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Abstract 

Seismic image flattening is a common task in geophysical interpretation and is typ- 

ically used to identify stratigraphic features within a seismic image. 3D seismic images 

are normally interpreted by viewing 2D slices of the image on a desktop computer. Un- 

fortunately, It can be difficult for an interpreter to identify features of the subsurface by 

viewing horizontal slices or axis-aligned probes of an image because geologic features are 

rarely aligned with the axes of a seismic survey. 

Seismic image flattening attempts to reverse the effects of geologic processes by remov- 

ing all of the geologic structure present in the image and thereby transforming the image 

into layers as they were deposited in geologic time; i.e., flattening transforms a seismic image 

to make the structural features in the image flat. Stratigraphic features such as channels are 

easier to recognize after flattening because an interpreter is able to view an entire geologic 

interface at once. Typically, a flattened seismic image is created by shifting samples in the 

original image up or down. This means that parts of the original image are stretched in 

some areas and squeezed in others to flatten the features in the image. 

Traditionally, flattening is performed by having an interpreter manually pick events 

in a seismic image. This picking process requires specialized training and can be time- 

consuming. I present a method for seismic image flattening that is completely automatic. 

This new flattening algorithm uses the structure tensor to estimate the local dip of every 

sample in a seismic image and a linear least squares inversion to solve for the shifts that 

will flatten the image.
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Chapter 1 

Introduction 

As the worldwide demand for hydrocarbons grows, seismic imaging has been a valu- 

able tool for detecting and mapping features of the subsurface. Rising demand has led to 

prospecting for hydrocarbons in remote locations, such as in deep water offshore where the 

cost of a failed prospect is extremely high. Geophysical interpreters must better map and 

visualize subsurface structures so that such failures can be avoided. 

Many image processing and seismic attribute algorithms have been developed to help 

interpreters analyze the subsurface. One such technique is the process of seismic image 

flattening. Various forms of seismic image flattening have been used in practice to aid in 

the interpretation of seismic images (e.g., Stark (1996); Zeng et al. (1998); Gao (2009); 

Lomask et al. (2006)). 

It can be difficult for an interpreter to identify subsurface features by viewing horizontal 

time (or depth) slices or any axis-aligned surfaces of an image because geologic features 

are rarely aligned with the axes of a seismic survey. Thus, a simple constant-time slice 

may intersect many different geologic layers. Therefore, to study a single geologic layer 

an interpreter may have to view several different slices and attempt to remember relevant 

pieces from each of them. Seismic image flattening attempts to reverse the effects of geologic 

processes by removing all of the geologic structure present in the image, i.e., flattening 

transforms a seismic image such that the axes used to display the data are more geologically 

relevant. 

Once an image has been flattened, all of the geologic interfaces in the image are trans- 

formed to be flat (planar and horizontal). Therefore, after flattening, a horizontal time slice 

of a flattened image corresponds to a single geologic interface. Flattened events can be seen 

as an image of how the layers of the earth were deposited in geologic time. While flatten- 

ing is not a replacement for an advanced stratigraphic interpretation (such as palinspastic 

reconstruction), flattening can be performed automatically and does not require advanced



2 Chapter 1. Introduction 

knowledge of sequence stratigraphy. After flattening, even a novice interpreter can quickly 

recognize stratigraphic features (e.g. buried channels) which may have been obscured by 

geologic structures present in the original image. 

Seismic data are flattened by removing the slope (or dip) from events within a seismic 

image. Typically, a flattened seismic image is created by shifting samples in the original 

image up or down such that coherent events in the image are flattened. Therefore, each 

trace (a column of samples) in the original image is stretched in some areas and squeezed in 

others. Hence, all flattening methods can be reduced to finding how the input image must 

be warped (or mapped) to flatten events. 

1.1 Manual Horizon Flattening Versus Full-Volume Flattening 

In many commercial seismic interpretation applications, flattening is performed by 

manually interpreting horizons (geologic interfaces). Horizon interpretation requires a user 

to map an entire event in a 3D seismic image. The yellow surface in Figure 1.la is an 

example of an interpreted horizon. The aforementioned horizon mapping is done by visually 

identifying and picking (digitizing) an event throughout the entire seismic image. A user 

typically digitizes an event by clicking points on a 2D vertical slice of the seismic image to 

create a polyline that follows the event. Then, a 3D surface of the event can be created by 

interpolating between the user’s picks. Figure 1.2 shows a simplified example of this picking 

process. An interpreted surface can be used to calculate how the samples of the input image 

must be shifted to flatten the interpreted horizon. Figure 1.1b shows the seismic image from 

Figure 1.1a after flattening based on the interpreted yellow horizon. 

Manual horizon interpretation may be facilitated by using an automatic horizon track- 

ing algorithm. Unfortunately, automated horizon tracking is rarely completely accurate 

when events are of low amplitude and, in many cases, must be guided by a user. Thus, 

horizon tracking, whether done manually or using automatic picking algorithms, can be a 

time-consuming process. 

