, 319-328.

Baxter, W.V., Scheib, V., Lin, M.C., & Manocha, D. 2001 (August). DAB: Interactive
haptic painting with 3D virtual brushes. Pages 461-468 of: Proceedings of the Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH.

Delmarcelle, T., & Hesselink, L. 1993. Visualizing second-order tensor fields with hyper-
streamlines. IEEE Computer Graphics and Applications, 13, 25-33.

Engelsma, C., & Hale, D. 2010. Visualization of 3D tensor fields derived from seismic
images. CWP Report 655, 187-192.

Fehmers, G.C., & Hocker, C.F.W. 2003. Fast structural interpretations with structure-
oriented filtering. Geophysics, 68, 1286-1293.

Fomel, S. 2008. Predictive painting of 3D seismic volumes. SEG Ezpanded Abstracts 27,
864-868.

Hale, D. 2009a. Image-guided blended neighbor interpolation. CWP Report 634, 247-260.
Hale, D. 2009b. Structure-oriented smoothing and semblance. CWP Report 635, 261-270.

Hanrahan, P., & Haeberli, P. 1990. Direct WYSIWYG painting and texture on 3D shapes.
SIGGRAPH Computer Graphics, 24(4), 215-223.

Jeong, W.K., Fletcher, P.T., Tao, R., & Whitaker, R.T. 2007. Interactive visualization
of volumetric white matter connectivity in D'T-MRI using a parallel-hardware Hamilton-
Jacobi solver. IEEE Transactions on Visualization and Computer Graphics, 13, 1480-1487.

Ju, T., Losasso, F., Schaefer, S., & Warren, J. 2002. Dual contouring of Hermite data.
Pages 839-346 of: Proceedings of the 29th annual conference on Computer Graphics and
Interactive Technologies.

Kadlec, B. 2009. Interactive GPU-based “visulation” and structure analysis of 3-D implicit
surfaces for seismic interpretation. Ph.D. thesis, University of Colorado at Boulder.

Kindlmann, G. 2004. Superquadric tensor glyphs. Pages 147-154 of: Proceedings of the
Joint Eurographics - IEEE TCVG/EG Symposium on Visualization '04.



36 References

Lorenson, W.E., & Cline, H.E. 1987. Marching cubes: a high resolution 3D surface con-
struction algorithm. Computer Graphics, 21, 163-169.

Strang, G. 2003. Introduction to linear algebra. Wellesley—Cambridge Press.

van Vliet, L.J., & Verbeek, P.W. 1995. Estimators for orientation and anisotropy in
digitized images. Pages 442—450 of: Proceedings of the First Annual Conference of the
Advanced School for Computing and Imaging ASCI ’95.

Zheng, X., & Pang, A. 2002. Volume deformation for tensor visualization. Pages 379-386
of: Proceedings of the conference on Visualization ’02.



