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The velocity inverse problem of geometric acoustics for an 

inhomogeneous non-dispersive medium is studied. The elegant and 

powerful theory of pseudodifferential operators and Fourier integral 

operators is utilized to asymptotically solve a class of general 

asymptotic integral equations for which the important velocity 

inverse problem is a special case. It is demonstrated that explicit 

inversion algorithms can be generated for the three dimensional 

backscattered data configuration with constant reference velocity. 

In particular, the zero order and first order inversion algorithms 

are developed and extensively analyzed. It is shown that the first 

order inversion algorithm annihilates the linear error terms produced 

by the zero order algorithm. Consequently, a potentially valuable 

improvement over existing inversion algorithms is indicated. The 

results are shown to be consistent with exact closed form solutions 

obtained by the Cagniard-de Hoop method for stratified media. 

Furthermore, the contributions to the field are informative in 

demonstrating that asymptotic Fourier integral operator methods 

can be applied to the problems of geometric acoustics.
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CHAPTER 1 

BACKGROUND THEORY 

Over the last two decades, substantial and important progress has 

been made toward the solution of a class of significant problems known 

as inverse problems. Inverse problems are characterized by extensions 

of partial differential equations to the more general problem of the 

determination or approximation of unknown coefficient functions from 

various types of boundary data. The boundary data can be either time 

or spectral data. 

The main topic of this dissertation concerns the velocity inverse 

problem arising from geometric acoustics theory. The velocity inverse 

problem is mathematically formulated in terms of determining velocity 

functions in a wave equation from boundary data measurements. This is 

the natural mathematical model for the seismic problem of imaging the 

geophysical discontinuities in the earth through the interpretation of 

reflected acoustical data generated by an impulsive wave source. In 

addition, the velocity inverse problem is relevant to non-destructive 

testing of materials and medical tomography. Furthermore, geometric 

acoustics phenomena have analogues with the electromagnetic propagation 

phenomena of geometric optics. In fact, the theory of geometric optics 

and geometric acoustics are essentially identical. Consequently, there 

is considerable potential for application of the inversion techniques 

to electromagnetic scattering phenomena. 

In this introductory chapter, the necessary background theory is 

presented. A discussion of geometric acoustics methods and sound wave 

propagation phenomena in inhomogeneous non-dispersive media is required



2 

as a basis for later theory. The velocity inverse problem is described 

and formulated in terms of a fundamental integral equation for an index 

of refraction perturbation. This integral equation is then solved using 

Fourier integral operator techniques in subsequent chapters. 

1.1 Historical Perspective 

The velocity inverse problem was formulated as a perturbation 

problem by Cohen and Bleistein [7]. These researchers demonstrated that 

an index of refraction perturbation could be solved for in the case of 

a 2-dimensional backscattered data configuration using a constant 

reference velocity. 

These techniques were later extended by Bleistein, Cohen, and 

Hagin [5] to include a more general integral equation utilizing a non- 

constant reference velocity. These authors pointed out the relationship 

of this perturbation formulation with the Born approximation found in 

theoretical physics. An algorithm was developed from the method of 

stationary phase and asymptotic analysis (see, for example, Bleistein 

and Handelsman [6], Erdélyi [13], Lebedev [23], or Olver [28]). This 

algorithm addressed the backscattered data problem with constant 

reference velocity. 

Cohen and Hagin [8] then presented an algorithm for backscattered 

stacked seismic data in which the reference velocity varied with depth. 

This greatly enhanced the validity of the perturbation assumptions to 

more realistic inverse problems. Again, high frequency asymptotic and 

stationary phase methods were utilized to solve for the unknown index 

of refraction correction to the velocity. Moreover, it was noted that 

the integral equation was in the form of a generalized Fourier integral 

equation. 

Along a parallel direction, several researchers have been using 

the powerful mathematical tools of Radon transforms, pseudodifferential 

operators, and Fourier integral operators. The Radon transform has
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become the fundamental tool in computerized tomography, the process of 

reconstructing images from recorded projections. The sources by Deans 

{11,12], Helgason [19,20], and Natterer [27] provide current treatments 

on Radon transform theory. Many researchers have been investigating the 

theory of pseudodifferential operators and their natural generalization 

to Fourier integral operators. The books by Treves [33] and Taylor [31] 

offer a modern perspective on the mathematical theory concerning these 

operators. 

The connection between the theory of pseudodifferential and 

Fourier integral operators and the wave phenomena of geometric optics 

was discussed by Guillemin and Sternberg [17]. More recently, Beylkin 

[2,3] set the stage for very general inversion techniques for the 

problems of geometric acoustics. Beylkin made a significant contribu- 

tion by realizing that the general mathematical approaches of Randon 

transforms, pseudodifferential operators and Fourier integral operators 

could be applied to the Born approximation integral equation of the 

velocity inverse problem. Beylkin then formulated inversion algorithms 

in terms of a generalized backprojection operator analogous to the 

Radon transform methods of computerized tomography. Beylkin also noted 

that this general setting includes all of the practical configurations 

of geophysics, tomography, and non-destructive testing. 

Recently, the earlier stationary phase approaches were compared 

to Beylkin's methods by Cohen, Hagin, and Bleistein [9]. It was noticed 

that the problem of a developing a feasible algorithm for a particular 

seismic configuration is reduced to whether a certain Jacobian is 

computable. These authors then derived an expression for velocity 

inversion in a full 3-dimensional setting with a general data surface. 

The implementation of these algorithms into computationally feasible 

schemes was discussed.



1.2 Wave Propagation in Inhomogeneous Non-Dispersive Media 

The problem of interest concerns acoustical wave propagation and 

the imaging of wave propagation velocity (or equivalently, index of 

refraction) discontinuities in an inhomogeneous medium. In the present 

section, the phenomenon of wave propagation is mathematically formu- 

lated in terms of an asymptotic series satisfying the wave equation. 

The method to be described follows Bleistein [4] and Lewis and Keller 

[24]. 

The inhomogeneous medium is modeled as an infinite half-space 

with wave velocity assumed to be a piecewise smooth function of only 

position. In particular, it is assumed that the medium shows an absence 

of significant dispersion (wave propagation velocity dependence on 

frequency) over the range of frequencies of interest. A right-handed 

coordinate system x = (x) 5X, »%4) is introduced where x, and x. are 
2 

chosen to lie along the outer surface of the medium, and where x, is 

positive in the direction of depth into the medium. 

We consider an impulse wave source emanating from a surface point 

E= (E2850). The source wave propagates through the medium and is 

reflected from internal surfaces of wave velocity discontinuity. It is 

assumed that the motion of the source wave U(x,t) propagating through 

regions of smooth velocity is governed by the wave equation, 

2 
v2u __i 3 _ —§ _ § ; 2m) ae2 (x — &) &(t) 

U(x,t)=0, t<0, (1.1) 

where V2 is the spatial Laplacian operator, § denotes the Dirac delta 

function, and c(x) is the spatially dependent wave velocity function. 

On surfaces of velocity discontinuity, the wave bifurcates into 

reflected and transmitted waves weighted by the appropriate reflection 

and transmission coefficients.



We use the following convention for the n-dimensional Fourier 

transform and its inverse: 

  

f(k) = £,{F(x)] = f F(x) et®™ ax , 
2" 

F(x) = €)'(£(e)] = + f te) e '* * ak. (1.2) 
(20 gn 

The sign convention above is chosen to more closely reflect the form of 

the forthcoming integral equations. Taking the l-dimensional Fourier 

transform f of the wave equation with respect to time results in the 

inhomogeneous Helmholtz equation, 

w2 

2( 
  V2u(x,w) + u(x,w) = — 6(x-— €&) , (1.3) 
c*(x) 

where u(x,w) is the Fourier transform of U(x,t). 

For points x not at the source point &, u(x,w) satisfies the 

homogeneous Helmholtz equation. We assume a formal asymptotic series 

solution of the form 

iwt (x) B a(x,w) e , (1.4) u(x,w) = w 

where 1t(x) denotes travel time and where the amplitude function is 

formally written 

A(xjw) = f AG, (1.5) 

Note that the exponent 8 in equation (1.4) can not be determined from 

the homogeneous Helmholtz equation, but is determined by matching the 

solution asymptotically to prescribed data. 8 = 0, for the problems of 

interest. Substituting the asymptotic representation into the Helmholtz 

equation results in



  ; J ee ( (wr)2 -—1_) 
ce? (x) 

1 
* Goyer (Caverwag + Age) V2 ) + PAS} =o. (1.6) 

Separately setting the coefficients equal to zero for each power 

of w produces a system of equations for the travel time and amplitude 

functions. Travel time 1(x) satisfies a first order nonlinear partial 

differential equation known as the eikonal equation, 

(vr)2=—t , (1.7) 
c2(x) 
  

The first amplitude function Ay (x) satisfies the first transport 

equation 

2Vt*VAg + Ag(x) V4r = 0. (1.8) 

The higher order amplitude functions Aj; (x) satisfy the higher order 

transport equations 

2Vr WA; + Aj(x) V2r = — V2As-(x) , (fj = 1,2,3,...) - (1.9) 
j 

The partial differential equations (1.7), (1.8), and (1.9) describe the 

wave propagation completely. However, for the problems of interest, the 

velocity function c(x) is also unknown.



1.3 Derivation of the Backscattered Data Integral Equation 

In this section, the problem of velocity discontinuity imaging is 

framed in the form of an integral equation. The method used follows the 

papers by Cohen and Bleistein [7], Bleistein, Cohen, and Hagin [5], and 

Beylkin [3]. We consider a source wave radiating from a point on the 

data surface x, = 0, € = (E) 96,20). The source wave propagates through 

the medium and is reflected from a point x = (x) 5X, 9%) at depth. If 

the point x lies on a surface of wave velocity discontinuity, the 

scattered wave has a non-zero amplitude at the receiver. The observed 

scattered field is measured with receivers on the data surface at the 

source point €. The wave propagation geometry is depicted in Figure l. 

A known reference velocity Cy (x) and an unknown index of 

refraction perturbation ~(x) are introduced in terms of the unknown 

velocity c(x) by the equation 

1 1 
(1 + w(x)). (1.10) 

c2(x) cf (x) v(x) 
    

We extend the problem domain from the half-space x, 2 0 to the entire 

space 83 by imposing the condition that p(x) = 0 for x, < 0. This has 

the advantage of simplifying the notation and discussion. 

The total field is denoted u(x,w,£&). The total field satisfies 

the Helmholtz equation with wave propagation velocity c(x), 

w2 
  V2u(x,w,&) + J u(x,w,&) = — 6(x—&). (1.11) 
c2(x 

The total field is decomposed into an incident field u; (x,0,€) and a 

scattered field ug (x,w,€). Specifically, 

u(x,w,&) = u, (x,w,8) + ug (x,w5€) ’ (1.12) 

where the incident field satisfies the Helmholtz equation for an 

unperturbed medium with wave propagation velocity given by the



  

     
      

     

     

  

   

Point at Depth 

Surface of x= (x) 5%, 2X4) 

Discontinuous 

Index of Refraction 

Incident Wave 

Scattered Wave u, (x,w,&) u, (x,w,&) 

Data Surface x, = 0 

3 Source Point   
Figure 1. Wave Propagation Geometry



reference velocity Cy (x), 

we 
  V2u, (x,w,&) +s u,(x,w,£) = — d(x - €) , (1.13) 
© x 

and where the scattered field satisfies 

  

  

2 
V2u.(x,w,€) + — (x,w,€) Ug (X5w E e? x Ug (X,W gE 

2 =-_ w 
= — p(x) 2 (x) ( u, Cx,wsE) + Ug (x50 €) ) : (1.14) 

Note that adding the equations (1.13) and (1.14) immediately results in 

the original Helmholtz equation (1.11). 

It is to be observed that the incident field u, (x,w,€) is in fact 

the free-space Green's function for the unperturbed Helmholtz problem. 

The incident wave takes the following asymptotic form: 

up (x,wsE) = AGKw,E) etOt OE? | (1.15) 

where 

ACxw.e) =f AGGHE (1.16) 
4=0 (iw)4 

The phase function 1(x,&) is the travel time from the source point £& 

to the point at depth x that satisfies the eikonal equation 

221, (1.17) 
(vr) 2 (x) 

  

The first amplitude function A) (x8) satisfies the transport equation 

20r VA, + A (as6) v2r = 0. (1.18) 

The higher order amplitude functions Aj(x,&), j = 1,2,3,..., satisfy 

the transport equations
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2vr VA; + Ay(x,E) V2r =—V2Aj-) 5 (j = 1,2,3,...) « (1.19) 

Consider the linear differential operator Ly for the unperturbed 

Helmholtz problem, 

2 

£=v2+— 
0 cf (x) 

  (1.20) 

We utilize Green's theorem for the Helmholtz operator Ly (see Bleistein 

[4] or Morse and Feshback [26]). If the two functions u(x) and v(x) 

have the necessary derivatives on a compact manifold Q in Rg? with a 

boundary 32, then 

J ( ulx) £, v(x) — v(x) £, u(x) ) dx 

2 

=f (u(x) 2% — v(x) 2) as , (1.21) 
dn on 

an 

where — denotes normal derivative and dS denotes the surface differ- 
én 

ential form. 

In particular, for the unperturbed Helmholtz operator {acting on 

the incident and scattered field on a sphere Q of large radius R, we 

obtain 

J ( u, (x,w€) £, ug (x,w €) -_ ug (x,w,€) £) u, (x,wr€) ) dx 

Q 

3 3 =f (u,(x,o,€) 8 - uo(x,w,e) —1) as. (1.22) 
92 an s an 

Moreover, by application of the radiation condition at infinity for 

R +o, the surface integral vanishes. Substituting the unperturbed 

medium Helmholtz equations (1.13) and (1.14) for the incident and 

scattered field into the surviving volume integral and using the 

properties of the Dirac delta function leads to the integral equation
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ug (Ew,&) = w? f 2G) y (xu, 6) 
R3 © (x) 

: ( u,(x,w,) + ug(x,w,&) ) dx. (1.23) 

The above expression is a nonlinear integral equation relating 

the unknown index of refraction perturbation y(x) to the measurable 

data ug(Esws&) of the scattered field at the surface x, = 0. However, 
3 

the scattered field at depth ug (x,u,€) is also unknown. 

Up to this point, there have been no approximations used in the 

formulation of the integral equation beyond the model of the medium and 

the appropriateness of the wave equation to describe the propagation of 

the wave. In this sense, the integral equation is an exact equation. We 

assume that the perturbation w(x) is small. Consequently, the scattered 

field is also small relative to the incident field. In particular, the 

term y(x) ug (x,w,€) is essentially quadratic in the small parameter 

w(x), whereas the term p(x) uu, (x,w&) is linear in (x). Hence, we are 

justified in making the approximation to a linear integral equation by 

dropping the product term p(x) Ug (x,w,8). This technique is equivalent 

to the Born approximation or regular perturbation method of theoretical 

physics (see Merzbacher [25], Jackson [22], or Morse and Feshback [26], 

for example). Thus, the linearized integral equation is given by 

D(w,é) = w* f VCH) 2 (x50, €) dx , (1.24) 
R3 c7 (x) I 

where the data measurements are denoted 

D(w,&) = ug (E,u,€) . (1.25) 

In order to solve the linear integral equation (1.24), it is 

necessary to determine the incident wave explicitly. This involves 

solving the eikonal and transport equations. We now discuss the method 

by which these equations are solved.
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1.4 Solution to the Eikonal and Transport Equations 

In this section, the eikonal equation is solved using the method 

of characteristics. The method of characteristics is a general tech- 

nique for solving first order nonlinear partial differential equations. 

