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Abstract

Directionally-dependent attenuation may strongly influence body-wave amplitudes
and distort the results of the AVO (amplitude variation with offset) analysis. Follow-
ing the idea of Thomsen’s (1986) notation for velocity anisotropy, I introduce a set
of attenuation-anisotropy parameters for T1 (transversely isotropic) and orthorhombic
media, which have similar physical meaning to the corresponding velocity-anisotropy
parameters. Based on the concept of homogeneous wave propagation (i.e., the real and
imaginary parts of the wave vector are assumed to be parallel to one another), I analyze
plane-wave properties for TI and orthorhombic media and obtain linearized attenuation
coefficients for models with weak attenuation as well as weak velocity and attenuation
anisotropy. I then analyze measurements of the P-wave attenuation coefficient in a
transversely isotropic sample made of phenolic material using the anisotropic version of
the spectral-ratio method, which takes into account the difference between the group
and phase attenuation. Recovered attenuation-anisotropy parameters demonstrate that
attenuation anisotropy can be much stronger than velocity anisotropy.

To explore the physical reasons for attenuation anisotropy of finely layered media,
I apply Backus averaging to obtain the effective attenuation-anisotropy parameters for a
medium formed by an arbitrary number of anisotropic, attenuative constituents. Using
approximate solutions, I evaluate the contributions of various factors (related to both
heterogeneity and intrinsic anisotropy) to the effective attenuation anisotropy. Inter-
estingly, the effective attenuation for P- and SV-waves is anisotropic even for a medium
composed of isotropic layers with no attenuation contrast, provided there is a velocity
variation among the constituent layers. Contrasts in the intrinsic attenuation, however,
do not create attenuation anisotropy, unless they are accompanied by velocity contrasts.
Further analysis for models composed of azimuthally anisotropic constituents with mis-
aligned vertical symmetry planes suggests the possibility of different symmetries and
principal azimuthal directions of the effective velocity and attenuation.

Finally, I present an asymptotic study of 2D far-field radiation from seismic sources
for media with anisotropic velocity and attenuation functions and discuss the influence
of the inhomogeneity angle on the radiation patterns and the relationship between the
phase and group attenuation coefficients.




An approzimate answer to the right problem is worth a good deal more than an exact answer
to an approzimate problem.

(John Tukey)
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Chapter 1

Introduction

1.1 Motivation

Most existing publications on seismic anisotropy are devoted to the influence of angular
velocity variation on the traveltimes and amplitudes of seismic waves (e.g., Backus, 1962;
Thomsen, 1986; Alford, 1986; Alkhalifah and Tsvankin, 1995; Bakulin et al., 2000a,b,c;
Grechka and Tsvankin, 2002a,b; Wang, 2002; Upadhyay, 2004; Tsvankin, 2005; Crampin
and Peacock, 2005; Helbig and Thomsen, 2005). It is likely, however, that anisotropic
formations are also characterized by directionally dependent attenuation, which is possibly
related to the internal structure of the rock matrix or the presence of aligned fractures or
pores.

It has long been recognized that attenuation, a process that dissipates the energy of
elastic waves and alters their amplitude and frequency content, is prevalent in the earth.
Application of attenuation in seismic exploration, however, remains a challenging topic.
One important reason is the uncertainty associated with attenuation measurements (e.g.,
Schoenberg and Levin, 1974; Kibblewhite, 1989; Mateeva, 2003; King, 2005). As pointed
out by Leon Thomsen (cited from Lynn et al., 1999), while attenuation itself is difficult
to estimate, the azimuthal variation in attenuation might be more tractable. Indeed, the
directional dependence of attenuation has been measured in laboratory experiments (e.g.,
Johnston, 1981; Hosten et al., 1987; Tao and King, 1990; Best, 1994; Prasad and Nur, 2003)
and several field case studies (e.g., Liu et al., 1993; Hiramatsu, 1995; Lynn et al., 1999;
Vasconcelos and Jenner, 2005).

The physical mechanism of attenuation remains an active field of research (Biot, 1956,
1962; White, 1975; Dvorkin et al., 1995; King, 2005), and several mechanisms have been
proposed for attenuation anisotropy. For example, fluid flow in fractured and porous media
is usually considered the dominant mechanism of anisotropic dissipation (Mavko and Nur,
1979; Akbar et al., 1993; Parra, 1997; Brajanovski et al., 2005). MacBeth (1999) reviews
some intrinsic attenuation mechanisms, such as intracrack fluid flow, and attributes the
azimuthal variation of P-wave reflection amplitudes to anisotropic attenuation. Pointer
et al. (2000) discuss three different models of wave-induced fluid flow in cracked porous
media, which may result in anisotropic velocities and attenuation coefficients when the
cracks are aligned. A poroelastic model introduced by Chapman (2003) in his discussion of
frequency-dependent anisotropy can explain strong anisotropic attenuation in the seismic
frequency band. Using Chapman’s model, Maultzsch et al. (2003a) estimated the quality
factor @ (a commonly used parameter for attenuation measurement) as a function of phase
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to the corresponding velocity anisotropy (within the assumptions discussed below), and this
can be used to facilitate the description of attenuation anisotropy.

1.2 Assumptions

An important assumption of this work is a constant quality factor @ in the operational
frequency band. For frequency-dependent @), the velocity- and attenuation-anisotropy pa-
rameters also become functions of frequency.

For plane waves propagating in attenuative media, the orientations of the real and
imaginary parts of the wave vector generally differ from one another. This means that
the planes of constant phase and constant amplitude do not coincide (Borcherdt and Wen-
nerberg, 1985; Borcherdt et al., 1986; Krebes and Slawinski, 1991; Krebes and Le, 1994),
and the direction of wave propagation deviates from the direction of maximum attenua-
tion. However, when the wavefield is excited by a point source in a weakly attenuative
homogeneous medium, the angle between the real and imaginary parts of the wave vector
(the so-called inhomogeneity angle) is usually small, and the rate of attenuation is highest
close to the propagation direction (Ben-Menahem and Singh, 1981; Cerveny and Psencik,
2005). In Chapters 2-4, I consider homogeneous wave propagation in attenuative media,
which means that the real and the imaginary parts of the wave vector are parallel to each
other. Chapters 5 and 6, however, give a more general treatment of wave propagation that
takes the inhomogeneity angle into account.

Another important assumption in Chapters 2-3 is the alignment of the symmetry di-
rections of the velocity and attenuation anisotropy. For example, Chapter 2 discusses media
with VTI (transversely isotropic with a vertical symmetry axis) symmetry for both velocity
and attenuation. Chapter 5 shows, however, that the effective velocity and attenuation
functions for layered attenuative HTI (TI with a horizontal symmetry axis) media may
have different symmetry orientations. Analysis of seismic-source radiation in Chapter 6 is
valid for general attenuative anisotropic media with different symmetries for velocity and
attenuation.

Most analytic results in Chapters 2-6 are derived for models with weak attenuation as
well as weak anisotropy for both velocity and attenuation.

To make the assumptions clear, they are reiterated in appropriate places throughout
the thesis.

1.3 Thesis layout

In addition to the introduction and conclusions, the thesis consists of five chapters on
various aspects of attenuation anisotropy: attenuation analysis for T1 media, generalization
of the TI results for orthorhombic media, laboratory measurements of P-wave TI attenua-
tion, effective attenuation anisotropy of finely layered media, and far-field radiation in 2D
attenuative anisotropic media.

Chapter 2 gives a consistent analytic treatment of plane-wave propagation for attenua-
tive TI media (i.e., both velocity and attenuation have TI symmetry). Extending Thomsen’s
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Chapter 2

Plane-wave attenuation anisotropy for TI media

2.1 Summary

I develop a consistent analytic treatment of plane-wave properties for TI media with
attenuation anisotropy. The anisotropic quality factor can be described by matrix elements
Qi; defined as the ratios of the real and imaginary parts of the corresponding stiffness
coefficients. To characterize TI attenuation, I follow the idea of Thomsen’s notation for
velocity anisotropy and replace the components Q;; by two reference isotropic quantities
and three dimensionless anisotropic parameters €, d,, and 7,. The parameters ¢, and
7Y, quantify the difference between the horizontal and vertical attenuation coefficients for
P- and SH-waves (respectively), while J,, is defined through the second derivative of the
P-wave attenuation coefficient in the symmetry direction. Although the definitions of €,
0, and 7y, are similar to those for the corresponding Thomsen parameters, significantly,
the expression for ., reflects the coupling between the attenuation and velocity anisotropy.

Assuming weak attenuation as well as weak velocity and attenuation anisotropy helps
to obtain simple attenuation coefficients linearized in Thomsen-style parameters. The nor-
malized attenuation coefficients for both P- and SV-waves have the same form as do the
corresponding approximate phase-velocity functions, but both &, and the effective SV-wave
attenuation-anisotropy parameter o, depend on the velocity-anisotropy parameters in addi-
tion to the elements @Q;;. The linearized approximations not only provide valuable analytic
insight, they also remain accurate for the practical and important range of small and mod-
erate anisotropy parameters, in particular for near-vertical and near-horizontal propagation
directions.

2.2 Introduction

This chapter is devoted to plane-wave signatures in TI media with both isotropic
and TI attenuation. Although waves propagating through attenuative media are generally
inhomogeneous (i.e., the orientations of the real and the imaginary parts of the wave vector
differ from one another), the inhomogeneity angle is usually small for the wavefield excited
by a point source in a weakly attenuative homogeneous medium. Here, I show that as long
as the inhomogeneity angle is of the same order as the velocity-anisotropy and attenuation-
anisotropy parameters, the misalignment of the real and imaginary parts of the wave vector
has negligible influence on the attenuation coefficient. Therefore, in most of the discussion
below the real and imaginary parts of the wave vector are taken to be parallel to one another,
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As follows from equation 2.1, the Q matrix inherits the structure of the stiffness matrix.
For the case of VTI media with VTI attenuation, the matrices c;; and cin have the same
(VTI) symmetry, and the quality-factor matrix has the form

[ Qu Q12 Qiz O 0 0
Q2 Quu Qi3 0 0 0
| @3 Qi3 Q33 O 0 0
Q=1"% 0 0 @s 0o o |° (2.2)
0 0 0 0 Qs 0
| 0 0 0 0 0 Qss |
c11 — 2ce6

where Q12 = Q1 .
c11 — 2c66 @11/ Q66
When both the real and imaginary parts of the stiffness matrix have isotropic structure,

the quality factor is described by only two independent parameters, Q33 and Qss:

[ Q33 Q13 Qi3 0 0
Qi3 Q33 Qi3 0 0
Qi Qi3 Q33 0 O

[aclil en i e B an)

= , 2.3
Q 0 0 0 Qs O (23)
0 0 0 0 Qs O
0 0 0 0 0 Qs
-2
where the component Q13 = Q12 is given as Q13 = Q33 €33 €85 The P-wave

ca3 — 2c55 Q33/Qs5
attenuation is controlled by @33, while Q55 is responsible for the SV-wave attenuation (see

below).

According to the attenuation measurements in sandstones by (Gautam et al., 2003),
the Q factor for P-waves may be either larger or smaller than that for SV-waves, depending
on the mobility of fluids in the rock. The “crossover” frequency, for which Q33 = Q@ss,
corresponds to the special case when all components of the Q matrix are identical:

Qij = Q. (2.4)

As discussed below, if the quality factor is given by equation 2.4, the attenuation for both P-
and S-waves is isotropic (independent of direction), even for arbitrarily anisotropic media.

Anisotropic attenuation can be described by calculating the so-called eigenstiffnesses
from the ¢;; matrix and applying relaxation functions to the eigenstiffnesses to obtain the
complex stiffness coefficients ¢;; and the Q matrix (Helbig, 1994). For TI media, those
operations are described in detail by Carcione (2001, Chapter 4). Here, I do not consider
any specific attenuation mechanism and focus on examining wave propagation for general
TT structure of the Q matrix.

The discussion below is based on the assumption of a frequency-independent @), which
is often valid in the seismic frequency band. In a more rigorous description of attenua-
tion, the complex stiffness components and the quality factor vary with frequency, as does
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2.4 SH-wave attenuation

2.4.1 Isotropic attenuation

For waves propagating in the [z, z3]-plane of VTI media, the Christoffel equation 2.6
splits into an equation for the SH-wave polarized in the zo-direction and two coupled equa-
tions for the in-plane polarized P- and SV-waves. The equation for the wave vector of the
SH-wave has the same form as that in non-attenuative media but the stiffness coefficients
and wavenumbers are complex quantities:

eck? + Essk? — pw? = 0. (2.8)

As shown in Appendix A, for homogeneous wave propagation in a medium with isotropic
Q (Q = Qs5 = Qes), the imaginary part of equation 2.8 reduces to
k2 _ kI 2
Ky = =)™ o —o. (2.9)
Q
Note that the assumption of isotropic @ for SH-waves does not involve the condition Q)33 =
Qss5. Solving for k1, I find [also see equation 2.122 in Carcione (2001))

K =k (\/1+Q2—Q) . (2.10)

It is convenient to introduce the normalized attenuation coefficient A, which defines
the rate of amplitude decay per wavelength:
kI
= 2.11
k (2.11)
For brevity, the word normalized is omitted in most of the text below. Equation 2.10 shows
that the coefficient A for SH-waves in media with isotropic @ is independent of the phase

1
angle. When attenuation is weak (i.e., — < 1), equation 2.10 yields

Q

1
Asg = E . (2.12)
The weak-attenuation approximation(equation 2.12) is close to the exact attenuation co-
efficient A for the practically important range @ > 10 and breaks down only for strongly
attenuative media (Figure 2.1).
The real part of the Christoffel equation 2.8 can be used to obtain the phase velocity
of the SH-wave (Appendix A):

Vsi(0) = &, VERSY(6) (2.13)

where Vf}{aSt is the SH-wave phase velocity in the reference non-attenuative medium (equa-
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out this chapter the symmetry axes of the attenuation coefficient and velocity function are
taken to be parallel to one another, which results in the general VTI form of the Q matrix
in equation 2.2.

The Christoffel equation 2.8 yields the following relationship between the real and the
imaginary SH-wavenumbers (Appendix A):

k2 — (K1)? —2Qss ak k! =0, (2.15)
where
.2 2
o= (1+2fgsm 6 + cos” 6 ’ (2.16)
(1+2) =55 5in2 6 + cos? 6
Qes

and v = (cgs — ¢55)/(2¢55) is Thomsen’s velocity-anisotropy parameter for SH-waves. Equa-
tion 2.16 is equivalent to equation 35 in Krebes and Le (1994). Solving equation 2.15 for
k!, I find the SH-wave attenuation coefficient,

kI
Asg = ? =41+ (Q55 01)2 — Q55 . (2.17)
In the weak-attenuation limit, equation 2.17 reduces to

1
2Qs5

Equation 2.18 shows that Q55 is multiplied with the directionally-dependent parameter
a to form the effective quality factor for the SH-wave, Qggf = Q55 . At vertical incidence

Asy = (2.18)

(@ =0°), «a =1 and Asg = ——. In the horizontal direction (§ = 90°), oo = Qes and
) 2Qss Qss
Asy = ——. For intermediate propagation directions, « reflects the coupling between the

2Qs6
SH-wave velocity-anisotropy parameter v and the ratio of the elements Q55 and Qgg. The

contribution of the ratio Qs5/Qg6 in equation 2.16 is used below to define an attenuation-
anisotropy parameter analogous to Thomsen’s parameter ~y.

