
CWP-984

Seismic velocity model building using recurrent neural
networks: A frequency-stepping approach

Hani Alzahrani & Jeffrey Shragge
Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines, Golden CO 80401
Corresponding Email: halzahrani@mymail.mines.edu

ABSTRACT
Data-driven artificial neural networks (ANNs) demonstrably offer a number of advan-
tages over conventional deterministic methods in a wide range of geophysical prob-
lems. For seismic velocity model building, judiciously trained ANNs offer the pos-
sibility of estimating subsurface velocity models more efficiently than deterministic
full-waveform inversion (FWI) approaches with reduced sensitivity to many inher-
ent FWI non-linearity issues; however, there are substantial challenges with effective
and efficient network training. Motivated by the multi-scale approach commonly used
to address FWI non-linearity challenges, we develop a frequency-stepping approach
for velocity model building that uses a sequence-to-sequence recurrent neural net-
work (RNN) with built-in long short-term memory (LSTM). The input sequences to
the LSTM-RNN consist of the frequency-domain seismic data ordered by frequency
from lowest available to highest usable, while the corresponding output sequences are
frequency-dependent smoothed velocity models. Qualitative and quantitative analyses
of the network testing results show that such a network has the potential to estimating
complex velocity models starting from their smoothest components.

Key words: Recurrent Neural Networks, Seismic Velocity Inversion

1 INTRODUCTION

A major challenge in seismic exploration is building velocity models that minimize the misfit between observed and modeled
seismic data. Over the past decades, this challenge has been tackled using mainly deterministic methods; however, the resurgence of
neural networks in recent years largely driven by advances in GPU computing is introducing new paradigms for automated velocity
model building. These methods aim to take advantage of artificial neural networks (ANNs) to bypass challenges associated with
deterministic methods. ANNs also offer the potential of improved efficiency because the main cost overhead comes from training,
after which predictions can be made at the cost of matrix-vector multiplications. The challenges of velocity model building using
ANNs have been successfully addressed by a number of authors (Araya-Polo et al., 2018; Phan and Sen, 2018; Vamaraju and Sen,
2019; Zhang and Alkhalifah, 2019; Sun et al., 2020; He and Wang, 2021).

A recent trend in deterministic seismic velocity model building is to use full waveform inversion (FWI) to obtain a high-
resolution subsurface velocity model that aims to minimize the misfit between observed and modeled data (Lailly, 1983; Tarantola,
1984). Because the governing wave equation is non-linear with respect to medium parameters, the FWI process is highly non-linear,
which leads to non-convex objective functions with numerous local minima that frequently forestall the convergence of optimization
approaches toward the globally minimum solution (Virieux and Operto, 2009). Such challenges are exacerbated by the oscillatory
nature of seismic data, which demands using starting models that simulates seismic waveforms to within half a period of recorded
data to avoid cycle skipping, which causes the inversion to converge toward a local minimum that may be far away from the true
global solution. Finally, FWI is computationally expensive because each iteration usually requires (tens of) thousands of seismic
wave simulations.

To mitigate the non-linearity issues, numerous FWI approaches follow a multi-scale strategy (Bunks et al., 1995) where the
lowest frequencies in the data are inverted first to recover the longer wavelength model components, followed by higher frequencies
to infill shorter wavelength detail. Because lower frequencies are less sensitive to cycle skipping than higher frequencies, inverting



2 Alzahrani & Shragge

them first helps to recover a smoother velocity model and move the inversion toward the global minimum. The smooth velocity
model from the previous step can then be used as the initial model to invert the next higher frequency band. This iterative approach
then continues until the final frequency band is inverted.

Motivated by this approach, we present a ANN methodology that aims to mimic the dynamics of the multi-scale FWI strategy.
We achieve this by using a class of ANNs referred to as recurrent neural networks (RNNs) whose structure is ideal for sequential
data. We decompose the seismic data into frequency slices that are sequentially input to the RNN along with a frequency-dependent
smoothed version of the model. We gradually increase the input data frequencies from the lowest usable to the highest chosen
component. Along with each frequency input, we inject the smoothed version of the velocity model appropriate for that stage. We
begin by introducing RNNs and their different types including the benefits of using long short-term memory architectures. We then
discuss the proposed method and detail the specific RNN used in this work. We subsequently show a number of the network testing
results and discuss trends in the recovered models. Finally, we quantitatively evaluate the network performance on the ensemble of
testing models in both the velocity model and data domains.