The method is particularly suited to the eikonal equation. The solution 

is given in terms of parameterized trajectories referred to as rays. 

The method of characteristics originated with Cauchy. Details of the 

method can be found in several sources including Hartman [18], Spivak 

[29], Courant and Hilbert [10], and Garabedian [15]. Its application to 

wave phenomena can be found in Bleistein [4]. 

One key result of the present section is the reformulation of the 

eikonal equation into the ordinary differential equation (1.40) for the 

rays as a function of the reference velocity. In addition, the trans- 

port equations are solved through the exploitation of a ray Jacobian 

invariance property. This generates ordinary differential equations 

(1.48) and (1.57) for the amplitude functions along rays. These differ- 

ential equations can be explicitly solved for particular reference 

velocity profiles. The solutions will be required in the forthcoming 

chapters. 

Consider a general nonlinear first order partial differential 

equation of the form 

F(x,u,p) = 0, (1.26) 

where u(x) is the solution function in the variable x = (x) 9x, yeeeeK) 

with gradient 

9 5 9 

Ox, ax, Ox, 
p= (2,2, 2... , 2). (1.27) 

The differential equation is subject to the initial conditions
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u(x, (&)) = uy (é) ; (1.28) 

on the (n-1)-dimensional submanifold M in R" represented parametrically 

by 

x = x, (E) > € = (Ey sEneeees& 1) . (1.29) 

If the function F(x,u,p) is in the class C2(R2M+1) and if the 

initial data is noncharacteristic on M, then there exists a unique 

solution u = u(x) of class C2(R") in a neighborhood of ™. Moreover, 

the solution can be parameterized in the form 

u = u(x(&,0)) , (1.30) 

such that 

x(£,0,) = x, (&) ’ (1.31) 

and such that the system of ordinary differential equations 

dx _ oF (1.32) do (x) ap ’ 

4P =~ y(x) ( 2F 4 p3Fy , (1.33) 
do ox du 

n 

aus \(x) pw, (1.34) 
do j=l J oP, 

are satisfied with an arbitrary non-vanishing function \(x). There is 

freedom in the choice of the function A(x) that corresponds to the 

freedom of choice in the parameterization 0 in the solution curves 

x(o), 

Now the method of characteristics is specialized to the eikonal 

equation in R° written in the form
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2 
= a = F(x,t,p) e 262 (x) Oo, (1.35) 

where p2 denotes the square of the magnitude of the gradient of travel 

time T, 

p? = pp=V'vr. (1.36) 

The corresponding system of first order ordinary differential equations 

in terms of the general parameterization function A(x) is given by 

  

  

SX _ (x) p, (1.37) 
do 

dp _ A(x) y(—t - A(x) v( 1 ) (1.38) 

do 2 c2(x) c (x) ‘ec (xy ’ " 
0 0 0 

dt \(x) 
— = . 1.39 
do e7 (x) , 

Moreover, this system of first order differential equations can be 

expressed in terms of a second order differential equation for the ray 

trajectory x(o), 

  dt dx). At) g(_1_), (1.40) 
do‘A(x) do cy (x)  e (x) 

We will be interested in curvilinear coordinate transformations 

of the general form 

x, = X; (qd) 145943) 
2 7 ¥y (4, 45945) 

3 %4 (4) 54,545) ’ (1.41) 

” u 

“ i] 

where one of the transformation variables is chosen to be the ray 

parameter o. For our purposes, q, = 9. The corresponding Jacobian of 

the curvilinear transformation is denoted
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a(x, ,x,,x.,) a(x, ,x,,x,) 
J = det —) 4 4 = ger —1 42 3 (1.42) 

9¢q, 45945) 3(q, 54,20) 

Furthermore, an application of the chain rule shows that the Jacobian 

satisfies the property: 

aT 2 yy 98 = 3 yur) =JVAVr +t ArT Ver. (1.43) 
do do 

The above Jacobian property is utilized to solve the transport equation 

below. 

Expressing the gradient of travel time p = Vr in terms of ray 

velocity by equation (1.37) and substituting the result into the first 

transport equation (1.18) results in an ordinary differential equation 

along the ray trajectory, 

2, ya -2% 4 aa v4r = 0. (1.44) 
A 9 9° do 

The Jacobian property in equation (1.43) and the first transport 

equation along rays (1.44) are used to derive a ray Jacobian invariance 

property. The ray Jacobian invariance property will permit the ready 

solution of the first transport differential equation for the wave 

amplitude function along rays. The initial step consists of calculating 

the derivative of AGI/A with respect to the ray parameter 0. We use the 

slight abuse of notation A)(o) = Ay (x(o)). 

da AZ(o) J(c) )= 
  

dx 
A, fo) J(o) VA, a 

do 4a) rACa) do 

26) dJ_ AZ d + Ante? $F _ AO Vy SE (1.45) 
Ala) do A2(o) do 

The Jacobian property (1.43) provides an expression to substitute for 

the derivative of J with respect too.
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d . A J(o) 2 d SB ¢ Agh HO 2? 65) a0o) vA _oS 
do r\Co) M(o) 2 0 do 

A2(o) +07 ( 36) va + Vr + ACG) Jo) V2r ) 
x(a) 

A2(o) d _ Ag (a) Ho) Wo. (1.46) 
12(0) do 

A rearrangement of terms with an application of the differential 

equation (1.37) results in 

  

d A2(co) J(o) 2 dx — (tt) ag A VA. + — + A2(o) V2 = ( es ) = Jo) ( ve 960) VA, at *(a) vr ) 

A2( 
+ 2— J(o) VA + Vr 

Ao 

A2(o) — AO 505) vA (Co) Wr). (1.47) 
42(0) 

Recalling the form of the first transport equation (1.44) along rays, 

the first term of the above expression immediately vanishes. Moreover, 

the second and third terms cancel each other. Thus, the desired ray 

Jacobian invariance property is obtained. Specifically, 

d , A*(o) J(a) 
— i a eT (1.48) 
do ACs) 

It follows that AZI/A is constant along rays. Consequently, it 

becomes trivial to integrate the above differential equation and solve 

for the first amplitude function along rays. Thus, 

x J 
Ao) = aco.) | MOS | (1.49) 

0 00 Moy) J(c) 

where 59 denotes the ray parameter value corresponding to the initial 

conditions. Hence, the solution of the first transport equation has 

been reduced to the calculation of a Jacobian J along rays.
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A similar method can be exploited to solve the higher order 

transport equations along rays. Consider 

    

d J(o) Aj(o) J(o) 
— ( A:(o) A (oa) (1.50) 
do ( j6° 3 dg x | A) (a) °° \Co) J 

Taking advantage of the ray Jacobian invariance property (1.49) results 

in the following. 

a >) = Jla_) a Aj(o) 

\Coo) dg Ay (o) 

  
d = (Aj60) ). (1.51) 

Oo 

Equivalently, by again applying equation (1.49), 

J J a >) A (9) (ao) Aj(o) 

0 Ao) do A, (a) 
    

d 
= (Aj) ). (1.52) 

Oo 

Expanding, we obtain, 

d J(o) . dA; A:z(o) dA — ( As(g) i — a). (1.53) 
ag | Ai eS xe Sa Ajo) do 

Hence, by applying the ray equations, 

d y ) = (A | >) eV XG) 3) 
Co 

    

  

A;( 
( VA; ° Vr - ie ya Vie). (1.54) 

The transport equations (1.18) and (1.19) can be rewritten in the 

form: 

1 
VA * Vt =—-—A (co) V2r , (1.55) 

0 2 90 

1 2 1 2 VA; ° Vr = 3 Aj(a) Ver “5 V2Aj-) - (1.56) 

These expressions are substituted for the corresponding terms in 

equation (1.54). This substitution produces
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d J(o) 1 
~ (aso) oy = --=N (6) Slo) V2AG-y (1.57) 
do J ACo) 2 J 

The above equation is a simple inhomogeneous ordinary differential 

equation that can be solved recursively by direct integration. 

J(a) J(o) ajo) | —- ayo.) / 2 
A(o) 0 ACoA) 

1 9 
=F JN ro") Jo") V2A5-1 0") do’ . (1.58) 

o 
0 

  

Thus, the problem of solving the higher order transport equation 

has been again reduced to the calculation of the Jacobian J along rays. 

Hence, the amplitude is given by 

rA(o) Jo) 
As(o) = As(o_) / ————— 
j*e i*%9 Moy) J(a) 

Mo) 9 
=~ fA x6") Slo") V2A5-y(0") do! . (1.59) 

(c) So, 
  

1 

2 J 

Equations (1.40), (1.49), and (1.59) provide the fundamental equations 

required to specify the wave propagation in a particular medium. We 

now turn to the subject of pseudodifferential and Fourier integral 

operators.
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1.5 Pseudodifferential and Fourier Integral Operators 

In the forthcoming chapters, general integral operators appear 

often. In this concluding section, we provide definitions of the 

relevant integral operators. Specifically, we are concerned with two 

types of integral operators: the pseudodifferential operators and the 

Fourier integral operators. A rigorous treatment of these integral 

operators can be found in the sources by Treves [33] and Taylor [31]. 

A pseudodifferential operator A is represented by expressions of 

the following kind: 

J f ei (xy) +k aCy,k) u(x) dx dk. (1.60) (Au) (y) = Cone nop   

The function a(y,k) is known as the symbol of the pseudodifferential 

operator A. The pseudodifferential operator (1.60) can also be 

expressed in terms of the Fourier transform of equation (1.2). Hence, 

  

1 i e a 

(Au) (y) = fe FY acy,n) G(k) dk , (1.61) 
n (20)? R 

where u(k) denotes the n-dimensional Fourier transform of the function 

u(x) 9 

u(k) = FE [u(x)] . (1.62) 

The pseudodifferential operator (1.60) can be generalized to 

operators of the form 

1 
  

(ame jf ett (xsy,8) a(x,y,@) u(x) dx do , (1.63) 
T 

Xr x 

where the phase function $(x,y,@) is subject to the conditions: 

(Fu) (y) =
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(1) ¢ e cC™C RX RX RB” — fo} ), 

(2) @ is positive-homogeneous with respect to 6 of degree 1, and 

(3) Vio and vo do not vanish in R” X Rg" X Rg” — [o}. (1.64) 

An operator F satisfying (1.63) and (1.64) is called a standard Fourier 

integral operator. 

The standard Fourier integral operators represent a class of 

operators that are easy to analyze from the point of view of functional 

analysis. However, for many important applications, one typically deals 

with phase functions $(x,y,6) that violate the restrictions (1.64). 

Therefore, we define a general Fourier integral operator F as an 

operator of the form (1.63) but not necessarily satisfying the 

restrictions (1.64). Commonly, we simplify the terminology and speak 

of Fourier integral operators by dropping the word general. This 

concludes the background theory needed for the forthcoming chapters.



CHAPTER 2 

GENERALIZED ASYMPTOTIC INTEGRAL EQUATION INVERSION 

In the previous chapter, the nature of scattering data at an 

accessible surface due to reflections in inhomogeneous non-dispersive 

media was investigated. An integral equation for the backscattered 

data configuration was developed, 

D(w,&) = w2 j YOO 20x50, 6) dx , (2.1) 
R3 cf (x) I 

relating an unknown wave propagation index of refraction perturbation 

v(x) (relative to a reference velocity c,(x)) to the scattering data 

D(w,&) at the surface. The incident field ut (x,w,€) is considered to 

emanate from the coincident source and receiver point & and possess 

the asymptotic representation 

uf (x,w,€) = A2(x,w,&) e two (x, €) ; (2.2) 

where the amplitude has the expansion 

A(x,w,é) = J Ay( 6) (2.3) 

and where the phase is the sum of the travel time from the source to 

the point at depth and back, 

$(x,&) = 21 (x,&) ° (2.4) 

In the present chapter, the general inversion of a collection of 

integral equations is considered. The perturbation integral equation 

21
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for backscattered data above can be viewed as a special case of this 

class of integral equations. The method involved follows the techniques 

supplied by the papers by Beylkin [2,3]. However, the method developed 

in this chapter deviates slightly from the Radon transform emphasis of 

Beylkin in that a purely Fourier integral operator approach is taken. 

Moreover, the procedure is extended to asymptotic integral equations of 

higher order from which explicit inversion algorithms are generated. A 

rigorous treatment of the theory of Fourier integral operators and the 

related pseudodifferential operators relevant to the techniques of the 

present chapter can be found in the books by Treves [33] and Taylor 

[31]. 

2.1 Generalized Asymptotic Integral Equation 

In the present section, a class of asymptotic integral equations 

is explored. The main objective is to eventually invert the general 

class of integral equations. In particular, the inversion procedure 

will lead to explicit inversion algorithms for the backscattered data 

integral equation that is a special case of the more general integral 

equation. 

The inversion methodology consists of operating on the general 

integral equation (that is similar to a Fourier transform in character) 

with a candidate inversion operator (that is similar to an inverse 

Fourier transform in character). The combined operator takes the form 

of a Fourier integral operator, or equivalently, a generalization of a 

pseudodifferential operator. It is then noted that making the Fourier 

integral operator asymptotically the identity operator is equivalent to 

selecting the unknown kernel functions in the inversion operator. The 

present section ends with an explicit asymptotic representation for the 

Fourier integral operator formulation. This representation is further 

manipulated in subsequent sections.
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The general asymptotic integral equation to be considered relates 

an unknown function ~(x) to Fourier transformed data on a hyperplane 

x=&= (Evoeee 8) 20). The integral equation is of the form: 

D(w,&) = yt! J a(x,w,é) eid (x, 8) p(x) dx , (2.5) 
2 

where the phase function $(x,&) and the amplitude a(x,w,&) are C™. 

Furthermore, the amplitude function is assumed to have the asymptotic 

representation in the Fourier frequency variable w, 

a(x,w,£) = jy 2966) | (2.6) 
j=0 (iw)J 

We wish to invert the general integral equation for the unknown 

function y(x). By noticing the Fourier-like nature of the integral 

kernel, a reasonable asymptotic form for the integral equation inverse 

operator can be conjectured: 

  v(y) +» j J bly.w,&) e iwo(ys€) D(w,&) dw dé , (2.7) n- (2m) gn-1 9 

where the notation d& refers to the differential (n-1)-form 

dé, dE, «+s dé 1 and where the kernel function b(y,w,&) is to be 

determined. We assume that the kernel function also has an asymptotic 

expansion, 

bly,wé) = y PeOeab2 (2.8) 
k=9 (iw) 

Consequently, it is natural to combine the integral equation and the 

inverse operator to form the following Fourier integral operator F 

defined in terms of the unknown amplitude kernel function b(y,w,é). 