2.5 P- and SV-wave attenuation

Because of the coupling between P- and SV-waves, the equations governing their ve-
locity and attenuation are more complicated than those for SH-waves. While the complex
wavenumbers for P- and SV-waves can be evaluated numerically from equations B.3 and B.4
in Appendix B, the expression for the imaginary wavenumber k! is cumbersome. Therefore,
here I employ approximate solutions to study the dependence of the attenuation coefficients
of P- and SV-waves on the medium parameters.

If both the attenuation anisotropy and attenuation itself are weak, the coefficient A
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Slowness (s/km) Ay Attenuation coeffcient A

180 —FP 180

Figure 2.2. Slownesses (left) and attenuation coefficients A (right) of P-waves (solid curves)
and SV-waves (dashed) as functions of the phase angle with the symmetry axis (numbers on
the perimeter). The coefficients A were computed from the approximation (equation 2.19)
and substituted into equation B.3 to obtain the slownesses. The approximations are almost
indistinguishable from the exact solutions (not shown). The model parameters are Vpo=3
km/s, Vso=1.5 km/s, e = 6 = 0.2, Q11 = 30, Q33 = 20, Q13 = 15, and Q355 = 15. (The @
components yield the attenuation-anisotropy parameters €, = —0.33 and 6, = 0.98 defined
in the section “Thomsen-style notation for VTI attenuation.”)

in the presence of moderate attenuation.

The approximate solution (equation 2.19) for A remains accurate even for models with
much more significant attenuation and uncommonly large values of the velocity-anisotropy
parameters € and § (Figure 2.3). Note that in both the vertical (¢ = 0°) and horizontal
(0 = 90°) directions the attenuation is independent of € or 6. However, the shape of the
attenuation curves at intermediate angles varies with both € and J, especially when the
velocity anisotropy is strong.

2.6 Thomsen-style notation for VTI attenuation

The description of seismic signatures in the presence of velocity anisotropy can be
substantially simplified by using Thomsen (1986) notation. The advantages of Thomsen
parameters in the analysis of seismic velocities and amplitudes for TI media are discussed
in detail by Tsvankin (2001).

Here, I extend the principle of Thomsen notation to the directionally-dependent atten-
uation coefficient. The Q matrix for models with VTT attenuation contains five independent
elements, which can be replaced by two reference (isotropic) parameters and three dimen-
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sionless coefficients (¢,, d,, and 7, ) responsible for the attenuation anisotropy. Since I op-
erate with the attenuation coefficient, which is inversely proportional to the quality factor,

Qij
close similarity with Thomsen notation for velocity anisotropy and make our parameteri-
zation suitable for reflection data, I choose the P- and SV-wave attenuation coefficients in

the symmetry (vertical) direction as the reference values:

Apo = Q33 (\/ 1+1/Q% — 1) ~ 2Q133 , (2.22)
Aso = Qss (\/ 1+1/Q% - 1) ~ 2555 . (2.23)

The coefficient Agg is also responsible for the SH-wave attenuation in the symmetry
(vertical) direction and the SV-wave attenuation in the isotropy plane. Note that the
linearization of the square-roots in the above definitions (equations 2.22 and 2.23) produces
approximate vertical attenuation coefficients accurate to first order in 1/Q;;.

. To maintain

the Thomsen-style parameters are convenient to define through quantities

2.6.1 SH-wave parameter 7,

The attenuation-anisotropy parameter vy, for SH-waves can be defined as the fractional
difference between the attenuation coefficients in the horizontal and vertical directions (see
equation 2.18):

1/Qe6 —1/Q@s5 _ Qs5 — Qs
Ta 1/Qss Qes

This definition is analogous to that of the Thomsen parameter v, which is close to the
fractional difference between the horizontal and vertical velocities of the SH-wave. The
parameter 7, controls the magnitude of the SH-wave attenuation anisotropy; for isotropic
Q, Yo = 0.

Substituting v, into equation 2.16 for the parameter « yields

(2.24)

o (1+27)sin%6 + cos? 6
(14 29)(1+7,)sin?0 + cos2 6

(2.25)

When both v and v,, are small (|| < 1, th' < 1), a can be linearized in these parameters:
a=1-1, sin? . (2.26)

The attenuation coefficient from equation 2.18 then becomes independent of +:
Asg = Aso (1 +7,sin®0), (2.27)

where Agg is given in equation 2.23. Equation 2.27 has the same form as that of the SH-
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the stiffnesses ¢;; with 1/Q;;:

5 (1/Q13 +1/Qs5)? — (1/Q33 — 1/Qs5)?
< 2/Q33(1/Q33 — 1/Qs5) ’

(2.29)

The parameter SQ from equation 2.29, however, is not physically meaningful. For example,
when the attenuation is isotropic and Q33 = @s5 (Gautam et al., 2003), the anisotropic
parameters should vanish. Instead, ¢, for isotropic Q goes to infinity.

As discussed by Tsvankin (2001, see equation 1.49), the parameter § proved to be
extremely useful in describing signatures of reflected P-waves in VTI media because it
determines the second derivative of the P-wave phase-velocity function in the vertical (sym-
metry) direction (the first derivative goes to zero). Therefore, the idea of Thomsen notation
can be preserved by defining §, through the second derivative of the P-wave attenuation
coefficient Ap at 6 = 0:

_ 1 d®Ap
@ 2A4Apg db? 0—0 ’

(2.30)

In other words, the parameter d,, controls the curvature of the attenuation function A p(6)
in the vertical direction.

Assuming that both the attenuation and attenuation anisotropy are weak, I find the
following explicit expression for J, (Appendix C):

Q33— Q55 (c13+e33)? Q33— Qs
C55 + 2
5 Qss (c33 — ¢55) Q13
@ cs3(c33 — cs5)

c13(c13 + ¢s5)

(2.31)

The role of 4, in describing the P-wave attenuation anisotropy is similar to that of 4 in the
P-wave phase-velocity equation (Thomsen, 1986; Tsvankin, 2001). Since the first derivative
of Ap for 6§ = 0 is equal to zero, d,, is responsible for the angular variation of the P-wave
attenuation coefficient near the vertical direction.

In the special case of a purely isotropic (i.e., angle-independent) velocity function,
d, reduces to a weighted summation of the fractional differences (Q33 — @s5)/Qs5 and

(@33 — Q13)/Qn3:

P Q33 — Q55 4p n Q33 — Q13 2\
N Qss A+ 2u Qs A+2u’

where A and p are the Lamé parameters.

(2.32)

Unless attenuation is uncommonly strong, the phase velocities of P- and SV-waves
are close to those in the reference non-attenuative medium and do not depend on the
attenuation parameters €, and J,. Equation 2.31 for the parameter §,, however, indicates
that the attenuation anisotropy is influenced by the velocity anisotropy. If I approximate
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In combination with the Thomsen parameters for the velocity function, the parameters
Apo, Aso, €5, 0, and 7, fully characterize the attenuation of P-, SV- and SH-waves.

2.7 Approximate attenuation coefficients for P- and SV-waves

The exact equations for the P- and SV-wave attenuation coefficients are too cum-
bersome to be represented as explicit functions of the anisotropy-attenuation parameters
introduced above. It is possible, however, to obtain relatively simple approximations for
the coefficient A by assuming simultaneously:

1) weak attenuation (i <1];
Qij
2) weak attenuation anisotropy (|€Q| < 1, |5Q| < 1); and
3) weak velocity anisotropy (|e| < 1, |§] < 1).
Note that weak attenuation and weak attenuation anisotropy were already assumed in
deriving the P- and SV-wave attenuation coefficients in equations 2.19-2.21.

2.7.1 Approximate P-wave attenuation

The approximate P-wave attenuation coefficient can be obtained from equation 2.19 by
expressing the stiffnesses ¢;; through the Thomsen parameters € and 6, and the elements Q;;
through the attenuation parameters €, and d,, introduced above. Dropping terms quadratic
in €, 4, €,, and 4, yields the following linearized expression:

Ap = Apo (1 + 6, sin® § cos® § + €, sin* §) , (2.36)

where Apg is defined in equation 2.22. The angle dependence of the approximate Ap
is governed by just the attenuation-anisotropy parameters €, and d,, although 4, itself
contains a contribution of the velocity anisotropy. The parameter §, is responsible for the
attenuation coefficient in near-vertical directions, while €, controls .Ap near the horizontal
plane. If both €, and J, go to zero, the approximate coefficient Ap becomes isotropic.

It is noteworthy that equation 2.36 has the same form as the well-known Thomsen’s
(1986) weak-anisotropy approximation for P-wave phase velocity:

Vp = Vpo (1 + dsin 6 cos? § + esin? 6) . (2.37)
To obtain attenuation-coefficient equation 2.36 from phase-velocity equation 2.37, one needs
to make the following substitutions: Vpg — Apo, € — €,, and § — 4.
2.7.2 Approximate SV-wave attenuation
The SV-wave attenuation coefficient is also obtained by linearizing equation 2.19:
2 €, — 0
1+ (—U— + u) sin? 6 cos? 6

9q 99,

Asy = A
sV 50 1 + 20 sin2 @ cos2 8

, (2.38)
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€, = 65 = 0, corresponds to the special case of identical ¢} components for P-SV waves,

Q11 = Q33 = Q13 = Q55 (2.45)

which yields isotropic normalized attenuation coefficients for P- and SV-waves in VTI media
with arbitrary velocity anisotropy. (As discussed above, the normalized SH-wave attenua-
tion coefficient is isotropic when Qss = Qss, i.e., 7, = 0). The second condition, however,
is limited to the approximate attenuation coefficients, unless all anisotropy parameters for
P- and SV-waves vanish (e = § = ¢, = J, = 0). Hence, when referring to “isotropic”
attenuation in TI media, one ought to specify the type of plane wave.

The above discussion pertains to the normalized attenuation coefficient .A, which char-
acterizes the rate of amplitude decay per wavelength. Alternatively, attenuation can be
described by the imaginary wavenumber (i.e., the attenuation coefficient without normaliza-
tion) denoted here as k. Since the wavelength in anisotropic media changes with direction,
a model with a purely isotropic coefficient A generally has an angle-dependent wavenumber
k!. The conditions that make k7 for all three modes isotropic are derived in Appendix D.

2.7.4 Numerical examples

The approximate P-wave attenuation coefficient (equation 2.36) does not contain the
vertical shear-wave attenuation coefficient Agy. Although the linearized approximation
becomes inaccurate with increasing magnitude of the anisotropy parameters, Ap remains
independent of Agg even for models with strong attenuation and pronounced velocity and
attenuation anisotropy. As demonstrated in Figure 2.6a, the variation of the coefficient
Ap with Agy becomes noticeable only for extremely high attenuation (i.e., uncommonly
small values of Qs5). Therefore, P-wave attenuation in VTI media is mainly governed by
a reduced set of parameters: Apo, €5, and J,. Note that a similar result is valid for the
P-wave phase-velocity function, which is practically independent of the shear-wave vertical
velocity Vso (Tsvankin and Thomsen, 1994; Tsvankin, 2001).

In contrast, SV-wave attenuation is strongly influenced by the vertical P-wave atten-
uation coefficient Apg through the parameter o, (Figure 2.6b). Since o, for this model
is negative (for values of Q33 equal to 15, 35, and 300, the parameter o, is -4.84, -2.93,
and -1.66, respectively), further reduction in Q33 results in negative SV-wave attenuation
coefficients, which should be considered unphysical.

The accuracy of the approximate solutions (equations 2.36, 2.38, and 2.41) is illustrated
by the numerical tests in Figures 2.7-2.11. The P-wave attenuation coefficient in Figure 2.7
has an extremum (a maximum) at an angle slightly smaller than 45° because €, and §,, have
opposite signs. If the signs of €, and J, are the same, Ap varies monotonically between
the vertical and horizontal directions.

The curve of Agy has a concave shape because o, in equation 2.41 is negative and
large in absolute value. Both approximations (equations 2.38 and 2.41) predict a minimum
of the SV-wave attenuation coefficient at § = 45°. The extrema of the exact coefficients A
in Figure 2.7 (solid lines) for both P- and SV-waves, however, are somewhat shifted toward
the vertical axis relative to their approximate positions.
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Figure 2.7. Attenuation coefficients of P-waves (left) and SV-waves (right) as functions
of the phase angle. The solid curves are the exact values of 4 obtained by jointly solv-
ing equations B.3 and B.4; the dash-dotted curves are the approximate coefficients from
equations 2.36 and 2.41; the dashed curve on the right plot is the approximate SV-wave
coefficient from equation 2.38. The model parameters are the same as in Figure 2.6, except
for Q33 = 35 and Q55 = 30.

The linearized expressions for the attenuation coefficients give satisfactory results for
near-vertical propagation directions with angles 8 up to about 30°. The error becomes no-
ticeable for intermediate angles 30° < § < 75° and then decreases again near the horizontal
plane. Note that the velocity (see Figure 2.8) and attenuation anisotropy for the model
from Figure 2.7 cannot be considered weak, and the values of ¢ = 0.75 and o, = —2.93 are
particularly large. Since equation 2.38 does not assume that the parameter o and the term
(2—0 + CQ—gg—(SQ—> = (20+0,) are small in absolute value, it provides a better approximation
for %he SV—v?a,ve attenuation coefficient than does equation 2.41.

For models with smaller magnitudes of the anisotropy parameters (Figure 2.9), equa-
tions 2.36 and 2.41 become sufficiently accurate for the attenuation coefficients over the full
range of phase angles. The numerical tests show that the error of the approximate solu-
tions (equations 2.36, 2.38, and 2.41) is controlled primarily by the strength of the velocity
anisotropy, even if the magnitude of the attenuation anisotropy is much higher.

Figure 2.10 displays the attenuation coefficients for a medium with ¢, = §, = 0.
The approximate P-wave attenuation computed from equation 2.36 in this case is isotropic.
The exact coefficient Ap, however, slightly deviates from a circle, which indicates non-
negligible influence of quadratic and higher-order terms in the parameters €, and §,,. Also,
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Figure 2.10. Attenuation coefficients of P-waves (left) and SV-waves (right) for e = 0.4,
6 = 0.15, and ¢, = 6, = 0. The solid curves are the exact values of A obtained by jointly
solving equations B.3 and B.4; the dash-dotted curves are the approximate coefficients from
equations 2.36 and 2.41. The other model parameters are the same as those in Figure 2.9.

the attenuation coefficient of SV-waves varies with angle because of the contribution of the
velocity anisotropy (i.e., of the term involving o) in equation 2.41. As discussed above, if
the condition €, = d, = 0 is supplemented by g, = 1, all components Q;; are identical,
and both P- and SV-wave attenuation coefficients are independent of direction no matter
how strong the velocity anisotropy is.

If e, and J, satisfy condition 2.44, which results in o, = 0 (Figure 2.11), the exact
SV-wave attenuation coefficient is almost constant, although some deviations from a circle
are visible. The curve of the P-wave coefficient Ap looks close to an ellipse, but elliptical
attenuation anisotropy for P-waves requires that €, = 4.

2.8 Summary and conclusions

The main goal of this chapter is to build a practical, analytic framework for describing
attenuation-related amplitude distortions in transversely isotropic (TI) media. Although
the symmetry axis was taken to be vertical, all results can be applied for TI media with
an arbitrary axis orientation. Under the assumption of weak attenuation, I restricted the
discussion to homogeneous wave propagation by taking the real and the imaginary parts of
the wave vector to be parallel to one another. For layered attenuative models, however, the
assumption of homogeneity may cause errors in the estimation of attenuation coeflicients.

