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Abstract 

Velocity variations with angle in anisotropic media influence not only reflection co- 

efficients but also geometrical spreading. Anisotropy-induced distortions in geometrical 

spreading can be comparable to those in reflection coefficients. Since AVO (amplitude- 

variation-with-offset) analysis operates with reflection coefficients, an important element 

of AVO processing, particularly for azimuthal AVO, is to correct amplitude responses for 

anisotropic geometrical spreading. 

Using paraxial ray theory, I obtain a concise expression for geometrical spreading 

as a function of reflection traveltimes recorded over laterally homogeneous, arbitrarily 

anisotropic media. By extending the Alkhalifah-Tsvankin (1995) nonhyperbolic moveout 

equation to orthorhombic media, I further express azimuthally-varying geometrical spread- 

ing in terms of normal-moveout velocities and anellipticity parameters. Weak-anisotropy 

approximation reveals that the azimuthal variation of geometrical spreading is primarily 

controlled by the difference between the anellipticity parameters in the two vertical sym- 

metry planes of orthorhombic media. 

Using the analytic results, I develop a moveout-based anisotropic spreading correction 

(MASC) that computes geometrical spreading from estimated normal-moveout velocities 

and anellipticity parameters. The implementation of MASC involves almost no extra cost; 

the spreading correction can be incorporated easily into the processing sequence that es- 

timates azimuthal moveout and AVO attributes. MASC proves to be insensitive to the 

trade-offs between moveout velocities and anellipticity parameters as long as they approx- 

imate the traveltime surface with adequate accuracy. Sensitivity studies show that the 

robustness of MASC is lower than that of normal-moveout inversion, but higher than that 

of estimation for anellipticity parameters. 

The underlying assumption of the MASC methodology is that the medium is laterally 

homogeneous. I perform numerical modeling to show that MASC remains sufficiently accu- 

rate for media with mild reflector dip and moderate lateral velocity variation. Because of 

the high sensitivity of shear waves to the presence of anisotropy, it is imperative to correct 

for geometrical spreading in AVO analysis of converted PS-waves. I, therefore, extend the 

MASC algorithm to PS-waves. The formalism developed for P-waves can be used to correct 

for the geometrical spreading for PS-waves, albeit with slightly lower accuracy. 

To evaluate the accuracy of MASC and its significance for azimuthal AVO analysis, 

I apply anisotropic spreading correction to wide-azimuth full-wavefield synthetic data and 

field data. Synthetic studies on models with strong azimuthal anisotropy verify the accuracy 

of MASC. In addition, I show that application of MASC is critically important for accurate 

quantitative AVO inversion. For qualitative AVO analysis, application of MASC becomes 

essential when the magnitude of the azimuthal variation of geometrical spreading reaches 

about one-third of that of the corresponding reflection coefficient. Also, I demonstrate 
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that the influence of transmission loss on azimuthal AVO analysis of P-waves is negligible. 

Application of MASC to wide-azimuth data from the Rulison field, Colorado, confirms that 

MASC is essential for reliable estimation of azimuthal AVO attributes. In addition, the field 

study proves the stability of azimuthal AVO attributes and helps to improve understanding 

of the fracture distribution in the reservoir. 
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Chapter 1 

Introduction 

Geometrical spreading is one of the most fundamental subjects in wave propagation. 

With the expansion of wavefronts away from a source, the amplitudes of elastic waves de- 

cay as a function of traveltime and medium properties. Although geometrical spreading is 

a dynamic quantity describing amplitude decay, it is governed by kinematic properties of 

wavefronts. While geometrical spreading in isotropic homogeneous media is simple (i.e., it 

depends solely on the source-receiver distance), it is complicated in anisotropic and hetero- 

geneous media. For instance, explicit expression for geometrical spreading in homogeneous 

transversely isotropic media with vertical symmetry axis (VTI media) involves evaluation 

of residues of a complicated integrand associated with the Christoffel matrix (Tsvankin, 

2005). Anisotropy acts like a lens that focuses and defocuses energy along a wavefront. 

As illustrated in Figures 1.1 and 1.2, the distribution of rays strongly varies with angle 

when rays are traced in a homogeneous, moderately anisotropic VTI medium using a con- 

stant phase-angle increment. These distortions of geometrical spreading become even more 

complicated in azimuthally anisotropic media. 

The most straightforward way to compute geometrical spreading is by dynamic ray 

tracing. Since geometrical spreading is proportional to the cross-section area of a ray tube, 

it can be computed by tracing a bundle of rays. For simple homogeneous models, it is 

also possible to express geometrical spreading analytically. Modeling methods, however, 

require accurate knowledge of the anisotropic, heterogeneous velocity field, which is seldom 

available in practice. 

An alternative approach, most suitable for processing, is based on relating geometrical 

spreading to reflection traveltimes recorded on the earth’s surface. One of the most practical 

and important results of paraxial ray theory is an expression for geometrical spreading 

in terms of the traveltime functions at the source and receiver locations (Cerveny, 2001). 
Direct implementation of this equation involves cumbersome sorting of data and suffers from 

instability (Tygel et al., 1992). Ursin and Hokstad (2003) simplify this equation for stratified 

VTI media. By employing the Tsvankin-Thomsen (1994) nonhyperbolic moveout equation, 

those authors further express geometrical spreading as a function of moveout parameters. 

Since orthorhombic model is typical for realistic fractured reservoirs, in Chapter 2 I obtain 

a concise equation for geometrical spreading as a function of traveltimes recorded over 

stratified azimuthally anisotropic media. 

One important application of the obtained equation is to correct azimuthal AVO re- 

sponses for anisotropic geometrical spreading. Azimuthal AVO analysis represents one of 

the most effective seismic tools for characterizing fractured reservoirs. The presence of
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Figure 1.1. P-wave propagation from a point source (triangle) in a vertical plane of a 

homogeneous VTI medium with ¢ = 0.15 and 6 = —0.1. The rays (in black) are computed 

with a constant increment in phase angle; the wavefront is shown in white. Notice that the 

density of rays strongly varies with angle (after Tsvankin, 2005). 
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Figure 1.2. SV-wave propagation from a point source (triangle) in a vertical plane of a 

homogeneous VTI medium with ¢ = 0.15 and 6 = —0.1 (o = 0.42). The rays (in black) are 
computed with a constant increment in phase angle; the wavefront is shown in white. Notice 

the concentration of rays near the velocity maximum at an angle of 45° (after Tsvankin, 

2005).
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preferentially oriented fractures or horizontal stresses yields an azimuthally-varying AVO 

response that can be used to infer fracture orientation and intensity. Compared to traveltime 

inversion, the advantages of amplitude methods are their strong sensitivity to the presence 

of anisotropy and high vertical resolution that makes AVO analysis applicable to thin reser- 

voirs. Based on the theoretical work of Rtiger and Tsvankin (1997), azimuthal AVO analysis 

is becoming a routine tool for fracture characterization. Current processing for azimuthal 

AVO attributes, however, involves a simplified assumption that AVO responses recorded 

on the earth’s surface represent reflection coefficients at the target horizon. In fact, the 

amplitude signature observed on the earth’s surface is controlled by the radiation pattern 

of the source, geometrical spreading, attenuation, the reflection/transmission coefficients 

along the raypath, and the conversion coefficients at the receiver. Since AVO analysis aims 

at estimating the reflection coefficient at the target horizon, an essential element of AVO 

processing is removal of all the other factors from the measured amplitudes. If the medium 

is not strongly attenuative, geometrical spreading typically makes the most significant con- 

tribution to the measured amplitude, in particular when azimuthal anisotropy is present 

in the overburden. An exact geometrical-spreading correction allows accurate reconstruc- 

tion of the reflection coefficients, which not only ensures reliable qualitative AVO analysis, 

but also makes possible quantitative AVO inversion for medium parameters (Jilek, 2002). 
Furthermore, fracture density and fluid infill can be estimated from these parameters using 

effective medium theory (Bakulin et al, 2001). 
The goal of this thesis is to develop a practical methodology to correct for geometrical 

spreading for both PP- and PS-waves in horizontally-layered azimuthally anisotropic media. 

I carry out azimuthal AVO analysis of synthetic and field data to evaluate the performance 

of the correction algorithm. 

Chapter 2 is devoted to the theoretical aspects. J derive a concise equation for geomet- 

rical spreading as a function of traveltimes measured on the earth’s surface. The geometrical 

spreading is further related to moveout parameters that describe long-offset, wide-azimuth 

traveltimes. By applying the weak-anisotropy approximation, I also identify the key pa- 

rameters controlling variations of geometrical spreading with offset and azimuth. Finally, I 

perform numerical tests to verify the analytic results. 

In Chapter 3, I develop a practical algorithm for anisotropic geometrical-spreading 

correction (MASC). The algorithm is designed in such a way that it readily fits into the 

processing sequence for azimuthal moveout and AVO attributes. In addition, I test the 

robustness of the algorithm by introducing realistic noise and then apply the algorithm to 

the Weyburn field data to evaluate the azimuthal variation of geometrical spreading. 

Using the full-wavefield synthetic study in Chapter 4, I answer a few questions of 

practical importance regarding MASC: 

1) Can MASC, despite its reliance on ray theory, accurately reconstruct reflection 

coefficients in the presence of strong azimuthal anisotropy? 

2) Can we replace MASC with simple gain corrections commonly used in practice? 

3) Is it possible to ignore the contribution of transmission loss along the raypath, which 

is not accounted for by MASC? 

The underlying assumption of Chapters 2 to 4 is that the medium is laterally homo-
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geneous. Since the subsurface structure often violates this assumption, it is important to 

test the applicability of MASC to models with mild lateral heterogeneity. By performing 

a series of numerical tests in Chapter 5, I show that the error of MASC is acceptable for 

media with mild reflector dip and moderate lateral velocity variation. 

Guided by insights from the synthetic study, in Chapter 6 I apply MASC to azimuthal 

AVO analysis of a wide-azimuth data acquired at the Rulison field, Colorado. A number of 

processing steps are used to obtain azimuthal seismic attributes including NMO ellipses, 3D 

nonhyperbolic moveout parameters, and azimuthal AVO gradients. I show that application 

of MASC is important for reliable estimation of the azimuthal AVO gradient for reflections 

from the bottom of the reservoir. 

The high sensitivity of shear-wave amplitudes to the presence of anisotropy makes it 

imperative to correct PS-wave amplitudes for geometrical spreading prior to AVO inversion. 

Chapter 7 extends the methodology of MASC to converted PS-waves. Since an incident 

P-wave excites two split shear waves, which compounds AVO analysis, the emphasis of this 

chapter is on PSV modes in vertical symmetry planes of horizontally layered anisotropic 

media. In addition, I conduct full-wavefield synthetic study to compare the performance of 

MASC and a conventional gain correction. 

Chapter 8 summarizes the results of the thesis and discusses additional challenges that 

lie ahead for quantitative AVO inversion. To perform azimuthal AVO analysis, I devel- 

oped two SU codes SUAZAVO and SUCONV. After 3D nonhyperbolic moveout inversion, 

SUAZAVO computes AVO ellipses for P-waves with application of MASC. The code SU- 

CONV reconstructs the PSV conversion coefficient with anisotropic spreading correction. 

Along with the codes SUAZVELAN for extraction of NMO ellipses and SUAZNHP for 

3D nonhyperbolic moveout inversion, SU now contains a comprehensive toolkit to perform 

azimuthal moveout and AVO analysis. 

This thesis is a compendium of papers with chapters bounded by overall introduction 

and conclusions. Chapters 2 and 3 were published in Geophysics in 2005 and 2006, respec- 

tively. Likewise, chapter 4 was published in The Leading Edge, 2006. In the near future, I 

will submit chapters 5 and 7 for publication. 
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Chapter 2 

Geometrical spreading of P-waves in horizontally 

layered, azimuthally anisotropic media 

2.1 Summary 

For purposes of processing and inversion of reflection data, it is convenient to represent 

geometrical spreading through the reflection traveltime measured at the earth’s surface. 

Such expressions are particularly important for azimuthally anisotropic models in which 

variations of geometrical spreading with both offset and azimuth can significantly distort 

the results of wide-azimuth AVO (amplitude variation with offset) analysis. 
Here, we present an equation for the relative geometrical spreading in laterally ho- 

mogeneous, arbitrarily anisotropic media as a simple function of the spatial derivatives of 

reflection traveltimes. By employing the Tsvankin-Thomsen nonhyperbolic moveout equa- 

tion, the spreading is represented by using the moveout coefficients, which can be estimated 

from surface seismic data. This formulation is then applied to P-wave reflections in an 

orthorhombic layer to evaluate the distortions of the geometrical spreading caused by both 

polar and azimuthal anisotropy. 

The relative geometrical spreading of P-waves in homogeneous orthorhombic media 

is controlled by five parameters that are also responsible for time processing. The weak- 

anisotropy approximation, verified by numerical tests, shows that azimuthal velocity varia- 

tions make a significant contribution to the geometrical spreading, so the existing equations 

for VTI (transversely isotropic with a vertical symmetry axis) media cannot be accurately 

used even in the vertical symmetry planes. The shape of the azimuthally varying spreading 

factor is close to an elliptical curve for offsets smaller than the reflector depth but becomes 

more complicated for larger offset-to-depth ratios. The overall magnitude of the azimuthal 

variation of the geometrical spreading for the moderately anisotropic model used in the 

tests exceeds 25% for a wide range of offsets. 

While the methodology developed here is helpful in modeling and analyzing the anisotropic 

geometrical spreading, its main practical application is in correcting the wide-azimuth AVO 

signature for the influence of the anisotropic overburden. 

2.2 Introduction 

Inversion of prestack amplitude variation with offset and azimuth (azimuthal AVO 

analysis) is one of the most effective tools for characterization of naturally fractured reser-



8 Chapter 2. Geometrical spreading of P-waves 

voirs. The presence of preferentially oriented fractures or horizontal stresses makes the 

reservoir formation azimuthally anisotropic, and wide-azimuth reflection amplitudes can be 

used to estimate the fracture orientation and, in some cases, map the lateral variation of the 

fracture density (Mallick et al., 1998; Lynn et al., 1999; Bakulin et al., 2000; Riiger, 2001). 

The main advantage of amplitude methods compared to traveltime inversion is their high 

vertical resolution that makes AVO analysis applicable to relatively thin reservoir layers. 

The amplitude signature of reflected waves is controlled by the radiation pattern of the 

source, geometrical spreading, attenuation, the reflection/transmission coefficients along the 

raypath, and the conversion coefficients at the receiver (Martinez, 1993; Maultzsch et al., 

2003). Since AVO analysis operates with the reflection coefficient at the target horizon, an 

essential element of AVO processing is the removal of the influence of all other factors from 

the measured amplitude. If the medium is not strongly attenuative, geometrical spreading 

typically makes the most significant contribution to the amplitude distortion above the tar- 

get horizon (Martinez, 1993; Ursin and Hokstad, 2003). In particular, if the overburden is 

anisotropic (e.g., shales in a sand-shale sequence), it acts like a 3D focusing lens that can 

significantly change the amplitude distribution along the wavefront of the reflected wave 

(Tsvankin, 1995, 2001). Therefore, estimation of the reflection coefficient for targets be- 

neath anisotropic layers can be strongly distorted without an accurate geometrical-spreading 

correction. 

The most straightforward way to compute anisotropic geometrical spreading is by 

performing dynamic ray tracing (Gajewski and Psencik, 1990). For simple homogeneous 

models it is possible to use analytic approximations of the Green’s function, such as those 

presented by Tsvankin (1995, 2001) for P- and SV-waves in a transversely isotropic layer. 

Modeling methods, however, require accurate information about the anisotropic velocity 

field for the whole overburden, which is seldom available in practice. 

An alternative approach, more suitable for purposes of AVO processing, is based on 

relating geometrical spreading to the traveltimes of reflection events recorded at the surface. 

For example, Vanelle and Gajewski (2003) presented an algorithm to determine geometrical 

spreading from coarsely-gridded traveltime tables. Ursin and Hokstad (2003) expressed the 

geometrical spreading in stratified transversely isotropic media with a vertical symmetry 

axis (VTI) in terms of the reflection traveltime and the group angle in the subsurface layer. 

For horizontally layered VTI models, P-wave traveltime can be accurately described by 

a nonhyperbolic moveout equation parameterized by just two moveout coefficients — the 

effective NMO velocity Vimo and the effective anellipticity parameter 7 (Alkhalifah and 

Tsvankin, 1995). The best-fit parameters Vimo and 7 can be estimated, for example, by 

a 2D semblance scan (Grechka and Tsvankin, 1998), which makes it possible to compute 

geometrical spreading using solely surface reflection data (Ursin and Hokstad, 2003). This 

approach can be also used to find analytic expressions for geometrical spreading in VTI 

media in terms of the parameters Vamo and 7. 

The distortions caused by geometrical spreading in reflection amplitudes are particu- 

larly pronounced for azimuthally anisotropic media (Riiger and Tsvankin, 1997; Maultzsch 

et al., 2003). Here we use ray theory to obtain a simple traveltime-based equation for the 

geometrical spreading of pure (non-converted) reflected waves recorded over horizontally
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layered arbitrarily anisotropic media. By combining this result with the Tsvankin-Thomsen 

moveout equation for an orthorhombic layer with a horizontal symmetry plane, we express 

the spreading as a function of the azimuthally varying moveout coefficients. Application of 

the weak-anisotropy approximation helps to explain the dependence of the relative geometri- 

cal spreading on the anisotropic parameters of orthorhombic media both within and outside 

the vertical symmetry planes. Numerical tests verify the accuracy of the analytic results 

and illustrate the character of the amplitude distortions caused by the azimuthally-varying 

geometrical spreading. 

2.3. Relative geometrical spreading as a function of reflection traveltime 

Geometrical spreading describes the amplitude decay of an elastic wave caused by 

the expansion of its wavefront away from the source. The relative geometrical spreading 

L(R,S) between the source S and the receiver R is an essential part of the ray-theory 

Green’s function Gi, (Cerveny, 2001, eq. 5.4.24): 

Gin(R, t;S, to) = gn(S)gi(R) exp[iT?(R, S)] 

~ 4n[p(S)p(R)V(S)V(R)]}/2 L(R, S) x RO 5(t to T(R,S)), (2.1)   

where ¢ and to are the recording and excitation times (respectively), p(S) and V(S) are 
density and phase velocity at the source, p(R) and V(R) are the same quantities at the 

receiver, gn(S) and g;(R) are the polarization vectors at the source and receiver, T¢(R, S) 
is the complete phase shift, R° is the product of the reflection/transmission coefficients 

normalized with respect to the vertical energy flux at all interfaces crossed by the ray, 6(t) 

is the delta function, and T(R,S) is the traveltime. 
Throughout the paper, we treat the relative geometrical spreading L(R,S) defined by 

equation (eq. 4.10.11) in Cerveny (2001). The factor L(R, 5S) can be expressed through 

the spatial derivatives of the traveltime T around a raypath (Cerveny, 2001, eq. 4.10.50; 

Goldin, 1986): 

_ | cos ¢° cos ¢” 
L(R, S) ~ \det M™x(R, S)| > (2.2) 

where ¢° is the angle between the ray and the normal to the surface at the source, ¢” is the 

ray angle at the receiver, and the matrix 1/™™ is given by (Cerveny, 2001, eq. 4.10.46) 

0?T(a" ,2°) OT (a" 2°) 

ymix __ Ox{ Ox} Ox§ Ox}, . 
M — 8°T (a,x) 0?T(x" 2°) + (2.3) 

O25 027 Ox5 025 

(xj, 5) and (aj, v5) are the local Cartesian coordinates of the source and receiver. 
For a reflected wave recorded at a horizontal surface, equation (2.2) can be reduced to
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Xx, Receiver    
  

      

/ aciied™ 

    

Incidence piane 

Figure 2.1. Reflected ray in a homogeneous horizontal orthorhombic layer with a horizontal 

symmetry plane. The ray lies in the incidence plane, although the corresponding phase- 

velocity vector may point out of plane. 

the following function of the traveltime T' (see Appendix A): 

L(R, S) = L(x, a) = (cos ¢* cos ¢")1/? 

dn Orr O22 Oe \da} ZF 
eT eT. &PTPT1 (aT\? 1 |" oT oF ( ) (2.4) 

where z is the source-receiver offset, and a is the azimuth of the source-receiver line. Equa- 

tion (7.2) is valid for pure (non-converted) modes in laterally homogeneous (but possible 
vertically heterogeneous) media, regardless of the anisotropic symmetry. 

In addition to providing a concise representation of the spreading L(R,S) in terms of 

the reflection traveltime T(ax,a), equation (7.2) helps to gain insight into the influence of 
both polar and azimuthal velocity variations on geometrical spreading. The first term in 

the brackets coincides with the geometrical-spreading factor for horizontally layered VTI 

media (Ursin and Hokstad, 2003), where the traveltime T is independent of the azimuth 

a. Note, however, that even this term is distorted by azimuthal anisotropy because the 

traveltime derivatives with respect to offset vary with a. The second and third term appear 

only in azimuthally anisotropic media. 

Geometrical spreading in homogeneous orthorhombic media 

Effective orthorhombic models, appropriate for one or two fracture sets, are considered 

typical for naturally fractured reservoirs (Schoenberg and Helbig, 1997; Bakulin et al., 

2000). Here, we apply the general expression (7.2) to reflections from the bottom of a single 

horizontal orthorhombic layer with a horizontal symmetry plane (Figure 1). The incidence 

and reflection group angles for this model are equal to each other (i.e., ¢° = ¢” = ¢), and
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equation (7.2) becomes 

L(x,a) = cos¢ 
2 2m 92 2 ~1/2 2T 0T1) &f'T PT 1 (2) . (2.5) 

Ox? Ox x Ox? Ja? x? \ da 

  

xt 

Orthorhombic media with a horizontal symmetry plane have two mutually orthogonal ver- 

tical symmetry planes, in which the first derivative OT. /Oa goes to zero so equation (2.5) 

further simplifies to 

(2.6) OT or | PT PT 141” 
Ox? Ox x Ox? Oa? x? ‘ 

L(x) = cos | 

Equation (2.6) confirms the conclusion of Tsvankin (1997, 2001) that the kinematic equiva- 
lence between the symmetry planes of orthorhombic and VTI media cannot be extended to 

geometrical spreading. The second derivative 0?T'/0a?, which generally does not vanish in 

the symmetry planes, reflects the influence of azimuthal velocity variations on symmetry- 

plane amplitudes. This 3D character of geometrical spreading in the symmetry planes is 

explained by the dependence of the wavefront curvature on both in-plane and out-of-plane 

(azimuthal) velocity variations. The spreading L(x,a) for source-receiver lines outside the 
symmetry planes [equation (2.5)| also depends on the first derivative OT /0a. 