Specifically, 

1 

(20) 
  (F(p)) Cy) = J Jf J a€x,w,&) bly,w,&) 

gn gg 

. eiwe(x,ys8) p(x) wt! dx dw dé, 
(2.9)
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where the phase is given by 

O(x,y,&) = o(x,&) — oly,e) . (2.10) 

The strategy is to choose the kernel amplitude b(y,w,&) in terms 

of the integral equation amplitude a(x,w,&) and phase o(x,&) such that 

the Fourier integral operator F is asymptotically the identity. This is 

precisely equivalent to the determination of the kernel function 

b(y,w,&) in the integral equation inverse operator (2.7). This is also 

equivalent to inverting the original integral equation (2.5). 

In order to make the Fourier integral operator F asymptotically 

the identity operator, it is necessary to expand the Fourier integral 

operator into a series of increasingly smooth integral operators. This 

procedure leads to very complicated and intricate expansions, but will 

eventually provide explicit expressions for the undetermined kernel 

functions. 

To assist in the detailed expansions, the multi-index notation 

from the theory of partial differential operators is adopted (see 

Treves [32] or Folland [14]). Specifically, for the spatial variable 

x= (xX) see) and multi-index q@ = Cassese sa) where each Os is a 

nonnegative integer, the notation x" refers to the multivariable 

polynomial xyixp2s mn. The notation ay is a compact way to write 
2 

the partial differential operator 

a a, 3 a, a an 

CP Gee (—*. 
1 2 n 

The norm of the multi-index q@ = (a sa see+ sa), denoted |a|, is the 

sum of the respective nonnegative integers, |a| = a ta, ter tay 

The factorial symbol a! refers to the product ai! a,! eae at. 

If the Fourier integral operator F is made asymptotic to the 

identity operator, then the kernel of F is essentially an approximation 

to the Dirac delta function, 6(x — y). Such an approximating function
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to 6(x — y) will act predominantly in a neighborhood of x — y = 0. 

Consequently, it makes sense to expand the Fourier integral operator F 

for small (x — y). This requires expanding the various functions that 

define the Fourier integral operator into Taylor series. When the phase 

function 6(x,y,&) is expanded in a Taylor series for small (x — y), we 

obtain the following: 

o(x,y,&) = VioCy 5) Cx — y) + H(x,y,é&) , (2.11) 

where 

u 

Cs) 1 a a 3 a 
H(x,y,€) } — ; OA PS ND 9(y,e) 

a tet tta=2 a an 1 n 

a a 
—_ l.s- —_ n (x, y,>? (x > : (2.12) 

or more succinctly in multi-index notation, 

° 1 a a 
H(x,y,€) = Y —a_ o(y,€) (x-y)”. (2.13) 

a! Y 
|a|=2 

The amplitude function a(x,w,&) is also expanded in a Taylor series for 

small (x — y). This takes the following form in multi-index notation. 

co) 2 1 (x — y)6 

a(x,w,é) = J yY — a a.(y,e) —_z- : (2.14) 
._ _, B! J (iw) j=0 |p|=0 

The Taylor series relate the phase perturbation H(x,y,é&) and the 

amplitude function a(x,w,&), that both depend on the integration 

variable x, to the functions g(y,é) and a (ys&), that depend on the 

output variable y. This makes it possible to integrate the series 

representations (2.11) and (2.14) with respect to x in forthcoming 

equations. In addition, the phase perturbation and amplitude series 

can be further expanded to yield the following multiple summation 

formulae.
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  = y 8 H(x,y,&) = —- (x - y_)(x -— y_) 
2 p=1l q=1 29529 P "“P 4q@ °"4q 

1 2 n n 936 

+ 6 d ) —_—_— (x ¥,) (x I x) 
=1 g=l1 r=1 9Y_9y_9 p=1 q=1 r=1l Ip Yq yr 

fore, (2.15) 

=0 

n 92 
) i _ ep y (x, — Yq yerre fy (2.16) 

The concept of a homotopy (see Hocking and Young [21]) is useful 

for the purpose of expanding the Fourier integral operator F. Consider 

the homotopy h, with parameterization se [0,1] of Fourier integral 

operators given by 

Cho (yp) ) Cy) = l = f ff ellVyt (y,€)* (x-y)t+iwsH(x,y,&) 
  

~ a(x,w,&) bly,w,€) w(x) w | ax dw dé. (2.17) 

For the parameterization value s = 0, we obtain a simplified integral 

operator hy of the form 

  

Ch, (¥))(y) = 1 a f elWVyp (y,€)> (x-y) 

(20 ) R gro} J n 

. F ee Cx dw! dx dw de. (2.18) 
a,(x,&) 2 
2 F 

j=0 (iw)4 = L (iw) 

Alternatively, for the parameterization value s = 1, we obtain the 

integral operator h, 

  Ch, (y))(y) = 1 a S ff luv yo (y,€)+(a-y)tiwh(x,y,€) 

1 (2m)" gn-1 p pn 

a) afer F eee v(x) wo! dx dw de. (2.19) 
4j=0 (iw)F 4S L Ciw )
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Moreover, the Fourier integral operators h, and F in equations (2.19) 

and (2.9), respectively, are in fact identical. 

(h (y)) Cy) = (F(y)) Cy) . (2.20) 

The homotopy of Fourier integral operators h, suggests a method 

for relating the Fourier integral operator F to the simplified Fourier 

integral operator hy in equation (2.18) with phase functions of the 

form Vyo>(x-y). The method involves the expansion of the operator F 

in a Taylor series of operators. This operator Taylor series is given 

formally by 

F= y= (2° he | 
m=0 m! ds 

e=0 ° (2.21) 

The mth derivative in the above operator (2.21) is obtained from the 

differentiation of equation (2.17), 

  

m . . 

(C2) Bev) (y) = ee ff J ety 8) Gey) Hasty, 8) 
ds (27 ) go! pp 

«- x2 : ’ 2 b ’ . mtn 1 Hx, y,€) ; a,(x,&) >, 678) w(x) dx dw d&—& . (2.22) 
j=0 (iw)J yS9 (iw) 

where H"(x,y,é) denotes the mth power of the phase perturbation 

H(x,y,&), 

% 1 
H'(x,y,6) = ( Y — a% oCy,e) (x-—y)™)™. (2.23) 

a! JY 
|a|=2 

Combining the Taylor series (2.15) and (2.16) with the operator 

expansion (2.21) above, the main result of this section is produced. 

The result states that the Fourier integral operator F has an explicit 

asymptotic operator expansion of the form: 

M 
1 d,m Fuk = J Ls "h (2.24) 

M 2 m! Ge s | s=0
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where the truncated operator Fu for the nonnegative integer M is given 

by the expression 

M .m . 

(FW) = Y Aas ff elt VB Cey 
m=0 (27) m! gol p pn 

1 n n 926 

kK { 3 y, Y— &- ¥y) &Qr ¥ 

m
8
 

k=0 (iw) p=l q=l 39,2994 P 

1 2 n n 936 m 

+ 5 ) y} y-_— (x - ¥ OR YQ) (x= yor } 
=] g=1 r=1 9Y.9yY_9 p=l qg=1 r=1 Yp Yq yy. 

  

Ja 
j{ a. 467 ) + y — 4 (x Y, y_) 

4=0 (iw )4 p=1 °5, 

1 n 92a 

+- J Y —+ (x, - ¥, V(x, — Yq ) + } 
2 p=1 q=1 °¥, 2% 4 

wm) o(x) dx dw dé. (2.25) 

The asymptotic Fourier integral operator representation (2.25) is not 

in a form to perform an asymptotic analysis. This follows since it is 

not apparent at this point how the various derivatives and polynomials 

relate to frequency w. This is investigated in the subsequent section.
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2.2 Fourier Integral Operator Asymptotic Expansion 

At this point in the discussion, the inversion of the general 

asymptotic integral equation (2.5) has been formulated in terms of the 

equivalent problem of making the Fourier integral operator (2.9) equal 

to the identity operator asymptotically. Through a succession of series 

expansions, an explicit asymptotic representation (2.25) is obtained. 

In the present section, the manipulations of the asymptotic 

representation (2.25) are continued. The numerous terms of the lengthy 

expansion are collected into individual operators according to their 

corresponding order of frequency (»*. However, it is not obvious 

initially that the individual operators of the decomposition possess 

the stated frequency dependence. This property becomes apparent only 

after the various manipulations and transformations have been made. In 

particular, the transformation k = w Vy due to Beylkin [3] plays a key 

role. The Beylkin transformation reduces the Fourier integral operator 

to essentially a combination of a Fourier transform and Fourier inverse 

transform. Ultimately, explicit expressions for the first two terms of 

the asymptotic expansion of the Fourier integral operator (2.9) are 

developed in terms of combined Fourier transforms. The first two terms 

of this expansion are provided in equations (2.34) and (2.45). We now 

go through the details of this procedure. 

Up to this point, the Fourier integral operator F defined in 

equation (2.9) has been expanded into the complicated asymptotic 

operator representation given in equations (2.24) and (2.25). We now 

decompose the asymptotic operator Fu into operators of increasing 

powers of i, It is not apparent that the operators subsequently defined 

actually possess the claimed order of w. However, this result is 

deferred to the following section after considerable manipulations of 

the operator expressions. The result that is to be eventually explained 

is that the polynomial (x — y)* in the expansions is exactly related 

to the power (2) I@l for any multi-index a = (a, s++-sa).
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The decomposition of the truncated operator Fy that is asymptotic 

to the Fourier integral operator F takes the following form. 

Fu Fr € +e +b, + +. (2.26) 

The individual operators in the decomposition are explicitly obtained 

by carrying out the necessary multiplications and collection of terms 

in the complicated representation for F, found in equation (2.25). This 

leads to the following definitions of the operators eo: et: and e.: 

  

  

CW) =+ oa ff etetyt Gy 
0 n-1 n 

R RR 

+ a(ys€) bo(y.E) wu  y(x) dx dw de . (2.27) 

(E,W) =-— af ff eletye Gry) 
gl pe 

. a )(¥€) b Cy, 6) yr? pix) dx dw dé 

  ~ a f SJ etwyd:(x-y) 
(27) ag gro 

- ai(ys£) b (8) wu? y(x) dx dw de 

1 

* Gn 

  af SS, enue “Wy ye) 
°° 1p 2" 

n n- 

270 (x yp) ) a) yx) dx du dé 

  

  

P p=1 3Y, 

sah Sh ef etye FW) os (ye) b (ye) ul wx) 
R RR 

ty 5 3% ) ) dé . (2.28) . (5 D } (x — Yp (x, Yq ) dx dwde. (2. 
p=1 q=1 9Y,3y P



  
1 iwVyd*(x-y) 

y 
J J, ° EWM) =~ Ga 5 J 

BR 

sa (ys 6) by, 8) wy v(x) dx du dg 

1 
  

iwVy¢*(x-y) oor a f fj ei y? x-y 

R RR 

- a (y,8) bCy8) w > lx) dx dw de 

  

- a i(y,&) b (v.68) wo w(x) dx dw dé 

  — L f j etwVyo:(x-y) b (v8) 

R 

y 28 n-2 
- ( L By. (xy, )w ~ v(x) dx du de 

p=l 9Y, 

  Gor he, FL, ee & one 
R 0 

~( JY 2 G@=y.)) uo? v(x) dx du de 

iwVyo+(x-y) 
  a (8) b Cy,8) wt) y (x) 

  (x - ¥y) %Q> ¥~ ) dx dw de 

f ely: (x-y) a (y,6) b (ye) wn! p (x) 

R 

  (x > ¥,) x= ¥~ ) dx dw de 
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  +f Sf tty Ory) 

(2m) gh pg gn 
1 n n Th 93 

‘Ce Y Y Y —— fx y Mx y x- yy) ) 

6 p=1 q=1 r=1 9Y Fg Vy P °P q “qo Yr “Yr 

 ay(ys&) bo(y,6) w w(x) dx dw d& 

  

  

  

1 : -(x- - 

+ a J ff ef by? (xy) bo (y, 6) wi! v(x) 
(27) gro! R g 

1 a n g2 

- ( 7 ne (x — y_)(x— y_) ) dx dw dé 
p=l q=l 99,39, 

<a LL etter en) 
(27) go"! pp? 

1 n n 326 

> ( 3 (x ¥ yy Yq ) 
p=1 q=1 Yp Yq 

nN 9a 
-( y —2 (x ¥5) ) bo(y,) w™ v(x) dx dw dé 

p=l 2%, 

1 i * (x- 

— soa Sy, FI, IY apie) boise) a yx 
Rg xh 

a2 2 n n 

) y (x - yx vq) ) dx dw d& . (2.29) 
ay_9 P 1 q=l 9Y,%Y, 

0v
_~

 

e
l
e
 

p* 

It is not obvious at this point what motivates the definitions of 

the operators t. t. and et. given in equations (2.27), (2.28) and the 

formidable (2.29) in the decomposition of F in equation (2.26). The 

operator e, is defined by carrying out the multiplications in equation 

(2.25) and collecting the terms that are zero order in i. Similarly, 

the operators e, and e, are defined by collecting terms that are first 

and second order in G, respectively. In general, the operator th is 

constructed to be of order @)", although the complexity of the form of 

the operator grows exponentially for m > 2. The main objective of the 

forthcoming discussion is to show the operators have the claimed order.
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We make a change of variables following Beylkin [3] taking the 

coordinates (wsE aeee sb ly) into the coordinates (ky sk s+e- sk) defined 

by 

k = w Vo (y56) . (2.30) 

The transformation has the corresponding matrix given by 

  

    

> 34 96 4 

dy, ay, 

32 a6 
Lee yg 

” ay, 9e dy 98) 
3(k, ,k,,.--5k ) pov n 
eae nf . (2.31) 

(wre, > Ene? . . 

326 326 
yo ceaoaC_. . - Wren 

dy, 98 4 dy 2b 1 

Moreover, the Beylkin change of variables can be written in terms of 

differential forms, 

n-l 
dk = w h(y,&) dw dé , (2.32) I 

where h(y,&) denotes the Jacobian determinant 

  

    

Pe 
ay, ay, 

kr 
dy, 98, dy 98) 

h(y,&) = det ; . (2.33) 

9¥) 8b ne) 9F En -)
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By performing the Beylkin transformation (2.30), the operators 

ew: ew: Ciseees e are converted into the more recognizable combination 

of an n-dimensional Fourier transform and its inverse transform. The 

operator can not be directly integrated in this form as a result of the 

complicated dependence of w and & on k. The result for the operator e 
. . : .. 1 
is as follows. This operator is clearly of order zero in =. 

  

(© (v)) (y) 

1 oe (ee 
= aff elk ey ag'¥28) (y,€) y(x) dx dk. (2.34) 

(27) gw ge h(y,—é) 9 

The operator t that is first order in 4, as will be established below, 

takes the following form. 