Single horizon flattening can easily be extended to flatten more than one horizon, but 

each new horizon to be flattened must also be picked or tracked. Labrunye e¢ al. (2009) 

present a method for performing horizon-based flattening which can flatten every layer in 

an image, even across geologic discontinuities; but one must interpret many horizons and, 

possibly, faults to get an accurate flattening. Horizon-interpretation-based flattening has 

two distinct disadvantages. First, in order to flatten horizons, one must perform manual
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(b) 

Figure 1.1: An example of single horizon flattening seen in a typical seismic interpretation 

workflow. The horizon in (a) has been interpreted by manually picking points within the 

seismic image. Then, the horizon has been used to flatten the seismic image seen in (b). 
Notice that only one horizon (the one interpreted in (a)) has been flattened.
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Figure 1.2: An example of manual horizon picking on three different slices of a seismic 

image. An interpreter has identified the bottom horizon by clicking at the locations of the 

red dots in (a), (b), and (c). The surface shown in Figure 1.1 was created by preforming 

this picking process at a much more dense interval of slices. 

interpretation. Second, horizons that contain interesting stratigraphic features must be 

known beforehand, so that they can be interpreted and flattened. 

Often, it is preferable to perform full-volume flattening (Stark, 2004) which flattens all 

of the events within a seismic image. Full-volume flattening leads to a simple stratigraphic 

reconnaissance procedure because an interpreter does not need to know beforehand which 

geologic layers contain useful information. In a full-volume flattened image, one can simply 

pan through horizontal-time slices (which are now flattened geologic layers) and identify 

layers which contain interesting stratigraphic features. 

In recent years, several methods for performing automatic full-volume flattening have 

been developed. The main challenge of automatic flattening is how one should track the 

geologic interfaces of the input image. The work presented in Stark (2003, 2005) applies 

the method of instantaneous phase unwrapping in 3D to track geologic interfaces in the 

image. Pauget et al. (2009) correlate neighboring traces to find probabilistic links that 

follow events between traces and then track global events by minimizing a cost function of 

the probabilistic links. De Groot et al. (2006) first calculate the local slopes of these geologic 

interfaces within a seismic image. Then, they use the slopes to track geologic interfaces from
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a starting seed point. In the following section, I will discuss a flattening method that uses 

the local slopes of geologic interfaces to perform a global inversion and flatten the image. 

1.2 Slope-Based Full-Volume Flattening 

In this thesis, I will build upon the full-volume flattening algorithm presented in Lo- 

mask (2006); Lomask et al. (2006); Lomask & Guitton (2007). Both Lomask et al.’s (2006) 

method and the new method presented here compute a flattened image directly from an 

input image and do not require a user to perform any manual interpretation. 

Interestingly, the Lomask et al. (2006) flattening method starts by computing an es- 

timate of the local slope at every sample in the seismic image, then flattens the input 

image using only these local slope estimates. The local slopes give an estimate of the pre- 

dominate direction of events in the seismic image and can be computed using a variety of 

methods, such as plane-wave destruction filters (Claerbout, 1992; Fomel, 2002) or structure 

tensors (van Vliet & Verbeek, 1995; Fehmers & Hocker, 2003). An extended discussion of 

slope calculation methods applied to seismic images can be found in Chopra & Marfurt 

(2007). Figure 1.3 shows an example of slopes estimated from structure tensors for inline 

and crossline slices of a 3D seismic image. 

The local slopes, calculated from the input image, are then used as the data in an 

inversion problem which attempts to find shifts for the events in the input image that will 

make the slopes go to zero. In a typical inversion problem, one seeks to find a model m 

given data d such that 

d = F(m), (1.1) 

where F is a forward operator that relates the model m and data d. In this case, the data are 

the local slopes and the model is the amount by which each sample of the input image must 

be shifted to make the slopes zero. I will discuss the nonlinear forward operator presented 

in Lomask et al. (2006) in the following chapter. In the third chapter, I present a new 

linear forward operator and a method for reparameterizing this inverse problem. Both the 

new linear forward operator and the reparameterization technique allow one to compute a 

solution to the flattening inverse problem in less time than the previously presented method.
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Figure 1.3: Inline and crossline slices of a 3D seismic image are shown in (a) and (b), 
respectively. The computed local slopes for the slices shown in (a) and (b) are shown in 
(c) and (d), respectively. The hotter colors indicate that events are sloping down to the 
right, while cooler colors indicate that the event are sloping down to the left. Corresponding 

image slices and slopes plotted on top of each other are shown in (e) and (f).



Chapter 2 

Nonlinear equations for flattening shifts 

In this chapter, I present full-volume flattening as the solution of a nonlinear inverse 

problem. In a typical inversion problem, one seeks to find a model that best explains some 

data. In this case, the data are slopes derived from an input image, and I solve for a 

model, shifts that describe how to flatten the image. Inversion is routinely used in other 

geophysical problems (such as seismic tomography and impedance inversion), and can also 

be used for the interpretation of seismic data. The method for flattening that I present 

in this chapter is based on the work of Lomask et al. (2006). An inversion-based method 

has several distinct advantages over other methods. It is automatic; it does not require 

labor-intensive horizon picking. Also, this method ensures that all of the geologic interfaces 

are flattened and can give a reasonable flattening even when parts of the image are noisy 

or of low quality. 

In the following section, I introduce a function that specifically defines how the flat- 

tened image is found. Next, I explain the shifts that are used to flatten the image. Then, I 

show the forward operator that relates the model to the input image, and finally, I conclude 

by discussing the nonlinearity of the inverse problem. 

2.1 Mapping From an Input Image to a Flattened Image 

A flattened image is made up entirely of data derived from an original input image; 

thus, a flattened image is an input image rearranged such that all of the events are flat. 

This flattening method simplifies the problem even further by assuming that the samples 

of the input image only need to be moved vertically up or down to create flattened events. 

Figure 2.1 is a cartoon, in which curves represent events in a seismic image, that illustrates 

how this image rearrangement is performed. Notice that some samples must be moved ver- 

tically away from each other (stretching), and other samples must be moved closer together
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(squeezing). 