2.3.1 Nonhyperbolic moveout equation for an orthorhombic layer 

Reflection moveout, as well as other signatures of reflected waves in orthorhombic 

media, is conveniently described using the notation suggested by Tsvankin (1997, 2001). 

Tsvankin’s parameter definitions are based on the analogous form of the Christoffel equation 

in the symmetry planes of orthorhombic (Figure 2.2) and VTI media. The anisotropic 

parameters €), 6), and y“) play the roles of Thomsen’s (1986) VTI coefficients €, 6, and 

7 in the vertical symmetry plane [x2, x3] (the superscript denotes the orthogonal axis 2). 

The similar set of the anisotropic coefficients in the [x;,23]—plane includes e(2), §(2), and 

(2). One more anisotropic coefficient, 6), is defined in the horizontal plane [x1, 2]. The 

parameter Vpp denotes the vertical P-wave velocity, and Vso is the velocity of the vertically 

propagating S-wave polarized in the x-direction. 

Although orthorhombic symmetry is described by a total of nine independent param- 

eters (for a fixed orientation of the symmetry planes), kinematic signatures of P-waves 

depend only on five parameter combinations. As shown by Grechka and Tsvankin (1999), 

P-wave reflection traveltime and the operators for dip-moveout (DMO) correction and time 
migration in homogeneous orthorhombic media are controlled by the NMO velocities from 

horizontal reflectors in the vertical symmetry planes, vv and V2) and three anellipticity 

coefficients defined as follows: 

ef) — 5) 
Qa ST nw 1) _ 5) iy) = 14260) € OY , (2.7)
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[3] 

Figure 2.2. Sketch of body-wave phase-velocity surfaces in orthorhombic media (after 

Grechka et al., 1999). Tsvankin’s (1997) parameters are defined in the mutually orthogonal 
symmetry planes which coincide with the coordinate planes. A marks a point (conical) 

singularity where the phase velocities of the two S-waves are equal to each other. 

(2) — 52) 
1+ 260) 

(3) el) — ¢(2) _ §(3) (1+ 2e(2)) mw ll) 
(1 + 2e(2)) (1 + 26(3)) 

The long-spread reflection traveltime for orthorhombic media can be described by 

the general Tsvankin-Thomsen (1994) nonhyperbolic moveout equation with azimuthally 

varying coefficients: 

(2) we (2) — §(2) | (2.8) 

— €) — §@3), (2.9)   ” 

    

Aq(a) x4 9 _ 24 TAA) T?(a,a) = Ap + Ao(a) x? + 1+ A(a)22’ (2.10) 

where 

— 2 = 
=5 Ap =19, A2= d(x?) |. and Aa 2 d(x?) a) 20   

Here To is the zero-offset traveltime, Ag is related to the normal-moveout velocity as 

Ay = V2, and Ay, is the quartic coefficient responsible for nonhyperbolic moveout. The pa- 

rameter A in the denominator depends on the horizontal group velocity Vyo, and is designed
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to make T(x) convergent at large offsets 2 — oo (Tsvankin and Thomsen, 1994): 

A 4 

Vy’ 
Vi Vamo 

A= (2.11) 

The hyperbolic coefficient Ag in equation (2.10) can be obtained from the results of Grechka 

and Tsvankin (1999), who proved that the azimuthal variation of NMO velocity typically 

has a simple elliptical form even in arbitrarily anisotropic, heterogeneous media. For a 

horizontal orthorhombic layer in which the vertical symmetry planes coincide with the 

coordinate planes [1,23] and [x2, x3], the axes of the NMO ellipse are aligned with the 2 

and x9 directions, which yields (for P-waves): 

  

  

Aog(a) = AS) sin? a + Ag ) cos? a, (2.12) 

1 1 AW) _ I= (2.13) 
(1))’ (Vino) V5o (1 + 264) 

1 1 AY? _ 5= 35 . (2.14) 
(2))’ (Vane } Vip (1 + 26?) 

the azimuth a@ is computed with respect to the x-axis. 

The azimuthally dependent P-wave quartic moveout coefficient Aq in a horizontal 

orthorhombic layer has the form (Al-Dajani et al., 1998) 

Ag(a) = Al) sin’ a + Ae costa + Aw ) sin? a cos? a, (2.15) 

— In) 
AM a (2.16) 4 mo (eel) \4 

13 (Vino) 
—2n(2) 

AG) = a (2.17) 
‘ 72 (v2\' 73 (Varna 

(1) (2) Aw _ 2 5 {i (1 + 2n (1 + 20 ) (2.18) 

7? (vie) (vi2.) 142 

Here AM) and Ae) are the symmetry-plane coefficients and A® is a cross-term that con- 

tributes in off-symmetry directions. Al-Dajani et al. (1998) approximated Vj, in equa- 

tion (2.11) by the horizontal phase velocity, and demonstrated that equation (2.10) with 

the moveout coefficients given by equations (2.11), (2.12), and (2.15) is sufficiently accurate 
for P-wave moveout in models with substantial azimuthal anisotropy. The algorithm of 

Al-Dajani et al. (1998), based on equation (2.10), is used below in the numerical modeling 
of the geometrical spreading in an orthorhombic layer.
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A simplified version of equation (2.10) can be obtained by exploring the approximate 

kinematic equivalence between the vertical planes of orthorhombic and VTI media. In the 

limit of weak anisotropy, out-of-plane phenomena in a horizontal orthorhombic layer have no 

influence on kinematic signatures including reflection traveltimes (Tsvankin, 2001, p. 164). 

Also, the P-wave phase velocity in any vertical plane of weakly anisotropic orthorhombic 

media can be described by Thomsen’s (1986) VTI equation with azimuthally-dependent 

coefficients € and 6 [Tsvankin, 2001, equation (1.107)|. Therefore, P-wave reflection moveout 
in a horizontal orthorhombic layer can be approximated by the VTI equation of Alkhalifah 

and Tsvankin (1995) with the appropriate parameters Vj;no and 7 for each azimuth: 

  

  

° 2n(ar) x T?(x,a) = T? + =~ - . (2.19) 
© Venol®) — Veno(@) [TF Vi2no(@) + (1 + 2n(a)) x? 

Vamo(@) in equation (2.19) is determined from equations (2.12)—(2.14), 

2 2 

, 5 (vist) (Viste) 
Viimo(@) = Ay = (2.20) 

(Vins } ; cos? a + (Vain } ° sin? a 

and the linearized azimuthally dependent parameter 7 is given by (Pech and Tsvankin, 

2004) 
2 2 2 2 n(a) = 7 sin? a — 7) sin? a cos? a + 7) cos? a. (2.21) 

The nonhyperbolic term in equation (2.19) can be derived from equation (2.10) by using 
the VTI relationships 

2n(a 1+ 2n(a 

Ase) =~ py ay Al) = FEVR ay (2.22) 
Although the linearization in the anisotropic parameters implied by the weak-anisotropy 

approximation formally requires dropping the coefficient n(a) from the denominator of 

equation (2.19), the complete denominator of the original VTI equation can be retained to 

increase the accuracy at large source-receiver offsets. Here, equation (2.19) is used only to 

obtain analytic expressions for the geometrical spreading in the weak-anisotropy approxi- 

mation. 

2.3.2 Geometrical spreading as a function of moveout coefficients 

The derivatives of the traveltime with respect to offset and azimuth needed to ob- 

tain the geometrical spreading L(z,a) from equation (2.5) can be found using the non- 

hyperbolic moveout equation (2.10). Explicit expressions for the traveltime derivatives in 

terms of the azimuthally dependent parameters Ag(a), A4(a), and A(a) are given in Ap- 
pendix B. Substitution of equations (2.11), (2.12), and (2.15) yields L(z,a) as a function of 
the medium parameters and the group angle. The group angle ¢ for a single orthorhombic 

layer can be found in a straightforward way from the reflector depth (To Vpo/2) and offset
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x: cos¢ = Jaa 

While the derived equation is well-suited for numerical modeling, it does not pro- 

vide insight into the dependence of the geometrical spreading on the anisotropic parame- 

ters. Therefore, next we apply the weak-anisotropy approximation based on the generalized 

VTI equation (2.19). The traveltime derivatives in equation (2.5) are obtained from equa- 
tion (2.19) and then linearized in the anellipticity parameters 7-23), Further linearization 

of equation (2.5) yields the weak-anisotropy approximation for the geometrical spreading 

discussed below. 

2.3.3 Analysis of the weak-anisotropy approximation 

Geometrical spreading in the symmetry planes. While the full linearized 

expression for geometrical spreading is still rather long, it takes a much more concise form 

in the vertical symmetry planes. For the symmetry plane [1,73], we find the inverse relative 

spreading as 
A+ Br? + Cx! 

L + (a2) = cos! 5 3 

vine VER [73 (vite) +2] 
  ; (2.23) 

where 

cosé = ane (2.24) 

A = T§ (VA 2)! ; (2.25) 

B= 18(v4Q,) (aan) (1° + (049 0) (vg) ] e220 
C= Ta |( (1+) ( ) (vie) + (n® +n —n®) (vi2.)']. (2.27) 

At zero offset, the factor L~! becomes 1 /(To vv, V,2)), which is an exact expression 

that can be obtained directly from the wavefront curvatures for any strength of anisotropy. 

As follows from equations (2.13) and (2.14) for the NMO velocities, the geometrical spread- 
ing at vertical incidence is governed by two anisotropic coefficients, 6) and 6). For VTI 

media, Vio = V2), and L~! at zero offset reduces to 1/(Tp V,2,,.); this result was pre- 

viously obtained by Tsvankin (1995) and Ursin and Hokstad (2003). If the medium is 
isotropic, L~! further simplifies to the familiar expression 1/(T> V2)) (Newman, 1973). 

The factors B and C in equation (2.23) can be called the “near-offset” and “far-offset” 

spreading coefficients, respectively. It should be emphasized that B and C include terms 

dependent on both in-plane and out-of-plane traveltime (and, therefore, velocity) variations. 

P-wave reflection traveltime in the incidence plane is controlled just by the NMO velocity 

V2), and the anisotropic parameter 7?) (Grechka and Tsvankin, 1999; Tsvankin, 2001). 

Hence, the term (1— 4n(?)) (Vi2),)2 in the coefficient B represents the in-plane contribution,
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which coincides with the corresponding (near-offset) spreading factor for VTI media. The 

other term in the expression for B, [(n — nf) + 7) (Vie),)2), is entirely due to azimuthal 

anisotropy (i.e., to a nonzero value of the second traveltime derivative with respect to a). 

This term vanishes in VTI media where n°) = 0 and 7) = yn). Similarly, the far-offset 

coefficient C contains the in-plane term [(1 +n'?)) (V;62),)2] and exactly the same out-of-plane 

term as that in the expression for B. 

The inverse spreading L~! in the symmetry plane [2,23] can be obtained from equa- 

tions (2.23)—(2.27) by simply switching the superscripts (1) and (2) in the NMO velocities 
and the coefficients 7. A more detailed comparison of the geometrical spreading in the sym- 

metry planes of orthorhombic media with that in VTI media can be found in the numerical 

examples below. 
2 

Azimuthal variation of geometrical spreading. Since azimuthal AVO anal- 

ysis often operates with prestack amplitudes measured at a fixed offset, here we analyze 

the azimuthally-varying spreading factor L~!(a,x) for x = const. Using equations (2.13) 

and (2.14) for the symmetry-plane NMO velocities and linearizing both the x?- and x4-terms 

in equation (2.19) in the anisotropic parameters yields 

9 1 — 5) — 6) + (62) — 60) cos 2a 

VP, 
7) cos? a +n") sin? a — 7) cos? a sin? a 

2 

Ty Veo (2 + “iv 

  T’(xz,a) = Te +2 

— Qt   (2.28) 

Substituting moveout equation (2.28) into equation (2.5) and carrying out further lineariza- 

tion in the anisotropic parameters, we obtain the inverse geometrical spreading as 

  L~\(2,a) = D(x) + E(a) Fa “4 F(a) | $n. (2.29) 

Here, D(x) is an azimuthally-independent term that would coincide with L~! in VTI media 

(the model becomes VTI if the anisotropic coefficients in the vertical symmetry planes are 

identical, and n®) = 0). The azimuthally-varying terms in equation (2.29) are expanded in 

x, and powers of x higher than four are neglected. The coefficients EF and F' are given by 

v3, 73 
E(a) = ——Po-e [3 (n — n) — (6) - 5) | cos 2a ; (2.30) 

(Vp Tg + 2”)? 
y3 TA 

F(a) = ——Po°o __ (2.31) 
(VBy 19 + 22)2 
{ 5 (5 _ 5) + 9(n) — | cos 2a + 57 cosa} :
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The coefficient F(a) is responsible for the azimuthal dependence of the geometrical spread- 

ing at near offsets. Since E(a) is proportional to cos 2a, for small x the function L~!(a) 

traces out a curve close to an ellipse. In contrast, the far-offset coefficient F(a) contains 
both cos 2a and cos 4a, and the form of L~!(a@) may substantially deviate from elliptical; 

this is illustrated by the numerical examples in the next section. 

The magnitude of the azimuthal variation of geometrical spreading is controlled by 

the differences (6) — §(2)), (n@) — n')) and, at far offsets, by the coefficient {°). If 
62) = §), n™) = yl), and nS) = 0, P-wave velocity becomes azimuthally independent, 

and for purposes of computing P-wave geometrical spreading the orthorhombic medium 

becomes equivalent to VTI. 

2.3.4 Numerical example 

The numerical example presented here is designed to illustrate the following properties 

of the inverse spreading L~! in an orthorhombic layer: 

The influence of azimuthal anisotropy on L~! in the vertical symmetry planes. 

The azimuthal variation of L~! at a fixed source-receiver offset. 

The spatial variation of L~! expressed as a function of offset and azimuth. 

The accuracy of the weak-anisotropy approximation for L~!. 

We use an orthorhombic model formed by parallel vertical penny-shaped cracks embed- 

ded in a VTI background. The stiffness coefficients for this model are given in Schoenberg 

and Helbig (1997), and the corresponding anisotropic parameters, listed in the caption of 

Figure 2.3, are taken from Tsvankin (1997). Although this model has a substantial az- 
imuthal velocity variation, it is dominated by the VTI component, with both e€ coefficients 

close to 0.3. 

As before, we assume that the coordinate planes coincide with the symmetry planes 

of the orthorhombic layer. The inverse spreading L~! is found using the formulation based 

on equations (2.5) and (2.10) without making any further approximations in computing the 

traveltime derivatives and the spreading factor itself. For comparison, we also calculate 

the weak-anisotropy approximation for L~! by employing the moveout equation (2.19) and 

linearizing the spreading in the anisotropic coefficients (see the previous section). 

Figure 2.3 displays the inverse spreading L~! (normalized by L~! in the corresponding 

isotropic model) in the vertical symmetry planes of the layer. Clearly, the influence of 

anisotropy leads to significant distortions of geometrical spreading in a wide range of offsets 

for both symmetry planes. As shown by Tsvankin (1995, 2001) for VTI media, the influence 

of anisotropy causes the amplitude (e.g., the inverse spreading) to decrease with increasing 

offset if the difference € — 6 is positive (i-e., 7 > 0). Figure 2.3 confirms that this conclusion 
remains valid for the symmetry planes of orthorhombic media with moderate azimuthal 

anisotropy. Indeed, the 7 coefficients in both vertical symmetry planes (nh and n(?)) are 

positive, and the normalized factor L~! decreases with offset at near-vertical incidence.



18 Chapter 2. Geometrical spreading of P-waves 

~~ >   

oO 
=
_
 

o 
= 

bh 
° o 

  

N
o
r
m
a
l
i
z
e
d
 

in
ve
rs
e 

s
p
r
e
a
d
i
n
g
 

      © 
of

 

  a 
pr
ea
di
n 

_
 

2 © 

  

N
o
r
m
a
l
i
z
e
d
 

i
n
v
e
r
s
e
 

s 
°o 

° 
~“ 

co
 

°o 
cd

 

* 

a
 SM       o 

o
o
 

1 2 3 4 
Offset/Depth (b) 

Figure 2.3. Normalized inverse spreading L~! as a function of the offset-to-depth ratio 

in the symmetry planes [21,23] (a) and [2,23] (b) of a horizontal orthorhombic layer. 
The solid line is computed using equations (2.5) and (2.10), the dashed line is the weak- 
anisotropy approximation, and the dotted line is L~! in the reference VTI model. The model 

parameters are Vpg = 2.437 km/s, e“) = 0.329, €) = 0.258, 6() = 0.083, 6) = —0.078, 

and 63) = —0.106. The corresponding P-wave moveout parameters are vv. = 2.632 km/s, 

V2), = 2.239 km/s, n® = 0.211, n = 0.398, and 7) = 0.193. The inverse spreading L~! 

is normalized by its value in the corresponding isotropic layer with the velocity Vpp = 2.437 

km/s.
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Comparison with the spreading in the reference VTI medium (dotted line) helps to 

quantify the influence of azimuthal anisotropy in both symmetry planes. It is interesting 

that azimuthal anisotropy changes the spreading factor even at vertical incidence, where for 

orthorhombic media L~! = 1/(To viv, Vi2),), while for VII media L~! = 1/(To V2 no): For 

example, if we substitute the NMO velocity in the [x1,23] symmetry plane into the VTI 

expression, we get a value that is 18% larger than the actual L~! (Figure 2.3a). 

As follows from the weak-anisotropy approximation discussed in the previous section, 

the influence of azimuthal velocity variations on the offset-dependent part of the factor L~! 

in the [2,23] symmetry plane is controlled by the combination (n) — nh) + 7)) of the 

anellipticity coefficients. Since for our model this combination is positive and relatively 

large (0.38), L~! in the [21,23]-plane initially decreases with offset slower than that in 
the corresponding VTI medium (Figure 2.3a). For offset-to-depth ratios exceeding two, 

however, the factor L~! almost coincides with the VTI value, which contradicts the weak- 

anisotropy result. Overall, the influence of azimuthal anisotropy is so significant that it is 

not acceptable to apply 2D amplitude analysis even in the symmetry planes of azimuthally 

anisotropic media, 

Similarly, the factor L~! in the [2,23] symmetry plane contains the “out-of-plane” 

term proportional to (n®) — n(?) + n)), For the model at hand, however, this term is close 

to zero (0.006), and the offset dependence of the geometrical spreading in the [xe, x3]-plane 
is close to that in the reference VTI medium (Figure 2.3b). 

Figure 2.3 also helps to evaluate the accuracy of the weak-anisotropy approximation 

for a model that can be characterized as moderately-to-strongly anisotropic in terms of the 

magnitude of P-wave velocity variations. While the weak-anisotropy solution is exact at 

x = 0 (because we did not linearize the NMO velocities in the denominator of L~'), it 
rapidly deviates from the exact factor L~! with increasing offset. Still, the approximation 

correctly predicts the general character of the function L~!(xz) and remains accurate for 

offset-to-depth ratios of up to about one. 

The azimuthal variation of the normalized spreading L~! at two different offsets is 

plotted in Figure 2.4. Since the geometrical spreading in our model is symmetric with 

respect to both vertical coordinate planes, the signature of L~! is repeated in each quadrant. 

For the offset equal to the reflector depth, the azimuthal variation of L~! is close to elliptical, 

as predicted by the weak-anisotropy approximation (Figure 2.4a). The fractional difference 

between the values of L~! in the symmetry planes, which determines the overall magnitude 

of the azimuthal variation of the inverse geometrical spreading, is about 30%. Hence, for 

this model the eccentricity of the “geometrical-spreading ellipse” exceeds that of the NMO 

ellipse (18%). For larger offset-to-depth ratios, the shape of the curve L~!(a) becomes 

more complicated and, in agreement with the weak-anisotropy approximation (2.31) for the 

xterm, deviates from an ellipse (Figure 2.4b). 

A complete picture of the spatial variations of the spreading factor in our model is given 

in Figure 2.5a, where the factor L~! is computed as a function of both offset and azimuth. 

The combined influence of polar and azimuthal anisotropy creates a rather complicated pat- 

tern of the normalized factor L~!, with substantial azimuthal variations and pronounced 

deviations from the corresponding isotropic values. The largest anisotropy-induced distor-
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270 (b) 

Figure 2.4. Azimuthal variation of the normalized spreading L~! for the model from Fig- 

ure 2.3; the offset-to-depth ratio is equal to one (a) and two (b). The azimuth a (numbers 
on the perimeter) is measured with respect to the 2,-axis. The solid line is computed using 

equations (2.5) and (2.10), the dashed line is the weak-anisotropy approximation.
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tions of the geometrical spreading, reaching 40%, are observed near the [21,x3|-plane for 

offset-to-depth ratios of about 1.5. 

The significant azimuthal variation of L~! at near offsets is partly caused by the 

opposite signs of the 6 coefficients in the vertical symmetry planes. In Figure 2.5b we 

changed the sign of 6@) (the other model parameters remained the same), which reduced 

the differences between the symmetry-plane NMO velocities (VR, and V,2),) and between 

the corresponding 7 coefficients (7) and 7{?)). Although the geometrical spreading did 

become much less dependent on azimuth at near offsets, the azimuthal variation of L~! at 

moderate and far offsets in Figure 2.5b is still quite pronounced. 

2.4 Comparison with dynamic ray tracing 

To verify the accuracy of our algorithm [equation (4)] based on the nonhyperbolic 

moveout equation (2.10), we compared our results with the spreading computed by dy- 

namic ray-tracing code ANRAY (Gajewski and Psenéik, 1990). The comparison was carried 

out for a single orthorhombic layer with the parameters of the Schoenberg-Helbig model 

used previously! and a more complicated medium composed of two orthorhombic and two 

isotropic layers (Table 1). The moveout coefficients were found by fitting equation (2.10) 

to ray-traced traveltimes using the least-squares method. The group angle for the lay- 

ered model was estimated from the slope of the traveltime curve and the velocity in the 

subsurface isotropic layer. 

For both models, the geometrical spreading calculated by our method is close to the 

results of dynamic ray tracing for a wide range of offsets (Figures 6 and 7). Small deviations 

from the ray-traced values can be explained by the approximate nature of the Tsvankin- 

Thomsen nonhyperbolic moveout equation and, possibly, by numerical errors in ANRAY. 

Note that since equation (4) includes second-order traveltime derivatives, the spreading 

computed by our algorithm is sensitive to relatively small correlated errors in the moveout 

function. 