When attenuation is directionally dependent, the quality factor @ is a matrix with each
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Similar to the Thomsen parameter § for velocity anisotropy, the parameter 4, is designed
to describe near-vertical variations in P-wave attenuation. I defined 6, as the normalized
second derivative of the P-wave attenuation coefficient at vertical incidence. In contrast to
€, and 7,, the parameter J, depends on é and, therefore, reflects the coupling between
the attenuation and velocity anisotropy. If the frequency dependence of the quality factor
and phase velocity for seismic bandwidth cannot be ignored, the attenuation-anisotropy
parameters also become functions of frequency. This, however, does not formally change
the definitions of €., 4., and 7.

While the attenuation coefficient of SH-waves can be expressed in a straightforward
way through the parameter v,, exact equations for the attenuation anisotropy of P- and
SV-waves are much more involved. The Thomsen-style parameters, however, can be used to
obtain the linearized attenuation coefficients under the assumptions of weak attenuation and
weak velocity and attenuation anisotropy. The approximate P-wave attenuation coefficient
has the same form as does the linearized phase-velocity function, with the vertical velocity
Vpo replaced by Apo, € by €,, and 6 by d,. Although the approximate solution for the
attenuation coefficient for SV-waves involves contributions of both attenuation and velocity
parameters, it has the same angle dependence as does its phase-velocity counterpart.

Numerical examples demonstrate that the approximate solutions adequately reproduce
the character of attenuation anisotropy and are sufficiently accurate for moderately aniso-
tropic (in terms of both velocity and attenuation) TI models. It should be emphasized that
the exact P-wave attenuation coefficient in strongly anisotropic media remains a function of
just three parameters — Apo, €,, and §,. Computation of the exact attenuation coefficients
also confirms that the isotropic Q matrix in TI media does not necessarily yield isotropic
(i.e., independent of direction) attenuation of P- and SV-waves because of the influence of
the velocity anisotropy.
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Chapter 3

Plane-wave attenuation anisotropy for
orthorhombic media

3.1 Summary

Orthorhombic velocity and attenuation models are needed in the interpretation of the
azimuthal variation of seismic signatures recorded over fractured reservoirs. As an extension
of the discussion of attenuative TI media in Chapter 2, I develop an analytic framework for
describing the attenuation coefficients in orthorhombic media with orthorhombic attenua-
tion having identical symmetry of both the real and imaginary parts of the stiffness tensor,
under the assumption of homogeneous wave propagation.

The analogous form of the Christoffel equation in the symmetry planes of orthorhombic
and VTI media helps to obtain the symmetry-plane attenuation coefficients by adapting
the existing VTI equations. To take full advantage of this equivalence with transverse
isotropy, I introduce a parameter set similar to the VTT attenuation-anisotropy parameters
€0, 0, and 7,. This notation, based on the same principle as Tsvankin’s velocity-anisotropy
parameters for orthorhombic media, leads to simple linearized equations for the symmetry-
plane attenuation coefficients of all three modes (P, S1, and S»).

The attenuation-anisotropy parameters also make it possible to simplify the P-wave
attenuation coefficient Ap outside the symmetry planes under the assumption of small at-
tenuation and weak velocity and attenuation anisotropy. The approximate A p has the same
form as that of the linearized phase-velocity function, with Tsvankin’s velocity parameters
e(12) and §(1:23) replaced by the attenuation parameters 621*2) and 58’2’3)‘ The exact atten-
uation coefficient Ap, however, also depends on the velocity-anisotropy parameters, while
the body-wave velocities are almost uninfluenced by the presence of attenuation.

The reduction in the number of parameters responsible for the P-wave attenuation
and the simple approximation for the coefficient Ap provide a basis for inverting P-wave
attenuation measurements from orthorhombic media. The attenuation processing has to
be preceded by anisotropic velocity analysis that, in the absence of pronounced velocity
dispersion, can be performed using existing algorithms for nonattenuative media.

3.2 Introduction

Effective velocity models of fractured reservoirs often have orthorhombic or an even
lower symmetry (Schoenberg and Helbig, 1997; Bakulin et al., 2000b). It is likely that polar
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[59]

Figure 3.1. Sketch of the phase-velocity surfaces in orthorhombic media (after Tsvankin,
2005). ai; = \/c;j/p are the normalized stiffness coefficients. Tsvankin’s (1997) velocity-
anisotropy parameters, €12, §(123) and 4(12) are defined in the symmetry planes of the
model, which coincide with the coordinate planes.

coincides with one of the three symmetry planes.

Substituting a plane wave (equation 2.5) into the wave equation yields the following
Christoffel equation:

1k + k3 + Gssk3 — pw?  (Gro + Cos)kaky (¢13 + s5) k1 ks
(C12 + Cog) k1 k2 Cooh] + Cook3 + Caakd — pw®  (Co3 + Caa)koks
(€13 + &ss)k1ks (Cos + Caa)koks Esski + Caaks + Ga3k3 — pw?
U,
U, | =0, (3.1)
Us

where ¢;; = ¢;; + ic{j are the complex stiffness coefficients. Following Carcione (2001), the

elements of the quality-factor matrix are defined as the ratio of the real and imaginary parts
of the corresponding stiffness coefficients (equation 2.1).

Assuming homogeneous wave propagation (k || k~I ), the wave vector can be expressed
through the unit vector n in the slowness direction: k = nk. Then, the Christoffel equa-
tion 3.1 becomes

[éij - pVQ(Sik] Up =0, (3.2)
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the SH-wave takes the form
(666 sin? @ + é44 cos® 9) K% — pw2 =0. (3.5)

By analogy with attenuative VTI media, the normalized attenuation coefficient of SH-waves
in the [z, z3]-plane can be obtained from equation 3.5 as

AD = {14 (Qua®)? - Qa?, (3.6)

where the superscript “(2)” stands for the z9-axis orthogonal to the propagation plane (the
same convention as in Tsvankin, 1997), and

1+ 2y®)sin? 29
Q@ = (14 2v'%))sin” 6 + cos

1+ 27(2))% sin® 6 + cos® 6
Qe

For P- and SV-waves in the regime of homogeneous wave propagation, equation 3.4
reduces to

(611 sin? @ + &5 cos? 0) ];’2~— pw? (€13 + €55) sinf cos k2 12'1 _0
(é13 + Cs5) sin 0 cos 0 k2 (G55 sin? 0 + ¢33 cos? 0) k2 — pw? Us |
(3.7)

The wavenumber obtained from equation 3.7 is described by the same expression as that
for nonattenuative VTI media (e.g., Tsvankin, 2005):

k= wy/20{(¢11 + ) sin? 0 + (&33 + Es5) cos? 0 (3.8)

-1/2
+ \/[(511 - 555) SiIl2 0 — (533 — 555) cos? 9]2 +4 (513 + 555)2 sin2 0 COS2 9} .

The normalized attenuation coefficients Ag?s*v were derived from the complex part of equa-

tion 3.9. For example, the P-wave coefficients Ag) in the vertical and horizontal directions
are given by (see also equations 2.22 and 2.23)

AP (6 = 0°) = Qug (\/1+1/Q§3 - 1) ~ 20 (3.9)
AR (0 =90°) = Qu <\/1+1/Q%1 —1) ~ -2% (3.10)

The SV-wave attenuation coefficient in both the vertical and horizontal directions is

1
AZ(0 = 0°) = A% (6 = 90°) = Qss (\/1 Qe - 1) S SNCEt)
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between the stiffnesses c44 and cs5. According to equations 3.9 and 3.11, the approximate
(accurate to the second order in 1/Q) coefficients App and Agg are given by

1
Apo = , 3.14
Fo 2Qs33 (3.14)
1
A = . 3.15
S0 50 (3.15)

To characterize the attenuation of waves propagating in the [z, z3]-plane, I define
three attenuation-anisotropy parameters analogous to the Thomsen-style parameters €,
dg» and v, introduced for VTT media with VTT attenuation (Chapter 2). The parameters
eg) and 'yg) (the superscript “(2)” stands for the zo-axis perpendicular to the [z, z3]-plane)
determine the fractional difference between the normalized attenuation coefficients in the
z1- and z3-directions for the P- and SH-waves, respectively. Another parameter, 622), is
expressed through the second derivative of the P-wave attenuation coefficient in the vertical
direction and, therefore, governs the P-wave attenuation for near-vertical propagation in
the [z1, z3]-plane.

@ - @i—Qu
€ = — 3.16
a o (3.16)
(2)
= i
2Apy df oo
- c13 + c33)? -
Q33 Q55655( 13 + €33) +2Q33 6213013((:13 + ess)
B Qss (c33 — cs55) Q13
= (3.17)
c33(ca3 — cs5)
~ 49805 o) Q= Qus g 9500 90y (3.18)
Q55 Q13
@ _ Q14 — Qes 3.19
Ta Qes (3.19)
where equation 3.18 for Jg) has been simplified by assuming that the ratio ¢(® = 2—55-
33

and the absolute value of Tsvankin’s velocity-anisotropy parameter §(? are small. Since
the Christoffel equation in the [z, z3]-plane has the same form as that for VTI media,
equations 3.16-3.19 are identical to the definitions of the corresponding VTI parameters. In
contrast to VT1 models, however, the parameters of orthorhombic media with the subscripts
“55" and “44” generally differ, and cannot be interchanged in equations 3.17-3.19.

Using the substitutions 1 — 2 and 5 — 4 in the subscripts, I further adapt the defini-
tions of attenuation anisotropy parameters for VTT media to introduce three attenuation-
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the vertical (x3) direction, is described in the next section.

3.6 Approximate attenuation coefficients in the symmetry planes

The equivalence between plane-wave propagation in the symmetry planes of orthorhom-
bic media and in VTI media means that the symmetry-plane attenuation coefficients of all
three modes can be obtained by adapting the VTT equations. While the exact attenuation
coefficients are rather complicated even for VTI models and do not provide insight into
the influence of various attenuation-anisotropy parameters, much simpler solutions can be
found under the following assumptions:

1. The magnitude of attenuation measured by the inverse Q;; values or the parameters .Apg
and Agg is small.

2. Attenuation anisotropy is weak, which implies that the absolute values of all attenuation-
anisotropy parameters introduced above are much smaller than unity.

3. Velocity anisotropy is also weak, so the absolute values of all Tsvankin’s (1997, 2005)
anisotropy parameters are much smaller than unity.

The approximate (linearized in the small parameters) SH-wave attenuation coefficient
in the [z, z3]-plane can be written as (compare to equation 2.27)

AL = Aso (1++P sin0), (3.26)
where

_ 1 1+ 'y(l)

Ago = (3.27)

= Aso
2Q44 1+ 7(2)

is the vertical attenuation coefficient for the S-wave polarized in the zo-direction. Equa-
tion 3.26 is obtained by replacing the parameter v, in the linearized VTI result (Chap-
ter 2) by ’y(g) and using the appropriate reference value Agg. Similarly, the corresponding
linearized coefﬁc1ent in the [z, z3]-plane has the form

AG) = Aso (1 +~D sin26). (3.28)

It should be emphasized that the term SH-wave refers to two different shear modes in
the vertical symmetry planes (Tsvankin, 1997, 2005). For example, if c44 > cs5, then the
fast shear wave S; represents an SH-wave in the [z, z3]-plane in which it is polarized in the
xo-direction. For propagation in the [z9,z3]-plane, however, the S;-wave becomes an SV
mode that has an in-plane polarization vector.

The difference between the attenuation coefficients of the vertically traveling split shear
waves can be quantified by the attenuation splitting parameter ’yés )

I’Y(l) _ (2)|
2
D

s) _ |Aso — Aso
@ | Aso

~ [y =@ (3.29)
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3.7.1 Influence of attenuation on phase velocity

As pointed out above, the attenuation coefficients depend not just on the quality-factor
elements @;; but also on the velocity-anisotropy parameters. In contrast, the presence of
attenuation has an almost negligible influence on the phase-velocity function. This result
remains valid for the symmetry planes of the orthorhombic model. Here, I demonstrate
that attenuation-related distortions of phase velocity are negligible outside the symmetry

planes as well.

1
In the limit of weak attenuation (<— < 1), the real part of the Christoffel equa-

Qij
tion (A-2) can be simplified by dropping terms quadratic in the inverse @ components. The
resulting equation (A-3) is identical to the Christoffel equation for the reference nonatten-

uative medium, both within and outside the symmetry planes.

To evaluate the contribution of the higher-order attenuation terms, I compute the
exact P-wave phase velocity for two orthorhombic models with strong attenuation. For the
first model, the attenuation is isotropic with a very low quality factor, Q33 = Q55 = 10
(Figure 3.2). Still, the maximum attenuation-related change in the phase velocity is limited

to 0.5%, which is equal to 2C§_§3

The second model has the same real part of the stiffness matrix, but this time accom-
panied by pronounced attenuation anisotropy (Figure 3.3). Although the deviation of the
phase-velocity function from that in the reference nonattenuative medium increases away
from the vertical, it remains insignificant (no more than 1%) for the whole range of polar
and azimuthal phase angles. Although this analysis does not take into account attenuation-
related velocity dispersion, it is usually small in the frequency band typical for reflection
seismology.

Hence, seismic processing for orthorhombic media with orthorhombic attenuation can
be divided into two steps. First, one can perform anisotropic velocity analysis and esti-
mation of Tsvankin’s parameters without taking attenuation into account (Grechka and
Tsvankin, 1999; Grechka et al., 1999; Bakulin et al., 2000b). Then the reconstructed aniso-
tropic velocity model can be used in the processing of amplitude measurements and inversion
for the attenuation-anisotropy parameters.

3.7.2 Approximate attenuation outside the symmetry planes

The linearized approximation for the P-wave attenuation coefficient is extended to
arbitrary propagation directions outside the symmetry planes in Appendix E:

Ap(6,6) = Apo [1 + 6,(9) sin® @ cos® 6 + €(0) sin? 6] | (3.34)
where 6, as before, is the phase angle with the vertical, ¢ is the azimuthal phase angle, and

5,(6) = 0Wsin? ¢+ 62 cos? ¢, (3.35
Q Q Q
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Figure 3.3. Influence of anisotropic attenuation on the exact P-wave phase velocity. The
solid curves are the phase velocities for the nonattenuative orthorhombic model from Fig-
ure 3.2. The dashed curves are computed for a model with the same velocity parameters and

strong orthorhombic attenuation: Q33 = Q55 = 10 (Apg = Aso = 0.05), eg) = eg) = 0.8,
(1) — 5(2) — §3) — _ 1) _ ~(2) _
5Q —5Q —(56(?)— 0.5, and ’y(g)—'yé =0.8.
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(Tsvankin, 1997, 2005). For weak attenuation anisotropy, 5223) = 59 — 26522), and equa-

tion 3.36 becomes €,(¢) = eg) cos ¢ + 5592) sin? ¢ cos? ¢. Then the P-wave attenuation
coefficient 3.34 takes the form

A%TI =Apo |1+ 5((22) cos? ¢sin? 0 cos® 6 + (eg) cos? ¢ + 56(?2) sin? ¢ cos? d)) sin? 9] . (3.38)

3.7.3 Parameters for P-wave attenuation

The linearized P-wave attenuation coefficient 3.34 is independent of the parameters
Aso, '75(91)’ and 'yg), which are primarily responsible for shear-wave attenuation. Numerical
tests show that this conclusion remains valid for models with strong attenuation and pro-
nounced velocity and attenuation anisotropy. As illustrated by Figure 3.4, the dependence
of Ap on the shear-wave vertical attenuation coefficient 4y becomes noticeable only for
extremely large attenuation (i.e., uncommonly small values of @55). The influence of the
parameters 'yg) and 'yg) on the coefficient Ap (not shown here) for typical moderately
attenuative models is also negligible.