The flattening process is analogous to finding a function ¢(z,y,7) that stretches and 

squeezes the events in the input image. Specifically, given an input image f(z,y,t) and a 

mapping function t(x,y,7), the flattened output image is computed by 

g(z,Y, T) = f(z, y, ta, y T)); (2.1) 

where x and y denote the inline and crossline directions. Notice that the vertical axes are 

different in the input and output images. The input image is a function of time ¢. (For 

consistency, I am assuming the input image is a function of time but flattening works equally 

well for input images that have been converted or migrated to depth.) Then, I define the 

flattened image as a function of a new variable 7 that spans geologic time. This geologic 

time 7 does not correspond to a specific number of millions of years ago but instead, each 

individual value of + corresponds to an individual hypothetical geologic time. The samples 

that make up a horizontal slice in the flattened image correspond to a similar geologic event. 

Notice that given the function t(x, y,7), one can find a time surface for every value of 

T, and a given 7 defines a t value for every point (x, y). Thus, a single-value of 7 corresponds 

to a single geologic time in both the input and flattened images. The flattening process finds 

the function t(x, y,7) that maps between t and 7 and then uses this mapping to interpolate 

the flattened image from the input image using equation 2.1. 

There are several inherent assumptions in equation 2.1 that should be considered. The 

first, as stated above, is that samples only need to be moved vertically to flatten an image. 

The second is that events in the input image can be approximated by surfaces of constant 

T; i.e., geologic interfaces in the input image are single-valued 3D surfaces. 

Neither of these assumptions is completely valid for all seismic images. Layers of the 

subsurface can be faulted and moved laterally by geologic processes, thus breaking the first 

assumption. In this case, my automatic flattening will flatten the layers on both sides of the 

fault, but the layers on either side of the fault may not be connected in the output image. 

Also, there are geologic phenomena that cannot be approximated by single-valued surfaces; 

e.g., salt bodies. 

As stated previously, this automatic flattening method may not produce a perfect 

palinspastic reconstruction but despite these assumptions, automatic flattening is useful in 

many cases because important stratigraphic features (such as channels) that one would like 

to find in a flattened image do meet these assumptions.
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Figure 2.1: Flattening is performed by shifting events in the image; thus, in this cartooned 

seismic image, some areas are stretched and others are squeezed to flatten the image. 

2.2 Vertical Shifts 

The mapping function t(z, y,7) can be related to the image by considering how events 

must be shifted to make them flat. Let the function s(x, y,7) denote the vertical time shifts 

that must be applied to each sample in the input image to flatten. Figure 2.2a shows a 

cartoon of a 2D (or a slice of a 3D) input image. For simplicity the image only has one 

event. This event corresponds to a geologic interface which has been labeled 7. Thus, the 

mapping function t(z, 79) gives the time t of the event as a function of x. The shifts required 

to flatten event 79 are shown as vertical vectors in Figure 2.2a. Notice that the shift varies 

with the shape of the event and is positive on the right and negative on the left. 

The same event is shown after flattening in Figure 2.2b. The event in the flattened 

image is made by interpolating samples from the input image at every time 7, and in 

general, a flattened image is created by interpolating samples from times given by the 

mapping function t(z,7). Using this same logic, the 3D mapping function is: 

t(r,y,T) = 7 — 8(z,y,7). (2.2)
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The above equation implies that if the shift function s(x, y,7) is known, then the mapping 

function t(z,y,7) is also known. The shift function is the model in the flattening inverse 

problem. In the next section, I show how these shifts are related to the input image. 

2.3. Computing Shifts from Slopes 

A transform between the shift function s(z, y,7) and the local slopes measured for an 

input image can be found by taking derivatives of both sides of equation 2.1 with respect 

to both x and y. The derivative with respect to x of both sides of equation 2.1 is 

dg _ of Ou , Of Ay , Of at 
dz Oxdx Oydx ' Ot Ox (23) 

_ af , af at 
~ Oe T Bt dz" (2.4) 

If the flattened image g(x, y,7) only contains flattened geologic interfaces as in Figure 2.2b, 

0g/Ozx is zero. Thus, equation 2.4 becomes 

_ Of , of ot 
0 Ox + Ot Ox (2.5) 

o 

i == (2.6) 
oO 

oe _ Os (2.7) 

The left-hand side of the above equation can be computed from an input image and is the 

slope of events in the image. 

Unfortunately, computing the slopes from the partial derivatives O0t/Ox and Of /Ot 

may result in numerical problems. These errors are due to several causes. First, seismic 

images are often noisy; thus, derivatives of these images will also contain noise. Next, notice 

that the shifts s(x, y,7) can be found by integrating both sides of equation 2.7. Therefore, 

the shifts are a summation of the slopes, and small errors in the derivatives may quickly 

accumulate. Finally, when Of /0¢ is zero, —(Of/Ox)/(Of /Ot) is undefined. Hence, it is 

preferable to use a more robust method for computing slopes and to smooth input slopes 

before computing shifts. 