  

  

  

  

  

(E,(y)) 

- i ik+(x-y) 8, (y,&) 1 
= — aj fe ——— b (y,€) — (x) dx dk 

(27) gg h(y,&) w 

i ike (x- (y,&) 1 
~— f pf eth (ey APE yc) = yx) ax dk 

(21) ge pg? h(y,g—) 9 w 

1 ike(x-y) 

* On J J ° h(y,&) by 676) vCx) 

n 

-( J —* (x= y,) ) dx dk 
p=1 yp 

i ik-(x-y) 4)(y,&) 

* Cmn8 I ie a(y,e) P0778) w ¥CH) 
R ’ 

> ( 3 H y (x — ¥,) Cx ¥q) ) dx dk. (2.35 
ay. P 1 q=l Vp y



35 

The operator v, that is second order in 4 is given by the complicated 

  

  

  

  

  

  

  

  

  

expression 

(@, y) (y) 

ike (x-y) a, (¥,€) 5 a ix 
(on)® J J e AGE) 5698) 52 v(x) dx dk 

ike (x- (y,&) 1 
7 n J f ek (x-y) aie’ oy =) — p(x) dx dk 

(20) RR h(y,é ) w2 

a s, J otk (xy) 8,098) (y,6) — w(x) dx dk 
~ (an) h(y,é) 0 w2 

_ ik- (x-y) 1 b ( 1 

(2° i ja ° nGyse) 1B |v 

n 

. 2ay _ ( ar 5 (x, ¥») ) dx dk 

P 

_ ike(x-y) og 1 
(an) J J ° niy.é) P0928) | ¥C®) 

n 

- ( ds sr Gy 9p) ) dx dk 
p=l 9y, 

1 eik (x-y) 4 (y,&) 
+ af f ay tyke b, (y,E) p(x) 

(20) g gt h(y,&) 

yg 8 ( ) = - - dx d 
Co aba hi yay, Xp Vp Og” ¥q? } ax dk 

1 ike - ( 3 ) 

taf f te” AEs (ye) yx) 
(2n ) gg? h(y,&) 

n n 2 

( = oe ix y (xy) ) dx dk 
rae *> p *q Yq * =1 q=1 9Y_9 p=l q=l p Yq
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+ ff eik: (x-y) a, (y,€) 

(20)" gm pr h(y,€) 

- ( 7 2 , jy — (x ¥ xr 9 (x y. ) 
1 q=l r=1 ayy 2% dy, 

. bo (y&) w p(x) dx dk 

  
  ik (x-y) b (y,£) w(x) +o J J e nGy.e) Poe) VO 

1 21 n 924 

~(- Y Y — (x—-y )(x-y) ) dx dk 
2 p=1 q=1 ay» aYq P P q q 

  

if eik: (x-y) 1 
n 

  

* Gr gD pn h(y,é) 

n 
> ( Ly, (x, -Y, ))>b 9 (YE) w px) 

p=l 

l n n 926 

> ( 3 (x - ¥ x ¥~ ) dx dk 

  

ik: (x-y) 2 a (y,€) 

  

2 
(x ¥ xr ¥~ ) dx dk. (2.36) 

For obvious reasons, we consider only the operators e, and e in 

detail. However, the forthcoming techniques can be equally applied to 

e, and higher order operators, despite the extreme complexity of their 

expressions. 

In equation (2.35) for the operator t, » it is now desirable to 

replace the polynomials (x — y)- » where a = Cays+++sa,) is an arbitrary 

multi-index, with derivatives ay with respect to the transformation 

k = w Vyo- This replacement is accomplished through a combination of
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integration by parts and the nature of differentiation of the Fourier 

kernel. If u and v are functions belonging to the Schwartz space $(R") 

(space of C” functions on x rapidly decaying at infinity, see Treves 

[33] or Helgason [20]), then integration by parts can be expressed in 

terms of multi-~index notation by the formula 

Ju atv ak = (1)! J voludk. (2.37) 
2 zg 

The relevant property of the Fourier kernel is given by 

1 
  

5% ( ik: (x= — y) ) = (x—- y)% elk: (x — y) ; (2.38) 

Ja| * 

The Fourier kernel property (2.38) is applied to the expression 

(2.35) for the La operator to replace powers of (x — y) with the 

corresponding derivatives with respect to k on the exponents. We then 

integrate by parts using equation (2.37) in order to remove the 

derivative with respect to k from the exponents to the remaining 

functions in the terms of equation (2.35). The amplitude functions 

in (2.35) decay rapidly at infinity as a result of the radiation 

condition. Applying the above Fourier kernel property, integration 

by parts, radiation condition, and freely interchanging the order of 

integration results in another relation for the ev operator.
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(€,)) (y) 

i ke (x- (y, 1 

--— as f elk (x-y) agty 8) b. (y,&) — w(x) dx dk 
(2m )" pn pn h(y,é)  } w 

i Like - ( ’ ) 1 

-— as f elk (x-y) A) 696" b (y,&) — w(x) dx dk 
(21) 2 gr h(y,&) 0 w 

+f f ber” 
(27) 3 

n 9 da. b_ Cy, 
-{ } a ( — Ey } v(x) dx dk 

p=1 P Jp y sé 

i ee (x= 

~ (any J J oY) yx) 
R 

LR R32 (y,6) 92 
tot 2 dk_dk ‘i . 5 3 ; by(ys6) w ) } dx dk 

p=l q=l °%p°%q YE) 99,994 

(2.39) 

It is necessary to replace the derivatives with respect to k by 

the equivalent differential operators with respect to w and €. This is 

desirable since w and & are the natural variables for the phase and 

amplitude functions. In order to determine explicit expressions for the 

differential operators 9/3k,, we calculate the inverse of the change of 

variables transformation matrix of equation (2.31). Specifically, we 

are interested in calculating the matrix 

-1 
8(wsE,o+-+ 56 )) _ | Ok) sky y-+- ok) (2.40) 
(Ck) skoy++- sk) (WE s-eeb 1) 

The desired transformation matrix is obtained by matrix inversion and 

the result is given by the following.



D, (ys) 

D ( 3 ) 

(ws, E reer -—> _ 2 y ‘ 

d(k, sk »k_) 

D fy.8)   
E
l
e
 

E
l
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E
e
[
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BE, (y8) 

BE, (y8) 

Eo 6y8) 

E
l
r
 

E
[
e
 

E
l
e
 

Ey y-1 676) 

E (y,&) 
2 n-l 

E (y,&) 
nn-l   ot 

39 

(2.41) 

where h(y,&) is the determinant found in equation (2.33). The cofactors 

D(ys8)s (p = 1,...,n), are explicitly given by 

(-1)P*? 
  D = 

Ph(y,é) 

The determinants Enq (I7e)> (p =1,... 

the following. 

  

  
  

    
(2.42) 

a2 329 92g a2 

9y1 98) 9% 198) 80 1 28] 8¥ 498) 

a2 926 924 924 

9¥) FE 295-1 ena) 2% 541 ena) 99 enH1 

sn; q = 1,...,n), are given by



    

  

  

  

      

r do 36 ag 

ay, 2% n-1 89 541 

a2 a2 a2 

(—1)P* 9+} OY 95 oo 295-1 9b geo 8¥ p41 Ege2 
Eq = nC J det 

ye 
926 926 326 

3 3 3y, Eg 9¥ 5-198 q p11 2b q 

326 926 926 

L Oy) 9b.) 89-1 2 en-1 2F 41 eH 1 

Thus, the nature of 8/3k, 

a 

dy 

326 

29,98 g- 

926 

9¥,95q 

  

926 

dy_9& 
n “ne 

40 

2 

  ld 

(2.43) 

as a differential operator acting on C@ 

functions is established through an application of the chain rule, 

_ D (y,&) ° + * E_, (y,&) ° + 
dk P y aw w Pi ye dé 

P 1 

Replacing the differential operators 3/ 3k 

a 
w ES n-1 (928) 

d€ 
  

nol 

(2.44) 

in equation (2.39) with the 

above expression (2.44) produces the desired form for the g operator;
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(€, ()) (y) 

i ik-(x-y) 2 (y,&) 1 
=— Jf Je —1—— . b (y,&) — w(x) dx dk 

(20 )" gw og? h(y,g) ! w 

i Skee (x- (y,&) 1 
~——- J f eike(xry) 2196) (yc) = w(x) dx dk 

(27) go gt h(y,—) °? Ww 

+ i af f ik: (x-y) 

(27) grog? 

ER pe (280 ol) yd yee ax ak 
p=1 q=l Pq aE, ay, h(y,&) w 

i ke (x- 
-Gor hf, ee” 

Rg” g” 

1 #20 n n-l n-l 5 

-J2 3 J Pe {0+ Pe, —} 
2 p=l q=l r=] pr 3g q s=l qs 9b 4 

, 2 1 
: ( 20698) ee b (y,é) )$ — wlx) dx dk. (2.45) 

h(y,&) dy dy 9 w 
, Pq 

We have previously noticed that the operator e found in equation 

(2.34) is explicitly of order zero in 1. Furthermore, it is also clear 

that the operator e in equation (2.45) above is explicitly first order 

in 1 If a similar examination of the complicated expressions found in 

equations (2.29) and (2.36) is performed, it can be shown that the 

operator €, is explicitly second order in 2. Although this claim will 

not be demonstrated, it is a result of the discussion in the following 

section. 

It is also worth noticing that the operators g and e, found in 

equations (2.34) and (2.45) are explicitly pseudodifferential operators 

of the form of equation (1.60). This follows since we can view & = E(k) 

and w = w(k) as functions of k.
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2.3 Relationship between Taylor Polynomials and Asymptotics 

The key result that the operator t. is of order (h" follows as a 

direct result of the construction of the operator in the decomposition 

of the Fourier integral operator F in equation (2.26). However, the 

reasons for the collection of certain terms in the operators g> €; 

and t,, in equations (2.27), (2.28), and (2.29), respectively, become 

apparent only after the extensive algebraic manipulations of the 

previous section. In particular, it is to be noticed that the polyno- 

mial (x — y)* occurring in the operators is exactly related to (hy lel 

after the lengthy calculations. This fundamental phenomenon of the 

Fourier integral operator expansion is now illustrated. 

The amplitude functions appearing in the e operators are always 

of the form w® u(y,&) where B is an integer. Consider the multiplica- 

tion of this amplitude function by the polynomial (x — y)", where 

a= (a see+sa) is any multi~index, in the generic integral 

J=f w® uly,e) (x - y)® et EY ax (2.46) 
g" 

The integration by parts formula of equation (2.37) and Fourier kernel 

property of equation (2.38) lead to the equivalent integral 

a ike (x- 
J = ca)! | sf eik (x-y) ae (w® uly,€)) ak . (2.47) 

n 
R 

Replacement of the differential operator a by the expression (2.44) 

results in the following explicit integral. 

j= cayl*! f elk: (x-y) 

x” 
a 

n 9 y n-1 9 Pp 

- a [pd (ye)—+- J E (ye) —} (w? uly,e)) ak. 
p=l P aw ® g=1 Pq J& 

(2.48)



43 

Applying the partial differential operator appearing in equation (2.48) 

to the function in parentheses produces 

+L . 1 

Rg" wl e| 

n © 3 3 
> oO m { (8 — 4x) D (y,€) + yY —E_(y,E) — } 

p=l r=l P q=1 3 q Pq 2G 

(ap> 0) 

: (w® uly,&)) dk, (2.49) 

or equivalently, by lumping the functions of y and &— into a single 

function T(y,;&), 

Jaf etk-(xy) —_ 8 a(y,6) ak . (2.50) 
R" wla| 

A comparison between equation (2.46) and (2.50) above immediately 

shows that the Taylor polynomial (x — y)~ is exactly related to the 

frequency order lel, This indicates that the assumption of small 

(x — y) used in the Taylor expansions is equivalent to the assumption 

of large frequency w. 

Moreover, the generic integral J in equation (2.46) has been 

expressed explicitly in the form of a pseudodifferential operator 

(1.60) in equation (2.50). The symbol of the pseudodifferential 
B—|a| operator is given by the function w TCy,&) when viewed as a 

function of y and k.
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2.4 General Asymptotic Integral Equation Inversion Algorithm 

We now summarize some key results of the earlier sections and 

develop an explicit inversion algorithm for the general asymptotic 

integral equation. The integral equation to be inverted is of the 

asymptotic form 

Dwg) = 0 fo YE CHE) tuo (x6) w(x) dx. (2.51) 
g §=0 Cn) 

The objective of the inversion is to obtain the unknown function y(x) 

in terms of an asymptotic inverse operator acting on the hyperplane 

data D(w,&) given by 

  

1 2 b, (y,€) —iw(y,&) vy) vw ——e fe G FO Ga cy) au dz. (2.52) 
(2m) -1 4 K=0 (iw) 

R R 

Combining the two integral equations (2.51) and (2.52) above 

leads to the consideration of the Fourier integral operator F with 

unknown amplitude kernel functions bCys€). Specifically, 

     (F(v)) Cy ff iwd(x,&) — inoly,€) 

RR n-1 
R 

e b, (ysE n- an) y ae (x) w) dx dw de. (2.53) 
a,(x,&) 

ayes 
4=0 (iw)J k=0 

Through the series of manipulations presented in the previous 

discussion and based on the Beylkin transformation, 

k=w VioCys8) ’ (2.54) 

it is concluded that the Fourier integral operator F has an asymptotic 

representation, 

FV FF Ete te + G& (2.55) 

m 
where © is exactly of order 4 - The individual operators € in the
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Fourier integral operator decomposition are given by the expressions 

  

Hee (xe 1\m 
(fw) (y) = a J J, ik: (x-y) K Cy.€) (=) p(x) dx dk , 

(27) 

(2.56) 

where K Cys&) are the kernel functions produced by the procedures of 

the previous sections. As is seen in equation (2.34), the kernel func- 

tion K 6y8) is explicitly calculated to be 

a (y,é&) 
K (y,&) = “pee (Ye) > (2.57) 

0 h(y,&) 

where h(y,&) is the Jacobian of equation (2.33). Similarly, by observ- 

ing equation (2.45), the kernel function K (y.€) is found to be the 

more complex expression, 

K (y,gé) =-i agty,) b (y,&) — i a, (y,6) b o (¥98) 
} h(y,é) ! h(y,€) 

non 3a) b biCy.8) 
+ i E (78) —_— 

if we aa 3& Eq CS. 8¥» h(y,€) ng.e )} 

1 n on nel 
-ij-r E_(y,€&) — 

2 oh a r=1 PF r 

n-l 9 

e D ; E ; —. { a3 E) + oy qs(¥ E) 2, } 

(y,&) a2 
an =an2-5. b (ye) ) 4, (2.58)   

h(y,&) 9 (y,&) ¥p%q 

where the determinant functions DCys8) and Enq = are defined in 

equations (2.42) and (2.43). 