Still, Figure 7 demonstrates that equation (2.10) adequately describes P-wave moveout 

not just for a single layer, but also for a stack of azimuthally anisotropic layers with aligned 

vertical symmetry planes. For layered media, all moveout coefficients become effective 

values that depend on the interval NMO velocities and 7 parameters. 

2.5 Discussion and conclusions 

Although geometrical spreading of reflected waves is determined by the medium prop- 

erties around the whole raypath, it can be obtained from the reflection traveltime and the 

group angles at the source and receiver locations. Using ray theory, we showed that for 

  

'To facilitate the conversion from the relative spreading produced by our algorithm to the absolute spread- 

ing computed by ANRAY, we placed a thin (10 m) isotropic layer on top of the 1000 m-thick orthorhombic 

layer.
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Figure 2.5. Map of the normalized inverse spreading L~! as a function of offset and azimuth. 

Plot (a) is computed for the model from Figure 2.3; in plot (b), the sign of the parameter 
62) was changed from negative to positive (i.e., 6(2) = 0,078). The offset-to-depth ratio 

varies from zero to four.
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Figure 2.6. Comparison of the inverse relative spreading computed by our method (dashed 

line) and code ANRAY (solid) for the model from Figure 2.3. The source-receiver line is 
oriented (a) along the x)-axis; (b) at 45° with the 2,-axis; and (c) along the x-axis.



24 Chapter 2. Geometrical spreading of P-waves 

g 1.2, ——— 

pr
ea
di
n 

S 
2 

a 
& 

S ih 

  

N
o
r
m
a
l
i
z
e
d
 
in
ve
rs
e 

s 

  S 
o
t
 | L 

2 3 
Offset (km) (a) 

ah
 

Nn
   

Li
 

se
 
sp
re
ad
in
g 

cu
 

© 
=> 

S b 

  

    N
o
r
m
a
l
i
z
e
d
 

_i
nv

er
: 

ro 

2 4 
Offset (km) (b) 

b | ° 
a
’
 - 

iv   

p
r
e
a
d
i
n
g
 

S & 
° a 

    . "., 
« 
fa 

N
o
r
m
a
l
i
z
e
d
 

in
ve
rs
e 

s 

bh     ° 
ob

   
2 3 

Offset (km) (c) 

Figure 2.7. Comparison of the inverse relative spreading computed by our method (dashed 

line) and code ANRAY (solid) for the layered orthorhombic model from Table 1 (we used 
the reflection from the bottom of the third layer). The source-receiver line is oriented (a) 
along the x,-axis; (b) at 45° with the x-axis; and (c) along the r2-axis.
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Layer 1 | Layer 2 | Layer 3 | Layer 4 

Symmetry type ISO ORTH | ORTH ISO 

Vpo (km/s) 1.5 2.437 3.0 3.2 
Thickness (km) 0.2 0.9 0.9 0.5 

(1) 0 0.329 0.25 0 
(2) 0 0.258 0.15 0 
ol) 0 0.083 0.05 0 

6(?) 0 -0.078 | -0.1 0 
6(3) 0 -0.106 | 0.15 0           
  

Table 2.1. Parameters of a four-layer model that includes two orthorhombic layers 

(layers 2 and 3) with aligned vertical symmetry planes. 

pure (non-converted) modes recorded above a horizontally layered medium, the relative ge- 

ometrical spreading can be expressed as a simple function of the traveltime derivatives with 

respect to offset and azimuth and the group angles at the surface. Although this equation 

does not account for lateral heterogeneity, it involves no restrictions on the number of layers 

above the reflector or the type of symmetry in each layer. 

To describe the geometrical spreading of P-waves in orthorhombic media, we combined 

our general result with the Tsvankin-Thomsen (1994) nonhyperbolic moveout equation for 

a homogeneous, horizontal orthorhombic layer. P-wave reflection traveltime and, therefore, 

the geometrical spreading for this model is governed by the NMO velocities Vo, and V2), 

in the vertical symmetry planes and the anellipticity coefficients 7“), 7), and n@. To 

explain the dependence of the inverse spreading L~! on these parameters, we employed 

the weak-anisotropy approximation based on linearization in the anisotropic coefficients. 

The analytic results were verified by numerical tests for an orthorhombic model formed by 

vertical penny-shaped cracks embedded in a VTI matrix. 

Although the geometrical-spreading signature in an orthorhombic layer is repeated 

in each quadrant, the variation of the factor L~! with offset and azimuth has a rather 

complicated character. For the model used here, the error of the isotropic equation for the 

geometrical spreading reaches a maximum of 40% in the intermediate offset range (i.e., for 

the offset-to-depth ratio between one and two). The azimuthal variation L~!(qa) for a fixed 
offset is close to elliptical at relatively small offset-to-depth ratios of up to one. For larger 

offsets, L~!(@) deviates from an ellipse and may have intermediate minima or maxima 

between the symmetry planes. 

Both analytic and numerical results show that the spreading factor L~! is substantially 

influenced by azimuthal velocity variations even in the vertical symmetry planes. At zero off- 

set (vertical incidence), the exact inverse geometrical spreading is given by a simple equation 

that involves only the NMO velocities in both symmetry planes: L~! = 1 /(To vi, Vi2),). 

The offset-dependent part of L~! in the symmetry planes can be separated (in the weak-
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anisotropy approximation) into the in-plane term, identical to the factor L~! in the cor- 

responding VTI medium, and the out-of-plane term associated with azimuthal anisotropy. 

In the [21,23]-plane, the contribution of azimuthal velocity variation is proportional to the 

combination (72) — 7) + 7), and in the [22, 73]~plane to (ny) — n@ +4 n)), 
The large magnitude of the anisotropy-induced distortions of the factor L~! means 

that reliable interpretation of the wide-azimuth AVO response for media with azimuthally 

anisotropic overburden is impossible without properly correcting for the geometrical spread- 

ing. The estimation and removal of geometrical spreading can be accomplished by applying 

equation (7.2) with the best-fit traveltime function. Analytic representations of reflection 

moveout can facilitate the spreading correction by providing a smooth accurate approxima- 

tion for the measured traveltimes. 

In practice, however, complications may arise from the high sensitivity of the geomet- 

rical spreading to lateral heterogeneity, small errors in the best-fit traveltimes, distortions 

in the group (ray) angles, etc. For example, it is difficult to estimate the group angles at 

the source and receiver locations using just the acquisition geometry and traveltime data, 

unless the subsurface layer is isotropic (Ursin and Hokstad, 2003). Even for the homo- 
geneous orthorhombic model studied above, the group angle ¢* = ¢" can be found in a 

straightforward way only if the layer thickness is known (see Figure 1). Practical issues 

involved in the geometrical-spreading correction for layered azimuthally anisotropic media 

will be investigated in more detail in a sequel paper. 
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Chapter 3 

Anisotropic geometrical-spreading correction for 

wide-azimuth P-wave reflections 

3.1 Summary 

Compensation for the geometrical spreading along the raypath is one of the key steps 

in AVO (amplitude variation with offset) analysis, in particular for wide-azimuth surveys. 

Here, we propose an efficient methodology to correct long-spread, wide-azimuth reflection 

data for the geometrical spreading in stratified azimuthally anisotropic media. The P-wave 

geometrical-spreading factor is expressed through the reflection traveltime described by a 

nonhyperbolic moveout equation that has the same form as in VTI (transversely isotropic 

with a vertical symmetry axis) media. 

The adapted VTI equation is parameterized by the normal-moveout (NMO) ellipse 

and the azimuthally varying anellipticity parameter n(a). To estimate the moveout param- 

eters, we apply the 3D nonhyperbolic semblance algorithm of Vasconcelos and Tsvankin 

that operates simultaneously with traces at all offsets and azimuths. The estimated move- 

out parameters are used as the input in the geometrical-spreading computation. Numeri- 

cal tests for models composed of orthorhombic layers with strong, depth-varying velocity 

anisotropy confirm the high accuracy of our traveltime-fitting procedure and, therefore, of 

the geometrical-spreading correction. Since our algorithm is based entirely on the kinemat- 

ics of reflection arrivals, it can be readily incorporated into the processing flow of azimuthal 

AVO analysis. 

In combination with the nonhyperbolic moveout inversion, the method was applied to 

wide-azimuth P-wave data collected at Weyburn field in Canada. The geometrical-spreading 

factor for the reflection from the top of the fractured reservoir is clearly influenced by the 

azimuthal anisotropy in the overburden, which should cause distortions in the estimated 

azimuthal AVO attributes. This case study confirms that the azimuthal variation of the 

geometrical-spreading factor is often comparable to or exceeds that of the reflection coefhi- 

cient. 

3.2 Introduction 

Seismic signatures measured in wide-azimuth reflection surveys may be strongly in- 

fluenced by azimuthal anisotropy associated with natural fracture systems, nonhydrostatic 

stresses, or dipping transversely isotropic layers (e.g., shales). The inversion of azimuthally
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varying traveltimes and amplitudes of reflected waves gives valuable information for charac- 

terization of fractured reservoirs and lithology discrimination (Mallick et al., 1998; Grechka 

and Tsvankin, 1999a; Lynn et al., 1999; Bakulin et al., 2000; Riiger, 2001; Hall and Kendall, 

2003). Although the most direct evidence of the presence of azimuthal anisotropy is provided 

by shear-wave splitting, estimation of a representative set of anisotropic parameters is im- 

possible without performing azimuthal moveout or amplitude-variation-with-offset (AVO) 

analysis. 

The main advantages of the anisotropic AVO inversion are the possibility of resolving 

the reflection coefficient at the target horizon and the high sensitivity of body-wave reflec- 

tivity to the anisotropic parameters (e.g., Tsvankin, 1995, 2005; Riiger, 2001). However, the 

transformation of seismic amplitudes measured at the surface into the reflection coefficients 

involves corrections for the source signature and propagation phenomena along the raypath 

(e.g., Maultzsch et al., 2003). Major amplitude distortions in anisotropic media, in partic- 

ular for wide-azimuth data, are caused by the directionally varying geometrical spreading 

above the reflector. A detailed discussion of geometrical spreading in TI and orthorhombic 

media can be found in Ursin and Hokstad (2003), Tsvankin (2005, Chapter 2) and Xu et 
al. (2005; hereafter referred to as Paper I). 

If the velocity model of the overburden is known, geometrical spreading can be com- 

puted, for example, by performing dynamic ray tracing. A more practical approach that 

does not depend on knowledge about the velocity model is based on expressing geomet- 

rical spreading through reflection traveltimes using ray theory (e.g., see equation 4.10.50 

in Cérveny, 2001). As shown in Paper I, the geometrical-spreading factor L for laterally 

homogeneous media can be found as the following function of observed traveltime T: 

L — VOESP COSP [OAs , CATA E_ (SY 
(x, a) Vo Ox? Ox x + Ox2 Oa? x? 0a j/ x3 

—1/2 
Veos cos [TAT1 TOT 1 (ar) " 3.1) 

where z is the source-receiver offset, a is the azimuth of the source-receiver line with respect 

to the x-axis, V, is the group velocity at the source location, and ¢° and ¢" are the angles 

between the ray and the vertical at the source and receiver, respectively. 

In Paper I, equation 3.1 is combined with the Tsvankin-Thomsen (1994) nonhyperbolic 

moveout equation for the traveltime T to study the P-wave geometrical spreading in a 

horizontal orthorhombic layer. Analytic results and numerical modeling reveal pronounced 

distortions of the geometrical spreading caused by both polar and azimuthal anisotropy. 

Paper I demonstrates that reliable recovery of the reflection coefficient from the azimuthal 

AVO response often requires an accurate anisotropic geometrical-spreading correction (also, 

see Mallick et al., 1998). 
The goal of this paper is to develop a practical implementation of the geometrical- 

spreading correction for layered azimuthally anisotropic media. The main emphasis of the 

paper is on models with orthorhombic symmetry considered typical for naturally fractured 

reservoirs (e.g., Schoenberg and Helbig, 1997; Bakulin et al., 2000). It is clear from equa- 

tion 3.1 that the key issue in computing the geometrical-spreading factor from surface data 

is to find a smooth approximation for reflection traveltime that can be used for a wide range
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of offsets and azimuths. 

We start by testing the accuracy of a simplified P-wave moveout equation based on 

the approximate kinematic equivalence between orthorhombic and VTI media. While this 

equation provides a good fit to the traveltimes for layered models with a uniform (identical) 

orientation of the vertical symmetry planes in all layers, it requires modification when the 

symmetry-plane azimuths vary with depth. We use the 3D semblance algorithm of Vascon- 

celos and Tsvankin (2004) to estimate the best-fit moveout parameters needed to evaluate 
the traveltime derivatives in equation 3.1. Numerical tests for layered orthorhombic models 

confirm that azimuthal anisotropy may produce comparable distortions in the geometrical 

spreading and in the reflection coefficient. Finally, we apply the algorithm to wide-azimuth 

data collected at Weyburn field in Canada to evaluate the azimuthally varying geometrical- 

spreading factor for wide-angle reflections from the reservoir. 

3.3. Moveout equations for orthorhombic media 

Homogeneous layer 

The analysis in Paper I confirms the conclusion of Al-Dajani et al. (1998) that P-wave 
reflection traveltime in a horizontal orthorhombic layer with a horizontal symmetry plane 

is well-described by the Tsvankin-Thomsen (1994) nonhyperbolic moveout equation. The 

form of this equation remains the same for different anisotropic symmetries, but in the 

presence of azimuthal anisotropy the moveout coefficients become azimuthally dependent: 

x Ag(a) x4 
T?(2,0) =T? + =—— + V2,(a) * 1+ Alaya?’ (32) 

Here, Vamo is the normal-moveout (NMO) velocity, Aq is the quartic moveout coefficient, 

and A is the coefficient that ensures the convergence of equation 3.2 for large source-receiver 

offsets. 

The azimuthally varying NMO velocity traces out an ellipse with the axes parallel to 

the vertical symmetry planes of the orthorhombic layer (Grechka and Tsvankin, 1998): 

_ sin?(a — cos?(a — ¢) 
Vinvo (@) = 2 + (2) 2 ) 

(Vins) (Vain) 

(2) where vo), and Vimo are the semi-minor and semi-major axes of the NMO ellipse, respec- 

tively, and ¢ is the azimuth of the semi-major axis. 

Explicit expressions for the coefficients A4(a@) and A(a) are given in Al-Dajani et 

al. (1998) and Paper I. However, the nonhyperbolic (24) term in equation 3.2 can be 
substantially simplified by using an approximate equivalence between the P-wave kinematics 

in the vertical symmetry planes of orthorhombic and VTI media. The VTI moveout equation 

of Alkhalifah and Tsvankin (1995) can be adapted for an orthorhombic layer by introducing 

  (3.3)
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270 

Figure 3.1. Accuracy of equation 3.4 in describing full-azimuth, long-offset P-wave move- 

out in a homogeneous orthorhombic layer. The moveout parameters are found by fitting 

equation 3.4 to traveltimes computed by anisotropic ray tracing. The map shows the dif- 

ference between the best-fit and ray-traced traveltimes normalized by the zero-offset time 

(0.82 s). The radius corresponds to the source-receiver offset (the maximum offset-to-depth 
ratio is three), the numbers around the perimeter indicate the azimuth with respect to the 

[21,23] symmetry plane. The P-wave velocity parameters of the model are Vpg = 2.437 

km/s, e@) = 0.329, €() = 0.258, 6) = 0.083, 6) = —0.078, and 63) = —0.106. The cor- 

responding moveout parameters are vou, = 2.632 km/s, v2), = 2.239 km/s, n) = 0.211, 

7?) = 0.398, and 73) = 0.194. 

an azimuthally varying anellipticity coefficient 7(a) (Pech and Tsvankin, 2004; Paper I): 

(no) = T24 x? 2n(a) x4 

Mo) =T0 + Va (a) V2o(a) TP V2,.(a) +04 nla] ’ 84) 
  

n(a) = nn) sin?(a —) + n? ) cos 2(a —¢)- 7) sin?(a —¢) cos*(a —¢). (3.5) 

The anellipticity parameters 7“), n), and 7) are defined in the symmetry planes by 

analogy with the Alkhalifah-Tsvankin parameter 7 for VTI media (Grechka and Tsvankin, 

1999b). 

Although the analogy between orthorhombic and VTI media is based on the weak-
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Figure 3.2. Accuracy of equation 3.4 for the layered azimuthally anisotropic model from 

Table 1 (model 1). The azimuths (a = 0°, 45°, and 90°) with respect to the [r1, 23] 
symmetry plane are marked on the plot. The dashed line is the ray-traced traveltime for the 

reflection from the bottom of layer 3, the solid line is the corresponding traveltime computed 

from equation 3.4 with the following estimated (best-fit) moveout parameters: ¢ = 90°, 

Vi, = 2.307 km/s, V2), = 2.675 km/s, 7) = 0.305, n°) = 0.222, and 73) = —0.006. 

anisotropy approximation, extensive numerical testing shows that equation 3.4 with fitted 

moveout parameters provides excellent accuracy for a homogeneous orthorhombic layer 

with a horizontal symmetry plane (see also Vasconcelos and Tsvankin, 2004). In Figure 3.1, 

the parameters Vi... V2), nD), ni), 7), and ¢ were found by fitting equation 3.4 to 

ray-traced traveltimes using the least-squares method. Here and in the examples below, 

the synthetic data are generated using ANRAY — the 3D anisotropic ray-tracing code of 

Gajewski and Psenéik (1990). The difference between the ray-traced traveltimes and those 
computed from equation 3.4 is much less than 1% of the zero-offset two-way traveltime (i.e., 

less than 4 ms) for a wide range of offsets and azimuths. Note that the model in Figure 3.1 

has substantial polar and azimuthal anisotropy, and the maximum offset-to-depth ratio is 

as large as three. The influence of traveltime errors on the computation of the moveout 

parameters and geometrical spreading is analyzed in detail below.
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3.3.1 Layered models with uniform symmetry-plane orientation 

Next, we apply equation 3.4 to more complicated, multilayered azimuthally anisotropic 

models. Suppose the medium above the reflector includes horizontal layers of orthorhombic 

or higher symmetries, and the vertical symmetry planes in each layer have the same orien- 

tation. Note that in azimuthally isotropic (i.e., VTI or purely isotropic) media any vertical 

plane is a plane of mirror symmetry. The uniform orientation of the symmetry planes in all 

layers implies that the model as a whole has two orthogonal vertical symmetry planes. 

Because of the kinematic equivalence between the symmetry planes of orthorhombic 

and VTI media, P-wave nonhyperbolic moveout in the symmetry-plane directions is well- 

described by equation 3.4 with the effective parameter 7 computed from the VTI averaging 

equations (Tsvankin, 1997; 2005, Appendix 4B). Although for off-symmetry azimuthal direc- 

tions the kinematic analogy with VTI media is valid only for weak anisotropy, the numerical 

testing in the last section indicates that equation 3.4 parameterized by the best-fit values 

of Vamo and 7 may be sufficiently accurate for any given azimuth. It is not clear, however, 

whether or not the azimuthal variation of the effective parameter 7(a) can be described by 
the single-layer equation 7.10. 

To estimate the effective moveout parameters in equation 3.4 without traveltime pick- 

ing, we employ the 3D nonhyperbolic semblance algorithm of Vasconcelos and Tsvankin 

(2004). They developed a three-step procedure designed to make the multiparameter sem- 

blance search for wide-azimuth surveys more efficient. First, conventional-spread data are 

used to reconstruct the NMO ellipse and estimate the symmetry-plane azimuth ¢ and the 

NMO velocities vi) and A Second, the anellipticity parameters nh) and n®), which 

are defined in the vertical symmetry planes, are found from the VTI nonhyperbolic sem- 

blance analysis in narrow sectors centered at the symmetry-plane directions. The third 

step is a full-azimuth nonhyperbolic semblance search based on equations 7.9-7.10, with 

the estimated values of the parameters ¢, Viv), V2), ni), and n) used to specify the 

starting model. 

Application of this semblance algorithm to ray-traced seismograms computed for the 

four-layer model with the parameters listed in Table 1 confirms that equation 3.4 accurately 

describes long-spread moveout for the full range of azimuths (Figure 3.2). The model 
includes two orthorhombic layers with a substantial magnitude of polar and azimuthal 

anisotropy sandwiched between two isotropic layers. The error of equation 3.4 does not 

exceed 0.3% of the zero-offset traveltime for all offsets and azimuths; similar results were 

obtained for a wide range of plausible orthorhombic models. 

The high accuracy of the traveltime fitting method, however, does not imply that the 

estimated effective NMO velocity and, especially, the coefficient 7 are always close to the 

analytic values because of the tradeoffs between various moveout parameters (Vasconcelos 

and Tsvankin, 2004). Nevertheless, as long as equation 3.4 accurately matches the exact 

traveltime, the best-fit moveout parameters provide suitable input for the geometrical- 

spreading correction.
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Figure 3.3. Map of the traveltime residuals (normalized by the zero-offset time Tp = 1.334 s) 
plotted as a function of offset and azimuth for the two-layer model with misaligned symmetry 

planes from Table 2 (model 2). The residuals are computed for the reflection from the 
bottom of the model as the differences between the best-fit travelimes from equation 3.4 

and ray tracing. The maximum offset is 4 km; the corresponding offset-to-depth ratio is 

two. The estimated moveout parameters are ¢ = 78°, viv. = 2.60 km/s, V2), = 3.00 km/s, 

n) = 0.567, 7?) = 0.330, and 7®) = 0.104. 

3.3.2. Models with misaligned symmetry planes 

For media without throughgoing vertical symmetry planes, the azimuthal variation of 

the quartic moveout coefficient Ay becomes more complicated (Al-Dajani et al., 1998), and 

equation 7.10 for the parameter 7 may no longer be accurate. However, extensive testing 

that we performed for a range of orthorhombic models with misaligned symmetry planes 

shows that traveltime errors seldom exceed 0.5% of the zero-offset time. Apparently, the 

magnitude of the additional terms in the azimuthal dependence of 7 is relatively small, 

and the moveout-inversion algorithm compensates for these missing terms by adjusting the 

best-fit parameters 7“), {), and 7°), 

Model 2 used in Figure 3.3 contains two orthorhombic layers with uncommonly large 

values of the anisotropy parameters and the vertical symmetry planes misaligned by 45° 

(Table 2). For this extreme example, the normalized errors of equation 3.4 reach 1%. While 

traveltime errors on the order of 0.5-1% may be acceptable for purposes of conventional 

moveout inversion, they propagate with amplification into the geometrical-spreading factor 

(equation 1). 

To improve time fitting for multilayered anisotropic media with misaligned symmetry
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Figure 3.4. Comparison of the effective parameter 7(a@) computed from the VTI averaging 

equation 3.6 (solid curve) and estimated by the moveout-inversion algorithm (dashed). 