The structure tensor (van Vliet & Verbeek, 1995) provides a simple and robust method 

for computing smoothed slopes. Using the structure tensor one can compute the direction
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Figure 2.2: A 2D cartoon of a seismic event before and after flattening is shown in (a) 
and (b), respectively. The blue arrows in (a) show how the event must be shifted to 
flatten the geologic interface. The length and direction of these arrows is the value of the 

shift function s(xz,79). From (a) it can be seen that the flattened event in (b) is given by 

g(x, 70) = f(z, 70 — (2, T0)).
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of greatest change in the image over a local window for every sample in the image. The 

direction of greatest change in the image is normal to the events in the image. Figures 2.3a 

and 2.3b, show, for inline and crossline slices of a 3D seismic image, a subset of the local 

normal vectors computed using structure tensors. Figure 2.3c shows the relationship be- 

tween these local normal vectors and the slope of a seismic event. Finally, Figures 2.3d 

and 2.3e show the computed slopes plotted on top of their corresponding seismic slices. 

To simplify notation, the left-hand side of equation 2.7 is defined to be a function: 

At of _ _ Ng(2,y, t) 
t See tee eS 2.8 

P(x, Y; ) Az ef n(x, y,t)’ ( ) 

so that equation 2.7 becomes 

p(x, yt) = —5°(2,4,7). (2.9) 
A similar derivation can be made for the y derivative of equation 2.1. I define the slope in 

the y direction to be 

of 
_ oy Ny(z,Y, 3) th=a—=-Hi-o02" 2.10 q(x, y, t) Ry 28 ~~ nala,y,t) (2.10) 

and consequently, the relation for the shift in the y direction is 

alent) = —5°(e.w7). (2.11) 

Notice that there are two relations for the shift function s(z,y,7), equation 2.9 for 

the inline x direction and equation 2.11 for the crossline y direction. Lomask et al. (2006) 

suggest that one should attempt to honor both equations by using a least-squares solution 

fit to both equations. They also suggest that one should include a third equation to enforce 

smoothness in the shift function to “ensure a monotonic and continuous result”. The third 

line in equation 2.12 sets 0s/Or to zero and includes a tuning parameter ¢ which presents a 

tradeoff between smoothness and the need to honor the input slopes. A larger € puts more 

emphasis on having little vertical change in the shift function, while a smaller e€ allows the 

shift function to vary more vertically. The value of ¢ is dependent on the amount of noise 

in the input image. 

Using the notation introduced above, the following equations are the partial differential
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Figure 2.3: (a) and (b) show inline and crossline slices of a seismic image where a subset of 
the local normal vectors have been plotted on top of the image. (c) is an idealized cartoon of 

a local window around one of the vectors plotted in (a) and (b). The local slopes computed 
using the normal vectors from (a) and (b) are plotted in color on top of the seismic data in 

(d) and (e). 
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equations presented by Lomask et al. (2006): 

— $8 (x,y,7) p(z, y, t) 

— (a, YT) x q(z, y,t) . (2.12) 

e938 (x, y,7) 0 

2.4 Nonlinearity 

Notice that left-hand side of equation 2.12 is a function of 7, while the right-hand side 

is a function of t. The local slopes p(z, y,t) and q(z, y, t) are functions of t because they are 

estimated from the input image. However, the shift function (that is being solved for) is a 

function of tr and because the 7 variable is based on the geology present in the image there 

is no constraint that it must be linear. The need to have a shift function in terms of 7 can 

be seen in equation 2.1 and is illustrated in Figure 2.2. The output image (Figure 2.2b) 

is created by interpolating samples from the input image (Figure 2.2a) at times t(2, 79); 

however, in order to know where samples are located in the input image, one must know 

the shifts s(x, 79). 

Lomask et al. (2006) explain that a least-squares solution to the nonlinear partial 

differential equations in equation 2.12 can be found by linearizing them approximately and 

then, iteratively solving for the shifts. In iteration k, the shift function from the previous 

iteration s{*~1}(z, y, 7) is used to relate the measured slopes to the shift function and solve 

for a new shift function s{*}(x,y,7). For the first iteration, it is assumed that t and 7 are 

equal, so that 

s(x, y,7) = 0. (2.13)
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Then, for each iteration k, least squares fitting is used to solve the following equations 

{k} _ 
— 25 (2,57) p(x,y,7 — s* 4 (2x, y,7)) 

{k} ~ _ 
— 9 (x, y,7) ™~ Q(z, Y; TT gtk U(x, y, T)) . (2.14) 

{k+1} 
2 (x,y, T) 0 

A solution to the above relation can be found using an iterative solver such as the conjugate 

gradient method. Therefore, there are two different sets of iterations preformed when solving 

for a shift function s(z, y,7), there are successive iterations of k which are repeated until the 

difference between s{*—}(z,y,r) and st*}(x,y,7) is small, and there are iterations within 

the iterative solver used to compute each new shift function stk} (z,y,T). Figure 2.4 shows 

a slice from a 3D seismic image where the shifts s{*}(x, y,7) which were solved for at each 

iteration k have been used to compute a flattened image. 

When solving for one particular version of the shift function sth (2, y, T), it is difficult 

to know how many iterations of the conjugate gradient method to perform. This is because 

at each iteration k a linear approximation of the true problem is being solved, and thus, one 

may waste computations by taking the iterative solver to full convergence. Unfortunately, 

it is challenging to know beforehand how long to iterate on the incorrect linearized problem. 

This uncertainty motivates the need for a linear relationship between local slopes and the 

shift function. Such a linear system can be solved once with the conjugate gradient method 

taken to full convergence.



16 Chapter 2. Nonlinear equations for flattening shifts 

Crossline (km) Crossline (km) Crossline (km) 
1502 = 25 3 35 4 6005 1 15 2 25 3 35 4 

oP Na Sa ee gp See 

gaa ee 

    

  

     
         

    

Ge
ol
og
ic
 
ti

me
 

o wn
 

o
 Ti
me
 

(s)
 

Crossline (km) Crossline (km) 
005 1°15 2 25 3 35 4 005 1°15 2 25 3 35 4       

Ge
ol
og
ic
 
ti
me
 

re wn
 

oO
 

Figure 2.4: A crossline slice from a 3D seismic image shown after each iteration of flattening. 