Therefore, for a fixed orientation of the symmetry planes and fixed velocity parameters,
P-wave attenuation is controlled by the reference value A pg and five attenuation-anisotropy
parameters — e1), €2 Jg), 6522), and 6®). An equivalent result for velocity anisotropy was
obtained by Tsvankin (1997, 2005), who showed that the P-wave phase-velocity function in
orthorhombic media is governed just by the vertical velocity and five € and § parameters.
As demonstrated below, however, while the velocity function is almost independent of at-
tenuation, the P-wave attenuation coefficient does depend on the velocity anisotropy, even
if all relevant attenuation-anisotropy parameters are held constant.

3.7.4 Accuracy of the linearized solution

To evaluate the accuracy of the weak-anisotropy approximation (3.34) outside the
symmetry planes, I compare it with the exact coefficient .Ap (equation 3.2) for a model with
pronounced orthorhombic attenuation (Figure 3.5). The velocity parameters correspond to
the moderately anisotropic model of (Schoenberg and Helbig, 1997). Since no measurements
of the attenuation-anisotropy parameters are available, each of them is set to be twice as
large as the corresponding velocity-anisotropy parameter (e.g., eg) = 2¢(2)).

As expected, the weak-anisotropy approximation gives satisfactory results for near-
vertical propagation directions with polar angles up to about 30°. The error becomes more
significant for intermediate propagation angles in the range 30° < 68 < 75°. When the
incidence plane is close to either vertical symmetry plane (i.e., the azimuth ¢ approaches 0°
or 90°), the approximate solution also yields an accurate estimate of A p near the horizontal
direction. Overall, the error of the weak-anisotropy approximation for the full range of
polar and azimuthal angles is less than 10%. Note that while the velocity anisotropy for
this model is moderate (both ¢1) and €® are about 0.3), the attenuation anisotropy is
much more pronounced. This and other tests for a suite of orthorhombic models with weak
or moderate velocity anisotropy confirm that equation 3.34 gives an adequate qualitative
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description of P-wave attenuation (under the assumption of homogeneous wave propagation)
even if the attenuation anisotropy is pronounced (e.g., @ = 0.8).

To identify the source of errors in the weak-anisotropy approximation, I repeat the
test in Figure 3.5 using a purely isotropic velocity model (Figure 3.6). The approximate
solution (dashed lines) in Figure 3.6 coincides with that in Figure 3.5 because both models
have identical attenuation-anisotropy parameters. The exact coefficient Ap (solid lines),
however, is influenced by the velocity-anisotropy parameters in such a way that the error
of the weak-anisotropy approximation almost disappears when the velocity field is isotropic
(Figure 3.6).

Hence, the accuracy of the approximation 3.34 is controlled primarily by the strength of
the velocity anisotropy, even if the magnitude of the attenuation anisotropy is much higher.
This can be explained by the multiple linearizations in the velocity-anisotropy parameters
involved in deriving equations E.4 and E.7.

It should be emphasized that the influence of different subsets of the velocity-anisotropy
parameters on the attenuation coefficient Ap varies with the azimuth ¢. As illustrated in
Figure 3.7, the contribution of the parameters defined in the [z, z3]-plane (the azimuth
¢ = 0°) decreases away from that plane and completely vanishes in the orthogonal direction.
Note that according to the Christoffel equation (3.13), the P-wave attenuation coefficient
in the [z9, z3]-plane (¢ = 90°) is indeed fully independent of the velocity- and attenuation-
anisotropy parameters defined in the other two symmetry planes. Likewise, the influence
on Ap of the parameters defined in the [z, z3]-plane (the superscript “(1)”) is largest for
azimuths close to 90°.

3.8 Summary and observations

The attenuation coefficients of P-, S1-, and Se-waves in orthorhombic media with or-
thorhombic attenuation depend on the orientation of the symmetry planes, nine velocity
parameters and nine components of the quality-factor matrix. The large number of inde-
pendent parameters, compounded by the coupling between the attenuation and velocity
anisotropy, makes attenuation analysis for this model difficult. Here, I demonstrated that
the description of the attenuation coefficients can be substantially simplified by introducing
a set of attenuation-anisotropy parameters similar to Tsvankin’s notation for the orthorhom-
bic velocity function.

The equivalence between the Christoffel equation in the symmetry planes of orthorhom-
bic and VTI media, established previously for purely elastic media, holds in the presence
of orthorhombic attenuation. Therefore, the symmetry-plane attenuation coefficients of all
three modes can be obtained by simply adapting the known VTI equations. Moreover, the
Thomsen-style notation for attenuative VT media can be extended to orthorhombic models
following the approach suggested by Tsvankin for velocity anisotropy. The parameter set
introduced here includes two vertical P- and S-wave attenuation coefficients, A pg and Agg,
and seven dimensionless anisotropy parameters, 68’2), 5812’3), and 7&1'2).

Adaptation of the linearized VTI equations allows me to obtain concise symmetry-
plane attenuation coefficients of P-, Si-, and So-waves valid for small attenuation and weak
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Figure 3.6. Comparison of the exact coefficient A p (solid curves) with the linearized approx-
imation 3.34 (dashed) for a medium with orthorhombic attenuation but a purely isotropic
velocity function. The attenuation parameters are the same as in Figures 3.4 and 3.5, but
the velocity Vpy = 2.437 km/s is constant in all directions.
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velocity and attenuation anisotropy. Furthermore, linearization of the Christoffel equation
in the attenuation-anisotropy parameters yields the approximate P-wave attenuation coef-
ficient Ap outside the symmetry planes as a simple function of A py, 68’2), and 6((21*2’3). The

influence of the parameters Agg and 76(21’2) on P-wave attenuation remains negligible even
for large attenuation anisotropy.

The approximate coefficient A p has the same form as the approximate P-wave phase-
velocity function in terms of Tsvankin’s velocity parameters and can be represented by
the VTI equation with the azimuthally varying parameters ¢, and J,. This equivalence
between the linearized equations for attenuation and velocity anisotropy stems from the
identical (orthorhombic) symmetry of the real and imaginary parts of the stiffness tensor
and the assumption of homogeneous wave propagation. Still, there are important differences
between the treatment of velocity and attenuation anisotropy. The analysis shows that
in the absence of pronounced velocity dispersion the influence of attenuation (i.e., of the
imaginary part of the stiffness tensor) on velocity is practically negligible. In contrast, the
definitions of the attenuation-anisotropy parameters 63’2’3) include the velocity parameters
5(1,2.3)

Also, the exact attenuation coefficient Ap varies with the velocity-anisotropy param-
eters even for fixed values of 68’2’3). Moreover, the accuracy of the linearized equation for
Ap is controlled to a large degree by the strength of the velocity anisotropy. Numerical
tests demonstrate that the approximate 4 p remains close to the exact value even for large
(by absolute value) attenuation-anisotropy parameters provided the velocity anisotropy is
relatively weak.

Thus, the P-wave attenuation coefficient is primarily governed by the orientation of the
symmetry planes and six (instead of nine) attenuation-anisotropy parameters: A py, 68’2),

and 68’2'3). However, because of the non-negligible influence of the velocity anisotropy
on Ap, accurate inversion of attenuation measurements for orthorhombic media requires
anisotropic velocity analysis as well. Also, knowledge of the anisotropic velocity field is
required to obtain the normalized attenuation coefficient A (equation 2.11) and to correct
for the difference between the phase attenuation coefficient studied here and the group
attenuation coeflicient responsible for the amplitude decay along seismic rays. Overall, these
results provide an analytic foundation for estimating the attenuation-anisotropy parameters
from wide-azimuth seismic data.

Whereas this study is restricted to homogeneous wave propagation, the inhomogeneity
angle in layered attenuative media is not necessarily small (see Chapter 6). I also assumed
that the symmetry planes for the velocity and attenuation functions are aligned, which is
justified for effective azimuthally anisotropic media caused by systems of parallel fractures.
Still, for more complicated porous fractured media or models with depth-varying fracture
direction (see Chapter 5) this assumption may break down, and most of the discussion here
would have to be revised. Also, I did not take into account possible frequency dependence of
the quality-factor matrix in the seismic frequency band. If this dependence is not negligible,
the attenuation-anisotropy parameters also become frequency-dependent, although their
definitions remain the same.
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Chapter 4

Physical modeling and analysis of P-wave
attenuation anisotropy for TI media

4.1 Summary

I analyze measurements of the P-wave attenuation coefficient in a transversely isotropic
sample made of phenolic material. Using the anisotropic version of the spectral-ratio
method, I estimate the group (effective) attenuation coefficient of P-waves transmitted
through the sample for a wide range of propagation angles (from 0° to 90°) with the sym-
metry axis. Correction for the difference between the group and phase angles helps to obtain
the normalized phase attenuation coefficient A governed by the Thomsen-style attenuation-
anisotropy parameters €, and §,. Whereas the symmetry axis of the angle-dependent
coefficient A practically coincides with that of the velocity function, the magnitude of the
attenuation anisotropy far exceeds that of the velocity anisotropy. The quality factor Q
increases more than tenfold from the symmetry (slow) direction to the isotropy plane (fast
direction). Inversion of the coefficient 4 using the Christoffel equation yields large negative
values of €, and 4.

The robustness of these results critically depends on several factors, such as the avail-
ability of an accurate anisotropic velocity model and adequacy of the “homogeneous” con-
cept of wave propagation, as well as the choice of the frequency band. The methodology
discussed here can be extended to field measurements of anisotropic attenuation needed
for AVO (amplitude-variation-with-offset) analysis, amplitude-preserving migration, and
seismic fracture detection.

4.2 Introduction

Although experimental measurements of attenuation, both in the field and on rock
samples, are relatively rare, they indicate that the magnitude of attenuation anisotropy often
exceeds that of velocity anisotropy (e.g., Tao and King, 1990; Arts and Rasolofosaon, 1992;
Prasad and Nur, 2003; Shi and Deng, 2005) For example, according to the measurements
of Hosten et al. (1987) for an orthorhombic sample made of composite material, the quality
factor for P-waves changes from @) = 6 in the vertical direction to @) =~ 35 in the horizontal
direction. Hosten et al. (1987) also show that the symmetry of the attenuation coefficient
closely follows that of the velocity function.

Here, I extend the spectral-ratio method to anisotropic media and apply it to P-wave
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Then the normalized phase attenuation coefficient introduced above is given by

1 I k!
A:Ek_:’c_vz_c__v (4.4)

w w cosz/A)7

where V' is the phase velocity that corresponds to the source-receiver (group) direction
(i.e., the velocity of the plane wave tangential to the wavefront at the receiver location).
Therefore, the coefficient A can be found as the measured slope of the group attenuation
coefficient ké (w) scaled by the ratio V/ cos 1.

Here, I employ the following procedure of inverting P-wave attenuation measurements
for the attenuation-anisotropy parameters. First, the slope of the logarithmic spectral ratio
in equation 4.3 expressed as a function of w is used to estimate ké Jw. Second, using the
velocity parameters of the sample (assumed to be known), I compute the phase velocity
V and angle 1& and substitute them into equation 4.4 to find the coefficient A. Third,
the measurements of A for a wide range of phase angles are inverted for the attenuation-
anisotropy parameters €, and 6,. Approximate values of €, and §, can be found in a
straightforward way from the linearized equation 2.36. More accurate results, however, are
obtained by nonlinear inversion based on the exact Christoffel equation B.1.

Because of the dependence of the exact coefficient A (Chapter 2) on the velocity pa-
rameters and the contribution of the velocity anisotropy to equation 4.4, estimation of €,
and ¢, requires knowledge of the anisotropic velocity field. Since the influence of attenu-
ation on velocity typically is a second-order factor (Zhu and Tsvankin, 2005), anisotropic
velocity analysis can be performed prior to inverting the attenuation measurements. In
the inversion below I use the results of Dewangan (2004) and Dewangan et al. (2006),
who estimated the velocity-anisotropy parameters of the same phenolic sample by inverting
reflection traveltimes of PP- and PS-waves.

4.4 Experimental setup and data processing

The goal of this chapter is to measure the directional dependence of the P-wave atten-
uation coefficient in a composite sample and invert these measurements for the attenuation-
anisotropy parameters €, and §,. The material was XX-paper-based phenolic composed
of thin layers of paper bonded with phenolic resin. This fine layering produces an effective
anisotropic medium on the scale of the predominant wavelength. The sample was prepared
by Dewangan (2004; Figure 4.1), who pasted phenolic blocks together at an angle, which
resulted in a transversely isotropic model with the symmetry axis tilted from the vertical by
70° (TTI medium). Laser-Doppler measurements of the vertical component of the wavefield
were made by Kasper van Wijk in the Physical Acoustic Laboratory at CSM.

Dewangan et al. (2006) show that the TTI model adequately explains the kinematics
of multicomponent (P, S, and PS) data in the vertical measurement plane that contains the
symmetry axis (the symmetry-axis plane). Although phenolic materials are generally known
to be orthorhombic (e.g., Grechka et al., 1999), body-wave velocities and polarizations in
the symmetry planes of orthorhombic media can be described by the corresponding TI
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Figure 4.2. (a) Raw transmission data excited by a P-wave transducer in the phenolic
sample, and (b) the amplitude spectrum of the windowed first arrival. The solid line is the
P-wave traveltime modeled by Dewangan et al. (2006) using the inverted parameters from

Figure 4.4. The time sampling interval is 2us, and the width of the Gaussian window is 40
samples.

frequency band (60-110 kHz) away from the spectral gaps. According to the spectral-ratio
method described above, the relevant elements Q;; in that frequency band are assumed to
be constant.

4.5 Evaluation of attenuation anisotropy

The parameters of the TTI velocity model needed to process the attenuation measure-
ments were obtained by Dewangan et al. (2006) from reflection PP and PS data (Figure 4.4).
Tilted transverse isotropy is described by the the P- and S-wave velocities in the symmetry
direction (Vpy and Vs, respectively), Thomsen anisotropy parameters € and ¢ defined with
respect to the symmetry axis, the angle v between the symmetry axis and the vertical, and
the thickness z of the sample. The known values of v = 70° and z = 10.8 cm were accurately
estimated from the reflection data, which confirms the robustness of the velocity-inversion
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TTI parameters
H

Figure 4.4. Velocity-anisotropy parameters of the TTI model estimated from reflection
traveltimes of PP- and PS-waves in the symmetry-axis plane (after Dewangan et al., 2006).
The mean values are Vpg = 2.6 km/s, Vgg = 1.38 km/s, € = 0.46, and § = 0.11. The error
bars mark the standard deviations in each parameter obtained by applying the inversion
algorithm to 200 realizations of input reflection traveltimes contaminated by Gaussian noise.
The standard deviation of the noise was equal to 1/8 of the dominant period of the reflection
arrivals.