The model is composed of two orthorhombic layers; for the top layer, ¢ = 15°, Vou, = 

2.236 km/s, Ve), = 2.850 km/s, 7) = 0.375, n°) = 0.000, and 73) = —0.086; for the 

bottom layer, ¢ = 0°, A = 3.421 km/s, V2), = 2.683 km/s, 7) = 0.000, n'2) = 0.375, 

and 7°) = 0.163. The maximum offset-to-depth ratio of the data used in the inversion is 

two. 

planes, equation 7.10 can be modified in a relatively straightforward way. To introduce this 

modification, we analyze the effective parameter 7(a) for a stack of horizontal orthorhombic 

layers by applying the VTI averaging equation (Tsvankin, 2005, equation 4.47) for each 

azimuth a: 

na) = 5 a tart 75 ato" 1 + 8n(a)) 1| - 1 ; (3.6) 
nmo 

where Vido(a) and 7 (q) are the interval parameters in layer i. Although equation 3.6 

may become inaccurate for models with strong azimuthal anisotropy, it usually reproduces 

the shape of the azimuthal variation of the effective 7 (Al-Dajani et al., 1998). 

Figure 3.4 shows a comparison between the parameter 7 computed from equation 3.6 

(solid curve) and estimated by the moveout-inversion algorithm (dashed) for a two-layer
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Figure 3.5. Same as Figure 3.3, but the moveout parameters of equation 3.4 were estimated 

by the modified inversion algorithm that allows for an independent orientation of the n(a)— 

curve [equation 3.7]. The best-fit parameters are ¢ = 81°, vo, = 2.586 km/s, V2), = 

3.00 km/s, 7) = 0.594, 7?) = 0.339, n@) = 0.161, and ¢, = 89°. 

orthorhombic model with the symmetry planes misaligned by 15°. The shape of the two 

curves is quite similar, which explains the relatively low magnitude of the time residuals typ- 

ically produced by equation 3.4. The misalignment of the symmetry planes, however, causes 

a rotation of the estimated 7-curve with respect to the one calculated from equation 3.6. 

The moveout-inversion algorithm cannot accommodate this rotation because the “prin- 

cipal axes” of the azimuthal variation of 7(a) in equation 7.10 are parallel to the axes of the 

NMO ellipse (equation 7.9). Therefore, the traveltime fitting at far offsets can be improved 

by decoupling the nonhyperbolic moveout term from the NMO ellipse and introducing an 

additional angle ¢; responsible for the azimuthal variation of the effective parameter 7: 

n(a) = nh) sin?(a — 1) + n?) cos?(a — $1) — 7) sin?(a — $1) cos? (a — $1). (3.7) 

The first two steps of the modified moveout-inversion algorithm remain the same as 

those described above, but at the last step we fix the orientation of the NMO ellipse (angle ¢) 

and search for the angle ¢; and the other moveout parameters using the full range of offsets 

and azimuths. Application of this algorithm to model 2 (Table 2) results in a substantially 

improved time fitting (compare Figure 3.5 with Figure 3.3) and a 15% increase in the total 

semblance value. Hence, equation 3.7 should help make our moveout approximation suitable 

even for models with uncommonly strong, depth-varying azimuthal anisotropy.
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   270 

Figure 3.6. Map of the geometrical spreading for the reflection from the bottom of layer 3 

in model 1 (Table 1). The factor D is normalized by its value in the reference isotropic 

homogeneous medium with the velocity equal to Vamo = (Vio, + V2),) /2. The maximum 

offset-to-depth ratio is two. 

3.4  Azimuth-dependent geometrical-spreading correction 

The traveltime derivatives in the geometrical-spreading equation 3.1 can be computed 

from the best-fit moveout parameters in equation 3.4. Explicit expressions for these deriva- 

tives are given in Appendix A. 

Equation 3.1 also contains the group angles at the source (¢*) and receiver (¢") loca- 

tions. Since our model is laterally homogeneous, the ray parameter (horizontal slowness) 

Phor does not change along the raypath and can be computed as 

oT \? 10T\? 
Phor = ‘ (5) + (25) . (3.8) 

In most cases of practical importance, the subsurface layer is isotropic and has a known 

P-wave velocity V. Then the group angles at the source and receiver can be found directly 

from Phor: 

cos ¢* = cos ¢” = \/1— p?,.V? . (3.9) 

If the subsurface layer is anisotropic, estimation of the group angles from the traveltime 

derivatives involves the relevant anisotropy parameters. 

Combining equation 3.1 with the expressions in Appendix A and taking equation 3.9
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Figure 3.7. Azimuthally varying geometrical spreading for model 1 (Figure 3.6) computed 

for an offset of 2 km. The corresponding phase incidence angle at the reflector (the bottom 

of layer 3) is close to 30° (30° + 5°). 

into account, one can compute the geometrical spreading from the best-fit moveout param- 

eters. 

3.4.1 Synthetic example 

Using the method described above, we calculated the geometrical-spreading factor 

L(x, a) for the reflection from the bottom of layer 3 in model 1 (Table 1). As was the case 
for the homogeneous orthorhombic medium discussed in Paper I, the influence of anisotropy 

leads to pronounced, azimuthally-dependent distortions of the geometrical spreading (Fig- 

ure 3.6). For an offset-to-depth-ratio of unity, the factor L decreases by 17% between the 

azimuths a = 0° and 90° (Figure 3.7). Since all layers are horizontal, the dependence of 

the geometrical spreading on azimuth is caused entirely by the azimuthal anisotropy above 

the reflector. For comparison, the azimuthal variation of the reflection coefficient for the 

same event is less than 13% (Figure 3.8). Clearly, if the anisotropic geometrical spreading 

is unaccounted for, it can compromise the azimuthal AVO signature for this model. 

The high accuracy of our algorithm is verified by comparing its output with the results 

of dynamic ray tracing (Figure 3.9). The geometrical-spreading factors computed by the 

two methods are almost identical for offset-to-depth ratios less than 1.5, and only slightly
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Figure 3.8. Azimuthally varying reflection coefficient from the bottom of layer 3 in 

model 1 (Table 1) computed for the phase incidence angle at the reflector equal to 30°. 

  

                

Symmetry Veo Thickness vi) V2), ni) ni?) ni) 

type (km/s) (km) 

Layer 1 ISO 1.5 0.2 1.5 1.5 0 0 0 

Layer 2 ORTH 2.437 0.9 2.632 | 2.239 | 0.211 | 0.398 | 0.194 

Layer 3 ORTH 3.0 0.9 3.146 | 2.683 | 0.182 | 0.313 | -0.056 

Layer 4 ISO 3.2 0.5 3.2 3.2 0 0 0 
  

  
Table 3.1. Parameters of a four-layer model (model 1) that includes two orthorhombic 
layers with aligned vertical symmetry planes ¢ = 0° and ¢ = 90°. The density used in the 

computation of the reflection coefficient in Figure 3.8 is set to 1.0g/cm? in all layers.
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Figure 3.9. Accuracy of our method for the reflection from the bottom of layer 3 in model 1; 

the azimuths from the [21,23] symmetry plane are a = 0°, 40°, and 90°. The geometrical- 

spreading factor L computed by our algorithm (solid lines) is compared with the output of 

dynamic ray-tracing code ANRAY (dashed). 

Symmetry Vpo Thickness viv, V2), nf) n{?) 7) 

type (km/s) (km) 

Layer 1 | ORTH 3.0 1.0 2.509 | 2.683 | 0.857 | 0.875 | -0.192 
Layer 2| ORTH 3.0 1.0 3.421 | 2.509 | 0.038 | 1.071 | 0.030 

  

                  
  

Table 3.2. Parameters of a model (model 2) that includes two orthorhombic layers with 

misaligned symmetry planes and uncommonly strong anisotropy. The azimuth of the {21, 3] 

symmetry plane is @ = 45° in layer 1 and @ = 0° in layer 2.
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180    270 

Figure 3.10. Percentage error of the geometrical spreading for model 1 (Figure 3.6) caused 

by the traveltime error function 4sin(372/2max) sin 4a (in ms). The maximum offset-to- 
depth ratio is two. 

diverge at longer offsets. The deviation of our result from that of the ray tracing, which 

reaches a maximum of 6% for a = 0°, can be explained by the approximate nature of 

equation 3.4 and, possibly, by numerical errors in both algorithms. Overall, our method 

produces a sufficiently accurate geometrical-spreading factor in layered orthorhombic media 

for a wide range of offsets and azimuths. 

3.4.2 Error analysis 

To study the influence of realistic traveltime noise on the geometrical spreading com- 

puted by our method, we added linear and sinusoidal time errors to the reflection traveltimes 

for model 1 (Table 1 and Figure 3.2). Linear traveltime noise can approximate long-period 

static errors, whereas sinusoidal errors can be due to short-period statics. 

The linear time error changes from 4 ms at zero offset to —4 ms at the maximum 

offset (equal to two reflector depths) for each azimuth a. Application of our algorithm to 

the perturbed traveltimes in the full range of azimuths yields slightly distorted values of 

the velocities v{i2) (the errors are about 1%) and parameters 72,3) (the errors are less 

than 0.03); the maximum error in the geometrical spreading does not exceed 2%. When 

the magnitude of the linear error function increases from 4 ms to 8 ms, the corresponding 

geometrical-spreading error reaches only 5%. It is noteworthy that the moveout parameters 

estimated from wide-azimuth data are less sensitive to linear traveltime errors than those 

obtained from 2D semblance analysis for VTI media (Tsvankin, 2005). On the whole, our 
geometrical-spreading computation is sufficiently robust in the presence of moderate linear
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Figure 3.11. Histogram of the error distribution in the geometrical spreading computed 

in the [21,23] symmetry plane of model 1 (Figure 3.6). The moveout parameters were 

contaminated by Gaussian noise with the following standard deviations: 0.5% for To, 3% 

for viv) and V2), 30% for 7) and 7), and 50% for 7), The offset-to-depth ratio is 

equal to one (a) and two (b). The standard deviation of the error in L is 5% in plot (a) 
and 8% in plot (b).
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all 

11.4 

11.3 

41.2        
Figure 3.12. Map of the geometrical spreading for the P-wave reflection from the Mississip- 

pian formation (the top of the reservoir) at Weyburn field computed for CMP 10829. The 
factor L is normalized by its value in the reference isotropic homogeneous medium with the 

velocity equal to (V2, + V2),) /2. The moveout parameters are taken from Vasconcelos 

and Tsvankin (2004): ¢@ = 99°, vv = 2.371 km/s, V2), = 2.464 km/s, nD = 0.255, 

7?) = 0.186, and 7) = —0,062. The reflector depth is 1.4 km (the maximum offset-to- 

depth ratio is 2.5). The North-South direction is at ¢ = 0°, and the East-West at ¢ = 90°. 

noise. 

To test the influence of short-period static errors, the traveltimes for model 1 were 

contaminated by several sinusoidal functions of the form Asin(naz/tmax)sinma. The 
maximum time error A was fixed at 4 ms; the coefficients n and m control the period of 

the error function in the radial and azimuthal directions, respectively. When m = 0 (ie., 

no azimuthal variation in the error) and n is an even number, the spreading remains al- 

most unchanged. Apparently, an equal number of peaks and troughs over the spreadlength 

compensate for one another, and the noise does not noticeably distort the best-fit moveout 

parameters and, consequently, the geometrical spreading. However, when n is an odd num- 

ber (i.e., the number of peaks and troughs differs by one), the sinusoidal error does influence 

the output of our algorithm. The most significant distortion in geometrical spreading occurs 

for n = 3, when the maximum spreading error reaches 4% (for m = 0) over the whole range 

of offsets and azimuths; the error decreases with n. 

Next, we make the traveltime error azimuthally dependent by varying m. Our tests 

show that the spreading errors are higher when m is an even number because in this case 

the azimuthal variation of the error function is similar to that of the traveltime T(z, a), 

which is governed by sin?a@ and cos? a [see equations 7.9-7.10]. Figure 3.10 displays the
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Figure 3.13. Normalized geometrical spreading from Figure 3.12 in the east-west and 

north-south directions. 

distortion in the geometrical spreading caused by the error function 4sin(372/2max) sin 4a 

(i.e., n = 3 and m = 4). The maximum error of just 4% is the same as the one that was 
obtained for the azimuthally invariant error function with n = 3. When the magnitude of 

the error function increases from 4 ms to 8 ms, the corresponding geometrical-spreading 

error only doubles for fixed values of m and n. 

Since it is difficult to study the influence of all plausible traveltime distortions (ob- 

viously, not limited to statics errors) on the geometrical spreading, next we examine the 

sensitivity of the factor LZ to errors in the input moveout parameters (see Appendix A). 

The geometrical-spreading error in a symmetry plane of model 1 caused by Gaussian noise 

added to the moveout parameters is shown in Figure 3.11. The level of this noise is slightly 

higher than the largest distortions caused by the traveltime errors studied above. 

As the offset-to-depth ratio increases from one to two, the standard deviation of the 

error in L grows from 5% to 8%. Still, given the relatively high level of errors in the input 

parameters, the distortion of the spreading factor remains acceptable within the practically 

important offset range of up to twice the reflector depth. In particular, the geometrical- 

spreading error is smaller than the percentage error in each moveout parameter when the 

other parameters are held constant, which indicates that our operator is sufficiently stable. 

For example, a 5% error in viv, yields an error in L of less than 3% if the offset-to-depth 

ratio does not exceed two.
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3.4.3 Field-data application 

To demonstrate the influence of azimuthal anisotropy on the geometrical spreading 

for field data, we applied the algorithm to wide-azimuth reflection events acquired above a 

fractured reservoir at Weyburn field in Canada by the Reservoir Characterization Project 

(a research consortium at CSM). Vasconcelos and Tsvankin (2004) carried out nonhyper- 
bolic moveout inversion for P-wave reflections from several interfaces in the overburden and 

obtained relatively large values of the parameters 7{1:2)3) reaching 0.25. They also con- 

cluded that at least the shallow part of the overburden exhibits non-negligible azimuthal 

anisotropy. 

These results are in good agreement with the analysis of shear-wave splitting by Car- 

dona (2002) and of the azimuthal AVO response by Jenner (2001). In particular, Jenner 
(2001) found that the P-wave AVO attributes at the reservoir level vary with azimuth. 
His amplitude processing, however, included only the conventional geometrical-spreading 

correction for isotropic media. 

To evaluate possible anisotropy-induced distortions of the geometrical spreading, we 

applied our algorithm to the reflection from the top of the reservoir (Figure 3.12). The move- 

out parameters were obtained by Vasconcelos and Tsvankin (2004) using equations 7.9-—7.10. 

The influence of anisotropy causes a dramatic 50% distortion in the geometrical spreading 

for offset-to-depth ratios close to two. The magnitude of the azimuthal variation of the 

factor L at offset-to-depth ratios slightly larger than unity reaches 10% (Figure 3.13). Such 

a difference between the geometrical spreading in the east-west and north-south directions 

may cause noticeable distortions in the azimuthal variation of the AVO gradient studied by 

Jenner (2001). 

3.5 Discussion and conclusions 

The formalism suggested in Paper I provides an analytic basis for geometrical-spreading 

correction in layered azimuthally anisotropic media. Since the correction involves only 

the spatial derivatives of the reflection traveltime and the group-velocity vector at the 

source/receiver locations, it does not require knowledge of the velocity field beneath the 

subsurface layer. The main issue in computing geometrical spreading for purposes of wide- 

angle azimuthal AVO analysis is to find a sufficiently accurate, smooth approximation for 

long-offset, multiazimuth reflection moveout in the presence of azimuthal anisotropy. 

Numerical testing shows that even for models composed of strongly anisotropic or- 

thorhombic layers, long-spread P-wave reflection traveltime can be accurately described by 

a nonhyperbolic moveout equation that has the same form as the widely used Alkhalifah- 

Tsvankin equation for VTI media. Keeping the same general form of the moveout equation 

for azimuthally anisotropic and VTI media helps to facilitate the transition between models 

with different symmetries in both the moveout inversion and geometrical-spreading correc- 

tion. To accommodate the influence of azimuthal anisotropy, both moveout coefficients - 

the NMO velocity Vamo and the anellipticity parameter 7 - have to vary with the azimuth 

a. While Vimo(a@) traces out an ellipse in media of almost any complexity, the form of the
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function 7(a) depends on the degree of alignment of the symmetry planes in the constituent 

layers. 

If the azimuths of the vertical symmetry planes do not change from layer to layer, the 

model as a whole has two orthogonal symmetry planes, and the azimuthal dependence of 

7 [equation 7.10] is the same as in a homogeneous orthorhombic medium. For purposes of 

geometrical-spreading correction, such a model is fully equivalent to a single orthorhombic 

layer. The moveout equation is then controlled by the azimuth ¢ of one of the symme- 

try planes, two symmetry-plane NMO velocities Vi?) and three anellipticity parameters 

72.3) that govern n(a). For media with depth-varying orientation of the symmetry planes, 

the accuracy of the moveout equation can be maintained by introducing an additional az- 

imuthal angle ¢, that governs the direction of the “principal axes” of the function n(a). The 

moveout parameters, which serve as the input in the computation of geometrical spreading, 

are determined using the algorithm of Vasconcelos and Tsvankin based on a 3D nonhyper- 

bolic semblance operator. 

Synthetic tests for layered orthorhombic media illustrate the high sensitivity of the 

spatially varying geometrical spreading to the anisotropic parameters. The magnitude of 

the anisotropy-induced azimuthal variation of the geometrical spreading may exceed that 

of the reflection coefficient.! Therefore, anisotropic geometrical-spreading correction should 

be considered an integral part of azimuthal AVO inversion. 

The importance of correcting wide-azimuth data for geometrical spreading prior to 

AVO analysis was highlighted by applying the algorithm to field data acquired at Weyburn 

field in Canada. The geometrical-spreading factor for the reflection from the top of the 

fractured reservoir is influenced by the ellipticity of the NMO-velocity function and, espe- 

cially, by the large values (exceeding 0.2) of the effective parameters 7:23) The reliability 

of the AVO attributes can be improved by taking into account the variation of the geomet- 

rical spreading between the symmetry planes (i.e., between the east-west and north-south 

directions). Note that although information about the effective anisotropy is contained in 

the input moveout parameters, the difference between the geometrical-spreading factors 

computed for the top and bottom of a fractured layer can potentially serve as a fracture- 

detection attribute. 

The sensitivity study shows that our geometrical-spreading algorithm is sufficiently 

robust in the presence of moderate traveltime errors. Still, the results of traveltime fitting 

and, therefore, geometrical-spreading correction may be somewhat distorted by coherent 

noise associated, for example, with short-period statics. Also, in the presence of signifi- 

cant amplitude variation with offset and azimuth, it is preferable to estimate the moveout 

parameters using an AVO-sensitive algorithm. 

  

'Comparisons of this type, however, strongly rely on the model assumptions because the geometrical 

spreading of reflected waves is independent of the elastic parameters beneath the reflector.
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Chapter 4 

Estimation of reflection coefficients on 

full-waveform synthetic data 

4.1 Introduction 

Analysis of prestack amplitude variation with offset and azimuth (often called “az- 

imuthal AVO analysis” or “AVAZ”) is one of the most effective tools for seismic charac- 
terization of fractures and in-situ stress field. The main advantage of amplitude methods 

compared to traveltime inversion is their high vertical resolution that makes AVO analysis 

applicable to relatively thin reservoirs. Also, body-wave amplitudes are highly sensitive 

to seismic anisotropy and, in particular, to azimuthal velocity variations associated with 

vertical fracture systems and nonhydrostatic stresses. 

Similar to traveltimes, reflection amplitudes recorded at the surface represent effective 

quantities influenced by the medium properties along the whole raypath. The goal of AVO 

analysis is to resolve the local physical parameters at the reservoir level using the reflection 

coefficient, which is hidden in the measured amplitude. Therefore, a critical element of 

AVO processing is separation of the reflection coefficient from the source signature and the 

propagation factors, most notably from the geometrical spreading in the overburden. 

In practice, it is often assumed that as long as the overburden is structurally simple 

(e.g., layer-cake), it should not produce substantial amplitude distortions. This “common- 

sense” assumption, however, can be dangerously misleading if some of the overburden 

formations are anisotropic. Anisotropy above the reflector acts like a lens that focuses 

and defocuses seismic energy in accordance with angular velocity variations. In his book, 

Tsvankin (2005) gives striking examples of weakly anisotropic VTI (transversely isotropic 

with a vertical symmetry axis) models that produce dramatic amplitude variations along 

the wavefronts of both P- and S-waves. If not corrected for, this strong angle dependence of 

the anisotropic geometrical-spreading factor can compromise the AVO signature (e.g., the 

AVO gradient) and lead to erroneous interpretation of lithology and fluid content. 

Furthermore, the AVO response for wide-azimuth data can be distorted by the az- 

imuthal variation of geometrical spreading caused by aligned vertical fractures in the over- 

burden (fractures often permeate much of the section above reservoirs). Still, most anisotropic 

AVO algorithms employ amplitude corrections conventionally used in isotropic processing 

(e.g., the ¢t- or t?-gain factors). Such approximate amplitude treatment generally does not 

prevent azimuthal AVO analysis from estimating the dominant fracture directions, as at- 

tested by successful case studies reported in the literature (e.g., Hall and Kendall, 2003;
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Gray and Todorovic-Marinic, 2004). However, to put the method on a firm quantitative 

footing and make it suitable for estimating the physical properties of fractures, one has to 

apply a more robust geometrical-spreading correction that honors the azimuthal anisotropy 

in the overburden. 

In principle, the geometrical-spreading factor can be computed using dynamic ray 

tracing or other forward-modeling techniques. Unfortunately, the anisotropic velocity mod- 

els are rarely accurate enough to make this approach practical. Therefore, we recently 

proposed a moveout-based anisotropic spreading-correction method, MASC that makes it 

possible to compute geometrical spreading for wide-angle reflections in horizontally-layered, 

azimuthally anisotropic media directly from the reflection traveltimes. The spreading cor- 

rection is preceded by 3D nonhyperbolic moveout analysis using the semblance algorithm of 

Vasconcelos and Tsvankin (2006). The moveout parameters estimated from wide-azimuth 
data serve as the input to the geometrical-spreading correction. MASC does not require 

knowledge of the velocity model (except for the velocities in the layer containing the sources 

and receivers) and has been shown to be sufficiently robust in the presence of noise. 
Here, we process full-waveform 3D synthetic reflection data to answer several important 

practical questions regarding MASC and anisotropic spreading correction for PP-waves: 

1. Can MASC, despite its reliance on ray theory, accurately reconstruct reflection coeffi- 

cients in the presence of strong azimuthal anisotropy? 

