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Abstract 

Interferometry recovers the impulse response of waves propagating between two sen- 

sors as if one of them acts as a source. The primary focus of this thesis is on providing 

a framework for interferometry based on perturbation theory that can be used for the di- 

rect reconstruction of the portion of the data that is of interest for imaging and inversion 

methodologies. I derive general reciprocity theorems in perturbed acoustic media. These 

theorems show that the wavefield perturbations are extracted from cross-correlating the 

perturbations detected by one receiver with unperturbed waves sensed by another. Apart 

from applications to interferometry, the representation theorems presented here can also be 

used for inverse-scattering and time-lapse monitoring. I also present a theory describing 

interferometry by deconvolution, based on a series expansion of deconvolved waves in the 

wavefield perturbations. This expansion is used to give a scattering-based interpretation 

of the physics of deconvolution interferometry. Deconvolution interferometry, like its cor- 

relation counterpart, also retrieves the impulse response between the receivers, but with 

boundary conditions that are different than those of the original measurement. Interferom- 

etry by deconvolution is particularly important for recovering the impulse response from 

noise records excited by a long and complicated source-time function. As an application 

of deconvolution interferometry in exploration geophysics, I elaborate on the use of this 

method for processing seismic-while-drilling data, while comparing to more standard prac- 

tices. Interferometry by deconvolution yields wide-band images from drilling noise without 

requiring an independent estimate of the drill-bit excitation. This concept is applied to 

borehole measurements of drilling noise at the San Andreas Fault Observatory at Depth 

(SAFOD) to provide a broadside depth image of the San Andreas Fault system. This image 
displays the localized subsurface structure of the San Andreas Fault and of another major 

blind fault. Finally, the representation theorems in perturbed media are used to develop 

an interferometry method that targets the interference of specific arrivals in the data. This 

target-oriented interferometry method can be used to reconstruct primary reflections from 

internal multiples. The interference of internal multiples can be used to image subsalt 

structures using borehole receiver arrays placed beneath salt. I test this method both on 

numerical experiments and on field data from deep-water Gulf of Mexico.
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Chapter 1 

Introduction 

The inference of waves recorded at two observation points can be used to extract 

waves that propagate between these points. Interferometry is the general term I use to 

refer to the methods by which we can manipulate recorded wavefields to extract waves 

that propagate between the receivers as if one of them acts as a source. In the field of 

exploration geophysics, Claerbout (1968) was the first to note that the autocorrelation of 

recorded transmission responses yields the reflection response in 1D media. He referred 

to this approach as daylight imaging (Claerbout, 1968; Rickett and Claerbout, 1999), by 

comparing it to the manner by which human eyesight works. This analogy with human 

vision can be associated to some of the first formal proofs of the concepts of interferometry in 

multidimensions, which rely on the cross-correlation diffuse waves recorded by two sensors to 

extract the impulse response between them (Lobkis and Weaver, 2001; Weaver and Lobkis, 

2004). Diffuse-wave correlations (e.g., Weaver and Lobkis, 2004; Larose et al., 2006) rely on 
the physical principle of equipartioning, which states that at the observation points, after 

averaging over time, waves travel in all directions with the same amount of energy. This 

condition is necessary for the reconstruction of the medium’s full impulse response from 

correlations of the recorded data. 

In the context of interferometry, the medium’s impulse response is formally defined 

by the Green’s functions describing waves that propagate between the two sensors. Thus, 

interferometry is also referred to as Green’s function retrieval (e.g., Weaver and Lobkis, 

2004; Wapenaar et al., 2006). Along with the diffuse-wave theory (e.g., Weaver and Lobkis, 

2004), other derivations are based on representation theorems (e.g., Wapenaar et al., 2004; 

Wapenaar et al., 2006; Snieder, 2007; Snieder et al., 2007) also demonstrate the results of 

interferometry. These representations theorems (also called Greens’s theorems) come from 
general reciprocity theorems (de Hoop, 1988; Fokkema and van den Berg, 1993; Wapenaar 

et al., 2006) which relate two arbitrarily different wave states in one and the same space. 

The representation theorems used to describe interferometry are akin to those used in the 

derivation of the Kirchhoff-Helmholtz integral (e.g., Bleistein et al., 2001) that is commonly 

used in seismic imaging methods (e.g., Bleistein et al., 2001; Biondi, 2006). For systems 
that are invariant in time reversal, the representation theorems state that the impulse re- 

sponse between two sensors can be extracted from cross-correlating waves excited by sources 

distributed over a closed surface that surrounds the receiver. This source configuration pro- 

duces waves propagating at all directions at the receiver locations, being thus similar in 

concept to the physics of equipartioned diffuse waves. 

There are examples of applications of interferometry in the fields of exploration seis-
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mology (e.g., Schuster, 2001; Schuster et al., 2004; Bakulin and Calvert, 2004; Mehta et al., 

2007b), ultrasonics (e.g., Malcolm et al., 2004; van Wijk, 2006), ocean acoustics (Roux et 

al., 2004; Sabra et al., 2004), global earth seismology (e.g., Shapiro et al., 2005; Sabra et 

al., 2005a), structural engineering (Snieder and Safak, 2006; Thompson and Snieder, 2006) 

and helioseismology (e.g., Rickett and Claerbout, 1999). In exploration seismology, Schus- 

ter and co-workers have provided interferometric imaging applications for reverse vertical- 

seismic profile (VSP) data (e.g. Schuster et al., 2004; Yu and Schuster, 2006), increasing 
dramatically the illumination area in these experiments. Bakulin and Calvert (2004,2006) 
use time-reversal arguments to design Virtual Sources with interferometry that eliminate 

the influence of highly heterogeneous overburden in VSP data. Mehta et al. (2007b,c) 

extended the Virtual Source method of Bakulin and Calvert (2006) to multiple removal 
and time-lapse applications. Shapiro et al. (2005) and Sabra et al. (2005a) rely on the 
incoherent excitation produced by ocean waves hitting the coast to extract surface waves 

propagating between sensors and use them for surface-wave tomography. These are only 

some of the examples of interferometry applications I cite in this thesis. My work offers 

perturbation-based and deconvolution interferometry as tools to treat yet another subset 

of physical problems related to scattering-based imaging and monitoring temporal changes 

in the medium. I give examples of applications in fault and subsalt imaging, and imaging 

with coherent noise such as drilling noise. 

This thesis consists on the compilation of five stand-alone research articles that are 

intrinsically related. One of the ways in which I establish the relationship between the 

research work in these articles is simply by cross-referencing the chapters, whenever appro- 

priate. Apart from citations, this Introduction sets a general framework for these papers, 

providing a “map” to guide the readers through both the content and the broader context 

of each article. 

As discussed above, the most central concept in this manuscript is that of interferom- 

etry. To understand the meaning of this term! in a fundamental way, let us first review the 

conventional approach to describing natural phenomena in mathematical physics (which in- 

clude geophysical applications). A general mathematical construction to describe a physical 

phenomenon postulates a conceptual model IN (Figure 1.1) to describe a Material State. 

This Material State is typically represented by model parameters associated with physical 

material quantities such as mass, thermal conductivity or resistivity, for example. On the 

other end of the mathematical physics constructions lies the Measurement D (Figure 1.1) of 
a physical quantity such as pressure, temperature or electric potential. The Material State 

9 and the Measurements D are linked by a formal and reproducible deductive system (e.g., 

that of Principia Mathematica; Whitehead and Russell, 1910, 1912, 1913) in the form of a 

Theory T (Figure 1.1). This conceptual construction can be used to predict the data that 
would be acquired for a known model, this is commonly referred to as forward modeling 

or simply as modeling (this is illustrated by the solid arrow in Figure 1.1). The concept in 

Figure 1.1 can also be used to infer the Material States from a given Measurement by means 

of inversion (e.g., Tarantola, 1987). Interferometry methods use the mathematical physics 

  

1] follow the terminology introduced by Schuster (2001).
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Figure 1.1. A common mathematical concept of a physical system. The solid arrows denote 

a forward modeling scheme, where a measurement © is predicted from a given material 

state Dt by means of a theoretical framework Y. The dotted arrows represent an inversion, 

where the theory is used to infer the material state from observations. 

Da LD, 

Figure 1.2. The general concept of interferometry as treated by this manuscript. Based 

on a set of theories {, the acquired measurements D, are used to reconstruct a pseudo- 

measurement D,. 

concept in Figure 1.1 differently from the more conventional forward or inverse approaches. 

By manipulating the Theory & (Figure 1.2), interferometry can be used to reconstruct a 

pseudo-measurement D, from actual measurements ),, with no knowledge of the Material 

State IN (e.g., Wapenaar et al., 2006; Snieder et al., 2007). 

Although my objective in this thesis is more mundane than the discussion of the 

principles of mathematical physics, it is worth noting two important issues regarding the 

concept illustrated by Figure 1.1. First, it is important to note that the Material parameters 

only have meaning in the context of a proposed model and Theory set. The monograph by 

Tarantola (2006) provides a thorough discussion on the meaning of physical measurements 

and parameters. Second, Gédel (1930) showed that a mathematical statement that cannot 
be proved is not necessarily false, nor it is guaranteed that a proven mathematical statement 

is true. This means that the mathematical representation of physical phenomena expresses 

a limited perception of the natural world which cannot be logically proven to be true. 

Wigner (1960) discusses the complex role of mathematics in describing different levels of
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human phenomenological perception. Following standard scientific practice, in this thesis 

I present theory and experiments that communicate my intuition on particular aspects of 

wave propagation. More specifically, through the method of interferometry I describe how 

seismological measurements can be used to recover a pseudo-acquisition thatdiffers from 

the originally recorded data, and give examples of applications in exploration geophysics. 

Interferometry can be used reconstruct a pseudo-acquisition from recorded measure- 

ments without knowledge of model parameters (Figure 1.2). The objective of geophysics, 

however, is the understanding of the subsurface, i.e., of the model. So how can interfer- 

ometry be used to gain insight about the Earth’s subsurface that cannot be gained by the 

original measurements? The limitations of the acquired data D, (Figure 1.2) in terms of 

number of sources and sensors, spatial distribution, etc., along with the approximations in 

the theory dictate which portion of 9% can be inferred by means of inversion (Figure 1.1). In 

this context, the interferometrically reconstructed data 9, can be used to recover a portion 

of the model space of St that is different from that recovered by the inversion of D,. For ex- 

ample, seismic imaging methods (e.g., Bleistein et al., 2001; Biondi, 2006) typically assume 

that the data contains only single-scattered waves, and cannot handle multiply-scattered 

waves. With interferometry, I use seismic imaging techniques based on single-scattering to 

image waves scattered multiple times within the subsurface (Chapter 6), this results in an 
image with illumination properties that are different than what would have been obtained 

with the same data using standard processing techniques. 

It may sound like “new data” is “created” from observed data by interferometry, but 

no such thing really happens. The data reconstructed by interferometry contains all of the 

same information present in the original measurements. The idea of interferometry is akin 

to that of reshuffling poker cards, where each card represents a set of information contained 

in the observed data. One may then be inclined to think that this presents a contradiction 

to the discussion in the previous paragraph, where I state that interferometric data can be 

used to infer portions of the model space which the original measurements cannot estimate. 

What happens in practice is that the approximate theories used to infer models typically 

consider only a subset of the data, i.e., they look at some of the cards in our information 

deck in a predetermined order. Once interferometry reshuffles the information in the data, 

the same approximate theories have access to data features that are ignored in the original 

experiment. The example of imaging internal multiples with interferometry given in the 

previous paragraph illustrates this concept. 

The focus on perturbation theory is a fundamental aspect of my research in interfer- 

ometry that makes it unique with respect to other published work in the field. As I show in 

this thesis, the perturbation approach plays a key role in formally connecting the result of 

interferometry to the scattering and monitoring problems. The theory I present here targets 

the interferometric reconstruction of wavefield perturbations, which are the desired input 

for many existing techniques in imaging (e.g., Bleistein et al. 2001; Weglein et al., 2003; 

Biondi, 2006), data processing (e.g., Weglein et al., 2003; Malcolm et al., 2004) and inver- 

sion (e.g., Tarantola, 1987; Bleistein et al., 2001; Weglein et al., 2003). Other approaches 
in interferometry (see citations in Chapters 2 through 6) result in the reconstruction of the 
full wavefields. I discuss this with further detail below.
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Although centered on theory and applications of interferometry, this thesis also deals 

with other topics such as perturbation and scattering theory, passive and active seismic 

imaging, and imaging of fault zones and subsalt environments. The two first papers (Chap- 

ters 2 and 3) provide the theoretical background for the applications presented in Chapters 

4 through 6. The articles were not all directed to a single scientific community, so there are 

subtle differences in the language and discourse focus between one Chapter and another. 

Much of the general language and scientific writing standards I employ in these texts is 

inspired by Gopen and Swan (1990) and Penrose and Katz (1998). In this Chapter, I pro- 
vide brief descriptions of the other Chapters, highlighting the connections between their 

contents. More detailed descriptions of the context of each article can be found in the 

corresponding Introduction sections of each Chapter. 

As mentioned above, in the theoretical papers (Chapters 2 and 3) I use perturbation 

theory (e.g., Schrédinger, 1950; Lipmann, 1956; Rodberg, 1967). The main reason for using 

perturbation theory in my derivations is its use in the description of scattering problems 

(e.g., Lipmann, 1956; Rodberg, 1967). We use scattering-based arguments to connect the 

theory we present in Chapters 2 and 3 with the seismic applications in Chapters 4 through 

6, in a manner analogous as that presented by de Hoop (1996), Weglein et al. (2003), 
and Malcolm et al. (2007). In Chapter 2, I manipulate the acoustic wave equations that 
describe waves in unperturbed and perturbed media to derive reciprocity theorems of the 

convolution- and correlation-type (de Hoop, 1988; Fokkema and van den Berg, 1993). The 

theoretical framework I use in Chapter 2 relies in a general domain representation (Fig- 

ure 1.3) first introduced by de Hoop (1988) and used by Fokkema and van den Berg (1993). 
The use of this domain representation allows for the derivations of theories that account 

for arbitrary complexity in medium and geometry parameters. The reciprocity theorems 

in Chapter 2 provide explicit relations between wavefields (unperturbed and perturbed) 

and the wavefield perturbations. Next I derive representation theorems using the Green’s 

functions and discuss how they can be used to extract only the wavefield perturbations that 

propagate between the receivers from recorded data using interferometry. The extraction of 

the wavefield perturbations is important because they are the input to most seismic imag- 

ing methods (e.g., Bleistein et al., 2001; Biondi et al., 2006). Going beyond interferometric 

imaging, in Chapter 2 I discuss the application of the representation theorems in perturbed 

media for monitoring medium changes and inverse-scattering imaging. I describe interfer- 

ometry in Chapter 2 by means of cross-correlations, which relates to other descriptions of 

interferometry (e.g., Lobkis and Weaver, 2001; Wapenaar et al., 2002; Wapenaar et al., 

2006; Snieder et al., 2007; see Chapter 2 for a more detailed discussion). 

Interferometry extracts the response between two given receivers as if one of them acts 

as a source. When waves are excited by transient noise sources, the response reconstructed 

by correlation-based interferometry carries an average of the power spectra of the excita- 

tions (Snieder et al., 2006a; Wapenaar and Fokkema, 2006; Chapter 3). If the excitation is 

described by a long and complicated time series, extracting the Earth’s impulse response 

from the result of cross-correlation interferometry is complicated due to the imprint of the 

source power spectra. Such complicated excitations can be found in passive experiments 

as in seismic-while-drilling (e.g., Rector and Marion, 1991; Poletto and Miranda, 2004) or
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Figure 1.3. The domain representation used to derive reciprocity theorems. V is an 

arbitrary volume bounded by OV with normal unit vectors n. 

turbine monitoring, for instance; waveforms incoming from the subsurface can also con- 

stitute a complicated and incoherent excitation (e.g., Trampert et al., 1993; Snieder and 

Safak, 2006; Mehta et al., 2007c,d). As an alternative to cross-correlations, in Chapter 3 I 

provide a theory that describes deconvolution interferometry in acoustic media of arbitrary 

complexity. This theory is based on a series expansion of deconvolved waves with respect 

to small wavefield perturbations. Using the results of Chapter 2, I study how deconvolution 

interferometry can be used to extract the impulse response propagating between receivers 

for arbitrarily complicated excitation. In Chapter 3, I provide a scattering-based physical 

analysis of deconvolution interferometry, and explain how this method yields a pseudo- 

experiment with different boundary conditions from the original recordings. Using a simple 

model of a homogeneous medium with a single reflector, I use the stationary-phase method 

(Bleistein and Handelsman, 1975) to illustrate the result of deconvolution interferometry. I 
illustrate the concepts in Chapter 3 with simple numerical examples. 

Chapters 2 and 3 together present a set of tools that can be used for interferometry in 

perturbed media, both in the context of imaging (by associating scattering to perturbation 

theory) and in monitoring changes in the medium. While Chapter 2 provides representa- 

tion theorems that can be used for imaging/inversion and for correlation interferometry, 

Chapter 3 offers the physics of deconvolution interferometry that can be used for imaging 

waves excited by long and complicated source-time functions. Throughout my derivations, 

I assume that the reader is familiar with commonly referred topics of mathematical physics 

such as the wave equation, Fourier integral transformations and their associated properties, 

and the Gauss divergence theorem (e.g., see Courant and Hilbert, 1989).
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Figure 1.4. Perspective view of a satellite image of the San Andreas Fault (SAF) at Palm- 

dale, CA. The image is overlaid on a 3D topographic model. The image perspective is the 

same of an observer looking toward the South East direction. The SAF zone is marked 

by the linear feature in the center of the image (indicated by the red arrow). The city of 

Palmdale can be seen in the right-hand side of the image. (Courtesy of the NASA Visible 

Earth project, http://visibleearth.nasa.gov) 

I discuss applications for the theory presented in Chapters 2 and 3 in Chapters 4 

through 6. In Chapter 4, I describe the application of deconvolution interferometry to 

the recordings of drill-bit noise. The majority of methods that treat seismic-while-drilling 

(SWD) data require independent measurements (called pilot records) of the drill-bit exci- 
tation to extract the Earth’s impulse response (e.g., Rector and Marion, 1991; Poletto et 

al., 2004; Haldorsen et al., 1994). Deconvolution interferometry can be of particular use for 

processing SWD when pilot records are not available or if they provide a poor representation 

of the drill-bit signal. In Chapter 4 I illustrate, with a numerical example, the how decon- 

volution interferometry can be used to image drill-bit noise passively recorded by subsalt 

borehole receiver arrays. With a heuristic extension of the theory in Chapter 3 to the case 

of elastic wave propagation, I analyze multicomponent field records of drill-bit noise from 

the Pilot borehole of the San Andreas Fault Observatory at Depth (SAFOD) at Parkfield, 
CA (e.g., http://www.icdp-online.de/sites/sanandreas/index/index.html; Chavarria et al., 
2003). In both the numerical and field data examples, I provide comparisons between the 

results of deconvolution- and correlation-based interferometry. 

The geophysical characterization of the San Andreas fault zone is important to the 

understanding of the local dynamics of transcurrent plate boundaries (Turcotte and Schu- 

bert, 2001) and their associated seismicity. In particular, the dynamics of the San Andreas 

fault (SAF) is crucial in characterizing the seismogenic risk of highly populated areas in 

CA that lie near the fault zone. Figure 1.4 shows a satellite image of the SAF by Palm- 

dale, CA, where of the urbanized area lies next to the fault. The SAFOD drill-bit data,
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whose processing I discuss in Chapter 4, is part of a comprehensive set of data on the San 

Andreas fault zone at Parkfield, CA. These data include not just passive (Oye et al., 2004; 

Nadeau et al., 2004) and active (Hole et al., 2001; Catchings et al., 2003; Chavarria et al., 

2003) seismic records, but also surface gravity (Roecker et al., 2004) and resistivity surveys 
(Unsworth et al., 2000; Unsworth and Bedrosian, 2004), and well information in the form 

of logs (Boness and Zoback, 2004, 2006) and rock samples in the form of cores and washed 
cuttings (Solum et al., 2004, 2006). In Chapter 5, I provide an interpretation of the results 

of the deconvolution interferometry of the SAFOD Pilot Hole SWD data (Chapter 4) along 
with the imaging of active-shot seismic data recorded in the SAFOD Main Hole. We com- 

pare the results obtained by the joint interferometric and active-shot imaging with previous 

measurements at Parkfield to arrive at a geological interpretation of the images I obtain. 

In Chapter 6 I propose yet another application of the perturbation-based interferom- 

etry presented in Chapter 2. This application consists in the interferometry of waves that 

are excited by sources at the Earth’s surface that reflect multiple times within the sub- 

surface and are recorded by borehole sensors. Using the theory in Chapter 2, I show that 

the interference of multiple reflections can be used to reconstruct primary reflections that 

propagate between the borehole receivers. These primary waves can be used in algorithms 

designed for standard seismic exploration experiments (e.g., Bleistein et al., 2001; Biondi, 

2006) to image structures that lie above the receiver array. Because the interferometry 

method I describe in Chapter 6 targets the imaging of a chosen portion of the subsurface 

surrounding a borehole receiver array, I refer to it as target-oriented interferometry. This 

target-oriented interferometry methodology relies on a wavefield separation procedure to 

separate unperturbed waves from wavefield perturbations in the recorded data. I describe 

target-oriented interferometry and compare it to other existing interferometry methods in 

Chapter 6. With the same numerical model used in Chapter 4, I generate a synthetic exper- 

iment that demonstrates that target-oriented interferometry can be designed to use internal 

multiples for imaging subsalt features from borehole arrays located below these structures. 

Finally I test these concepts on field data from deep-water Gulf of Mexico, where I demon- 

strate the effects of target-oriented interferometry on the recorded data as well as on the 

final images. 

With Chapters 4 and 6 I address the potential importance of using interferometry in 

imaging off-shore subsalt environments. A large portion of significant significant oilfields in 

Gulf of Mexico, Brazil, West Africa, North Sea and in the Mediterranean are set in salt-rich 

geological environments with high structural complexity. In many cases, surface seismic in 

these environments is compromised by strong spatial variations and complexity in medium 

parameters around the salt bodies. In Chapters 4 and 6 I promote interferometry techniques 

for subsalt borehole seismic data that can overcome, in a localized portion of the subsurface, 

some of the issues encountered by surface seismic in imaging subsalt structures. 

In this thesis, the concept described by Figure 1.2 is the foundation of the interferom- 

etry theories I discuss in Chapters 2 and 3. With the different numerical and field interfer- 

ometric imaging examples in Chapters 3 through 6 I demonstrate how the data remapping 

achieved with interferometry (Figure 1.2) can be used to obtain subsurface images that 

cannot be obtained from the original recorded data with existing processing techniques.
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Chapter 2 

Representation theorems and Green’s function 

retrieval in perturbed acoustic media! 

2.1 Summary 

Representation theorems describe important general properties of wave propagation. 

We provide general representation theorems for perturbed acoustic media in the form of 

convolution- and correlation-type theorems. Our results differ from previous derivations 

because we provide explicit integral relations between wavefields and wavefield perturbations 

which alone do not satisfy the acoustic wave equations. Using Green’s functions to describe 

perturbed and unperturbed waves in two distinct wave states, we provide expressions based 

in our representation theorems that are applicable to remote sensing experiments. When 

medium perturbations are localized and away from the observation points, we show that 

by cross-correlating wavefield perturbations recorded at a given receiver with unperturbed 

waves at another, we generate a pseudo-experiment where only wavefield perturbations 

propagate from one receiver to the other as if one of them were a source. This application 

has been validated by numerical examples and seismic field experimentation. In another 

application, our representation theorems in perturbed media, along with inverse scattering 

methods, can be used to directly estimate medium perturbations from remotely acquired 

data. 

2.2 Introduction 

Representation theorems, also referred to as reciprocity theorems, have long been used 

to describe important properties of wave propagation phenomena. Lord Rayleigh (1878) 

used a local form of an acoustic representation theorem to demonstrate source-receiver reci- 

procity. Time-domain reciprocity” theorems were later generalized to relate two wave states 

with different field, material and source properties in absorbing, heterogeneous media (de 

Hoop, 1988). Fokkema and van den Berg (1993) provide an in-depth analysis of frequency- 

domain acoustic representation theorems, discussing many applications that follow from 

these theorems. 

Fokkema and van den Berg (1993) show that acoustic representation theorems can be 
used for modeling wave propagation, for boundary and domain imaging, and for estimation 

  

'Submitted to Physical Review E. 

2We use the terms representation theorems and reciprocity theorems interchangeably.
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of the medium properties. In the field of exploration seismology, an important application 

of convolution-type representation theorems lies in removing multiple reflections caused by 

the Earth’s free-surface (e.g., Fokkema and van den Berg, 1993; Berkhout and Verschuur, 

1997). These approaches rely on the convolution of single-scattered waves to create multi- 

ples (according to the description given by the convolution-type representation theorems), 

which are then subtracted from the recorded data. Other approaches for the elimination 

of multiples from seismic data rely on the inverse scattering methods (e.g., Weglein et al., 

2003; Malcolm et al., 2007). The inverse-scattering based methodologies are typically used 

separately from the representation theorem approaches (Fokkema and van den Berg, 1993; 

Berkhout and Verschuur, 1997) in predicting multiples. 

In particular, recent forms of reciprocity theorems have been derived for the Green’s 

functions (e.g., Wapenaar et al., 2002; Wapenaar and Fokkema, 2006; Wapenaar et al., 

2006), showing that the cross-correlations of waves recorded by two receivers can be used 

to obtain the waves that propagate between these receivers as if one of them behaves as a 

source. These results coincide with other studies based on cross-correlations of diffuse waves 

in a medium with an irregular boundary (Lobkis and Weaver, 2001), caused by randomly 

distributed uncorrelated sources (Weaver and Lobkis, 2001; Wapenaar et al., 2002; Shapiro 

et al., 2005), or present in the coda of the recorded signals (Snieder, 2004). An early 
analysis by Claerbout (1968) shows that the reflection response in a 1D medium can be 
reconstructed from the autocorrelation of recorded transmission responses. This result was 

later extended for cross-correlations in heterogeneous 3D media by Wapenaar et al. (2004), 
who used one-way representation theorems in their derivations. Green’s function retrieval 

by cross-correlations has found applications in the fields of global (e.g., Shapiro et al., 2005; 

Sabra et al., 2005a) and exploration seismology (e.g., Schuster et al., 2004; Willis et al. 2006; 

Bakulin and Calvert, 2006), ultrasonics (e.g., Fink, 1997; Malcolm et al., 2004; van Wijk, 

2006), helioseismology (e.g., Rickett and Claerbout, 1999), structural engineering (Snieder 
and Safak, 2006; Thompson and Snieder, 2006) and ocean acoustics (Roux et al., 2004; 

Sabra et al., 2005b). 
Although the correlation-based Green’s function retrieval has been proven for spe- 

cial cases by methods other than representation theorems (e.g., Lobkis and Weaver, 2001; 

Weaver and Lobkis, 2004; Bakulin and Calvert, 2006), the derivations based on reciprocity 

theorems have provided for generalizations beyond lossless acoustic wave propagation. The 

extension to elastic wave propagation was shown by Wapenaar (2004) using representa- 

tion theorems. Snieder (2006), derived representation theorems for the diffusion equation, 

showing that the reconstruction of the Green’s functions by wavefield correlations does not 

require time-reversal to hold. More general forms of representation theorems have been 

derived by Wapenaar et al. (2006) and by Snieder et al. (2007) which include a wide range 
of differential equations such as the acoustic, elastodynamic, and electromagnetic wave 

equations, as well as the diffusion, advection and Schrédinger equations, among others. 

In this paper, we derive representation theorems for acoustic perturbed media. Al- 

though previous derivations of representation theorems account for arbitrary medium pa- 

rameters that are different between two wave states (e.g., de Hoop, 1988; Fokkema and van 

den Berg, 1993; Wapenaar et al., 2006), they do not explicitly consider the special case of
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perturbed media. In perturbed media, there are special relations between the unperturbed 

and perturbed wave states (e.g., in terms of the physical excitation) that make the represen- 

tation theorems in such media differ in form with respect to their more general counterparts 

(Fokkema and van den Berg, 1993; Wapenaar et al., 2006). We discuss some of these dif- 

ferences in this manuscript. Another important aspect of studying representation theorems 

in perturbed media lies in retrieving wavefield perturbations from cross-correlations, in a 

manner analogous to that discussed by Wapenaar et al. (2006) and Snieder et al. (2007). 
This is important because from the representation theorems in Wapenaar et al. (2006) and 

Snieder et al. (2007) it is only possible to reconstruct wavefield quantities. As we show in 

this paper, wavefield perturbations by themselves do not satisfy the wave equations and thus 

their retrieval does not follow directly from the general formulation presented by Wapenaar 

et al. (2006) and Snieder et al. (2007). 
We first derive general forms of convolution- and correlation-type representation theo- 

rems by manipulating the perturbed and unperturbed wave equations for two wave states. 

In the Section that follows, we rewrite our representation theorems in terms of the Green’s 

functions for unperturbed and perturbed waves in the two states. Finally, we discuss two ap- 

plications of the Green’s function forms of our representation theorems in perturbed acoustic 

media. In one application, we describe the physical cases in which the cross-correlation of 

wavefield perturbations at an observation point with unperturbed waves at another yields 

wavefield perturbations that propagate between the two observation points as if a source 

were placed in one of them. Another application covers the use of representation theorems 

in perturbed media to estimate medium perturbations. This application involves the com- 

bination of our reciprocity theorems and inverse scattering methods (Weglein et al., 2004; 

Malcolm et al., 2007). 

2.3 Representation theorems in convolution and correlation form 

We start by defining acoustic wave states in a domain V, bounded by OV (Figure 2.1; 

de Hoop, 1988; Fokkema and van den Berg, 1993). The outward pointing vector normal to 

OV is represented by n. We define two wave states, which we denote by the superscripts A 

and B, respectively. Each wave state is defined in an unperturbed medium with compress- 

ibility Ko(r) and density po(r); as well as in a perturbed medium described by the material 
properties «(r) and p(r). The acoustic wavefield equations for state A in an unperturbed 
medium are, in the frequency-domain, 

Vpo (r,w) ~ iwpo(r)vo (r,w) =0 

(2.1) 
V-: vo (r,w) ~ iwko(r) pg (r,w) = q'(r,w) ’ 

where p4(r,w) and v4(r,w) represent pressure and particle velocity, respectively. The 
quantity q4(r,w) describes the source distribution in terms of volume injection rate density.
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Figure 2.1. Illustration of the domain used in the representation theorems. The domain 

consists of a volume V, bounded by OV. The unit vector normal to OV is represented by n. 

The wave states A and B are represented by receivers placed at r4 (white triangle) and rg 

(grey triangle), respectively. The solid arrows denote the stationary paths of unperturbed 

waves Go, propagating between the receivers and an arbitrary point r on OV. 

Similar equations describe waves in state A in a perturbed medium: 

Vp4(r,w) — iwp(r)v4(r,w) =0 

(2.2) 
V-vA(r,w) — iwn(r)p4(r,w) =q4(r,w) , 

with perturbed pressure and particle velocity given by p4(r,w) and v4(r,w), respectively. 
The acoustic field equations that describe wave propagation in state B follow by replacing 

the superscript A by B in equations 2.2 and 2.1. Note that the source distribution q4(r,w) 

is the same for both the unperturbed (equation 2.1) and perturbed (equation 2.2) cases. 
We assume that no external volume forces are present by setting the right-side of the vec- 

tor equations in equations 2.1 and 2.2 equal to zero. The perturbed pressure for either 

wave state is given by p = po + ps, where the subscript S indicates the wavefield pertur- 

bation caused by medium changes. According to equations 2.1 and 2.2, particle velocities 

in unperturbed and perturbed media are given by v = (iwp)~!p and vo = (iwpo) po, 
respectively. Thus, for small perturbations in density (i.e., p9/p ~ 1), v = vo + vg, where 
vs = (iwp)~!pg. The perturbations in compressibility can be arbitrarily large. For brevity, 

in this paper we assume that perturbations only occur in compressibility, thus p = po. De- 

spite this assumption, our derivations are equally valid for small perturbations in density. 

To derive Rayleigh’s reciprocity theorem (Rayleigh, 1878; de Hoop, 1988; Fokkema 

and van den Berg, 1993) we insert the equations of motion and stress-strain relations for
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states A and B (equations 2.1 and 2.2) in 

vo EG + poEy — vo Eo — po Ee; (2.3) 

where E and E represent the equation of motion and the stress-strain relation in equa- 

tion 2.1, respectively. The subscripts in equation 2.3 indicate that equations and field 

parameters (p and v) are considered in the unperturbed case. The superscripts indicate 

whether equations and field parameters pertain to state A or B. For brevity, we omit the 

parameter dependence on r and w. From equation 2.3 we isolate the interaction quantity 

V : (piv® — p& vg) (de Hoop, 1988). Next, we integrate the result of equation 2.3 over the 
domain V and apply Gauss’ divergence theorem. This results in 

¢ [pve — revel] dS = / [poae — vbad] av ; (2.4) 
reEav rev 

which is commonly referred as a reciprocity theorem of the convolution type (Rayleigh, 

1878; de Hoop, 1988; Fokkema and van den Berg, 1993), because the frequency-domain 

products of field parameters represent convolutions in the time domain. A correlation-type 

reciprocity theorem (de Hoop, 1988; Fokkema and van der Berg, 1993) can be derived from 

isolating the interaction quantity V - (pv&* + p?*vd) from 

vo" Ej + po Eo" + vo -Eg* + po" EG (2.5) 

where * denotes complex conjugation. Subsequent volume integration and application of 

the divergence theorem yields 

Re Oe (2.6) 
redov rev 

where complex conjugates represents time-domain cross-correlations of field parameters. 

For this reason, equation 2.6 is a representation theorem of the correlation type (de Hoop, 

1988; Fokkema and van den Berg, 1993). Convolution- and correlation-type representation 

theorems for the perturbed wave states (e.g., equation 2.2) can be expressed simply by 

removing the subscript 9 from equations 2.3 though 2.6. In equation 2.6 we assume that 

Ko and po are real quantities (i.e.; the medium is lossless). In the next Section we review 
the application of such theorems for retrieving the Green’s functions of arbitrary media 

(Wapenaar et al., 2002; Wapenaar and Fokkema, 2006). 
The theorems in equations 2.4 and 2.6 hold when the material properties in states A 

and B are the same. General reciprocity theorems that account for arbitrarily different 

source and material properties between two wave states have been derived by de Hoop 

(1988) and Fokkema and van den Berg (1993). Here, we further develop the representation 
theorems of de Hoop (1988) and Fokkema and van den Berg (1993) for the special case of 

perturbed acoustic media. First, we consider 

ve. BA + ptB8 — v4. EB — PEA, (2.7)
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which involves the equations and field parameters for state B in an unperturbed medium 

(e.g., equation 2.1), along with equations and field parameters for state A in a perturbed 
medium (equation 2.2). From equation 2.7 we isolate the interaction quantity V - (p4v? — 
pe v4), After separating this quantity, we integrate equation 2.7 over V and apply Gauss’ 

theorem. Next, given that p = pp + ps and v = vo + vs, we use the result in equation 2.4, 

which gives 

(vive — rbvé)-as = [ 
recov 

P8490 dV + / iw(Ko — k)p“pBdV ; (2.8) 
re rev 

which is a convolution-type representation theorem for perturbed media. This expression 

is a new form of representation theorem because it relates the wavefields p? and v? with 
the wavefield perturbations pa and va. Previous derivations of representation theorems 

(e.g., de Hoop, 1988; Fokkema and van den Berg, 1993; Wapenaar and Fokkema, 2006). 