In order to solve the generalized asymptotic integral equation 

(2.51), the inversion operator kernel functions by Cy. 8), b, Cy, 8), 

by Cy, 6) are chosen such that the decomposition operator kernels
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K (yE)s K (y,E),-655 K(y5€) satisfy the relations 

K (y.&) el, 

K(y.g) = 0, 

K 3 =O. 2.59 oy E) ( ) 

This choice of kernel functions forces the Fourier integral operator F 

to be asymptotically the identity operator up to a smoothing operator 
Ly K+1 

) involving G » specifically, 

Frul+O+-7+ +0 

1 
  

‘ke (xe L\K+1 + ff eik (x-y) K 4 (726) (;) w(x) dx dk 
(20)" gw gt 

pose, (2.60) 

Solving the equations (2.59) results in the desired expressions 

for the inverse operator kernel functions bi (ye), Bi CWEIs eee, be (ye) 

that define the inverse algorithm of equation (2.52). The first kernel 

function is obtained by solving the equation K(y€) = 1. This produces 

h( 3 ) 

b (y,&) = N98" . = (2.61) 
0 ay (¥26) 

The kernel function b, (y,€) is obtained by solving the second equation 

in (2.59), K (y58) = 0. Hence, it follows from equation (2.58) that 

b, (ys) is given by
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h(y,&) (y,&) b (y,£) = DAY1ET J a hb? 
1 a, (ys) a (¥6) 

n n-l 3 1 ga 
+{ J JY FE Cy.e) — (——~ —) } 

19 on on-l 5 
- - } ) E (y,€) —_—_ 

2 ony q=l r=1 PF 0g. 

n-1 J 9 329 

- { D (y,e) + E__(y,&) — . (2.62) 
{ q? 6 hy qs*7 6 9&, I ( 292% 4 

Thus, the order zero inversion algorithm to the generalized 

asymptotic integral equation (2.51) is explicitly given by 

1 h(y,&) ss Dlw,b) @ tOO6HE) a ae. 2.63 Ome , ; a (7.8) (w,&) e w dé ( )   ly) » 

The first order inversion algorithm to the generalized asymptotic 

integral equation is given by 

  

hy, 1 (y, Ww — J jp ee 14] _ te 8) 
(27) go) op a(y.€) iw a Cy.) 

n 3 1 ja 
+ E (y,g) — (—— —2 

» » pq’ £ Eq ( ay (ys&) ayy 

    

= y Fy ewe) = —_-— E yié —___ 

2 p=1 q=l r=1 P* 0g. 

926 n-l 3 929 

-{ Dy (y28) yt y Eye (778) 3 ( ty ) } 
Yp Yq s=1 Vp Yq 

» D(wsé) e 2OFE) gy ae. (2.63) 

This concludes the discussion of the inversion of the generalized 

asymptotic integral equation. We now specialize this theory to sound 

wave propagation in 3-dimensions for constant reference velocity. It 

will be shown for this special case that equation (2.63) simplifies 

greatly.



CHAPTER 3 

INVERSION FOR A CONSTANT REFERENCE VELOCITY MEDIUM 

Thus far, the general Fourier integral operator techniques for 

the inversion of asymptotic integral equations have been explored. In 

the present chapter, the inversion techniques are specialized to the 

backscattered data integral equation developed in Chapter 1. In partic- 

ular, the wave propagation phenomena investigated are restricted to 

3-dimensional space. In addition, the reference velocity of the medium 

is chosen to be constant and hence independent of position. The result- 

ing backscattered data integral equation constitutes the simplest (but 

non-trivial and physically meaningful) example to which the general 

theory of the previous chapter can be applied. Although it is beyond 

the scope of the present discussion, it is worth mentioning that the 

constant reference velocity backscattered data inversion problem also 

encompasses a wide spectrum of significant applications including the 

seismic imaging of geophysical discontinuities, the non-destructive 

testing of materials, and medical tomography. 

The present chapter starts with a review of wave propagation in 

a 3-dimensional medium and how it specializes to the constant reference 

velocity case. The backscattered data integral equation is then cast in 

this special setting and the Fourier integral operator formulation of 

the problem is made. This chapter concludes with the development of 

both the zero and the first order inversion algorithms following the 

elegant Fourier integral operator methodology of Chapter 2. Moreover, 

it is discovered that the first order inversion algorithm given in 

equation (2.63) reduces to the surprisingly simple algorithm (3.54). 

This result occurs despite the apparent complexity of equation (2.63). 

48
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3.1 Wave Propagation with Constant Reference Velocity 

In the present section, we consider the wave propagation in a 

3-dimensional medium. Hence, the theory is specialized for n=3. The 

reference velocity is taken to be a constant independent of spatial 

location. We then solve the eikonal and transport equations with the 

constant reference velocity. The ray solutions will be shown to follow 

straight line trajectories. Furthermore, by imposing a certain choice 

of asymptotic initial conditions, the wave propagation amplitude can 

be modeled as a spherical wave front amplitude. 

For the present discussion, the reference velocity Cy (x) is 

chosen to be a constant, 

= . ol cy (x) cy (3.1) 

We consider a source wave emanating from the source point & = (€, »€, 20) 

on the data surface x, = 0 given by the asymptotic representation 

u; (xu »€) = A(x,w,&) eint (x8) ; (3.2) 

where t(x,&) is the travel time from the source point — to the point at 

depth x and where A(x,w,€) is the amplitude function possessing the 

asymptotic expansion in frequency w given by 

o A, > 

A(xw,&) = J Aone? . (3.3) 

Travel time satisfies the eikonal equation for constant reference 

velocity, 

1 
VieVr=—. (3.4) 

x x o 

We make use of the notation p for the gradient of travel time 

with respect to x (sometimes referred to as the slowness vector since 

its dimensions are inverse velocity),
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p= Vit . (3.5) 

From the above, the system of ordinary differential equations generated 

by the method of characteristics can be written down. The corresponding 

system of first order equations for the constant reference velocity 

case are given by 

  

  

dx (x) 

— = Ax : 
do P 

d ACx) 1 
a vi) = 0, 
do 2 ce 

dt A(x) 
—s 7 (3.6) 
do cA 

The ray parameter o corresponds to the arbitrary non-vanishing param- 

eterization function A(x). 

For simplicitly in the discussion, we choose the parameterization 

most common to analytical purposes, specifically, 

A(x) BE 1. (3.7) 

Other choices of parameterization functions giving arc length or travel 

time could have been used equally well. With the selected parameter- 

ization, the differential equations are integrated to obtain the ray 

paths. In the constant reference velocity case, the rays are straight 

lines emanating from the source point €, 

x, = a + Ko 

* il + 
6, + Ko9 

(3.8) * 
w
 

il Q 

° 
a
u
l
 I x 
m
h
 | x 

N
N
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where Ky and K, are constants corresponding to the initial conditions 

for P) and Py at o = 0. Note that we can solve the system of equations 

(3.8) for the parameters Kis Kos and o from specified source point £& 
2 

and depth point x, provided x # &€. Hence, there is a one-to-one corre- 

spondence between points at depth x and the parameters Kp» Kos and o. 

We are motivated to consider the curvilinear transformation of the 

coordinates (q, 45245) to the coordinates (x) 5X, 9,3) defined by 

q ~*~ K) > Gq, = Ko » q,=9 - (3.9) 

q3 0 q, 

0(x) 5x »X,) _ 0 q3 q, 

_ 9,93 _ 9593 i _ @2 _ @2 

at 2 1 2 
I 2 2 t 2 2 “o 
> ~ 4, - 49  >z 7 I 7 4 2 1 2 2 1 2 

L 0 0 

  

      = 

(3.10) 

The determinant J of the above matrix is referred to as the conoidal 

ray Jacobian, 

2 
(x, »X, 2X4) _ 93 

ovo2 1 % 
0 

The conoidal ray Jacobian J(q,) = J(o) plays an important role in the 

  J = det (3.11) 

solution of the transport equations. 

It has been established in Chapter 1 that the amplitude functions 

A(x, 6) satisfy the transports equations (1.18) and (1.19). It has also 

been shown that the transport equations can be reduced to the ordinary



52 

differential equations (1.48) and (1.57). Some initial conditions need 

to be prescribed in order to solve the differential equations. However, 

the amplitude functions become singular at the initial ray parameter 

value o = 0. Hence, initial conditions are imposed in an asymptotic 

sense for o > 0. This process essentially involves the determination of 

the far-field wave propagation from specified near-field conditions. We 

impose the condition that the impulsive source wave is asymptotically 

a spherical wave in the near-field. Specifically, 

A(x,w,&) , 20 3 (3.12) 

TO 

as 96 + 0. The implications of other choices of initial conditions are 

postponed to the next chapter. 

For the constant reference velocity case with the choice of 

parameterization (3.7), the ordinary differential equation for the 

first amplitude function reduces to the ray Jacobian invariance prop- 

erty (1.48). The invariance property states that the product of the 

conoidal ray Jacobian J and the square of the first amplitude function 

is constant along rays. That is, 

d 
— (io) Ao) )=0, (3.13) 
do 0 

where the notation A fo) = A (x(o) .&) is implied. Substituting the 

conoidal ray Jacobian (3.11) into the invariance property above shows 

that Ao) is proportional to the reciprocal of o. Hence, it is then 

immediately concluded that the first amplitude function is given by 

A (o) = Qy (3.14) 
4to 

This is precisely the wave propagation of a spherical wave front in a 

homogeneous medium. 

The ordinary differential equation for the higher order trans- 

port equation along rays reduces to
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d 1 
- ( Ajo) A J(o) ) =- 7 J(o) VAs (o) . (3.15) 

o 
1 

By writing the Laplacian v2 in spherical coordinates, it is quickly 

observed that the Laplacian of A Co) is identically zero. Consequently, 

A, (a) satisfies exactly the same differential equation as A fo). By 

examining the imposed initial conditions (3.12) and continuing the 

argument inductively, it is found that all of the higher order ampli- 

tude functions vanish, 

A (0) =0, (j = 1,2,3,...). (3.16) 

It is to be noted that the above functions do not necessarily vanish 

for other types of imposed initial conditions. 

3.2 Backscattered Data Integral Equation 

In this section, the backscattered data integral equation is 

specialized to the constant reference velocity example. A candidate 

inversion algorithm is proposed to invert the backscattered data 

integral equation. The discussion concludes with many of the calcula- 

tions necessary for the development of an explicit representation of 

an inversion algorithm. The details of the inversion algorithm are 

deferred to the following section. 

In Chapter 1, an integral equation (1.24) for the backscattered 

data configuration is developed relating the index of refraction 

perturbation w(x) to data measurements D(w,&) at the accessible sur- 

face x. = 0. For the constant reference velocity example, the integral 
3 

equation simplifies to 

2 : 

D(w,é) = “5 f alxw,e) eb@O(%E) yxy ax , (3.17) 
co R° 

where the phase is given by
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2|x — &| 
o(x,€&) = 2t(x,&) = ————__ , (3.18) 

© 

and where the amplitude is found to be 

QL Qh = . (3.19) 
167262 l6m2c*|x — €|? 
  a(x,w,&) = 

The above equation for the amplitude is a result of the form of the 

integral equation (1.24) and the imposed initial conditions (3.12). 

The methods developed in the previous chapter are used to invert 

the integral equation (3.17). As before, a candidate inversion operator 

is proposed. 

  

1 _3 

ff blyw,e) © 29H E) Dew cy dw de, (3.20) p(y) v 
(2m )3 RR 

where d& denotes the differential form dé, dé, and where the unknown 

kernel function b(y,w,&) has the asymptotic expansion in frequency w, 

co b, (y,) 
b(y,wjE) = fo eee? (3.21) 

k=0 (iw ) 

An integral operator F is defined by substituting the integral 

equation (3.17) into the candidate inversion operator (3.20). The 

resulting operator is a Fourier integral operator acting on the unknown 

index of refraction perturbation (x). Specifically, 

(FW) =e fff. bywwse) ——20™ yy * 7a Ysw»—) ———0——_—_ 
83 R- R 2° l6n2co|x - E|2 

. eine (x, 9,6) p(x) dx dw dé , (3.22) 

where the phase function takes the form 

2 
O(x,y,€) = o(x,€) — o(y,E) = — ([x-—e] — |y— el). (3.23) 

c 
0
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The Fourier integral operator (3.22) is made asymptotic to the identity 

operator by proper choice of the kernel function b, Cy, 8) in accordance 

with the techniques of Chapter 2. 

It is first necessary to expand the Fourier integral operator 

phase ®(x,y,&) in a Taylor series for small (x — y) away from the 

singular point &, 

oO 1 
o(x,y,&) = Violy,&)*(x — y) + — atoly,&) (x — y)™ . (3.24) 

y a =2 a! y 

We use the Beylkin change of variables, 

k = w V,oC¥.6) . (3.25) 

This change of variables has the following equivalent representation in 

terms of differential forms: 

dk = w* hly,é) dw dé , (3.26) 

where h(y,&) is the fundamental determinant given by 

a a6 ey) 

ay, 9Y, ay, 

92 92 92 
h(y,£) = det $ $ eo], (3.27)   

dy, 96, dy,98, dy 98) 

926 926 326 

dy, 9, dy,98, dy,98, 

      
In the explicit calculations of the derivatives in the equation 

above, the notation is greatly simplified by defining r to be the 

distance from the source point & to the output point y. 

  

r= |y—e] = Gy ~ 6)? + (y,- €,)2 + (y- ,)2 (3.28)
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Then the phase o(y,&) is simply 

2r 
o(y,&) = c. e (3.29) 

0 

Moreover, the gradient vye has the components given by 

BY 2 ao 2 Te) 
— Fy By) oe OE) oy, + G30) 
8y, Cyr dy, Cor oy, Cor 

By differentiating with respect to y, the following derivatives are 

  

  

  

  

  

  

obtained. 

a2 2 
— = [(y.- —,)2 + y2] , 

2 3 2 72 3 ayy Cor 

326 2 
— = [(y,- &,)2 + y2] , 2 3 1 71 3 ay3 cr 

92 2 
— [Cy — €,)2 + (y- €,)2] , 2 3 1 72 2 72 8y3 cor 

92 2 
Py gg) 
ay 1 8Y, 0” 

326 2 
yo. 3 9,7 EX» 

¥1°%3 © oF 
a2 2 2. --— yy,» (3.31) 

8Y 589 3 “Or 

Similarly, derivatives with respect to & are immediately obtained from 

the expressions above since 

eH (3.32) 
89 5984 95° 

From the explicit derivatives given in equations (3.30), (3.31), 

and (3.32) above, several additional quantities can be expressly 

written out. In particular, the change of variables to k takes the 

form 

k = — (y-€) . (3.33)
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The determinant h(y,&) can be derived through a series of straightfor- 

ward calculations using equations (3.30), (3.31), and (3.32). 

8 
h(y,&) = Ya . 

ejx3 
(3.34) 

The transformation matrix relating the variables (k) sk, sk.) to 

the variables (wsE, 56.) is particularly important. 