2. Can we acceptably replace MASC with simple gain corrections commonly used in prac- 

tice? 

3. Is it possible to ignore the contribution of the transmission loss (which are not included 

in MASC) along the raypath? 

We begin by describing the modeling code and the algorithm used to reconstruct the 

reflection coefficient from the picked amplitudes of reflected P-waves. Then we compare the 

performance of MASC and conventional gain corrections for three relatively simple models 

that include an orthorhombic layer beneath an isotropic overburden. Although most current 

implementations of azimuthal AVO analysis operate with HTI (TI with a horizontal sym- 

metry axis) media, orthorhombic symmetry is more typical for realistic fractured reservoirs. 

Recent work of Grechka and Kachanov (2006) shows that orthorhombic models accurately 
describe even multiple sets of vertical fractures with arbitrary azimuthal orientations. 

4.2 Synthetic modeling 

The full-waveform modeling algorithm, based on the anisotropic version of the reflectiv- 

ity method, is designed to simulate exact 3D wavefields for horizontally layered, anisotropic 

media. The reflectivity code, ANISYNPA, was originally developed by Dennis Corrigan at 

ARCO and later modified at the Center for Wave Phenomena. 

All three models used here include an orthorhombic layer sandwiched between two 

isotropic media (see Tables 7.1, 7.2, and 6.3). One of the symmetry planes of the or- 

thorhombic medium is horizontal, while the other two coincide with the coordinate planes 

[21,3] (azimuth 0°) and [x2,2r3] (azimuth 90°). If the azimuthal anisotropy is caused by 
a single system of fractures in a VTI background, one of the vertical symmetry planes is
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| Layer 1 | Layer 2 | Layer 3 | 
  

  

  

Symmetry type ISO ORTH ISO 

Thickness (km) 0.5 1.0 oo 
Density (g/cm*) 2.1 2.1 2.12 
Vpo (km/s) 2.1 2.2 2.3 
Vso (km/s) 1.05 1.1 1.15 

e(1) 0 0.317 0 
6) 0 -0.054 0 
yl) 0 0.513 0 
(2) 0 0.121 0 
6(2) 0 0.046 0 
7?) 0 0.138 0 
6(3) 0 0.1 0 
nV) 0 0.42 0 
n{?) 0 0.07 0 
7) 0 0.05 0         
  

  

Table 4.1. Parameters of a three-layer medium used in the numerical tests (model 1). 
Orthorhombic symmetry can be fully described by the two vertical velocities (Vpo for P- 

waves and Vso for one of the split S-waves) and seven anisotropy parameters (e), €(2) (1), 

62) 68), y) and y)), The anellipticity parameters ni), n®), and 7) control P-wave 

nonhyperbolic moveout. For a detailed explanation of the notation, see Tsvankin (2005).
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Figure 4.2. Synthetic gather for model 6.3 (Table 3) computed in the symmetry plane 

[z2, x3] (azimuth 90°). 

practice, the results of AVO processing often require smoothing because of noisy amplitudes, 

variations in the source and receiver coupling, etc. 

4.3.1 Model 1 

Existing laboratory measurements of the anisotropy parameters for orthorhombic me- 

dia are obtained for synthetic materials (e.g., phenolic). Therefore, the parameters of the 

orthorhombic layer in model 1 (see Table 7.1) are based on Wang’s (2002) results for two 
transversely isotropic brine-saturated shale samples. The main reason for choosing this 

model is that the large difference between the SH-wave parameters y“) and (2) causes 

an extremely pronounced azimuthal variation of the P-wave AVO gradient. Note that 

y) = 0.513 is much higher that the average value of Thomsen’s ¥ for shales (0.2), so this 

model likely exaggerates the typical magnitude of the azimuthal AVO response. 

The PP-wave reflection coefficient from the bottom of the orthorhombic layer recon- 

structed by our algorithm (i.e., using the moveout-based geometrical-spreading correction) 

and by the empirical t?-gain is marked by dashed lines in Figures 4.3a,b. (We chose 

the ¢?-function because it generally gives better results for our models than the linear 

t-compensation or Newman’s correction.) For comparison, Figure 4.3 also displays the ex- 

act reflection coefficient (solid lines). To remove the source factor, the estimated reflection 
coefficient is normalized to match the exact value at normal incidence (zero offset). 

The maximum horizontal slowness (0.3 s/km) in Figure 4.3 corresponds to an incidence 
angle at the source close to 40° (it varies with azimuth) and an offset-to-depth-ratio slightly



54 Chapter 4. Full-waveform synthetic data estimation 

a 
hi iy SS OM ie q Lhe oS ‘ 

q nt 
~ ne 3 S : 

Ls 

  
(b) 

ait y 
z Sk. a 

il X 
od : 
XS | LS 

(c) 

Figure 4.1. Synthetic shot gathers for model 7.1 (Table 1) computed by the reflectivity 

(mmc ae ct tr). The a 0m ce to oat sate the mf 
of the free surfac The ark the faveet Ewen reflected from the bottom of the 
orthorho mabie layer . The li gg reas of it nterfer of the ta wget PP ev ent 
with the PS a nd $8 r eflections fro n the top of the orthorho mbjie + layer.



Xiaoxia (Ellen) Xu / Anisotropic Geometrical-Spreading Correction 53 

aligned with the fracture strike. Synthetic seismograms were computed for a wide range of 

offsets in both vertical symmetry planes, as well as for the 45°-azimuth. The code calculates 

three displacement components of the wavefield excited by a point force parallel to one of 

the coordinate axes. 

The vertical displacement from a vertical force for model 7.1 is displayed in Figure 4.1. 

Our goal is to carry out azimuthal AVO analysis for the PP-wave reflected from the bottom 

of the orthorhombic layer (this event is marked by the arrows) for all three models. To 
avoid the interference of this PP reflection with ground roll and surface-related multiples, 

we eliminated the free surface in the computation of the synthetic seismograms. Still, 

the target PP event interferes with the PS- and SS-wave reflections from the top of the 

orthorhombic layer, particularly for model 3 (Figure 4.2), which causes distortions of the 

picked AVO response. 

4.3 Estimation of the reflection coefficient from the AVO response 

The moveout-based anisotropic geometrical-spreading correction was implemented for 

layered orthorhombic and HTI media in the Seismic Unix program SUAZAVO. MASC com- 

putes the offset- and azimuth-dependent geometrical-spreading factor for a given reflection 

event using the zero-offset time to and effective moveout parameters vio Ve), 7), ni), 

and 7). The symmetry-plane normal-moveout (NMO) velocities (1) and V2), determine 

the NMO ellipse on conventional spreads, while 7, n), and 7) are the anellipticity pa- 

rameters (they are similar to the parameter 7 for VTI media) responsible for nonhyperbolic 

(long-spread) moveout. The moveout parameters are estimated with a global semblance 

algorithm that maximizes semblance computed for all offsets and azimuths in the gather. 

It should be emphasized that the geometrical-spreading correction is not influenced by 

the trade-offs between the NMO velocities and 7 parameters, as long as the reconstructed 

moveout function is sufficiently close to the actual traveltimes. 

The processing flow starts with picking the raw amplitudes of a certain event on all 

traces along the traveltime surface defined by the estimated moveout parameters. Then 

the picked amplitudes are corrected for the anisotropic geometrical spreading computed for 

each offset and azimuth. Finally, assuming that the sources and receivers are located in an 

isotropic layer with a known P-wave velocity, the algorithm removes the source and receiver 

directivity factors using local time slopes (i.e., horizontal slownesses) calculated from the 
moveout function. 

Since our models are nonattenuative, the corrected amplitude should be determined 

primarily by the plane-wave reflection coefficient. The only propagation factor not ac- 

counted for in this algorithm is the product of the transmission coefficients along the ray- 

path, which is usually close to a constant (see below). A scalar related to the strength of 

the source can be removed by simple normalization. 

The output amplitudes have to be smoothed to mitigate the distortions caused by 

the interference of the PP reflection with shear and converted waves (see the ellipses in 
Figures 4.1 and 4.2). The smoothing was accomplished by least-squares fitting of a fourth- 

order polynomial in the horizontal slowness to the reconstructed reflection coefficients. In
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Figure 4.3. Comparison of the reconstructed (dashed lines) and exact (solid lines) reflec- 
tion coefficients for the PP-wave reflected from the bottom of the orthorhombic layer in 

model 7.1. The reflection coefficient is estimated using (a) MASC; and (b) the t?-gain. The 
offset-to-depth ratio that corresponds to the maximum horizontal slowness (0.3 s/km) is 
slightly larger than two. 

larger than two. The slownesses up to 0.15 s/km (the corresponding incidence angle is up 

to 20°) define what we will call the near-offset amplitude response; the reflection coefficient 

in this slowness range is governed mostly by the AVO gradient. 

Clearly, for near offsets the MASC algorithm recovers the reflection coefficient with 

extremely high accuracy (Figure 4.3a). The small deviation of the estimated reflection co- 

efficient from the exact curve at far offsets for azimuths of 45° and 90° is related to the 

interference with shear and mode-converted waves (Figures 4.1b and 4.1c). The excellent 

agreement between the reconstructed and exact reflection coefficients for a wide range of off- 

sets and azimuths is ensured by the application of the moveout-based geometrical-spreading 

correction. Figure 4.4 confirms that the output of MASC for all three azimuths practically 

coincides with the geometrical spreading computed by dynamic ray tracing. 

The performance of the simple t?-gain correction often used in practice varies with 

azimuth (Figure 4.3b). For an azimuth of 0° the estimated reflection coefficient is close to 
the exact. value for the full offset range. The accuracy of the ¢?-gain, however, is much lower
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Figure 4.4. Comparison of the geometrical spreading computed by MASC (dashed lines) 

and dynamic ray tracing (solid) for the PP reflection from the bottom of the orthorhombic 
layer in model 7.1. 

for the other two azimuths, especially at far offsets. 

Since the traveltime depends on both polar and azimuthal velocity variations, the t?- 

function absorbs some of the influence of the anisotropy on the geometrical-spreading factor. 

For that reason, the t?-gain happens to be adequate for the 0°-azimuth, although it does 

not accurately reproduce the variation of the spreading away from that direction. Still, it 

is clear from Figure 4.3b that the error of the t?-correction does not seriously compromise 

qualitative analysis of the AVO gradient as a function of azimuth. For model 1, the variation 

of the AVO gradient between the symmetry planes is so pronounced that the geometrical- 

spreading factor does not have to be computed with high accuracy. Quantitative inversion 

of the AVO response on long-spread gathers, however, should be based on the MASC 

algorithm. 

4.3.2 Model 2 

The second model is designed in such a way that the geometrical spreading of the 

target event from the bottom of the orthorhombic layer is the same as that in model 1, 

but the azimuthal variation of the reflection coefficient is much less pronounced (which is 
more typical for field data). The ratio of the overall azimuthal variation of the geometrical 

spreading and that of the reflection coefficient (estimated at a horizontal slowness of 0.15 

s/km) for model 7.2 reaches 40%. In the absence of interference with other arrivals at large 
offsets, the reflection coefficient recovered by MASC is almost identical to the exact value 

for the whole range of offsets and azimuths (Figure 4.5a). 

The impact of the errors produced by the t?-gain in this model is amplified by the rel- 

atively weak azimuthal dependence of the reflection coefficient (Figure 4.5b). The reflection
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Figure 4.5. Comparison of the reconstructed (dashed lines) and exact (solid) reflection 
coefficients for model 7.2. The reflection coefficient is estimated using (a) MASC; and (b) 
the t?-gain. The reconstructed reflection coefficients for the 45°- and 90°-azimuths on plot 

(b) practically coincide with one another; for the 0°-azimuth, the reconstructed coefficient 

is almost invisible because it is close to the exact value. The offset-to-depth ratio that 

corresponds to the maximum horizontal slowness (0.3 s/km) is close to two.
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| Layer 1 | Layer 2 | Layer 3 | 
  

  

  

Symmetry type Iso ORTH ISO 

Thickness (km) 0.5 1.0 00 
Density (g/cm?) 2.1 2.1 2.12 
Vpo (km/s) 2.1 2.2 2.3 
Vso (km/s) 1.05 1.1 1.15 
eft) 0 0.317 0 
6) 0 -0.054 0 
wl) 0 0.138 0 
(2) 0 0.121 0 
6(2) 0 0.046 0 
“y) 0 0.03 0 
63) 0 0.1 0 
nV) 0 0.42 0 
n® 0 0.07 0 
7) 0 0.05 0           

  

Table 4.2. Parameters of model 7.2. We modified model 7.1 to reduce the azimuthal varia- 

tion of the reflection coefficient while keeping the geometrical-spreading factor unchanged. 

coefficients after the ¢?-gain are close for all three azimuths (and practically coincide for 

45° and 90°, even at far offsets). Evidently, such small azimuthal differences in amplitude 

would be undetectable in the presence of realistic noise. Hence, application of the empirical 

t?-correction for this model obliterates the azimuthal AVO signature and makes it useless 

for fracture-detection purposes. 

4.3.3. Model 3 

The parameters of the orthorhombic layer in model 6.3 are typical for a set of parallel, 

vertical, penny-shaped cracks embedded in a VTI background medium (the so-called “stan- 

dard orthorhombic model” of Schoenberg and Helbig). The reflection coefficient for the PP 

reflection from the bottom of the orthorhombic layer computed by MASC remains accurate 

up to a horizontal slowness of about 0.2 s/km (Figure 4.6a). For larger slownesses (i.e., at 
far offsets) the reconstructed reflection coefficient is severely distorted by the interference 

of the target event with the PS conversion from the top of the orthorhombic layer (see 

Figure 4.2). Note that for model 6.3 the slowness 0.15 s/km corresponds to an incidence 

angle close to 25° (slightly higher than that for model 7.1) and an offset-to-depth ratio of 

one. 

The t?-gain correction for this model works better than for model 2 but worse than 

for model 1 (Figure 4.6b). [The ratio of the overall azimuthal variation of the geometrical
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Figure 4.6. Comparison of the reconstructed (dashed lines) and exact (solid) reflection 
coefficients for model 6.3. The reflection coefficient is estimated using (a) MASC; and ()b) 
the t?-gain. The offset-to-depth ratio that corresponds to the maximum horizontal slowness 

(0.3 s/km) is close to 2.5.
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| Layer 1 | Layer 2 | Layer 3 | 
  

  

  

Symmetry type ISO ORTH ISO 

Thickness (km) 0.5 1.0 oo 
Density (g/cm?) | 2.44 2.70 2.44 
Vpo (km/s) 2.16 2.437 2.16 
Vso (km/s) 1.150 1.265 1.150 

e(1) 0 0.329 0 
61) 0 0.083 0 
yl) 0 0.046 0 
e(?) 0 0.258 0 
6(2) 0 -0.078 0 

2) 0 0.182 0 
63) 0 -0.106 0 
7) 0 0.211 0 
n?) 0 0.398 0 
7) 0 0.194 0           

  

Table 4.3. Parameters of model 6.3. The orthorhombic layer corresponds to the 

“standard” orthorhombic model of Schoenberg and Helbig (1997). 

spreading and that of the reflection coefficient (estimated at a horizontal slowness of 0.15 

s/km) for model 6.3 is 15%]. For all three azimuths, the reflection coefficient after the 
t?-correction is larger than the exact value, and the error becomes noticeable at relatively 

small offsets. The reconstructed reflection coefficient in the 90°-direction even has the wrong 

sign of the AVO gradient. However, while the ¢?-gain is clearly inadequate for purposes of 

quantitative AVO inversion, it correctly reproduces the azimuthal trend of the AVO gradient 

between the vertical symmetry planes. 

4.4 Influence of the transmission loss 

The transmission coefficients along the raypath are not part of the geometrical-spreading 

correction, and are difficult to estimate from surface data. To evaluate the transmission loss 

for our models, we subtract from unity the product of the transmission coefficients along 

the raypath of the target PP reflection (Figure 7.7). For all three models, the transmission 

loss becomes noticeable only at far offsets, but the related azimuthal amplitude variation 

is substantially smaller than that of the reflection coefficient (e.g., compare Figure 7.7a 

with the solid curves in Figure 4.3). Therefore, the transmission loss can be considered a 
secondary factor in azimuthal AVO analysis, which is confirmed by the high accuracy of 

MASC in our examples.
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Figure 4.7. Transmission loss for the PP reflection from the bottom of the orthorhombic 

layer in (a) model 7.1; (b) model 7.2; and (c) model 6.3. The loss is computed by subtracting 

from unity the product of the plane-wave transmission coefficients along the raypath.
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4.5 Discussion 

Our modeling results show that application of MASC is essential when the azimuthal 

variation of the geometrical spreading is not negligible compared to that of the reflection co- 

efficient, a situation that commonly can arise in practice where the overburden is fractured. 

It is important to keep in mind that geometrical spreading and reflection coefficient are 

governed by two different sets of medium parameters defined at different scales. When the 

model is orthorhombic, the azimuthal variation of the P-wave AVO gradient is controlled 

by the local jump in the shear-wave splitting parameter and in the difference between the 

Thomsen-type 6 parameters (6'?) — 61) across the target interface. In contrast, geometrical 

spreading of reflected waves depends on the effective (average) parameters of the overbur- 

den. 

If fracturing is largely limited to the reservoir formation, the azimuthal amplitude vari- 

ation of the reflection from the top of the reservoir generally follows the reflection coefficient 

(the case of our model 1). This explains why the results of azimuthal AVO analysis with 
the conventional (isotropic) spreading correction often are in good agreement with other 

fracture-characterization methods. However, natural fractures that respond to the local 

stress field often permeate the whole section and lead to substantial azimuthal anisotropy 

in the overburden. In such cases, application of MASC is highly beneficial even for purposes 

of “qualitative” AVO analysis designed to estimate the relative change in the AVO response 

between the symmetry planes. Also, the azimuthal variation of geometrical spreading is 

more significant for the reflection from the bottom of the reservoir, especially for relatively 

thick reservoir layers. Note that the moveout and geometrical spreading of reflections from 

beneath the reservoir contain useful information for reservoir characterization, which is 

complementary to that provided by the reflection coefficient. 

Long-offset reflection data used in our synthetic study help to increase the sensitivity of 

the azimuthal AVO response to the anisotropy (e.g., fracture) parameters. However, even if 

amplitude analysis is restricted to the AVO gradient estimated on conventional offsets, the 

geometrical-spreading correction can benefit from nonhyperbolic moveout inversion for the 

anellipticity parameters 7:2). Although this result seems counterintuitive, it is explained 

by the strong dependence of geometrical spreading on the second traveltime derivative with 

respect to offset. 

Conclusions 

The transformation of seismic amplitudes measured at the surface into the reflection 

coefficient at the target horizon is a critically important step in AVO analysis. Here, we 

tested the moveout-based anisotropic geometrical-spreading correction (MASC) on long- 

offset, wide-azimuth synthetic data from three models, which included a strongly anisotropic 

layer of orthorhombic symmetry. The results show that although MASC is based on ray 

theory, it accurately reconstructs the azimuthally varying reflection coefficient for a wide 

range of offsets and azimuths. The errors in the estimated reflection coefficient are mostly 

caused by interference-related amplitude distortions.
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In practice, azimuthal AVO analysis often involves an empirical gain correction de- 

signed to compensate for the amplitude loss in the overburden. Our tests demonstrate that 

although the t?-gain absorbs some of the influence of anisotropy on geometrical spreading, 

it produces significant errors in the reflection coefficient, especially for offsets-to-depth ra- 

tios greater than unity. Therefore, the empirical correction cannot be used in quantitative 

inversion of the azimuthally varying AVO response for the anisotropy parameters (e.g., for 

the fracture compliances). 
On the other hand, most existing applications of azimuthal AVO are limited to esti- 

mating the principal azimuthal directions of the AVO gradient and its variation between the 

vertical symmetry planes. This relative azimuthal change in the AVO gradient measured 

over a fractured reservoir is then used to identify “sweet spots” of high fracture density. For 

models where the azimuthal variation of the reflection coefficient is much more pronounced 

than that of geometrical spreading (e.g., our models 1 and 3), the ¢?-gain is sufficient to 

reproduce the general azimuthal trend of the reflection coefficient. 

However, as the ratio of the overall azimuthal variation of the geometrical spreading 

and that of the reflection coefficient (estimated for an incidence angle of about 20°) increases 

to 40% in model 2, the empirical correction completely smears the AVO signature. For 

model 2, the reflection coefficient after the t?-gain is so weakly dependent on azimuth that 

it contains almost no information about the reservoir. On the whole, application of MASC 

becomes essential even in qualitative AVO analysis when the azimuthal variation of the 

geometrical spreading reaches about 1/3 of that of the reflection coefficient. 

It should be emphasized that the MASC algorithm can be conveniently incorporated 

into the processing flow prior to velocity model-building at almost no extra cost. Indeed, 

azimuthal AVO analysis has to be preceded by a moveout correction designed to flatten the 

event of interest. The estimated effective moveout parameters can then be used as the input 

to the MASC algorithm, which does not require any other information about the velocity 

model (with the exception of the layer that contains the sources and receivers).
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Chapter 5 

Case studies of azimuthal AVO analysis with 

anisotropic spreading correction 

5.1 Introduction 

In tight, low-porosity reservoirs, cost-effective production often relies on a good un- 

derstanding of the subsurface fracture network. A range of direct and indirect methods can 

be used to delineate fracture characteristics and their spatial variations. Such techniques 

include image logs, coherence analysis of images, and measurements of seismic anisotropy. 

While image logs provide direct estimates of fracture counts and orientations on various 

scales, these measurements are restricted to the vicinity of the well. Fault mapping by 

coherence analysis might suggest the spatial distribution of cracks, but it encounters chal- 

lenges when the correlation between the spatial distribution of faults and fractures is not 

straightforward to establish. 

Measurement of anisotropy using the azimuthal variation of normal-moveout (NMO) 

velocity and amplitude-variation-with-offset (AVO) of P-waves is an inexpensive and reli- 

able tool for characterizing fracture population (Bakulin, et al., 2000; Li, et al. 2003; Neves, 

et al. 2003; Perez, et al. 1999; Riiger, 2001). The presence of preferentially oriented frac- 

tures results in azimuth-dependent NMO velocities and AVO gradients that can be used to 

infer the fracture orientation and density. After cross-validation with direct measurements, 

fracture maps obtained from the azimuthal seismic attributes can be employed as inputs 

into reservoir simulation. 