Previously derived reciprocity theorems provide, for two arbitrary wave states, relations 

between field parameters that satisfy wave equations (e.g., equations 2.1 and 2.2). Wavefield 

perturbations such as pe and v4, by themselves, do not satisfy the wave equations for 

perturbed media (e.g., equation 2.2). Although equation 2.8 accounts for compressibility 

changes only, it can be modified to include density perturbations. Such modification involves 

adding, to the right-hand side of the equation, a third volume integral whose integrand is 

proportional to (9 — p) and the wavefields v4 and v@ (Fokkema and van den Berg, 1993). 
The correlation-type counterpart of equation 2.8 can be derived from the interaction 

quantity V - (p4v®* + p#*v4), which can be isolated from 

ves EA + pA BB + v4. BG + pBtE4. (2.9) 

After performing the same steps as in the derivation of equation 2.8 we obtain 

$ pave? + pPv4] -ds = / pbaprav — / iuo(ko — k)p4pBtaV , (2.10) 
recov rev rev 

which is a correlation-type representation theorem for perturbed acoustic media. Again, 

we assume that both « and kp are real (i.e., no attenuation takes place). As with its con- 
volution counterpart (equation 2.8), equation 2.10 is novel because it provides a relation 

between the wavefield perturbations in state A and the unperturbed waves in state B. Den- 

sity perturbations can be included in equation 2.10 in a manner analogous to that discussed 

for equation 2.8 (de Hoop, 1988; Fokkema and van den Berg, 1993). By interchanging the 
superscripts in equations 2.7 and 2.9 we derive convolution- and correlation-type represen- 

tation theorems that relate the perturbations pe and vB to pf and vé!. These theorems 

have the same form as the ones in equations 2.8 and 2.10, except A is interchanged with B 

in equation 2.8, and with Bx in equation 2.10. 

Since the source term q4(r,w) is the same both in the unperturbed and perturbed
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cases, it follows from equations 2.1 and 2.2 that 

Vpi(r,w) — iwpo(r)vi(r,w) = Vp4(r,w) — iwp(r)v4(r,w) 
(2.11) 

V - vii (r,w) — iwko(r)pi(r,w) = V-vA(r,w) — iwk(r)p4(r,w) . 

These relations can be used to derive others representation theorems in perturbed media. 

To derive a convolution-type theorem, we first consider the combination 

vG -R4 + pfR? —vi-R® — piRA 
+ (2.12) 

v8. RA + p4R8 —y4.R8 _ pPRA , 

where R and R are the vector and scalar relations in equation 2.11; the superscripts indicate 

whether they pertain to wave state A or B. Equation 2.12 is subject to volume integration 

and to the application of the theorem of Gauss. This equation is then simplified by using 

the identities p = pp + ps and v = vo + vg. In simplifying equation 2.12, we also use the 

convolution-type representation theorem in equation 2.8 as shown, and with interchanged 

A and B superscripts. These steps result in 

¢ [p$vs — pevg] -dS = / iw(x — Ko) [p86 — pops] aV . (2.13) 
redv rev 

Because the the frequency-domain products in integrands translate to convolutions in the 

time domain, this integral theorem is of the convolution type. The convolution-type rep- 

resentation theorem in equation 2.13 relates wavefield perturbations from both wave states 

over the surface OV with wavefield perturbations, unperturbed waves, and the medium per- 

turbation (K — Ko) within the volume V. Equation 2.13 can be extended to include small 
density perturbations by adding a extra volume integral with the integrand proportional to 

(p — po) [vave -- vive] (e.g., Fokkema and van den Berg, 1993). 
A correlation-type theorem of the same form as equation 2.13 can be derived from 

modifying the relations in equation 2.12 to account for the time-reversed wave state Bx 

(e.g., equations 2.3 and 2.5). Again, we integrate the result over V, use Gauss’ divergence 

theorem, and simplify it by representing perturbed wavefields in terms of unperturbed 

waves and wavefield perturbations. Using the theorem in equation 2.10 as is, and with A 

interchanged with Bx, we obtain 

¢ [pévs* + ps*vg] -dS = / iw(K — Ko) [po ps* — p§pp*| dV , (2.14) 
redV rev 

which is the correlation-type counterpart of the theorem in equation 2.13. This theorem can 

be extended to include small density perturbations in a manner analogous to that described 

for equation 2.13. Like the representation theorems in equations 2.8 and 2.10, equations 2.13 

and 2.14 provide relations between wavefield perturbations and wavefields that satisfy the 

acoustic wave equations.
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2.4 Representation theorems for the Green’s functions 

In this Section, we rewrite the representation theorems for perturbed acoustic media 

derived in the previous Section in terms of the Green’s functions. We focus the discussion 

on the role of Green’s functions in the representation theorems in equations 2.10 and 2.14 

because of the applicability of these theorems to remote sensing experiments (treated in 

the next Section). The Green’s function forms of the theorems in equations 2.4 and 2.6 are 
treated by others (e.g., Wapenaar et al., 2002; Wapenaar and Fokkema, 2006; Draganov 

et al., 2006). The convolution theorem in equation 2.4 leads to the well-known acoustic 
source-receiver reciprocity relation (e.g., Rayleigh, 1878; Fokkema and van den Berg, 1993; 

Wapenaar and Fokkema, 2006). From the correlation-type theorem in equation 2.6, Wape- 

naar et al. (2004) and Wapenaar and Fokkema (2006) show that the surface integration 
of the cross-correlated Green’s function results in the causal and acausal Green’s functions 

that propagate between two receivers. We discuss this with in more detail below. 

We introduce the Green’s functions, in the frequency domain, by setting 

q? = 6(r —ra,p) , (2.15) 

where the positions r4,3 denote the wave states A and B, respectively. This choice for q 

allows for expressing the field quantity p in terms of the Green’s functions G, i.e., 

pF (r,w) = G(r, r4,B,w) = Go(r,ra.B,w) + Gs(r,ra.p,w) , (2.16) 

where the subscripts 9 and gs stand, respectively, for unperturbed waves and wavefield 

perturbations. Note that these are the Green’s functions for sources of the volume injection 

rate type. The derivation below can also be reproduced using volume injection sources 

(e.g., Wapenaar and Fokkema, 2006). It follows from equations 2.16 and 2.2 that v4? = 
(wp) 1VG(r,r4,p,w). Substituting the Green’s functions (equation 2.16) for the wavefields 
p and v in equation 2.10 gives 

1 

eav wp 
1 — $= [65(e.r0)VGs(r.r4)] aS 

re 

+ / iw(Kg ~ K)G(r,r,4)GO(r,rB)dV ; = (2.17) 
rev 

Gs(r,ra)é(r —rp)dV = $ (Gs(r,r4)VGi(r,rR)] «dS 
rev 

for brevity we omit the dependence on w. The volume integral on the left-hand side yields 

Gs(rp,ra), which describes causal wavefield perturbations that propagate from rg to rq 

as if the observation point at rg acts as a source. The wavefields VG can be expressed in 

terms G. If the medium at and around OV is smooth, the normal derivatives of G (right- 
hand side of equation 2.17) are approximately given by multiplying each wave constituent 

in the Green’s function by tiwc~!(r)|cos a(r)| (Wapenaar and Fokkema, 2006); with c(r) = 

[«(r)p(r)]72 the local acoustic wavespeed at OV and a(r) the local angle between a given
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ray-geometrical arrival and n (Figure 2.1). The minus and plus signs indicate inward and 

outward propagating waves, respectively. When the medium outside V is heterogeneous, 

and depending on the shape of OV, the correlation products between in- and out-going 

waves from the two wave states contribute to the surface integral on the right-hand side of 

equation 2.17 (Draganov et al. 2003, 2006; Wapenaar and Fokkema, 2006). 
With the purpose of deriving relations that allow the experimental extraction of 

Gs(rp,r,) from sources over OV, we assume that the medium at and outside OV is homoge- 

neous with wavespeed c and mass density p. In this case we can write, in equation 2.17, VG 

in terms of G by multiplying each wave constituent by iwc™!(r)|cos a(r)|. Next, assuming 
far-field propagation and that VG is parallel to n (i.e., that the surface is locally smooth 

and perpendicular to incoming waves) at OV we set (VG) -n = iwc”!G. We rely on these 

assumptions in all subsequent equations. Thus, we can simplify equation 2.17 to 

2 
Gs(rp,ra) i Gs(r,r4)Go(r,rp)dS 

pc Jreayv 

+ lw / (ko — x)G(r,ra)Gh(r,rB)dV . (2.18) 
rev 

This equation shows that the causal wavefield perturbation Gs(rg,r,) is obtained from the 

surface integral of the cross-correlation of wavefield perturbations at r4 with unperturbed 

waves at rg. Along with this surface integral, a volume integral is necessary to recover 

Gs(rp,ra). Using the Green’s function form of the representation theorem in equation 2.10 
with interchanged superscripts A by Bx, we obtain G$(rg,ra): 

oe 2 %* 
Gs(rB,ta) = — Go(r,ra)Gs(r,rB)dS 

Pe Jrcdv 

— Ww (Ko — K)Go(r,r4)G*(r,rp)dV . (2.19) 
rev 

The relations in equations 2.18 and 2.19 are similar in form to expressions for the retrieval of 

the impulse response from diffuse-wave correlation (e.g., Lobkis and Weaver, 2001; Malcolm 

et al., 2004; Larose et al., 2006) and from correlations of deterministic wavefields (e.g., 

Wapenaar, 2004; Snieder, 2004; Wapenaar and Fokkema, 2006). In these studies, the cross- 

correlation of recorded waves leads to a superposition of causal and acausal wavefields G or 

Go. This points to two important differences between equations 2.18 and 2.19 and previous 

expressions for Green’s function retrieval. The first difference is that here we obtain the 

wavefield perturbations Gg, which by themselves do not satisfy the acoustic wave equations 

(e.g., equation 2.2), from cross-correlating Gg with Go. Second, the proper manipulation of 

unperturbed waves Go and perturbations G's in the integrands of equations 2.18 and 2.19 

allow for the separate retrieval of causal and acausal Gs(rg,r,) in the frequency-domain. 

The retrieval of Go(rg,r,) from cross-correlation of the recorded Go(r,r4,p) or G(rg,ra) 

with G(r,r,,B) only requires a surface integration (e.g., Wapenaar, 2004; Wapenaar and 

Fokkema, 2006). Apart from surface integration, the retrieval of Gs(rg,r,4) from equa- 

tions 2.18 or 2.19 also requires a volume integration. The evaluation of the volume integral
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Figure 2.2. A schematic interpretation of the function of the volume integral in retrieving 

Gs(rp,ra) (equation 2.18). Medium perturbations are restricted to the volume P. The 
solid arrow indicates the stationary paths unperturbed waves in Go(r,rg), while the dotted 

arrow denotes perturbed waves in Gs(rg,r,). The path defined by the two arrows combined 

is also a stationary path to waves in Ggs(r,r,4). Note that the medium gets perturbed along 

a portion of the path of Go(r,rg). Here, the position r is a stationary source position that 

contributes to the direct wave that travels from rg to ra. 

requires, apart from knowledge of the wavefields G and Gp within V, the values of the 

medium perturbations («9 — «). Having only sources over OV, and with no knowledge about 

the model perturbations, the reconstruction of Gs(rp,r,4) from equations 2.18 and 2.19 is 
incomplete. As we discuss in the next Section, there are cases in which the volume integrals 

in equations 2.18 and 2.19 can be neglected. Here, we provide insight into the physical 

meaning of the volume integrals in these equations. 

The volume integrals in equation 2.18 account for medium perturbations that lie in 

the path of unperturbed waves Go(r,rg). To illustrate this concept, we use the example 

in Figure 2.2. In this example, we assume that the medium perturbations are confined to 

a defined subvolume P. This causes the integrand of the volume integral in equation 2.18 

(as well as in equation 2.19) to be nonzero only for r € P. In Figure 2.2, the indicated 
source position r is a stationary source position that gives the dominant contribution to 

direct waves propagating from rg to r4 (Snieder et al., 2006; Chapter 3). The solid arrow 
in the Figure represents the stationary path of Go(r,rg), while the dotted arrow denotes 

the stationary path of G,(rg,r,). The stationary path of G(r,r,), for the desired arrival 
(dotted arrow inFigure 2.2), is given by the combination of the two paths shown in Fig- 

ure 2.2. Along the path shown in Figure 2.2 (dotted arrow), Gg(rg,ra) is only influenced 
by perturbations that lie between rg and r4. The same perturbations influence the waves in 

G,(r,ra) (present in the integrands in equation 2.18), but these waves are also perturbed 
by medium changes in the path from r to rg. In this case, the portion of the station-
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ary path of Gg(r,r,) that is influenced by perturbations between r to rg coincides with 

the stationary path of Go(r,rg) (solid arrow) in Figure 2.2. Thus, the volume integral in 
equation 2.18 acts as secondary sources within P that are proportional to the perturbation 

(Kg — &), placed along a perturbation path defined by G(r,r4)G(r,rg). These secondary 
sources cancel the contribution of medium perturbations along the solid arrow (the path of 

Go(r,rg)) in Figure 2.2 that are encoded in Gg(r,r,) (e.g., within the surface integral in 
equation 2.18). This cancelation ensures that the wavefield perturbations in the recovered 

Gg(rp,ra) correspond to the medium perturbations sensed only by waves that propagate 

from rpg tor,. 

Although we use the example of Figure 2.2 to discuss the volume integral in equa- 

tion 2.18, the integral accounts for perturbations in the paths of all waves in Go(r, rp) 

(apart from the arrows in Figure 2.2) and for arbitrary source positions r (not just for 

stationary source positions). In other words, even though the argument above, for simplic- 

ity, relies on geometrical concepts (e.g., stationary-phase) the interpretation of the volume 

integral holds for finite-bandwidth signals and for media of arbitrary scattering strength. 

This follows from the fact that there are no high-frequency or weak perturbations assump- 

tions behind equation 2.18. Furthermore, this interpretation is not restricted to medium 

configurations as in Figure 2.2; the medium perturbations can be arbitrarily distributed 

within V. Although we focus in the interpretation above on the volume integral in equa- 

tion 2.18, a similar interpretation holds for the volume integral in equation 2.19. In equa- 

tion 2.19, the volume integral compensates the effects of medium perturbations in the path 

of all unperturbed waves in Go(r,r,4). When medium perturbations also occur in densities 
(p # po; equations 2.1 and 2.2), the corresponding volume integrals (see discussion in pre- 

vious Section) play the same role as the volume integrals that account for perturbations in 

compressibility (equations 2.18 and 2.19). 
Equations 2.18 and 2.19 provide representation relations obtained from impulsive phys- 

ical sources (e.g., equation 2.15). The results in this paper can be extended to transient 

excitations (Snieder et al. 2006; Wapenaar and Fokkema, 2006) of the type W(r,w), such 

that the recorded data is, for example, given by p4(r,w) = W(r,w)G(r,r4,w) (and likewise 
for rg). In that case the results in equations 2.18 and 2.19 are multiplied by (|W(r,w)|”), 
an arbitrarily chosen average of the power spectrum of the excitation (Snieder et al. 2006; 

Wapenaar and Fokkema, 2006). The results of equations 2.18 and 2.19 can also be extended 

to accommodate mutually active uncorrelated noise sources (e.g., Weaver and Lobkis, 2001; 

Derode et al., 2003; Shapiro et al., 2005; Snieder et al., 2006) by following the same steps 

described by Wapenaar and Fokkema (2006). 
Finally, we turn our attention to the representation theorem in equation 2.14. Using 

the Green’s functions as defined in equation 2.16, along with the same assumptions used to
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derive equations 2.18 and 2.19, we express equation 2.14 as 

2 
— Gs(r,ra)Gs(r,rp)dS = iw (k — ko) Go(r, r4)GS(r,rp)dV 
pe Jreav rev 

_ iw [ (« — ko) Gs(r,ra)Gi(r,rp)aV . 
rev 

(2.20) 

This equation relates the surface integral of cross-correlated wavefield perturbations to a 

volume integral whose integrand is proportional to the medium perturbation and cross- 

correlations between unperturbed waves and wavefield perturbations. Note that equa- 

tion 2.20 does not depend on the source term q (equation 2.15); the same holds for the 
representation theorem in equation 2.14. Although not immediately applicable for the re- 

construction of the Green’s function as equations 2.18 or 2.19, equation 2.20 is suitable for 

other purposes in remote sensing experiments. These purposes are discussed in the next 

Section. 

2.5 Applications to remote sensing experiments 

As we discuss in the previous Section, equations 2.18 and 2.19 retrieve Gg(rg,r,): the 

wavefield perturbations that propagate between rg and ra, as if the observation point at rp 

acts as a source. This result is of particular interest for remote sensing experiments where 

physical sources exist only on the surface OV (Figure 2.3), or when the excitation is caused 

by uncorrelated noise sources of unknown locations randomly distributed within V. In such 

cases, equations 2.18 and 2.19 can be used to retrieve the wavefield perturbation between 

receivers within the volume V, which in turn can be used to image the perturbed medium. 

We refer to the retrieval of impulse response between receivers by the term interferometry, 

borrowing the terminology from the field of exploration geophysics, where it is referred to 

as seismic interferometry (Schuster, 2001). We use the term interferometric imaging when 

referring to the imaging? of the impulse response reconstructed by interferometry. 

The main issue in using equations 2.18 and 2.19 for interferometry is that the medium 

perturbations (ko — «) (as well as field quantities) must be known for the volume integral 
in the equations to be evaluated. This is a problem for interferometry because it typically 
relies only on the observation, at the points r4 and rg, of waves excited by sources on OV 

(e.g., Weaver and Lobkis, 2001; Wapenaar et al. 2004; Wapenaar and Fokkema, 2006). 
This problem can be overcome by assuming that medium perturbations are restricted to a 

perturbation volume P that does not include the observation points r4 and rg (Figure 2.3). 
In this case, there is a subset of sources r (Figure 2.3) on a portion OV, of OV for which 
the stationary paths of unperturbed waves in Go(r,rg) are not affected by the medium 

perturbations within P (e.g., solid arrow in Figure 2.3). For these sources, the stationary 

  

°By imaging we refer to imaging based on linear mapping procedures as described by Biondi (2006), as 

well as inverse imaging methods (e.g., Tarantola, 1987; Bleistein et al., 2001; Weglein et al., 2003).
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Figure 2.3. Application of the representation theorem in equation 2.18 in interferometric 

imaging experiments. As in Figure 2.2, solid and dotted arrows represent stationary paths 

of unperturbed and perturbed waves, respectively. The medium perturbation is restricted 

to the volume V. Both receivers, at r4 (white triangle) and rg (grey triangle), are outside 
the perturbation volume V. The stationary paths indicated by the arrows contribute to the 

reconstruction of waves scattered by the perturbations within P. 

wave paths in Gs(r,r,) that are affected by the medium perturbations are the same as those 

in Gs(rg,ra). Because of this, the contribution of the volume integral in equation 2.18 for 

r € OFV; is negligible, hence, 

2 Gs(rp,ra) © — / Gs(r,ra)Gi(r,rR)dS , (2.21) 
pe redvVvi 

Equation 2.21 only recovers a portion of the waves in G's(rp,r,) (dotted arrow in Figure 2.3) 

that arise from stationary source regions on the surface segment OV; (e.g., in the vicinity 

the source position r in Figure 2.3; Snieder et al. 2006;Chapter 3). The volume integral 

in equation 2.18 cannot be neglected in the cases when (i) rg is inside P (e.g., Figure 2.2), 
(ii) when the medium is perturbed over the entire support of V or (iii) when we consider 
sources for which wave paths in Go(r,rg) are affected by perturbations in P. 

According to equation 2.21, by cross-correlating unperturbed waves measured at rg 

with wavefield perturbations at r4 and integrating over sources at OV, we obtain wavefield 

perturbations that propagate from rg to ry, as if a source were placed at rg. This makes 

equation 2.21 suitable for interferometry. Chapter 3 use stationary-phase analysis to validate 

of equation 2.21 for the special case of a homogeneous medium with a single reflector. 

In equation 2.21, the truncation of the surface integral from equation 2.18 can lead to a 

nonzero error in the retrieval of Gs(rg,r,4). If the medium and/or its perturbations are 

heterogeneous, this error may manifest in the form of amplitude distortions (e.g., caused 

by apparent absorption) or by the introduction of spurious arrivals (Snieder et al., 2006;
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Wapenaar, 2006;Chapter 3). The volume integral in equation 2.19 can be neglected by 

considering sources r € OV2, for which the wave paths in Go(r,r,) are not affected by 

medium perturbations in P. This reasoning is analogous to that we used to approximate 

equation 2.21 from equation 2.18. 

Equation 2.20 can also be applied to remote sensing experiments. The application, 

however, is not the same as that of equations 2.18 and 2.19. Instead of recovering the 

wavefield perturbations Gs(rg,r,), equation 2.20 can be used to estimate the medium 

perturbations (Ko — «) inside V (right-hand side of the equation) from wavefield pertur- 
bations measured at r4 and rg for r € OV. To do this, we assume that we know, apart 

from Gs(r,r,) from r € OV, the unperturbed medium parameters ko as well as the un- 

perturbed waves observed at r4 and rg excited by r € OV. This means that the left-hand 

side of equation 2.20 is a known quantity. Furthermore, since Ko and Go for r € OV are 

known, it is possible to model the unperturbed waves inside V. Within the integrand in the 

right-hand side of equation 2.20, the wavefield perturbations G's can be expressed in terms 

of the corresponding unperturbed wavefields Go and of (Ko — «) by means of a scattering 

series (e.g., Lippmann, 1956; Rodberg, 1967; de Hoop, 1996). When using a scattering 

series formulation, the only unknown quantities in equation 2.20 are the medium perturba- 

tions (ko — «). These perturbations can be estimated by solving the integral expression in 

equation 2.20. Inverse scattering methods, with the examples of the Lippmann-Schwinger 

based approach of Weglein et al. (2003) or the hybrid Bremmer-Lippmann method of Mal- 
colm et al. (2007), can in principle be used to invert equation 2.20 for the perturbations 

(ko —&). The numerical implementation of such inverse scattering methods is involved and 
yields approximate results (Malcolm et al., 2007). Although we do not provide a detailed 

treatment of the Green’s function forms of the convolution-type theorems from the previous 

Section (equations 2.8 or 2.13), these can be employed for the estimation of the medium 
perturbations in an analogous manner as we describe here for equation 2.14. 

2.6 Discussion and conclusion 

By manipulating the acoustic wave equations for unperturbed and perturbed media 

we derive convolution- and correlation-type representation theorems for perturbed acoustic 

media. These theorems differ from previous forms of reciprocity theorems (e.g., de Hoop, 

1988; Fokkema and van den Berg, 1993) because they provide explicit relations between the 

wavefields and wavefield perturbations. Unlike wavefield parameters (e.g., de Hoop, 1988; 

Fokkema and van den Berg, 1993), the wavefield perturbations by themselves do not satisfy 

the perturbed wave equations. We extend our reciprocity theorems for perturbed media to 

the special case of the Green’s functions. 

With the Green’s function form of the correlation-type representation theorems, we 

show that by cross-correlating wavefield perturbations measured at one receiver with un- 

perturbed waves recorded by another we obtain the wavefield perturbations that propagate 

between the receivers as if one of the receivers were a source. This concept relates to 

previous work in the field of Green’s function retrieval from diffuse-wave correlation (e.g., 

Weaver and Lobkis, 2001; Malcolm et al., 2004; Larose et al., 2006) and from correlation of
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deterministic wavefields (Wapenaar, 2004; Snieder, 2004; Wapenaar and Fokkema, 2006). 

These studies show that cross-correlations can be used to recover a superposition of the 

causal and acausal parts of the wavefields G or Go (i-e., unperturbed or perturbed). Our 

expressions recover the wavefield perturbations Gg, which do not satisfy the wave equations 

for G, separately from its acausal counterpart G%. For systems that are invariant under 

time reversal, Green’s function retrieval by wavefield cross-correlations require only a sur- 

face integration (Larose et al., 2006; Wapenaar and Fokkema, 2006; Snieder et al., 2007), 

whereas the retrieval of the perturbations Gg from correlations of wavefield perturbations 

with unperturbed wavefields requires an additional volume integral. We show that this vol- 

ume integral accounts for medium perturbations that lie in the path of unperturbed waves 

that propagate from sources at the surface OV to the receiver that acts as a pseudo-source. 

The extraction of wavefield perturbations Gs that propagate between receivers as 

if one of them acts as a source is a useful tool for remote sensing experiments. When 

medium perturbations are localized within a volume P that does not contain the observation 

points, the wavefield perturbations propagating between receivers can be obtained from only 

the surface integral of cross-correlated perturbations and unperturbed wavefields (i.e., the 

volume integral can be neglected). In this case, the correlation-type theorems we propose 

can be applied to interferometry (the term is borrowed from Schuster, 2001). We have 

proposed direct applications of the interferometric retrieval of wavefield perturbations as 

proposed in this paper (e.g., Chapter 3; Chapter 6). In Chapter 6, the retrieval of wavefield 

perturbations according to the formulation in this paper is used to image salt structures in 

the Earth’s subsurface from the interference of multiply scattered waves measured inside a 

deep borehole in off-shore Gulf of Mexico. Chapter 3 use the concepts developed here to 

interpret the physical meaning of their deconvolution-based interferometry approach. Their 

deconvolution interferometry method (based partly on equations 2.18 and 2.21) has been 

validated with numerical experiments Chapters 3 and 4. Using field measurements of the 

noise generated by a well being drilled, in Chapters 4 and 5 we also apply the concepts 

presented in this paper. 

As suggested in Chapter 6, the interferometric retrieval of wavefield perturbations we 

describe here can be used for targeting the imaging of particular portions of the medium. 

They refer to this as target-oriented interferometry (Chapter 6). Such an application has 

also been implicitly proposed by Bakulin and Calvert (2006) and by Mehta et al. (2007), in 
the so-called Virtual Source method. With this method (Bakulin and Calvert, 2006; Mehta 

et al., 2007a), transmission and reflection responses can be regarded as unperturbed waves 

and wavefield perturbations, respectively. This points out to the relationship between the 

results we present here and those of Wapenaar et al. (2004), that show that the reflection 
response between receivers can be obtained from cross-correlations between reflection and 

transmission responses measured by these receivers. Although most of the examples cited 

come from the field of geophysics, our results are immediately applicable to other fields 

in acoustics such as physical oceanography, laboratory and medical ultrasonics, and non- 

destructive testing. 

Another important potential use for the exact form of the correlation-type reciprocity 

theorems that retrieve the wavefield perturbations that propagate between two receivers lies
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in the calculation of the so-called Fréchet derivatives (Tarantola, 1987; Hettlich, 1998; Sava 

and Biondi, 2004). The Fréchet derivatives consist in the partial derivatives of the wavefield 
perturbations with respect to the medium perturbations, which can be directly derived 

from the theorems we provide here. These derivatives are important for the computation of 

sensitivity kernels used in full-waveform inversion (e.g., Tarantola, 1987), in inverse imaging 

(Hettlich, 1998) or in linearized forms of wave-equation based tomography (Sava and Biondi, 

2004). 

From correlation- and convolution-type representation theorems in perturbed media, 

we suggest the application of estimating the medium perturbations by combining theorems 

presented here with inverse scattering theory (Weglein et al., 2003; Malcolm et al., 2007). 

This type of approach can be potentially used for inverse imaging of the wavefield perturba- 

tions (e.g., Tarantola, 1987; Weglein et al., 2003), as well as for the targeting the extraction 

of a particular desired subset of the wavefield perturbations (Malcolm et al., 2007). In this 
context, the use of our expressions can be simplified through linearizing the wavefield per- 

turbations on the medium changes. This would yield, for example, a Born approximation 

(e.g., Snieder, 1990; Bleistein et al., 2001; Weglein et al., 2003) of the theorems presented 

here, 

Apart from imaging applications, we expect that our results (both in terms of re- 

trieving wavefield perturbations and for estimating medium perturbations) can be used for 

monitoring temporal changes in the medium. In geoscience, this could be applied to re- 

motely monitoring the depletion of aquifer or hydrocarbon reservoirs; or monitoring the 

injection of COg for carbon sequestration. In material sciences, our results can be used to 

monitor material integrity with respect, for example, to temporal changes in temperature. 

The detection of earthquake damage is a potential application in the field of structural engi- 

neering. Within medical imaging applications, our expressions can be tailored, for instance, 

to observe tumor evolution from ultrasonic measurements. 

The theory we present here assumes lossless media. In light of the work of Snieder 

(2007), who shows that Green’s function retrieval can be accomplished in attenuative acous- 
tic media, we believe that our discussions regarding the retrieval of wavefield perturbations 

can be extended to absorbing media by following steps analogous to those in Snieder (2007). 
Furthermore, since Green’s function retrieval by cross-correlations has been shown to hold 

for a wide class of differential equations (Wapenaar et al., 2006; Snieder, 2006; Snieder et al., 

2007), the representation theorems for perturbed media presented here can be potentially 

extended to describe other physical phenomena, such as perturbations in electromagnetic 

wave propagation, diffusion, advection and quantum scattering. 
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Chapter 3 

Interferometry by deconvolution — Theory and 

Numerical Examples! 

3.1 Summary 

Interferometry allows us to synthesize data recorded at any two receivers into waves 

that propagate between these receivers as if one of them behaves as a source. This is typi- 

cally accomplished by cross-correlations. Based on perturbation theory and representation 

theorems, we show that interferometry can also be done by deconvolutions for arbitrary 

media and multidimensional experiments. This is important for interferometry applications 

where the excitation is described by a complicated function. First, we derive a series expan- 

sion that proves that interferometry can be accomplished by deconvolution before source 

integration. This method, unlike using cross-correlations, yields only causal scattered waves 

that propagate between the receivers. We provide an analysis in terms of singly and mul- 

tiply scattered waves. Because deconvolution interferometry shapes the zero-offset trace 

in the interferometric shot gather into a band limited spike centered at time equal zero, 

spurious arrivals are generated by the method. Here, we explain the physics behind these 

spurious arrivals and demonstrate the they usually do not map onto coherent structures in 

the image domain. We also derive an interferometry method that does deconvolution after 

source integration that is associated with existing interferometry techniques. Deconvolu- 

tion after source integration yields both causal and acausal scattering responses, and it also 

introduces spurious events. Finally, we illustrate the main concepts of deconvolution inter- 

ferometry and its differences with the correlation-based approach through stationary-phase 

analysis and with numerical examples. 

3.2 Introduction 

The main objective of seismic interferometry is to obtain the impulse response be- 

tween receivers, without any knowledge about model parameters (Lobkis and Weaver, 

2001; Weaver and Lobkis, 2004a; Wapenaar et al., 2004a). Typically, interferometry is 

implemented using by cross-correlations of recorded data (Curtis et al., 2006; Larose et 

al., 2006). Many of the formal proofs and arguments surrounding interferometry are based 

on cross-correlations. Proofs based on correlation-type representation theorems state the 

  

'Submitted to Physical Review E.
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validity of interferometry for acoustic waves (Lobkis and Weaver, 2001; Weaver and Lobkis, 

2004b), for elastic media (Wapenaar et al, 2004a and b, Draganov et al., 2006), and also for 

attenuative (Snieder, 2007) and perturbed media (Chapter 2). Other proofs of interferome- 
try based on time-reversal were offered by Fink (2006), and by Bakulin and Calvert (2006) 
in their Virtual-Source methodology. Schuster et al. (2004) and Yu and Schuster (2006) 
use correlation-based interferometry imbedded within an asymptotic migration scheme to 

do interferometric imaging. Similarly, Snieder (2004) Sabra et al. (2004) and Snieder et al. 
(2006a) rely on the stationary-phase method to explain results from interferometry. 

The field of interferometry expands beyond exploration seismology. There are exam- 

ples of interferometry applications in many other fields such as ultrasonics (Malcolm et al., 

2004; van Wijk, 2006), helioseismology (Rickett and Claerbout, 1999), global seismology 
(Shapiro et al., 2005; Sabra et al., 2005). Curtis et al. (2006) and Larose et al. (2006) 
give comprehensive interdisciplinary reviews of interferometry. As the understanding of 

interferometry progresses, finding more applications to the method is inevitable. For exam- 

ple, reservoir engineering may soon benefit from interferometry, as Snieder (2006) recently 

found that the principles of interferometry also hold for the diffusion equation. In an even 

more general framework, interferometry can be applied to a wide class of partial differential 

equations, with the examples of the Schrédinger or the advection equation (Wapenaar et 

al., 2006; Snieder et al., 2007). These findings might bring possibilities for interferometry 

within quantum mechanics, meteorology or mechanical engineering, for instance. 

Our goal in this paper is to gain insight into interferometry from yet another point of 

view. Although interferometry is typically done by correlations, it is almost natural to won- 

der if it could be accomplished by deconvolutions. This issue was in fact raised by Curtis et 

al. (2006) as one of the standing questions within interferometry. We claim that interferom- 

etry can indeed be accomplished by deconvolutions for arbitrary, multidimensional media. 

In fact, there are already successful examples of deconvolution interferometry. Trampert et 

al. (1993) used deconvolution to extract the SH-wave propagator matrix and to estimate 

attenuation. Snieder and Safak (2006) recovered the elastic response of a building using 

deconvolutions, and were able to explain their results using 1D normal-mode theory. Mehta 

and Snieder (2006) obtained the near-surface propagator matrix using deconvolutions from 

the recording of a teleseismic event in a borehole seismometer array. 

In his early paper that spawned much of today’s work on interferometry, Claerbout 

(1968) originally suggested the use of deconvolution to retrieve the Earth’s 1D reflectivity 

response. He then turned to correlation because it tends to be a more stable operation. 

Loewenthal and Robinson (2000) showed that the deconvolution of dual wavefields can be 
used to change the boundary conditions of the original experiment to generate only up-going 

scattered waves at the receiver locations and to recover reflectivity. In a series of papers 

on free-surface multiple suppression, Amundsen and co-workers use inverse deconvolution- 

like operators designed to remove the free-surface boundary condition (e.g., Amundsen, 

2001; Holvik and Amundsen, 2005). The topics of multiple suppression and interferometry 

are intrinsically related, precisely due to the manipulation of boundary conditions. This 

is explicitly pointed out by Berkhout and Verschuur (2006), by Mehta et al. (2006) and 
by Snieder et al. (2006b). Consequently, previous work on deconvolution-based multiple
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suppression is also related to the practice of interferometry. Since we seek to shed light on 

the physics behind deconvolution interferometry, we hope to bring yet another piece to the 

puzzle that connects interferometry and other geophysical applications. These applications 

may be the manipulation of boundary conditions for multiple suppression, passive and active 

imaging, time-lapse monitoring and others. 

Using a combination of perturbation theory and representation theorems (as in Chap- 

ter 2), we first review interferometry by correlations. In our discussion on correlation-based 

interferometry, we restrict ourselves to key aspects which help understanding the mean- 

ing of deconvolution interferometry. In the Section that follows, we go through a deriva- 

tion in which we represent deconvolution interferometry by a series similar in form to the 

Lippmann-Schwinger scattering series (Rodberg et al., 1967; Weglein et al., 2003). We first 

analyze the meaning of series terms of leading-order in the scattered wavefield, to then 

discuss the role of the higher-order terms of the deconvolution interferometry series. Next, 

we also demonstrate that interferometry can be accomplished by deconvolution after inte- 

gration over sources, and compare the outcome of this method with deconvolution before 

source integration and with cross-correlation interferometry. Finally, using a single-layer 

model we illustrate the main concepts of deconvolution interferometry, while comparing it 

to its correlation-based counterpart. This is done by a stationary-phase analysis of the most 

prominent terms in deconvolution interferometry, and with a synthetic data example. 

Although it is not our intention here to discuss a specific use for interferometry by 

deconvolution, we point out the this method will be of most use for interferometry applica- 

tions that require the suppression of the source function. The paper Chapter 4 is dedicated 

to a specific application of deconvolution interferometry, providing both numerical and field 

data examples in drill-bit seismic imaging. In particular, an important component of the 

broad-side imaging of the San Andreas fault at Parkfield presented Chapter 5 would not 

have been possible without deconvolution interferometry (Chapter 4). Apart from drill-bit 

seismics, a complicated source signal may be generated by the Earth itself. In the exam- 

ples by Trampert et al. (1993), Snieder and Safak (2006) and Mehta and Snieder (2006), 
deconvolution is necessary to suppress the incoming Earth signal, which contains arrivals of 

different modes, multiply scattered waves, etc. In the method by Loewenthal and Robinson 

(2000) the purpose of deconvolution is to collapse all down-going waves into a spike at zero 

time, leaving only the up-going Earth response. These are but examples of applications 

where deconvolution interferometry plays an important role. 