The original input image is shown in (a). Then, each subsequent image shows the same 
slice after applying the shift function found at each of four iterations.



Chapter 3 

Linear equations for flattening shifts 

In this chapter I present a new method for solving for the shift function used to 

flatten a seismic image. In the previous chapter, the slopes of events in an input image were 

calculated as functions of time t, but to flatten the image, a shift function of 7 was required. 

This difference of functions in terms of t and 7 led to a set of nonlinear partial differential 

equations (PDEs) for shifts. I propose that instead of directly calculating a shift function 

in terms of 7, one should use a two-step process to find the flattening shifts: 

1. Solve a set of linear PDEs to a find shift function o(z, y, t) of t. 

2. Use inverse interpolation to find a shift function s(z,y,7) of 7 that will flatten the 

image. 

In the following section, I will explain this new inverse interpolation step in further 

detail. Then, I will introduce a new set of PDEs that can be used to calculate the new 

shift function s(x, y,7). Next, I will introduce a change of variables that yields faster 

convergence when solving for the shift function in practice. Finally, I will show examples 

of this flattening method applied to a 3D seismic image and compare runtime results with 

the nonlinear method. 

3.1 Mapping in Terms of 7 with Inverse Interpolation 

In the previous chapter, the function t(z,y,7) that maps the input image to the flat- 

tened image was discussed: 

G(2, YT) = f(x,y, tx, y,T)), (3.1)
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and it was shown that this mapping function is directly related to the shifts by 

t(z,y,T) =T— s(x,y, T); (3.2) 

where s(z, y,7) is the shift function. The key to finding a set of linear PDEs for shifts is to 

realize that it is simpler to find a shift function in terms of time t. Then, the shift function 

of t can be used to find a shift function in terms of 7. Instead of inverting for a shift function 

s(a,y,7) and calculating a mapping function t(z,y,7), one finds a shift function o(z, y, t) 

and a mapping function 7(z, y, t): 

T(x,y,t) =t+ o(x,y,t). (3.3) 

Given a mapping function in terms of t, one can easily use inverse interpolation to find 

the mapping in terms of 7 if it is assumed that t monotonically increases as 7 increases. 

Using inverse interpolation, one can go from 7 as a function of ¢ to t as a function of r: 

T(x, y,t) > t(z,y,7). (3.4) 

Note that the function t(z, y,7) was used in the previous chapter, and each value of 7 

corresponds to a geologic time. Therefore, the assumption that t monotonically increases 

is equivalent to the assumption that there is a top to bottom ordering of geologic time, i.e., 

the layers of the earth were created in a chronological order. 

3.2 A Linear System of PDEs 

Next, I use a derivation similar to the previous chapter to introduce a new linear 

system of equations that relates slopes in the input image to shifts as a function of time ?. 

Start by rewriting equation 2.1 using the new mapping function 7(z, y, t): 

g(z,y, T(x, y,t)) = f(z, y,t). (3.5) 

Then, as before, take the derivative of the above equation with respect to z: 

Og Ox Og dy , OgOr _ OF 

de det Oydu t Broz Oz (3.6)
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and simplify: 

Og . OgOr Of 
2 = 3. 

Ox + OrOx Ox (3.7) 

Note that, again, the derivative of the output image with respect to x is zero because the 

output image only contains flat layers. Thus, the above equation simplifies to 

ag or _ af 
07 Ox (Ox (3:8) 

Next, expand the above equation by computing the derivative of both sides of equa- 

tion 3.5 with respect to t: 

dg x , Og 8y | 897 _ Af 
Ox Ot | Oy Ot Or At At’ (3.9) 

which simplifies to 

dg Or _ OF 

or 

dg 3 = = t (3.11) 

Ot 

Using equation 3.11, equation 3.8 becomes 

a 
af Or Of OT _ 
Sax Ox (3.12) 

Then, using the derivatives of equation 3.3 with respect to x and ¢ equation 3.12 yields 

o 

edo _ af (3.13) 
1+ % Or dx 
  

Finally, using the definition in equation 2.8 for the slopes p(z,y,t), the above equa- 

tion 3.13 becomes 

Oo(x,y,t) _ —20(z at) _ = p(z, y, t). (3.14) De p(x, y,t) ey
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A similar derivation can be performed for the slopes g(x, y,t) in the y direction: 

en — 425% pen) = (x, y,t). (3.15) 

Note that both the slopes p(z,y,t) and g(z,y,t) and the shifts o(z,y,t) are functions of 

time t. Equations 3.14 and 3.15 do not include the unknown function 7(z, y,t). They are 

linear PDEs. 

Table 3.1 shows the above equations and the equations from the previous chapter side 

by side. Note that the right-hand sides are the same, but that the left-hand sides are very 

different. 

Table 3.1: Shift PDEs comparison 
  

  

Nonlinear | ~ (8957) ~ aw | 

— 55 (29,7) q(2,y,t) 

Linear — $5 (a, y,t) — pla, ys t) 3 (2s yt) | ~, Pen | 
- F(z, y,t) — g(x,y, t) $2 (a, y, t) q(x, y, t) 

  

3.3 Geometric Derivation of the Linear Equations 

Equations 3.14 and 3.15 can be derived in a slightly different manner. This derivation 

is included because it may help one better understand flattening but this derivation is 

equivalent to the derivation presented in the previous section. Flattening can be seen as 

the process of mapping between coordinate systems or, equivalently, the process of mapping 

between tangent spaces (Lee, 2009). Figure 3.1 illustrates this mapping between coordinate 

systems where points in the left most coordinate system have been mapped to the points 

in the coordinate system on the right. 