Both the azimuthal AVO (often abbreviated as “AVAZ”) and NMO attributes have 
their own advantages. Azimuthal AVO analysis, on one hand, provides local information 

about the cracks at the target horizon; the NMO ellipse, on the other hand, reveals average 

properties of the fractures in the entire reservoir. When combined together, azimuthal AVO 

and NMO analyses offer an improved understanding of the subsurface fracture network. 

From the processing perspective, both techniques have advantages and challenges. While 

velocity measurements usually are more robust, amplitude is much more sensitive to the 

presence of anisotropy and, therefore, provides higher vertical resolution and stronger signal. 

Besides the difficulties caused by the near surface (e.g., statics and coupling), the removal of 

overburden distortions presents challenges for both techniques. To obtain interval azimuthal 

NMO velocities, the generalized Dix equation can be used to layer-strip overburden effects 

(Grechka and Tsvankin, 1998). It is well understood when this operation becomes unstable 

(Grechka et al., 1999; Neves, 2003; Perez, 1999). It is less known, however, that removal
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of amplitude distortions caused by anisotropic overburden, in particular of geometrical 

spreading, should be an integral part of estimation of azimuthal AVO gradients (Tsvankin, 

2005; Ruger and Tsvankin, 1997). 

Xu et al. (2005) and Xu and Tsvankin (2006a, 2006b) developed a methodology of 
moveout-based anisotropic spreading correction (MASC) and showed its importance on syn- 

thetic data. Their algorithm uses 3D nonhyperbolic moveout parameters and requires no 

additional information about the subsurface velocity field. MASC is applied after 3D nonhy- 

perbolic moveout inversion (Vasconcelos and Tsvankin, 2006), and fits in a straightforward 
way into the processing sequence designed to estimate the azimuthal AVO gradients. Here, 

we apply MASC to wide-azimuth data acquired at the Rulison field, Colorado to evaluate 

its effectiveness on results of azimuthal AVO analysis. Among other issues, we investigate 

the distribution of enhanced fracture zones in the Rulison field. 

5.2 Geologic background 

The Rulison field is a basin-centered gas accumulation located in the South Piceance 

Basin, Garfield County, Colorado (Figure 5.1). Gas production is primarily from the 

Williams Fork formation, which consists of channel sand lenses embedded in fine-grained 

levee deposition (Figure 5.2). The reservoir is capped by the UMV shale, beneath which 

water saturates the upper reservoir for a few hundred feet (Cumella and Ostby, 2003). 
Massive shale formation overlies the unconformity at the top of the Mesaverde group. The 

bottom of the reservoir is bounded by the Cameo coal, which provides source for the gas 

accumulated in the reservoir. 

The lithology of the reservoir formation is classified as tight sand with matrix perme- 

ability on the order of micro-Darcies and porosity of 6-12%. Because of the low porosity 

and permeability, it is of utmost importance to map the fracture networks for cost-effective 

development of the field. 

5.3 Data acquisition and processing 

To improve the understanding of the fracture network and the in-situ stress field, the 

Reservoir Characterization Project (RCP) acquired a 3D multicomponent seismic survey 

over a 2.2-by-2.5 km area of the Rulison field. The acquisition geometry was designed to 

be orthogonal to reach optimal balance between the uniformity of the azimuthal distribu- 

tion and the economy of the layout (Figure 5.3). Listed in Table 15.3 are the acquisition 

parameters, which were used to collect dense data with the highest fold of 225 for a small 

bin size of 55-by-55 ft (Figure 5.4). 

Prior to our processing, statics correction was applied to the data by Veritas. As 

illustrated by the cross-section in the middle of the survey, the data quality is decent for 

land seismics (Figure 5.5). Also, the subsurface structure is close to layer-cake, which 

simplifies application of azimuthal moveout and AVO analysis, as well as the anisotropic 

geometrical-spreading correction (MASC).
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The gas-producing reservoir is 

bounded by the UMV Shale and the Cameo Coal. The Mesaverde Top is an unconfor- 

mity that separates the Mesaverde group from the overlying Wasatch formation.
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Survey type 3-D, 9-C 

Subsurface bin size 55’x55’ 

Number of receiver locations 1500 

Number of source locations 770 
  

Receiver grid 110’ inline spacing, 330’ between lines 
  

Source grid 110’ inline spacing, 660’ between lines 
  

Receiver array 1, 3-C VectorSeis System Four 
  

Source array Mertz 18 
  

P-wave sweep range   6-120 Hz 
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Figure 5.3. Seismic acquisition grid for the RCP nine-component 2003 survey.
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Figure 5.4. P-wave fold for the 55x55 ft binsize. The square in the center encompasses the 

study area of this paper. 

To increase azimuth and offset coverage, we combined CMP gathers into superbins. 

The choice of superbin size is based on the smallest value that provides adequate coverage 

in offset and azimuth and sufficiently high semblance values. Relatively small bins suffer 

from non-uniformity of the distribution of offsets and azimuths; on the other hand, use of 

large bins increases the influence of lateral heterogeneity. By trying different superbin sizes, 

we found 5x5 bins to be optimal. Figure 7.5a displays a 5x5 superbin gather at northwest 

corner of our study area. The ground roll in the gather was suppressed using an azimuth- 

friendly slope filter suggested by Vasconcelos and Grechka (2006). Figure 7.5b shows the 

same gather after the application of azimuthally-varying NMO correction (i.e., using the 

NMO ellipse). The bending at the far offsets for the reflection from the top of the reservoir 

(UMV Shale) indicates the presence of nonhyperbolic moveout (Figure 7.5b). Since for this 
gather the offset-to-depth-ratio at the bottom of the reservoir (Cameo Coal) is only slightly 

larger than unity, the apparent flatness of the event does not necessarily imply the lack of 

nonhyperbolic moveout. 

The azimuthally-varying NMO velocity traces out an ellipse even for anisotropic inho- 

mogeneous media (Grechka and Tsvankin, 1998). Similarly, the azimuthal variation of AVO 

gradient can often be approximated by an elliptical curve (Riiger, 2001). The orientation 

and eccentricity of both ellipses reflect the fracture directions and intensities in the subsur- 

face. To extract NMO and AVO ellipses, it is common to divide 3D data into azimuthal
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Figure 5.5. Seismic section across the middle of the survey area. The reflectors analyzed 

in the paper are marked on the plot.
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Figure 5.6. (a) A 5x5 CMP supergather at the north-west corner of our study area; (b) 
the same gather after application of azimuthally-varying normal-moveout correction. The 

maximum offset for the gather is 7700 feet. The maximum offset-to-depth-ratios for the 

Mesaverde Top, the top of the reservoir (UMV Shale), and the bottom of the reservoir 

(Cameo Coal) are 1.9, 1.5, and 1.1, respectively.
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sectors. For each sector, the NMO velocity and AVO gradient are inverted separately. The 

obtained NMO velocities and AVO gradients for different sectors are then combined to esti- 

mate the best-fit ellipses. While this approach allows application of existing 2D algorithms, 

it suffers from bias when the sector width is too large and uncertainty when it is too small 

(Li et al. 2003). Here, we adopted a more accurate algorithm that honors the azimuth of 

each trace and fits an ellipse to the data globally using all azimuths and offsets within a 

CMP gather (Grechka and Tsvankin, 1999; Vasconcelos and Tsvankin, 2006). 

To estimate the AVO and NMO ellipses from CMP superbins, we implemented the 

following processing sequence. First, we employed a semblance method to obtain the NMO 

ellipse from near-offset traces (i.e., offset-to-depth-ratio equals to unity). We then used 

this ellipse as the first guess to carry out 3D nonhyperbolic moveout analysis on all traces 

(Vasconcelos and Tsvankin, 2006). Third, we picked the amplitude from the near-offset 

traces along the traveltime surface defined by the 3D nonhyperbolic moveout parameters. 

The amplitudes were then corrected for the geometrical spreading using MASC of Xu and 

Tsvankin (2006a, 2006b). Finally, we inverted the corrected amplitudes for the AVO ellipse. 

To evaluate the influence of the anisotropic spreading correction on the azimuthal AVO 

analysis, we also replaced MASC with a conventional gain correction (t? throughout this 

paper) while keeping the other processing steps unchanged. 

A square in the center of the RCP survey (Figure 5.4) was chosen for carrying out the 

azimuthal NMO and AVO analysis. The minimum fold of CMP superbins in this study area 

is 1500, and the maximum 5000. In 3D azimuthal analysis, uniform azimuthal coverage is 

important for preventing the inversion from being distorted by the acquisition footprint. 

Figure 5.7 shows the azimuth and offset coverage for CMP superbins at the four corners 

of the study area. The coverage increases as the CMP location moves towards the center 

of the survey. Azimuthal coverage is acceptably uniform for offset to about 5000 feet. The 

predominant acquisition direction (i.e., from 40° to 120°), includes 20% extra traces. Since 
the extra traces along the predominant acquisition azimuth accounts for a small portion of 

the data, azimuthal analysis in this study is likely to be free from the acquisition footprint. 

Because of the difficulty in displaying ellipses at every CMP location, we plotted instead 

the eccentricity and the orientation of the semi-major axis of the ellipses. We next present 

the results of the azimuthal NMO and AVO analysis for the top of the Mesaverde group, 

the top of the reservoir (UMV shale), and the bottom of the reservoir (Cameo coal). 

5.4 Results of azimuthal seismic analysis 

5.4.1 Mesaverde top 

Parameters of AVO and NMO ellipses for the Mesaverde Top are displayed in Fig- 

ure 5.8. A distinctive azimuthal AVO anomaly appears on the east side of the study area 

(panels a and b). The magnitude of the AVO ellipticity for this anomaly is close to unity 

indicating that the AVO gradient in one principal direction is twice as large as in the or- 

thogonal direction. In contrast, the magnitude of the NMO ellipticity is close to zero, which 

suggests that the overburden, on the whole, is azimuthally isotropic. Also, the orientations 

of the principal axes of the AVO ellipses in the area of the anomaly are around N45°W.
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Figure 5.7. Distribution of offsets and azimuths for CMP superbins in the four corners of 

the study area. Note that full azimuthal coverage is achieved for offsets up to around 5000 

feet.
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Since the reflectivity responds to the local changes of rock properties, the azimuthal AVO 

anomaly in Figure 5.8 can be an indication of a fractured zone near the Mesaverde Top. 

The obtained AVO-gradient map offers useful information for the operating company, which 

is Investigating candidate formations above the Mesaverde Top for storage of production 

water. 

Although the individual anellipticity parameter 7 is nonnegligible (0.15 on average), its 

azimuthal variation is weak. Consequently, the azimuthal variation of geometrical spreading 

is small as well (Figure 5.9). The comparison of the first two columns of Figure 5.8 confirms 

that the influence of the anisotropic spreading correction on the azimuthal AVO analysis is 

small. 

5.4.2 Top of the reservoir (UMV Shale) 

Similar to the Mesaverde Top, the AVO-gradient anomaly at the top of the reser- 

voir is located on the east edge of our study area. The magnitude of the AVO anomaly 

(Figure 5.10), however, increases by 30%, and compared to that of the Mesaverde Top its 

location is shifted to north by 200 m. If the UMV shale on top of the reservoir is VTI, 

the anomaly in Figure 5.10 likely marks a weak spot in the upper reservoir. The influence 

of the anisotropic spreading correction on the azimuthal AVO response at the top of the 

reservoir is marginal for the same reason as for the Mesaverde Top (Figure 5.11). 

The effective NMO ellipticity for the top of the reservoir (not shown here) is slightly 

larger than that for the Mesaverde Top. We computed the interval NMO ellipse for the 

UMV Shale layer using the generalized Dix equation proposed by Grechka et al. (1999). 

The orientations of the interval NMO ellipses are almost random, which suggests that either 

the shale formation is close to VTI, or the layer-stripping operation is unstable because of 

the weak effective NMO ellipticity. 

5.4.3 Bottom of the reservoir (Cameo Coal) 

Figure 5.12 shows the azimuthal seismic attributes obtained for the bottom of the 

reservoir. Two significant AVO-gradient anomalies appear in the north-east and south-west 

quadrant of the study area (panels a and b). The magnitude of both anomalies is close 
to 1.5, which means that the semi-major axis of the AVO ellipse is 2.5 times that of the 

semi-minor axis. The principal axes of the AVO ellipse shows a rotation pattern, which 

seems to support the wrenching fault model for the Rulison Field, (Cumella and Ostby, 

2003). 

Primarily because of the large thickness of the reservoir, the interval NMO ellipses 

for the reservoir are somewhat constrained (the last column of Figure 5.12). The only 
noticeable azimuthal NMO anomaly is located in the north-east corner,near one of the 

azimuthal AVO anomalies. The magnitude of the NMO anomaly is about 8%, which implies 

that the difference between the coefficients 5“) and 6(?) in the vertical symmetry planes of 

the model is close to 0.08. 

The influence of MASC on the azimuthal AVO analysis is significant for the anomaly 

in the south-west quandrant of the study area (compare panels a and b of Figure 5.12).
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AVO and NMO ellipse information extracted for the reflection from the 

Mesaverde Top. The three columns correspond to the AVO ellipses computed using MASC 

(left), the AVO ellipses after application of the conventional gain correction ¢? (center), 

and the effective NMO ellipses (right). The three rows show the eccentricity of the ellipses 

(top), the azimuths of the major principal axis of the ellipses (middle), and the rose diagram 

of the orientation of the major principal axis (bottom). The eccentricity is calculated by 

subtracting unity from the ratio of the semi-major and semi-minor axes. The lengths of the 

ticks in panels d, e, and f are related to the eccentricities of the ellipses. The arrow marks 

the north direction, which is consistent throughout figures 5.8 to 5.13,
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Figure 5.9. Azimuthal variation of the geometrical spreading (a) and of the parameter 7 

(b) for the Mesaverde Top. Plot (a) shows the percentage difference between the spreading 

values along the semi-major and the semi-minor axes of the NMO ellipse computed for 

the offset-to-depth-ratio of unity. Plot (b) shows the difference between 7 and 7) (the 

anellipticity coefficients in the vertical symmetry planes). 

The anomaly on MASC-corrected data is more pronounced and spatially coherent than 

that reconstructed by the conventional method. Because of the contribution of fractures 

in the thick reservoir formation, the distortion in geometrical spreading is more severe for 

the bottom of the reservoir (Figure 5.13) than for the top. As a result, the anisotropic 

spreading correction becomes important for computing an accurate AVO response from the 

bottom of the reservoir. Most existing azimuthal AVO case studies in the literature have 

been conducted for the top of the reservoir (Neves et al. 2003). Using synthetic modeling for 

fractured gas sands, Sayers and Rickett (1997) concluded that the bottom of the reservoir 

exhibits a stronger azimuthal variation of the AVO response than does the top. After the 

removal of the directivity factors at the source and receiver, however, the azimuthal AVO 

signature observed on the surface is the product of the geometrical spreading along the 

raypath and the reflection coefficient at the target horizon. The azimuthal variation of 

geometrical spreading could either strengthen or weaken the reflection coefficient. As a 

result, the azimuthal AVO variation for the bottom of the reservoir could be either stronger 

or weaker than that for the top. Thus, it is critically important to apply the anisotropic 

spreading correction, in particular, to the bottom of the reservoir for separation of reflection 

coefficients from the propagation factor. In addition, analysis of the geometrical spreading 

could provide supplementary information for fracture characterization. The uncertainty 

associated with such analysis, however, entails use with caution in practice.
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Figure 5.10. AVO and interval NMO ellipse information for the top of the reservoir (See 

Figure 5.8 for details).
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Figure 5.11. Azimuthal variation of the geometrical spreading (a) and of the parameter 7 

(b) for the top of the reservoir (see Figure 5.9 for details). 

5.5 Comparison with the fault system and EMI log 

5.5.1 Fault system 

Enhanced fracture zones are often associated with locations of faulting. It is, there- 

fore, of interest to compare our fracture-characterization results with fault distribution in 

the Rulison field. Cumella and Ostby (2003) suggest that the fault system at the Ruli- 

son field shows a wrenching pattern. Following the wrenching fault model, Jansen (2005) 

interpreted the fault system using automated curvature measurements. The background 

image in Figure 5.14 shows his interpreted fault system at the bottom of the reservoir. The 

primary fault system is aligned along N70W, and a secondary step-over fault trends along 

N30E. Interestingly, our observed AVO-gradient anomalies (Figure 5.14a and b) are at the 

intersections of the two wrenching fault systems, where stress concentration is believed to 

induce particularly intense fracturing. Compared to the AVO anomaly observed by using 

conventional gain correction (Figure), the anomaly obtained by MASC in the south-west 

quadrant makes more geologic sense as it is closer to the intersection. 

5.5.2 EMI and production logs 

An electrical microimager (EMI) log is available in well RWF 542-20 near the center 

of our study area. Figure 5.15 compares the fracture direction obtained from EMI log and 

from the azimuthal AVO analysis. The predominant fracture orientation determined by 

the azimuthal AVO analysis differs from that interpreted by the EMI log by less than 10°. 

A secondary fracture set (almost perpendicular to the primary) is also observed from the 

AVO analysis, which does not present in the EMI log. Given that Figure 5.15c displays the 

results for the entire study area, the agreement between the EMI log and the azimuthal
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Figure 5.13. Azimuthal variation of the geometrical spreading (a) and of the parameter 7 

  

    
  

  

(b) for the bottom of the reservoir (see Figure 5.9 for details). 

  

    
  

Figure 5.14. Comparison of the fault system and the azimuthal AVO attributes for the 

bottom of the reservoir. The fault system on both plots was interpreted by Jansen (2005) 

using poststack P-wave images. The azimuthal AVO attribute in plot (a) is computed 

using MASC (Figure 5.12a), and in plot (b) using the conventional spreading correction 
(Figure 5.12b). The black rectangles mark the RCP survey area, the blue lines represent 

faults, and the arrows indicate the directions of the slip movement. High fracture density is 

expected at the intersections E and E’ of the two wrenching fault systems. The azimuthal 

AVO anomalies on plot (a) coincide with these intersections.
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Figure 5.15. Rose diagrams of the fracture orientation. (a) Fracture directions counted 
in well RWF 542-20 within the reservoir; (b) directions obtained from the azimuthal AVO 
analysis at the bottom of the reservoir. 

AVO analysis is satisfactory. 

5.6 Discussion 

5.6.1 Acquisition footprint 

Since the acquisition design achieved full azimuthal coverage for offsets up to approx- 

imately 5000 ft, the NMO and AVO ellipses at the Mesaverde Top and the top of the 

reservoir (UMV Shale) are not distorted by the acquisition footprint. The azimuth and off- 

set coverage in the four corners of our study area suggests that the orientation of the NMO 

and AVO ellipses for the bottom of the reservoir might be biased towards the dominant 

acquisition azimuth from 40° to 100° (Figure 5.7). No evident bias is observed, however, 

in the azimuths of the AVO and NMO ellipses (Figure 5.12d, e, and f). In particular, the 

azimuths of the AVO ellipses are random in the lower right corner of the study area where 

the AVO eccentricities are close to zero (Figure 5.12d and e). The absence of the acquisition 
footprint can be explained by the orthogonality of the acquisition layout, which ensures that 

80% of all traces fall into offsets for which full-azimuth coverage is achieved.
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5.6.2 Error analysis 

Considering that the uncertainty in travelime picking does not exceed 8ms, Vasconcelos 

and Grechka (2006) estimated that the variance in the NMO velocities is close to 7%. The 
most serious problem in the estimation of the NMO ellipses, however, is the bias observed 

for different superbin sizes. The NMO ellipticity systematically increases over the area when 

the superbin size changes from 5x5 to 9x9. The larger bin size can cause distortions that can 

be attributed to the influence of lateral heterogeneity, which may result in a higher NMO 

ellipticity and lower semblance values. On average, the effective NMO ellipticity for the 

top of the reservoir increased by 0.04 and the semblance value decreased from around 0.6 

for 5x5 superbin size to 0.45 for 9x9 bin size. The considerable decrease in semblance value 

by 9x9 bin size suggests the influence of lateral heterogeneity. The 9x9 bin size, therefore, 

yields less reliable seismic attributes than does the 5x5 bin size. 

For all the reflectors, the confidence interval of the AVO eccentricity can be assessed 

from the azimuths of the AVO ellipses (Figure 5.8d, Figure 5.10d, and Figure 5.12d). When 

the AVO eccentricities are smaller than 0.3, the azimuths of the AVO ellipses are random 

(that is particularly obvious in the upper left quarter of Figure 5.10d and lower right quarter 

of Figure 5.12d). Once the AVO eccentricity becomes larger than about 0.3, the azimuths 

of the AVO ellipses show regular pattern. 

Because of the small offset-to-depth-ratio for the bottom of the reservoir (close to unity 
at the edges and 1.6 in the center of the study area), the estimated anellipticity parameters 

nn), and 7@) might contain large errors. The performance of MASC, however, is 

insensitive to trade-offs between the moveout parameters as long as they give an accurate 

approximation for the traveltime surface (Xu and Tsvankin, 2006a). The quality of the 

approximation provided by our moveout-inversion algorithm is confirmed by relatively high 

semblance values (0.7 on average) achieved by the nonhyperbolic-moveout equation. 

5.6.3 Correlation between the NMO and AVO ellipses 

It has been suggested in the literature to combine the NMO ellipse with the azimuthally- 

varying AVO gradient to constrain the anisotropy parameters and invert for some physical 

fracture parameters (Rtiger and Tsvankin, 1997; Bakulin et al. 2000a). This approach 

is feasible when the reservoir is thick enough for reliable estimation of the interval NMO 

ellipses but does not have pronounced vertical heterogeneity. Because the vertical resolu- 

tion of AVO analysis is much higher than that of NMO velocity and the large thickness 

of the reservoir in Rulison field, no strong correlation exists between the azimuthal NMO 

and AVO attributes. Still, when combined together they complement each other for better 

understanding of the fracture system. 

5.6.4 Group angle versus phase angle 

The AVO gradient is extracted here using the source-receiver offset rather than the 

incidental phase angle. This crude treatment can result in nonnegligible errors in quan- 

titative AVO inversion. Unfortunately, the phase angle cannot be accurately calculated
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without knowledge of the anisotropy parameters in the overburden. It would be worthwhile 

to carry out a modeling study to investigate errors in azimuthal AVO attributes caused by 

inaccuracy in the phase angle. 

5.7 Conclusions 

The influence of the anisotropic spreading correction on the azimuthal AVO response 

should be taken into account for the bottom of the reservoir where the azimuthal distortion 

of the geometrical spreading is significant. The azimuthal AVO anomaly computed after 

application of MASC in the south-west quadrant of the study area is more pronounced and 

spatially coherent than is that obtained by the conventional t? correction. Therefore, it is 

essential to apply MASC to ensure reliable recovery of the azimuthal AVO attributes. Note 

that the implementation of MASC following the azimuthal moveout analysis involves no 

extra cost. 