3.3 Theory of interferometry 

In this section we describe the theory of deconvolution interferometry through a per- 

turbation theory approach. We begin by reviewing interferometry by cross-correlation in 

perturbed media. Next, we cover the derivation of deconvolution interferometry before 

summation over sources. Since such a derivation is done by a series expansion, we interpret 

the physical significance of the most prominent terms of the deconvolution interferometry 

series. On the following subsection, we discuss yet another option for interferometry where 

deconvolution is done after the summation over sources. Finally, we illustrate the physical
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significance of the the most prominent terms of the deconvolution interferometry series by 

providing an asymptotic analysis of these terms for a simplified toy model. 

3.3.1 Review of interferometry by cross-correlations 

Let the frequency-domain wavefield u(r4,s,w) recorded at r4 be the superposition of 

the unperturbed and scattered Green’s functions Go(r4,s,w) and Gs(ra,s,w), respectively, 

convolved with a source function W(s,w) associated with an excitation at s, hence 

u(ra4,s,w) = W(s,w) [Go(ra,s,w) + Gs(ra,s,w)] . (3.1) 

Although here and throughout the text we call Gg the scattered wavefield, formally Gs 

represents a wavefield perturbation. In our derivations, we rely on perturbation theory 

(Weglein et al., 2003; Chapter 2), such that the quantities Go and wu (or its impulsive 

version, G), respectively, represent background and perturbed wavefields that satisfy the 

equation for acoustic (Chapter 2), elastic (Wapenaar et al., 2004a) and possibly attenuative 
waves (Snieder, 2007a), and may contain higher-order scattering and inhomogeneous waves. 

Both the background medium and the medium perturbation can be arbitrarily heterogenous 

and anisotropic. Also, W(s,w) may be a complicated function of frequency, and may vary 

as a function of s. 

The cross-correlation of the wavefields measured at r4 and rg (equation 6.1) thus gives 

Cap = |W(s)|? G(ra,s)G*(rp,s); (3.2) 

where * denotes complex-conjugation. From equation 4.2, it follows that the cross-correlation 

Cap depends on the power spectrum of W(s). Note that we choose to omit the frequency 

dependence of equation 4.2 for the sake of brevity; we do the same with all of the other 

equations in this paper. Following the principle of interferometry (Lobkis and Weaver, 2001; 

Wapenaar et al, 2006), we integrate the cross-correlations in equation 4.2 over a surface © 

that includes all sources s, giving 

§ Cap ds = (|W(s)|?) [G(ra,rp) + G*(ra,ra) 5 (3.3) 

where (|W(s)|”) is the source average of the power spectra (Snieder et al., 2007), and 
G(r,,rg) and G*(r4,rg) are the causal and acausal Green’s functions for an excitation at 
rp and receiver at rag. Note that for equation 6.2 to hold G corresponds to the pressure 

response in acoustic media (e.g., Wapenaar and Fokkema, 2006). If G is the particle velocity 

response, the plus sign on the right-hand side of equation 6.2 is replaced by a minus sign (e.g., 

Wapenaar and Fokkema, 2006). Equation 6.2 has been derived by many other authors (e.g., 

Wapenaar et al., 2004b; Draganov et al., 2006) and it is not our intention here to restate 

it. Instead, we highlight the importance of the (|W(s)|*) term in equation 6.2. 
The source average (|W(s)|”) may be a complicated function of frequency (or time), 

hence
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recovering the response between the receivers at r4 and rg through equation 6.2 can be 

difficult. In the interferometry literature, most authors suggest deconvolving the power 

spectrum average (|W(s)|”) after the integration in equation 6.2 (Wapenaar et al., 2004a; 
Snieder et al., 2006; Fink, 2006). This assumes that an independent estimate of the source 

function is available. Indeed, in some applications such an estimate can be obtained (Mehta 

et al., 2007). There are many cases in which independent estimates of the source function are 

not a viable option. The second part of this paper (Chapter 4) deals with a specific drill-bit 

seismic examples for which independent estimates of the source function are not available, 

and the correlation-based interferometry (equation 6.2) does not provide acceptable results. 
In the next two Sections we provide alternative interferometry methodologies that recover 

the impulse response between the receivers without the requirement of having independent 

estimates of the power spectrum of the source function. 

In this paper we focus on understanding the physical meaning of interferometry by 

deconvolution, and its differences with its correlation-based counterpart. To do so it is nec- 

essary to review some of the physics behind cross-correlation interferometry in perturbed 

media. Thus, for the moment, it is convenient to assume a source function that is inde- 

pendent of the source position s (W(s) = W) in equations 6.1, 4.2 and 6.2. Combining 
equations 6.1 and 4.2, we can expand C',4g into four terms: 

u(r4,s)u*(rp,s) 

uo(Pa, s)uo(reB, s) + us(rA, s)uo(rB, s) + 

Cha Cin (3.4) 
+ uo(ra; s)us(rB, s) + us(ra, s)usg(rp, s), 

3 4 
CA B CA B 

CaB 

  

  

where ug = WG) and us = WGszg (see equation 6.1). The four terms, namely ch p through 

C4 p, can be inserted into equation 6.2, giving 

f (Che + Chg + Cig + Cigl]ds = |W|?[Go(ra,re) + Gs(ra,re) + 

+Go(ra,rB) + G3(ra,re). (3.5) 

Each of the four integrals on the left-hand side of equation 3.5 has a different physical 

meaning. With the use of representation theorems, in Chapter 2 we analyze how each 

integral in equation 3.5 relates to the terms in the right-hand side of the equation. Note 

that for imaging purposes, we want to use only the ug terms in equation 3.5. The first 

integral relates to the unperturbed terms in the right-hand side of equation 3.5 to give, 

f wolearsub(ee,s) ds = |W|? [Go(ra,re) + Gi(ra,re)) - (3.6) 

The relationship in equation 3.6 is not surprising because the unperturbed wavefields 

uo satisfy the unperturbed wave equation. Consequently, interferometry of the unperturbed 

wavefields on the left-hand side of equation 3.6 must yield the causal and acausal unper-
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turbed wavefields between rg and ry (right-hand side of equation 3.6). A less obvious 
relationship between the terms in equation 3.5 (Chapter 2) is that the dominant contri- 
bution to the causal scattered wavefield between rg and r,4 comes from the correlation 

between the unperturbed wavefield at rg and the scattered wavefield at r,, that is, 

/ us(r4,s)us(rp,s) ds © |W|? Gs(ra,re); (3.7) 
o1 

where oj is a portion of © that yields stationary contributions to Gg(r4,rg). In Chapter 2 

we show that this relationship holds for most types of experiments in exploration seismology 

(surface seismic, many VSP experiments, etc.). Equation 6.3 is an approximate relationship 

because it neglects the influence of a volume integral that provides a correction for medium 

perturbations that sit in the stationary paths of the unperturbed waves that propagate 

from the sources s to the receiver at rg (Chapter 2). In the context of seismic imaging, 

the extraction of Gs(r,,rg) is the objective of interferometry. Equation 6.3 is not only 

important for the separation of the scattered waves that propagate between rg and ra, 

but also because it can be used to show that deconvolution interferometry is capable of 

recovering the response between any two receivers. 

An important requirement for the successful application of interferometry is that there 

must be waves propagating at all directions at each receiver location. Many authors refer to 

this condition as equipartioning (Weaver and Lobkis, 2004; Larose et al, 2006), while others 

simply mention the necessity of having many sources closely distributed around a closed 

surface integral, such as in equation 6.2. In real-life exploration experiments, however, it 

is impossible to surround the subsurface with sources. As a consequence we end up with 

only a partial source integration, instead of the closed surface integration necessary for 

equation 6.2 to hold. As was pointed out by Snieder et al. (2006) for simplified 1D models, 
truncation of the surface integral may lead to the introduction of spurious events in the 

final interferometric gathers. This holds for general 3D models as well, and it can be easily 

verified provided that 

/ Cands + | Cap ds = |W/? [G(ra,rp) + G*(ra,rp)] , (3.8) 
Oy 02 

where o; and o9 are surface segments of ©, such that 0; U ag = &. Now, suppose that in 

an actual field experiment we could only acquire data with waves excited over the surface 

01 (such as in equation 6.3). Then, as we can see from equation 3.8, the integration over 

all available sources (the integral over o;) results in the desired response (right-hand side 
of equation 3.8) minus the integral over a2. In this case, if the integral over a2 is non-zero 

(i.e., there are stationary contributions associated with sources placed over o2), then the 

data synthesized from interferometry over 0; would contain spurious events associated the 

missing sources over 02. Although this at first glance may seem like a practical limitation 

of the method of interferometry, in reality the lack of primary sources in the subsurface is 

somewhat compensated by multiple scattering, or by reflections below the region of interest 

(Wapenaar, 2006; Halliday et al., 2007). In field experiments, some of the desired system 

equipartioning may be achieved with longer recording times, making up for some of the
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missing sources over 09. Because this is a model-dependent problem, it is impossible in 

practice to pre-determine what the influence of missing sources will be, and to what extent 

longer recording times make up for these sources. 

3.3.2 Deconvolution before summation over sources 

As we have seen in the previous Section, the cross-correlation of the wavefields u(r 4, s) 
and u(rg,s) contains the power spectrum of the excitation function (equation 4.2). Instead 
deconvolution of u(r4,s) with u(rg,s) gives 

u(r 4,8) _ u(r,4,s)u*(rp,s) _ G(r,,s) G*(rg,s) 

u(r.) lu(re,s)|” IG(rz,s)P 
Now the source function W(s) (equation 6.1) is canceled by the deconvolution process. 
Although no multidimensional deconvolution interferometry approach has been presented 

to date, it is intuitive to proceed with the integration 

$ Dands = ¢ Clears) Or ByS) gg (3.10) 
x xs |G(rB,s)| 

to mimic the procedure of interferometry by cross-correlation (equation 6.2). The existing 

proofs for the validity of interferometry by cross-correlation (equation 6.2) are not immedi- 

ately applicable to interferometry by deconvolution. For example, the use of representation 

theorems (e.g., Wapenaar et al., 2004a; Wapenaar et al., 2006; Chapter 2) is unpractical 

for the spectral ratio of wavefields. Also, stationary-phase evaluation of the integral in 

equation 3.10 for a specified model (such as in Snieder et al., 2006) is compromised by the 

presence of |G(rg,s)|” in the numerator. Despite being zero-phase, |G(rg,s)|* contains 
cross-terms between unperturbed and scattered wavefields (see below) which make the de- 
nominator in equation 3.10 a highly oscillatory function that cannot be accounted for by 

the stationary-phase method (Bleistein and Handelsman, 1975). 

Our solution to evaluating the integral in equation 3.10 is to expand the denominator 

in a power series, which then allows us to give a physical interpretation to deconvolution 

interferometry. The next two Sections cover the derivations of this series expansion and the 

subsequent interpretation of its physical significance. 

Contributions to first-order in the scattered wavefield. 

We focus our discussion on the terms that make the most prominent contributions to 

the deconvolution interferometry integral in equation 3.10. First, we rewrite the deconvo- 

lution in equation 4.11 as 

  Dap = (3.9) 

Dap = = [Go(r4,s)Go(re,s) + Gs(ra,s)GG(rB,s) + 
IG(rp,s)? |G (r,s)? ° ° 
  

(3.11) 

+ Go(ra,s)G5(rB,s) + Gs(ra,s)GE(rB,s)] ; 

where we explicitly identify the relationship between deconvolution and the cross-correlation
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of G(rg,s) with G(rg,s), here denoted by C4g. As in equation 3.4, the numerator in 

equation 4.11 yields four terms as shown in the right-hand side of equation 3.11. The next 

step in our derivation is to express |G(rg,s)|~? as 

1 1 

IG(rp,s) [Go(rs.8) + Ge(ra,s)] [Gi(ra.s) + GS(rp,8)] | 
  (3.12) 

which shows that the numerator in equation 3.10 contains the power spectra of the unper- 

turbed and scattered wavefields, as well as cross-terms between these two wavefields. If 

we assume the wavefield perturbations to be small (|Gs|? << |Go|”), the last term in the 
denominator of equation 3.12 can be dropped, hence 

  

1 
IG(rp,s)|? 

, 2 Go(rp,s) G(rB;s) Gs(rp,s) Go(rB,s) 
IGo(rB,s)| 2 + iGo(rs,s) | + |Go(rz,s)|" 

(3.13) 

By inspecting the denominator, it follows that equation 3.13 can be expanded in a power 

series in Gs/Go + G§/Gj. From this expansion, taking terms only up to first order in the 

wavefield perturbations gives 

Iotea 5)?» Ha, |i - Settas) _ Sateess)) 
~ |Go(ra,s)? | Golra.s) — G3(rB,8) 

After inserting equation 3.14 into the integral in equation 3.10 and keeping only the 

terms which are linear in the wavefield perturbations Gg, we get 

(3.14) 

Go(ra,s)GG(rB,s) Gs(ra,s)GG(rB,s) ds 
Dapds = pe eel ast p 

h. Js |Go(ra,s)? Jz IGo(ra, 8)? 
  

  

  

Di, Diy 

¢ Gs(rB,s)Go(ra,8)Go(rB, 8) ds . (3.15) 
zr Go(re, s) y 

Dis 
Equation 4.12 shows that, to leading order in the scattered wavefield, the deconvo- 

lution integral in equation 3.10 can be represented by the integrals Di p through D>, B 

In fact, equation 4.12 is a Born-like approximation (e.g., Weglein et al., 2003) of equa- 

tion 3.10. In contrast with the term |G(rg,s)|? in equation 3.10, the term |Go(rg,s)|° in 
equation 4.12 does not contain cross-terms between unperturbed and scattered wavefields. 

Therefore, IGo(ra,s)|? is a slowly-varying zero-phase function of s. This means that only 
the numerators determine the stationary contributions to the integrals in the right-hand 

side of equation 4.12. This property allows the direct. comparison between the phases of the 

integrands in equations 4.12 and the terms in equation 3.5.
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Figure 3.1. Representation of the wavefields that result from (a) deconvolution and (b) 
correlation interferometry. We refer to this representation as light cones. The medium 

is 1D with a wavespeed c. zg is the location of the pseudo-source. The grey-shaded areas 

represent the regions where the wavefields are nonzero. Away from these areas the wavefields 

are equal to zero. The wavefield produced by deconvolution interferometry in (a) is zero 

also along the dashed white line, for t 4 0. In the time-domain, the excitation in (a) is 
given by 6(t), while in (b) it is given by (|W(s,t)|”). The white text boxes indicate what 
type of wavefields propagate in the causal and acausal light cones of (a) and (b). 

Physical insights into deconvolution interferometry come from observing that the inte- 

grands of the Di p and D4, p terms (equation 4.12) have the same phase as the ch p and C3 B 

terms in equations 3.4 and 3.5. Based on these observations, and on equation 3.6 (Chapter 

2), we can conclude that Di p provides the causal and acausal unperturbed wavefield that 

propagates from rg to r4. More importantly, since the integrand of D?, p and Ct p have 

the same phase, the term D2 B gives the causal scattered waves that are excited at rg and 

recorded at ry. 

In the process of deriving equation 4.12 from equations 3.10, 3.11 and 3.14, the terms 

that carry the same phase as C4, and C4, cancel with the products of C}, and C4, with 
the G¢/G5 term. This cancelation implies that interferometry by deconvolution does not 

recover the acausal scattering response between the two receivers. Note that the acausal 

scattered waves are attenuated in deconvolution interferometry even for a closed surface 

integral (equation 4.12), or for an equipartioned system. This is a difference with what is 

obtained with interferometry by cross-correlation, which does recover the acausal scattering 

response between the receivers (equation 6.2). 
The term D3 p has no counterpart in correlation interferometry. In a zero-offset in- 

terferometric experiment, that is r4 = rg, the integrands of D4, and D%,, have the same 

phase. In that case, the stationary traveltimes that come from integrating D> p are the 

same as the ones coming from dD? p- These traveltimes correspond to scattered waves for a 

zero-offset experiment at rp. Given that dD B and D4, p have opposite sign (equation 4.12), 

their contributions cancel when r,4 = rg. As the offset between the two receivers increases,
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(a) (b) 

Figure 3.2. Illustrations of the free point boundary condition in deconvolution interferom- 

etry. (a) provides an interpretation of the free point boundary condition for 1-dimensional 

media with wavespeed c, using the light cone representation (as in Figure 3.la). x9 is the 
location of the pseudo-source (and of the free point) and xg is the location of a point scat- 
terer. The arrows represent waves, excited by the source in zo, propagating in the medium. 

Waves denoted with solid arrows propagate with opposite polarity with respect to waves 

represented by dotted arrows. The wavefield is equal to zero at the dashed white line, and 

the black vertical line indicates the region of influence of the medium perturbation at zg. 

(b) illustrates the free point boundary condition in a 3D inhomogeneous acoustic medium. 

The pseudo-source, located at rg, is shown with the white triangle. The receiver is repre- 

sented by the grey triangle at r4. The medium perturbation is a point scatterer at xg, here 

denoted by the black circle. The solid arrow depicts a direct wave excited at rg. This wave 

is scattered at xs and propagates toward r,4 and rg, as shown by the dashed arrows. The 

dotted arrow denotes a free point scattered wave that is recorded at r4. Waves represented 

by dashed and dotted arrows have opposite polarity. t, through tg are the traveltimes of 

waves that propagate from rg to xs, xg to rg, and rg to ra, respectively. 

the stationary traveltimes from D3, p and D4 p become increasingly different. As we shall 

discuss in more detail in Section 3.3.4, the stationary traveltimes from D3 p at finite offsets 

does not correspond to physical events for real wavefields excited at rg and recorded at r4. 

Because of this we refer to terms such as D3, B 88 spurious events. Next, we explain the 

origin of the spurious arrivals in deconvolution interferometry. 

Indeed, setting r4 = rg in equation 3.10 yields, in the time domain, a delta function at 

zero time. In deconvolution interferometry, scattered waves must cancel at zero-offset. This 

is a boundary condition imposed on the interferometric experiment where we excite waves 

at rg and record them at r4. The consequence of this boundary condition is the creation 

of spurious events such as D% p that cancel scattered waves that arrive at zero-offset with 

finite traveltimes. Note that these spurious arrivals are different from the ones that may 

result from the truncation of the surface integral (equation 3.8), and exist even for a closed 
surface of sources or in an equipartioned system (equation 4.12). Truncation of the surface 

integral in deconvolution interferometry will have the same effect as in interferometry by
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cross-correlation (see previous Section). 
In Figure 3.1, we summarize the physical meaning of deconvolution interferometry and 

compare it to the correlation-based approach. The type of wavefield representation in Fig- 

ure 3.1 comes from the theory of special relativity (Ohanian and Ruffini, 1994). According 

to the causality principle, no wave in Figure 3.1 can move faster than the medium wavespeed 

c (which for the sake of argument we assume to be constant). Hence, an excitation that 
occurs at 2 and t = 0 influences only the causal grey-shaded regions in Figure 3.1, and 

it is influenced by the acausal grey-shaded regions. In special relativity theory, these grey- 

shaded areas are called light cones: the causal grey-shaded regions are the future light cones, 

while the acausal ones are the past light cones. From equation 4.11, it follows that Dgp = 1 

(i.e., when r4 = rg). In this case, deconvolution interferometry yields G(rg,rg) = 1 in the 

frequency domain, which translates to 

G(rp,rp,t) = 5(t) (3.16) 

in the time domain. Hence, in deconvolution interferometry, the time-domain excitation 

is given by 6(t) (Figure 3.1a). This excitation influences all of the causal light cone of 
interferometry by deconvolution, except at x = xo for t > 0, where the wavefield is zero 

(equation 4.15). Likewise, the condition given by equation 4.15 states that the pseudo- 
source in deconvolution interferometry is influenced by all events of the past light cone, 

except for the ones at x = xp and t < 0. The pseudo-source in deconvolution interferom- 

etry generates the unperturbed impulse response Go(x,2x0,t) and the impulsive scattered 

waves Gs(z,Zo,t), as indicated in the future light cone of Figure 3.1a. This pseudo-source, 

obtained by deconvolution, is influenced only by unperturbed waves in its past light cone, 

which pertain to impulsive wavefield G9(x, xo, t). This observation holds for terms from the 

deconvolution interferometry series (after the expansion of equation 3.10) of any order in 

the scattered wavefield, as we demonstrate in the next Section. 

In correlation interferometry (Figure 3.1b), the excitation at t = 0 is given by (|W(s, t)|°), 
where s = 2g for the pseudo-source synthesized by interferometry. This excitation gener- 

ates the unperturbed wavefield uo(z,20,t) and the perturbation us(zx,20,t) in the future 
light cone in Figure 3.1b. The acausal waves in uj(z,29,t) and u%(z,20,t) present in the 
past light cone of correlation interferometry influence the excitation at r = zo and t = 0. 

Therefore, unlike in deconvolution interferometry (Figure 3.1b), xo is influenced by the 

acausal scattered waves in correlation interferometry (Figure 3.1b). Note that ug(z, x9, t) 
and us(x,29,t) (and their acausal counterparts) are not impulsive. Another difference with 
the deconvolution approach is that correlation interferometry influences x = 29 for t > 0, 

and is influenced by waves at x = zo for t < 0 (Figure 3.1b). Although the light cone 

representations in Figure 3.1 are valid for one-dimensional homogeneous media, it can be 

generalized to higher dimensions (Ohanian and Ruffini, 1994) and to inhomogeneous me- 

dia. These generalizations, however, are not necessary to our discussion on the physics of 

interferometry. 

Finally, we rely on Figure 3.2 to summarize the physics of the extra boundary condi- 

tion imposed by deconvolution interferometry (equation 4.15). From this condition (equa-
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reflector 
  

Figure 3.3. A simple model gain intuitive understanding about the physical meaning of 

the terms in equation 4.12. Receivers are imbedded in an acoustic homogeneous space 

containing a single reflector, bounded by a perfectly absorbing surface. Only direct and 

single-scattered waves are considered. Sources are depicted by circles on the surface, the 

two receivers are represented by triangles. [,4, Dg and L, through Ly, are the lengths of 

the ray segments. The reflection coefficient r is constant with respect to both position and 

incidence angle. 

tion 4.15), it follows that G(rg,rg,t) = 0 when t ¥ 0, which is represented by the dashed 

white line in Figures 3.1a and 3.2a. If G is the pressure response, we refer to this bound- 

ary condition in the interferometric experiment as the free point boundary condition. We 

use this term because the physical meaning of this boundary is analogous to that of a free 

surface boundary condition (where pressure is equal to zero), but instead it only applies to 

a point in space (in this case, rg). When G stands for the particle velocity response, the 

condition in equation 4.15 has the effect of clamping the point rg, so that it cannot move 

for t #0. In that case, we refer to equation 4.15 as the clamped point boundary condition. 

Throughout this paper, we use the term free point when referring to the condition given by 

equation 4.15, since in previous equations G is represents pressure waves (e.g., equations 6.2 

and 3.6). The boundary condition imposed by deconvolution interferometry in elastic media 

is different than that we discuss here, as shown Chapter 4. 

The effect of the free point boundary condition in a 1D homogeneous medium is il- 

lustrated by Figure 3.2a. The medium is perturbed by a scatterer at rg. According to 

our interpretation of Figure 3.1a, the medium perturbations occurs at t = 0, so the black 

dashed line in Figure 3.2a shows that the medium perturbation only influences the future 

light cone in Figure 3.2a. Starting at x = ro and t = 0, the arrows in Figure 3.2a describe 

the path of a wave that propagates toward the scatterer at xs, bounces off the scatterer to 

be then scattered again at the free point at r = ro. This wave keeps on scattering infinite 

times between xg and zg. As in the free surface boundary condition, the free point at ro 

reflects waves with a reflection coefficient equal to -1. Note that the waves in Figure 3.2a 

change polarity at each bounce off the free point at 29.



Ivan Vasconcelos / Interferometry in Perturbed Media 37 

  

        

10000; — — —_—- + 

8000 

E o———SC=*” 

S |; 2 ewece4 

BL pee eor eer == 
8 4000 

2000, 

0 
0 500 1000 1500 2000 2500 

offset (m) 

Figure 3.4. Depths obtained by shot-profile migration of stationary traveltimes of deconvo- 

lution interferometry terms with varying receiver-to-receiver offset. Black lines correspond 

to the terms that are of leading order in the scattered wavefield (see previous Section). 

The black solid line represents migrated depths from traveltimes associated to the D*, B 

term (equation 4.12); whereas the black dashed line pertains to the D3, term (also equa- 
tion 4.12). The curves colored in blue, red and green are associated respectively to terms 

which are quadratic, cubic and quartic with respect to scattered waves. For a given order 

in the scattered waves, we show only the two terms that have strongest amplitude. Of the 

blue curves, the solid curve relates to the TT" in equation 3.19 and the dashed one pertains 

to qT" (equation 3.20). The imaged depths computed from the T" (equation 3.21) and 

T. gre (equation 3.22) stationary traveltimes are shown by the solid and dashed red lines, re- 

spectively. Although the quartic terms related to the green curves are not explicitly shown 

in the text, they come from the deconvolution interferometry series in equation 3.18 for n 

equal to 3 and 4. 

The extension of the free point concept to 3D inhomogeneous media is shown in Fig- 

ure 3.2b. In this example, deconvolution interferometry is conducted for receivers at. r,4 and 

rg, as in equation 3.10. The receiver at rg acts as a pseudo-source (white triangle in the 

Figure). The medium perturbation is the point scatterer at xs. The pseudo-source at rp 

sends a direct wave (solid arrow in Figure 3.2b), with traveltime t, toward the scatterer. Af- 
ter this direct wave scatters at xg, it propagates back to rg and toward ry (dashed arrows), 

where it is recorded. This recorded singly scattered wave corresponds to the D%, term in 
equation 4.12, with traveltime t = t; +t 2. When it arrives at rg, the wave backscattered at 

Xg scatters once more because of the free point boundary condition. The free-point scat- 

tered wave (dotted arrow) then travels directly to r4, where it is recorded at t = 2t, + ts. 

This arrival corresponds to the D4 p term in equation 4.12. When r4 = rp, to = t; and 

tg = 0, and the singly scattered and free-point scattered waves have the same traveltime. 

This agrees with our previous discussion on the phase of the terms in equation 4.12. For a 

fixed rg and varying rg, the traveltime of the free-point scattered wave is only controlled
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by tg, since ¢; stays constant. Note that tg is also the traveltime of the direct wave that 

travels from rg to rg, which is in turn given by the Di p term in equation 4.12. Since 

the term D3, p is controlled by the direct wave traveltime t3 for a fixed rg, it has the 

same moveout as the direct wave in an interferometric shot gather with a pseudo-source at 

rg. Figure 3.2b illustrates only one of the many free point scattered waves produced by 

deconvolution interferometry. 

Although the presence of spurious events such as D3, p (equation 4.12) may appear to 

be a problem for imaging interferometric gathers that result from deconvolution, we show 

in the Sections to come that these spurious events typically are not mapped onto coherent 

reflectors. What is most important is that interferometry by deconvolution is capable of 

successfully recovering the causal scattering response between any two receivers, as shown 

by the D*, p term. 

Higher-order terms 

In the previous section we limited our analysis to the terms of first order in Gg. 

Here, we analyze the higher-order terms. The full deconvolution series resulting from the 

expansion of equation 3.11 is 

Gs(rp,s) _ Gs(rB,s)\" Dap = aoe »(- Go(rg,s) aes) 

As shown in Appendix A, a physical analysis of the terms in equation 3.17 allows us 

to simplify it to 

(3.17) 

— Glra,s) Gs(rB,s) 

Dap © Go(rz,s) r Grrr ye oe (Sees) (3.18) 

In this equation, the first term yields physical unperturbed and scattered waves that prop- 

agate between rg and ra, while the second term accounts for the effect of the free point 

boundary condition in deconvolution interferometry. The objective of the simplification in 

equation 3.18 is to keep only the terms that have non-zero phase which bring the most 

prominent contributions to the series in equation 3.17. The approximation that leads to 

equation 3.18 involves neglecting terms from equation 3.17 which are zero-phase or that 

yield arrivals with negligible amplitudes (see Appendix A). Note that the acausal terms 

proportional to (G%/G})” in equation 3.17 are not present in equation 3.18 because they 
cancel in the n — oo limit (see Appendix A). This cancellation determines that the point 29 

in Figure 3.1a is not influenced by acausal scattered waves (see discussion in Section 3.3.2). 

The first term in equation 3.18 gives the terms Di, B and D2, B in equation 4.12. The term 

D3, Bp is obtained by the product of ch p and the first term of the sum in equation 3.18. It is 

important to note that terms of a given order in the scattered wavefield come from different 

values of n in equation 3.18. Let us take, for example, 

7? = — Gs(ra,s) Gh(rB,8) (Be) (3.19) 
and
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Figure 3.5. Common receiver gathers for receivers placed at (a) 1500 m and at (b) 3000 m. 

ond 
2 

T2"* = Go(ra,s) Gi(rp,s) (See) (3.20) 

where T’? represents a given term J; from equation 3.18 of order o in the scattered wavefield 

Gs. T2"" and 1?" are the most prominent terms which are of second-order in the scattered 

wavefield, where T, ‘and comes from n = 1 while Te comes from n = 2. When ry, = rp, Te 

and TT?" will give rise to arrivals with twice the traveltimes of Gs(r4,rg). Since these two 

terms have opposite polarity (equations 3.19 and 3.20), their contributions cancel. Likewise 

the terms 

2 TY = Gs(ra,s) Giles) (Zee) (3.21) 
and 

3 

T$* = ~Golea,s) Gi(en,s) (Gee) (3.22) 
result in traveltimes that are three times those of Gsg{r4,rg) when rg = rp. Tt" and 

qT?" are the most prominent terms from the series in equation 3.18 which are of third-order 

in the wavefield perturbations. They come respectively from setting n = 2 and n = 3 in 

equation 3.18. The phase of of any the higher-order terms in deconvolution interferometry 

(second term in equation 3.18; e.g., equations 3.19 through 3.22) can be physically explained 

by the interactions of the free point at rg (equations 3.10 and 4.15) with the waves scattered 
by the medium perturbation. In the example of Figure 3.2b, the higher-order spurious 

multiples arise from multiple scattering between the scatterer at xg and the free point at 

rp. 
As we demonstrate with our numerical example, some of these higher-order spurious 

terms (such as in equations 3.19 through 3.22) may be present in the deconvolution interfer-
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Figure 3.6. Deconvolution and cross-correlation gathers for the first and last receivers, whose 

lateral positions are, respectively, 1500 and 3000 m. (a) displays the deconvolution gather 

obtained from deconvolving the modeled common-receiver gathers, whereas (b) shows ray- 
theoretical traveltimes for the terms in equation 4.12, computed according to integrands 

in equation 4.12 in Section 3.3.4. Analogous to (a), (c) is the cross-correlation gather 
generated from source-by-source correlation of the two receiver gathers. (d) shows the 

asymptotic traveltimes corresponding the phase of the integrands in equation 3.5. 

ometry integrand. Hence, it is important to understand to what extent these terms present 

a challenge to the proper imaging from interferometry by deconvolution. We investigate 

this in the next Sections. 

3.3.3. Deconvolution after summation over sources 

Using the deconvolution approach described by equation 3.10 is not the only option 

for doing interferometry without independent estimates of the source function. The decon- 

volution of u(r4,s) and u(rg,s) is equal to 

u(r,4,s) u*(rg,s) _ CaB 

u(ra,s) u*(rp,s) Cap’ 

  Dap = (3.23)
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where Cg is the auto-correlation of u(rg,s). In the previous Section we summed this 

result over all sources. Interferometry can be done as in the previous Section, or we can 

first integrate over sources, and then compute the spectral ratio 

$5 Cap ds _ G(r4,tp) + G*(ra,re) 

$s Cap ds 4 Cap ds 

The ratio on the left-hand side of the equation cancels the contribution of the wavelet 

(|W (s)|”) (equation 6.2). No independent estimate of the source function is required. Other 
authors have suggested approaches similar to the one in equation 3.24. The pilot-trace 

approach used in drill-bit seismology (e.g., Poletto and Miranda, 2004; Rector and Marion, 

1991) uses auto-correlations of the accelerometer recordings or geophone data to build a 

deconvolution operator (Chapter 4). The Virtual Source method (Bakulin and Calvert, 
2006; Schuster and Zhou, 2006) also relies on a deconvolution analogous to the one in 

equation 3.24. 

As we did with the cross-correlation in equation 3.4, we can expand C’'gz and integrate 

it over sources, giving: 

  (3.24) 

¢ Conds = $ Chpds + ¢ Chpds + f Chr ds + § Chyds (3.25) 
x x x x x 

From the integration of the four terms on the right-hand side of equation 3.25, we can write 

1 ! ; (3.26) $5; Cap ds [IGo(re, re)? + §,C2pds + §,C}pds + IGs(r,re)?| 

    

where the denominator contains zero-phase terms (the power spectra), as well as the causal 
and acausal zero-offset scattered wavefield us(rg,rg). Using the weak perturbation ap- 

proximation (|Go|? >> |Gs|”), we can approximate 

  

-2 

if Cap is ~ 2 1 2 1 3 
° IGotra.ra)? [1 + aaetraye fe Che 4s + jaeae? £2 Cha ts| 

(3.27) 

which gives us an expression of the same form as equation 3.13. Hence, we can expand 

equation 3.27 in a power series of the same form as in our previous discussions (see equa- 

tions 3.13, 3.14 and 3.17). Considering only the very first term of the series expansion, it 

gives 

$5 Cab ds ~ G(r4,rp) + G*(ra4,rB) 

$> Cap ds IGo(re, rp)? 

This expression shows that deconvolving the integral over Cag by the integral over Cap 

recovers both the causal and acausal response at r,4 for waves excited at rg. This re- 

  (3.28)
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Figure 3.7. Deconvolution interferometry terms which are nonlinear in the scattered wave- 

field. The left panel shows the integrand of the deconvolution interferometry integral (equa- 

tion 3.10),computed from finite-difference modeling (same as in Figure 3.6a). In (b), the 

traveltimes corresponding to the second order terms tT" and TT" (equations 3.19 and 3.20) 
are shown respectively with solid and dashed blue curves; while the solid and dashed red 

curves come from T" and 3" (equations 3.21 and 3.22), respectively. The curves in (a) 
correspond to the curves of the same color and type in Figure 3.4. 

sponse is scaled by the power spectrum of the zero-offset unperturbed wavefield. Note that 

equation 3.28 is approximate. Other terms of the series expansion of equation 3.27 yield 

cross-correlations and convolutions between causal and acausal u(r4,rg) and us(rg,rp). 

Since, after Chapter 2, 

| Cp ds = | Gs(rp,s)Go(re,s) ds = Gs(rg,rp), (3.29) 
o1 o1 

and 

| Cipds = | Go(rs,s)G3(rB,8) ds © G5(re,rp). (3.30) 
O71 o1 

Other terms arising from the expansion of equation 3.27 are bound to be small because 

not only they are products between G and G's terms, but also because they are divided by 

IGo(re,re)|"" (with n = 2,3,4,...). 

3.3.4 Example: asymptotic analysis of deconvolution interferometry 

In Section 3.3.2 we discussed some of the physics behind the terms in deconvolution 

interferometry based on their integral representation. Here we illustrate the ideas in the 

previous Sections using asymptotics. We use these asymptotic methods to investigate the
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spurious arrivals in imaging gathers produced by deconvolution interferometry (see Sec- 

tion 3.3.2). Although it is necessary to restrict this type of analysis to simple models, the 

observations provide useful insight into the physics of our problem. Snieder et al. (2006) 

used the same kind of asymptotic analysis to study the terms arising from interferometry 

by cross-correlations (e.g., equation 3.4). They also characterized spurious multiples that 

come from a limited source integration (see discussion concerning equation 3.8). Since our 

approach is analogous to that in Snieder et al. (2006), we do not reproduce all steps in 

their derivation. Some of these steps are reproduced in Appendix B. 