Yaping Zhu / Attenuation Anisotropy 59

\:/ \./ \:/ \:/ \:/ \:/ recelivers

\ 5 46 270 \ \ \ \

f source

Figure 4.6. Polar plot of the attenuation coefficient against the background of the phys-
ical model. The estimated function A(f) from Figure 4.5 (blue curve) was used to find
the best-fit attenuation coefficient from the Christoffel equation (black) and from approxi-
mation (2.36) (dashed). The numbers on the perimeter indicate the phase angle with the
symmetry axis.
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Figure 4.8. Influence of the frequency range used in the spectral-ratio method on the
recovered attenuation parameters. The error bars mark the standard deviation in each
parameter obtained by applying the inversion algorithm with 50 realizations of the upper
and lower bounds of the frequency range. The upper bound was changed randomly between
88 kHz and 132 kHz, and the lower bound between 44 kHz and 66 kHz.

taken to be frequency-independent in the frequency range used in the spectral-ratio method.
Because of the possible influence of heterogeneity, it is desirable to test the validity of
this assumption, particularly for relatively large source-receiver offsets. For example, the
experiment can be redesigned by making measurements on two different-size samples of the
same phenolic material. Then it would be possible to compute the spectral ratios for arrivals
propagating in the same direction and recorded at different distances from the source. Then,
the potential frequency dependence of the radiation pattern would be removed from the
attenuation measurement along with the spectrum of the source pulse, and no reference
trace would be required.

Second, the analytic solutions for the attenuation coefficient are based on the assump-
tion of homogeneous wave propagation (i.e., the inhomogeneity angle is assumed to be
negligible). For strongly attenuative models with pronounced attenuation anisotropy, this
assumption may cause errors in the interpretation of attenuation measurements. In particu-
lar, if the model is layered, the inhomogeneity angle is governed by the boundary conditions
and can be significant even for moderate values of the attenuation coefficients (see Chap-
ter 6). Hence, future work should include evaluation of the magnitude of the inhomogeneity
angle and of its influence on the estimation of the attenuation-anisotropy parameters.

Third, the data-processing sequence did not include compensation for a possible attenu-
ation-related frequency dependence of the reflection/transmission coefficients along the ray-
path. Moreover, choice of the frequency band can change the results of attenuation analysis.
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Chapter 5

Effective attenuation anisotropy of layered media

5.1 Summary

One of the factors responsible for effective anisotropy of seismic attenuation is interbed-
ding of thin attenuative layers with different properties. Here, I apply Backus averaging to
obtain the complex stiffness matrix for an effective medium formed by an arbitrary number
of anisotropic, attenuative constituents. Unless the intrinsic attenuation is uncommonly
strong, the effective velocity function is controlled by the real-valued stiffnesses (i.e., is
independent of attenuation) and can be determined from the known equations for purely
elastic media. Analysis of effective attenuation is more complicated because the attenuation
parameters are influenced by coupling between the real and imaginary parts of the stiffness
matrix.

The main focus of this chapter is on effective VT models that include layers of isotropic
and VTI constituents. Assuming that the stiffness contrasts, as well as the intrinsic veloc-
ity and attenuation anisotropy, are weak, I develop explicit first-order (linear) and second-
order (quadratic) approximations for the attenuation-anisotropy parameters €, 6, and v,
Whereas the first-order approximation for each parameter is given simply by the volume-
weighted average of its interval values, the second-order terms reflect the coupling between
various factors related to both heterogeneity and intrinsic anisotropy. Interestingly, the
effective attenuation for P- and SV-waves is anisotropic even for a medium composed of
isotropic layers with no attenuation contrast, provided there is a velocity variation among
the constituent layers. Contrasts in the intrinsic attenuation, however, do not create atten-
uation anisotropy, unless they are accompanied by velocity contrasts.

Extensive numerical testing shows that the second-order approximation for €, 4, , and
7, is close to the exact solution for most plausible subsurface models. The accuracy of the
first-order approximation depends on the magnitude of the quadratic terms, which is largely
governed by the strength of the velocity (rather than attenuation) contrasts and velocity
anisotropy. The effective attenuation parameters for multiconstituent VTI models generally
exhibit more variation than do the velocity parameters, with almost equal probability of
positive and negative values. If some of the constituents are azimuthally anisotropic with
misaligned vertical symmetry planes, the effective velocity and attenuation functions can
have different symmetries and principal azimuthal directions.
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linear differential operator that reduces to the real-valued stiffness tensor for elastic media.
For example, consider a 1-D standard linear solid model (also called the Zener model) used
to characterize dissipative rocks and polymers (e.g., Ferry, 1980; Carcione, 2001). This
model includes a spring combined with a unit consisting of another spring and a dashpot
connected in parallel; its viscoelastic behavior is described by

T+ 17,07 = MR(G + 7'eate) ’ (52)

where 7, and 7, are the two relaxation times for the mechanical system, and Mp is the
relared modulus. For elastic media, the relaxation times vanish, and Mpg reduces to a
real-valued modulus.

Transforming the constitutive relationship from equation 5.1 into the frequency domain
yields

7=Ce, (5.3)

where all quantities become complex-valued (denoted by™); C is the complex stiffness tensor.

Suppose a thin-layered model includes N types of constituents. whose spatial distribu-
tion is stationary across all the layers. For simplicity, throughout this chapter the layering
plane is assumed to be horizontal. The medium properties are constant within each layer
but change across layer boundaries (medium interfaces). Different layers belong to the same
constituent if they have identical medium properties including both velocity and attenua-
tion. For example, it is possible to form a model with hundreds of thin layers by using just
two interbedding constituents.

The Backus averaging technique for both elastic and attenuative media is applied in
the long-wavelength limit, which means that the dominant wavelength is much larger than
the thickness of all layers. Following Backus (1962) and Schoenberg and Muir (1989), I
assume that in the time domain the components of the traction vector that acts across
interfaces are the same for all layers:

k k
7'1(];) =T13, 7'2(3) = T3, 7'353) =T33, (5.4)

where the superscript denotes the k-th constituent. The in-plane strain components are
also supposed to be the same:
k k k
egl) =e, 652) = eg9, egz) =e19. (5.5)
Equations 5.4 and 5.5 remain valid for the frequency-domain counterparts of the stress and
strain elements:

(k)

~ ~(k ~(k
. (k) _ (k)

5%13, T23 :‘7‘23, 7'33 E7~'33, (56)
and

~(k ~ ~(k ~ ~ -
egl) =é1, 352) = €99, e(ll;) =é1p. (5.7)
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¢12 = ¢11 — 2¢g6. The effective velocity-anisotropy parameters in Thomsen’s (1986) notation
are obtained using the real parts c;; of the effective stiffnesses from equations 5.14-5.18:

C C
Vpo = /-2, Vso=,/=2, (5.19)
V » V »

C11 — €33
_en-op 5.20
. o, (5.20)

2 _ 2
5 = (c13 + c55)° — (c33 — c55) , (5.21)
2c33(c33 — c55)

Ce6 — C55
_ 5.22
U 2c55 ( )

where p = (p) is the volume-averaged density.
To characterize attenuative anisotropy, I employ the effective attenuation-anisotropy
parameters defined in equations 2.28, 2.31, and 2.24:

€ = % (5.23)
- c13 + e33)? -
Q33 Q55c55( 13 + €33) +2Q33 Q13613(C13 + css)
5. = Qs5 (c33 — c55) Q13 (5.24)
@ c33(ca3 — cs5) '
Yo = % (5.25)

where Q;; = ¢;;/ c{j is the quality-factor matrix (no index summation is applied), and c{j is
the imaginary part of the stiffness ¢;;. The notation of Zhu and Tsvankin (2006) also includes
two reference parameters — the wavenumber-normalized attenuation coefficients for P- and
S-waves in the symmetry (vertical) direction (see equations 2.22 and 2.23, respectively):

App = Q33 (\/ 1+1/(Qs3)? — 1) ~ ! (5.26)

2Qs3’

Aso = Qss (\/1 +1/(Qs5)2 — 1) ~ 2QL55

Note that equations 5.23-5.27 are defined through effective stiffness and ) components.
The approximations in equations 5.26 and 5.27 are obtained in the weak-attenuation limit
by keeping only the linear terms in the inverse components Q;; (i = 3,5).

(5.27)

5.4 Approximate attenuation parameters of effective VTI media

Explicit equations for the effective stiffnesses in terms of the interval parameters have a
rather complicated form. Here, I present approximate expressions that help to evaluate the
influence of different factors on the anisotropy of the effective medium. The approximations
are developed under the assumption of weak intrinsic velocity and attenuation anisotropy,
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among all N constituents, while AcgC ) = cff ) _ ¢ and AQgc ) = Qﬁf ) _ Q;i denote the
deviations from the average values. In the approximations discussed here, the squared

. . . C . . .
vertical-velocity ratio g = =5 and the vertical attenuation ratio 9o = gﬁ are not treated

C33 55
as small parameters. It is assumed, however, that the attenuation is not uncommonly strong

so that quadratic and higher-order terms in 1/Q;; can be neglected.

The approximate effective parameters for both velocity and attenuation anisotropy
are given in Appendix F. For the special case of two constituents (N=2), the velocity-
anisotropy parameters become identical to those given by Bakulin (2003). In principle, the
exact effective velocity-anisotropy parameters depend on all possible factors including the
quality-factor matrix that describes the intrinsic attenuation. However, unless the model
has extremely high attenuation with some of the quality-factor components smaller than
10, the contribution of the attenuation parameters to the effective velocity anisotropy can
be ignored.

In contrast, the effective attenuation anisotropy is influenced not just by the imagi-
nary part of the stiffness matrix (i.e., by the intrinsic attenuation and the contrasts in the
attenuation parameters), but also by the real parts of the stiffnesses (i.e., by the velocity
parameters) and the coupling between various factors. The second-order approximations for
the effective Thomsen-style attenuation parameters can be represented as (equations F.37,
F.43, and F.15):

€0 = (€g) +Egis) +€gis-Van) _l_fgis-Qan) +€gVan—Qan),

(5.32)
5 = (65)+ 593) " 6gis-Qan) N 6((?Van—Qan) n 6gVan) ’

(5.33)
Yo = (7q>+,y((218)+%(?is-Van)+%(213_Qan) +,chVan-Qan),

(5.34)

where (-) is the first-order term equal to the volume-weighted average of the intrinsic pa-

rameter values, and the rest of the terms are quadratic (second-order) in the small param-
(k)

eters listed above. The superscript (i8) yefers to the contribution of the parameters Ac;;

and AQE? ) (¢ = 3,5), which quantify the heterogeneity (contrasts) of the isotropic quanti-
ties, while (Van) depends on the intrinsic velocity anisotropy. The superscripts (is-Van),
(is—Qan), and (Van-Qan) gepote the quadratic terms that represent (respectively) the cou-
pling between the isotropic heterogeneity and intrinsic velocity anisotropy, between the

isotropic heterogeneity and intrinsic attenuation anisotropy, and between the intrinsic ve-
locity and attenuation anisotropy.

Note that there are no “Van”-terms (i.e., terms quadratic in the interval velocity-

anisotropy parameters) in equation 5.32 for €, and equation 5.34 for 7,. The parameter

d,, in equation 5.33 does include the term 6gVan) but not 6((213-Van), which is similar to the
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Acey’
constituents), as well as on 5—55A6(k’l) (equation F.40). This means that the velocity

parameters can create effective attenuation anisotropy for P- and SV-waves even without
any attenuation contrasts or intrinsic attenuation anisotropy. Still, for the attenuation-
anisotropy parameters to have finite values, the constituents need to be attenuative. If the
medium is purely elastic and all intrinsic ;; components are infinite, the parameters e
6o, and 7, become undefined (equations 5.23-5.25).

Q"

To explore this issue further, let me consider the analytical expressions for the effec-
tive quality-factor components for a medium composed of constituents with the isotropic
normalized attenuation coefficient A, in which ¢®) = §*) = k) = 0 for all k. The
quality-factor matrix for each constituent is described by two independent components
(Carcione 2001' Zhu and Tsvankin, 2006) which is assume to be constant for the whole
model: Qu = Qg’g) = @p and Q55 = Q66 = Qg, where Qp and Qg are the quality fac-
tors for P- and S-waves, respectively. Then, as discussed by Zhu and Tsvankin (2006), the
normalized attenuation coefficients in all layers will be identical and isotropic (independent
of angle). Note that if the real-valued stiffnesses vary among the constituents, the quality-
factor component Qgg) (unlike Qp and Qg) will not necessarily be constant. According to

the definition of §, (equation 5.24), Qg’;,) is given by

k k k
(k) _ 1- (9 — 1)C§5)(C§3) c} ))2 (5.35)
Qi3 =Qp 2B (B Ty (B oy | '

2c15' (13’ + C33 — Csp

where g, = Qp/Qs.

The effective Q;; components for this model can be obtained from equations F.21-F'.23,
F.2, and F.5:

Qll - ij: (cll $C(($I§)1£(k g(k)) ) (536)
Q33 = QP, (537)
QRs5 = Qs = Qs , (5.38)
and
N
Z ¢(k)§(k)
Qs =Qp———, (5.39)
Z é k)g(k (k)
k=1

where ¢4 = c /c(k) and éék) =Qp /Q(lg). Since the expression for Q11 is rather lengthy, I
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The effective quality-factor components then have the same form:

Qij = -N—l— ) (5.40)

5 o0 /g

k=1

where ij = 11, 33, 13, 55, or 66. When the intrinsic attenuation is isotropic (i.e., eg“) =

6(Qk) = fyg“) = 0), the only quantities that vary among the constituents are Qg’;) and Qé’;).

Since for isotropic intrinsic attenuation Qg’;) = Q:(;;) and Qg’;) = Qg;), the effective parame-

ters €, and 7, = 0 vanish. Also, the element Qg’;) becomes
(k) :(ag)
Qi3 = , (5.41)
B css(c13 + c33)? QY _1)
2c13(c13 + ¢55)(cas — cs5)  QLF)
where cz(.;.c) = ¢;; because the velocity field is homogeneous. The effective 13 component is
then given by
Q33
Qs = . 5.42
cs5(c13 + c33)° Qs3 ) (5.42)

 2c¢13(c13 + cs5) (caz — ¢s35) * Qss

Substituting equations 5.40 and 5.42 into equation 5.24 yields 6, = 0. Hence, if the ve-
locity field is homogeneous, the contrasts in isotropic attenuation do not produce effective
attenuation anisotropy.

This conclusion is supported by the 2D finite-difference simulation of SH-wave propa-
gation in Figure 5.2. The model is made up of two VTI constituents with the thicknesses
less than 1/20 of the predominant wavelength, so the medium can be characterized as ef-
fectively homogeneous. Both constituents have isotropic attenuation and the same VTI
velocity parameters, but there is a large contrast in the SH-wave quality-factor component
Qs5. A snapshot of the SH-wavefront from a point source located at the center of the model
is shown in Figure 5.2a. As pointed out by Tsvankin (2005), for 2D elastic TI models the
amplitude along the SH-wavefront is constant (see the dashed circle in Figure 5.2b). There-
fore, if the effective attenuation is directionally dependent, it should cause a deviation of
the picked amplitude from a circle. However, despite some distortions produced by the au-
tomatic picking procedure, the amplitude variation along the wavefront in the attenuative
model is almost negligible (Figure 5.2b). Clearly, the attenuation contrast does not result
in effective attenuation anisotropy if it is not accompanied by a velocity contrast.