The AVO-gradient anomalies at the bottom of the reservoir coincide with the intersec- 

tions of the two wrenching fault systems, which suggests that the anomalies indeed indicate 

weak spots of high fracture density. While the fracture orientation varies in space, the dom- 

inant fracture azimuth is N70W (Figure 5.15), which is in good agreement with the EMI 
logs. The weak NMO ellipticity for the interval between the Mesaverde Top and the top of 

the reservoir (dominated by shale) suggests that this interval is azimuthally isotropic. Thus, 

the AVO anomalies at the top of the reservoir and at the Mesaverde Top are likely caused 

by enhanced fractured zones in the upper reservoir and in the formation immediately above 

the Mesaverde Top, respectively. 

The magnitude of the azimuthal AVO ellipticity is significantly higher than that of the 

NMO ellipticity in the Rulison field. Also, no strong correlation is observed between the 

azimuthal AVO and NMO attributes, which may be explained by the inherent difference 

between these two measurements. AVO response depends on the local changes in rock 

properties; NMO velocities, on the other hand, reflect the average rock properties over 

coarse intervals. Sinc the reservoir interval in the Rulison field is 2000ft thick, the map of 

the azimuthal NMO ellipse suggests the distribution of relative fracture density averaged 

over this large reservoir column. The azimuthal AVO maps, however, show the fracture 

distribution near the Mesaverde Top and the top and the bottom of the reservoir. 
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Chapter 6 

Anisotropic geometrical-spreading correction in 

the presence of lateral heterogeneity 

6.1 Introduction 

Compensation for geometrical spreading is an essential step in AVO (amplitude-variation- 

with-offset) analysis of reflection data, in particular when the overburden is anisotropic. 

Xu et al (2005) and Xu and Tsvankin (2006) presented an efficient method (MASC, or 
moveout-based anisotropic spreading correction) to correct long-offset, wide-azimuth data 

for geometrical spreading in laterally homogeneous (e.g., horizontally layered), azimuthally 

anisotropic media. The geometrical-spreading factor is expressed in terms of reflection trav- 

eltime described by a nonhyperbolic moveout equation that has the same form as that in 

VTI (transversely isotropic with a vertical symmetry axis) media. 
The underlying assumption of MASC is that the medium is laterally homogeneous, 

although it can be arbitrarily anisotropic. In practice, however, the subsurface structure 

is often more complicated. In that case, compensation for geometrical spreading is not 

straightforward. Tygel et al. (1992) proposed a method to correct geometric spreading in 

laterally heterogeneous media. Their approach, however, involves complicated manipula- 

tions with various recording geometries and suffers from instability. 

Here, we use numerical modeling to study the applicability of the MASC method to 

models with mild reflector dip and moderate lateral velocity gradient. A series of numerical 

tests is performed for reflections from a dipping interface overlaid by a stack of horizontal 

layers. Here, we show the results for three models: a layered isotropic medium above a 

dipping interface, a dipping orthorhombic model, and an isotropic layer with moderate 

quadratic lateral velocity variation. 

6.2 Numerical tests 

6.2.1 Layered isotropic model 

Table 1 lists the parameters of a layered isotropic medium. The dip of the reflecting 

interface is 20°, while the layers in the overburden are horizontal. Although MASC makes 

the assumption that the subsurface is horizontal, we apply it to compute the geometrical 

spreading for this model (Figure 1). For a wide range of offsets and azimuths, the errors of 

MASC are less than 6%.
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| Veo (km/s) | Thickness (km) | Dip | 
  

  

Layer 1 1.50 0.3 0° 

Layer 2 1.74 0.2 0° 

Layer 3 1.94 0.2 0° 

Layer 4 2.15 0.3 20° 

Table 6.1. Parameters of the four-layer isotropic medium used in the numerical test. The 

target event is the reflection from the dipping interface. 

Symmetry Vpo Thickness viv, V2), ni) ni?) 7) Dip 

type (km/s) (km) (km/s) | (km/s) 
  
  

                    
L1 Iso 1.5 0.2 1.5 1.5 0 0 0 0° 

L2 ORTH 2.44 0.9 2.63 2.24 | 0.21 | 0.40 | 0.19 | O° 

L3 ORTH 3.0 0.9 3.15 2.68 | 0.18 | 0.31 | -0.06 | 20° 

Table 6.2. Parameters of a three-layer model that includes two orthorhombic layers with 

aligned vertical symmetry planes ¢ = 0° and ¢ = 90°. The geometrical spreading is 

computed for the reflection from the dipping interface. 

Reflection traveltimes in the dip direction in CMP geometry from a dipping interface 

in an isotropic homogeneous medium are equal to those from a horizontal interface with 

velocity and depth divided by a cosine of the dip angle (Levin, 1971). Since a plane interface 

does not change the curvature of reflection wavefront, geometrical spreading in isotropic 

homogeneous media with plane interfaces equals to the distance from a source to a receiver 

regardless of the dip of the reflector. The MASC method does not recognize the dip of the 

reflector and treats the reflection traveltimes as if they are from an equivalent horizontal 

interface. The geometrical spreading (i-e., the distance from the source to the receiver) 

obtained by MASC, therefore, is large by a factor of cosine of the dip angle. This exact 

relationship is confirmed by ray tracing. Thus, the error in geometrical spreading computed 

by MASC for a 20° dipping layer is close to 6% in along the dip direction, and decreases 

towards the strike azimuth. Numerical test in layered isotropic models shows similar errors 

(Figure 1), albeit not in an exact sense. Apparently, the error of MASC increases with the 

dip of a dipping reflector. 

6.2.2 Dipping orthorhombic layer 

I performed a similar comparison for a layered orthorhombic medium with strong 

azimuthal anisotropy (Table 2). The errors of MASC for this model are comparable to 
those for the isotropic model.
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180    270 
Figure 6.1. Accuracy of MASC in computing full-azimuth, long-offset P-wave geometri- 

cal spreading in a layered isotropic medium. The error is normalized by the geometrical 

spreading obtained by dynamic ray tracing. The maximum offset-to-depth-ratio is two. 

6.2.3 Isotropic layer with quadratic lateral velocity variation 

Introduction of a constant lateral velocity gradient into a homogeneous isotropic layer 

does not influence the reflection traveltimes in CMP geometry. Likewise, the geometrical 

spreading remains unchanged for every source-receiver pair in a CMP gather. We, therefore, 

test a model with a moderate quadratic velocity gradient (Figure 3). The geometrical 

spreading computed from MASC is displayed in Figure 4. Even though the accuracy of 

MASC decreases with offset, the error is less than 10% if the offset-to-depth-ratio is limited 

by two. 

6.3 Conclusions 

We performed numerical tests for reflections from a dipping interface overlaid by a stack 

of horizontal layers with azimuthal anisotropy. If the dip is smaller than 20°, the error of 

the MASC method does not exceed 10% for the full range of source-receiver azimuths and 

offsets up to twice reflector depth. Also, the method remains accurate for layer-cake models 

with constant lateral velocity gradient, and is weakly sensitive to moderate nonlinear lateral 

velocity variation.
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180 

     270 

Figure 6.2. Accuracy of MASC in computing full-azimuth, long-offset P-wave geometrical 

spreading in a layered orthorhombic medium. The error is normalized by the geometrical 

spreading obtained by anisotropic dynamic ray tracing. The maximum offset-to-depth-ratio 

is two. 

CMP 
| 

1.6 2.0 3.2 
km s*1 km s71 km s"1 

0.0 s-*1 0.4 s"1 1.6 s°1 
  

Figure 6.3. Parameters of a horizontal isotropic layer with quadratic lateral velocity varia- 

tion. The arrow marks the common-midpoint (CMP). The velocity and the lateral velocity 
gradient are marked at three lateral positions (one km to the left of the CMP, at the CMP, 

one km to the right of the CMP). The thickness of the layer is 1 km.
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Figure 6.4. Accuracy of MASC in computing P-wave geometrical spreading for the 

isotropic laterally heterogeneous layer from Figure 3. 
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Chapter 7 

MASC for Converted PS-Waves 

7.1 Introduction 

Amplitude-variation-with-offset (AVO) analysis of mode-converted PS-waves can be 
used in combination with P-wave AVO to constrain anisotropy parameters and properties 

of fracture networks. For example, it is shown in Bakulin et al. (2000) that the azimuthally- 

varying AVO gradients of PP- and PS-waves uniquely define the normal and tangential 

compliances of a single set of penny-shaped cracks in an isotropic background. These 

compliances can be directly related to the fracture density and fluid infill. A more general 

methodology for joint inversion of PP and PS AVO gradients in azimuthally anisotropic 

media was developed by Jilek (2002). The advantage of combining PS and PP AVO is that 

they are determined by rock properties on the same scale. 

The high sensitivity of shear-wave amplitudes to the presence of anisotropy makes it 

imperative to correct PS-wave amplitudes for geometrical spreading prior to AVO inversion. 

As shown by Tsvankin (1995, 2005) and Xu et al. (2005), the anisotropy parameters 7 

and o are primarily responsible for distortions of geometrical spreading of P- and SV- 

waves, respectively. Since o is often much larger than 7 because of the contribution of the 

squared vertical-velocity ratio, the geometrical spreading of SV-waves is more distorted by 

the presence of anisotropy than is that of P-waves. 

To correct AVO signatures for the influence of anisotropic overburden, it is convenient 

to represent geometrical spreading through reflection traveltimes measured on the earth’s 

surface. Following paraxial ray theory (Cerveny, 2001), Xu et al. (2005) obtained a concise 

equation for geometrical spreading of pure wave modes in laterally homogeneous, arbitrarily 

anisotropic media. By employing a 3D extension of the Alkhalifah-Tsvankin (1995) equa- 

tion, Xu and Tsvankin (2006a) developed a practical and robust algorithm (“MASC”) to 
correct for geometrical spreading in azimuthally anisotropic media. The accuracy of MASC 

was confirmed by ray tracing and full-wavefield synthetic studies. Also, Xu and Tsvankin 

(200Gb) showed that MASC cannot always be replaced by conventional gain corrections 

even for purposes of qualitative AVO analysis. 

Here, we extend the methodology of MASC to converted PS-waves in anisotropic me- 

dia. We first show that despite the asymmetry of the raypath for PS-waves, the geometrical- 

spreading equation remains the same as that for pure waves. By using both the Tsvankin- 

Thomsen (1994) and the Alkhalifah-Tsvankin (1995) equations, we extend the MASC algo- 
rithm to PSV data acquired in vertical symmetry planes of horizontally layered anisotropic 

media. Finally, in a full-wavefield synthetic study, we evaluated the accuracy of MASC
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Figure 7.1. Traveltime surface of the fast PS-wave computed for a TTI layer in CMP 

geometry. Note that the global minimum is not located at zero offset because of the absence 

of a horizontal symmetry plane. Moreover, the surface is asymmetric with respect to the 

global minimum. The model parameters are Vpp = 2.6 km/s, Vsp9 = 1.38 km/s, € = 0.46, 

6= 0.11, y = 0.0, v = 70°. The thickness of the TTI layer is one kilometer. 

for PS-waves and to compare its performance with that of conventional gain corrections 

routinely used in practice. 

7.2 Moveout-based expression for geometrical spreading of PS-waves 

The most prominent feature of PS-converted waves as opposed to PP-waves is the 

asymmetry of the raypath and, consequently, of traveltime and amplitude on common- 

midpoint (CMP) gathers (Thomsen, 1999). This asymmetry leads to a change in traveltime 

when the source and receiver are interchanged in a medium with either lateral heterogeneity 

or anisotropy without a horizontal symmetry plane (Dewangan, 2004). Thus, the key 

geometrical-spreading equation (reproduced below in equation 7.2) of Xu and Tsvankin 

(2005) for pure wave modes has to be revisited for converted PS-waves. 

While a slight modification of the derivation is needed, equation 7.2 remains valid for 

converted PS-waves. Appendix A of Xu et al. (2005) contains a derivation of equation 7.2 

using an important result of paraxial ray theory. The central step of the derivation was 

to reduce the number of independent variables of the traveltime function from four to two 

(i.e., offsets and azimuths) in laterally homogeneous, arbitrarily anisotropic media. For pure 

waves, the independent variable azimuth ranges only from 0° to 180° because a traveltime 

remains the same when the source and the receiver are interchanged. For converted waves, 

however, it is necessary for the azimuth to cover the entire 360° range to account for possible 

asymmetry of traveltimes when exchanging source and receiver locations. Therefore, A-3
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Figure 7.2. Comparison of geometrical spreading computed from equation 2 (dashed line) 

and by ray tracing (solid) in the symmetry-axis plane of the model in Figure 1. The 

“jitters” are caused by errors in approximating the traveltime surface shown in Figure 7.1. 

The arbitrary choice of the second-order derivatives at offsets of +3 km and zero-offset 

results in discrepancies between our method and ray tracing at these locations. On the 

whole, however, the spreading computed by our method agrees well that obtained by ray 

tracing. 

of Xu et al. (2005) for converted waves changes to 

  

—1 | e5—25 rs 
tan znat x, — 27 >0 

a= —1 | @5—25 r s (7.1) 
tan zroas +m 2-27, <0 

Here x7 5 are the coordinates of the source location, and rj 2 the coordinates of the receiver 

location (again, we assume a horizontal observation surface). Since a constant, 7, does 

not change the derivatives, the final equation of geometrical spreading as a function of 

traveltime remains unchanged for converted-PS waves: 

L(a, a) = (cos o° cos gr)? 

Ox2 dra Ox? 002 x2 \ da) x! 

eTeri Teri. (ar\?1 | oT or ( ) (7.2) 

where x is the source-receiver offset, and a is the azimuth of the source-receiver line. 

Equation 7.2, therefore, is valid for any wave mode in laterally homogeneous, arbitrarily 

anisotropic media. 

Next, we test the validity of equation 7.2 in a transversely isotropic layer with a 

tilted symmetry axis (TTI, the physical model of Dewangan et al, 2006). The traveltime
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Figure 7.3. Geometrical spreading computed by our method and by ray tracing for model 1. 

The diamonds correspond to the output of our method with Tsvankin-Thomsen equation; 

the dashed curve is computed by our method using Alkhalifah-Tsvankin equation; the solid 

line marks the result of ray tracing. 

surface of the fast PS-wave is computed by anisotropic ray tracing for a CMP gather. 

In the symmetry-axis plane, the fast S-wave has in-plane polarization ({i.e., it is an SV 

wave) since the anisotropy parameter o is positive and y is set to zero. As illustrated 

in Figure 7.1, the traveltime surface is asymmetric with respect to the location of the 

global traveltime minimum, which also deviates from the common midpoint. Since it is 

difficult to fit the asymmetric traveltime surface using a Taylor series, we employed a cubic- 

spline function instead. Combining equation 7.2 and the spline function, we computed the 

geometrical spreading for the converted PSV-wave in the vertical symmetry-axis plane. The 

geometrical spreading computed from equation 7.2 is close to that obtained by ray tracing 

(Figure 7.2), which confirms the validity of that equation for converted PS-waves in media 

without a horizontal symmetry plane. While equation 7.2 is valid for laterally homogeneous, 

arbitrarily anisotropic media, in the rest of this paper, we focus on media with a horizontal 

symmetry plane (i.e. the moveout of PS-waves is symmetric). 

7.3 Algorithm for moveout-based anisotropic spreading correction 

Because of the difficulty in exciting shear waves on land and the absence of shear-wave 

source in marine settings, PS-waves are often used to infer shear-wave information about 

the subsurface. Outside symmetry planes of anisotropic media, an incident P-wave excites 

two split shear waves which have to be separated using rotation analysis. In contrast, a P- 

wave generates only SV-waves in vertical symmetry planes, which facilitates AVO analysis 

for PSV-waves in these planes. The focus of this section, therefore, is on extending the
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Figure 7.4. Geometrical spreading computed by our method and by ray tracing for two 

vertical symmetry planes of the orthorhombic model (model 2 from Table 2). The asterisks 

correspond to spreading computed by our method using the 3D version of the Tsvankin- 

Thomsen equation; the dash curves are results from our method with application of the 3D 

version of the Alkhalifah-Tsvankin equation; the solid lines mark the results of ray tracing. 

algorithm of MASC (Xu and Tsvankin, 2006a) to PSV modes in vertical symmetry planes 

of horizontally layered anisotropic media. 

As for P-waves, the key issue in implementing equation 7.2 for converted waves is to 

find a smooth approximation for traveltimes that can be used for a wide range of offsets and 

azimuths. To describe long-spread reflections for P-waves, Tsvankin and Thomsen (1994) 
developed the following nonhyperbolic moveout equation: 

Ay x4 2 _ 2 
T (x) = To + Age +17 Aa? (7.3) 

where Tp is the zero-offset traveltime, Ag is related to the normal-moveout velocity as 

Ao = V,2,, and Aj is the quartic coefficient responsible for nonhyperbolic moveout. The 
parameter A in the denominator depends on the horizontal group velocity Vj.» and is 

designed to make T(x) convergent at large offsets 7 —> oo. 

The generic Tsvankin-Thomsen equation 7.3 also proves to be accurate for PS travel- 

times in horizontally-layered VTI media (Tsvankin, 2005). By accounting for the azimuthal 

variation in the moveout coefficients, Al-Dajani et al. (1998) extended the general Tsvankin- 

Thomsen equation to P-waves in azimuthally anisotropic media: 

Aq(a) x4 2(n a) = a? + T' (a, a) = Ao + Aa(a) a” + 1+ A(a) x?’ 
(7.4)
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Ag(a) = Ao sin? a + A? ) cos? Q, (7.5) 

Ag(a) = A )sinta + A®) cos! a + A® ) sin? @ cos2 a. (7.6) 

Here, As?) and All?) are symmetry-plane moveout coefficients. AW is a cross-term that 

contributes in off-symmetry directions. Analogous to the VTI case, we expect equation 7.4 

to be accurate for fitting PS traveltimes in horizontally-layered azimuthally anisotropic 

media. 

Alkhalifah and Tsvankin (1995) proposed a simpler nonhyperbolic moveout equation 

for P-waves in VTI media that depends on only two parameters, the normal-moveout ve- 

locity Vamo and anellipticity coefficient 7: 

  

2 2a a4 

T(x) =T2+— , (7.7) 
( ) oF Veno Viene [Te V, no +(1 + 27) x?) 

Xu and Tsvankin (2006a) proved the 3D version of equation7.7 to be accurate for computing 

geometrical spreading in orthorhombic or HTI media with a horizontal symmetry plane: 

  T?(x,) = 72 + x 2n(a) xt (7.8) 
°F V2 (a) Veng(a) [TP Veno(a) + (1 + 2a) 22 

_ sin? a cos? a 
Vimo (@ = 1) \2 + (a) \2? (7.9) 

(Vino) (Van) 
and 

n(a) = n™ sin? a + 7) cos? a — 7) sin? a cos? a. (7.10) 

In equation 7.9, vi) and V2), are the semi-minor and semi-major axis of the NMO el- 

lipse, respectively; 7-23) are the anellipticity parameters in the three symmetry planes of 

orthorhombic media. 

Although equations 7.7 and 7.8 was originally designed for P-waves, it is worthwhile to 

test them for PS-waves. If these equations yield satisfactory accuracy, the same formalism 

can be used to fit both P and PS traveltimes. Next, we apply equations 7.3 and 7.7 to 

PS-waves in a VII model (model 1; parameters are listed in Table 1) to compute geomet- 
rical spreading using equation 7.2. Then, we test equations 7.4 and 7.8 for PS-waves in 

orthorhombic media (model 2; Table 2). 
Figures 7.3 and 7.4 show the comparison of geometrical spreading computed by our 

moveout equations and by ray tracing. The Tsvankin-Thomsen equation yields results that 

are almost identical to those obtained by ray tracing. The Alkhalifah-Tsvankin equation, 

on the other hand, has the advantage of being consistent with that for P-waves while still 

providing adequate accuracy. It is worth mentioning that the best-fit parameter 7 for PS- 

waves differs from the anellipticity parameter for P-waves.
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| Layer 1 | Layer 2 | Layer 3 | 
  

  

  

Symmetry type ISO VTI ISO 

Thickness (km) 0.5 1.0 oo 
Density (g/cm) 2.0 2.1 2.2 
Vpo (km/s) 1.7 2.2 2.2 
Vso (km/s) 0.8 1.1 1.0 
€ 0 0.23 0 

é 0 0.10 0 

7 0 0.10 0 
n 0 0.10 0 
oO 0 0.64 0         

Table 7.1. Parameters of a three-layer VTI medium used in the numerical test (model 1). 
The parameters of the VTI layer are based on measurements of Dog Creek Shale (Thomsen, 

1986). The event of interest is the PS conversion from the bottom of the VTI layer. 

7.4 Application to AVO analysis of synthetic data 

Because of the high sensitivity of S-waves to the presence of anisotropy, cusps, sin- 

gularities, and areas of rapid amplitude changes are common for shear waves (Tsvankin, 

2005). For that reason, MASC is likely to suffer from reduced accuracy for mode conver- 

sions. Moreover, the asymmetry of the raypath and wave modes can result in a significant 

angular variation of transmission loss. It is, therefore, necessary to test the performance of 

MASC on 3D full-wavefield synthetics for PS-waves even more so than for P-waves. As in 

Xu and Tsvankin (2006b), the questions addressed here are as follows: 
1. Can MASC accurately reconstruct conversion coefficients in vertical symmetry 

planes of anisotropic media? 

2. Are errors caused by empirical gain corrections acceptable for purposes of qualitative 

AVO analysis? 