The toy model we use is that of a single reflector in a homogeneous medium (Fig- 

ure 3.3). The unperturbed wavefields uo(r 4,8, 8) consist of the direct waves while ug(r4,B,8) 

are the single-reflected waves. We use the far-field acoustic Green’s functions in equation B.1 

to represent the ray-geometric arrivals in Figure 3.3. If we rewrite the term D1, in equa- 

tion 4.12 according to equation B.1 we get 

Ds 1 eee ted (3.31) = —, | ———drdy , . 
AB (4nLpy? LaLp y 

where the integral over s (equation 4.12) has been converted to the integration over the lat- 

eral coordinates x and y (representing the surface plane). The stationary-phase evaluation 

(see Appendix A) of the integral in equation 3.31 gives 

ne Go(ra,rB) ; Dhy = aye — Goltarte), 
32n? L3, cosy = (—iw) 

(3.32) 

with the acoustic wavespeed c, and n representing sources per unit area (Snieder et la., 

2006). A straight raypath connecting rs, rg and the surface determines the stationary 

source position that gives equation 3.32. The angle defined between this stationary ray 

and the vertical defines the angle 7. Go(r,4,rg) is the unperturbed Green’s function, in 

this case a direct wave, propagating from rg to rg. Equation 3.32 is consistent with our 

interpretation of the term D4, p in Section 3.3.2. The (—iw)~! in equation 3.32 indicates 

that after interferometry it is necessary to perform a time-domain differentiation to obtain 

the Green’s function (Snieder et al., 2006). This is a correction factor commonly found 
in interferometry (e.g., Wapenaar et al., 2004a; van Wijk et al., 2006): it compensates 

for the source integration, and it depends on which type of Green’s function is considered 

(Wapenaar et al, 2004b). Although for simplicity we have not explicitly kept the iw factors 

in the integrals in previous Sections, the exact forms of those expressions also have iw factors 

(Chapter 2). 
The term D4, p of equation 4.12 for our model reduces with equation B.1 to the integral 

  
5 r ek(Li+Le—-Lp) 

Dag = | 
(4nLp)’ J (1+ Le) Le 

which is has a form similar to that of equation 3.31. This integral can also be evaluated 

with the stationary phase method, giving 

drdy , (3.33)
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2 ne Gs(ra,rB) | 

Dan = 32m? L2, cos = (-iw) B 

where r is the constant reflection coefficient at the interface in Figure 3.3. The stationary 

source point that results in equation 3.34 is associated with a raypath that starts at the 

surface, passes through rpg, specularly reflects off the interface and is recorded at r4. Since 

the stationary raypaths that give equations 3.32 and 3.34 are different, the corresponding 

values of the obliquity factor cosy are also different. The stationary-phase evaluation of 

D3, p (equation 3.33) results in Gs(r4,rg): a causal singly reflected wave excited at rg and 

recorded at r4. 

Next, we consider the asymptotic behavior of the D3, p term (equation 4.12). Using 

the Green’s functions in equation B.1, D3, is given by 

(3.34) 

  

5 r | etkl(L3+L4—Lp)—(La—Lp)| 

(4nLp)? (L3 + La) LaL?, 
Dap = 

Ifr,4 = rg, the phase of the integrand in equation 3.35 is the same as in equation 3.33, 

so the resulting stationary-phase evaluation of D* B is proportional to Gs(rg,rg). This 

supports the physical interpretation of D3, p Provided in Section 3.3.2, where we argue 

that for rg = rg the terms D3 p and D},, have the same phase and give the zero-offset 

scattered-wave traveltimes. For r4 # rg, Dap is not associated to any stationary paths 

that would exist for a real excitation placed at rg without the free point boundary condition 

(equation 4.15). 

The main objective in studying the spurious terms such as D3, p is to determine their 

influence in imaging data from deconvolution interferometry. Hence, we proceed with a 

numerical asymptotic analysis of the spurious arrivals. Once we specify a model such as 

the one in Figure 3.3, we compute the ray-based traveltimes of each spurious arrival for 

all source positions, according to equation 3.18. From the maxima of the phases of each 

spurious event, we determine their corresponding stationary traveltime and source position. 

We did this for a fixed position rg as a function of a laterally-varying r4. Given the receiver 

positions, stationary traveltimes and model parameters, we predict the migrated depth of 

any given term (e.g., D4.,) through common-shot migration (Bleistein et al., 2001). The 
result of this analysis is shown in Figure 3.4. The geometry and model parameters used in 

the computations in Figure 3.4 are the same as in the numerical model we discuss in the 

next Section. For these computations, r4 and rg are kept at the same constant depth level. 

Only the term D>, B represents physical scattered waves in Figure 3.4. As expected, 

D>, B is mapped at the same depth for all offsets, as shown by the solid black line in the 

Figure. On the other hand, the spurious terms in Figure 3.4 map to depths that increase 

with increasing offset. This suggests that when a sufficiently large range of offsets is used, 

most spurious events interfere destructively when imaged. The only exception is the term 

TT" , whose mapped depth varies slowly with offset. We suspect that this might be because 

the phase of TT" is equivalent to twice the phase of the integrand of D2 p (equation 4.12), 

thus representing artifact multiples arising from convolving ug(r,4,rg) with itself. 

dxdy . (3.35)
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Figure 3.8. Pseudo-shot (interferometric) gathers with the shot positioned at the receiver 

at 1500 m. The gather in (a) is obtained by deconvolution before stacking (equation 3.10), 
(b) is generated by cross-correlations (equation 6.2) and (c) is given by deconvolution after 
summation over sources (equation 3.24). Source integration of the gathers in Figures 3.6a 

and c yield the last trace in (a) and (b), respectively. 

If only a short offset aperture is available ( e.g., in the offset range 0 to 500 m in 

Figure 3.4), the spurious multiples may add constructively in the final image. We argue that 

even if spurious events in Figure 3.4 map to image they will not be very prominent because 

they are of higher order in the scattered wavefield. In addition, these terms should cancel 

close to zero-offset because of the free point boundary condition imposed by deconvolution 

interferometry (see discussion in Section 3.3.2). This boundary condition requires the zero- 

offset wavefield to be zero at finite times (see Section 3.3.2). Indeed, solid and dashed lines 
of a common color in Figure 3.4 pertain to terms that have opposite polarity. 

Note that at zero-offset (Figure 3.4), 2"4-order spurious events map at twice the depth 

of the physical reflector relative to the receivers (receiver depth is 750 m); 3'4_order events 

map at three times that depth, and so on. This observation relates to the remarks made 

about the zero-offset traveltimes expected for the higher-order terms in Section 3.3.2. 

3.4 Numerical example 

The model we use is composed of a water layer with a wavespeed of 1500 m/s. A 

flat, horizontal interface was placed at 2500 m depth. The contrast at the interface is 

produced by a velocity step from 1500 to 2200 m/s, with a constant background density of 

1000 kg/m*. The receivers were positioned in a horizontal line at 750 m depth, starting at 

lateral position 2 = 1500 m and ending at 3000 m, with increments of 25 m. The source line 

was also horizontal at a depth of 400 m, ranging from x = 500 m to 4500 m, with increments 

of 50 m. The data was modeled by 2D acoustic finite-differencing with absorbing boundary
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conditions. Figure 3.5 shows that the data consists of direct and single-reflected waves. As 
in the previous Section, we refer to these waves as uo(r4,B,8) and us(r4,B,8), respectively. 

First, we use the data in Figure 3.5 to analyze the integrands in equations 6.2 and 3.10. 

The deconvolution of the wavefield in Figure 3.5a with the wavefield in Figure 3.5b yields 

Figure 3.6a, while the cross-correlation yields Figure 3.6c. The deconvolution gather (Fig- 

ure 3.6a) displays causal term D2 ,, while both causal (C4) and acausal (C3) contri- 
butions are present in the cross-correlation gather (Figure 3.6c). This confirms our claim 
that deconvolution interferometry gives mostly causal scattering contributions (see Sec- 

tion 3.3.2). The term C4 p also does not have a corresponding term in the deconvolution 

gather, as was predicted by equation 4.12. Also, the waveforms in Figure 3.6a are sharper 

than those in Figure 3.6c because deconvolution suppresses the source function. We use 

a water-level regularization method to do deconvolutions. For a brief discussion on this 

method see Appendix A in Chapter 4. 

The arrival times predicted with perturbation theory (bottom plots in Figure 3.6) 

provide an accurate representation of the modeled results in the top panels of Figure 3.6. 

In particular, the deconvolution series (equation 3.18, Figure 3.6b) describes well the most 

prominent terms in deconvolution interferometry (equation 3.10, Figure 3.6a). As predicted 

by theory, the terms D4, B and D>, B have opposite polarity. The extrema of the curves in 

Figure 3.6 are stationary source positions. Thus, the stationary traveltime of each term is 

the time associated to the extremum of its curve in Figure 3.6. The stationary traveltimes 

from Di BR and ch Bp are t= +1 s, representing causal and acausal direct waves. D3, B and 

Cc p result in a stationary time of approximately 2.5 s, which coincides with the traveltime 

of a causal single-scattered wave. In previous Sections we showed that the stationary trav- 

eltimes given by D>, p and D3, only coincide when r, = rg. Since in Figure 3.6 rg # rp, 

the stationary time of D3, p is different from that of D>, B 

There are other events present in the lower left-hand corner of Figure 3.6a which are not 

present in Figure 3.6b. These events are described by higher-order terms of the deconvolu- 

tion series (equation 3.18). Figure 3.7 shows how the events are described by terms of second 

and third order in the scattered wavefield. The events corresponding to third-order terms 

have considerably smaller amplitude than the ones related to second-order terms. Second- 

order terms are in turn weaker than the leading-order terms (Figure 3.6a). A decrease in 
the power of the events with increasing order in the perturbed wavefield is expected, given 

the form of equation 3.18. These examples confirm the accuracy of the deconvolution series 

in describing the character of the integrand in deconvolution interferometry (equation 3.10). 

The integration over sources (e.g., equations 6.2 and 3.10) corresponds to the horizontal 

stack of the plots in Figures 3.6a and c. Stacking, for example, Figure 3.6c results in a single 

trace that represents a wavefield excited at a lateral position of 1500 m and recorded at 

3000 m. We create an interferometric shot gather with a pseudo-shot placed at 1500 m by 

computing and stacking all of the deconvolution and cross-correlation gathers (Figures 3.6a 

and c) for the receiver fixed at 1500 m but varying the lateral position of the other receiver 

from 1500 to 3000 m. The interferometric shot gathers are shown in Figure 3.8. 

All gathers in Figure 3.8 show both causal and acausal direct waves. Only the gathers 

produced from cross-correlation (Figure 3.8b) and deconvolution after stack (Figure 3.8c)
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Figure 3.9. Shot-profile wave-equation migrated images of the virtual shot gathers in Fig- 

ure 3.8. In this figure, (a), (b) and (c) are the images obtained from migrating the gathers 
in Figure 3.8a, b and c, respectively. The true depth of the target interface is 2500 m. The 

shot is placed at 1.5 km and receivers cover a horizontal line from 1.5 to 3.0 km. 

show causal and acausal reflections, agreeing with equations 6.2 and 3.28. The interferomet- 

ric gather produced from deconvolution interferometry (Figure 3.8a) indeed only shows the 

causal scattered wave. The first-order term D%,, (equation 4.12) can be seen in Figure 3.8a 
with opposite polarity and slower moveout compared to the physical reflection. The reflec- 

tion and the D3, B Spurious events converge at zero-offset where they cancel. As observed 

in Figure 3.8a, this is due to the effect of the free point boundary condition (equation 4.15) 

imposed by the deconvolution of wavefields before source integration (see Section 3.3.2). 

As in Figure 3.8a, the zero-offset trace of the gather in Figure 3.8c consists of a band- 

limited spike at 0s. This can be verified by setting Cag = Cgg in equation 3.24. In 

contrast to Figure 3.8a, Figure 3.8c does not contain the spurious events produced by the 

free point boundary condition present when deconvolving the wavefields before source inte- 

gration. There are other events which are related to the truncated source integration (see 

Section 3.3.1). These are, for example, the upward-sloping linear events appearing between 

the direct arrivals and the reflections in all three gathers. 

The images obtained by shot-profile migration of the gathers in Figure 3.8 are shown 

in Figure 3.9. The shot-profile migration was done by wavefield extrapolation, with a split- 

step Fourier extrapolator. The reflector is placed at the correct depth in all three images. 

Also, all three images are remarkably similar, despite the differences between the gathers 

in Figure 3.8. The similarity between the images comes from the fact that the spurious 

events in deconvolution interferometry have a negligible effect in images made from offset- 

dependent data. Based on Figure 3.4, we argue in Section 3.3.4 that the spurious events 

produced by deconvolution interferometry typically do not map onto coherent reflectors. 

This justifies the absence of spurious reflectors in Figure 3.9a. In Figure 3.9, we can also
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appreciate the effect of deconvolution (Figures 3.9a and c) in compressing the waveform 

relative to cross-correlation (Figure 3.9b). 

3.5 Discussion and conclusions 

By representing recorded wavefields as a superposition of direct and scattered wave- 

fields, we derived a series expansion yielding terms that follow from performing deconvo- 

lution interferometry on receiver gathers before summing over sources. This derivation 

suggests that interferometry by deconvolution before stacking over sources gives only the 

causal scattered wavefield as if one of the receivers acted as a source. Because deconvolution 

interferometry requires the zero-offset wavefield to be zero at nonzero times, it generates 

spurious events to cancel scattered arrivals at zero-offset. We refer to this condition as the 

free point boundary condition at the pseudo-source location. With a simple model we illus- 

trate this by using asymptotic approximations to the terms in deconvolution interferometry 

using the stationary-phase method. We also argue that interferometry can also be accom- 

plished by deconvolution after summation over sources, which would yield terms analogous 

to correlation-based interferometry. 

Numerical examples with impulsive source data showed that deconvolution interfer- 

ometry can successfully retrieve the causal response between two receivers. This response 

can be used to build interferometric shot gathers which in turn can be imaged. Imaging 

of deconvolution interferometric shot gathers proved to practically eliminate the spurious 

arrival generated by the deconvolution method. Indeed, our numerical asymptotic analysis 

suggests that the deconvolution-related spurious events add destructively in the imaging 

of offset-variable data. It may be possible to create a reverse-time imaging scheme that 

results in an image free of spurious artifacts. We believe this could be done from the proper 

manipulation of boundary conditions in numerical modeling by the finite-difference method 

(Biondi, 2006). Although our assessment of the spurious events is model dependent, we 

believe that our observations also hold for more complicated models (see Part II of this 
article). 

Ideally, we want interferometry to give us the best possible representation of the im- 

pulse response between two given receivers. Cross-correlation interferometry yields an ac- 

curate representation of the waves propagating between the receivers, but it requires an 

estimate of the power spectrum of the wavelet for it to give an impulsive response. Decon- 

volution interferometry yields an impulsive response, but it does so at the cost of generating 

artifacts. Another option is to design an inverse filter to do interferometry (Sheiman, per- 

sonal communication, 2006). For example, the inverse filter may require the zero-offset 

trace in the pseudo-shot with a pre-determined band-limited pulse. This inverse filter does 

not require any knowledge about the model, and its output would be described the decon- 

volution series discussed here. If there is some knowledge about the model, the inverse filter 

may be designed to replicate an estimate of a desired wavefield (e.g., Amundsen, 2001). In 
this case, the output of the inverse filter will approximate an impulsive version of cross- 

correlation interferometry. We associate the form of the deconvolution interferometry series 

to that of scattering series such as the Lippman-Schwinger series (Rodberg et al., 1967;
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Weglein et al. 2003). Forward and inverse scattering series serve, for instance, as the basis 

to methodologies in imaging and multiple suppression (Weglein et al., 2003). In analogy to 

scattering-based approaches, it is possible to express the deconvolution interferometry series 

in forward and inverse forms as well. Hence, an inverse deconvolution interferometry series 

may be designed for the imaging of pseudo-shots generated by deconvolution interferometry. 

The results we present here are consistent with previous deconvolution interferometry 

results. Although there is no explicit source integration in the work of Snieder and Safak 

(2006) and of Mehta et al. (2007a), their results agree with our representation of decon- 
volution interferometry before integration over sources. In the 1D models, such as used by 

Snieder and Safak (2006) and Mehta et al. (2007a), the excitation produced by teleseismic 
events was naturally in the stationary path between the receivers. This excludes the need 

for a full 3D source integration as in equation 3.10. Moreover, we argue that the application 

commonly referred to as receiver function (e.g., Shen et al. 1998, Mehta et al., 2007b) in 

global seismology is a direct application of deconvolution interferometry. With the same 

type of 1D layered model as in Snieder and Safak (2006) and of Mehta et al. (2007a), 
the receiver functions consist on the deconvolution of a radial receiver component with the 

vertical component of the same receiver. This, in interferometry terms, yields a zero-offset 

trace that corresponds to an excitation in the vertical direction whose wavefield is recorded 

in the radial direction. Also, like in Snieder and Safak (2006) and Mehta et al. (2007a), 
no source integration is required because in the 1D model all incoming waves are in the 

stationary wave-path. 

It is important to point out other perhaps less obvious relationships between our 

work and that of other authors. With an elegant derivation and examples, Loewenthal 

and Robinson (2000) show that deconvolutions between measured dual wavefields (e.g., 
particle velocity and pressure) can be used for model-independent redatuming and for re- 

covering reflectivity. Their derivation, in fact, is a proof of the application of deconvolution 

interferometry for dual wavefields. Amundsen (2001) designs deconvolution-type inverse 

operators to strip the influence of the water layer in marine data, at the same time per- 

forming free-surface multiple attenuation and estimating reflectivity. In a companion paper, 

Holvik and Amundsen (2005) use representation theorems of the same type as discussed 

in Section 3.3.1 along with deconvolution for elastic wavefield decomposition and multiple 

elimination. These papers are intimately related to deconvolution interferometry as we 

propose it. We advocate that the proper choice and manipulation of the wavefield pair uo 

and ug give rise to different applications, with the example of dual wavefields by Loewen- 

thal and Robinson (2001) or the boundary-condition approach by Amundsen (2001) and 
Holvik and Amundsen (2005). We also use these examples to highlight the potential of 
deconvolution-based interferometry in recovering data with amplitudes consistent with the 

subsurface reflectivity function. 

There are other important potential applications for deconvolution interferometry. As 

we summarized in Figure 3.1, deconvolution interferometry gives only causal wavefield per- 

turbations, while unperturbed waves are present at both positive and negative times. For 

an ideal source coverage, the subtraction of the acausal wavefield from deconvolution inter- 

ferometry from its causal response results only in wavefield perturbations. This idea may
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be useful for processing data from time-lapse experiments, as well as for pre-processing pro- 

cedures such as direct- or surface-wave suppression. In the context of imaging, we highlight 

that in the cross-correlation imaging condition (Claerbout, 1985; Sava, 2006), the correla- 

tion serves the purpose of reproducing a zero-offset pseudo-shot experiment placed on top 

of a reflector (after extrapolating data to the reflector position). This is a direct application 
of the concept of correlation interferometry (e.g., Wapenaar and Fokkema). We believe that 

deconvolution interferometry can also be used to impose deconvolution imaging conditions 

(e.g., Muijs et al., 2007) that help to construct images whose amplitudes are an estimate of 

subsurface reflectivity (Bleistein et al., 2001). 
Our goal here was to demonstrate the feasibility of using deconvolutions to recover the 

impulse response between receivers. Nonetheless, deconvolution interferometry has proven 

to be an important tool for interferometric imaging from complicated excitation. The Earth 

itself may be the cause of complicated source functions, as in the case of Snieder and Safak 

(2006) and of Mehta et al. (2007a). When using internal multiples for imaging, we found 
deconvolution interferometry to be necessary (Chapters 4 and 5). In other applications 

the complicated character of the excitation may be related to the source itself. One such 

example is drill-bit seismology. When independent measures of the drill-bit stem noise are 

not available, deconvolution interferometry is necessary. This is the focus of the next part 

of this manuscript (Chapter 4). Here, we highlight the physical differences between three 
interferometric methods: 1) deconvolution before source integration, 2) cross-correlations 
and 3) deconvolution after source integration. The comparison between methods 1) and 
2) serves the purpose of providing the reader with information that allows one to relate 

the new content in this manuscript to much of the existing literature about interferometry. 

The understanding of the methods 2) and 3) provides the basis for the discussion about 
the specific use of deconvolution interferometry in drill-bit seismic imaging, which is the 

subject of the second part of our study (Chapter 4). 
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Chapter 4 

Interferometry by deconvolution — Application to 

drill-bit seismic imaging! 

4.1 Summary 

In the practice of Seismic-While-Drilling (SWD), the goal is to determine the subsur- 

face impulse response from drill-bit noise records. Most of the existing SWD technologies 

rely on pilot sensors and/or models to predict the drill-bit source function, which is then 

removed from the data. Deconvolution interferometry successfully recovers the impulse re- 

sponse between receivers from drill-bit noise without the need for an independent estimate 

of the drill-bit source function. We give a general review of current SWD methods in the 

context of cross-correlation interferometry, followed by a comparison of these methods with 

deconvolution interferometry. Unlike other SWD processing methods, interferometry does 

not require knowledge about the drill-bit position. We heuristically extend the concept of 

interferometry by deconvolution to multi-component data in elastic media. In elastic media, 

the radiation pattern of the interferometric pseudo-source are influenced by the radiation 

properties of the bit. This dependence is a function of the medium properties and of the 

distance between the bit and the recording sensors. Interferometry by deconvolution is of 

most use to SWD applications where pilot records are absent or provide unreliable estimates 

of the bit excitation. With a numerical SWD subsalt example, we show that deconvolution 

interferometry provides an impulsive image of the subsurface that cannot be obtained by 

correlations without an estimate of the source autocorrelation. This numerical example also 

illustrates the potential of SWD and deconvolution interferometry for passive imaging in 

deep-water subsalt environments. Finally, we validate the use of deconvolution interferom- 

etry in processing field SWD data acquired at the San Andreas Fault Observatory at Depth 

(SAFOD). Since no pilot records were available for these data, deconvolution outperforms 
correlation in obtaining an interferometric image of the San Andreas Fault zone at depth. 

4.2 Introduction 

The recording of drilling noise can be used for seismic imaging (Rector and Marion; 

1991). In the majority of seismic-while-drilling applications (e.g., Poletto and Miranda, 

2004) the data acquisition and imaging geometries fall under the category of reverse VSP 

  

1Submitted to Geophysics.



52 Chapter 4. Interferometry by deconvolution — Application to drill-bit seismic imaging 

(RVSP) experiments, where knowledge of the position of the drill-bit is required. With the 
autocorrelogram migration method, Schuster et al. (2004) and Yu et al. (2004) recognized 
that interferometry could be applied to SWD data without any knowledge of the drill bit 

position. Recently, Poletto and Petronio (2006) used interferometry to characterize fault 

zones ahead of a tunnel being drilled. 

Interferometry is a proven methodology for the recovery of the impulse response be- 

tween any two receivers from measurements of uncorrelated noise. This can be accomplished 

in diffuse fields by cross-correlating the data recorded by two receivers (Lobkis and Weaver, 

2001; Larose et al., 2006). Wapenaar (2004) and Wapenaar et al. (2004) provided general 
proofs that cross-correlations of deterministic wavefields excited by uncorrelated noise result 

in the impulse response between receivers for arbitrary media. When the measured data is 

excited by correlated noise sources, the result from cross-correlation interferometry contains 

the source power spectrum (Snieder et al., 2006a; Wapenaar and Fokkema, 2006; Chapter 

3). In the specific case of SWD applications, the drill-bit noise signal (and its power spec- 

trum) is a long and complicated source-time function with a narrow band signature (Poletto 

and Miranda, 2004). Hence, the extraction of an impulsive response from the application of 

cross-correlation interferometry to SWD data requires an additional processing step. This 

is the removal of the source signature (Wapenaar and Fokkema, 2006). 

As shown by Chapter 3, interferometry can also be accomplished by deconvolution. 

One advantage of deconvolution interferometry over its correlation counterpart is that it 

removes the source function without the need for an extra processing step. The main 

objective of this paper is to validate deconvolution interferometry as a method to recover 

impulsive signals from drill-bit noise without the need for an independent estimate of the 

drill-bit excitation function. 

There are many existing examples of successful applications of SWD technology. Most 

of the SWD methods rely on the so-called pilot sensors to independently estimate the drill- 

bit excitation (Rector and Marion, 1991; Haldorsen et al. 1994; Poletto and Miranda, 

2004). Without relying on pilot records, Miller et al. (1990) design multichannel weight- 
ing deconvolution filters based on statistical assumptions about the source function. The 

monograph by Poletto and Miranda (2004) provides a comprehensive description of pilot 

deconvolution technologies. Some pilot-based SWD methods deconvolve the bit excitation 

directly from the recorded data (e.g., Haldorsen et al., 1994) while most methodologies rely 

on cross-correlations (e.g., Rector and Marion, 1991; Poletto and Miranda, 2004). There is 

a close connection between correlation-based SWD methods and cross-correlation interfer- 

ometry, which we highlight in this paper. Pilot-based SWD technologies can be elaborate; 

the more sophisticated pilot recordings may use dual-field sensors (Poletto et al., 2004) or 

accelerometers mounted close to the drill-bit (Poletto and Miranda, 2004). Recognizing 
that pilot records are imperfect estimates of the drill-bit excitation, Poletto et al. (2000) 

present a statistical technique that further optimizes pilot deconvolution. We promote the 

use of deconvolution interferometry for the cases where pilot signals are absent or provide 

poor estimates of the drill-bit excitation. As described by Poletto and Miranda (2004), 
examples of data for which pilot deconvolution can be unsuccessful are those excited by 

deep drilling wells, deviated wells, or when the drill-bit is below strong geologic contrasts



Ivan Vasconcelos / Interferometry in Perturbed Media 53 

(e.g., below salt). 
The majority of SWD experiments constitute RVSP geometries (Rector and Marion, 

1991; Poletto and Miranda, 2004). Drilling noise has also been used for imaging ahead of 

the drill-bit (i.e., “Look-Ahead” VSP) as shown by Armstrong et al. (2000) and Malusa et 
al. (2002). Armstrong et al. (2000) showed examples of drill-bit imaging in the deep-water 
Gulf of Mexico. Most SWD experiments are conducted onshore with roller-cone drill-bits 

(Poletto and Miranda, 2004). Deep-water offshore applications of SWD technology, such as 

described by Armstrong et al. (2000), are rare. One of the reasons why deep-water offshore 

SWD is uncommon is that pilot records yield poor representations of the bit excitation 

in these conditions (Poletto and Miranda, 2004). With the numerical experiment in this 
paper we demonstrate the potential of interferometry by deconvolution for treating passive 

recordings of drilling noise in deep-water subsalt environments. 

We first review SWD methods based on correlations and pilot deconvolution in the 

context of interferometry. Next, we describe the role of deconvolution interferometry (Chap- 

ter 3) in extracting the impulse response between receivers from drilling noise. Within this 

description, we discuss the applications of the concepts presented by Chapter 3 to elas- 

tic media, and elaborate on how the drill-bit radiation properties influence the recovered 

elastic response. With a numerical example using the Sigsbee salt model, we compare the 

performance of deconvolution and correlation interferometry in passive drill-bit imaging. 

Finally, we present the results of using deconvolution interferometry for the imaging of the 

San Andreas Fault zone from SWD data acquired at Parkfield, CA. 

4.3 Drill-bit seismic imaging and deconvolution interferometry 

In this section we compare existing method for processing seismic-while-drilling data 

with deconvolution interferometry. 

4.3.1 The practice of seismic-while-drilling 

The frequency-domain wavefield measured at r, excited by a working drill-bit at s is 

given by 

u(r4,s,w) = W(s,w) G(r4,s,w), (4.1) 

where G(r,4,s,w) is the impulse response between s and ry, and W(s,w) is the drill-bit 

excitation function. For brevity, we omit the dependence on the angular frequency w in 

subsequent equations. As in most exploration imaging experiments, the objective of drill- 

bit seismology is to image the subsurface from its impulse response, G, which needs to be 

obtained from equation 6.1. The main issue for successful imaging from drill-bit noise is 

removing the imprint of the source function W (Rector and Marion, 1991; Haldorsen et al., 

1994; Poletto and Miranda, 2004). The first complication imposed by drill-bit excitation 

is that the source is constantly active; in other words, the source pulse is as long as the 

total recording time of the data. Additionally, the drill-bit is a source of coherent noise
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that is dominated by specific vibrational modes associated with the drilling process (Po- 

letto, 2005a). These strong drilling-resonant modes give the time-domain drill-bit signature 

a predominantly monochromatic character. Apart from the coherent vibrations, weaker 

random vibrations that occur during drilling make the drill-bit signal wide-band (Poletto, 

2005a). We illustrate these issues in our subsalt example, where we provide a numerical 

model for the drill-bit excitation. 

Current interferometric approaches to processing drill-bit noise records rely on cor- 

relations (e.g., Schuster et al.; 2004, Yu et al., 2004; Poletto and Miranda, 2004). The 

cross-correlation of wavefields measured at r, and rg is, in the frequency domain, given by 

Cap =w(ra,s)u*(rp,s) 
= |W (s)|? G(ra,s) G*(rB,s); (4.2) 

where * stands for complex conjugation. It follows from this expression that the cross- 

correlation is influenced by the power spectrum of the drill-bit source function. In the 

time domain, the power spectrum in equation 4.2 corresponds to the autocorrelation of the 

drill-bit source-time function. This autocorrelation, despite being zero phase, is similar in 

character to the excitation W(s,t): a long, complicated waveform with a monochromatic 
appearance. 

In the majority of drill-bit processing methods presented to date, the removal of the 

drill-bit source function in equation 6.1 (or of its autocorrelation, equation 4.2) relies on an 

independent estimate of the drill-bit excitation. This estimate typically comes in the form of 

the so-called pilot record or pilot trace (e.g., Rector and Marion, 1991; Poletto and Miranda, 

2004). The pilot records are the data acquired by accelerometers placed in the rig/drill-stem 
structure. The most common form of pilot sensor mount is at the top of the drill-string. 

Pilot sensors may also consist of dual-wavefield sensors that measure displacement and strain 

waves (Poletto et al., 2004). The positioning and the type of sensors used in acquiring pilot 
records depends on the specific SWD application. Poletto and Miranda (2004) provide a 

detailed explanation of the different types of pilot sensor technologies and their applications. 

Within the literature on SWD, there are different descriptions of the signal acquired 

by the pilot sensors. Most of these descriptions are based on deterministic physical models 

for wave propagation in the rig/stem/bit system (Rector, 1992; Rector and Hardage, 1992; 
Haldorsen et al., 1994; Poletto and Miranda, 2004). Poletto et al. (2000) and Poletto and 
Miranda (2004) propose a statistical approach for the description of the drill bit signal. Since 
for the purpose of deconvolution interferometry we do not require a particular description 

of the pilot signal, it is convenient to express it in the general form 

P(ra,s) = W(s) Ta(ra;s) (4.3) 

Tq is the transfer function of the drill-stem and rig assembly, and rg is the location of the 

pilot sensor in the assembly. This transfer function includes reflection and transmission 

coefficients of the rig/stem/bit system, drill-string multiples, etc (Poletto and Miranda, 
2004). The autocorrelation of the pilot signal in equation 4.3 gives
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Cpp = |W(s)|? |Ta(ra,s)|? - (4.4) 
From this autocorrelation, and with additional knowledge about Ty, it is possible to design 

a filter F, of the form 

1 
F (Cpp)  ——,. 4.5 ( PP) |W (s)|? ( ) 

We use the notation F (Cpp) to indicate that F is a function of the autocorrelation Cpp. 

The deterministic (Rector, 1992; Rector and Hardage, 1992; Haldorsen et al., 1994; Po- 

letto and Miranda, 2004) or statistical (Poletto et al., 2000; Poletto and Miranda, 2004) 
descriptions of Ty aim to remove its influence (equation 4.3) in the design of the filter F. 

We present F as an approximation of |W(s)| “ in equation 4.5 because the theories that 
are used to eliminate the influence of Tg are approximate (e.g., Rector and Hardage, 1992; 

Poletto and Miranda, 2004). Multiplying the filter F (equation 4.5) by the cross-correlation 
in equation 4.2 gives 

F Cap © G(ra,s)G*(rp,s)., (4.6) 

According to this equation, F removes the power spectrum of the drill-bit excitation from 

the correlation in equation 4.2. The application of F is what is referred to as pilot deconvo- 

lution (Poletto and Miranda, 2004). The SWD RVSP methods rely on the cross-correlations 
of geophone data (equation 6.1) with the pilot signal (equation 4.3) to determine the time 
delay of waves that propagate between the drill-bit and the receivers (e.g. Rector and Mar- 

ion, 1991; Poletto and Miranda, 2004). Note that for these methods it is necessary to know 

the drill-bit position s. Although the most common applications of SWD RVSP correlate 

pilot and geophone signals (equation 4.2 correlates geophone signals), the removal of the 

drill-bit source function is done by pilot deconvolution in a manner analogous to the one 

presented here. 

Following the principles of interferometry (e.g., Lobkis and Weaver, 2001; Wapenaar 

and Fokkema, 2006), the source average of the cross-correlations in equation 4.2 gives 

t Capds = (\W(s)[) (Girasra) + (rasa) ; (4.7) 

the integration is done over a closed surface © that includes all sources s (Chapter 3). Ac- 
cording to equation 6.2, the source average of the cross-correlations gives the superposition 

of the causal and acausal impulse responses between r4 and rg. This response is shaped 

by the source average of the excitation spectrum (|W(s)|?). When using the noise from a 
single drill-bit, source integration reduces to a line integral, rather than an integration over 

a surface. This is not necessarily an issue for interferometry from drill-bit noise for two 

reasons. The first reason is that the desired response (right-hand side of equation 6.2) is 

obtained if the drill-bit samples the stationary source points that give rise to the target ar- 

rivals (Snieder et al., 2006a; Wapenaar and Fokkema, 2006). The second reason is that the 

long recording times employed in drill-bit acquisition can help sampling multiply scattered
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waves. These waves may make up for some of the missing sources that are required by 

the integration in equation 6.2 (Wapenaar, 2006; Chapter 3), depending on the scattering 

properties of the medium. 

The processing of SWD data with correlation interferometry as in equation 6.2 does 

not require knowledge of the drill-bit position s. This was observed by Schuster et al. 

(2004), who, along with the companion paper by Yu et al. (2004), first proposed the use of 
interferometry by correlation for imaging from drill-bit noise. Although not explicitly refer- 

ring to interferometry, Poletto and Miranda (2004) promote the stack of cross-correlations 
over long listening times. In the context of drilling, listening times in the order of days 

translate to varying the drill-bit position s. Hence, in general, the stack of long listen- 

ing times mentioned by Poletto and Miranda (2004) is equivalent to an integration over s 
(equation 6.2). 

The term (|W(s)|*) in equation 6.2 plays the same role |W(s)|? in equation 4.2. The 
average of the excitation power spectra constitutes, in the time domain, a long zero-phase 

waveform with a monochromatic character. The removal of this waveform can also be 

achieved using the pilot record (equation 4.3). Poletto and Miranda (2004) recognize that 
pilot deconvolution can be done before or after stacking over long time records (which is 

equivalent to stacking over s). From integrating the pilot autocorrelation (equation 4.4) 
over sources S we get 

¢ Cppds = (|W(s)|’){|Ta(ra,s)|*). (4.8) 

(|Ta(ra,s)|") is the source average of the transfer function Ty (equation 4.3). Given that a 
model that describes Ty is available (e.g., Rector and Hardage, 1992; Poletto and Miranda, 

2004), the result of integral in equation 4.9 can be used to build a filter such as 

1 
Fav ((Cpp)) © re Te) (4.9) 

(|W (s)I") 
where (Cpp) is the source average represented by the integral in equation 4.9. Applying 
the filter F,, to the integral in equation 6.2 gives 

Fay lf CB as| = G(ra,rB) + G*(ra4,rB); (4.10) 
x 

where the influence of the drill-bit source signature is removed. This is a general repre- 

sentation of pilot deconvolution for the correlation-based interferometry of drill-bit noise 

records. After pilot deconvolution, interferometry by correlations of SWD data yields the 

causal and acausal impulse response for waves excited at rg and recorded at r,4. Poletto 

and Miranda (2004) give a comprehensive review of pilot deconvolution methods. Note that 

the filtering of equation 6.2 by F,, involves deconvolving the source integral of Cag by the 

source integral of Cpp. This approach is similar in concept to deconvolution interferometry 

after source integration described by Chapter 3. 