    

a 3 ao 
9y, ay, ay, 

9(k. ,k.,k.) a2 926 32 
—l*2* 3" = w — wo -— wo —- . (3.35) 
(ws, 65) dy, 28, dy,98, d¥,08, 

a2 a2 a2 
gy yo-oe—_—_— QQ ov 

9¥1 985 8¥,9E5 9¥ 3985 

Substituting the expressions for the derivatives results 

representation for the transformation matrix: 

  

    
  

; ? ( é.) 2 ( &,) 2. ] ero * cr 2 72 ¥3 
cyt Cyt Cyr 

2w 9 2 2u 2w 

a) [Cy,~ &,)° + y3] o r3 (y;— &))€y,> 5) a) (y,— &)) 93 
0 0 0 

2w 2u 2 2 2w ( ) 

eyes (y,— &)Cy,- 6) = er [(y,— €)* + y3] cnr Y,~ §,? ¥3 

in an explicit 

  

    
(3.36) 

The above transformation matrix can be inverted to yield the 

transformation matrix relating the variables (w 46, 565) to the variables 

(k, sk, sk). The inverse transformation matrix is obtained by a series 

of algebraic manipulations and has the form
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r 1 1 
D, (y,€) w E68) mm E, ,(y,€) 

9(u,&,,&,) 1 1 
= — — 3k RD Do(y,—) Ey, (ys) = Eyo(y€) J - (3-37) 

1°"2°°3 

1 1 

D,(y,6) mn E,, (798) = E,,(y.6)     
The individual terms of the inverse matrix are given by 

Cc 
= —2 — 

D, Cy.) Or (y, E) ’ 

_ c 

D,(y,€) ~ or (y,- é,) ’ 

c 
= —2 

D,(y,€) or ¥3 E) 

c,.r 
= —- —l = 

c.r 
= = — 0 

e.r c.r 
= 1 _ = 2. _ E,,¢y6) 2y, (y,— &,) » B,,¢7.6) dy, (y,~ &,) - (3.38) 

The amplitude function a(x,w,&) needs to also be expanded in a 

Taylor series for small (x — y). Since the terms a,(y.8) vanish for all 

j 2 1, the series takes the following form: 

1 
— a a is ay(y.6) (x — y)® . (3.39) 

=0 é 

a(x,w,&) = } 
|B 

The first amplitude function a, (x,€) in the constant reference velocity 

case is given by 

2 2 
Q 5 a (y,&) = = . (3.40) 

on¥8 lonely — €|2 lon2c fr? 
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The gradient of the first amplitude function with respect to y is 

simply 

Q = —— 0 _ v, ay(y,&) 3 (y-€). (3.41) 

Moreover, the logarithmic derivative of the first amplitude function 

is calculated by combining equations (3.40) and (3.41). 

2 
——— a.(y,é) =-—+ (ly -&). (3.42) 
ay(y,e) ¥Y O° r? 

This provides all of the preliminary calculations required for 

the development of an inversion algorithm for the backscattered data 

integral equation (3.17). We now turn to the formulation of an explicit 

inversion algorithm from these calculations. 

3.3 Backscattered Data Inversion Algorithm 

We now produce the main result of the present chapter. The numer- 

ous calculations of the previous section are utilized to derive the 

zero and first order inversion algorithms to the backscattered data 

integral equation (3.17). Explicit calculations of the complicated 

inversion operator amplitude functions bo (y6) and b, (y,€) found in 

equations (2.61) and (2.62) are performed. It is demonstrated that 

after considerable algebraic manipulation that the amplitude kernel 

functions bo (ys€) and b, (y,€) greatly simplify yielding the desired 

inversion algorithms of equations (3.45) and (3.54). 

We begin by determining the zero order kernel function by (y,6). 

The zero order kernel function can readily be calculated from the 

expressions (3.34) and (3.40), 

h(y, 128712 ACy,€) | 128nty, (3.43) 
b (y,&) = 

0 a, (y&) Qicor 

Substituting the above kernel function into the inversion operator,



60 

1 3 

v(y) vs J f by (y.6) e 109098) Dou e) dw de, (3.44) 
8r R°R 

leads to the zero order inversion algorithm, 

. ¢2ru) 
loy TUS 

wly) © f- § —+ Du,é) e 0° dw dé. (3.45) 2 
R? g Cor 

The inversion algorithm (3.45) obtained using the methods of Beylkin 

[2,3] can be shown to agree with the inversion algorithm obtained by 

stationary phase methods of Cohen, Hagin, and Bleistein [9]. 

The first order kernel function b, (y,€) is considerably more 

difficult to compute. This function is given by the following formi- 

dable expression obtained in Chapter 2: 

  

h(y,&) b (y,£) = bhys6) 
} ay (y,&) 

a, (y,€) 3 2 3 1 da yA +t EE wgtne) — ( ay | 
ay ye p=1l q=l 964 a5 y,é oY, 

-~—}- ¥ Y Y EB (ye) — 
2 p=l q=l r=1 P* ag. 

2 9 326 

-{ D(y,e) + YT E Cy,e) — } ( ) , (3.46) 
q s=1 4 3 392% 

At this point, all of the individual coefficient functions D(y.6) and 

E q (3?) have been determined along with the partial derivatives of 
P 

ay (y,6) and o(y,&) in the previous section. 

Only the second and third term contribute in equation (3.46) 

since the amplitude a, (y,€) vanishes for the selected asymptotic ini- 

tial conditions (3.12). From equations (3.38) and (3.42), the second 

term in the first order kernel function bi (y,€) is produced,
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3. 2 

LY Y £ (y,é) 2 ( + 34 )e- 764 . (3.47) 
p=1 q=l Pq 94 an (ys&) 8% r 

It is to be noted that despite the complexity involved in the 

inversion of the coordinate transformation and the various algebraic 

manipulations in the summations, there is considerable simplification 

and cancellation in the final form of equation (3.47). This cancella- 

tion is a direct result of the simplicity of the constant reference 

velocity wave propagation phenomena. Consequently, such simplifications 

are to be expected. 

The calculation of the third term in equation (3.46) is substan- 

tially more difficult and tedious to perform, but the method is clear 

and straightforward. A minimum of details are provided. However, the 

following intermediate step is included for reference. Define a matrix 

C with elements C__ by 
Pq 

; 3 
c= E_(y,&) — Pq. cy PF aE. 

32 2 3 92 

- {0 (ye) ——— + Fz ye) (YY. a) 
q 89 ,9%q sel as df 37 59%q 

Then, it is found by a group of lengthy calculations that the matrix 

elements are given by the following. We use the notation y, = y,7 Ey 

Y, = ¥o~ &» and ¥, = y, 

¢ 
cc. =—-0[ - 3y2+y2+y¥2 J[ y2+y¥2] , 
11 ro 1 2 3 2 3 

c 
=~ —Q — vt 2yv2 _ vy 4 Ch, a | yi + oyty2-ye+y¥el, 

C =— 0; ~-y4 2y2 4 y4 + y2y2 C.5 ~3 | Yi + 3yfy2 + yo + yoyo], 

c =——02/[Wy4 2y2 — y4 4 y4 Cc.) 75 | Yi+ 6Y¥S-Y¥o+tY¥3 1, 

c = — “07 y2_— 3y2 + y2 24 y2 C.. 5 § Y¥y—- 3¥,+ YS ll Y¥>+¥5 1, 
Yr



62 

c =— 07 y4 2y2 — y4 2y2 C,, 5 [ Yy + ¥r¥S — ¥> + 3y5¥5 ] , 

“0 y2 2 4 3y2 4 3y2 So y2 [| 3y2 — y2 — y2 C.F = yr [ — ¥f + 3¥o + 3y2 ] + 5 v5 ( 3¥P- yo-yo 1, 

c,. = 2 y2 [ - ¥? + 3¥2 — v2 1 - “o 5 ( 3¥2 ~ v2 + sy2 ] , 32. 5] 15 

c =— 7 y2 2 2 2 — y2 C., 5 [Yr +¥5 Il 3¥5 + 3Y5-Y9 1. (3.49) 

Thus, the third term in the expression (3.46) for the first order 

kernel function b, (ys8) is composed essentially from the summation over 

the matrix elements C, . After a series of calculations, it is found 

that the sum of the matrix elements is given by 

3 3 3¢ 

aa) Cyt 1, (3.50) 
= = r 

Hence the third term in equation (3.46) for the first order kernel 

function produces the startling result, 

-T ro 
2 p=1 q=l r=1 PF ae. 

42 a“ 
* { DiCy5E) + J E 78) = > } (<7) 0 , (3.51) 

=1 4 ¥p°%q 2r 

This surprising simplicity of the form of the end result is again a 

consequence of the simplicity of the constant reference velocity wave 

propagation phenomena. 

Thus, the first order kernel function is produced by combining 

the results of equations (3.43), (3.47), and (3.51). Hence, 

1280 2y 
b, (y,€) = aoe ( - “a ). (3.52) 

r 0-0 

Substituting the above kernel function into the inversion operator,
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1 
ply) » I, J ( b 9 (98) +. ~ by (y,€) ) 

81 73 

eo 1MO(HE) ny £) dw dE, (3.53) 

generates the first order inversion algorithm for the backscattered 

data integral equation (3.17). Specifically, 

. f2ru 
_ iby, —i (=) 

(1 -~—o.) DWw,é) e “9 dw dé. (3.54) ( 
» J I ee TAC) 2iwr g° R 

It is worth observing that the inversion algorithm (3.54) for the 

backscattered data problem involves a 4 term and consequently repre- 

sents a higher order version of the inversion algorithm (3.45). In 

fact, by dropping the + term, the first order inversion algorithm 

(3.54) reduces to the zero order algorithm (3.45). However, at this 

point, it is mot clear whether the first order algorithm is an improve- 

ment over the zero order algorithm. This fundamental question will be 

discussed in detail in the next chapter. 

In principle, higher order algorithms of arbitrary order (y" can 

be derived by application of the same Fourier integral operator tech- 

niques discussed in the present chapter. However, in practice, the 

complexity of the necessary calculations grows exponentially with 

increasing order m2 2. On the other hand, it is anticipated that 

significant simplification and cancellation of terms will occur in the 

final form of the inverse algorithm. This is a possible area for future 

research.



CHAPTER 4 

ANALYSIS OF THE INVERSION ALGORITHM 

The discussion so far has led to the zero and first order inver- 

sion algorithms for the backscattered data integral equation subject to 

constant reference velocity restrictions. The first order inversion 

algorithm involves an additional A term. It is suspected that this is 

an improvement over the zero order algorithm. The main objective of the 

present chapter is to explore in detail the nature of the improvement 

that the + term provides. 

We proceed by representing the output of the inversion algorithm 

approximations in terms of Fourier integral operators. After a series 

of manipulations, it is recognized that the zero order inversion 

algorithm approximation generates an error term involving ad term 

that is exactly cancelled by the first order inversion algorithm. Thus, 

the first order inversion algorithm is indeed an improvement over the 

zero order algorithm. We conclude this chapter with some miscellaneous 

topics concerning the constant reference velocity example. The correc- 

tion term of the first order inversion algorithm is specialized for 

stratified media where the index of refraction perturbation depends on 

depth only. The correction term is shown to be a essentially a linear 

ramp correction for a step discontinuity in the index of refraction 

perturbation. More precisely, the first order inversion algorithm is 

further verified using Cagniard-de Hoop data for a single reflector. 

We end this chapter with a discussion of the extension of the first 

order inversion algorithm for more general impulsive wave sources. 

64
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4.1 Fourier Integral Operator Representation of the Approximations 

Recall that in the preceding chapter, the backscattered data 

integral equation for constant reference velocity, 

2 2 iw 21x = él) 
{ (— 2— e 0 V(x) dx , (4.1) D(w,€) = 

Rg ae — &é| a 
o
l
 

O
N
 

has been solved explicitly for the zero order and first order inver- 

sion algorithms. The zero order inversion algorithm is given by 

x —iw (2lv= él) 

i =f, f Lo D(w,&) e “0 dw dé , (4.2) 
Rr R mQ%c ol¥ ~ E| 

where the notation ¥5¢y) is used to indicate the zero order approx- 

imation to the unknown exact index of refraction perturbation p(y). 

The zero order inversion algorithm has previously been described by 

Cohen, Hagin, and Bleistein [9]. 

The first order inversion algorithm derived in the previous 

chapter by Fourier integral operator techniques is given by 

vo “J __ ley, 1 —-——0 
R? R TQ%c oly - E| 2iw|y - E| 

2 — 
—iw (2lv—sh 

- D(w,g) e 0 dw dé. (4.3) 

The inverse operator (4.3) has potential for being a significant 

improvement over the inverse operator (4.2). 

In order to investigate the nature in which equation (4.3) is a 

refinement of equation (4.2), the action of the additional + term 

contributes to the accuracy of the inversion is explored. A Fourier 

integral operator approach is again taken. We rewrite the inversion 

integral in terms of Fourier integral operators by substituting the 

original integral equation (4.1) into the inverse operators (4.2) and 

(4.3).
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The zero order Fourier integral operator Z, obtained by this 

substitution is given by the following operator acting on the unknown 

index of refraction perturbation w(x). 

Voy) = (2,0) (y) 

  

1 w2y _ ne: 
- 38 1, SSG —e| |x—e|2 

“og age ly 

= (le - &l - ly - &)) 
~e 9 p(x) dx dw d&é . (4.4) 

The first order operator z, is given by the expression 

% ¥,0)) = (2,W)(y) = (2,@)) @) 

  

1 wy 
“> sf 

2in 3e% n° ere ly — €|2|x- e|? 

2i8 (|x - | - ly - €|) 
»e 0 w(x) dx dw dé. (4.5) 

For convenience, we denote the common phase function by 6(x,y,&) 

as before, 

2 
o(x,y,€) = — (|x-—e]| - ]y—e]) . (4.6) 

c 0 

Using the Beylkin change of variables, 

2 — 

k=wVol_ = “ fy — &) ; (4.7) 
x 'x"y cy ly _ E| 

and the corresponding change of differential forms found in equations 

(3.26) and (3.34), 

a(k, yk, yk.) 82 
dk = ——12*2?*3" ay ag = —— 73 ay dE , (4.8) 

3(wsE) rE) cély — &|9
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we can write the integral operator of equation (4.4) in terms of the 

variable k. This produces 

% Voy) = (2,0) 

-— 7 f Ly = SIF ogy qitO IE) ay ak (4.9) 
8n3 43 03 |x — €|2 aR 

Similarly, the integral operator of equation (4.5) can also be convert- 

ed to the variable k, 

% ¥ (7) = (2,W))(y) = (2) 

— So Ss ly el? es ee 
813 Rn? Rp? |x—e|*  2/y —¢€] 

> p(x) elves ¥rE) ay ak. (4.10) 

We now expand some of the terms directly into Taylor series with 

small (x — y). The phase function has the expansion 

iwd(x,y,&) = i(x — y)°k 

3 3 926 

— } L (x — y )(x — y_) |__ 
P P q q xy p=l q=l Ox 9X, 

  

(4.11) 

It is also desirable to expand the following function in a Taylor 

series. 

ly -&|? 

|x — &|# 
ty ely 
Jx-e[? OY 

1+ (x - y)-v_( 

_ 2(x — y)el(y — &) 

ly — |? 
(4.12)
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We use the following property of the exponential function. 