5.5 Accuracy of the approximations

To test the accuracy of the approximations introduced above, I first use a model formed
by two VTI constituent layers. The velocity parameters listed in Table 5.1 are taken from
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Ao Ao (1) (2) 5(1) 52 A1) 42
€33 Cs5

30% —30% 0.05 0.25 0 0.2 005 0.25
AQ33  AQss 1 2 1 2 1 2
R
Qa3 Qss

60% —60% -0.1 -0.5 0 -0.4 -0.1 -0.5

Table 5.1. Parameters of a two-constituent attenuative VI model. For the first constituent,
Vpo =3 km/s, Voo = 1.5 km/s, p =24 g/cm3, Q33 = 100, and Q55 = 80.
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Figure 5.3. Effective velocity-anisotropy (a-c) and attenuation-anisotropy (d-f) parameters

for the two-constituent VTI model from Table 5.1.

The horizontal axis represents the

volume fraction of the first constituent (¢ = ¢1). The exact parameters (solid lines) are
plotted along with the first-order linear approximations (dashed) and the second-order

approximations (dotted).
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Figure 5.5. Effective attenuation anisotropy for a model with the same velocity parameters
and contrasts in Q33 and Qs5 as those in Figure 5.3, but the intrinsic attenuation anisotropy
is more pronounced: eg) = 0.6, eg) = —0.8, 68) = —0.5, 6((22) = —0.8, 'yc(?l) = 0.8, and
76(22) = —0.8. As before, the exact parameters (solid lines) are plotted along with the first-
order linear approximations (dashed) and the second-order approximations (dotted).

This model is similar to the one used by Bakulin and Grechka (2003), who show
that the first-order (linear) approximation is surprisingly accurate for the effective velocity-
anisotropy parameters of typical layered media with moderate intrinsic anisotropy. In other
words, the effective velocity anisotropy is primarily determined by the mean values of the
interval parameters ¢, 4, and +.

The test in Figure 5.8 demonstrates that this result also applies to effective attenu-
ation anisotropy. After computing the exact effective parameters for 2000 realizations of
the model, I can compare their ranges (bars) with the mean values (crosses) listed above.
Although some of the mean values are biased, they give a generally good prediction of the
effective parameters. Therefore, despite the substantial property contrasts in the model real-
izations, the magnitude of the second-order terms in such multiconstituent models with ran-
dom parameter distributions is relatively small, and all velocity- and attenuation-anisotropy
parameters are close to the mean of the corresponding interval values.

5.5.1 Magnitude of attenuation anisotropy

For purposes of seismic processing and inversion, it is important to evaluate the upper
and lower bounds of the parameters €, 6, and y,. Let me start with the SH-wave parameter
7Yq» which has a relatively simple analytic representation.

If a model is composed of isotropic constituents (in terms of both velocity and attenua-

tion), the effective attenuation anisotropy is caused just by the heterogeneity. The SH-wave
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Figure 5.7. Vertical velocities, density, and the quality-factor components Q33 and Qss of
one realization of a model composed of VTI layers with VTI attenuation. The sampling
interval is 5 m.
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Figure 5.8. Mean values (crosses) of the interval anisotropy parameters and ranges (bars) of
the exact effective parameters computed for 2000 realizations of the model from Figure 5.7.
The standard deviations of all model parameters are listed in the text.
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Figure 5.9. Histograms of the effective anisotropy parameters computed for 2000 randomly
chosen models composed of isotropic (for both velocity and attenuation) constituents. The
vertical axis shows the frequency of the parameter values. The ranges of the interval param-
eters are: Vpg = 2000—6000 m/s, Vgo = 1000—3000 m/s (the vertical P-to-SV velocity ratio
was kept between 1.5 and 2.5), p = 2000— 4000 kg/m3, Q33 = 30 — 300, and Q55 = 30— 300.
The number of constituents is randomly chosen between two and five.

It should be emphasized that the tests described above were performed for models
without intrinsic velocity or attenuation anisotropy. The numerical analysis shows that
making the constituents anisotropic not only moves the distribution peaks (especially, if the
average value of the parameter is not zero), but also changes the shape of the histograms.

5.6 Effective symmetry for azimuthally anisotropic media

The examples in the previous sections were generated for purely isotropic or VTI
constituents, in which both velocity and attenuation are independent of azimuth. The
effective velocity and attenuation functions in such models are also azimuthally isotropic,
and the equivalent homogeneous medium has VTT symmetry.

The general averaging equations 5.8-5.13, however, hold for any symmetry of the in-
terval stiffness matrix and can be used to study layered azimuthally anisotropic media. An
interesting issue that arises for such models is whether or not the effective velocity and at-
tenuation anisotropy have different principal symmetry directions (i.e., different azimuths of
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Figure 5.11. a) Layered model composed of two HTI constituents with the same volume
(¢1 = ¢o = 50%), one of which is elastic while the other one has HTI attenuation. b)
Plan view of the symmetry-plane directions. The azimuth of the symmetry plane for the
first (elastic) constituent is 30° toward northwest (NW); for the second constituent, the
azimuth is 30° NE. The velocity paraineters for both constituents are: p = 2000g/ cm?,
Vpo = 3 km/s, Vg = 2 km/s, € = 0.2, § = 0.05, and v = 0.2. For the second constituent,

the attenuation parameters are: Qgg) = 100, Qg%) = 80, eg) = —04, 6522) = —0.1, and
72 = —0.4.
Q

the vertical symmetry planes). Here, without attempting to give a comprehensive analysis
of this problem, I discuss a numerical example for the simple model in Figure 5.11, which
includes two constituents with HTI symmetry. The first constituent is purely elastic, while
the second has HTT attenuation with the same symmetry axis as that for the velocity func-
tion. The velocity parameters (i.e., the real part of the stiffness matrix) of both constituents
are identical, but the symmetry axes have different orientations (Figure 5.11b).

The effective P-wave phase velocity and normalized attenuation coefficient A were com-
puted from the Christoffel equation using the effective stiffnesses given by equations 5.8-5.13.
The coefficient A was obtained under the assumption of homogeneous wave propagation
(i.e., the planes of constant amplitude are taken to be parallel to the planes of constant
phase). Since both HTT constituents in this model have identical velocity parameters and
the same volume, the real part of the effective stiffness matrix should have orthorhombic
symmetry. This conclusion is confirmed by the computation of the effective phase-velocity
function in the horizontal plane and two vertical coordinate planes, one of which bisects
(with the azimuth 90°) the symmetry-plane directions (see Figure 5.11). The shape of the
phase-velocity curves in Figures 5.12a,c shows that the symmetry planes of the effective
orthorhombic velocity surface are aligned with the coordinate planes.

In contrast to the velocity surface, the effective normalized attenuation coefficient is
not symmetric with respect to any vertical plane (Figure 5.12b). Because of the coupling
between the the real and imaginary parts of the effective stiffness matrix, the effective at-
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Figure 5.12. Effective P-wave phase velocity (left) and normalized attenuation coefficient
(right) for the model from Figure 5.11. The velocity and attenuation are plotted in: (a,b) the

horizontal plane as functions of the azimuthal phase angle; (c,d) the two vertical coordinate
planes as functions of the polar phase angle.
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to variations of the dominant fracture azimuth with depth. If the intrinsic attenuation ani-
sotropy is sufficiently strong, the velocity and attenuation functions of the effective medium
may have different symmetries (e.g., orthorhombic versus monoclinic). Even when both
velocity and attenuation are described by orthorhombic models, their vertical symmetry
planes may be misaligned. These results have to be taken into account in field measure-
ments of attenuation over fractured reservoirs.
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Chapter 6

Far-field radiation from seismic sources in 2D
attenuative anisotropic media

6.1 Summary

In this chapter, I present an asymptotic (far-field) study of 2D radiation patterns for
media with anisotropic velocity and attenuation functions. Application of saddle-point in-
tegration helps to evaluate the inhomogeneity angle and test the common assumption of
homogeneous wave propagation, which ignores the misalignment of the wave and atten-
uation vectors. For transversely isotropic media, the inhomogeneity angle vanishes in the
symmetry directions and remains small if the model has weak attenuation and weak velocity
and attenuation anisotropy. Reflection and transmission at medium interfaces, however, can
substantially increase the inhomogeneity angle, which has an impact on both the attenua-
tion coefficients and radiation patterns. Numerical analysis indicates that the attenuation
vector deviates from the wave vector toward the direction of increasing attenuation.

The combined influence of angle-dependent velocity and attenuation results in pro-
nounced distortions of radiation patterns, with the contribution of attenuation anisotropy
rapidly increasing as the wave propagates away the source. The asymptotic solution also
helps to establish the relationship between the phase and group parameters when wave
propagation cannot be treated as homogeneous. Whereas the phase and group velocities
are almost independent of attenuation, the inhomogeneity angle has to be taken into account
in the relationship between the phase and group attenuation coefficients.

6.2 Introduction

To avoid complications associated with the inhomogeneity angle, wave propagation is
often treated as homogeneous (Chapters 2-4). For layered media or models with strong
attenuation anisotropy, however, the influence of the inhomogeneity angle on the wave
propagation needs to be taken into account.

For plane waves in attenuative media, a wide range of values of inhomogeneity angle
satisfy the Christoffel equation, except for certain forbidden directions (Krebes and Le, 1994;
Carcione and Cavallini, 1995; Cerveny and Psenéik, 2005). Because different choices of the
inhomogeneity angle yield different plane-wave properties, the inhomogeneity angle is an
important free parameter for plane-wave propagation. The energy (hence the attenuation
behavior) of a wave excited by a seismic source, however, is determined by the boundary
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where 6 and 6! are the angles between vertical and the wave and attenuation vectors,
respectively. Jointly solving equations 6.1 and G.9 yields

p = £1/p?cosh? 8] + (pl)2sinh? 9! , (6.2)

pl = i\/(p£)2 cosh? 0 + p2 sinh? 0! | (6.3)

tang — Ps sin @, cosh 1 — pl c?s 05 s%nh 6! , (6.4)
ps cos 05 cosh 8 + p! sin 6 sinh 6!

tan ol — plsin @, cosh 6! + p, cos O, sinh 1 (6.5)

pl cos b5 cosh §I — p, sinf,sinh 6!’

where p, = Re[p,], p! = Im[p,], 6s = Re[d,], and 61 :~Im[§s]. The inhomogeneity angle is
then given by 8/ — 6. For elastic media, both 5, and 6 are real and equations 6.4 and 6.5
yield 67 — 6 = 90°.

When the medium is not just attenuative, but also anisotropic, the complex slowness

d5
varies with respect to the complex polar angle at the saddle point (% _ #0). If the
0=0,

medium is homogeneous and isotropic for both velocity and attenuation, equation G.8 has
a real-valued solution

~ ml
0, = — 6.6
=2, (6.6)

so that 6, = n and 0;’ = 0. I then find from equations 6.4 and 6.5 that 8 = 8/ = 4,
T

3
which implies the inhomogeneity angle in homogeneous media with isotropic velocity and
attenuation is always zero.

6.4 VTI media with VTI attenuation

6.4.1 SH-waves

For attenuative media with an anisotropic velocity function, the inhomogeneity angle
generally does not vanish. The exact saddle-point condition for SH-waves in VTI (transverse
isotropy with a vertical symmetry axis) media with VTI attenuation takes the form

i
Iy 1= —(;)E
: (6.7)
Qs5

tan és =

where v, is the SH-wave attenuation-anisotropy parameter (equation 2.24). Clearly, v, =0
yields a real-valued 6, and results in homogeneous wave propagation. Equation 6.7 (as well
as equations 6.10 and 6.11 below) shows that the imaginary part of 6, is generally a small
quantity proportional to the inverse @ factor.
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Model # ¢ 6 €, [N
1 0.1 005 -0.2 -01
04 025 -045 -05

0.1 0.05 0 0

04 025 0 0

0 0 -02 -01
0 0 -045 -0.5

O U x| W b

Table 6.1. Attenuative VTI models with Vpy = 3 km/s, Vso = 1.5 km/s, p = 2.4 g/cm3,
Q33 = 100, and Q35 = 60.

2.42, respectively. It is noteworthy that the condition for SV-waves (equation 6.11) can be
obtained directly from that for P-waves using the following substitutions: ¢ — 0, § — o,
€g — 0, (5Q — 04, and Q33 — Qss.

cos 253 .

€. — (e, —6. )cos20 o
Q (Q Q) s .Yq in

O in equation 6.10 and 7 Qs
equation 6.11 involve only attenuation-anisotropy parameters, the dependence of 65 on the
real terms makes 0! = Im[és] a function of the anisotropy parameters for both velocity and
attenuation. The angle 85 for P- and SV-waves is real only when the imaginary terms in
equations 6.10 and 6.11, respectively, are equal to zero. For P-waves, this requires that
the normalized attenuation coefficient be isotropic (¢, = 6, = 0). SV-wave propagation
becomes homogeneous if the normalized attenuation coefficient is elliptical (o, = 0). For

Although the imaginary terms 14

general attenuative VTT models, 6, in equations 6.10 and 6.11 can be calculated in iterative
fashion. The inhomogeneity angle is then obtained from equations 6.2-6.5, as illustrated
by numerical examples below.

6.4.3 Numerical examples

To evaluate the magnitude of the inhomogeneity angle for homogeneous attenuative
VTI media, I use models 1 and 2 from Table 6.1. Figure 6.1 displays the wave vector
k (thin arrows) and the attenuation vector k! (thick arrows) for models 1 and 2. Both k
and k! are calculated with a constant increment in the group angle and displayed on the
group-velocity curves (wavefronts). Notice that the wave vector remains perpendicular to
the wavefront since the influence of the attenuation on the velocity function is of the second
order. The attenuation vector, however, deviates from the normal to the wavefront because
of the combined influence of the velocity and attenuation anisotropy. The angle between
the wave vector and the corresponding attenuation vector is equal to the inhomogeneity
angle. Clearly, the inhomogeneity angle does not vanish away from the symmetry axis and
isotropy plane.

The exact inhomogeneity angle computed from equation G.8 is shown in Figure 6.2. For
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Figure 6.3. Comparison of the exact and approximate inhomogeneity angles for P-waves in
model 1.

model 1, the inhomogeneity angles for both P- and SV-waves are less than 15° (Figure 6.2a).
Since model 2 has stronger anisotropy for both velocity and attenuation, the inhomogeneity
angles for it is larger (Figure 6.2b). For 2D homogeneous VTI model, the inhomogeneity
angle always vanishes in the symmetry directions (0° and 90°). Figure 6.2b also shows
that the inhomogeneity angle for SV-waves in model 2 changes rapidly near the velocity
maximum at 45°, where the SV-wave wavefront becomes almost rhomb-shaped due to the
large value of o = 0.6.

Both models have negative €, and 6., which implies that the normalized attenuation
for P-waves decreases monotonically from the vertical toward the horizontal direction. The
P-wave attenuation vectors in Figure 6.1 are closer to the vertical direction than are the
associated wave vectors. For SV-waves the attenuation vectors in model 2 deviate from the
associated wave vectors toward the vertical in the range 0° — 40°, where the attenuation
coefficient decreases with the angle. For group angles between 50° and 90°, the opposite is
true. This example, along with other numerical tests, suggests that the attenuation vector
deviates from the wave vector toward the directions of increasing attenuation.

To test the accuracy of the approximate saddle-point condition for P-waves (equa-
tion 6.10), I compared it with the exact solution (Figure 6.3). The approximation generally
dp .
provides sufficient accuracy, except for the directions where the term % _in equa-
0=06¢
tion G.8 becomes relatively large. The overall error, however, does not exceed 4° because
of the weak velocity and attenuation anisotropy for this model. Predictably, increasing the
anisotropy for either the velocity or attenuation reduces the accuracy of the approximate

solution.
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Figure 6.4. P-wave attenuation coefficients for a) model 1; and b) model 2. The solid curves
are computed with the inhomogeneity angle from Figure 6.2, the dashed curves with the
inhomogeneity angle set to zero for all propagation directions.

significant.