There are a number of different approaches to processing SWD data. Most of them 

rely on cross-correlation (e.g. Rector and Marion; Poletto and Miranda, 2004). Some of
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these correlation-based processing techniques (e.g., RVSP techniques) require knowledge 

of the drill-bit position s, and apply pilot deconvolution in a manner similar to that in 

equations 4.5 and 4.6. Another approach to treating drilling noise records is to use a source 

average of the cross-correlations (Poletto and Miranda, 2004; Schuster et al., 2004; Yu et 

al., 2004) as in equations 6.2 through 4.10. Although we describe SWD processing by the 

correlation of recordings made by geophones at two arbitrary locations r4 and rg, some 

SWD applications rely on correlations between pilot and geophone signals (Poletto and 

Miranda, 2004). Methods based on pilot trace correlations are affected by the drill-bit source 

function in the same way it affects methods based on geophone correlations. Therefore, the 

pilot deconvolution discussion above also applies to SWD processing by correlating pilot 

and geophone traces (Poletto and Miranda, 2004). The majority of SWD technologies rely 

on the acquisition of pilot records to remove the drill-bit source function. 

4.3.2 Deconvolution interferometry 

We present interferometry by deconvolution as an alternative to processing drill-bit 

noise records. A detailed description of the method and physics of deconvolution interfer- 

ometry is given by Chapter 3. Here, we rely on the key concepts of that work to highlight 

the differences between interferometry by deconvolution and other techniques in SWD data 

processing. We extend the physical interpretation of deconvolution interferometry given by 

Chapter 3 heuristically to elastic media for the special case of single-scattered waves. This 

extension is necessary for the discussion on the processing of the SAFOD SWD data. 

Consider the deconvolution of the wavefield measured at r4 (equation 6.1) with the 
wavefield recorded at rg, given by 

u(ra,s) = u(r4,s) u*(rB,s) 

u(r, 8) ju(re,s)|? 
  Dag = 

(4.11) 
_ G(ra,s) G* (r,s) 

|G(rB,)|? 

This deconvolution cancels the drill-bit source spectrum |W (s)|”, present in cross-correlation 
(equation 4.2). Note that this cancelation occurs without the need for an independent 
estimate of W(s). The next step in deconvolution interferometry is to mimic its correlation- 
based counterpart (see equation 6.2) and integrate equation 4.11 over all sources s. The 

impulsive wavefields G are taken as a superposition of an unperturbed wavefields Go and 

wavefield perturbations Gs (Chapter 3). The perturbations G's can be interpreted as the 

waves scattered by the medium (Chapter 3; Weglein et al., 2003). In this context, in Chapter 

3 we expand the deconvolution in equation 4.11 into a power series over Gs(rg,s)/Go(re,s). 
After integrating over s and keeping the terms that are linear in the scattered waves Gs,
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we get 

¢ Golra,s)GolrB,s) 4, 
= |Go(rp,s)|? 

Dip 

¢ Gs(ra,8)Go(rB»8) 4, 
= |Go(ra,s)|? 

Dip 
f Sota slGo a sGire 
Er Go(re,s) 

3 
Das 

$ Dapds = 
x 

  ds . (4.12) 

  

Following the interpretation of Chapter 3, the term Di, p recovers Go(r4,rg) and 

Go(ra4,rpB), which are the causal and acausal unperturbed impulse responses for waves ex- 

cited at rg and recorded at r4. The term D4, p yields Gs(r,,rg) that describes causal 

scattered waves propagating from rg to r4. Recovering Gs(r4,rg) from D>, B is the ob- 

jective of deconvolution interferometry with the purpose of imaging scattered waves. The 

last term in equation 4.12 describes a spurious arrival that arises from the clamped point 

boundary condition imposed by deconvolution interferometry (Chapter 3). 

As noted above, using deconvolution according to equation 4.11 to process SWD data 

does not require an independent estimate of the drill-bit source function. This is the first 

and main difference between deconvolution interferometry and the majority of correlation- 

based methods used in SWD data processing. Apart from being an alternative method for 

treating data from standard SWD experiments, interferometry by deconvolution would be 

particularly useful when pilot records are either unavailable or are poor estimates of the 

drill-bit excitation function. Poletto and Miranda (2004) provide examples of when pilot 

recordings yield unreliable estimates of the drill-bit source function. This is the case, for 

example, when transmission along the drill-string is weak, when the drilling well is deep (in 

the order of several thousands of feet), or when the drilling well is deviated or when two 
or more nearby wells are drilling simultaneously with the well that is equiped with pilot 

sensors. From the standpoint of removing the excitation function, none of these cases is an 

issue for deconvolution interferometry, as they are for pilot deconvolution. This is because 

equation 4.11 holds regardless of the complexity of the excitation (equation 6.1). 

As in interferometry methods based in correlation (Schuster et al., 1994; Yu and Schus- 

ter, 2004), knowledge of the drill-bit position s is not necessary for the processing of SWD 

data by deconvolution interferometry. The only requirement for the successful application 

of deconvolution interferometry is that the drill-bit must occupy the stationary source loca- 

tions that give rise to targeted scattered waves propagating between the receivers (Chapter 

3; Snieder et al, 2006). Analogously to the method originally proposed by Schuster et al. 

(2004) for the imaging of drill-bit noise, it is possible to use deconvolution interferometry 

to reconstruct primary arrivals from free-surface ghost reflections. 

So far we have only discussed SWD processing and deconvolution interferometry for
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surface 

  

Figure 4.1. Illustration of drill-bit interferometry in elastic media. The red dot indicates 

a drill-bit position that yields a stationary contribution to waves that propagate between 

the receivers (light blue triangles). Red arrows shows the raypaths of pure-mode stationary 

arrivals. The blue arrow represents the oscillatory point-force excitation that describes the 

drill-bit source function. Solid and dashed blue circles denote the P- and S-wave radiation 

patterns, respectively. These radiation patterns follow the description of drill-bit radiation 

by Poletto (2005a). Receiver components, numbered 1 through 3, are oriented according 

to the vectors in the lower left-hand corner of the Figure. The medium consists of a 

homogeneous and isotropic half-space with an irregular reflector 

acoustic media. Now we extend some of these concepts to elastic media, with the objec- 

tive of applying interferometry by deconvolution to multicomponent data. The conclusions 

drawn in our previous discussions on removal of the drill-bit source function, pilot decon- 

volution and deconvolution interferometry also hold for elastic media. Here, the goal is to 

understand what is the result of combining different receiver components when performing 

deconvolution interferometry. We start by defining G@*) (r4,s) as the elastic frequency- 

domain impulse response excited by the k-th component of the source at s, and recorded 

by the i-th component of the receiver at r4. For our purposes it is not necessary to specify 

whether the Green’s functions G@*) pertain to stress or to strain waves (Wapenaar, 2004; 

Wapenaar and Fokkema, 2006). We refer to component orientations according to the 1-, 2- 

and 3-directions in Figure 4.1. Next, we take the deconvolution 

u(r4,s) GO (r4,s)GO)*(rg,8) 
wees) |GG*(rg,s)° 
  D 4iBi = > (4. 13) 

where ul") = W G*) is the recorded data. As in equation 4.11, the source function W 

cancels. It follows from equation 4.13 that D 4ig; is the deconvolution of the i-th component 
of the receiver at r4 with the j-th component of the receiver at rg. We treat G&*) as the
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superposition of the unperturbed wavefield Gee) and the scattered waves Ge) (as in 

Chapter 3). The source integral of equation 4.13 can be expressed in the same three-term 

form of equation 4.12. We call D2, gs the elastic term analogous to D2 p- The is term can 

be expressed as 

/ Ge") (ra, s)G*)* (rp,s) d 
ee _ Ss 

a1 
Disp 2 

leg (r,s) 
x KG) (r4,rp). (4.14) 

where XK is a constant. Following the reasoning given by Chapter 3 in interpreting equa- 
; 2 

tion 4.12, leg *) (yp B; s)| is a slowly varying function of s, and its source average effectively 

gives a constant. The phase of the integrand in equation 4.14 is controlled by the numera- 

tor (Chapter 3). In equation 4.14, 01 is a segment of © that contains the stationary source 

locations that give rise to the desired waves in Gh ) (r4,rg) (Chapter 3 and 2007b). Anal- 
ogously to D>, p (Chapter 3), the term D*, pi yields causal scattered waves that propagate 

from rg tor,. Equation 4.14 states that the scattered waves described by Go Nr A, VB) are 

excited by j-th component of a pseudo-source at rg and are recorded by the i-th component 

of the receiver at rg. As in the acoustic case (equation 4.12), the scattered waves in the 
second line of equation 4.14 are the objective of interferometry. 

According to the Green’s function representation of Wapenaar and Fokkema (2006), 

the full elastodynamic reconstruction of GOD (r A, YB) using cross-correlations requires a 

summation over the index k when integrating over sources, and the separation of P- and 

shear-wavefields at the surface of integration. Draganov et al. (2006) validate the elasto- 
dynamic interferometric reconstruction described by Wapenaar and Fokkema (2006) with 
a numerical example for a heterogeneous model. Although deconvolution interferometry 

(Chapter3) has not been formally extend to elastic media, we expect that the elastodynamic 

reconstruction of gh Me 'A,¥B) by deconvolution interferometry also requires a summation 

over the index k. Note that in equation 4.14, we do not perform a summation over the index 

k as in the approach by Wapenaar and Fokkema (2006). In practice, this means that the 

integral in the first line of equation 4.14 only yields a partial reconstruction of Gh Mer AyTB) 
(second line of equation 4.14). In the case of single-scattered waves reconstructed from the 

interference of transmission and reflection responses (such as the data examples we provide 

in this paper), the partial reconstruction of ey er A,VB) by the use of equation 4.14 can 

yield events with correct kinematics but distorted amplitudes (Draganov et al., 2006). As 
we discuss here with our field data example, a kinematically-consistent reconstruction of 

single-scattered waves using equation 4.14 is sufficient for the structural delineation of fault 

reflectors at the San Andreas fault zone (Chapter 5). 
It is known that the deconvolution of any signal with itself results in a delta function 

(6(t)) in the time domain. For the acoustic case in equation 4.11, this is accomplished by 
setting r4 = rg, which in turn gives the zero-offset trace in deconvolution interferometry.
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In Chapter 3 we show that the time-domain zero-offset response in deconvolution interfer- 

ometry is given by G(rg,rg,t) = 6(t) in arbitrary media. Since deconvolved waves satisfy 

the same homogeneous wave equation as the original waves (Snieder et al., 2006b), spurious 

arrivals are generated by deconvolution interferometry to cancel scattered waves that arrive 

at zero-offset at nonzero times. This represents the effect of an extra boundary condition 

in deconvolution interferometry experiments: the point rg behaves, for the particle velocity 

impulse response, like a clamped point in the medium (see discussion in Chapter 3) In our 

elastic case, setting r4 = rg and i = 7 in equation 4.13 results in unity, this translates to 

the time-domain condition 

Dpipi(t) = 6(€). (4.15) 

This condition does not hold if the receivers at rg and r4 measure different field quantities, 

i.e., one receiver measures stress while the other measures strain. Equation 4.15 holds for 

arbitrarily inhomogeneous and anisotropic media. The condition in equation 4.15 sets a 

different type of boundary condition than those discussed by Chapter 3 for the acoustic 

case, While deconvolution interferometry clamps the point rg for t # 0 in acoustic media, 

in elastic media only the i-th component of the wavefield deconvolution is clamped for 

t £0. Clarifying the physical meaning of the boundary condition imposed by deconvolution 

interferometry in elastic media is beyond the scope of this paper, and is the subject of future 

research. 

Analogously to interferometry by correlation (Wapenaar and Fokkema, 2006; Draganov 

et al., 2006), it follows from equations 4.13 and 4.14 that the orientation of the pseudo-source 

in deconvolution interferometry is dictated by the choice of component of the receiver at rg 

that is used for deconvolution. The choice of component of the receiver at r4 controls the 

orientation of the recording component in the interferometric experiment. From elastic wave 

theory (Aki and Richards, 1980), the analysis of point-source radiation shows that a single 

source component generates impulse responses in all three receiver components, depend- 

ing on the medium properties and on the source/receiver geometry. Because deconvolved 

waves satisfy the same homogeneous wave equations as the original experiment (Snieder 

et al., 2006b), the radiation pattern of the pseudo-source synthesized from deconvolution 

interferometry is controlled by the radiation pattern of the original physical experiment. 

In SWD experiments, the drill-bit can be approximately described by an oscillatory 

force oriented in the local direction of the well (Rector and Hardage, 1992; Poletto, 2005a). 

Figure 4.1 portrays a schematic 2D representation of the drill-bit far-field radiation pattern 

in homegeneous and isotropic media. The radiation pattern shown in Figure 4.1 is similar 

to the point-force radiation pattern (Aki and Richards, 1980), except that the amount of 

drill-bit energy that converts into shear-waves (mostly SV-waves) is considerably larger than 

that from a traditional point-force source (Rector and Hardage, 1992; Poletto, 2005a). In 

Figure 4.1, we depict a drill-bit and instrumented well geometry that is consistent with the 

SAFOD case study, which we discuss in one of the next Sections. The receiver that acts as a 

pseudo-source in Figure 4.1 radiates waves according to the its recorded transmitted wave- 

field (see red arrows in the Figure). The wave modes and polarizations of the transmitted 
waves are dictated by the bit radiation pattern and the source/receiver geometry (Poletto, 

2005a; Aki and Richards, 1980). The physical excitation in Figure 4.1 is associated to a
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vertically-oriented drill-bit point-force, whose radiation pattern (Rector and Hardage, 1992; 

Poletto, 2005a) is illustrated in the Figure. According to the geometry and bit radiation 

pattern in Figure 4.1, the direct waves recorded by the top receiver are P- and S-waves 

polarized in the source/receiver plane. Hence, using the same notation as in equations 4.13 

through 4.14 and assuming the receivers measure only the far-field response, interferometry 

in the context of Figure 4.1 recovers Ge?) (r4,rg). Also, the response Ge?) (r4,Vrgp) is zero 

for i = 3 because SH-wave excitation (polarized in the 3-direction) from a drill-bit source is 
negligible in the conditions of Figure 4.1. From the drill-bit radiation pattern, we see that 

waves propagating along the stationary path depicted by Figure 4.1 (red arrows) carry both 

P- and shear-wave energy. The discussion surrounding Figure 4.1 illustrates how the radi- 

ation properties of the pseudo-source recovered from interferometry depend on the drill-bit 

excitation in SWD experiments. This dependence is model-dependent, and becomes more 

complicated with the introduction of heterogeneity and anisotropy. 

4.4 Subsalt numerical example 

The drill-bit imaging numerical experiment we present here is conducted with the 2D 

Sigsbee salt model (Figure 4.2). In this experiment, we place a long 100-receiver downhole 

array below the salt canopy, in a 45° deviated well. The first receiver is placed at x = 

14630 m and z = 4877 m , and the last receiver is at = 16139 m and z = 6385 m. The 

receivers are evenly spaced; and x and z translate to the lateral and depth coordinates in 

Figure 4.2, respectively. The borehole array records the drilling noise from a vertical well 

placed at x = 14478 m (Figure 4.2). The drill-bit noise is recorded for a drill-bit depth 
interval that ranges from z = 4572m to z = 6705m. The objective of this numerical 

experiment is to show interferometry can recover, from drill-bit noise, up-going single- 

scattered waves that propagate between the receivers, such as the one represented by the 

raypath in Figure 4.2 (represented by the dashed arrow). The up-going scattered waves 

recovered by interferometry of drill-bit noise can be used to image the Sigsbee structure 

from below. 

To replicate drill-bit wave excitation in the numerical experiment, we first modeled 

200 evenly-spaced shots within the drilling interval of interest. These shots were modeled 

by an acoustic finite difference method (Claerbout, 1985). Next, we convolved the shots 
with a 60 second-long model of the drill-bit excitation (Figure 4.3). The model for the drill- 
bit excitation is that of a roller-cone bit (Polleto, 2005a). We add band-limited noise (see 
Figure 4.3) to the model by Poletto and Miranda (2004) to make the drill-bit signal wide- 
band. Similar to the numerical example in Poletto and Miranda (2004), the bit and drilling 

parameters we used in our model are listed in the caption of Figure 4.3. The excitation 

function in Figure 4.3 represents the portion of the drilling energy that is radiated in the 

rock formation (Poletto 2005a, Poletto and Miranda, 2004). 
Figure 4.3a shows the power spectrum of the modeled bit signal, while Figure 4.3b 

shows a portion of the drill-bit source function in the time-domain. As discussed in the 
previous Section, the time-domain drill-bit excitation has a narrow-band character (Fig- 

ure 4.3b) because the source power spectrum is dominated by vibrational drilling modes
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Figure 4.2. Structure of Sigsbee model and schematic acquisition geometry of the drill-bit 

experiment. The colors in the model denote acoustic wavespeed. The dashed black line 

indicates a well being drilled, which excites waves in the medium. The waves are recorded 

in a deviated instrumented well, inclined 45° with respect to the vertical direction. The 

solid line with triangles represents the instrumented well. The dashed arrow illustrates a 

stationary contribution to singly reflected waves that can be used to image the salt flank 

from the drilling noise. 

(Poletto, 2005a; Poletto and Miranda, 2004). This behavior is also present in the data 
recorded by the borehole receivers. The common receiver gather from receiver 50 in Fig- 

ure 4.4a shows that the simulated data is dominated by the character of the drill-bit excita- 

tion function (Figure 4.3b). The records in Figure 4.4a depict a moveout that characterizes 

the direct-wave arrival from the drill-bit. The weak events with positive slopes in the left- 

hand portion of Figure 4.4a are salt-bottom reflections from when the drill-bit is close to 

the bottom of the salt (see geometry in Figure 4.2). 
Interferometry of recorded data such as in Figure 4.4a results in pseudo-shot gathers as 

in Figures 4.4b and c. The use of deconvolution interferometry as shown in the left-hand side 

of equation 4.12 (Chapter 3) for a fixed rg at receiver 50 results in Figure 4.4b. The pseudo- 

shot gather in Figure 4.4c is obtained from correlation interferometry (equation 6.2; e.g., 

Draganov et al., 2006) for the same geometry as Figure 4.4b. Although both Figures 4.4b 

and c represent waves excited by a pseudo-source at receiver 50, the wavefield in Figure 4.4b 

is approximately impulsive, while the data in Figure 4.4c is dominated by the autocorrelation 

of the drill-bit source function. Because the excitation function is canceled in deconvolution 

interferometry (Chapter 3; equation 4.11), the pseudo-source in Figure 4.4 is impulsive. 

The source power spectrum in equation 4.2 results, in the time-domain, in the dominant 

reverberation in the pseudo-shot generated by correlation (Figure 4.4c). When pilot sensors 

are available, pilot deconvolution methods (e.g., Rector and Marion, 1991; Poletto and 

Miranda, 2004) can be employed to remove the source autocorrelation from data such as in
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Figure 4.3. Numerical model of the drill-bit excitation. (a) shows the power spectrum of 
the drill-bit source function. Note that although it is wide band, the power spectrum of the 

source function in (a) has pronounced peaks that correspond to vibrational drilling modes. 

(b) is the drill-bit source function in the time-domain. We show only the first 4 s of the 
60 second-long drill-bit source function used in the modeling. The assumed drill-bit is a 

tri-cone bit an outer diameter of 0.35 m, an inner diameter of 0.075 m and a density of 

7840 kg/m*. Each cone is comprised of three teeth rows as in the example by Poletto and 

Miranda (2004). Drill-string P-wave velocity is of 5130 m/s. The drilling was modeled with 
a weight on bit of 98 kN, torque on bit of 6 kNm, 60 bit revolutions per minute, a rate of 

penetration of 10 meters per hour and four mud pumps with a rate of 70 pump strikes per 

minute. 

Figure 4.4c (equation 4.10). 

Many of the features of the deconvolution pseudo-shot gather in Figure 4.4b are ex- 

plained by the theory presented by Chapter 3; the interferometric shot gather generated 

by deconvolutions shows causal and acausal direct waves, and causal scattered arrivals. 

According to Chapter 3, the zero-offset trace obtained by deconvolution interferometry is 

a band-limited delta function at tf = 0. This can also be observed in Figure 4.4 for the 

trace at receiver 50 (i.e., the zero-offset trace). The presence of this delta function at zero- 
offset imposes the so-called clamped point boundary condition in acoustic media (Chapter 

3). Because of this boundary condition, the gather in Figure 4.4 contains spurious arrivals. 

The visual identification of these arrivals in the gather is not straightforward because the 

recorded wavefield is complicated, given the model complexity (Figure 4.2). These spurious 

arrivals, however, typically do not translate into image artifacts (Chapter 3). 
Given the acquisition geometry in this numerical experiment (Figure 4.2), there is a 

point, to the left-hand side of the receivers, where drill-bit position aligns with the array 

direction. This drill-bit position samples a source stationary point for the direct waves 

that travel between the receivers. At this stationary position, the drill-bit excites waves 

that travel straight down the receiver array. These waves are responsible for the recovery 

of the direct-wave events with positive slopes in Figure 4.4. With the drilling geometry
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Figure 4.4. (a) Synthetic drill-bit noise records at receiver 50. Only 5 s out of the 60 s of 
recording time are shown. The narrow-band character of the records is due to influence of 

specific drilling modes (Figure 4.3a). (b) Deconvolution-based interferometric shot gather 
with the pseudo-source located at receiver 50. (c) Pseudo-shot gather resulting from cross- 

correlation with same geometry as (b). Receiver 1 in (a) and (b) is the shallowest receiver 
of the borehole array (Figure 4.2). 

shown in Figure 4.2 the drill-bit never reaches a position where it aligns with the receivers 

to the right-hand side of the array. Therefore, the drill-bit does not sample a stationary 

source point that emits waves that travel directly upward along the receiver array. Hence, 

the direct-wave events with negative slopes in the pseudo-shot gather (Figure 4.4b) have a 

distorted curved moveout instead of the correct linear moveout shown by the direct waves 

that have positive slopes. A similar phenomenon was observed by Mehta et al. (2006), who 

show that the distortions caused by poor source sampling over stationary source positions 

can be attenuated by tapering the ends of the integrand in equation 6.2. 

We generate interferometric shot gathers such as the ones in Figures 4.4b and c for 

pseudo-sources at each of the receivers in the array. This yields 100 pseudo-shots, which 

are recorded by the 100-receiver array. We use shot-profile wave-equation migration to 

image the interferometric data. The migration is done by wavefield extrapolation with 

the spilt-step Fourier method (Biondi, 2006). The wavefield extrapolation is done in a 
rectangular grid conformal to the receiver array, where the extrapolation steps are taken 

in the direction perpendicular to the array. Figure 4.5 displays the images obtained from 

migrating the pseudo-shot gathers from deconvolution interferometry (Figure 4.5a), and 

from the correlation-based method (Figure 4.5b). 
In interferometric experiments, the image aperture is dictated by the geometry of 

the receiver array (red lines in Figure 4.5). The positioning of physical sources that are 

used in interferometry along with the medium properties control the actual subsurface 

illumination that is achieved by interferometry. When the sources completely surround the
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(a) (b) 
Figure 4.5. Images obtained from drill-bit noise interferometry. The images, in grey scale, 

are superposed on the Sigsbee model in Figure 4.2. Panel (a) is the image obtained 

from shot-profile wave-equation migration of pseudo-shot gathers generated from decon- 

volution interferometry (such as in Figure 4.4b). The image in (b) is the result of migrating 
correlation-based interferometric shot gathers. The red lines in the images represent the 

receiver array. 

receivers, the interferometric pseudo-source radiates energy in all directions, similarly to a 

real physical source (Wapenaar and Fokkema, 2006; Larose et al., 2006). When the physical 

excitation generated by the sources is one-sided (Wapenaar, 2006; Chapter 3), pseudo-source 

radiation is uneven. Therefore, that the subsurface illumination in the images in Figure 4.5 

is controlled by the illumination given by the original drill-bit/receiver geometry. In our 

case, the illumination given by interferometric shots is different from that obtained by 

placing real physical sources at the receiver locations; hence, the resulting image from these 

active shots would be different, in terms of illumination, from those in Figure 4.5. This 

is an important distinction between the imaging interferometric pseudo-shots and imaging 

actual shots placed at the receiver locations. We have to make this distinction because the 

physical sources in the experiment (Figure 4.2) do not constitute the closed surface required 

for equations 6.2 and 4.12 to hold. 

Comparing the images in Figure 4.5 with the Sigsbee model in Figure 4.2, shows 

that the image from deconvolution interferometry (Figure 4.5a) provides a better repre- 

sentation of the subsurface structure than does the image from correlation interferometry 

(Figure 4.5b). The salt reflectors (top and bottom) are better resolved in in Figure 4.5a 
than they are in Figure 4.5b. Also, it is possible to identify subsalt sediment reflectors 

in Figure 4.5a which are not visible in Figure 4.5b. The reflectors in Figure 4.5a are well 

resolved because deconvolution interferometry successfully suppresses the drill-bit source 

function when generating pseudo-shot gathers (Figure 4.4). The image from deconvolution 

interferometry does not present severe distortions due to the spurious arrivals characteristic 

of deconvolution pseudo-shot gathers (Chapter 3). As discussed by Chapter 3, these spu- 
rious events typically do not map onto coherent reflectors on shot-profile migrated images 

like the one in Figure 4.5a. The image from correlation interferometry (Figure 4.5b) por-
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Figure 4.6. Panel (a) shows the large-scale structure of the P-wave velocity field (velocities 
are colorcoded) at Parkfield, CA. The circles in (a) indicate the location of the sensors of the 
SAFOD pilot-hole array used for the recording of drilling noise. The SAFOD MH is denoted 

by the triangles. The location of the SAFOD drill site is depicted by the star. Depth is with 

respect to sea level, the altitude at SAFOD is of approximately -660 m. Panel (b) shows 

the schematic acquisition geometry of the downhole seismic-while-drilling (SWD) SAFOD 
dataset. Receivers are indicated by the light-blue triangles. The structures outlined by 

black solid lines to the right-hand side of the figure represent a target fault. As indicated 

by (b), receivers are oriented in the Z-(or downward vertical), NE- and NW-directions. (b) 
also shows a schematic stationary path between the drill-bit and two receivers. Both panels 

represent Southwest to Northeast (from left to right) cross-sections at Parkfield. 

trays a distorted picture of the Sigsbee structure (Figure 4.2) because the correlation-based 

pseudo-shot gathers are dominated by the power spectrum of the drill-bit excitation (Fig- 

ure 4.4c; equation 6.2). The narrow-bandcharacter of the drill-bit source (Figures 4.3b, 4.4a 

and 4.4c) is responsible for the “ringy” appearance of the image in Figure 4.5b. 

Drill-bit imaging technology based on pilot recordings (e.g., Rector and Marion, 1991; 

Haldorsen et al., 1994; Poletto and Miranda, 2004) provides images that are accurate repre- 

sentations of subsurface geology, such as the image in Figure 4.5a. In the context of SWD, 

deconvolution interferometry is an alternative processing methodology that does neither 

require an independent estimate of the drill-bit source function, nor any assumptions of 

wave propagation within the drill-string. We present the Sigsbee SWD numerical example 

with the intention of modeling a situation where pilot recordings are absent or would yield 

a poor representation of the drill-bit excitation. Our numerical example also demonstrates 

that deconvolution interferometry can also be used for passive drill-bit imaging, where no 

knowledge about the drill-bit position is required.
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Figure 4.7. Drill-bit noise records from the SAFOD Pilot-Hole. Because the drill-bit is 

closest to receiver 26, the data recorded at this receiver, shown by panel (a), is not contam- 

inated by electrical noise. For the same drill-bit position, panel (b) shows the data recorded 
at receiver 23. Panel (c) shows the result of filtering the electrical noise from the data in 
panel (b). These data show the first 3 s of the full records (which are 60 s long). For the 
records shown here, the drill-bit position is practically constant. These data are from the 

vertical component of recording. 

4.5 SAFOD drill-bit data 

The San Andreas Fault Observatory at Depth (SAFOD) is located at Parkfield, CA. 
Its objective is to actively study the San Andreas Fault (SAF) zone from borehole data, as 

well as to monitor the fault zone activity. SAFOD consists of two boreholes, the Pilot-Hole 

(PH) and the Main-Hole (MH). The geometry of the PH and MH relative to the to surface 
trace of the SAF is displayed in Figure 4.6a. The data we analyze consists of the noise 

excited by the drilling of the MH, recorded by the 32-receiver array permanently placed in 

the PH. The geologic context of this experiment and the full interpretation of the results 

we show here, along with active-shot seismic data, are presented in Chapter 5. We focus 

here on the use of deconvolution interferometry to obtain an image of the SAF, and on the 

differences between the deconvolution- and correlation-based approaches in the processing 

of the SAFOD SWD data. 

The main objective of the SAFOD borehole SWD experiment is to provide broadside 

illumination of the SAF that is not possible from surface measurements. Figure 4.6b illus- 

trates how single reflections from the SAF can potentially be recovered by the drilling noise 

records measured at the SAFOD PH array. The stationary path indicated by the red and 

black arrows in Figure 4.6b shows that the interference between the drill-bit direct arrivals 

with fault-scattered waves can be used to reconstruct primary fault reflections propagating 

between the receivers. Because the distance between the MH and PH is only in the order
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Figure 4.8. Pseudo-shot gathers from deconvolution interferometry. In these gathers, re- 

ceiver 26 acts as a pseudo-source. Each panel in the Figure is the result of deconvolving dif- 

ferent combinations of receiver components: the deconvolution of the Z- with Z-components 

yields (a), Z- with NE-components give (b), NE- with NE-components result in (c), and 
NW- with Z-components yield (d). Physically, panel (a) shows waves recorded by the ver- 
tical component for a pseudo-shot at receiver 26, excited by a vertical point-force. (b) is 

also the vertical component for a pseudo-shot at PH-26, but unlike the wavefield in (a), 

it represents waves excited by a point-force in the NE-direction. Likewise, (c) pertains 

to both excitation and recording in the NE-direction, while waves in (d) are excited by a 
vertical point-force and are recorded in the NW-direction. The red arrows show reflection 

events of interest. Note that receiver 32 is the shallowest receiver in the SAFOD PH array 

(Figure 4.6). Receiver spacing is of 40 m. The component orientations we use here are the 

same as those in Figure 4.6b. 

of 10 meters (Boness and Zoback, 2006), the drill-bit only gives stationary contributions to 

waves emanating from a given receiver when drilling next to that receiver. This is an impor- 

tant consideration in identifying which portion of the recorded data is useful for processing 

(see below). 
The acquisition of the SAFOD PH drill-bit noise records began in June 2004, and 

continued until late August 2004 (Taylor et al., 2006). The MH intersected the PH on 
July 15'* (Figure 4.6a). The drill-bit noise recorded after the MH crossed the PH is not 
of interest for our interferometry purposes because, unlike the drill-bit positions illustrated 

by Figure 4.6b, it does not yield stationary contributions that give primary fault reflections 

that propagate between the receivers. Due to field instrumentation issues (S. T. Taylor, 

2006; personal communication), most of the data recorded by the PH array before July 

15" consists of electrical noise only. A window of approximately 20 hours prior to the 

intersection of the PH by the MH coincides with the portion of the PH data for which the
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instrumentation problem was fixed. The data acquired within this window are used in the 

analysis we show here. 

According to the MH drilling records, the depth interval that was sampled by the usable 

drill-bit data extends from approximately 350 m to 450 m (in the scale in Figure 4.6a). We 
use the data recorded in this interval to generate interferometric shot records. Within the 

350-450 m bit interval, the drill-bit passes by the PH receiver 26. Since the stationary 

contributions of the sources to recovering primary reflections from the SAF only occur 

when the bit is next to a receiver, the data recorded by receiver 26 in the depth interval 

of 350-450 m can be used as the filter for interferometry. This translates to setting rp in 

equations 6.2, 4.12 or 4.13 to the coordinates of receiver 26. Hence, out of the 32 receivers 

of the SAFOD PH array, it is only possible to create interferometric shot gathers with a 

pseudo-source at receiver 26. 

A small portion of the recorded data is shown in Figure 4.7. The data in Figure 4.7a are 

from the vertical component of receiver 26, while the data in Figures 4.7b and c correspond 

to receiver 23. Since the records shown in Figure 4.7 are subsequent recordings of the drill- 

bit noise of 1 minute duration (of which only the first 3 s are shown in Figure 4.7), the 
drill-bit position for the records in the Figure is practically constant. The data recorded 

by receiver 26 shown in Figure 4.7a are low-pass filtered to preserve signal up to 75 Hz. A 

similar filter, preserving frequencies up to 55Hz, is applied to the original data from receiver 

23 in Figure 4.7b, resulting in the data in Figure 4.7c. The data recorded by receiver 23 

(Figure 4.7b) is heavily contaminated by electrical noise, at frequencies of 60, 120 and 180 

Hz. This electrical noise is practically negligible in the data from receiver 26, as shown 

by Figure 4.7 where the 60 Hz monochromatic oscillation cannot be seen. Because the bit 

is close to receiver 26, the drilling noise is louder than the electrical noise in Figure 4.7a. 

After low-pass filtering, the data from receiver 23 (Figure 4.7c) shows a similar character 

to that from receiver 26 (Figure 4.7a). As discussed in previous sections (and illustrated by 
Figure 4.3), the SAFOD drill-bit noise data shows a narrow-band character, typical of the 

vibrational modes from drilling. The drilling of the SAFOD MH was done with a roller-cone 

bit. 
A critical issue with the processing of the SAFOD SWD data is that pilot records are 

not available. Drill-string accelerometers were not placed in the SAFOD rig until August 

2004 (Taylor et al., 2006), after the acquisition of the SAFOD PH data we process here. 
Since no pilot records are available, pilot-based SWD processing (Rector and Marion, 1991; 

Haldorsen et al., 1994; Poletto and Miranda, 2004) cannot be applied to the PH drill-bit 

data. Thus, these data are a natural candidate for the application of deconvolution interfer- 

ometry. Figure 4.8 shows four pseudo-shot gathers derived from deconvolution interferom- 

etry using different combinations of receiver components (see equations 4.13 through 4.14). 

We only display the traces for receivers 15 through 32 in Figure 4.8 because electric noise in 

receivers 1-14 prevents the recovery of coherent signals. Before computing the pseudo-shots 

in Figures 4.8 and 4.9, all data were low-passed to preserve frequencies up to 55 Hz. For 

the interferometry, we divide each minute-long record into two 30-second long traces. With 

approximately 20 hours of recording time, the resulting traces in the pseudo-shot records 

are the result of stacking in the order of 2000 deconvolved or correlated traces (see equa-
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Figure 4.9. Pseudo-shot gathers from correlation interferometry. Here, each panel is asso- 

ciated to the correlation of the same receiver components as in the corresponding panels in 

Figure 4.8. The physical interpretation of excitation and recording directions is the same 

as for Figure 4.8. Unlike the data in Figure 4.8, the source function in these data is given 

by the autocorrelation of the drill-bit excitation. 

tions 6.2 and 4.12). For a discussion on our numerical implementation of deconvolution, see 

Appendix A. 

The panels in Figure 4.8 show that combining different components in deconvolution 

interferometry yields different waveforms. Scattered arrivals, indicated by red arrows, can 

be identified in Figures 4.8a and b, but not in c and d. The first reason for the difference 

between the results in the four panels of the Figure lies in equations 4.13 through 4.14. 

According to these equations, deconvolving data recorded in the i-component with data 

recorded by the j-component results in the interferometric impulse response recorded by 

the 7-component and excited by the 7-component. This means that the data in Figure 4.8a 

represents a vertical excitation at receiver 26 recorded by the vertical component at all 

receivers. Likewise, Figure 4.8b represents a vertical excitation and the recording of data in 

the Northeast direction (NE-component). Similar interpretations follow for the other two 
panels in the Figure, and are given in the Figure caption. 

In Section 4.3.2, we discuss the influence of the drill-bit radiation properties on the 

radiation pattern of the pseudo-source synthesized by interferometry. The radiation char- 

acteristics of the pseudo-source together with signal-to-noise ratio in different recording 

components of the receiver away from the drill-bit (and from receiver 26) is also responsible 

for the differences between the panels of Figure 4.8. Because coherent arrivals can be seen 

in Figures 4.8a and b, two conclusions can be drawn. First, the signal-to-noise ratio in the 

vertical component (Z-component) of the receivers is sufficiently high to record scattered 

waves. Second, Figure 4.8a shows that the recorded drill-bit direct wave has nonzero po-
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larization in the Z-direction. This is caused by the fact that the pseudo-source radiation 

is controlled by the radiation pattern of the bit (Section 4.3.2), and this case most of the 
energy radiated by the bit is polarized in the vertical direction. 