A 
e =e e =e C1+Bt es). (4.13) 

Substituting the series (4.11) into the exponential function ei? pro- 

duces one additional series based on the property (4.13). 

oivd(x,y,€) 

3. 3 2 
ei (zy): ke, 42 (x-y xe-y) oe a“ fives 

( 2 7 hy bs “pp '*q < Ox, Ox Ley ) 

(4.14) 

The preceding series expansions of equations (4.11), (4.12), and 

(4.14) are formally substituted into the expressions (4.9) and (4.10) 

for the Fourier integral operators zy and Zi The resulting equation 

for the zero order integral operator Z is given by 0 

% 

toy) = (ZW) 

2 ff (1- 2(x = y)r(y = &) -) 
8r3 2° Rp ly — €|? 

(ae ff nt 1+— (x - y_)(x - y_) —— tosses 
Pp “Pq “q x=y p=l q=1 Ox, 9% 

yx) eK ay ak (4.15) 

Similarly, the equation for the first order integral operator z is 

given by
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J, (9) = @,W)( = 2) 

  

1 2(x — E)*(y - —f f (1- Pen GD -j 
87? 23 p3 ly —é| 

+2 yf aa 1+ — (x -— y_)(x — y_) - . 

- (—1— > 7 Vs — ~ v(x) @ Cary) ae ak (4.16) y- 

Recall that in the previous chapter an important relationship 

was established between the Taylor polynomial (x — y)" for small 

(x — y) and the asymptotic order (lel for large frequency w. These 

apparently unrelated quantities represent the same order of asymptotics 

in a Fourier integral operator sense. Thus, we consider the asymptotic 

terms of smaller order than (4)? in the operators z, and z- Hence, 

it is observed that the integral operator z has three significant 

terms (excluding (4? and higher order terms). The expansion for the 

integral operator Zz, involves only one additional term. Specifically, 

l i(x-vy). 
$467) = (2,0) (y) = a3 1,5, 9) et ey) K ae ak 

2° R 

  

1 — y)*(y - i(x-y)- 
— —~ f J BaP" © p(x) ells y) k dx dk 

4n 3 R° R ly —é| 

i 3 3 926 
+ J fo J Y (- Yp Cx, -—y ) ——| 

3 = = Pp q xy 16m go Rg? p=l q=l ax p*q 

yx) fF ay at eee, (4.17) 

vy”) = (2 ()) Cy) = (2, (v)) Cy) 

1 1 i(x-yv)- —~—f fo (—2—) = ye ef FH ae ak ee 
8 3 rR 2|ly - ¢é| i 

(4.18)
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4.2 Alternate Forms for the Integral Operator Terms 

In the preceding section, the zero order and first order inverse 

algorithm approximations to the backscattered data integral equation 

were formulated in terms of the Fourier integral operators zo and Zz: 

Through a series of manipulations, equations (4.17) and (4.18) were 

derived providing explicit expressions for the two integral operators. 

It is to be noticed that the integral operator zy of equation 

(4.17) consists of three individual Fourier integral operators of order 

less than (by? plus additional higher order operators. The integral 

operator z, of equation (4.18) consists of an additional operator of 

order + plus additional higher order operators. These individual terms 

are investigated individually in this section. 

The first term in the Fourier integral operator expression (4.17) 

is easily recognized as the identity operator. This follows since the 
i(x-y)-k 

action of the Fourier kernel e is precisely equivalent to the 

Dirac delta function 6(x — y). Specifically, 

1 i(x-v)-e ei (x y)-k 
— p(x) dx dk = - dx = ply) a3 I, J, x J. v(x) S(x—- y) dx = yly 

2 

(4.19) 

If the above operator were the only term involved in equation (4.17) 

for the operator Zo» then zy would be in fact the identity operator. 

Consequently, the inversion algorithm (4.2) would be exact. However, 

the other terms in equation (4.17) comprise errors that degrade the 

zero order inversion algorithm. 

Consider the second Fourier integral operator term found in 

equation (4.17). We wish to write this expression in an alternate form 

by utilizing the same Fourier kernel property and integration by parts 

used in Chapter 2. The Fourier kernel property (2.38) is specialized 

to a 3-dimensional gradient,
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: - e 1 ; - e i(x-y)*k ig ( ei ( y)°k . (4.20) — y) (x- ye . k 

The integration by parts that is needed is a 3-dimensional version of 

equation (2.37) and is written simply as 

J, u Vv dk = — J, vVudk. (4.21) 
R R 

Hence, using a combination of integration by parts (4.21) and the 

Fourier kernel property (4.19), the second term of equation (4.17) 

can be rewritten as follows. 

  

1 — y)e(y — &) i(x-y)- =p p SEPT egy hI ay ak 
4n> 93 3 ly — €|? 

1 i(x-y)-k (y — &) = ) + ( —— ) ax ak . 4.22 
4m 3i J, ye ve eae) * 

Recall that for the constant reference velocity case, the Beylkin 

transformation is given by 

2w (Cy — &) 
k=0Va) =~ =, (4.23) 

x 'KF=y c ly-6&| 

0 

This transformation can be explicitly inverted to yield the variables 

(w,€, 28.) as functions of the variables (k) sk, 5k.) and take the form 

c k k 
wet Tels Fp eyo)» ba yy yl) + (4.24) 

3 3 
Viewing € as a function of k, it immediately follows that 

2 y 
ly— el? = 2 [k|2 , (4.25) 

3 

and also that the following holds, 

_ k A976) Ky (4.26) 
ly — |? y,|k|?
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From equation (4.26), the divergence of the unit vector function 

(y - E)/|y - E| 4 with respect to k can be obtained through a series of 

straightforward calculations. The divergence is given by 

(y — &) 2k 
We (5 = —>5 . (4.27) 

ly—-6é| y,|k| 

Replacing the divergence in equation (4.22) by the expression (4.27) 

above results in 

  

1 (x — y)e(y — &) -y): 

4n3 93 3 ly -é| 

1 i(x-y)* k 
= ff. FEW (gy a ax ak (4.28) 

an3i 3 93 y,|k|? 

This is the desired alternate form for the second Fourier integral 

operator term in the explicit expansion (4.17) for zy 

We now turn to the third term and most complicated term of the 

expansion (4.17) of the operator Zo: Again the Fourier kernel property 

(2.38) is specialized to second order partial derivatives, 

i(xy)ek 8 ilery) ok ) 
dk_dk 

P 4q 

~ - 4, (x, YX vq? e (4.29) 

We also use the double integration by parts that reduces equation 

(2.37) to the form 

92 92 
fo u——-vadk =f v —uack. (4.30) 
gi «kak 3 9k ok 

| R Pp oq 

Thus, by using the Fourier kernel property (4.29) and integration by 

parts (4.30) above, the third term of the expansion (4.17) for z 

becomes
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i 3 3 926 
5 f fwyf y (x 9 OE Yq) son | ay 

16m R° n> p=l q=l Ox 9X4 

© yx) bE K ge ak 

i lf 3 ; 92 926 
= TS ) | =v ) 

Lem 93 93 p=1 q=i 9k ak ax 3x y 

» bx) FER ay ak, (4.31) 

We explicitly evaluate the derivatives above in equation (4.31) 

through the use of the inverse transformation between (k) sk, 5k,) and 

(w,€,28,) given in equation (4.24). However, there remains an ambiguity 

in the sign of w in equation (4.24) that needs to be resolved. By 

examining the Beylkin transformation (4.23), it is observed that the 

frequency w can be represented unambiguously by 

k — 

= egkaly — él (4.32) 
2y, 

From the transformation relations (4.24) and (4.32) along with 

the explicit form of the phase function $(x,y,&) given in equation 

(4.6), the following explicit derivatives can be generated. 

  

326 _ ¢ &akaly — &l 2 [(y,7 &,)? + y3) 
. ax? x=y 2y, ) cy ly —- é|3 ) 

= ka (k2 + k2) , 
y,{k/2 2 3 

ve (skal ely 2 Wm ye ey 
“ ax3 xy ( 2y, ) Cy ly — €|3 

= ky (k2 + k2) , 
y,lk[2 01 3 

w a*o = ( egkly ~ 8 ) ( 2 Uyy~ 6)? + (yy7 6,97] ) 

ax5 2y4 Cy ly — é|3 
k 

—35 (k? + Kk) : 
y3|k]
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326 = ( ck. ly ~ &| )( 2 (y,- &,)(y,- &,) ; . oe ( Sol VTE — 2 SMe 8797 80" 
Ox, 9x, x-y 2y, Co ly ~ E| 3 

= AL 
y{k| 

ot (Solty (2 GB) 
Ox, 3x, xy 2y, cy ly — é|3 

2 
= - alee 

y3/k| 

ot 2 (Sealy ély (2 Go by) 
9x, 9x, x=y 2y, Co ly _ E|3 

kk? 
2-23, (4.33) 

y,/k| 

Moreover, by a series of straightforward differentiations and algebraic 

manipulations utilizing the derivatives in equation (2.33), it is then 

discovered that 

3 3 92 326 6k 
—_———_—_—_ = SS = —~ —_32_ ) » ok OK ( w oe | e=y ) ele (4.34) 

p=l q=l °°" *po%q V3 

We are now in a position to evaluate the complicated integral 

(4.31) that represents the third term in the expansion (4.17) for z0° 

The following equation is obtained by substituting the above result 

(4.34) into the integral expression (4.31). 

  

  

i 3 3 92 926 

1693 J, J, } } dk_dk (» 9x ox lay ) Rg” pal gel °%D°%G pq 

© w(x) elle) K a ak 

3 i(x-y)-k k --—> f fie p(x) — 5 dx dk . (4.35) 
Bn Pi R? Rp? y,{k| 

Thus, we have established the desired alternate form for the third 

term of the expansion (4.17) for z by combining equations (4.31) and 

(4.35) above. Specifically,
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3 926 . 3 i 
w » y (x ¥ yy ¥ eon, J. f 3 167 R° R° 

  

p=l q=1 

° w(x) ei (xy) +k dx dk 

3 i(x-y)« k 
IS ef EW)" K (5) —5 dx dk. (4.36) 

8 ei R° R° y|k| 
  

The present section is concluded with the development of an 

alternate representation for the additional operator term appearing 

in the expansion (4.18) for the operator Z: It turns out that this 

operator is the simplest of the terms to convert. Combining the 

relationship (4.32) for frequency w with the equation (4.25) for the 

squared distance |y — €|% results in the following. 

c 1 k 
(—2— ) — -—_ % = —3 (4.37) 
2]y— | iw ikjJy— e]% iy, ||? 

Thus, the desired expression for the additional operator term in 

equation (4.18) is found to be 

  

— ff. ( —fo yt et (Ey) K ar ak 
8n 3 R° R° 2ly - E| iw 

1 i = o k 4. et (=9) °K (yg) “3 ax dk (4.38) 34 2 

With the alternate forms given in the equations (4.19), (4.28), (4.36), 

and (4.38) above, an understanding of the difference between the zero 

order and first order inversion algorithms can be produced. We now 

explore this in detail.
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4.3 Inversion Algorithm Correction Term 

Thus far, the inversion algorithms developed in the preceding 

chapter have been cast in terms of Fourier integral operators. These 

representations have been expanded into individual operator terms up 

to orders less than (?. The individual operators were written purely 

in terms of the Beylkin transformation variable k = w Viol sey and are 

provided in equations (4.19), (4.28), (4.36), and (4.38). 

In the present section, the results of the preceding sections 

are summarized. Combining the alternate representations from the 

previous section immediately shows the nature of the improvement of 

the first order inversion algorithm over the zero order algorithm. 

The zero order inversion algorithm produces the following 

approximation to the index of refraction perturbation. 

2 — 

16 —iw ( ) 
¥5¢y) =f pf 2 - D(w,&) e 9 dw d& . (4.39) 

R- R TQ eoly > é| 

This has been shown to have the following equivalent representation. 

  

ay _ _ii i(x-y)-k 
Voly) = (2, (y)) (y) “3 J, J v(x) e dx dk 

l — ° —- : - e gg REP 8 egy eV ae ak 
4n3 93 3 ly—é{ 

i 3 3 326 
+ — y Ce ¥.) —— 163 J, \ ° a bs CT Ip OG” Yq max, 9 

 y(x) bE K ay at eee, (4.40) 

In the above equation, terms involving (4? and higher powers have not 

been explicitly written.
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In the preceding section, the individual terms of equation (4.40) 

have been written in the alternate forms found in equations (4.19), 

(4.28), and (4.36). Thus, the zero order inversion algorithm produces 

the approximation to the index of refraction perturbation given by 

Vo(y) = (2,))(y) 

  

  

= ¥(y) + SJ, 35 et ey)" a ak 
34 R° r° oh k| 

- J, "5 5 W(x) eifx-y)*k dx dk tere, (4.41) 

ani QP g we 

It is immediately noticed that the two integral operators can be summed 

to yield 

% 
Voty) = (2,(v)) (y) 

= yy) + —— if, i Ka u(x) ef EWE a ak ee 
3 yal kl? 

(4.42) 

Hence, the integral operator term above along with the higher order 

expressions that are not explicitly written represent the error in the 

. : % : : : approximation )(®) to the exact index of refraction perturbation (x) 

in the zero order inversion algorithm. 

Similarly, we examine the first order inversion algorithm given 

by 

c 
__ ley, 1, —- ——_1.__. 

of J g Te ol¥ - E| 2iw|y — &| 

~iy (2ly— ly 

* D(w,&) e £0 dw d& . (4.43)
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The expression (4.43) has been shown to possess an equivalent represen- 

tation of the form 

¥,(y) = (2,)) Cy) = (2,()) 

1 

873 
ff (—e 5 — ~ v(x) Cary) ge dk bee 
R° 2° 2ly - E| 

(4.44) 

Using the equivalent form of the above integral operator found in 

equation (4.38), the above equation can be rewritten as 

¥,(y) = (2,))(y) = (2) 

  J, ap b (x) etek ae ae tices, (4.45) 
 gn3 ip? 23 aC 

Comparing this result with equation (4.42) immediately shows 
1 ' : : : . 

that the > error term in the first order approximation is cancelled. 

         

  

Specifically, 

% eil(z-y)*k 
vy) = oly) + dx dk 

813 i 23 R° Y3 2 

75,5; We et (EI ae det eee, (4.46) 
gr i 2? 23 ah 

Thus, the error difference vy) — w(y) between the first order 

inversion algorithm approximation vy) and the exact index of refrac- 

tion perturbation ~(y) is given by higher order integral operators 

involving @ for m 2 2. The 2 error term contained in the zero order 

approximation Vo (y) has been annihilated in the first order approxi- 

mation v (y). re is precisely in this general Fourier integral operator 

sense that the first order inversion algorithm (4.43) is seen to be 

more accurate than the zero order inversion algorithm (4.39).
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The results of this section can be generalized to higher order 
% 

inversion algorithms. The Kth order approximation Vey) given by the 

methods of the preceding chapters is of the form 

de(y) = (EW) (y) = oy) + (EW) + BW) toe Vey), 

(4.47) 

where the operators Cea? Cengeeee are defined in equation (2.56). 

Thus, the error term in the Kth order inversion algorithm involves 

integral operators of order be and higher. This becomes apparent 

since by the construction of the Kth order algorithm, the Fourier 

integral operator z. that equivalently represents the Kt order 

algorithm is the identity operator up to Kth order. This follows as 

a result of the correction terms that the K¢M order algorithm provides 

to cancel the corresponding error terms of the order zero algorithm. 