6.5.2 Numerical examples

To examine the influence of the inhomogeneity angle on the radiation patterns and the
angular variation of the phase and group attenuation coefficients as well as radiation pat-
terns, I use VTI models from Table 6.1. The contribution of the inhomogeneity angle to the
P-wave attenuation coefficient is illustrated in Figure 6.4. The solid curves are calculated us-
ing the inhomogeneity angles obtained from Figure 6.2, while the dashed curves correspond
to homogeneous wave propagation (i.e., zero inhomogeneity angle). Since model 1 is weakly
anisotropic for both velocity and attenuation, the inhomogeneity angle is relatively small
and has a small impact on attenuation coefficients (Figure 6.4a). In contrast, the larger
inhomogeneity angles for model 2 result in a more pronounced error in the attenuation
coefficients computed for homogeneous wave propagation.

The group attenuation coefficient is also influenced by the inhomogeneity angle (Fig-
ure 6.5). For model 2, the attenuation coefficient computed with the actual inhomogeneity
angle (equation 6.13) deviates by up to 20% from that for homogeneous wave propagation
(equation 6.15).

To analyze the radiation patterns in the presence of attenuation anisotropy, I compute
the particle displacement of P- and SV-waves from a vertical single force for models 1 and 2
(Figure 6.6). The stronger anisotropy for both velocity and attenuation in model 2 creates
a more pronounced directional dependence of the radiation patterns compared to that in
model 1.

Since both models have the same Q33 and Q55 values, the vertical attenuation coeffi-
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Figure 6.6. Radiation patterns of P-waves (solid curves) and SV-waves (dashed ) from a
vertical force (f3 = 10° N) in a) model 1; and b) model 2. The magnitude of the particle
displacement is computed at a distance of 1000 m away from the force; the frequency is 100
Hz.

6.6 Discussion and conclusions

The inhomogeneity angle plays an essential role in wavefield simulation for attenuative
media, especially if the velocity and attenuation functions are anisotropic. Here, I analyze
the inhomogeneity angle in the far field of a line source (i.e., independent of the x4 direction)
by applying the saddle-point (stationary-phase) condition to the plane-wave decomposition
of the wavefield.

The discussion is largely devoted to homogeneous media with constant velocity and
attenuation, where the inhomogeneity angle can be studied analytically. Although the
inhomogeneity angle vanishes only in the symmetry directions, its magnitude is relatively
small for weakly attenuative media with weak anisotropy for both velocity and attenuation.
Therefore, for such models the attenuation coefficient can be computed under the simplifying
assumption of homogeneous wave propagation. For media with VTI symmetry for both
velocity and attenuation the phase attenuation direction is shifted from that of the wave
vector toward increasing attenuation.

For layered models, the take-off inhomogeneity angle at the source location can sub-
stantially change during reflection/transmission at medium interfaces. The wave vectors
of reflected and transmitted waves are determined jointly by the Christoffel equation and
Snell’s law for attenuative media. The resulting inhomogeneity angle can be large even if
the layers are weakly attenuative and are characterized by weak anisotropy for both velocity
and attenuation. If a wave is transmitted from a purely elastic medium into an attenuative
layer, the attenuation vector is always perpendicular to the interface. For example, the
inhomogeneity angle of waves transmitted through the ocean bottom into the underwa-
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180 180

Figure 6.8. Radiation patterns of a) P- waves and b) SV-waves for model 6 computed at
a distance of 3000 m away from the source. The dash-dotted and dotted curves mark,
respectively, the radiation patterns of P- and SV-waves for the corresponding isotropic
models with isotropic attenuation.

ter layer with non-negligible attenuation coincides with the transmission angle (Carcione,
1999).

Along with anisotropic geometrical spreading, anisotropic attenuation in the overbur-
den may distort the AVO response of reflected waves. The numerical examples in this
chapter illustrate the influence of both velocity and attenuation anisotropy on the radia-
tion patterns. Whereas the directional amplitude variations caused by velocity anisotropy
can be substantial, they do not change with source-receiver distance. In contrast, since the
magnitude of the attenuation factor increases with distance, so do the amplitude distortions
caused by attenuation anisotropy.

To process seismic data from attenuative media, it is necessary to relate the phase
attenuation coefficient to the group (effective) attenuation along seismic rays that can be
measured from recorded amplitudes. For homogeneous wave propagation, the phase velocity
is equal to the projection of the corresponding group-velocity vector onto the phase direction.
The relationship between the phase and group attenuation involves the same factor (the
cosine of the angle between the two vectors), but it is the group attenuation that is equal
to the projection of the corresponding phase-attenuation vector onto the group direction.
If the inhomogeneity angle is not zero, the group velocity and attenuation depend on both
the wave and phase-attenuation vectors. Still, the relationship between group and phase
velocity is accurately represented by equation 6.14 for homogeneous wave propagation. The
group attenuation coefficient, however, is described by a more complicated expression that
reduces to the projection of the phase-attenuation coefficient onto the group direction only
for a small inhomogeneity angle.
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Chapter 7

Conclusions and recommendations

7.1 Conclusions

Directional variation of attenuation, along with that of velocity, can strongly distort
the amplitudes and polarizations of seismic waves and, therefore, has serious implications
for AVO analysis. In this thesis I developed a consistent treatment of attenuation aniso-
tropy in the presence of velocity anisotropy. To analyze wave propagation in attenuative
anisotropic media, both the stiffness coefficients and wave vectors have to be treated as
complex quantities. Attenuation anisotropy is characterized by the quality-factor matrix
Q, with each element defined as the ratio of the real and imaginary parts of the correspond-
ing stiffness element. Then the anisotropic velocity function and attenuation coefficients
are obtained from the Christoffel equation in terms of the real stiffness components and
quality-factor components. For attenuative media with negligible dispersion, the influence
of the quality-factor components on phase velocity is of the second order and typically can
be ignored. Hence, velocity analysis can generally be performed using algorithms designed
for elastic media.

To facilitate the description of TI attenuation, I follow the idea of Thomsen’s (1986)
notation for velocity anisotropy and replace the quality-factor components by two reference
isotropic quantities (wavenumber-normalized attenuation coefficients for P- and SV-waves
along the symmetry axis) and three dimensionless anisotropic parameters (e, é,, and Vo)
This new notation reflects the coupling between the velocity and attenuation anisotropy.
For fracture reservoirs that are often characterized by HTI or orthorhombic symmetry, I
extended the notation of attenuation anisotropy from attenuative TI media by employing
the principle of Tsvankin’s (1997) notation for orthorhombic velocity. The analysis of
plane-wave attenuation for TI and orthorhombic media is limited to homogeneous wave
propagation in models with aligned symmetry directions for the velocity and attenuation
functions.

To gain analytical insight into the plane-wave propagation in attenuative TI and or-
thorhombic media, I developed approximate solutions for the attenuation coefficients by
assuming that attenuation and anisotropy (for both velocity and attenuation) are weak.
Approximate normalized attenuation coefficients for P-, SV-, and SH-waves in TI media, as
well as those of P-waves for orthorhombic media, have the same form as the corresponding
linearized phase-velocity function. Moreover, similar to the P-wave phase-velocity function,
attenuation coefficients for P-waves are governed by a reduced set of parameters. Because of
the non-negligible influence of the velocity anisotropy on attenuation coefficients, however,
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inhomogeneity angle set to zero). If a model is composed of two alternating attenuative
HTTI constituents (thin layers) with different azimuths of the symmetry axis, the symmetry
direction of the effective velocity function can differ from that of the effective attenuation
coefficient. The issue of different symmetry systems for velocity and attenuation has to be
explored further, especially for models with depth-varying fracture direction.

For weakly attenuative, homogeneous media with weak anisotropy for both veloc-
ity and attenuation, the assumption of negligible inhomogeneity angle is sufficiently accu-
rate. For layered media, the inhomogeneity angle can change substantially during reflec-
tion/transmission at medium interfaces. This can strongly distort reflection/transmission
coefficients, especially for large incidence angles.

Since this thesis is mainly focused on theoretical aspects (in addition to one chapter
related to experimental measurements) of attenuation anisotropy, of importance for future
work are the complications of field-data application of the analytical results.

Because of the scarcity of current case studies on anisotropic attenuation, a conclusive
field-data application of anisotropic attenuation would greatly contribute to the study on
this topic. For attenuative media without azimuthal variation (e.g., VTI), a 2D seismic
line with sufficiently large offset-to-depth ratios can be used for estimating attenuation-
anisotropic parameters based on, for example, the anisotropic spectral-ratio method dis-
cussed in Chapter 4. For azimuthally anisotropic attenuative media, wide-azimuth data are
required to identify the principal directions of the attenuation coefficient and invert for the
attenuation-anisotropy parameters. Since anisotropic attenuation can have significant in-
fluence on the amplitude of the wavefield, high-quality data are important for the success of
attenuation anisotropy analysis. Moreover, a careful choice of the frequency band is critical
for interpreting the magnitude of the attenuation-anisotropy parameters.

Perhaps the central question is how to use attenuation anisotropy as an attribute for
lithology discrimination. Although attenuation is considered to be a key factor in estimat-
ing permeability (e.g., Akbar et al., 1993), the relationship between attenuation anisotropy
and permeability anisotropy has not been established yet. As pointed out by Brown (2004),
attenuation is not widely used yet as a major interpretation attribute but in the future it
might yield more meaningful information on permeability. Perhaps, with the advancement
of technology of seismic data acquisition and processing and the improvement of our un-
derstanding of the physical mechanisms of anisotropic attenuation, attenuation-anisotropy
parameters will become valuable attributes in characterization of fractured reservoirs. To
achieve this goal, we need to better understand the relationship between fracture parameters
and attenuation, and improve methods of estimating attenuation from field measurements.
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Appendix A

Plane SH-waves in attenuative VTI media

The Christoffel equation for a plane SH-wave propagating in an attenuative VTI
medium yields

56612'% + 55512% — pw2 =0, (Al)

where ¢;; = ¢;; + icin are the complex stiffness coefficients. The complex wavenumber is

represented as k; = k; — ik!, where kI = \/ kf2 + k12 + k12 is the attenuation coefficient.

)

A.1 VTI Q matrix: Inhomogeneous wave propagation
First, consider the general case of inhomogeneous wave propagation and allow the

vectors k and k! to make different angles (6 and 6!, respectively) with the vertical symmetry
axis. If the Q matrix has VTI symmetry, equation (A.1) becomes

Ce6 (1 + —Z—) (ksin @ — ik! sin07)2 + 55 (1 + L) (kcos @ — ik! cos7)?
Qes Qs5

—pw?=0. (A.2)

Equation (A.2) can be separated into the real part,

Ce6 [kQ sin® 6 — (kI)2 sin? 67 + L2kk1 sin @ sin 91]

Qo6
+ ocs5 |:l<:2 cos? 0 — (k%)% cos? 67 + Qi2kk1 cos 6 cos 91] —pw? =0, (A.3)

55

and the imaginary part,
C66 [L (k?sin® @ — (kT)?sin? 07) — 2kk” sin@sin 91}
Qo6
+ 55 [QL (k% cos? 6 — (k)% cos® 87) — 2kk! cos 6 cos 91} =0. (A4)
55

By introducing the SH-wave velocity-anisotropy parameter v = (cgs — ¢55)/(2¢s5)
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6), v, and (Qss — Qe6)/Qs6, yielding

1 QSS_QGG-Q)
P Tom (1+ O sin“@ | . (A.9)

Analysis of the phase-velocity function [equation (A.3)] in the limit of small attenuation
and weak attenuation and velocity anisotropy (not shown here) leads to a similar result: as
long as the inhomogeneity angle is small, it contributes only to second-order terms.

A.2 VTI Q matrix: Homogeneous wave propagation

For homogeneous wave propagation (81 = 6), equation (A.5) takes a much simpler
form:

k2 — (k)2 — 2Qssakk! =0, (A.10)
where
.2 2
o= (1+2fgsm 0 + cos“ 0 (A.11)
(14 2vy) = % sin? 6 + cos® 9
Qes

The physically meaningful solution is

=1+ (@s50)? — Qs50x. (A.12)

The real part of the Christoffel equation [equation (A.3)] then reduces to

(ces sin’ 0 + cs5 cos? 0) | k% — (k1)2 + ;’:l:; —pw?=0. (A.13)
The phase velocity of SH-waves is found as
Vs = = Eq VSR, (A.14)
where Vg}{%t is the phase velocity in purely elastic VTI media,
Vg}{%t _ \/066 sin? 6 —; cs5 cos? 6 7 (A.15)

and &, is the factor responsible for the influence of the anisotropic attenuation:

<\/1 + (@s50)? sta) (1+(Qs50)?)
Q550 .

o
O
Il

(A.16)
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Appendix B

Plane P- and SV-waves in attenuative VTI media

For P- and SV-waves, the Christoffel equation (2.6) can be written as
(51176% + 555]2?% — pw2)(6551}% + 533];% — pwz) — [(513 + 555)]21]:33]2 =0. (B.l)

Analysis of the attenuation coefficients and phase velocities of P- and SV-waves in the
limit of small attenuation and weak velocity and attenuation anisotropy shows that the
inhomogeneity angle contributes only to second-order terms (see the analysis for SH-waves
in Appendix A). Hence, the discussion here is limited to homogeneous P- and SV-wave
propagation.

B.1 VTI Q-matrix

When the Q-matrix has VTI symmetry, equation (B.1) yields

{{(c11 + icl)) sin? 0 + (css5 + icks) cos? 0] (k — ikT)? — pw?} -
{[(css + icks) sin® 0 + (cas + icky) cos? 0] (k — ikT)? — pw?}
{[(c13 + c55) + i(cls + cks)] sin B cos OkkI}2 = 0. (B.2)

The real and the imaginary parts are given, respectively, by
[(c11 sin? 0 + cs5 cos? 0)KE — pw?][(css sin? 6 + ¢33 cos? 0K — pw?]
—(c11 8in% 0 + c55 cos? 0) (cs5 sin? 0 + e33 cos? )KL
—(c13 + e55)% sin? 0 cos? O[(K$)? — (K5)?] =0, (B.3)

and

11 8in2 0 + cs5 cos® 0)K2[(css sin 6 + ¢33 cos? 9)KE — pw2 +
2 1
cs5 sin? 0 + ¢33 cos? 0)K5[(cqy sin® 0 + cs5 cos? 0)KE — pw2
2 1
—(c13 + 055)2 sin? 6 cos? 02KIK5 =0, (B.4)
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B.2 Special case: Q;; =Q

. . . & C c Cs
For the special case of identical () components, —}i =888 Ts = @, equa-

o oy oy c
tion (B.1) becomes
[(011 sin? 0 + c55 cos? K, — pw2 +i(enn sin? 0 + cs5 cos? 0)]C2] .
[(C55 sin? 0 + ¢33 cos? K, — pw? + i(css sin? 0 + ca3 cos? 0)IC2]
— [(e13 + ¢55) sin 0 cos (K4 +z'IC2)]2 =0, (B.11)
where Ky and Ky are defined in equations (B.6) and (B.7) with Q33 replaced by Q.
The only physically meaningful solution of the imaginary part of equation (B.11) is

ICo = 0, which then yields the same isotropic expression for k! as that in equation (A.18).
Solving the real part of equation (B.11), I obtain the phase velocities in the form

Vipsvy = £q VRt (B.12)

where £, is given in equation (A.19), and V{%%s‘t/;} is the P- or SV-wave phase velocity in
the reference purely-elastic VT medium:

V{%%s“g}_ \/— { c11 + ¢55) sin 20 + (cas + 055)cos 6

1/2
+ \/[(011 — cs55) sin? O — (ca3 — cs5) cos? 0]2 + 4(c13 + c55)2 sin? 0 cos? 9} )
(B.13)
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Appendix C

Approximate solutions for weak attenuation and
weak attenuation anisotropy

Here I simplify the attenuation coefficient derived in Appendix B for homogeneous wave
propagation under the assumption of weak attenuation and weak attenuation anisotropy.