Since Figure 4.8b shows coherent events (indicated by red arrows) that are recon- 
structed from energy recorded by the Northeast component, it follows that the direct-wave 

response from the bit excitation has a nonzero polarization component in the NE-direction 

as well. In these data, receiver 26 records drill-bit direct waves polarized both in the Z- 

and NE-directions because the receiver is in the bit’s near-field (the PH and MH are a few 
meters apart). The measured near-field response to an excitation in the Z-direction (the 

drilling direction is close to vertical) is polarized both in the vertical and in-plane horizontal 

components (Aki and Richards, 1980; Tsvankin, 2001). The waves scattered from the SAF 

have far-field polarization because the fault zone is approximately 2 km away from the PH. 

The lack of scattered signals in Figures 4.8c and d are mostly have a poor signal-to-noise 

ratio in the the Northeast and Northwest components (NE- and NW-components) of the 
receivers far from the bit. 

The zero-offset trace (the trace at receiver 26) in Figures 4.8a and c is a band-limited 
delta function centered at t = 0. This is a demonstration of the deconvolution interfer- 

ometry boundary condition in equation 4.15. The acoustic counterpart of this boundary 

condition generates introduces spurious arrivals in the pseudo-shot gathers (Chapter 5). In 

Figure 4.8a, we do not observe pronounced spurious arrivals associated with the scattered 

events (marked by red arrows). As highlighted in Section 4.3.2, the boundary condition in 

equation 4.15 does not have the same physical meaning as in the acoustic case (Chapter 3). 

A thorough understanding of the physical meaning of equation 4.15 is beyond the scope of 

this paper. 

The pseudo-shot gathers in Figure 4.8 were generated by deconvolution interferometry 

while the ones in Figure 4.9 are the result of correlation interferometry (e.g., Wapenaar, 

2004; Draganov et al., 2006). Analogously to the observations made in the previous Sec- 

tion, the correlation-based interferometric shot gathers (Figure 4.9) are influenced by the 
autocorrelation of the drill-bit source function, giving them a monochromatic appearance. 

The scattered events seen in Figures 4.8a and b cannot be identified in Figures 4.9a and 

b. In a more standard SWD processing routine, the autocorrelation of the source function 

could be removed from the data in Figure 4.9 by means of pilot deconvolution (Rector and 

Marion, 1991; Poletto and Miranda, 2004). We reiterate that this type of processing is not 

possible in our case because pilot records are not available. 

Together with geologic information from the MH data and with an active shot acquired 

by sensors in the MH, in Chapter 5 we associate the event arriving with a zero-offset time 

of approximately t = 1.0 s (second arrow from top) in Figures 4.8a and b to the primary P- 
wave reflection from the SAF. The event at 0.5 s (marked by top arrow) is the reflection from 
a blind fault zone that was intercepted by the SAFOD MH (Solum et al., 2006; Boness and 

Zoback, 2006). The bottom arrow in Figure 4.8a indicates a an event with approximately 

2.0 s of zero-offset time that whose slope is determined by shear-wave velocity. We interpret 

this arrival as a pure-mode shear-wave reflection from the SAF. Since only the pseudo-shots 

in Figures 4.8a and b present physically meaningful arrivals, we only show migrated images



Ivan Vasconcelos / Interferometry in Perturbed Media 73 

x(m) x(m) 
0 1000 2000 0 1000 2000 

   ; _ KG | 

: pak 

7    
(d) 

Figure 4.10. Shot-profile wave-equation images of interferometric shot gathers with a 

pseudo-source at receiver 26. The left panels are the result migrating pseudo-shot gathers 

from deconvolution interferometry while the panels on the right result from cross-correlation. 

The migration of the data in Figure 4.8a and b gives panels (a) and (c), respectively. Analo- 
gously, panels (b) and (d) are obtained from migrating the data in Figures 4.9a and b. The 
yellow boxes outline the subsurface area that is physically sampled by P-wave reflections. 

The data were migrated with the velocity model in Figure 4.6a.
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Figure 4.11. Final images from the interferometry of the SAFOD drill-bit noise recordings. 

The image in (a) is the result of stacking the images from deconvolution interferometry 

in Figures 4.10a and c. The right-hand side arrow shows the location of San Andreas 

Fault reflector. The other arrow highlights the reflector associated to a blind fault zone at 

Parkfield. The stack of the images from correlation interferometry in Figures 4.10b and d 

gives the image in (b). We muted the portion of the stacked images that is not representative 

of physical reflectors. The area of the image in (a) and (b) corresponds to the area bounded 
by yellow boxes in Figure 4.10.
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from these two panels. 

The migration of the pseudo-shot data was done with the same methodology as in 

the Sigsbee numerical example. We use shot-profile migration by wavefield extrapolation 

(Biondi, 2006), where the extrapolation steps are taken in the horizontal coordinate away 

from the SAFOD PH (Figure 4.6). Migrated images are shown in Figure 4.10. The images of 
the pseudo-shots from deconvolution interferometry (left panels) show reflector-like features 

that cannot be identified on the images from correlation interferometry (right panels). The 

images from correlation-based pseudo-shots have a narrow-band character that is similar 

to that of the pseudo-shots themselves, caused by the presence of the autocorrelation of 

the drill-bit excitation function (Figure 4.9). This is the same phenomenon we show in the 
images from the Sigsbee model (Figure 4.5), with the difference that the Sigsbee images 

are produced from 100 pseudo-shots. Because the SAFOD images result from migrating 

a single shot, the reflectors are curved toward the edges of the images (top and bottom 

of images in Figure 4.10) due to effect of the migration operator and the relatively small 

aperture of the receiver array used to reconstruct the data. 

The final image from the SAFOD SWD data was obtained by stacking the top im- 

ages with the bottom ones in Figure 4.10. We do this with the intention of enhancing the 

reflectors that are common in both images. The final SAFOD images are shown in Fig- 

ure 4,11. Figure 4.11 only shows the portion of the images that yield physically meaningful 

reflectors, which is highlighted by the yellow rectangles in Figures 4.10a and c. The image 

from deconvolution interferometry (Figure 4.1la) shows reflectors that cannot be seen in 
the image from correlation interferometry (Figure 4.11b). In Chapter 3 we show that the 

reflector at x ~ 2000 m indicated by the right arrow coincides with the contact of the SAF 

with metamorphic rocks to the Northeast. The reflector at x ~ 1600 m coincides with a 

possibly active blind fault zone at Parkfield. The observations made in Chapter 5 are based 

on the data we present here together with active-shot data measured at the MH and with 

fault intersection locations from the MH (Solum et al, 2006; Boness and Zoback, 2006). 

4.6 Discussion and conclusions 

We present the method of interferometry by deconvolution, described by Chapter 3, 

as an alternative to the processing of seismic-while-drilling (SWD) data. In these types 

of datasets, the signature of the drill-bit source function complicates the recovery of the 

subsurface response (e.g., Poletto and Miranda, 2004). Most SWD processing methods rely 
on the so-called pilot sensors to obtain an independent estimate of the drill-bit excitation 

that is used to remove the drill-bit source function (Rector and Marion, 1991; Haldorsen 

et al., 1994; Poletto and Miranda, 2004). Here, we review SWD methods based on pilot 

recordings in the context of seismic interferometry by cross-correlations (e.g., Poletto and 

Miranda, 2004; Draganov et al., 2006). The method of deconvolution interferometry is 

capable of recovering the subsurface response from SWD data without the need for an 
independent estimate of the drill-bit excitation. Additionally, the knowledge about the drill- 

bit position is not a requirement for the application of interferometry (see also Schuster et al., 

2004), as it is for other SWD applications (e.g., Poletto and Miranda, 2004). Interferometry
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requires, however, that the drill-bit must sample the source stationary points that give rise 

to the target scattered waves (Chapter 3; Snieder et al, 2006). 

Extending concepts presented by Chapter 3, we discuss the application of deconvolu- 

tion interferometry in elastic media. With physical arguments we state that the interfero- 

metric response obtained by the deconvolution of the i-component of a given receiver by the 

j-component of another receiver results in single-scattered waves that propagate between 

these two receivers. These waves are the impulse response from a j-oriented point-force ex- 

citation at one of the receivers, recorded by the i-component at the other receiver. Because 

the deconvolved data satisfies the same wave equation as the original physical experiment, 

the radiation properties of the drill-bit (Poletto, 2005a) determine the radiation pattern of 

the pseudo-source synthesized by interferometry. In the case of receivers positioned far from 

the drill-bit and highly heterogeneous media, deconvolution interferometry can potentially 

extract a response that is closer to a full elastic response, as discussed by Wapenaar and 

Fokkema (2006). 
Our numerical experiment with the Sigsbee model seeks to reproduce a passive subsalt 

SWD experiment where pilot recordings are absent. Using modeled drill-bit noise (Poletto, 

2005a), we produce images of the Sigsbee salt. canopy from the receiver array sitting below 

the salt. The image from deconvolution interferometry provides a reliable representation 

of the structure in the model because the deconvolution removes the drill-bit excitation 

function from the data. When distorted by the dominant vibrational modes of the drill-bit 

source function, the image from correlation interferometry gives a poorer representation 

of the model structure when compared with the deconvolution image. The choice of the 

Sigsbee model shows the feasibility of the passive application of drill-bit imaging in subsalt 

environments. SWD typically is not done in such environments because the wells are deeper 

than they are onshore, and the transmission through the drill-string is weaker which makes 

rig pilot records unreliable estimates of the drill-bit excitation (Poletto and Miranda, 2004). 
Additionally, many subsalt wells are drilled with PDC bits, which radiate less energy than 

the roller-cone bit (Poletto, 2005a). The signal from PDC bits is thus difficult to measure 
from the surface or from the sea bottom. This difficulty can be overcome with downhole 

receiver arrays, as in our example. Although we used a model for a roller-cone bit, we expect 

results of deconvolution interferometry of noise records from PDC bits (Poletto 2005a) to 
be similar to ours . 

Using field data acquired at the Pilot Hole of the San Andreas Fault Observatory at 

Depth (SAFOD), we validate the method of deconvolution interferometry in recovering the 
impulse response between receivers from drill-bit noise records. The SAFOD SWD data 

are ideal for the application of deconvolution interferometry because pilot recordings are 

not available. From interferometry by deconvolution, we synthesize scattered waves that 

propagate from receiver 26 toward the other receivers that are not visible in pseudo-shot 

gathers from correlation interferometry. Single-scattered P-waves were obtained mostly by 

the deconvolution of the vertical component of recording of the PH receivers, with the ver- 

tical and Northeast components of receiver 26. Shot-profile migration of the interferometric 

shots generated by deconvolution yield coherent reflectors. From the images presented here 

together with active-shot data and fault intersection locations from the MH, in Chapter 5
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we identify the San Andreas Fault reflector as well as a possibly active blind fault at Park- 

field, CA. Their conclusions rely on the processing we describe here, where interferometry 

by deconvolution plays an important role in imaging the fault reflectors (Chapter 3). 

More than just an alternative to processing SWD data as it is typically acquired, 

deconvolution interferometry opens possibilities for using passive measurements of drill-bit 

or rig noise for imaging. Poletto (2005b) provides a thorough comparison between drill-bit 

and conventional seismic sources. The fact that seismic interferometry techniques do not 

require knowledge about the source position allows for pseudo-acquisition geometries that 

cannot be accomplished by standard SWD experiments. The geometries in of the Sigsbee 

and SAFOD datasets presented in this paper are examples of non-conventional acquisition 

that can be treated by interferometric techniques. The use of the free-surface ghosts to 

reconstruct primary reflections that propagate between receivers (Schuster et al., 2004; Yu 

et al., 2004) is another example where deconvolution interferometry can also be applied. 

Interferometry of internal multiples (Chapter 6) can potentially be accomplished from SWD 

as well. The passive imaging from working drill-bits could help in the monitoring of fields in 

environmentally sensitive areas, where active seismic experiments are compromised. These 

areas now become more of a concern as the search for unconventional reservoirs increases. 

One such area is the Tempa Rossa field in Italy (D’Andrea et al., 1993). While active 
seismic activity in this field is hindered by environmental regulations, its future production 

is expected to reach 50000 oil barrels per day. Environment-friendly seismic monitoring of 

oil fields like Tempa Rossa could potentially be accomplished with recordings of the field’s 

drilling activity and with deconvolution interferometry. 
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Chapter 5 

Broadside imaging of the San Andreas Fault! 

5.1 Summary 

The San Andreas Fault Observatory at Depth provides perhaps the most compre- 

hensive set of data on the structure and dynamics of the San Andreas fault. We use two 

independent experiments recorded by the seismometer arrays of the SAFOD Pilot and Main 

Holes to resolve the localized structure of the San Andreas fault zone and of an intermedi- 

ate fault zone at depth. From Pilot Hole recordings of the drilling noise coming from the 

Main Hole, we reconstruct the waves that propagate between the Pilot Hole sensors and 

use them to image the fault zone structure. The use of correlated drilling noise leads to 

a high-resolution image of a major transform fault zone. Another independent image is 

generated from the detonation of a surface explosive charge recorded at a large 178-sensor 

array placed in the Main Hole. The images reveal the San Andreas fault as well as an ac- 

tive blind fault zone that could potentially rupture. This is confirmed by two independent 

methods. The structure and the activity of the imaged faults is of critical importance to 

understanding the current stress state and activity of the San Andreas fault system. 

5.2. The SAFOD project 

The San Andreas Fault Observatory at Depth (SAFOD) was conceived to closely 

study and monitor the earthquake dynamics and structure of the San Andreas Fault (SAF) 

at Parkfield, CA (http://www.icdp-online.de/sites/sanandreas/index/index.html). Char- 
acterizing the structure and dynamics of the SAF strike-slip system is crucial for under- 

standing the geodynamics of transform plate boundaries and their associated seismicity. In 

particular, the SAF at Parkfield has historically been seismically active, with seven cata- 

logued earthquakes of magnitude six approximately (Bakun and McEvilly, 1984; Roeloffs 

and Langbein, 1994); the latest one occurred in September 2004 (Kerr, 2006). 
Consisting of a vertical borehole, the Pilot Hole (PH), and of a deviated well that 

intersects the SAF, the Main Hole (MH), SAFOD is designed to sample and monitor the 
SAF system from within the subsurface at Parkfield. Together with surface observations, 

data from SAFOD already contributed greatly to the understanding of the SAF system 

at Parkfield. Figure 5.1a is a scaled schematic cartoon that summarizes and connects 

results from several publications that analyze data from the SAFOD site. Much of the 
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Figure 5.1. Panel (a) shows our current knowledge of the structure of the San Andreas 
fault system at Parkfield, CA. The main geologic formations are indicated by different 

colors and by their corresponding acronyms, these are: the Tertiary Ethegoin (Te), Tertiary 

Ethegoin-Big Pappa (Tebp), Tertiary undifferentiated (Tund), Cretaceous Franciscan rocks 
(Kfr), Cretaceous Salinian Granite (Ksgr), and the pre-Cretaceous Great Valley (pKgv). 
The SAFOD main-hole (MH) is indicated by the blue solid line. Black solid lines in (a) 
represent faults. BCFZ refers to the Buzzard Canyon Fault zone. The areas where the 

finer-scale structure of the SAF system were unknown are indicated by question marks. 

The red triangles, numbered 1 through 5, show approximate locations of intersections of 

the MH with major zones of faulting (Solum et al., 2006). Triangle number 5 represents the 

point where the MH penetrated the SAF in 2006. Panel (b) shows the large-scale structure 

of the P-wave velocity field (velocities are colorcoded) that approximately corresponds to 

the schematic representation in (a). The circles in (b) indicate the location of the sensors 
of the SAFOD pilot-hole array used here for the recording of drilling noise. The SAFOD 

MH array, used in the active-shot experiment, is indicated by the triangles. The location 

of the active shot is depicted by the star. Depth is with respect to sea level, the altitude at 

SAFOD is of approximately —660 m. 

   

information on the surface geology and on the basement and sedimentary structures at 

Parkfield comes from geologic mapping (Rymer et al., 2003) and from surface refraction 

(Catchings et al., 2003) and reflection (Hole et al., 2001; Catchings et al., 2003) seismic data. 
The lateral delineation of the Salinian granite to the SW of the SAF has also been inferred 

from magnetotelluric (Unsworth et al., 2000; Unsworth and Bedrosian, 2004) measurements 

and from joint inversion of gravity and surface seismic data (Figure 5.1b; Roecker et al., 

2004; and Thurber et al., 2004). Analysis of PH rock samples (Solum et al., 2004) and of 

their in-situ physical properties (Boness and Zoback, 2004) helped determine the lithology 

and the stress state around the PH. Likewise, recent studies of rock samples from drilling 

(Solum et al., 2006) and well-logs (Boness and Zoback, 2006) from the MH have shed light 
on the subsurface geology along the SAFOD MH. It was not until 2006 that the SAFOD MH 

first intersected the SAF (Figure 5.1a), and the upcoming coring of the SAF system during 

the Phase 3 drilling of the MH (summer 2007) promises to bring important information on 

the internal composition of the SAF.
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Figure 5.2. Schematic acquisition geometries of SAFOD data. Receivers are indicated by 

the light-blue triangles. The structures outlined by black solid lines to the right-hand side 

of the figure represent a target fault. (a) shows the acquisition geometry of the downhole 

seismic-while-drilling (SWD) dataset. It consists of multiple 60 second-long recordings 
of drill-bit noise excited at different depths, recorded at 32 3-component receivers in the 

PH. As indicated by (a), receivers are oriented in the Z-(or downward vertical), NE- and 
NW-directions. (a) also shows a schematic stationary path between the drill-bit and two 
receivers. Interferometry recovers only the portion of the propagation path represented 

by black arrows in (a). The active-shot geometry in (b) is comprised of 178 3-component 
receivers placed in the MH. The dashed red arrow in (b) represents all waves that propagate 

towards the NE (right-hand side of the figure), while the solid red line represents all waves 

going toward SW (left-hand side of (b)). The inclination of the deviated portion of the MH 
is of about 45° with respect to the vertical. The receiver components of the SAFOD MH 

array are co-oriented with those of the PH array, whose orientations are shown in (a). 

Previous to the drilling of the SAFOD MH, microseismic events along with surface 

active-shots recorded at the PH seismometer array were used to make some of the first 

images of the SAF at depth (Chavarria et al., 2003) which also contributed much to our 
understanding of the subsurface geology at Parkfield (Figure 5.la). As a continuation of 

the subsurface imaging at Parkfield, we use drilling noise recorded at the PH and an active- 

shot experiment recorded at the SAFOD MH to obtain high-resolution images of the SAF 

system between depths of 0 to approximately 1.5 km (from sea level; this corresponds to 

approximately 0.6 to 2.1 km from the surface). These images help to resolve the wave- 

scattering structures associated to the SAF as well as at least one other heavily faulted 

zone between the SAFOD drilling site and the SAF. Images such as the ones we present 

here are critical for the development of detailed models of the SAF plate and earthquake 

dynamics.
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Figure 5.3. (a) Vertical component of the interferometric shot gather for a pseudo-shot 

position at pilot-hole receiver PH-26. Red arrows indicate reflections of interest. The 

reflection event that arrives at approximately 1.0 s at receiver PH-24 is interpreted to 

correspond to a P-wave reflection from the SAF zone. Due to the noise levels, only a subset 

of the 32 receivers of the PH array is sensitive to the incoming signals from the SAF zone. 

(b) Data recorded by the vertical component of motion in the SAFOD MH array from the 
active-shot experiment. The red arrows indicate two left-sloping events that are associated 

to P-wave reflections from faults within the SAF system. 

5.3 Imaging the SAF from passive and active seismic data 

The SAFOD data we use were acquired in two experiments. The first experiment was 

carried out in July 2004, when the SAFOD PH receiver array (Figure 5.1b) was switched on 
to constantly monitor the drilling noise during the early stages of the drilling of the SAFOD 

MH. We used the drill-bit noise recordings of the SAFOD PH array to create an image of 

the SAF. In a second independent experiment, conducted in 2005, a large 178-receiver array 

was placed in the SAFOD MH (Figure 5.1b) to record the active shooting of an 80-pound 
explosive charge placed at the surface near the SAFOD MH. We also used this shot record 

to image the SAF. These two experiments differ not only on the geometry of the data 

acquisition (i.e., source and receiver positioning), but also in the physical character of the 

excitation that generates the recorded waves. To account for the differences between the
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(a) (b) 
Figure 5.4. (a) Short samples of sequential recordings of drilling noise from the receiver PH- 

26. The visually monochromatic character of the records is due to drilling vibrational modes. 

(b) Vertical component of the interferometric shot gather for a pseudo-shot position at pilot- 

hole receiver PH-26. The recording at (b) represents waves excited by a vertical point-force. 

(c) is also the vertical component for a pseudo-shot at PH-26, but unlike the wavefield in (b), 
it represents waves excited by a point-force in the NE-direction. The complicated character 

of the drilling noise in (a) is attenuated by the interferometry procedure that produces the 

data in (b) and in (c). Note that receiver PH-32 is the shallowest receiver in the SAFOD 
PH array (see Figure 1b in main text). 

    3.0   

PH and the MH data, we applied different processing to each dataset and to subsequently 

produce the images. Figure 5.2 provides schematic representations of the data acquisition 

geometry for the PH drill-bit noise recordings and for the MH active-shot experiment. 

To create an image of the SAF zone from the drill-bit noise records we rely on the 

concept of seismic interferometry (Curtis et al., 2006; Larose et al., 2006). Interferome- 

try recovers the response between any two receivers in an arbitrarily heterogeneous and 

anisotropic medium as if a source was placed at one of the receiver locations(Lobkis and 

Weaver, 2001; Snieder et al., 2006). We only briefly highlight the issues of interferometry 

that are of particular concern to the processing of the SAFOD PH drilling noise records. 

Typically, interferometry makes use of cross-correlations between recorded data to re- 

cover waves propagating between receivers (Lobkis and Weaver, 2001). By doing so, the re- 

covered receiver response includes an average of the power spectra of the excitations(Lobkis 
and Weaver, 2001, Snieder et al., 2006). Removing the contribution of the source power
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spectrum is an issue when recovering signals from drill-bit noise because in this case the 

wave-generation mechanism is constantly active, and the spectrum is heavily dominated by 

specific vibration modes associated to the drilling process (Poletto and Miranda, 2004). An 
example of this behavior from SAFOD PH-array records can be found in Figure 5.4a. 

It is possible, however, to remove the drill-bit source signature from drilling noise 

records (Poletto and Miranda, 2004). The standard industry practice is to estimate the 

drill-bit signature by placing accelerometers on the drill-stem (Poletto and Miranda, 2004; 

Rector and Marion, 1991). This estimate is then used to extract the drill-bit noise signa- 
ture from the cross-correlations of the recorded data, leaving only the approximate impulse 

response of the Earth (Lobkis and Weaver, 2001; Poletto and Miranda, 2004). Following 

this accelerometer-based approach, drill-bit imaging has been previously applied to sur- 

face recordings of MH drilling noise at Parkfield (Taylor et al., 2005). In our case, such 

accelerometer recordings are not available. As an alternative to interferometry by cross- 

correlations, we used an interferometry technique based on deconvolutions (Chapter 3). 
This technique synthesizes the response between receivers from incoherent excitations as 

if one of the receivers acted as a pseudo-source, while canceling the effect of the drill-bit 

source signature without the need for drill-stem accelerometers. 

In Figure 5.3a we show the result from processing approximately 17 hours of drilling 

noise records into a shot record with a pseudo-source at receiver PH-26. With the pseudo- 

source centered at 0 s, PH-26 acts as the pseudo-shot responsible for the excitation of 

waves (Chapter 3). Figure 5.3a shows the direct wave that propagates from receiver PH-26 

and is recorded at the other receivers. The reflection events highlighted in Figure 5.3a are 

caused by faults in the SAF system. The data in Figure 5.3a represents waves excited by 

a vertically-oriented force (see Figure 5.4). In addition, we are also able to recover the 
excitation at receiver PH-26 associated to a Northeast-oriented force (see Figure 5.4c). The 
SAFOD interferometric image we will discuss here is a product from imaging the pseudo- 

shots at PH-26 excited by forces oriented both in the vertical and in the Northeast (NE) 
directions. 

Unfortunately, out of almost two months of recording drilling noise at the PH array, 

only about a day and a half of the data is useable for interferometry purposes due to data 

acquisition problems. Within this time window, the drill-bit is closest to receiver PH-26 

(the distance between the MH and PH at that depth is of only a few meters). It is at 
this drill-bit position that we find the most prominent contribution from the waves excited 

by the drill-bit for the reconstruction of the waves that propagate between receiver PH-26 

and the remaining receivers. We refer to this point as a stationary position for the drill- 

bit source (Snieder et al., 2006). To recover signals propagating between receivers, it is 

necessary to have physical sources at the stationary points that link a pair of receivers to a 

target reflector (Snieder et al., 2006). The only drill-bit stationary point sampled within the 

good-quality PH records recovers waves that emanate from receiver PH-26. This restriction 

limits the area of the SAF zone from which we can produce a physically meaningful image 

to the area shown in Figure 5.6a. 

The shot gather from the SAFOD MH active-shot experiment (Figure 5.3b) shows 
a reflection as a left-sloping event arriving at main-hole receiver MH-98 at approximately
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Figure 5.5. (a) Image obtained from stacking the results of migrating the SAFOD inter- 

ferometric shot gathers in Figures $5.4c and d. After migrating only the left-going waves 

from the SAFOD MH active-shot data (Figure 2b in main text), we obtain the image in 
(b). The red arrows point to features that are common to both images. These features 
are the same as indicated by the red arrows and numbers 1 through 3 in main-text Figure 

3. The dashed yellow boxes in (a) and in (b) highlight the portions of the images that are 
shown in main-text Figures 3a and 3b, respectively. Both yellow boxes in fact represent 

the subsurface area that is physically sampled by P-wave reflections, which in turn depends 

on the acquisition geometry of each experiment (see Figure $5.2). The red triangles show 

the approximate locations where the SAFOD MH intersected major fault zones (see main 

text Figure 1b). Distances in the x-axis in (a) and (b) are with respect to the location of 
the SAFOD drill site at the surface. The surface trace of the SAFz is at approximately 

x = 2000 m. 

1.0 s (indicated by the top-most arrow). Another weaker left-sloping event that arrives 

at approximately 1.2 s at receiver MH-98 (lower-most arrow) is associated with a P-wave 

reflection from the SAF zone. Since the receivers MH-98 to MH-178 are in the deviated, 

deeper-most portion of the SAFOD MH (see Figure 5.1b), right-sloping events are mostly 
associated with right-going waves, whereas left-sloping events are associated with left-going 

waves (see also Figure 5.2b). This observation only holds for a subset of the receivers 

of the large 178-receiver MH array: the ones which lie in the deviated portion of the 

MH. These would be receivers MH-98 through MH-178 (Figure 5.3b), whose locations are 
shown in Figure 5.1b. For the purpose of imaging the SAF system from the MH array, it is 

important to discern between right- and left-going waves in the data because fault reflection 

information for this acquisition geometry is predominantly contained in left-going waves. 

With frequency-wavenumber filtering (Biondi, 2006), we extract only the left-sloping events 

from Figure 5.3b. We use only these events to image the SAF zone.
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Figure 5.6. Images from the drill-bit noise recordings and from the active-shot experiment 

(in grey-scale, outlined by black-boxes). These images are overlayed on the result obtained 

from Chavarria et al. (2003). The overlay in (a) is the interferometric image from the 
SAFOD PH array, compiled after synthesizing drilling noise records into a pseudo-shot at 

the location of receiver PH-26. (b) shows an overlay of the image obtained from reverse- 
time imaging of the active-shot recorded at the SAFOD MH. The arrows mark the most 

prominent reflectors in the images. The reflectors numbered 1 through 3 coincide in both 

images. Reflectors 2 and 3, and possibly 4 are associated with fault zones. The SAF zone 

is visible at reflector 2 in both images. The location of the SAFOD MH in the background 

color images is schematic, since the MH was drilled after the work by Chavarria et al. 

(2003) was published. See also Figures S3a and S3b for the full images from the drill-bit 
noise recordings and active-shot data. 

The process of mapping data such as in Figure 5.3 into a subsurface image (Figure 5.6) 

is what we refer to as imaging or migration. Imaging typically requires a velocity model 

of the subsurface; the one we use is shown in Figure 5.1b. This model was estimated from 

surface seismic tomography (Thurber et al., 2004). We do the imaging of the PH and 

MH data (Figure 5.3) with two different methodologies. For imaging from the PH data 

we use the technique of shot-profile migration by wavefield extrapolation (Biondi, 2006). 
The wavefield extrapolation is done by the split-step fourier phase-shift plus interpolation 

method. The MH active-shot data in Figure 5.3b is imaged by reverse-time migration 

(Biondi, 2006). 

5.4 High-resolution images and the SAF 

The images from the SAFOD PH and MH arrays are shown in Figures 5.6a and 

b (also in Figures $3a and b). The interferometric image from PH array (Figures 5.6a 
and S3a) provides a different area of “illumination” of the subsurface than the active- 
shot image from the MH array (Figures 5.6b and S3b). This is a consequence of the
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Figure 5.7. Acoustic numerical modeling of the SAFOD MH active-shot data. (a) shows 
the structure of the reflectivity model used to generate the synthetic data. The velocity 

model used is the same as the one used for imaging (Figure 1b in main text). The black 

block in the reflectivity model in (a) represents the Salinian granite (see Figure la in main 

text), whereas the grey structures to the left of the model generate two vertical fault-like 

features. After applying the same imaging procedure as for the field SAFOD MH data 

(Figure 5.5), we end up with the image in (b). The red arrows mark the position of the 
target reflectors both in the model (a) and in the image (b). The reflections of waves 
generated by the diffraction of energy in the corner of the granite block appear as image 

artifacts (marked by yellow arrows). Without the numerical model, these artifacts could 
potentially be misinterpreted as dipping fault structures. The objective of the numerical 

modeling is not to closely replicate all features of the data (Figure 2b in main text). Instead, 

the objective of the model is two-fold: it helps us understand which portion of the subsurface 

is “illuminated” by P-wave reflections in the active-shot experiment, and it gives us an idea 

of how P-waves that are diffracted and/or guided by the granite structure may appear in 

the image. 

differences in the acquisition geometry of these two experiments. The images displaying all 

subsurface positions corresponding to the velocity model in Figure 5.1b are shown in the 

support Figure 5.5. A numerical model was build for the MH active-shot data to aid us 

in understanding what is the subsurface area that could be illuminated by the active-shot 

experiments, as well as what would be the character of image artifacts caused by waves 

diffracted by the Salinian granite. From the portion of the synthetic image that showed 

physically meaningful reflectors we chose the area of illumination of the SAFOD MH image 

in Figure 5.6b. The support Figure 5.7 shows the results from the numerical modeling of 

the SAFOD MH active-shot data. 

Since both images are built from single-shot data (a pseudo-shot in the PH interfer- 

ometric data and the active-shot in the MH data), they are prone to artifacts associated 

with the limited illumination (Biondi, 2006). Additionally, the method of interferometry 
by deconvolutions may produce image artifacts (Chapter 3). It is thus critical to establish 
which reflectors in the images in Figure 5.6 (and in Figure 5.5) pertain to actual faults or
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interfaces in the subsurface. 

We rely on two independent criteria to gain insight into which reflectors in Figure 5.6 

(and in Figure 5.5) represent real faults and/or interfaces. The first criterion is based on the 
consistency of events between different images. Note that all of the available images were 

generated from independent experiments. In our case, on one hand we have the drilling 

noise recordings at the PH array, and on the other hand we have the the active-shot MH 

data. The images from Chavarria et al. (2003) (Figure 5.6) come from PH recordings of 
both surface active shots and microseismicity from the SAF. Not only were the data in these 

three experiments different, but also the corresponding images were generated by distinct 

methodologies. Consequently, reflectors that are consistent in two or more images are likely 

to be representative of actual subsurface structures. 

The second criterion for interpreting reflectors in Figure 5.6 is the correlation between 

the location of fault zone intersections at the SAFOD main-hole (Solume et al., 2006) and 
the position of reflectors which are consistent in two or more images. The position of the 

five main fault zones intersected by the MH are shown schematically in Figure 5.la and 

are superposed on the full images from the SAFOD PH and MH arrays in the support 

Figure 5.5. The comparison between MH fault intersections (Solum et al., 2006;Boness 

and Zoback, 2006) and reflectors in the images (Figure 5.5) is not always straight forward 
because the subsurface area illuminated by the images does not coincide with the MH well- 

path. Despite this difficulty, we provide our interpretation of the correlation between the 

MH fault intersections and imaged reflectors based on the overlay of these data (Figure 5.5) 

and on our current conceptual geologic model of the subsurface at SAFOD (Figure 5.1a). 

In the interferometric image from the PH drilling noise records (Figure 5.6a) we high- 
light four distinct reflection events. The events 1 through 3 coincide both in the interfero- 

metric and active-shot images (Figures 5.6a and b, respectively; see support also Figure 5.5). 

Reflector 2 (Figure 5.6) is associated with the SAF, because its lateral position coincides 
with the lateral position of the surface trace of the SAF (marked by a vertical solid line 
at 0 km in the background images in Figure 5.6). In both the PH and MH images, the 

position of reflector 2 is consistent with the scattering zone associated with the SAF zone 

from Chavarria et al. (2003). Even though our images of the SAF (reflector 2, Figure 5.6) 
do not illuminate the fault all the way to its point of intersection with the SAFOD MH, 

the change in dip of the SAF in the active-shot image at approximately 1100 m depth is 

consistent with the intersection of the MH with fault zone 4 (Figures 5.1a and S3b). Since 
the anomaly that represents the SAF in the image by Chavarria et al. (2003) is caused by 

direct-wave energy coming from microseismicity within the SAF, the relative positioning 

between the SAF reflector in the MH active-shot image and the corresponding reflector in 

the background image suggests that reflector 2 may be due to P-wave energy scattered at 

the contact of the Franciscan rocks to the NE with the SAF zone to the SW (Solum et al., 
2006; Boness and Zoback, 2006). The PH interferometric and MH active-shot images resolve 

structures larger than approximately 75 to 100 m in size, presenting higher resolution when 

compared to the previous images of the SAF at Parkfield (Hole et al., 2003; Chavarria et 

al., 2003). The geometry of our experiments (especially of the PH drill-bit records) is ideal 
for the broad-side imaging of the SAF, complementing the previous Parkfield experiments
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(Hole et al., 2003; Chavarria et al., 2003). 