Specifically, define a point in the input image (the domain) to be 

x = (z,y,t) (3.16)
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Figure 3.1: A cartoon of the flattening transform where the points in (x, y,t) space (on the 

left) are mapped to the points in (x, y, 7) space (on the right). The mapping u is constructed 

with the constraint that all events must be flat after transformation. 

and then a point in the flattened coordinate system (the range) to be 

u = (2, y,T). (3.17) 

Flattening requires a mapping u(x) between these two coordinate spaces. Given a point x 

in the input space, u(x) is the corresponding point in the flattened space. 

The mapping u(x) is found by considering how the events should be shifted such 

that all events are flattened. Unfortunately, finding a direct mapping of points between 

coordinate systems is difficult; one does not know if a point belongs to a flattened geologic 

interface without considering other points that belong to the same interface. It is much 

easier to find a mapping between vectors that are normal to the events of a seismic image 

because a normal vector that points vertically down is easily identified. 

Fortunately, the relationship between transformed points and normal vectors is well 

known and commonly used in computer graphics, where vertices and normal vectors of a 

surface must be transformed simultaneously. Using a similar process, one can find a trans- 

form that maps normal vectors between the two coordinate systems, then work backwards 

to find a mapping of points between the coordinate systems. Note that in the previous 

chapter, I presented a method for measuring the slopes and equivalently the vectors normal 

to events of the seismic image using the structure tensor. 

' A derivation of the correspondence between vertex and normal transforms is presented 

in Shreiner et al. (2007). Consider a vector n that is normal to some surface and a vector



22 Chapter 3. Linear equations for flattening shifts 

w which is perpendicular to n (tangent to the surface). Then by definition: 

nw =0. (3.18) 

If M is a non-singular matrix, then, the following is also true: 

n? M-'Mw = 0. (3.19) 

The above equations imply that the vector (M~!)'n is perpendicular to the vector Mw 

which is tangent to the surface after transformation. Shreiner et al. (2007) succinctly 

summarizes this property by stating that: 

Normal vectors are transformed by the inverse transpose of the transformation 

that transforms points. 

Next, I use this property of transformations to derive the linear equations for flattening 

shifts. I first assume that the normal vectors (or slopes) estimated using the structure 

tensors correspond to smooth manifold surfaces that follow the events of the input image. 

Then, let x9 be an arbitrary point on a smooth manifold surface in the domain, and up be 

the corresponding point on the surface in the range: 

u(xo) = Uo. (3.20) 

If the manifold surface in the domain is smooth and x is a point in an infinitesimally small 

neighborhood around xo, then 

u(x) = ug + J(x — xo), (3.21) 

where J denotes the Jacobian matrix of u(x). Note that the choice of the point xo is 

arbitrary; the above equation could be written for any point in the input image. Now, 

define vectors normal n and v to their respective manifolds at points xp and ug. By 

definition, for a point x on the surface in the domain and in the neighborhood of xo 

n’ (x — xo) = 0 (3.22)



Derek Parks / Seismic image flattening as a linear inverse problem 23 

and for a point u on the surface in the range and in the neighborhood of ug 

v? (u— ug) = 0. (3.23) 

Because vectors n and v are normal to the surface at their respective points they must be 

orthogonal to any vector along the surface in the infinitesimal neighborhood of xp and uo. 

Then, using equation 3.21, 

v? J(x — xo) =0. (3.24) 

Comparing the above relation with equation 3.22 and simplifying yields: 

v? J(x — xg) =n’ (x — xq) = 0. (3.25) 

The above equation must be satisfied for all points x on the surface and in the neighborhood 

of x9; therefore, (J~!)7n is a vector that is normal to the surface after transformation at 

u(x) and is parallel to v. Thus, the flattened normals v are found by taking “the inverse 

transpose of the transformation that transforms points” and in this case, the transformation 

that transforms points is the Jacobian of u(x). 

Finally, one must honor the constraint that the output image should be flattened; 

any event mapped into this space should be horizontal and planar. Figure 3.2 shows an 

example of surfaces before and after flattening. In order to enforce this constraint, the x 

and y components of normal vectors v should be zero. Therefore, 

0 

(J-')"n=] 0 |, (3.26) 

c 

where c is the length of (J~!)"n. The above equation is simplified to the relations from the 

previous section by expanding the Jacobian of u(x). Specifically, the transform is 

u(x, y,t) = (z,y,t + o(z, y, t)). (3.27) 

Expanding out the full inverse transpose of the Jacobian of u(x) and plugging into equa-
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tion 3.26 yields 

1+% oOo -# 0 
o a = 0 149 -$ |n=]0]- (3.28) 

0 0 1 c 

Further simplification of the above equation yields equations 3.14 and 3.15. While this 

derivation is slightly longer than the one presented in the previous section, it uses concepts 

from differential geometry and computer graphics to produce an equivalent result. The 

surfaces plotted in Figure 3.2, when combined with the derivation presented in this chapter, 

also provide a useful insight into how the flattening transform is applied to a seismic image. 