4.4 Correction Term for Stratified Media 

We now consider the backscattered data problem with constant 

reference velocity as before but with the additional restriction to 

wave propagation in a stratified medium. By a stratified medium, it 

is meant that the wave propagation velocity c(x) is only a function 

of depth Xo If the reference velocity is taken to be the constant Cys 

then the index of refraction perturbation ~(x) is also only a function 

of depth x that is, 3? 

w(x) = w(x,) . (4.48) 

. : : 1 
It has been demonstrated in the previous section that the 7 

error term produced by the zero order inversion algorithm is given 

by the 2, operator and takes the form 
0
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¥(y) — ¥Cy) = (2,0) (x) — vy) 

1 k ny) 
a gt) K 8) ax ak + oe 

8 3a 2° RB: y,|k|? 
  

(4.49) 

1 . . : . . 
The GF correction term provided by the first order inversion operator 

‘ ‘ : 1 
is precisely the opposite of the > error term of the zero order 

algorithm. 

¥,(y) — ¥(y) = (2,(H)) Cy) - (2,€)) 

  j, f —“a_ ,i(zry) +k p(x) dx dk + °° 
2° 

5 R° y 3 ikl? 

(4.50) 

For a stratified medium, the index of refraction perturbation 

is of the form (4.48). Consequently, the correction term (4.50) can 

be integrated with respect to x and x, to yield Dirac delta functions. 

1 k 
  ¥ _¥ =_ 3. , iy’K , 2 vy”) v5) ardiy, 43 [el e 4n 5 (Kk, ) 5 (kc, ) 

32 

- f elX3kg y(x,) dx) dk +++: . (4.51) 

Denoting the l-dimensional Fourier transform of v(x.) by v(k,), we 

have the following equivalent expression. 

1 ky oi 
2niy, 93 [k|* 
  

yk a 

5(k, ) 6(k,) p(k.) dk 

tosses, (4.52)
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Carrying out the kK and k, integrations and noting the Dirac delta 

function properties results in 

  

1 : 
¥ _y = -— — 3 Tiy3k3 bas ¥, (y) — voy) J = v(k,) e dk, + . (4.53) 

However, 1/(ik,) can immediately be recognized as corresponding 

to the Fourier transform of an integral. Hence, 

1 \ % y 
¥, Cy) — ¥)(y) = — J 3 wy) dyit ree. (4.54) 

y, 0 3 3 
3 

where p is a constant. Thus, the correction term in the first order 

inversion algorithm in a stratified medium with constant reference 

velocity is seen to be essentially an integration of the index of 

refraction perturbation. 

In particular, for a simple discontinuous step perturbation 

arising from a single horizontal reflector at a depth P in the medium, 

v(y,) = H(y.— 0), (4.55) 

where H(x) denotes the Heaviside unit step function, the corresponding 

correction term is essentially a linear ramp in a neighborhood of the 

reflector. 

vy) -~v 
1 

(7) = y (y,- Ply 20 tree, (4.56) 
3 

We now make these concepts more precise by comparing the correction 

term to the exact solutions generated by the Cagniard-de Hoop method.
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4.5 Cagniard-de Hoop Data 

In the present section, the Cagniard-de Hoop method is used to 

further analyze the action of the first order inversion algorithm 

(4.43) in a stratified medium with constant reference velocity. Gray, 

Cohen, and Bleistein [16] showed that a closed form solution can be 

obtained for the exact backscattered data in this particular situation. 

This result is established from the Cagniard-de Hoop method described 

by Achenbach [1]. 

We consider a piecewise constant velocity profile in a stratified 

medium given by 

c 0o< x4< h 

(4.57) ul 

o e(x) = c(x,) 

cy x4? h 

where C)— Cy is assumed to be a small velocity perturbation. Taking 

the reference velocity Cy (x) to be the constant c,, then the index of 

refraction perturbation defined in equation (1.10) takes the form 

0 0< x4 h 

(4.58) p(x) = w(x ) 

c2 
1 1 

0 (a7) x,> h 

1 0 

If the impulsive wave source is normalized (Q) = 1), then the 

scattered field at the data surface x, =0 is given by the Cagniard- 

de Hoop formula: 

1 d 2h 
U,(t,€) = —— — (R(t) H(t -—)) , (4.59) 

8th dt cy 

where € is the coincident source and receiver point. The function R(t) 

is given by
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1 1 % 
t— (tt? + 4n4( — -—) ) 

c2 c2 
R(t) = a (4.60) 

t+ (t2 + 4n2(—-—) )° 
TG 

Hence, by taking the l-dimensional Fourier transform f given in 

equation (1.2) of the scattered field U,(t,€) in the time-domain, we 

obtain the scattered field in the frequency-domain, 

ug(w,é) = £[U,(t,é)] . (4.61) 

It turns out in the subsequent analysis that it is not necessary to 

explicitly calculate ug (w,€). 

We now consider the zero order inversion algorithm acting on 

the data Ug (ws€). Specifically, 

16 17 a) 
bo0y,) = sf fre 50° unlwse) dw de , (4.62) 

Tc r oR R 

where 

=|ly-e| . (4.63) 

Recognizing that the integration with respect to w is essentially an 

inverse Fourier transform, then it follows that 

32y 2r 
Vo (v4) = 3 j= Us( — 5€) dé. (4.64) 

Cy pt co 

Making a change of variables to cylindrical coordinates (0 ,8,y,), then 

the zero order inversion approximation becomes 

32y am 1 
¥o0,)2—3 fs J = USC = 48) a0 0 do . (4.65) 

c 0 Y3 0 fr fy
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Moreover, in cylindrical coordinates we have the relation 

r2 = 2 + y3 . (4.66) 

Using the closed form expression (4.59) for the Cagniard-de Hoop 

data U,(t,é), the zero order inversion approximation (4.65) can be 

explicitly integrated. Hence, 

32y, .» (27 
  

d 2h 
viv =—3s fs — (R(t) W(t -~—) ) [ae ar 

Cy 4 0 8thr dt Co co 

4 o 2 2h 
= 23 J — (R(t) af ~_2 ))ar. (4.67) 

h Y3 dr Cy cy 

Thus, 

4y 2r © 
)=—tr( —) Hr-h VY, , ( . ) H(r ) ly, 

0 

4 2 
7 a R( “73 ) H(y .— h). (4.68) c é 

0 

In a neighborhood of the reflector (that is, for y,> h), the 
zero order inversion approximation can be written in terms of a linear 

Taylor polynomial. 

% 

d by(y,) > y(n) + an) (yj-h) (4.69) 
dy, 

Hence, by evaluating the expressions in the above Taylor polynomial, 

it is discovered that 

4R 2c + _ —~h)-—2 —~ 21 _ Valy,) > — 4R, HCy,— h) . (1 = ) (y, Dy oh » (4.70) 

where Ry is recognized as the reflection coefficient, 

2h c.-c 
=R( —) = 1 , (4.71) 0 c c,+te
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and where 

dR 2h c 
—O(—)-+-—ce. (4.72) 
dt c h 0 

The factor of four multiplying the reflection coefficient in the result 

(4.70) is in exact agreement with results obtained by Bleistein, Cohen, 

and Hagin [5]. 

Now consider the first order inversion approximation given by 

2iwr 
16 1 c -(—— 

d6y,) =—73f f-(1--D)e ug(w,£) dw de . (4.73) 
Tey Rn R Yr 2iwr 

The first order inversion approximation above involves two individual 

terms. The first term has been calculated in equation (4.70) since it 

is simply the zero order inversion approximation. The second term in 

equation (4.73) is the correction term. Specifically, 

Av = ¥,(y,) - ¥o(¥5) 

— (2148 

8 1 
e 0 ug (w,€) dw dé . (4.74) 

y 
Oe RR 

  

too . 1. : 
It is important to notice that the factor — Tp in the frequency-domain 

corresponds to integration in the time-domain. In particular, 

1 
f, (fi uy(e’,e) at’ +o) =-— ug(wsE) (4.75) 

oo : 1W 

\ 
where C is an arbitrary constant. Thus, the correction term A in 

equation (4.74) can be explicitly integrated to yield 

~ 1 2r 
Ay = loy, f — (f Co ui(t’,€) de’ +0) de. (4.76) 34, 52 72 6S 

Using the Cagniard-de Hoop formula (4.59) in equation (4.76) results 

in the following.
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B= rey, f Sf A acer) wer ~ Bp ae ee) Ap = = 0 — — j R(t’) H(t’ - — t' + —. 
¥ ¥3 R? r@ -o 8th dt c 

0 

(4.77) 

Carrying out the integration inside the parentheses produces 

1 1 2r 2r 2h 
aj = ley, f —(—R(—)a(—-—)+c) ae. (4.78) 

3 R’ r2 8th co cy Fy 

We can again make a change of variables to cylindrical coordinates and 

then relate the result to integration with respect to r. The result is 

given by 

o 1 2 
av = 32ry, f ~(—Rr(—) wr-b) +c) ar. (4.79) 

¥3, 0 8th cy 

Thus far, we have not identified the constant C. We now choose 
\ 

the arbitrary constant C such that Aw = 0 at y3 = h. Then for 3 2h, 

we discover that 

  

  

eo 1 2 © 1 2r ay = 3any, ( f R( —) ar—f R( —) dr) . (4.80) 
3 y, 8uthr c h 8thr c 

3 0 0 

Equivalently, 

4 1 2 
ay = - "3 e( =) ar. (4.81) 

h h ¢ Co 

In a neighborhood of the reflector (y, > h), we obtain a similar 

approximation to that of equation (4.70). 

» 4 2h 4R 
ay +—— RC — ) (y,- h) 7-78 (y,- h) . (4.82) 

0 

In the Born approximation used in the linearization of the 

backscattered data integral equation (1.24), the index of refraction 

perturbation is considered to be small. This is equivalent to the 

assumption that c,—-c. is small. Hence, the ratio c,/c, is approxi- 
1 0 

mately unity. In this case, we observe that equation (4.70) becomes
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oh’ (4.83) 
4R 

y _ pe 0 _ Voly3) > 4R, H(y,~ h) + , (y, my. 

Moreover, we observe that the correction term of the first order 

inversion algorithm produces precisely the linear correction to 

annihilate the linear error in equation (4.83). Specifically, we see 

from equation (4.82) that the correction is given by 

% % 4R 
~ =——1 ~ ¥1y¥,) — ¥oly,) ee Mly zh (4.84) 

Thus, the first order inversion algorithm eliminates local linear 

approximation errors that the zero order inversion algorithm generates. 

However, it does not correct for the linear error derived from the 

Born approximation in linearizing the backscattered data integral 

equation. 

4.6 Inversion Algorithm for General Initial Conditions 

In this concluding section, we generalize the first order inverse 

algorithm to account for more complex impulsive source waves. It was 

assumed in Chapter 3 that the source wave is asymptotically a spherical 

wave in the near-field. Specifically, the amplitude is given by 

A(x,w,&) > ao , (4.85) 
TS 

as ¢ + 0. However, it is possible for the source wave in the near-field 

to have an asymptotic expansion of the form 

1 

A(x,w,&) +>— (Q. + eat tree), (4.86) 
4to 0 iw 

For a constant reference velocity, the rays propagate along 

straight lines as in equation (3.8). Solving the transport equations 

for these more general asymptotic initial conditions by the methods 

of Chapter 3 results in
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A,(0) = 84 GG = 01,...) , (4.87) 
410 

where the notation A Co) = A ,(x(o),€) is used. 

The backscattered data integral equation for constant reference 

velocity again takes the form 
nN 

D(w,&) = 

o
n
l
 § J, a(xw,€) elbb (RE) Vn) ax , (4.88) 

R 

where the phase is given by 

2|x - &| 

“9 
o(x,€) = 21(x,&) = (4.89) 

However, the amplitude is modified for the more general imposed initial 

conditions (4.86). Specifically, 

Q2 Q2Q? 
a(x,w,&) = —O2.. + —“0 1 “=p 

167202 81202 iw 

2 202 
= Q5 Qn 9) (4.90) 

lon?@|x— E]2 802} x — E]Ziw 
  

The first order inversion algorithm is obtained by following the 

procedure of Chapter 3. This involves the calculation of the first 

order kernel function b, Cy, €) provided in equation (3.46). There is 

an additional term included since a, (y,€) does not vanish for the 

initial conditions (4.86). The kernel function is given by 

1281n2 a.(y,&) c b, (ye) = ——3 - art - Sa 
Qheor ay yié 2r 

12812 2 = 2ORTY, ¢ _ 22 So ). (4.91) 
QZcor Q 2r 

Thus, the first order inversion algorithm for constant reference 

velocity with the extended initial conditions (4.86) has the following 

form
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1 VOT Se SO Stay 
R? Q% =F 

— 4 (22H 
> Diw,—é) e 9 dw dé. (4.92) 

The modified inversion algorithm (4.92) provides an additional correc- 

tion term for the first order term of the asymptotic expansion of the 

impulsive source wave.



CONCLUSION 

The present work has addressed the velocity inverse problem of 

geometric acoustics for an inhomogeneous non-dispersive medium. The 

velocity inverse problem involves the imaging of surfaces of discon- 

tinuous index of refraction through the analysis of the scattered 

waves at an accessible surface of the medium. The velocity inverse 

problem is mathematically formulated in terms of a linear integral 

equation based on the perturbation approach of the Born approximation 

of theoretical physics. 

The elegant and powerful theory of Fourier integral operators 

is utilized to generate an explicit asymptotic expansion of the gener- 

alized asymptotic integral equation inversion operator. These results 

are specialized to the velocity inverse problem in 3-dimensions for 

constant reference velocity. Explicit zero order and first order 

inversion algorithms are developed. The first order algorithm is 

extensively analyzed using Fourier integral operator and Cagniard- 

de Hoop methods. It is shown that the first order inversion algorithm 

annihilates the linear error terms that are generated by the zero 

order inversion algorithm. However, it does not eliminate the error 

due to the Born approximation itself. The elimination of the Born 

approximation error requires the use of higher order Born approxima- 

tions. However, if the index of refraction perturbation is sufficiently 

small, then the Born approximation error is negligible. Consequently, 

the first order inversion algorithm developed in this work represents 

a potentially valuable improvement over existing inversion algorithms. 

Furthermore, the results and methods of the present work are informa- 

tive in demonstrating that the general pseudodifferential operator and 

Fourier integral operator theory can be applied to the problems of 

geometric acoustics. 

90
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It is to be noted that the Fourier integral operator methods and 

results extend to the much more difficult problem of non-constant 

reference velocity. The inversion algorithms developed in Chapter 2 

are still valid for the non-constant reference velocity case, but the 

explicit calculation of the required kernel functions is extremely 

complex and remains unsolved. Stickler, Tavantzis, and Ammicht [30] 

showed that for certain reference velocity profiles, the second term 

of the geometric acoustics expansion can be implicitly obtained. It 

remains unknown whether the detailed calculations can be performed or 

whether the surprising simplifications and cancellations seen in the 

constant reference velocity case will occur for non-constant reference 

velocity examples.
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