Although the reflector 1 is consistent between the PH interferometric image and the 

MH active-shot image, we do not associate it to any known faults. The reason for this is that 

there is no surface trace of a fault at the location of reflector 1; nor has a major fault zone 

yet been intersected by the SAFOD MH after the SAF. If reflector 1 is indeed an artifact 

produced from the imaging procedures applied to both the PH and the MH data, it was 

not reproduced by the numerical modeling of the SAFOD MH data. Since the modeling in 

Figure 5.7 was acoustic (accounting only for P-wave propagation), reflector 1 could be due 

to erroneous imaging of recorded P-to-S converted waves. Note that our imaging procedures 

also assume that the medium is acoustic, so any recorded converted waves will be imaged as 

artifact reflectors placed farther than their P-wave counterparts. This, we believe, is what 

happens to reflector 1; a P-to-S converted reflection perhaps related to the SAF P-wave 

reflector at reflector 2 (Figure 5.6). 
The fact that reflector 4 can only be seen in the PH interferometric image is not 

necessarily inconsistent with the MH image because even if the reflector pertained to a 

physical event, its location makes it mostly invisible for the MH active-shot image (the 

reflector is located between the shot and most of the receivers in the MH array). The 

location of reflector 4 in Figure 5.5a suggests a possible correspondence with the SAFOD 

MH intersection with fault zone number 2 (Figures 5.1a and S3a). If such a correspondence 
is true, then reflector 4 is likely to represent the contrast between the Salinian granite and 

the sediments, which is bordered by fault zone 2 (Figure 5.1a). 
Reflector 3 in Figure 5.6 is also associated with a fault zone. It is present in both the 

PH interferometric and in the MH active shot images, and its location coincides with the 

scattered energy observed by Chavarria et al. (2003) in their P-wave migration images (see 

Figure 3C and 3B of their paper). We associate this reflector with fault intersection number 

4 (Figure 5.1a) in the SAFOD MH array (Solum et al., 2006; Boness and Zoback, 2006). The 
location of the fault intersection is close to the portion of the fault illuminated by the MH 

active-shot image (see Figure 5.5b). Also, the fault image dips in the SW direction towards 

the point of intersection between the SAFOD MH and fault number 4 (Figures 5.la and 

S3b). The location of this fault zone at reflector 3 coincides with a well-resolved localized 
cluster of microseismic events detected both by surface records (Nadeau et al., 2004) and by 

the PH array (Oye et al., 2004). The images in Figure 5.6 show considerably higher resolu- 

tion than the previous images from Chavarria et al. (2003) in imaging the intermediate fault 

zone corresponding to fault number 4 (Figure 5.1a). The imaging of this intermediate fault 
zone (and its subsequent intersection at the SAFOD PH) is important to the understanding 

of the structure of the SAF system, especially because there is no trace of this fault system 

at the surface. Since it is a blind fault (Yeats and Hutfile, 1995; Talebian et al., 2004), 

determining the activity status of fault 3 is critical in assessing its seismogenic risk. The 

existence of this feature interpreted from two independent observations provides the basis 

for a better fault zone understanding and its hazard assessment. Unknown blind faults have 

been the cause of major fatal earthquakes, such as the 1994 Northridge earthquake (Yeats 

and Hutfile, 1995) and the 2003 Bam earthquake in Iran (Talebian et al., 2004). 
The dip of the SAF reflector and of the intermediate fault reflector support the in-
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terpretation of the SAF system being structurally characterized by a flower structure (Fig- 

ure 5.1a). Previous surface seismic profiling also suggested the presence of intermediate 

fault zones (Hole et al., 2001) such as the one confirmed here. It remains to be understood 
whether this intermediate faulting is associated with the same flower structure as the SAF, 

potentially representing an earlier trace or an active branch of the SAF, or if these secondary 

faults belong to a separate flower structure (Chavarria et al., 2003). According to Solum et 

al. (2006), well casing deformation was only observed at fault intersection 5 (associated to 
the SAF, Figure 5.1a). The other four fault zones showed no signs of fault activity since so 

far there was no casing deformation associated to them. If the imaged intermediate fault 

zone (reflector 3, Figure 5.6) is indeed an inactive fault zone, it might well represent an 

earlier trace of the SAF. On the other hand, the clusters of microseismic activity previously 

observed (Nadeau et al., 2004; Oye et al., 2004) are likely associated to the imaged blind 

fault zone (reflector 3, Figure 5.6), which suggests that this fault zone is likely to be an 

active part of the current SAF system. 

Other important factors for understanding fault activity and seismogenic potential are 

fault zone mineralogy, fluid content and pore-pressure. It has been previously suggested 

that there may be high-pressured fluids within the SAF zone at Parkfield (Unsworth et 

al., 2000; Unsworth and Bedrosian, 2004; Chavarria et al., 2003). Both the SAF reflector 

and reflector 3 in Figure 5.6 are consistent with the lateral positioning of the known low 

resistivity anomaly inferred by magnetotelluric soundings at Parkfield (Unsworth et al., 

2000; Unsworth and Bedrosian, 2004). Indeed, the analysis of the inferred fault material 

from the SAF and from the imaged intermediate fault zone (Solum et al., 2006) shows a high 
concentration of clay minerals, which are typically associated with low resistivity materials 

and with fluid-rich rocks. Furthermore, the analysis of rocks from the deeper SAF Solum et 

al. (2006) also showed the presence of serpentine, a mineral that could potentially generate 

fluid seals within the SAF leading to the creation of high-pressured fluid pockets inside the 

fault (Unsworth et al., 2000; Unsworth and Bedrosian, 2004). From the available seismic 
data, it is not yet possible to determine if the observed fault reflections are caused by fault- 

trapped fluids, by the contrast in material properties across the faults (Solum et al., 2006) 

or by a combination of these factors. 

Nonetheless, the understanding of the structure of the SAF system has gained much 

from the imaging from the PH drill-bit noise and the MH active-shot experiments conducted 

at SAFOD. Our current images from these experiments not only provide better resolution 

in the structural definition of the faults within the SAF, but were also played a decisive 

role in the characterization of a blind fault zone between the SAFOD PH and the SAF. 

The high-resolution structural characterization of the SAF system is critical to the under- 

standing of fault-growth and earthquake mechanics at Parkfield. The results we present 

here prove that imaging from noise can be crucial for illuminating complex fault zones in 

areas where observations from active experiments are insufficient. With the help of further 

continuous coring and analysis of fault material from the SAFOD MH Phase 3 drilling (to 

be conducted Summer 2007), the nature of the observed fault reflections will be perhaps 

better understood.
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Chapter 6 

Target-oriented interferometry — Imaging internal 

multiples in subsalt VSP data! 

6.1 Summary 

Seismic interferometry has become a technology of growing interest for imaging bore- 

hole seismic data. We demonstrate that interferometry of internal multiples can be used to 

image targets above a borehole receiver array. We use an interferometry technique, based 

on representation theorems for perturbed media, that targets the reconstruction of specific 

primary reflections from multiply reflected waves. In this target-oriented interferometry 

approach, we rely on shot-domain wavenumber separation to select the directions of waves 

arriving at a given receiver. We provide a description of this method along with two con- 

ceptual applications, and compare it to other approaches to seismic interferometry. Using 

a numerical Walk-Away VSP experiment recorded by a subsalt borehole receiver array in 

the Sigsbee salt model, we use the interference of internal multiples to image the salt struc- 

ture from below. In this numerical example, the interferometric image that targets internal 

multiples reconstructs the bottom and top salt reflectors above the receiver array, as well 

as subsalt sediment structure between the array and the salt. Because of the limited source 

summation in this interferometry example, the interferometric images show artifact reflec- 

tors within the salt body. We apply this method to a field Walk-Away VSP from the Gulf of 

Mexico. With the field data, we demonstrate that the choice of shot-domain wavenumbers 

in the target-oriented interferometry procedure controls the wavenumbers in the output 

pseudo-shot gathers. Target-oriented interferometric imaging from the 20-receiver array 

recovers the top of salt reflector that is consistent with surface seismic images. The inter- 

ferometric images of the subsalt sediments below the array shows a dip discrepancy with the 

active-shot WAW image. These differences are attributed to the presence of artifacts in both 

images, as well as to differences in shot/receiver geometry and uncertainties in the velocity 

model. The best images from the field data are obtained from deconvolution interferometry, 

because the pseudo-shots generated by cross-correlation contain the autocorrelation of the 

air gun source function. 
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6.2 Introduction 

Most of exploration seismic imaging is done from surface seismic records. In areas of 

high structural complexity (e.g., near salt bodies), borehole seismic data may give detailed 
subsurface information that cannot be obtained from surface seismic data. Hornby et al. 

(2005) give an example where Walk-Away VSP data acquired in a subsalt receiver array are 

used to image sediments below salt that are invisible with surface seismic data. Another 

example is given by Grech et al. (2003), who use Walk-Away VSP data to image geologic 

features in a complex compressional tectonic setting where surface seismic is compromised. 

Current techniques in the field of seismic interferometry (Curtis et al., 2006; Schuster 

and Zhou, 2006) open possibilities for innovative uses of borehole seismic data, because 

seismic interferometry reconstructs waves that propagate between receivers as if one of them 

acted as a source. Hence, with interferometry, it is possible to “create” pseudo-acquisition 

geometries that differ from the original physical experiments. Schuster et al. (2004) used 
the concept of interferometry to migrate free-surface reflections from Reverse VSP data. 

The Virtual Source method of Bakulin and Calvert (2004, 2006) is used to image beneath 
a complex overburden from borehole sensors placed in a horizontal well with no knowledge 

of the overburden model parameters. In Chapters 4 and 5 we use drill-bit noise recordings 

along with a deconvolution interferometry method to perform the broad-side imaging of 

the San Andreas fault at Parkfield, CA. In the context of salt flank imaging, Willis et al. 

(2006) presented a numerical example demonstrating that diving waves can be used for the 

interferometric imaging of near-vertical salt reflectors. Xiao et al. (2006) present a model- 

based interferometric method to image transmitted P-to-S waves that can be used for salt 

flank imaging. 

Here, we use internal multiples in interferometry to reconstruct primary reflections. 

This type of interferometry is applicable, for example, to the imaging of structures located 

above a borehole receiver array using data from standard Walk-Away VSP geometries. Such 

an interferometric imaging technique can be used to image salt and subsalt structures from 

borehole receivers placed beneath the target reflectors. Although no knowledge of model 

parameters is necessary for the interferometry of internal multiples, this method relies on 

wavefield separation to select waves propagating in specific directions between receivers 

(Chapter 2). For this reason, we refer to this method as target-oriented interferometry. 

Apart from being suitable to image features above the receiver array, target-oriented in- 

terferometry can also be tailored to image below the array. In that case, our method is 

analogous to the Virtual Source applications of Bakulin and Calvert (2006) and Mehta et 
al. (2007a). Bakulin and Calvert (2006) rely on the isolation of a window around the direct 
arrival to separate the down- from the up-going waves. A similar wavefield separation is 

done by Mehta et al. (2007a) using dual-wavefield summation. Our wavefield separation 
procedure is based on selecting the directions of waves incoming at the receivers according to 

their shot-domain wavenumbers. The interferometric imaging of features below the receiver 

array using up- and down-going wavefield separation (Bakulin and Calvert, 2006; Mehta et 

al., 2007a) can be justified by the one-way reciprocity theorems derived by Wapenaar et 

al. (2004). Such one-way theorems, however, cannot be used for the interferometry of up-
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going internal multiples (excited by sources at the surface) to reconstruct down-going single 

scattered waves. We use these waves to image salt features from subsalt borehole arrays. 

To perform the interferometry of internal multiples we rely on the two-way representation 

theorems for perturbed media derived in Chapter 2. 

Imaging from multiples has been proposed by other authors in different contexts than 

we present here. Weglein and co-workers (2003, 2006) propose model-independent imaging 

based on an inverse scattering series approach. Berkhout and Verschuur (2006) compare the 

convolution-based multiple elimination methods (SRME) to cross-correlation interferome- 
try, and propose a weighted cross-correlation method to construct primary reflections from 

surface-related multiples. With an approach similar to that of Berkhout and Verschuur 

(2006), Hargreaves (2006) provides a field data example of imaging from multiples in a 
shallow water environment. Although these methods are not restricted to the processing 

surface seismic data, they are not designed for targeting specific arrivals or portions of the 

image space. This is one of the objectives of the interferometry method we describe here. 

Furthermore, the methods of Berkhout and Verschuur (2006) and Hargreaves (2006) focus 
on surface-related multiples, whereas we focus on the imaging of internal multiples. 

We first describe how to manipulate recorded wavefields to generate interferometric 

data that targets specific arrivals, using the representation theorems of Chapter 2. Through- 

out this description, we give conceptual examples of the application of target-oriented in- 

terferometry to image above and below the receiver array. Next, we use the Sigsbee salt 

model to create a numerical subsalt Walk-Away VSP experiment. With these synthetic 

data, we compare images from target-oriented interferometry with those obtained from in- 

terferometry of the full recorded wavefields. Finally we validate the use of internal multiples 

in the imaging of subsalt features from a field Walk-Away VSP data acquired in the Gulf 

of Mexico. We use the field data to give a detailed account of the effect of target-oriented 

interferometry in the pseudo-shot gathers, as well as in the context of correlation-based and 

deconvolution-based (Chapter 3) interferometry. 

6.3 Target-oriented interferometry 

In this section, we describe how to use interferometry to target the illumination of 

specific regions in the subsurface. We decompose the recorded data in the frequency domain 

as (Chapters 2 and 3) 

u(r,,s,w) = W(s,w) [Go(ra4,s,w) + Gs(r4,s,w)] ; (6.1) 

where s and ry are source and receiver locations, respectively, and w is the angular frequency. 

The recorded data u is given by the superposition of the unperturbed impulse response 

Go and its perturbation Gs (Chapters 2 through 4). The function W(s,w) describes the 
excitation at s. Here, we assume that the medium perturbations that give rise to Gg are 

localized within the support of a volume P (Figure 6.1). To generate interferometric data 

(Lobkis and Weaver, 2001; Wapenaar et al., 2004; Draganov et al., 2006), we cross-correlate 

the data measured at r4 (equation 6.1) with the data recorded at rg and integrate over the 

sources s, which gives (e.g., Curtis et al., 2006; Larose et al., 2006)
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Figure 6.1. Geometry of the perturbation approach to target-oriented interferometric imag- 

ing. A large volume is bounded by the surface ©, that contains medium perturbations that 

are restricted to the volume P (indicated by the grey-shaded areas). Closed surfaces are 
denoted by the dashed lines. In both panels, up are unperturbed wavefields, while us are 

wavefield perturbations due to scattering within the volume P. The solid lines illustrate 

stationary wave-paths. Two receivers, located at r4 and rg, are represented by triangles. 

The grey triangle denotes the receiver that acts as a pseudo-source in the interferometric 

experiments. When the target is imaging medium perturbations above the receivers, as in 

panel (a), I rely on waves excited by sources over the surface a (solid black line). In panel 
(b), interferometry targets the reconstruction of up-going scattered waves from below the 

receivers. In this case, I consider only waves generated by sources on the surface og. These 

Figures are extended after Chapter 2. 

f ulearsw)u" (en, 5,0) ds = (|W (s, w)|?) [G(ra,rp,w) + G*(ra4,rp,w) , (6.2) 

when the integration is done over a closed surface © as illustrated by Figure 6.1. According 

to this equation, interferometry reconstructs G(r,4,rg,w) (and its acausal version), which is 
the response measured at r, as if the source is placed at rg (Wapenaar et al., 2004; Bakulin 

and Calvert, 2004). Note that G in equation 6.2 is the perturbed impulse response given by 

G = Go+Gs (equation 6.1). Equation 6.2 is valid for arbitrarily heterogeneous media. For 
our purposes, it is convenient to assume that both the unperturbed and perturbed portions 

of the medium (see Figure 6.1) are heterogeneous. Also, multiple scattering may occur 

both in the unperturbed and perturbed regimes (e.g., Figure 6.1a). The objective in our 

experiments, however, is to image only Gg: the waves scattered within the perturbation 

volume P (Figure 6.1). These waves are included in the recovered response G(r4,rg,w) in 
equation 6.2. Since the pseudo-source at r, in equation 6.2 radiates energy in all directions, 

directly separating Gs from G in right-hand side of equation 6.2 may not be straightforward 

because waves in Go and Gg can have similar apparent wavenumbers (i.e., it is difficult to 

determine if an arrival comes from above or below the array). This is a common problem,
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for example, for free-surface multiple suppression in OBC data (Mehta et al., 2007a). To 

overcome this problem with borehole seismic data, we propose a method to manipulate the 

recorded wavefields before interferometry, producing pseudo-sources that radiate most of 

the energy in a single preferential direction. This direction is chosen such that the resulting 

interferometric data reconstructs only the desired waves G's. 

An alternative form of interferometry that targets the extraction of the wavefield per- 

turbation Gs(r,4,rg,w), measured at r4 and excited by a pseudo-source at rg is (Chapter 

2) 

J wsleass.w)nb(ra,8,0) ds & (|W(s,w)|*) Gs(r4,rB,w); (6.3) 

where the integration over sources is no longer conducted over the closed surface &, but 

rather over a part of it, denoted by 0; (e.g., 71 or o2 in Figure 6.1) which is the i—th chosen 

segment of ©. There are two important differences between equations 6.2 and 6.3 (Chapter 

2). First, the integrand in the left-hand side of equation 6.2 contains the correlation of 

perturbed wavefields u whereas in the integrand in equation 6.3 we correlate the unperturbed 

wavefield ug(rg,s,w) with the wavefield perturbation usg(r4,s,w) (which alone does not 
satisfy the wave equation). Second, on the right-hand side of equation 6.2 we recover the 

causal and acausal wavefields G(r4,rg,w), while equation 6.3 recovers only the causal part 

of the wavefield perturbation Gs(r4,rB,w). 
In order for equation 6.3 to hold, the sources over 0; must sample the stationary points 

that yield the desired events in Gg(r4,rg,w) (Snieder et al, 2006; Chapter 3). Equation 6.3 

is approximate because we neglect a volume integral that accounts for the effect of medium 

perturbations that lie in the stationary path of unperturbed waves (Chapter 2). The volume 

integral that is not present in equation 6.3 can indeed be neglected by selecting waves from 

ug whose path does not go through the perturbation volume P (Chapter 2). Below we 

describe a method that selects waves in ug by wavefield separation. 

The truncation of the surface integral (Wapenaar, 2006; Chapter 3) can lead to a 

nonzero error in the wavefield reconstructed interferometry (Wapenaar, 2006; Chapter 3). 

This may cause amplitude and phase distortions (Wapenaar, 2006; Chapter 3), and can 
introduce spurious arrivals (Snieder et al., 2006; Chapter 3). Here, we consider only sources 

over o; since they are the ones that sample the stationary source points of the arrivals 

of interest (see below). Because stationary source points of other arrivals that are not of 
interest are not sampled along o;, these arrivals are not reconstructed by equation 6.3. 

The objective of the methodology we present is to use interferometry to target the 

reconstruction of scattered waves G's for a particular geometry of the receiver array and the 

region we desire to image (represented by the perturbation volume P). Figure 6.1 presents 

two scenarios in which we perform target-oriented interferometry. In the first scenario, 

in Figure 6.la, the portion of the medium we wish to image (the volume P) is above the 

receivers. To image the perturbations within P in Figure 6.1a we rely on up-going scattered 

waves ug that generate down-going wavefield perturbations ug. An example of these arrivals 

is shown by the arrows in Figure 6.1a. The stationary source points for the desired waves in
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Figure 6.la are located along o;. Our second scenario, in Figure 6.1b, consists of a target 

perturbation volume P that is below the receivers. In this case, we use for interferometry 

down-going unperturbed waves uo and up-going wavefield perturbations us. This scenario 

is the same as in earlier applications of the Virtual Source method (Bakulin and Calvert, 

2006; Mehta et al., 2007a). Typically, in active seismology experiments, sources are only 

available over the surface of the Earth (or of the Ocean, in marine experiments). For this 
reason, we assume in the experiments in Figure 6.1 that sources are only available on the 

top portion of the surface &. 

To perform target-oriented interferometry according to equation 6.3, we select specific 

arrivals in ug and ug (Figure 6.1) with a two-step procedure. The first step, as explained 

above, is to select the portion of the surface © that contains the stationary source points 

that correspond to the arrivals of interest. In the example in Figure 6.1a, interferometry 

recovers the desired perturbations ug(r4,rg,w) from the sources over 01; while sources over 

o2 help recover the perturbations in Figure 6.1b. Note that it is not necessary to know the 

shot coordinates, as long the waves radiated by the shots come from the surface segment 

o;. We choose the segment o; based on the relative position of the receivers and the portion 

of the surface we wish to image (volume P). For example, the sources over 01 excite direct 
waves that propagate downward and rightward in Figure 6.la, that once reflected in the 

unperturbed medium are recorded as the up-going waves ug that are illustrated in the figure. 

In the case of Figure 6.1b, the sources over o2 are the ones that radiate energy directly 

down towards the receivers, being thus suitable for reconstructing the desired scattered 

perturbations from interferometry (see also Bakulin and Calvert, 2006; and Mehta et al., 

2007a). The second step in selecting the portions of the recorded wavefields that are used 

for interferometry consists of wavenumber filtering and is discussed next. 

The raw data recorded at the receivers for the sources over the chosen source segment 

o; are the total wavefields u (equation 6.1). To do target-oriented interferometry using 

equation 6.3, it is necessary to separate the wavefields up and ug from the recorded perturbed 

wavefields u (equation 6.1). Here, we separate up and ug from u according to the direction 

of the incoming waves at a given receiver. The direction of incoming waves, in the time- 

domain, can be inferred from the slopes of the arrivals in the recorded shot gathers (i.e., for 

a fixed source and multiple receivers). In the frequency-wavenumber domain, these slopes 

translate to the apparent shot-domain wavenumbers, which we refer to as k,. The choice 

of which wavenumbers to use at r4 and rg varies from one experiment to another (see 

Figures 6.1 and 6.2). 

Figure 6.2a describes the wavefield separation necessary to target the imaging of scat- 

terers above the receiver array, as in Figure 6.la. In this case, keeping the negative shot- 

domain wavenumbers at rg (left-hand side of Figure 6.2a) defines uo(rg,s,w) (equation 6.3), 
which contains mostly up-going incoming waves. This ensures that the pseudo-source at rp 

(see equation 6.3) radiates mostly up-going energy. For the receivers that record the inter- 

ferometric data, represented by r4, the choice of incoming wave direction depends on the 

relative positioning between a given receiver and the pseudo-source at rg. If the receiver is 

above the pseudo-source (top cartoon on right-hand side of Figure 6.2a), waves with k, < 0 

give us(r4,s,w) (see equation 6.3). For r4 below rg, we use waves with k, > 0 to extract
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Figure 6.2. Examples of wavefield separation for target-oriented interferometry. The wave- 

field up and the perturbation ug are extracted from the recorded perturbed wavefield wu by 

wavefield separation. Wavefield separation is implemented by wavenumber filtering (e.g., 

by f —k filtering) in the shot domain. Receivers are represented by triangles. The receiver 

that acts as a pseudo-source (located at rg) is indicated by the grey triangles. The arrows 

indicate the direction of waves arriving at the receivers. The directions parallel and perpen- 

dicular to the receiver line define a coordinate frame indicated by the dashed lines. In this 

coordinate frame, k, is the shot-domain wavenumber of a given recorded wave. Panel (a) 
illustrates the separation of wavefields necessary for target-oriented interferometric imaging 

in the context of Figure 6.la. This is one particular choice of pseudo-sources that radiate 

energy towards the upper right-hand portion of the medium above the array. The wave- 

field separation in panel (b) is designed for the imaging experiment in Figure 6.1b. This 

procedure can be thought in terms of selecting a portion of the Ewald sphere (Ewald, 1962). 

us(ra,s,w). The interferometry of the wavefields separated according to Figure 6.2a is suit- 

able for targeting the imaging of structures above the receivers as in Figure 6.la because it 

generates a pseudo-shot gather that radiates energy towards the upper-right corner of the 

model. 

To image below the receiver array, as in Figure 6.1b, wavefield separation can be 

done according to Figure 6.2b. For the pseudo-source at rg, we select the down-going 

incoming waves uo(rp,s,w) excited by the sources over o2 (Figure 6.1b) by preserving 
arrivals with k, > 0 (left-hand cartoon in Figure 6.2b). Keeping waves with k, < 0 at the 

recording receivers in the interferometry experiment yields ug(r4,s,w) (right-hand cartoon 
in Figure 6.2b). This criterium for the extraction of us(r4,s,w) from u(r4,s,w) is the 
same for receivers that are either above or below the pseudo-source. For that reason we 

represent by r, receivers that are both above and below rg in Figure 6.2b. After wavefield 

separation as in Figure 6.2b, using us(r4,s,w) and uo(rp,s,w) for different r4 positions 
results in a pseudo-shot gather that radiates energy down toward the perturbation volume 

P (Figure 6.1b). As mentioned above, the case of Figure 6.1b is also the objective of the
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Figure 6.3. Geometry of the numerical experiment with the Sigsbee model. The figure 

displays the model structure, colorcoded by acoustic wavespeed. A receiver array with 100 

sensors is set beneath the salt body, in a 45° inclined borehole (solid line with triangles). 
Shots are placed in a horizontal line 500 ft below the water surface, and extend laterally 

towards the left-hand side of the receiver array, as indicated by the red arrow. Interferometry 

is used to image the salt with the receiver array by reconstructing down-going primary 

reflections propagating between the receivers from internal multiples. The wavepath of one 

such multiple is indicated by the dashed black arrow. 

Virtual Source method (Bakulin and Calvert, 2006; Mehta et al., 2007a). These studies rely 

on wavefield separation techniques that are different from ours. Bakulin and Calvert (2006) 
window the data in the time-domain receiver gathers, using a small window containing the 

direct arrival as up, and the remainder of the data as ug. Along with windowing, Mehta et 

al. (2007a) use a method based on the summation of vertical and hydrophone components in 

4-component ocean bottom cable (OBC) data to separate down- from up-going wavefields, 

and treat them as ug and us, respectively. 

Target-oriented interferometry using wavefield separation by shot-domain wavenum- 

ber as shown in the examples in Figure 6.2 can be adapted to remote sensing geometries 

other than those illustrated by Figure 6.1. The choice of which sources to use and how 

to separate waves at r4 and rg (equation 6.3) varies with each particular case. Although 
no specific knowledge about the model is required by equation 6.3, a priori information 

about relative location of the image target and the receiver array helps determining an 

appropriate set of source locations o; and as well which wavenumbers to use. The result 

of target-oriented interferometry can also be explained through the concept of the Ewald
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Construction (Ewald, 1962). Used in particle physics, with applications in crystallography 

and electronic microscopy, the Ewald Construction shows explicitly the relationship be- 

tween incident and diffracted wavenumbers through the Ewald sphere (Ewald, 1962). The 
wavenumber selection at rg corresponds to the rotation of the Ewald sphere around the 

origin of its reciprocal space (Ewald, 1962), which translates into exploring different exci- 

tation directions. Selecting the wavenumbers at r, results on selecting a subset of possible 

diffractions from the Ewald sphere. 

While our method can be applied to a variety of geometries, we discuss the examples in 

Figures 6.1 and 6.2 because they are applicable to the data examples we provide. Although 

the data from interferometry carries the average source power spectra (see equations 6.2 

and 6.3), it is possible, in principle, to remove the effect of the excitation function from 

the reconstructed data. When estimates of the power spectra of the source function are 

available, these can be used to extract the impulse response from interferometry (Wapenaar 

and Fokkema, 2006; Mehta et al., 2007a). 

Interferometry by deconvolution (Chapter 3) is an option for reconstructing an inter- 

ferometric impulse response when estimates of the source power spectra are not available. 

In particular, deconvolution interferometry can be more effective than its correlation-based 

counterpart in reconstructing impulsive pseudo-sources when the input excitation consists of 

a complicated, unknown waveform (Chapters 3 and 4). This is the case when the excitation 
is comprised of waves coming from the Earth’s subsurface (Snieder and Safak, 2006; Mehta 

et al., 2007b). This may also be the case when using internal multiples to do interferometry. 

Note, for example, that the excitation recorded by rg in Figure 6.1a consists of a superposi- 

tion of primaries and, to a lesser extent, of higher-order multiples. Consequently, the signal 

corresponding to this excitation can be a complicated incoherent function. Here, apart 

from using correlation interferometry, we rely on a deconvolution interferometry method 

(Chapter 3) to create impulsive images from our data examples. Although in this Section 

we describe target-oriented interferometry with cross-correlations, the wavefield separation 

procedure is the same when using deconvolutions (Chapter 3). In the next two Sections 

we describe numerical and field data examples of target-oriented interferometric imaging in 

subsalt environments. 

6.4 Numerical example 

We present an example that consists of a subsalt Walk-Away (WAW) VSP numerical 

experiment using the Sigsbee velocity model. The purpose of this numerical example is 

to use the subsalt WAW VSP data to image the Sigsbee salt canopy from below by using 

the interference of internal multiples, analogous to the example in Figure 6.1. Figure 6.3 

illustrates the model as well as the experiment. The experiment simulates the recording of 

shots placed 500 ft deep, at 100 evenly-spaced receivers in a deviated borehole (Figure 6.3). 

The first receiver is placed at + = 48000 ft and at a depth of 16000 ft; while the lateral 

and depth coordinates of the last receiver are 52950 ft and 20950 ft, respectively. The shots 

start at x = 10000 ft with a shot interval of 125 ft. The source waveform consists of a 

Ricker wavelet with 12 Hz peak frequency. In our experiments, we consider shots placed
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from x = 10000 ft to x = 53500 ft (this corresponds to the surface o; in Figure 6.1a). 
Interferometric images using the full recorded data (with no wavefield separation) are 

shown in Figure 6.4. The imaging in these examples is done by wavefield extrapolation 

in a slant coordinate system that conforms with the receiver array. Wavefield extrapola- 

tion is done by the Split-step Fourier Phase-shift-plus-interpolation method (Biondi, 2006). 

Figure 6.4a is generated using cross-correlation interferometry while Figure 6.4b is ob- 

tained from deconvolution interferometry after source summation (Chapter 3). Although 

the source function is suppressed by deconvolution interferometry (Figure 6.4b), the differ- 

ence between the images in Figure 6.4 is not substantial because the original source function 

is a band-limited pulse. Significant differences between correlation- or deconvolution-based 

interferometric images exist when the source excitation is complicated and poorly known 

(see next Section; and also Chapter 3). The images in Figure 6.4 show an accurate recon- 

struction of the salt canopy, especially towards the right-hand side of the model where the 

salt flanks are dipping. Above the receiver array, the imaged salt is characterized by reflec- 

tors that are weak compared to the dipping salt flanks. The images of the sediments between 

the salt the receiver array are distorted and do not reproduce the horizontal bedding of the 

model (Figure 6.3). 

After applying the target-oriented interferometry method based on wavefield separa- 

tion illustrated by Figure 6.2a, we obtain the images in Figure 6.5. We adapted the wavefield 

separation in Figure 6.2a to include also positive numbers recorded at r4 above rg. This 

ensures the array in the interferometric experiment also records wave that come from di- 

rectly above the receivers. Note that although the original source and receiver geometry is 

the same for the images in Figures 6.4 and 6.5 is the same, the portion of the model illu- 

minated by these two sets of images is substantially different. As discussed in the previous 

Section, the pseudo-sources reconstructed by target-oriented interferometry are designed to 

radiate energy upward (Figures 6.1a and 6.2a). Hence, the images in Figure 6.5 illuminate 

the model predominantly in the area above the receiver array. These images show bright 

reflectors at the bottom and top salt above the array, which appear as dim reflectors in 

the images in Figure 6.5. Figure 6.5 shows that the target-oriented interferometric images 

recover the structure of the subsalt sediments which are not seen in Figure 6.4. The reflector 

that corresponds to the dipping top salt (right-hand side of images in Figure 6.4) is not 

present in the images in Figure 6.5. This reflector is absent in the target oriented interfero- 

metric images because it is imaged in Figure 6.4 from reflections reconstructed from diving 

waves that arrive at the receiver array with positive shot-domain wavenumbers. Since the 

wavefield separation builds the filter ug from k, < 0, reflectors from such diving waves are 

not present in Figure 6.5. 

As in Figure 6.4, there is little difference between the image obtained from correla- 

tion interferometry and the one from deconvolution interferometry (Chapter 3). This is 

because the excitation function used in the modeling is a band-limited pulse (see above). 
There are artifact reflectors within the salt that appear more strongly in Figure 6.5 than 

in Figure 6.4. These artifacts come from the spurious arrivals introduced by truncation of 

the surface integral in interferometry (Snieder et al., 2006; Wapenaar, 2006; Chapter 3). 

Along with the reflections of interest, these spurious arrivals are enhanced by the wavefield
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Figure 6.4. Images obtained from interferometry of the data acquired in the numerical 

experiment (Figure 6.3). The images, in grey scale, are superposed on the velocity model 

from Figure 6.3. The images are based on cross-correlation interferometry (panel a), and on 

deconvolution interferometry (panel b). I used the full wavefield recorded at the receivers 

to reconstruct the interferometric shot gathers from which these images are obtained. 
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Figure 6.5. Images obtained from target-oriented interferometry of the Sigsbee Walk-A way 

VSP data (Figure 6.3). Target-oriented interferometry is implemented with the wavefield 

separation approach described in Figure 6.2a, adapted to include waves arriving from di- 

rectly above the receivers. As in Figure 6.4, the image in (a) is obtained from cross- 

correlation interferometry and the image in (b) from deconvolution interferometry. The re- 

flectors in these images come from single-reflections reconstructed by interferometry mostly 

from internal multiples. This numerical experiment is analogous to that shown in Fig- 

ure 6.1a.
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Figure 6.6. Geometry and acquisition of the Walk-Away VSP field data. The velocity 

model derived from surface seismic is shown in (a). Receivers are placed in a deviated IIl 
below the salt canopy, as indicated by the black triangles in (a). A plane view of the shot- 

receiver acquisition geometry is given by (b). Shot positions are denoted by blue circles, 

while receiver locations are represented by red triangles. In panel (b), the coordinate frame 

is centered on the location of the shallowest receiver. N is distance oriented toward the 

North; E is Eastward oriented. The orientation of the velocity profile in (a) coincides with 

that of the WAW line in (b). The lateral distance in (a) is also measured with respect to the 
location of the shallowest receiver, along the direction of the acquisition plane. The arrows 

in (b) indicate which sources are used for controlling the illumination of the interferometric 
data. Sources A (in red) correspond to the sources over o; in the experiment in Figure 6.1a. 
Sources B (in green) are the ones that contribute to imaging below the array (source over 
02; Figure 6.1b). 

  

separation procedure (Figure 6.2a). With this numerical example, we illustrate the effect 

of designing interferometric sources that illuminate a particular portion of the model. We 

discuss the result of target-oriented interferometry in the pseudo-shot gathers using the field 

data examples in the next Section. 

6.5 Gulf of Mexico subsalt VSP data 

The field Walk-Away VSP data we present here was acquired by BP in the Gulf of 

Mexico, and has been previously used to image subsalt sediments by Hornby et al. (2005). 
The experiment geometry, shown in Figure 6.6, is similar to that of the numerical example 

we discuss in the previous Section. In the Gulf of Mexico data, the data was recorded by 

an array of 20 three-component receivers located below the salt canopy, in a well deviated 

from the vertical by approximately 40° (Figure 6.6a). The top-most receiver has coordinates 

x = 0 ft and depth = 21516 ft; and the bottom receiver is at x = 910 ft and depth = 23180 ft. 

Figure 6.6b shows the shot-receiver geometry in plane-view (the N-axis in the Figure points 

toward the geographic North). Here, we refer to the receivers in the array, from top to
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Figure 6.7. The effect of wavefield separation on receiver gathers from field data. The 

original data recorded at receiver 1 (shallowest receiver in Figure 6.6a) is shown in panel 

(a). The receiver gather in panel (b) only contains waves with k, < 0 (see Figure 6.2). The 
data in (c) come from the positive wavenumbers in the shot domain (k, > 0). The black 
arrows highlight portions of the data for which wavefield separation has a visible effect. The 

red box outlines the portion of the data that corresponds to Sources A (Figure 6.6b), while 

the data inside the green box is excited by Sources B. 

bottom, as Receivers 1 through 20. 

Our objective with these field data is to demonstrate the target-oriented interferometry 

technique as in the examples in Figures 6.1 and 6.2. Using the Sources A (Figure 6.6b) and 

wavefield separation according to Figure 6.2a, we image the subsurface above the array, as 

illustrated by Figure 6.la. The Sources B, along with the wavefield separation described 

in Figure 6.2b, yields an interferometric image targeted at the medium below the array 

that is shorter than that of the Sigsbee numerical example, analogously to Figure 6.1b. 

With a 20-receiver array that is shorter than that in the numerical example (see previous 

Section), interferometry generates 20 pseudo-shot gathers, each recorded by 19 receivers. 

Because the receiver array is short (Figure 6.6a), the interferometric images have a small 

aperture compared to the active-shot images from surface seismic or from the WAW VSP 

data (Hornby et al., 2005). 