C.0.1 Attenuation coefficients for P- and SV-waves

For weak attenuation (k! < k), the term (k7)? in the difference k2 — (k)2 can be
dropped. If the attenuation anisotropy is weak, then the fractional difference between
the P-wave attenuation coefficients in the horizontal and vertical directions is small, and
Q33 — Qu

Qu

weak attenuation anisotropy implies that @13 is comparable to (i.e., of the same order as)
Q33 and Qs5. This follows from the definition of the parameter §,. Hence, the magnitude of

the terms A%, A and A€ in equation (B.8) is not much larger than unity. Then the terms
a Ab A°
— okk!, =—2kk! and —2kk! in equations (B.5) are of the second order compared to

Q33 " Qs3 Q33

k%, and K¢ ~ K% ~ K$ ~ K;. It follows from equation (B.6) that for weak attenuation
K1 =~ k2, which helps to represent equations (B.10) as

< 1. When Q33 and Q55 are comparable (a common case), the assumption of

A= (cen sin? 0 + 55 cos? 0)[(cs5 sin? 0 + ¢33 cos? 0) K2 — pw2]
cs5 sin? @ + ¢33 cos? 0)[(c11 sin 0 + cg5 cos? 0) K2 — pw2] , (C.1)

(
2(c13 + C55)2 sin® 6 cos? O k2.

bl

B =
C =

Combining equations (B.7) and (B.9) in the limit of weak attenuation gives

AA® + BA® — CA®

2 1 2
J— = — . .2
k? — 2Qs3kk Yy k (C.2)
Substituting equations (C.1) into equation (C.2) yields
1
A= ——(1+H), (C.3)

2Q33
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Appendix D

Isotropic conditions for the attenuation coeflicient
k[

In the main text of Chapter 2, I discuss the conditions needed to make the normalized
attenuation coefficient A isotropic (independent of angle). For completeness, here I intro-
duce the isotropic conditions for the imaginary wavenumber (attenuation coefficient) k7.
The attenuation and velocity anisotropy, as well as the attenuation itself, are assumed to
be weak.

D.0.3 SH-wave

The SH-wave attenuation coefficient can be approximated by substituting the SH-wave
phase velocity Vsy as a function of the phase angle 6 into equation (2.27):

1+, sin?6
k)I — L A — w Q ,
SH™ Von (6) SH 2Q55Vs0 \/1 + 2ysin? 6

where w is the angular frequency and Vgq is the shear-wave velocity along the symmetry
axis. If |y| < 1, equation (D.1) simplifies to

(D.1)

I w 12 2
k + o7 -y n . D
SH 2Q55‘7 0 []' ( Q ) 51 0] ( )

The coefficient kg g is independent of angle only if
Y= (D.3)

D.0.4 P-SV waves

Using the linearized phase-velocity functions (Thomsen, 1986), the P- and SV-wave
attenuation coefficients can be obtained from equations (2.36) and (2.41) as

WL Y g @ 1+5Qsin2900329+eqsin49 (D.4)
P Vp(0) P= 2Q33Vpy 1+ 6sin?6cos?6 + esin?f ’
1+ 0, sin%0
kh, = % Asy = v Q . D.5
v Vsv (6) v 2Q55Vs0 1+ osin6 (D.5)
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Appendix E

Approximate attenuation outside the symmetry
planes of orthorhombic media

The complex Christoffel equation 3.2 for homogeneous wave propagation outside the
symmetry planes can be rewritten as

(c11m? + cesn + c55n3)K1 (1,65 — PV +i(c11n + cegn3 + c55n3)Ka, (16,5
{ [ (cesn? + 622n2 + c1an3)Ky (6.2,4) — PV +i(cosni + c22n3 + caan3)Ka (6.2,4)]
(cssni + caan + c33n3)K; (5,4,3) — pV? +i(essni + caand + 633n§)’C2,(5,4,3)]
(cas + cas)nans(Ky (23.40) + 1Ko, (23,4))]*}
(c12 + ces)n1n2(Ky (12,66) + K2 (12,66) )]
{ [ (c12 + ces)n1n2(Ky (12,66) + 1K2,(12,66))]
(cssm? + caan3 + c33n3)Ky (5,4,3) — PV + i(cssn] + caan + c33m3)Ka (5.4.3)] —
(c13 + e55)nang(Ky 13 55) + 1Ko, 13,55))] - [(c23 + caa)nons(Ky (23,44) + K2 (23,44))]}
(c13 + e55)n1n3(Ky,13,55) + K2 (13,55) )]
(c12 + ces)n1n2(Ky (12,66) + 1K2,(12,66))] - [(C23 + caa)nana(Ky (23 44) + 1Ko (23,44))]
(c13 + cs5)n1n3(Ky, 13,55) + K2 (13,55))]
(cesn + c22n3 + can3)K1 (6,2,4) — PV + i(cesni + c22ns + casn3)Ko 62,0} =0,
(E1)

[
[
a
=
—
[
al
[
+ [
{1
-
[

where

1— A2
K _1—A2+—A Ko =
! Q33 ? Q33

A , ’l A l
Ky =K1+ 2 5;3)«4, Ko, = K2 + 5;3 (1- A%,

Agij kit A ikl
K1 Gjery = K1+ 25—]33)A, Ko, i,k = Ko + 5133 —WH) (1 _ 42,
Q33 — Qi Q33 — Q; Q33 — Qu
Ciin% Qn te i % QJ] ]] ln% Qll
Ay =
(t.g:l) ciin% + c”n2 + cyn? ’

—2A,

and
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The real part of equation (A-2) is

(c11n? + ceen3 + cssni — pV?)
+ [(cosn? + coam3 + caand — pV?)(cssni + caan + caani — pV?) — (co + caa)*n3ng]
—(c12 + cg6)n1ne
- [(e12 + cos)nina(cssn? + caan’ + czgn — pV2) — (c13 + es5)(cas + cag)n1nang]
+(c13 + cs5)n1n3
- [(c12 + ce6)(cas + caa)ninan3 — (c13 + cs5)n1na(cesn? + coan + caan3 — pV?)] =0,
(E.3)

which is identical to the Christoffel equation for the reference nonattenuative medium.

The normalized attenuation coefficient A is obtained from the imaginary part of equa-
tion E.2:

A=§C—§£(l+%), (E.4)
where
Hy = A(1,6,5)C(1,6,5) [(C(6,2,4) - PVZ)(C(5,4,3) - PVZ) - C(223,44)]

+A6,2,4)C(6,2,4) [(0(1,6,5) — VA (Csa3 —PV?) — 0(213,55)]

+A5,4,3)C(5,4,3) [(C(I,S,S) - pV2)(C(6,2,4) —pV?) — 6(212,66)]

_2A(13,55)C(213,55) (Ce.2.4) = PV?) = 2A(12,66)0(212436) (Cis03 = PV”)

—2A(23,44)C(223,44) (Caes —PV?)

+2 (Aasss) + Apzee) + Aesaa)) Casss)Cra2,66)C23,44) » (E.5)
and

Ha=pV? [(Caes) — V) (Cio2.4) — PV?) + (Cro5 — PV (Ci5,a.3) — pV7)
+(Ce24) — pVQ)(C(5,4’3) - pV?) - c(212,66) - C(213,55) - 6(223,44)} . (E®)

H. . . . .
The term —— in equation E.4 can be expressed through the velocity- and attenuation-

Ha

anisotropy parameters. Assuming that the anisotropy is weak for both velocity and atten-
uation, I drop the quadratic and higher-order terms in all anisotropy parameters to obtain

H, = c33(c3g — c55)> [eg)n‘% + eg)ng + (Qeg) + 5&3))n%n§ + 5((02)71%11% + 58)n%n§] ,
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Appendix F

Second-order approximation for the effective
parameters of layered attenuative VTI media

Here I derive the second-order approximation for the effective velocity- and attenuation-
anisotropy parameters for thin-layered media composed of an arbitrary number of VTT (in
terms of both velocity and attenuation) constituents. In accordance with the main assump-
tion of Backus averaging (see the main text), the thickness of each layer has to be much
smaller than the predominant wavelength.

F.0.5 Anisotropy parameters for SH-waves

First, I consider the parameters v and -, which control the velocity and attenuation
anisotropy (respectively) for the SH-wave. The effective stiffness component ¢s5 is given by
(see equation 5.17)

~ 1
Cr5 = f (Fl)

N
¢(k)
> @

Ak
k=1 055)(1 - l/Qg5))

N
where ¢(¥) denotes the volume fraction of the k-th constituent (E o) = 1). In the weak-

k=1
attenuation limit (—1—— < 1), ¢s5 can be approximated as
55
1 1
—) = )
o = 55 . 025Q55 ' (F.2)
(o
From equation F.2 it follows that
1. _
cs5 = (—) b (F.3)
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\V i i ® 0 Ak
lS- an 55
PP —2— Ay P (F.13)
k=1 l=k+1 Cs5
H(Van) _ ¢ (F.14)

where A-(% denotes the difference between the medium properties of the k-th and I-th

constituents. For example, Ac( b= cks — ks and Ay*D = 4t — 4k Equations F.10-F.14
generalize equations 16-19 of Bakuhn (2003) for layered media with an arbitrary number of
constituents.

To obtain the second-order approximation for the effective attenuation-anisotropy pa-
rameter v, I substitute equations F.4 and F.7 into equation 5.25 and keep only the linear

and quadratic terms in Acss), AQ(k) 'y(k), and ,yc(?k):

Yy = (’Yq) " %(?13) n vc(?ls-Van) " 'Yc()lS—Qan) n %(zVan-Qan) , (F.15)
where
N
) — Z ¢(k),),c(2k) ’ (F.16)
__QZ Z o050 Ak AQEY (F.17)
k=1 1= k+1 es Qs |
%(Jis-Van) 22 Z ok M 2x55 AQSS AyED (F.18)
k=1 l=k+1 Qss
N N (k,0) (k,l)
1s—Qan _ ®) 50 Acss”  AQss" | A (kD) F.19
; lz 1¢ Cs5 Qs5 To ( )

(Van-Qan) _ o S~ (69 ,0) () A ()
Y 22 Z $Pg0 Ay EDAYED (F.20)
=] [= 1
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for £ becomes

52

12946 —
< AT

(F.25)

or

52

=gy

(F.26)

depending on the sign of c;3; here, c;3 is assumed to be positive (see equation F.25).

By keeping only the linear and quadratic terms in Acg;), Acg;), AQ&?, AQg;) , as well
as in the interval velocity- and attenuation-anisotropy parameters for P- and SV-waves, one
obtains the second-order approximations for the effective VTI parameters.

1. Parameter e:

€= <6> + E(iS) + E(is-Van) + E(Van) , (F27)
where
N
() =D oM, (F.28)
k=1
N N (k1) A (k) (k1) 2
; Acys’ Ac Ac
e(13)22!_]2: Z MOPIC €33 55 —g( 55 > , (F.29)
k=1 l=k+1 €33 o5 Cs5
) N N (k1) (k,l)
6(1s-Van) _ Z ¢(k) ¢(1)Af33 ( Aekd _ A5(k,l)) +2gAf55 AsHD (F.30)
k=1 I=k+1 Cs3 Cs5
(Van) _ 1§~ 5= g 2
an) _ _ 1 k) (1) (k,0)
€ 52 > oMo (Aé ) : (F.31)
k=1 l=k+1
and g = fﬁ
€33

2. Parameter 6:
5 = (6) + o(18) 4 glis-Van) | 5(Van) (F.32)

where

N
@) => ¢*sk), (F.33)

k=1
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(Van-Qan) Al
€ =3 3 6060 kDAY —Ad(k’l)Aé(Q’“”)] . (F.42)
k=1 l=k+1
4. Parameter 4,,:
5, = (5,) + 6(18) (1S-Qan) + 5(gVan—Qan) N 6(Van) (F.43)
where
N
(6) =Y o*6) (F.44)
k=1

AcED AQED

(k,l) (k1) (k)
(ls) _ _492 Z ¢(k)¢,(l) {(1 _ = ) (Acsa _ Af55 ) Afss

k=1 I=k+1 Cs5 €55
B Acg’;’l) Acgg’l) AQ(k 1)
+gQ — - 2 —
C33 Css Qs5

N N
6(15'Qan Z Z ¢(k ¢(l) A6233 A(S(k l)

Q33

k=1 l=k+1
S(Van-Qan) _ 1 ﬁ’: i 5050 AGED AGED
Q - 1—3 Q
k=1 l=k+1
_ N N
(Van)  _ 1-g, k) (1 k)2
dg —g(l—g)QZ Z ¢( )¢()(A5( )) )
k=1 I=k+1

555 Q33

(F.45)

(F.46)

(F .47)

(F.48)
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Appendix G

Radiation patterns for 2D attenuative anisotropic
media

Here I derive an asymptotic solution for far-field radiation patterns in 2D attenuative
anisotropic media using the steepest-descent method. The wave equation in the frequency-
wavenumber domain can be written for wave propagation in the [z, z3]-plane as

(Gijuikshy — pw?i) ik (w, k) = fi(w), (G.1)

where k; are the wavenumber components, p is the density, w is the angular frequency,
and i,5,k,l = 1,3. tx(w,k) denotes the spectrum of the k-th component of the particle
displacement in the frequency-wavenumber domain, ¢;j = ¢k — iciljkl are the complex
stiffness coefficients, and f;(w) is the spectrum of the i-th component of the line source
function (i.e., independent of x5).

The spectrum of the particle displacement is given by

g (w,X) = . / ” / ” fiw) elF121+kazs) g dkeq | (G.2)
’ (2m)? J_o Cijkikiki — pw?di

The integral G.2 can be represented in polar coordinates by using

p1 = psinf; ps =pcosh, (G.3)

k
where p = — is the slowness and 0 is the polar angle:
w

2
pfl ) iwp(z1 sin 0+x3 cos 8)
U (w, x e d d9, G4
ir( (2m)? / / Cijrip?ngng — pdik b (G4

ny1 = sinf and ng = cos 6.
Next, I apply the steepest-descent method to evaluate the integral over the slowness p.
Two complex poles of the integrand correspond to the solution of the Christoffel equation:

5ijkl p2njnl — p(sik =0. (G.5)

The term - g) fi(w)
Cijrip“nyng — poik

in equation G.4 can be expanded in a Laurent series in terms
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yields

Up(w,x) =

[ i Uy exp(iwps(z1 sin 6, + z3cos és)]
2rw

(z1 sin 0, + x5 cos és) [ﬁs + 2P, (
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Ty cosfs — x3sinf

x1sin s + 3 cos s

;

do?

9=és}

(G.12)