3.4 Change of Variables 

In the previous sections, I derived the linear partial differential equations (Table 3.1) 

that are used to compute the shift function o(z, y,t). A least-squares best solution to these 

equations can easily be found by using an iterative optimization method such as conjugate 

gradients. Unfortunately, directly solving for the shifts may be problematic. There are 

many possible ways to flatten a given set of slopes and some solutions are preferable to 

others. In this section, I outline why some shift functions may be preferable to others and 

show how to solve for them. 

Figure 3.3 illustrates two possible problems one can encounter when flattening a seismic 

image. In Figure 3.3a, all of the flattened reflectors have been shifted down when compared 

to the flattened reflectors shown in Figure 3.3c. This shifting means that a constant value 

has been added to the shift function o(z,y,t). A second possible problem is illustrated in 

Figure 3.3b; a linear trend has been added to the shift function which causes the flattened 

reflectors to squeeze together. Note that in both cases (Figures 3.3a and 3.3b), the 

reflectors are still perfectly flat. The shift functions used to compute both images satisfy a 

least-squares solution to the flattening PDEs. Specifically, given a shift function o(z, y, t) 

that is a least-squares solution to the flattening PDEs for a given set of slopes p(x, y,t) and 

q(x, y,t), another valid solution is 

o(z,y,t) + Co+ Cit (3.29)
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Figure 3.2: The surfaces in (a) have been mapped to the correspondingly colored surfaces 

in (b). While only four surfaces are shown here, the actual number of transformed surfaces 
corresponds to the number of samples in the 7 direction of the output image.
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Figure 3.3: A cartoon showing three possible ways to flatten three reflectors. In (a) the 

reflectors have been shifted down; In (b) the reflectors have been squeezed together; and in 
(c) they have been spaced equally throughout the flattened image.
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for any nonzero constants Co and C,. A nonzero Co adds a constant shift up or down to 

all of the reflectors in the flattened image (Figure 3.3a), and a nonzero C) corresponds to 

a vertical stretching or squeezing of the flattened reflectors (Figure 3.3b). To understand 

why these constant and linear shifts are unresolved, one must consider how this inversion 

problem is solved. In a typical inversion problem, one seeks to find a model vector m that 

fits a given data vector d after applying a forward operator F: 

d =~ F(m). (3.30) 

In the case of flattening: 

e the data vector d contains the samples of the local slopes p(x, y,t) and q(z, y, t) 

e the model vector m contains the samples of the shift function o(z, y, t) 

e the forward operator F is constructed such that F(m) contains the samples from the 

left-hand sides of the linear PDEs in equations 3.14 and 3.15. 

Since, in this case, F is a linear operator the least-squares objective function for such an 

inversion problem is written as 

||Fm — d|| (3.31) 

or 

(m7 F? — d’)(Fm — d). (3.32) 

Note that equation 3.32 applies the forward operator twice (once as F and again as F?) and 

that the forward operator F contains derivatives with respect to all coordinate directions. 

Consequently, when computing a solution to equation 3.32, all of the constant and linear 

components of the model m will be removed. 

A third problem is common in many inversion problems and arises when there are 

many possible solutions to a set of equations, but one would prefer the solution that has the 

least unneeded complexity. This type of regularization is performed in the previous chapter 

when I introduced the smoothing of the shift function in the third row of equation 2.12. 

All of the aforementioned problems can be overcome by using the model reparameter- 

ization technique shown in Harlan (1995). This is done by introducing a new operator S
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which is defined to suppress the parts of the model m that are unwanted. Harlan (1995) 

states that 

This operator [S] should be designed to preserve simplicity and suppress com- 

plexity, although without destroying complexity entirely. 

Now, instead of solving directly for the model m, I solve for a new variable m which is a 

reparameterized version of the model, where m = Sm, by minimizing 

(m7 S7FT — d?)(FSm — d). (3.33) 

Note that, after solving for a reparameterized model m, one can quickly find the original 

model m by applying the operator S. 

The next step is to define the operator S. Typically, this reparameterization technique 

is used to resolve the problem of over-complex models but in the case of flattening, one still 

has the problem of unwanted constant or linear shifts, which are the simplest components 

of the model. The key realization is that one can use the model reparameterization trick 

to suppress any parts of the model that are unwanted (shifts, squeezes, and unnecessary 

complexity) while enhancing the parts of the model that are desirable (smoothness). In 

order to accomplish this, I define S to be 

S = (I— e1e17)(I — epeo” )SzS,Sz, (3.34) 

where 

e S; is a symmetric smoothing in time 

e S, is a symmetric smoothing in the crossline direction 

e S, is a symmetric smoothing in the inline direction 

e eo is a unit vector with each element equal to 1/VN, where N is the number of 

samples in the image 

e e} is a vector linear ramp in time such that e;7e9 = 0 

This reparameterization seeks to remove the parts of the model that are undesirable: 

e S,, S,, and S; remove unnecessary roughness from the shift function
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e the I— geo! factor removes constant shifts by subtracting out the mean shift 

e the I—ej,e,! factor removes trends in the shifts that are linear in t. 

Any of the above symmetric smoothing filters (Sz, S,, and S;) can be implemented as a 

generic symmetric filter but this can be improved upon by choosing a filter that conforms 

to the guideline of enhancing the parts of the model that are desirable. Smoothness in the 

shifts along the layers of the input image is desirable; thus, it is preferable to implement 

the symmetric smoothing filters as structure preserving filters (Hale, 2009). Structure pre- 

serving filters smooth along and not across the events of a seismic image, which allows the 

resulting shift function to also be smooth along the layers. Finally, note that 

(I- e1e;7)(I- egeo! ) = (I- eje,7 — epeo! ) (3.35) 

which means that the above equation can be applied in two passes over a 3D image. The 

T Tym where mo and m, are temporary variables. first pass computes mp = e1° m and m, = €o 

Then, the second pass computes Moyz = M—e1M9 — €g™M1, Where Mox¢ is result of applying 

the operator shown in equation 3.35. Finally, each factor of S is symmetric; therefore, the 

transpose of S, which is required by equation 3.33, is just the same factors applied in reverse 

order. 