We show the data recorded by the vertical component of motion of Receiver 1 for all 

the shots (Figure 6.6b) in Figure 6.7a. After separating waves with negative wavenumbers 

in the shot domain (k, < 0; see Figure 6.2), and sorting the data recorded by Receiver 1, 

we obtain the gather in Figure 6.7b. Keeping the positive wavenumbers in the shot-gathers 

(ks > 0) yields the receiver gather in Figure 6.7c. By comparing Figures 6.7a and 6.7b 
(see arrows in the Figures), we observe that the wavefield recorded at Receiver 1 for k, < 0 

(Figure 6.7b) differs from the original record (Figure 6.7a). On the other hand, the receiver
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Figure 6.8. Interferometric shot gathers with pseudo-shot at receiver 10, reconstructed with 

correlation interferometry. The pseudo-shot gather in (a) results from correlating the full 

wavefields from all sources (Figure 6.6b). After performing wavefield separation according 

to Figure 6.2a and using the data from Sources A for interferometry, gives the pseudo-shot 

gather in (b). Panel (c) comes from the interferometry of the data from Sources B, after 
wavefield separation as in Figure 6.2b. All data are muted for the removal of the direct 

wave. 

gather with only k, > 0 in Figure 6.7c is similar to the gather in Figure 6.7a. The fact that 

the gather with k, > 0 is more similar to the original recorded data than the gather with 

k, < 0 suggests that the recorded data is dominated by waves with k, > 0. This is because 

the receiver array is below the sources and the salt, so the direct wavefield and some of its 

interactions with salt are recorded by the receivers as down-going waves, for which k, > 0. 

After wavefield separation, whose effect is illustrated by Figure 6.7, we generate pseudo- 

shot gathers at all receiver locations. Interferometric shot gathers with the pseudo-shot at 

Receiver 10 are shown in Figures 6.8 and 6.9. The pseudo-shot gathers in Figure 6.8 are 

produced from correlation interferometry, as in equations 6.2 and 6.3. In Figure 6.9, we 

use deconvolution interferometry where deconvolution is done after stacking over sources 

(Chapter 3). This method consists on deconvolving each pseudo-shot from correlation 
interferometry with its zero-offset trace. Hence, each panel in Figure 6.9 is the result of 

taking the data in the corresponding panel from Figure 6.8 and deconvolving it with its 

trace at Receiver 10 (Chapter 3). We show the data from Receiver 10 because, since it 
is the receiver in the middle of the array, it illustrates best the effect of target-oriented 

interferometry in the pseudo-shot gathers. 

The data in Figures 6.8a and 6.9a are reconstructed using all sources (Figure 6.6b),
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Figure 6.9. Pseudo-shot gathers from deconvolution interferometry. The input data in 

panels (a), (b) and (c) is the same as that in Figures 6.8a, b and c, respectively. The data 
in (a) is reconstructed from the full wavefield from all sources (Figure 6.6b). Sources A 
(Figure 6.6b) along with wavefield separation according to Figure 6.2a are used to obtain 
the gather in (b). When applying the wavefield separation in Figure 6.2b to Sources B, I 

get the data in (c) after deconvolution interferometry. 

along with both positive and negative shot-domain wavenumbers. The pseudo-shot gathers 

in Figures 6.8a and 6.9a contain both positive and negative wavenumbers in the pseudo-shot 

domain. Note that the pseudo-shot in Figure 6.8a is dominated by positive wavenumbers. 

This is because the energy in receiver data (Figure 6.7) is dominated by the down-going 

waves with k, > 0 (see discussion above). The moveout character (i.e., the pseudo-shot 
wavenumbers) varies between the three panels in Figures 6.8 and 6.9. Figures 6.8b and 6.9b, 

the pseudo-shot data has positive wavenumbers for receivers that lie below Receiver 10 (Re- 

ceivers 11 through 20), and negative wavenumbers for the receivers lying above Receiver 

10 (Receivers 1 through 9). This is a consequence of the choice of k, used to separate the 

wavefield perturbations us (see Figure 6.2a). Using k, < 0 for rg above rg, results in nega- 

tive pseudo-shot wavenumbers for the receivers above Receiver 10 (Figures 6.8b and 6.9b). 

Likewise, taking k, > 0 for r4 below rg results in positive pseudo-shot wavenumbers at the 

receivers that are lower than Receiver 10. The slopes in the pseudo-shot gathers are thus 

controlled by the recorded shot-domain wavenumbers at the receivers in the interferometric 

experiment (see Figure 6.2). Because of this, the choice of k, < 0 for the separation of us 

(Figure 6.2b) in Figures 6.8c and 6.9c results in only negative pseudo-shot wavenumbers. 

Comparing panels b and c with panel a in Figures 6.8 and 6.9 shows how wavefield sepa- 

ration by shot-domain wavenumbers (Figure 6.2) can be used to target specific arrivals in 

the data reconstructed by interferometry. 

Unlike the numerical example in the previous Section, the data obtained from decon-
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volution interferometry is wider-band compared to that resulting from correlation interfer- 

ometry (compare panels in Figure 6.8 with those of Figure 6.9). The data reconstructed by 

deconvolution interferometry is impulsive while correlation interferometry produces pseudo- 

shots that have the imprint of the autocorrelation (Chapter 3; Wapenaar and Fokkema, 

2006). In our case, the wavefield in the field data was generated by marine air gun sources. 

Hence, the data in Figure 6.8 contains the autocorrelation of the air gun source function 

while the data in Figure 6.9 does not. Mehta et al. (2007a) also observed the presence of this 
autocorrelation in the interferometry of marine OBC data. In their case the autocorrelation 

excitation was removed with an independent estimate of the air gun source function. Here, 

we rely on deconvolution interferometry (Chapter 3) to reconstruct impulsive pseudo-shot 

data (Figure 6.9) because an estimate of the air gun autocorrelation is not available. 
We migrate all pseudo-shot gathers using shot-profile reverse-time migration (Baysal 

et al., 1983). Each of the panels in Figure 6.10 is the result of stacking the migrated images 

from pseudo-shots placed at every receiver in the array. The middle panels in Figure 6.10 

are from pseudo-shots designed to radiate energy upward (see Figure 6.2a). Because of this, 

the images in Figure 6.10b and e have brighter amplitudes above the array, compared to 

Figures 6.10a and d. Although the pseudo-sources that result in Figures 6.10b and e radiate 

energy upward (Figure 6.2), the salt above the array reflects much of the radiated energy 

downward. This explains the image artifacts below the receiver array in Figure 6.10b and 

e. Furthermore, since wavefield separation is done by f-k filtering, the small aperture of 

the array introduces a bias in the wavefield separation. This bias can yield cross-talk (e.g., 

Wapenaar and Fokkema, 2006) between waves propagating in different directions and that 

contributes to energy below the array in Figure 6.10b and e. The right-hand panels in 

Figure 6.10 are from interferometric sources that radiate energy downward (Figure 6.2b). 

This results in images (Figures 6.10c and f) that have most of the energy concentrated 

below the array. Panels a and d in Figure 6.10 result from migrations with the velocity 

model in Figure 6.6a. 

We removed the top of salt (i-e., replaced sediment above the salt with salt velocity) 

in the upper right-hand corner of Figure 6.6a to generate the images in the middle and 

right-hand panels in Figure 6.10. The absence of the salt top in the velocity model ensures 

that top salt reflectors are not artifacts introduced by the salt/sediment contrast in the 

model. The influence of the bottom salt velocity contrast can be seen in all images in 

Figure 6.10 where the reflectors in the lower right-hand quadrant of the images terminate 

abruptly. The image aperture in Figure 6.10 is controlled by the geometry of the receiver 

array, since receivers act both as sources and receivers in interferometry. Thus, since the 

array is relatively small (Figure 6.6a), the circular patterns in the images are artifacts of 

the migration operator where the subsurface is not sampled by specular reflections. 

To facilitate the interpretation of the interferometric images in Figure 6.10 we isolate 

the portions of the subsurface that are physically sampled by the images in Figures 6.11 

and 6.12. For spatial reference, we superpose the interferometric images over the velocity 

model estimated from surface seismic data (background in Figures 6.11 and 6.12) and 
indicate the position of the receiver array (blue line). The image from deconvolution-based 
target-oriented interferometry (Figure 6.11b) recovers the reflector corresponding to the
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Figure 6.10. Comparison between images after reverse-time migration, with and without 

target-oriented interferometry. The images are the result of stacking the shot-profile mi- 

grations of the pseudo-shots at every receiver. The images in the left-hand panels (a and 

c) correspond to using all sources and the full wavefield for interferometry; the images 

in the center panels (b and e) are from pseudo-sources that radiate energy upward (as 

in Figure 6.1a; wavefield separation is done according to Figure 6.2a). The images in (c) 

and (f) are the result of reverse-time migration of pseudo-sources designed to radiate energy 

downward (see also Figures 6.1b and 6.2b). Images on the top panels result from correlation 
interferometry, and the bottom images are obtained with deconvolution interferometry. The 

images correspond to the same portion of the subsurface shown by the model in Figure 6.6a. 

Image aperture is controlled by the geometry of the receiver array (Figure 6.6a).
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Figure 6.11. Interferometric images of the upper-right portion of the subsurface above the 

receiver array (see Figure 6.6a). The images are superposed on the velocity model estimated 

from surface seismic data. The blue line represents the receiver array. The image in (a) 
is extracted from Figure 6.10d and corresponds to using the full wavefield from all sources 

in seismic interferometry. The images in (b) and (c) are targeted at reflectors above the 
array (see Figures 6.1a and 6.2a). The images in panels (a) and (b) are from deconvolution 
interferometry (extracted from Figures 6.10d and e, respectively); and the image in (c) is 
from correlation interferometry (Figure 6.10b). The red arrows indicate the top of salt 
interpreted from surface seismic (Figure 6.6a). 

top of salt inferred from surface seismic. This reflector is not visible in Figures 6.1la 

and 6.11c. Wavefield separation (see Figure 6.2a) is necessary to separate the events that 

illuminate the top salt reflector in Figure 6.11b. Although Figure 6.11c is also a product 

of target-oriented interferometry, the top salt reflector is obscured by the autocorrelation 

of the air gun source function, mapped onto the image. The image in Figure 6.11b comes 

from deconvolution interferometry, where the pseudo-shots are approximately impulsive and 

result in an impulsive image (Chapter 3). 
The images in Figure 6.12 show how wavefield separation in interferometry can be used 

to image beneath the receiver array. This application is analogous to the Virtual Source 

method by Bakulin and Calvert (2006) and by Metha et al. (2007). Our images of the 
subsalt sediments illuminate predominantly the subsurface portion near the salt bottom. 

The sediments immediately below the array could not be imaged by interferometry, unlike 

the cases of Bakulin and Calvert (2006) or Mehta et al. (2007a). This happens because the 
salt canopy, immediately above the receiver array, acts as a major wave guide. As such, 

the salt directs most of the down-going energy from the sources at the surface, along the 

salt-sediment interface. This phenomenon accounts for the fact that subsalt reflectors in 

Figure 6.12b and d are only illuminated close to the bottom of the salt. As with Figure 6.11, 

the target-oriented image from deconvolution interferometry, Figure 6.12b, provides the 

best image of the subsalt sediments. Note that the subsalt reflectors in Figures 6.12a and 

c have a circular pattern characteristic of the migration operator. Instead, the reflectors 

in Figure 6.12b are better focussed, with a flatter character, and it differs in dip from the
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Figure 6.12. Interferometric images of the lower-right portion of the subsurface below the 

receiver array (blue line). As in Figure 6.11, the images are superposed on the velocity 

model from surface seismic (Figure 6.6a). The image in (a) is obtained from interferometry 
of the data with no wavefield separation, using all available sources. Interferometry is 

designed to target the reflectors below the array (see Figures 6.1b and 6.2b) in the images 

in (b) and in (c). The images in (a) and (b) are the result of deconvolution interferometry 
while the image in (c) comes from correlation interferometry. The images in (a), (b) and 
(c) are extracts from Figures 6.10d, f, and c, respectively. 

images in panels a and c. The reasoning for which the image in Figure 6.11b is superior to 

a and c is the same as given in our discussion about Figure 6.11 (see above). 
When comparing the interferometric image of the subsalt sediments (Figure 6.13a) with 

the 2D WAW VSP image (Figure 6:13b; Hornby et al., 2005) we find that the sediment dips 
are different between these two images. Since the subsalt illumination is poor, as seen 

in the interferometric images and in the surface seismic data (Hornby et al., 2005), the 

differences in the experiment geometry account for some of the differences in the images in 

Figure 6.13. In the interferometry experiment, the source/receiver array is relatively small 

and the reflectors are close to the array, so the migration operator artifacts in Figure 6.13a 

have a more circular shape compared to those in Figure 6.13b. The operator artifacts in 

Figure 6.13b look flatter than those in Figure 6.13a because the sources are placed far 

from the receivers at the sea surface. Also, the images in Figure 6.13 illuminate different 

portions of the subsurface because the shot/receiver geometry is different. Nonetheless, 

for the correct velocity model both images should display similar structures were their 

illumination zones coincide. The difference in the dips of subsalt reflectors close to the salt 

bottom may be related to uncertainties in the velocity model estimated from surface seismic. 

This is difficult to settle given the size of the receiver array and the poor illumination below 

the salt.
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Figure 6.13. Comparison between subsalt images from interferometry, in panel (a), and 
(b) from active-shot migration of the full Walk-Away VSP data (see Figure 6.6b for the 
geometry). Panel (a) is the same as the Figure 6.12b. The image in panel (b) is the result 
of migration by wavefield extrapolation (Hornby et al., 2005), and only images below the 

receiver array. 

6.6 Discussion and conclusions 

We present an interferometry technique based on wavefield separation in the shot- 

domain that targets the reconstruction of specific arrivals in the interferometric shot gathers. 

We promote that this target-oriented interferometry technique can be used to reconstruct 

single-reflected waves from internal multiples. Such a reconstruction can be applied, for 

example, to the imaging of subsalt features above receiver arrays in subsalt in Walk-Away 

VSP experiments. Our target oriented interferometry technique is based upon two-way 

representation theorems derived for acoustic perturbed media in Chapter 2. The application 

of the technique consists in manipulating the recorded data to separate unperturbed waves 

at the receiver that acts as a pseudo-source, and wavefield perturbations at the receivers 

that record the interferometric experiment. We separate these wavefields according to the 

directions of the waves incoming at a given receiver; i.e., according to the shot-domain 

wavenumber. We discuss the application of target-oriented interferometry to image the 

medium above a receiver array as well as below the array. 

Using the Sigsbee salt model, we illustrate how interferometric illumination can be 

controlled using wavefield separation along with the appropriate choice of sources to be 

included. The numerical experiment consists of a large-offset Walk-Away VSP recorded 

at a deviated 100-receiver array placed below the salt. Seismic interferometry with no
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wavefield separation yields an image of the salt body which is well defined in the dipping 

salt flanks to the right-hand side of the array. These reflectors are mainly sampled by 

diving waves, analogously to the numerical experiment by Willis et al. (2006). The images 

obtained from target-oriented interferometry recover the reflectors at the top and base of 

salt located immediately above the receiver array. These images also recover a portion 

the subsalt sediment structure that cannot be retrieved by the interferometry of the full 

recorded wavefields. In the Sigsbee example, the target-oriented interferometry procedure 

reconstructs down-going single-scattered waves from up-going internal multiples recorded 

in the original experiment. 

We also use a field Walk-Away VSP data acquired in the Gulf of Mexico (Hornby et 

al., 2005) to test the target-oriented interferometry method. The data were recorded in a 

20-receiver subsalt array in a deviated well. The acquisition geometry is similar to that 

of the Sigsbee numerical experiment. With the field data, we illustrate that the choice of 

shot-domain wavenumbers, at the receivers that record the interferometric data, controls the 

wavenumbers in the pseudo-shot gathers. This phenomenon can be explained using Ewald’s 

diffraction sphere (Ewald, 1962), where the choice of diffracted wavenumbers dictates which 

portion of the scatterers will be imaged. Because the air gun excitation in the field data 

is not impulsive, we rely on deconvolution interferometry after source summation (Chapter 

3) to reconstruct impulsive pseudo-shot data. Interferometric shot gathers generated from 

correlation interferometry show an imprint of the air gun autocorrelation that also maps onto 

the image domain. When an independent estimate of the air gun autocorrelation is available, 

it can be deconvolved directly from the correlation-based pseudo-shot gathers (Mehta et al., 

2007a). Using wavefield separation to design pseudo-shots that radiate energy upward, we 

image the top of salt from the receiver array using recorded internal multiples. This top 

of salt reflector is not reproduced by the image from interferometry of the full recorded 

wavefields. Furthermore, we use the subsalt VSP data to demonstrate how interferometry 

can be manipulated to target the subsurface below the array. The interferometric image of 

subsalt reflectors and the active-shot image from the WAW VSP show events with differing 

dips. This difference can in part be accounted by the differences in the recording geometry 

and subsalt illumination between the two experiments. Additionally, we note that the 

velocity model used to produce these images was estimated from surface seismic. The WAW 

VSP, and especially the interferometric data are more sensitive to local perturbations in 

the subsalt velocities near the array than the surface seismic data. Hence, an “acceptable” 

velocity model for the imaging of surface seismic data may not be adequate for the imaging 

of the WAW VSP and the interferometric data. It is thus possible that the differences 

between the WAW VSP and interferometric images are caused by the uncertainty in the 

velocity model estimated from surface seismic. 

The target-oriented interferometry technique we discuss here is approximate. Its first 

approximation lies in the truncation of the source integration in the generation of the 

pseudo-shot gathers. This truncation leads to the introduction of spurious events that 

behave like multiples (Snieder et al. 2006; Wapenaar, 2006; Chapter 3). Some of these 

spurious multiples may be mapped onto coherent reflectors in the interferometric images. 

We observe this in the Sigsbee numerical VSP experiment, where the spurious multiples
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are imaged as artifact reflectors within the salt body. Our interferometry procedure is also 

approximate because it neglects a volume integral of the medium perturbations required by 

the interferometry method in perturbed media (Chapter 2). This approximation leads to 

the reconstruction of interferometric shots that are kinematically correct but with distorted 

amplitudes. Therefore, target oriented interferometry as we present here is suitable mostly 

for structural imaging. 

Wavefield separation of shot-domain wavenumbers to construct pseudo-shot gathers 

that radiate the energy downward is similar to the Virtual Source method by Bakulin and 

Calvert (2006). Bakulin and Calvert (2006) perform wavefield separation by windowing 
the data to separate the direct arrival from the rest of the data. Their method, based on 

separating the direct arrival, practically eliminates unwanted spurious events, but can only 

be applied to image below the array and requires picking the data. Also using the Virtual 

Source method, Mehta et al. (2007a) separate up- from down-going waves using dual-field 

(4-component) measurements in OBC data. The wavefield separation method by Mehta 
et al. (2007a) could potentially be applied to different imaging geometries, such as for the 
imaging with internal multiples as we propose here. That would require that the VSP data 

were acquired with dual-field sensors. 

The interferometric experiments we present in this paper are not necessarily restricted 

to active-shot VSP experiments and P-wave imaging. The same experiments could be 

conceived in the context of passive seismic measurements (e.g., Draganov et al., 2006) or in 

the interferometric imaging of drill-bit noise records (Poletto and Miranda, 2004; Chapter 

4). Wapenaar (2004) and Draganov et al. (2006) present a methodology to recover elastic 
pseudo-shot records using seismic interferometry. Likewise, target-oriented interferometry 

can be potentially designed to recover multicomponent subsalt pseudo-shot records. Such 

records, along with surface seismic data, can help in better understanding the local physical 

structure in subsalt environments. This understanding may come in the form of more 

realistic models of the subsalt velocity field that incorporate anisotropy as well as lateral 

parameter variations. Finally, we advocate the importance of utilizing long receiver arrays 

in the acquisition of data that is to be used for interferometry. As in the Sigsbee numerical 

example, long receiver arrays can help in obtaining interferometric images with a wide image 

aperture: each receiver added to an array contributes with a source and a receiver to the 

interferometry experiment. 
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Chapter 7 

Conclusion and Future Research 

Since the main Chapters (Chapters 2 through 6) consist of stand-alone articles, I 

present the main conclusions of each Chapter in the Chapters themselves (e.g., in their 

corresponding Discussion Conclusions section). Therefore, the objective of this last Chapter 

is not to repeat the content presented in the main Chapters, but to provide a brief general 

conclusion to this dissertation and to suggest future research paths of the research developed 

here. 

The reciprocity theorems in Chapter 2 offer general formulations than can be used for 

interferometry, scattering-based imaging, and inversion for acoustic waves. As discussed 

within Chapter 2, such theorems can potentially be directly applied not just to geophysics, 

but also in ocean acoustics, laboratory ultrasonics and medical imaging. Here I treat reci- 

procity theorems for perturbed acoustic waves, and an important next step for this research 

which will be pursued in the near future is to extend these theorems to a wider class of phys- 

ical phenomena. This generalization would be analogous to that proposed by Wapenaar et 

al.(2006) and Snieder et al. (2007), who propose reciprocity theorems that describe elasto- 
dynamic and electromagnetic wave propagation in lossy media, diffusion, and advection, as 

examples. Another important aspect of Chapter 2 is its connection to the scattering prob- 

lem, which can lead to extensions of the equations I present through the use of scattering 

series formulations (e.g., Lippmann, 1956; de Hoop, 1996). This connection suggests that 

the equations in Chapter 2 can be tailored, through scattering series formulations, for other 

applications such as inverse-scattering imaging (Weglein et al., 2003) or multiple suppression 

(Weglein et al. 2003; Malcolm et al., 2007). Furthermore, it is possible that once reciprocity 

theorems for perturbed media are generalized for other physical phenomena (similarly to 

Wapenaar et al., 2006; and Snieder et al., 2007), there may also be scattering-like series 

formulations that describe phenomena such as diffusion and advection. 

The generalization of the reciprocity theorems in perturbed media (Chapter 2) to 

other physical systems can potentially lead to the extension of deconvolution interferome- 

try (Chapter 3) to other systems; for example, to elastic and electromagnetic waves, and of 

diffusion. Deconvolution interferometry for electromagnetic waves could find applications 

in, for example, radio telescopy. Given that interferometry by correlations is well under- 

stood for elastic wave propagation (e.g., Wapenaar, 2004; Wapenaar and Fokkema, 2006; 

Draganov et al., 2006), one of the most natural extensions of Chapter 2, and therefore of 

deconvolution interferometry, is to account for elastodynamic waves. Although I provide 

a heuristic elastic application of deconvolution interferometry in Chapter 4, modifying the 

theory in Chapter 3 to account for elastic waves is a necessary extension for processing
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seismic data. As I discuss in Chapter 3, in light of work such as that of Loewenthal and 

Robinson (2000) and Amundsen (2001), the use of deconvolutions may play an important 
in devising interferometry techniques that preserve amplitude properties of the recorded 

data that allow the estimation of subsurface reflectivity. Interferometry by deconvolution 

as presented by Chapter 3 can be potentially be adapted into an inverse interferometry pro- 

cedure, where the deconvolution filters are designed to meet chosen criteria for the output 

interferometric experiments. 

Deconvolution interferometry (Chapter 3) is particularly useful for data where waves 

are excited by long, incoherent and poorly known source functions. This makes interfer- 

ometry by deconvolution equally suitable both for active and passive seismic imaging. In 

Chapter 4, I show that deconvolution interferometry can be used for the passive imaging 

of drilling noise, without the need for independent estimates of the drill-bit source func- 

tion. The imaging of seismic-while-drilling data by deconvolution interferometry is a novel 

method that can be applied the passive monitoring of oilfields (e.g., the Valhall field in 

the North Sea), or to the imaging of oilfields in environmentally sensitive areas where the 

acquisition of standard surface seismic is limited (e.g., Tempa Rossa field, Italy). Apart 

from passive imaging, deconvolution interferometry can be useful for monitoring structures. 

Snieder and Safak (2006) provide a 1D example of how deconvolution interferometry can 

be used to extract the impulse response of a building from earthquake records. This type of 

interferometry can also be applied to monitoring the integrity of working engines, bridges, 

off-shore platforms or producing wells. 

In the context of studying the San Andreas fault with SAFOD data, the geological 

interpretation of the results I present in Chapter 5 can be revised after the coring of the 

SAFOD Main Hole, which will be conducted during Summer 2007 in the Phase III of the 

SAFOD drilling project. A key question that remains to be addressed concerns the phys- 

ical cause of the reflectors I observe in Chapter 5: the reflections could be caused by the 

contrast of physical properties across the fault (e.g., due to geology), by the physical prop- 

erties within the faults (e.g., fluid infill, overpressure, etc.), or by a combination of these 

factors. More work can also be done with an extensive microseismicity dataset acquired 

with a 80-receiver array in the SAFOD Main Hole (J.A. Chavarria, personal communica- 

tion, 2006). The application of interferometry to these data can add to the knowledge of 

the earthquake dynamics of the San Andreas fault zone at Parkfield. Chapters 4 and 5 

demonstrate the potential of interferometry for reconstructing images of subvertical faults; 

the particular use of deconvolution may lead to the extraction of fault reflectivity properties 

from interferometric images. 

In Chapters 4 and 6 I show perturbation-based interferometry can play an important 

role in localized imaging in subsalt environments. Chapter 4 implicitly suggests that the use 

of permanent subsalt borehole sensors can be useful in locally monitoring subsalt reservoirs 

by the use of interferometry on passive data. Note that these passive data may consist 

of drilling and rig noise as well as microseismic events. The target-oriented interferometry 

method, discussed in Chapter 6, is an important step toward imaging particular desired 

events. In the application I describe in Chapter 6, the imaging of internal is accomplished 

with the target-oriented interferometry, which depends on the theory presented in Chapter 2.
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The interferometry approach in Chapter 6 can in principle be adapted to image any chosen 

direction in multiply scattering media, and can be applied to multicomponent seismic data 

and electromagnetic waves. Interferometry as presented in Chapter 6 can be extended to 

recover single-scattered converted and pure-mode shear waves from internal multiples. This 

application depends on the proper formal extension of deconvolution interferometry for 

elastic waves. Together with surface seismic data, interferometry experiments such as in 

Chapters 4 and 6 can, in principle, aid in locally constraining anisotropic subsalt velocity 

models, since they add information in terms of depth constraint (provided by the borehole 

receiver array), propagation paths that differ from those in surface seismic data, and pure- 

mode shear-wave information in off-shore acquisitions.
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Appendix A 

Physical analysis of the deconvolution 

interferometry series 

According to the derivation in Section 3.3.2 of Chapter 3, the deconvolution in equa- 

tion 4.11 can be expressed in series form 

__ Cap ¥>(_ Gslre.s) _ G5(r8,s)\" 

Pap = IGo(re,s)|? > ( Go(rp,s) aia) . (A.1) 
n=0 

The objective of this appendix is to reproduce the steps and physical approximations that 

simplify the series in equation A.1. Let us first consider the n = 2 term in the summation 

in equation A.1, which is 

_ _ Gs(rB,s) _ GS(rB,s) 2 

Sa = ( Go(rB,s) Gana) (A.2) 

Substituting this term in the expansion of |G(rg,s)|? (equation 3.13) gives, to second 

order in Gg, 

IG(rp,s)|-? 1 f Gs(tB,s) aarp 

  

IGo(re,s)? | Golrs,s) G3(ra,8) 

; 1 (getea8h" (Gats2)y" ; y(Gs(r,s))” 

IGo(rp,s)/? | \Go(ra,s) Gé(rB,s) IGo(re,s)|? |’ 

  

(A.3) 

where the very last term is zero-phase. When |Go|* >> |Gs|”, the zero-phase term in equa- 
tion A.3 can be neglected because it does not contribute with any new arrival. Equation A.3 

thus simplifies to
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_ 1 Gs(rp, Gi(rp,s Cras? [1 - Gees) — caleese)| 
IGo(rB,s)| Go(re,s) G(rB,s) 

s) 
) 

1 Gs(rB,s) Gi(rp,s)\"| 
+ IGo(ra,s)|" | (sete 2) * (Gees) | 

  

(A.4) 

for which the actual contribution from n = 2 to the sum in equation A.1 is 

2 * 2 Sp © Graz =) 4 (eres) (A.5) 
uo(rB,s) ud(rB,s) 

instead of the full Sg term in equation A.2. Applying the same rationale for the simplification 

of Sg to the n = 3 term from the summation in equation A.1 gives 

  

Gs(rB,s) _ Cates.8))" 
S3 = ee C*=n A.6 = (ees ~ Gens (A) 

S3 can be expressed in terms of S2, such that 

Gs(rB,s) - Bre) ) 
S3 = So x oo A.7 = Sx (BED - Gens an) 

Using the simplified Sp (equation A.5) in evaluating S3 gives 

Ge(en,8)\" ( btre.s)\" S3 8 -— (|) - (Ss > A.8 
3 ( Go (rB ’ s) Go(rB, s) ( ) 

_ |Gs(ra,s)l? Gs(re,s)G5(re,s) — |G@s(rB,s)|? Gh(rB,s)Go(ra,s) 

IGo(re,s)|? — |Go(ra,s)]? IGo(ra,s)? — {Go(rr,s)|’ 

The last two terms of S3 in the above equation are not zero-phase. Note also that despite 

being nonzero phase, the phase of these terms is the same of other terms of lower order. 

For example, the term (les? / \Gol*) Gs Gj has the same phase as the integrand in the 

D4 g term in equation 4.12, but with weaker amplitude and opposite polarity. Because 

they do not result in new arrivals and have weak amplitudes, we drop the last two terms in 

equation A.9 and reduce S3 to 

Getre.8)\" (Bites)! 
S3 xe —- | ———— ]}] - (Se ] CO*= AQ oe (Sea) ~ (eas (a9) 

Any S, term of the summation in equation A.1 can be written in terms of S;,_ in the 

same form of equation A.7. Analogously to equation A.9, any S,, will yield four terms from 

which two terms can be dropped according to the same rationale we use to neglect the last
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two terms in equation A.9. Thus, by induction, the summation in equation A.1 simplifies 

to 

»(- Gs(rp,s) _ GS(rB,s " wilt yt yn | (Gare) ) + (saree) 

~ Go(rs,s)  Gd(rB,s) Go(rg,s) G(rB,s) 

(A.10) 

Using this simplified summation in the deconvolution series gives 

Cap oS "| (gsc =)" (ge =" 
Dap © 1+ a] tH (SO . (Ail 
ape \Go(rp,s)|" 2 ( 21) Go (rp,s s) Go(rB,s) ( 

The term-by-term expansion of the equation above is such that for any given value of 

n, the terms 

Bans) Go(ra,s)G3(rp,s) + Gs(ra,s)GS(rp,s) | (A.12) 
G5(rB,s) . 2S 2 a al 

2. 4 
C4 B C4 B 

DAB,terms = (-1)” ( 
  

cancel, for n + 1, with the terms 

Gt(rp,s)\"t) . Dawes = (1)! (GEENA) | Golrars)Gilems) + GsleasiGilews) | 5 
0 ’ 
  

CaB Cip 

(A.13) 

which in the limit n — oo leaves only the contribution of the causal ratio Gs/Go to Dag 

in equation A.11. The cancelation of the terms proportional to the acausal ratio G§/G} 

(highlighted by equations A.12 and A.13) is responsible for the absence of acausal terms 
having the same phase as ca Bp and C4 p (equation 3.4) in deconvolution interferometry 

(equation 4.12). Because of these successive cancelations, we arrive to 

  

~ Colra,s)Go(re,s) 1 Gs(ra,s)GO(rB,s) 

|Go(re,s)|? ola SII" 
n(E rg,§) 
as) , (A.14) 

Galea oF yc 

which, in compact form, gives
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— Glra;s) _ Gs(rB,s) 

Dap ® Go(re,s) t Gear yon "(3 east) ‘ (A-15) 

We present this approximate deconvolution series as a tool to identify the most promi- 

nent events within the integrand of the deconvolution interferometry integral (equation 3.10). 

Equation A.14 is also useful in the description of the kinematics of deconvolution interferom- 

etry terms, as we discuss in the main text. If one seeks to describe the result of deconvolution 

interferometry with a more accurate dynamic behavior, the original series in equation A.1 

is more appropriate.
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Appendix B 

Stationary-phase evaluation of leading order terms 

of the deconvolution interferometry series 

The wavefields shown in Figure 3.3 can be described by the ray-geometric impulse 

responses 

etklra.s —s| 

  

uo(¥ A,B, 8) => Go(r,B,8) == dr lrap — |’ and 

eF(lrX.5 —84,8|+|8—r¥ al) 
us(ta,B,8) = Gs(ra,B,8) = —-T ;  (B.1) 

an (rp — raB| + ls - ryp|) 
      

where rp are the specular reflection points for the receiver-source pairs (r4,B,8). Go and 

Gg are the far-field acoustic Green’s functions we use to describe uo and ug, respectively. 

In our model, s = (2, y,z = 0) and rap = (24,8, y4,B = 0,24,B). The distances in the 

phases and denominators in equation B.1 can be expressed in terms of the corresponding 

ray-lengths in Figure 3.3. Using the Green’s functions in equation B.1 to express Di}, B 

(equation 4.12) we get 

eik(La—-Lp) 
Dhy = am! 

AB (4a ae LaLp 

where y = ik(L, — Lg) is the hace of the integrand. The source position that gives a 

stationary contribution to the integral in equation B.2 satisfies 

———drdy , (B.2) 

Op yy _ 9 3 
Oy ~ La Lp’ (B ) 

and 

Op x-2%A “L-—=TB 

Or =6L,A~C«wLg 

where w,4 and wg is the angle defined between the direct wave and the vertical at receivers 

A and B. It follows from equations B.3 and B.4 that the stationary point for the source in 

the D1, term satisfies (Snieder et al., 2006) 

    =sinw, —sinwe , (B.4)
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va=vp=%~ and y=0. (B.5) 

It is expected that the stationary contribution for all terms comes from sources at y = 0 

because y4,8 = 0 and the model is a flat reflector in a homogeneous and isotropic medium. 

The condition 44 = wg (equation B.5) states that the stationary source is the one that 

sends a direct wave which is first recorded at rg and goes straight to r4. This is the same 

stationary condition as for the C}p term of Snieder et al. (2006). 
To approximate the integral in equation B.2 with the stationary-phase method we 

must evaluate, at the stationary point, the second derivatives 

Oe 4h AL He 
dc? SS ALA «LA Lp 

(B.6) 
1 1 

= cos 2 (-z) ’ 

and 2 3 5 

eta te_ it 1 (B.7) he 73 dy? LF, 

Based on these second derivatives, the stationary-phase approximation (Bleistein and Han- 

delsman, 1975) to equation B.2 is 

B3, La Lp’ 

  

1 n 1 exp (ik (Ly, — Dp)) xen in/4 an 1 Dip= a 
AB (4nLp)* (41)? LaLg k 

cos 24) ( i-t) 
Le La} (Be) 

. [20 1 —in/4 fO® 
xe k T 1 ) 

Lp La 

where k = %. At the stationary source point, where ~4 = wp, the distance L4 — Lg is 

equivalent to the distance |r4 — rg|. Thus, in the stationary-phase approximation, D}, py is 
given by 

ne Go(ra,rB) Diy = ——~¢ 
AB 32n2 Li, cosy  (—tw) 

(B.9) 

From the derivation above, the stationary-phase evaluation of Di, p is completely anal- 

ogous to the evaluation of C1, (equation 3.4) in Snieder et al. (2006). Since the same 
occurs with the term D*, p>» we refrain from reproducing the steps of its stationary-phase 

approximation in this paper, and refer the readers to Snieder et al. (2006) for these steps.
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Appendix C 

Short note on deconvolution 

Our numerical application of deconvolution is based on the so-called water level de- 

convolution (Clayton and Wiggins, 1976), given by 

u(r,,s) u(r,,S) u*(rp,s) 

Dap = u(re,s)  |u(rp,s)|” + e(ju(re,s)|2) ” (C1) 
  

where (|u(rg,s)|”) is an average of the power spectrum of the data measured at rg. The 
factor € is a free-parameter that we choose by visually inspecting the output of the decon- 

volution in equation C.1. When « is too large, the denominator becomes a constant and 

the result of the deconvolution approximates the result of cross-correlation (equation 4.2). 
When € is too small the deconvolution becomes unstable. An optimal value of € results 

in the desired deconvolved trace with weak random noise associated to the water level 

regularization (Clayton and Wiggins, 1976). 
There are other deconvolution approaches that yield better results than the water-level 

deconvolution method. For deconvolution references in the exploration geophysics literature, 

we refer to the article collection edited by Webster (1981) and to the work of Porsani and 
Ursin (Porsani and Ursin, 2000; Porsani and Ursin, 2007). In the signal processing field, 

the work of Bennia and Nahman (1996) and Qu et al. (2006) are examples of deconvolution 

methods that are relevant to SWD processing. 
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