3. Can the influence of transmission loss be ignored as in P-wave AVO analysis? 

To answer these questions, we carried out synthetic modeling and amplitude processing 

PSV waves in a VTI medium (model 1). The employed modeling tool is the reflectivity 

code (ANISYNPA) that generates an exact 3D wavefield for horizontally layered anisotropic 

media. Figure 7.5 displays a shot gather for vertical displacement generated by a vertical 

point source force in model 1. The processing sequence is similar to that for P-waves, 

and starts with moveout inversion. We then picked raw amplitudes along the traveltime 

curve defined by the moveout parameters. At the third step, MASC is applied to correct the 

picked amplitudes for anisotropic geometrical spreading. Finally, we removed the source and 

receiver directivity factors using the local horizontal slowness. To calibrate P-wave AVO, we 

matched the corrected amplitude with the exact reflection coefficient at normal incidence
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| Layer 1 | Layer 2 | Layer 3 | 
  

  

  

Symmetry type VTI ORTH ISO 

Thickness (km) 0.5 1.0 00 
Density (g/cm?) 2.1 2.1 2.2 
Vpo (km/s) 2.2 2.2 2.2 
Vso (km/s) 1.1 1.1 1.0 

e(1) 0.23 0.317 0 
6(1) 0.10 -0.054 0 
yl) 0.10 0.513 0 
(2) 0.23 0.121 0 
6(2) 0.10 0.046 0 
ry?) 0.10 0.138 0 
6(3) 0 0.1 0 
nD 0.1 0.42 0 
7) 0.1 0.07 0 
o() 0.64 1.48 0 
o(?) 0.64 0.31 0         

Table 7.2. Parameters of a three-layer orthorhombic medium used in the numerical tests 

(model 2). Orthorhombic symmetry can be fully described by the two vertical velocities 

(Vpo for P-waves and Vso for one of the split S-waves) and seven anisotropy parameters (, 

e), 6), 62), 68), yO and y®)). The anellipticity parameters 7) and 7) control P-wave 

nonhyperbolic moveout. The parameters o@) and o(2) govern the moveout of SV-waves in 

the vertical symmetry planes. For a detailed explanation of the notation, see Tsvankin 

(2005). The parameters of the orthorhombic layer are based on the measurements of Wang 
(2002). The event of interest is the PS-wave converted at the bottom of the orthorhombic 
layer.
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Figure 7.5. Synthetic shot gather for model 1 computed by the reflectivity method. The 

top layer is specified as a halfspace to eliminate the influence of the free surface. The 

arrow indicates the target PS-wave converted at the bottom of the VTI layer. The ellipse 

highlights the area of interference between the target PS event and the SS reflection from 

the top of the VTI layer. 
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Figure 7.6. Comparison of the reconstructed conversion coefficients. The dashed line cor- 

responds to the output of MASC; the dots mark the coefficient recovered by the t-gain 

correction; the solid line indicates the exact conversion coefficient. The take-off angle of the 

downgoing P-wave corresponding to the maximum horizontal slowness (0.3 s/km) is 30°; 

for the upgoing S-wave, the angle is 15°.
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Figure 7.7. Transmission loss for the target PS-wave from Figure 5. The loss is computed 

by subtracting from unity the product of the plane-wave transmission coefficients along the 

raypath. 

(Xu and Tsvankin, 2006b). For PSV-waves, however, this approach is not applicable since 

the conversion coefficient at normal incidence vanishes. We, therefore, apply the scaling 

factor estimated for P-waves to normalize the PSV conversion coefficients. 

The VTI parameters of model 1 are based on the measurements of Dog Creek Shale 

(Thomsen, 1986). For this moderately anisotropic model, application of MASC (with the 
Tsvankin-Thomsen equation) yields conversion coefficients close to the exact values (Fig- 
ure 7.6). The conventional gain correction t, on the other hand, results in considerable 

errors. The results of t?-gain correction, not shown here, are even less accurate. Clearly, 

the presence of anisotropy significantly distorts the geometrical spreading of PSV-waves 

in typical TI models. Application of MASC is essential for AVO analysis of converted 

PSV-waves. 

Note that at far offsets the reconstructed conversion coefficient deviates substantially 

from the exact values. The deviation is partly caused by transmission loss and partly by 

the interference with the SS reflection from the top of the VTI layer (highlighted by the 

ellipse in Figure 7.5). For PP reflections, the two-way transmission coefficient is such that 

the resulting transmission loss is almost invariant with offset. Because of the asymmetry 

of the raypath and wave modes, however, the transmission loss for PSV-waves changes 

significantly with offset (Figure 7.7), which leads to non-negligible errors in the recovered 

conversion coefficients.
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7.5 Conclusions 

Despite the asymmetry of the raypath, the geometrical-spreading equation for PS- 

waves remains the same as that for pure P-waves (equation 7.2). Moreover, the MASC 
algorithm for P-waves can be adapted to converted waves in a straightforward manner. 

While the Tsvankin-Thomsen equation yields high accuracy in traveltime fitting and, con- 

sequently, geometrical spreading, the simpler Alkhalifah-Tsvankin equation originally de- 

signed for P-waves also produces adequate accuracy for converted waves. Thus, we can 

apply the same formalism to both P and converted PS-waves to approximate traveltimes 

and compute geometrical spreading. 

Since shear-wave amplitudes are more distorted by the presence of anisotropy, the er- 

rors caused by conventional gain corrections for PS-waves are more significant than those 

for PP reflections. Application of MASC, therefore, is beneficial for qualitative AVO anal- 

ysis of PS-waves even in moderately anisotropic media. Compared to PP-waves, the error 

stemming from transmission loss is more significant for converted waves because of the 

asymmetry of the raypath and the conversion from P to 5. 
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Chapter 8 

Conclusions 

In this thesis I developed a practical methodology (MASC) for correcting wide-azimuth, 

long-offset multicomponent reflection amplitudes for azimuthally-varying geometrical spread- 

ing. The method operates with reflection traveltimes recorded on the earth’s surface without 

using information about the subsurface velocity field. The algorithm conveniently fits into 

the processing sequence for estimating azimuthal moveout and AVO attributes. Also, little 

extra computational cost is necessary to carry out the proposed correction. 

The methodology is based on the idea of expressing geometrical spreading through re- 

flection traveltimes. By employing 3D nonhyperbolic moveout equations, I represented the 

geometrical spreading as a function of the moveout parameters. Using the weak-anisotropy 

approximation, I identified the key parameters responsible for the azimuthal variation of 

geometrical spreading, which is strongly dependent on the difference between the anellip- 

ticity parameters 7) and 7?) in the two vertical symmetry planes of the model. Since 

long-spread traveltimes help to constrain the 7 parameters, it is beneficial to include long- 

spread data for computing geometrical spreading. The input to the spreading-correction 

algorithm includes the 3D nonhyperbolic moveout parameters, which can be obtained from 

moveout inversion of wide-azimuth, long-offset data. Since these parameters are needed for 

tracking reflection events for purposes of AVO analysis, the spreading correction does not 

incur extra cost except for implementing the equations in the Appendix C. The algorithm 

is insensitive to the trade-offs between various moveout parameters as long as the equation 

approximates the traveltime surface with good accuracy. In addition, sensitivity analysis 

shows that while the robustness of the MASC algorithm is lower than that of NMO-velocity 

inversion, it is higher than that of 7 estimation in the two vertical symmetry planes. 

Application of MASC to full-wavefield synthetic data corroborates its accuracy in the 

presence of strong azimuthal anisotropy. The synthetic study demonstrated that the trans- 

mission loss is a secondary factor in reconstructing azimuthally-varying reflection coefficients 

for P-waves. Comparison of MASC with conventional gain correction shows that application 

of MASC can be critically important for quantitative AVO inversion. For qualitative AVO 

analysis, MASC becomes important when the relative strength of the azimuthal variation 

of the geometrical spreading is about one-third of that of the reflection coefficient. 

To investigate the significance of anisotropic spreading correction for field data, I ap- 

plied MASC to the azimuthal AVO analysis of a wide-azimuth dataset acquired at the Ruli- 

son field, Colorado. The results of AVO analysis for the bottom of the reservoir confirmed 

that application of MASC is essential for reliable estimation of azimuthal AVO attributes 

when the azimuthal variation of geometrical spreading is nonnegligible. Also illustrated by
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the field study is the robustness of measurements of the azimuthal AVO peradient. Although 

amplitude signatures are often noisy, the high sensitivity of amplitude to the presence of 

anisotropy makes the azimuthal AVO gradient a relatively stable attribute. I observed good 

agreement between the azimuthal AVO attributes and both fault patterns and EMI logs in 

the field. Perhaps because of the influence of heterogeneity in the reservoir, I observed no 

clear correlation between the azimuthal AVO and NMO attributes. 

Because of the high sensitivity of shear waves to the presence of anisotropy, it is im- 

perative to correct for geometrical spreading in AVO analysis for PS-waves. Therefore, 

I extended the MASC algorithm to converted PS-waves. I showed that both Tsvankin- 

Thomsen- and Alkhalifah-T'svankin-style equations can be used to approximate PS trav- 

eltimes. If the Alkhalifah-Tsvankin-style equation is chosen, the same formalism can be 

applied to correct geometrical spreading for both PP-waves and PS-waves. In contrast to 

the results for PP-waves, the influence of the transmission coefficient is nonnegligible for 

AVO analysis of converted waves. 

An important assumption of this thesis is lateral homogeneity. Since geological and 

geophysical settings often violate this assumption to a certain degree, I performed numerical 

tests to study the applicability of MASC to models with mild dip and moderate lateral 

velocity variation. Preliminary numerical tests for media with strong azimuthal anisotropy 

suggest that errors of geometrical spreading computed by MASC are smaller than 10% 

when reflector dip does not exceed 20°. MASC remains accurate when the lateral velocity 

variation is linear and is not overly sensitive to moderate quadratic velocity variations. 

Although the application of MASC here is focused on azimuthal AVO analysis for 

horizontally layered media, it can also be incorporated into Kirchhoff prestack time migra- 

tion that accounts for azimuthal anisotropy. The 3D version of the Alkhalifah-Tsvankin 

equation can be used to compute traveltimes and slowness without ray tracing, and the 

MASC algorithm can be employed to compute the amplitude weighting factor. Future re- 

search is needed to further explore the applicability of MASC as an amplitude preserving 

tool for prestack time migration. For more complicated models with strong lateral veloc- 

ity variation, correction for geometrical spreading has to be implemented in the context of 

true-amplitude prestack depth migration. For example, Vanelle (2002) employed the general 

geometrical-spreading equation (equation 4.10.50 of Cerveny, 2001) in prestack Kirchhoff 

depth migration. Brandsberg-Dahl et al. (2001) proposed to use the generalized Radon 

transform to extract reflection coefficients directly as functions of incidence angle and az- 

imuth in angle gathers. In contrast to MASC, these techniques rely on accurate estimation 

of the velocity field. 

Besides pronounced lateral heterogeneity, attenuation anisotropy is another subject not 

addressed in this work. Zhu (2006) has demonstrated that angular variation of attenuation, 
along with velocity anisotropy, has serious implications for AVO analysis. Investigation 

of the influence of attenuation anisotropy on reflection/transmission coefficients and other 

wave propagation phenomena is an ongoing research area. Among other difficulties that 

are not addressed here are anisotropic tuning phenomena and tilt of the symmetry planes 

(note that the equations of geometrical spreading in Appendices A and C handle tilt of 

symmetry planes; but the MASC algorithm does not).
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Clearly, much research is required to account in a robust way for propagation fac- 

tors and extract reflection coefficients in arbitrarily heterogeneous, anisotropic, attenuative 

media. Nevertheless, the development of MASC allows reliable qualitative azimuthal AVO 

analysis and enables quantitative azimuthal AVO inversion in areas of relatively simple sub- 

surface structure. With the reasonable assumption that the layer containing sources and 

receivers is isotropic and has a known velocity, one can remove the source-receiver directiv- 

ity factor from the recorded AVO signatures using local horizontal slownesses. Then, the 

MASC algorithm can correct for azimuthally-varying geometrical spreading without using 

velocity information. Since the influence of transmission loss on pure-mode amplitudes is 

negligible, the corrected amplitudes represent the variation of reflection coefficients with 

offset and azimuth. Well information can be used for calibrating the corrected amplitudes 

to the true reflection coefficients. Another obstacle in quantitative AVO inversion often 

mentioned in the literature is the transformation from offset to phase angle. For laterally 

homogeneous media, this problem can be avoided by expressing the reflection coefficients as 

a function of horizontal slowness. Once the issues discussed above are resolved, one can at- 

tempt quantitative azimuthal AVO inversion on field data. Using effective medium theory, 

the inverted parameters can be used to infer important rock properties. Particularly, with 

the advent of wide-azimuth acquisition offshore, I believe that the future for wide-azimuth 

AVO analysis is promising. 
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Appendix A 

Relative geometrical spreading as a function of 

reflection traveltime 

As discussed in the main text, the relative geometrical spreading L(R,S) can be ob- 

tained in terms of the mixed second-order traveltime derivatives with respect to the source 

and receiver coordinates using equations (2.2) and (2.3). Here, we express L(R, S) through 
the multiazimuth reflection traveltimes of a pure (non-converted) mode recorded over a 
laterally homogeneous medium. 

The spreading factor L(R, S) can be found from the traveltime-derivative matrix M™* 
given in equation (2.3): 

T(x" ,2*) 8? T (a 2%) 
qmix __ Ox{ Ox} Ox3 Ox} 

MUS =| er@r at) 8TG" 2*)| > (A1) 
Ox3 0x7 O250x5 

where aj and x5 are the horizontal Cartesian coordinates of the source, and 27 and x5 are 
the coordinates of the receiver. In general, M™* is a function of four independent variables, 

zy’ and x5". For laterally homogeneous medium considered in this paper, however, the 

number of independent variables of A/™* reduces from four to two. Indeed, in the absence 

of lateral heterogeneity the traveltime T of a pure mode on a horizontal surface depends 

only on the distance + between the source and the receiver and the azimuth a of the 

source-receiver line with respect to the x1-axis: 

w= (ey — af)? + (a) — 25), (A.2) 
TS 

a =tan7! [23] . (A.3) 
xi — xf 

If the traveltime T is expressed as a function of 2 and a, the elements of the matrix 

M™* become 

OT _ OT Ox Ox OT Ox 2T 0a Oa OT Aa 

Oxidx Ox? Ax Ox" Ox Ox§Ox, Oa? Ox* Ox Oa OxFOz"’ 
  (A.4) 

OT OT dx dv OT Hx OT Oa On OT Aa 7 2 ZEEE EO EO SE AD5 
OxfOxt Ox? xf Ox, Ox Ox§{Ox, ~— Oa? Ax§ Ox}, Oa Oxf Ox},’ (A.5)
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2 2 
oT = OT (A.6) 

Ox5Ox5 OxjOxh 

OT _ &T Ox Ox OT Ox OT Oa 0a OT a (A.7) 

Or§0z, Ox? Or§ Ox, Ox Ox§0x5, Oa? Ox§ Ox - Oa Ox$Oz%, 

The derivatives of x and a with respect to the source and receiver coordinates can be 

obtained from equations (A.2) and (A.3): 

s Ox zi — gt Ox a —2 
        

        

        

  

  

  

  

  

Ox$ eg! Ox? og (= 1,2), (A.8) 

Oa xh — £5 Oa x{-—2} 
= = A.9 

Ox} zr ? Os ge’ (A.9) 

Own £5 -— 25 Oa xi —a2f _ = A.10 
Ox! xz ”° Ozh ge ( ) 

Pr _ -(e- af)? = 2 Te All 
Oxf Or} x , (A-11) 

Px _ (xj ~ 2})(@h — 75) = A.12 
Ox§ Ox} x3 , ( ) 

Px _ ~(a} af) = A.13 
Ox§ 0x5 x3 , ( ) 

Oa _ ~2(x} — x) (7) — 25) 
Oxidzr, x4 , (A-14) 

Pa _ (x — rf)? ~ (2) — 23)? = 15 
Ox Ox}, x4 > (A.15) 

Pa _ Aa} — z})(xh — 75) = . 16 
Ox§ 0x5 x4 (A-16) 

Substituting equations (A.8)—(A.16) into equations (A.4)-(A.7) yields 

PT PT (at —af) OP (ah— a)? PT (eh—2§)?_ AT Ae} — a4) (a5 — 23) 
      

Ox% Ox" Ox? x2 Ox x Oa? x4 Oa x4 , 
(A.17)
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PT _ PL ~(a} ~ vf)(o} ~ 03) | OT (w} — a4) (a) ~ 8) (A.18) 
Ox{Or}, Ox? x? Or x3 , 

PT (xt — x})(w5 — 2§)? | OT (at — xf)? — (a — 25)? 
+ oq? 7! + Bq a »  (A-19) 

PT PP (ah xh)? OT (af ag? _ PL (ef - af)? OT Aah ~aH)(e2} — 29) 
Ox$ Ox, Ox? x Oz. x3 Oa? a Oa x , 

(A.20) 

The determinant of the matrix 4/™™ is then found as 

. &TOT1 PT eT 1 aT\? 1 letlgmix — 2 SA EE GS |) 21 
detM dx? Or a Ox? Oa2 w (Sn) x4 (A.21) 

Finally, using equation (A.21), the relative geometrical spreading (2.2) can be expressed 

through the traveltime derivatives with respect to the offset x and azimuth a: 

-1/2 
2 27 92 2 

L(R, S) = L(x, a) = (cos $* cos ¢")'/? OT OT 1 OT PT 1 (2) 1 

Ox? Ox x Ox? Oa? x2 \da) x! 
(A.22) 
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Appendix B 

Traveltime derivatives from the nonhyperbolic 

moveout equation 

P-wave nonhyperbolic (long-spread) reflection traveltime can be described by the 

Tsvankin-Thomsen (1994) moveout equation: 

    

  

    

Aq(a) x4 2 2 2 4 ‘ =TS+A ‘ oo B.1 T (x, a) 0 + 2(a) x + 1+ A(qa) x? ’ ( ) 

where the moveout coefficients Ag, Aq, and A generally vary with the azimuth a. 

The derivatives of the traveltime with respect to the offset x are given by 

OT 1 2A4 x AA, x 
a 7p ET __ B.2 dx [et petrs (1+ Ax (B.2) 

and 9 

OT 1 oT aoe yo fe : B.3 mt 7 [)-(Ge) | (B3) 
6A, x DAA, x! 4A, A? xe 

r= = . B.4 Ia) = Aat Te (1+ Ary? * + An (B-4) 
Differentiating equation (B1) with respect to azimuth yields 

oT 1 Al, x4 AA’ x® 
— = — |Ahr? 44> B.5 
Oa = -2T | ae Ty Ag (14+ Ax?)? (B.5) 

and 

#r = or 1 Any? Sat _AaA’ ad i 
Oa? Oa 2T? |? 1+Azx? (14+Ax?)?| 9 2T 

| 6 TAl 6 1\2 4.8 AY 4 Aix - Ay A" x _ 2A’ Al, x 1 2A4(A')* x (B.6) 

1+Az? (1+Azx?)? (14+ Azx?)? 9 (1+ Ax?)3 

Here, Aj, A, A’, AS, A and A” are the first and second derivatives of the moveout 
coefficients with respect to a. For the model of a single orthorhombic layer, these derivatives 

can be found from the explicit expressions for Ag, Aq, and A given in the main text.
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Appendix C 

Traveltime derivatives for the 

geometrical-spreading correction 

In Appendix B the traveltime derivatives needed in the geometrical-spreading equa- 

tion 3.1 are expressed through the parameters Aj, Ay, and A of the Tsvankin-Thomsen 

(1994) moveout equation. Here, we showed that an accurate description of traveltimes 
in layered orthorhombic media can be achieved by using a simpler moveout approxima- 

tion (equation 3.4) based on the analogy with vertical transverse isotropy. Equation 3.4 

can be considered as a special case of the Tsvankin-Thomsen moveout equation with the 

parameters given by 

sin?(a—¢) — cos?(a — ¢) 
  

me aay (vB) on 

Al) = aE ay (C2) 

AO) = TEV utay (C3) 
where 

n(a@) = nD) sin?(a — 1) + n\?) cos (a — 1) - 7) sin? (a — $4) cos? (a — 1). (C.4) 

As discussed in the main text, the azimuth ¢ is equal to ¢ with uniform symmetry-plane 

orientation. 

Substituting equations (C-1)—(C-3) into equations (B-2)—-(B-4), we obtain the deriva- 

tives OT/Ox and OT / Ox? in terms of the parameters To, ¢, 41, viv, V2), n), ni), and 

n®). The geometrical spreading also depends on the first two traveltime derivatives with 

respect to the azimuth a, which are expressed in equations (B-5) and (B-6) through the 

corresponding derivatives of Ag, Aq, and A. Using equations (C-1)—(C-3) to differentiate 
Ag, Aq, and A with respect to a, we find (prime and double-prime denote the first- and 

second-order derivatives, respectively)
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Ay = by — ay sin 2(a — ¢), (C.5) 

AS = 2 (n° _ aay cos 2(a — @), (C.6) 

  

A= Sag agg lt (0) moo (By ao) 
~ 5[(W$R.)° + (Wa8e)” + ((v,)” - (HR) costa — 0) 

x — AD + 9?) + n) cos 2(a@ — 1)| sin 2(a — ¢1) 

+ (vie) — (ViRb)”) cos(e— 4) sin(a~ 0) 
x | — 4) cos?(a — $1) — 4n™ sin? (a — $1) (C.7) 

x 

+n) sin? 2(a — 61 ) \| ; (C.8) 

Ay = we (iy WE) ((vis)° - (vi)°) 

((vite)’ + (WiBR)°) cosa - 0) + ( (VAR) ~ (V~RL)") c084(0~ 6) 
= 4(n') +) + 1 + 4(q® — 7) cos 2(a — $1) — ®) cos 4(a — o)| 

vie)’ + (Vi@e)’ + (vibe) ~ (VéB)’) c08 210 — 4)]" 
x lin? ) — 9) cos 2(a — $1) + n°) cos 4(a — 1)| )+ 

+ (0h) (0h)?) [hy (ra) (Ha? (He) emt 0) 
x | — 1) + 1® +4 9 cos 2(a — o1)| sin 2(a — ¢) sin 2(a — ox) , (C.9)
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Al = “aay Cay" [ (Vite) + (Vibe) + ( (VaR) - (ViRL)”) c0s2(0- 6) 

x — 1) + n + ©) cos 2(a — 1)| sin 2(a — ¢}) 

+ ((vaR)’ = (WiR2)’) eos(a ~ 0) sin(a—¢) 
x [2 + 4n) cos?(a — 61) + 49 sin? (a — 61) — n® sin? 2(a — 01)| \ ; (C.10) 

Ar * a 0@) Cy" (visi) * - (viR2)") c082(0~ 4) 

4 (1+ 49) + ® +8 (n® — 1) cos 2(a — d1) — 57) cos 4(a — o1)| 

+2 ((vdB,)” + (18)*) [ix =n) 00:2 ~ 64) ~1® costa — 6) 
+4 ((vi ). -~ (vi2.)") | - 1) +n +7) cos 2(a — 1) (C.11) 

sin 2a sin 2(a — o)} , 

Substitution of equations (C-5)—(C-10) into equations (B-5) and (B-6) yields the derivatives 
OT /0a and 6T/dc? as explicit functions of the moveout parameters. 
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