This reparameterization technique could be replaced by adding multiple regularization 

terms but this reparameterization technique is preferable. This is because it models simplic- 

ity directly and does not add extra complexities to the objective function. To paraphrase 

Harlan (1995), minimizing an objective function that only suppresses complexity through a 

regularization term should be avoided because the model becomes complex quickly and later 

iterations remove this complexity. The reparameterization technique is preferable because 

it models the desired simplicity directly and goes directly to the desired solution. 

3.5 Results and Conclusions 

I have applied the linear PDEs to a 3D image from the Teapot Dome. Teapot Dome 

is located in Natrona County, Wyoming and currently has over 600 active wells (Personal 

Communication, Brian Black, 2009). The dome structure present in the seismic image 

provides an ideal example for flattening, as stratigraphic features within the image may be 

obscured by the dome shaped layers.
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The images before and after flattening are shown in Figure 3.4. The arrows in Fig- 

ure 3.4b indicate two possible channels in the flattened image. These channels are difficult 

to detect in the input image, but are quickly recognized when scanning through the hori- 

zontal (constant-r) slices of the flattened image. The flattening used to find these channels 

was completely automated and did not require any manual horizon picking. In order for 

an interpreter to detect these features in a traditional picking based manner, they would 

have had to know beforehand to flatten on the horizon located at 1.42 seconds in the input 

image. 

Figure 3.5 shows two additional horizontal slices from the flattened image. A possible 

astrobleme (Personal Communication, Tom Davis, 2009) can be seen in Figure 3.5a and 

another possible channel can be seen in Figure 3.5b. In general, it is much easier for one 

to see stratigraphic features in the flattened domain, and an automatic flattening allows 

interpreters to spend less time picking horizons and more time identifying such stratigraphic 

features. Table 3.2 shows a comparison of the runtimes of various ways of solving for a shift 

function. All of the algorithms were tested on the Teapot Dome seismic image and were 

run on a computer with dual quad-core 3 gigahertz processors and enough memory to avoid 

swapping. The average absolute value of the inline and crossline slopes after flattening 

was computed to give a quantitative comparison of the flattening results. A zero value of 

absolute average slope corresponds to perfectly flat events in the output image but some 

residual slope is to be expected in practice. Qualitatively, all of the tested flattening methods 

provided similar flattened output images. The total number of conjugate gradient iterations 

required is also reported for each test. For the nonlinear tests, the total number of conjugate 

gradient iterations required is the sum of the conjugate gradient iterations required at each 

of the linearized k iterations. The number of conjugate gradient iterations required does 

not exactly correspond with the runtime for the nonlinear tests because each linearized k 

iteration incurs additional overhead. 

The first thing to be noted from these results is that the Harlan (1995) reparameteri- 

zation method provides a significant speedup in the computation of the shift function. 

Two sets of results are provided for the nonlinear methods. The results marked as 

(FC) have been taken to full convergence at each of the linearized k iterations and the 

nonlinear results not marked as (FC) have been optimized to avoid unnecessary computa- 

tions. In these tests, full convergence was reached when the norm of the residuals for an 

iteration of the conjugate gradient method was less than 0.01 times the norm of the data
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Figure 3.4: Each of these figures ((a) and (b)) contain three axis-aligned slices. from a 3D 
seismic image. The black lines indicate the location of the slices in the other directions. (a) 
shows the image before flattening and (b) shows the corresponding slices after flattening. 

Two possible channels are indicated by the red arrows in (b).
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Figure 3.5: Two horizontal constant-7 slices after flattening. In (a) a possible astrobleme 
is indicated by the red arrow and (b) shows another possible channel formation which is 

indicated by the red box.
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vector d. Note that the optimized tests are much faster. In the optimized tests, the next 

linearized k iteration was started after 10 conjugate gradient iterations in the nonlinear 

with reparameterization test and 200 conjugate gradient iterations in the nonlinear with- 

out reparameterization test. The optimal number of conjugate gradient iterations for the 

optimized nonlinear tests was found experimentally and is dependent on the seismic image 

that is being flattened. This highlights the advantage of the linear method because with 

the linear method no such experimentation is needed. 

In conclusion, I have shown that flattening can be posed as a linear inverse problem, 

flattening is related to the mapping of tangent spaces, and a change of variables speeds 

convergence.
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Table 
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Method 
Runtime 

(s) 
Total 

conjugate 
Linearized 

k 
Absolute 

average 

gradient 
iterations 

iterations 
slope 

(ms/km) 

Linear 
reparameterization 

41.2 
35 

N/A 
56.1 

Linear 
no 

reparameterization 
357.5 

766 
N/A 

56.4 

Nonlinear 
reparameterization 

58.1 
40 

4 
55.6 

Nonlinear 
no 

reparameterization 
343.2 

300 
4 

36.7 

Nonlinear 
reparameterization 

(FC) 
725.9 

959 
5 

55.5 

Nonlinear 
no 

reparameterization 
(FC) 

815.3 
1976 

3 
56.3 
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