2 TRAINING DATA GENERATION

To train an ANN, we need a training data set that contains input-output pairs. Here, the input data consist of simulated surface-
recorded frequency-domain seismic waveforms, while the outputs are the corresponding velocity models. We generate a total of
17, 000 velocity models that coarsely mimic subsurface geologic structures. The models are limited to five layers at most. The
model layers are constructed sequentially from top to bottom, with each layer interface specified using spline interpolation between
randomly generated control points. The number and locations of control points are randomly assigned. After constructing all
interfaces, each layer is assigned a randomly generated velocity between 1.5 km/s and 4.0 km/s; some randomly selected layers
are assigned a linear velocity gradient, while the others are assigned a constant velocity. Figure 1 shows 16 representative sample
velocity models with layers of a range of dip angles and thicknesses. Some layers are curved in the shape of a syncline, while others
have the form of an anticline. Velocity gradients are present in some models where the velocity is smoothly increasing with depth.

We then use the developed velocity models for numerical experimentation. A total of 10, 000 input-output pairs are used
for network training, 2000 are used for training validation, and 5000 are reserved for network testing. All 2D models are of size
Nx × Nz = 500 × 500 grid points at a ∆x = ∆z = 4 m discretization. Sources and receivers are placed every ∆s = 160 m
and ∆r = 48 m on the grid, respectively. We simultate 2D seismic data in the time domain using a GPU-based constant-density
acoustic wave equation solver and a 15 Hz Ricker wavelet source. We the apply a temporal FFT to transform the data set and extract
data at nine frequencies ranging from 1.1 Hz to 9.9 Hz in ∆f = 1.1 Hz increments. The complex waveforms are saved for network
training and testing discussed below.

3 RECURRENT NEURAL NETWORKS

The most straightforward ANN architecture (feed-forward fully connected neural network) is capable of learning the connection
between an input-output pair using trainable weights, the values of which are “learned” during the training process. These net-
works consist of an input layer, one or more hidden layer(s), and an output layer. Following the success of fully connected neural
networks, more sophisticated ways of connecting network input to its hidden and output layers have been developed, among the
most successful and widely used of which are convolutional neural networks (CNNs) and recurrent neural networks (RNNs). While
CNNs simply replace the connective weights by a convolutional process, RNNs are more dynamic and are commonly used when
input data can be decomposed into a sequence. For example, machine translation applications show that feeding the input text word
by word to the ANN produces superior results than when feeding the entire text at once (Sutskever et al., 2014).

Another prominent feature of RNNs is that they have a “hidden state” vector which acts as the network’s memory that helps
it recall what it has learned between the first and final inputs. There are four types of RNNs depending on the number of network
inputs and outputs. The most basic of these is the one-to-one RNN, which gives a single output for a single input (Figure 2a). The
RNN shown in Figure 2a is similar to a fully connected network with one hidden layer. In fully connected networks, the hidden
layer has one set of weights that are multiplied by the input vector, and each input is treated independently. That is, the output of a
certain input does not depend on the output of the previous input. In a machine translation network, this would mean that each input
word in a sentence is translated independently without looking into its context. However, a hidden layer in a one-to-one RNN has
two sets of weights, one is multiplied by the input vector while the other is multiplied by the hidden state vector. The hidden state
vector has information about the previous network inputs. Using the same machine translation example, the hidden-state vector
contains information about the context of the input word in the sentence, and is updated at each input.



RNN Velocity Inversion 3

Figure 1. 16 representative 2.0 km ×2.0 km synthetic velocity models generated for network training.

In addition to one-to-one RNNs there is the many-to-many (or sequence-to-sequence) RNN (Figure 2b) that we use here to
produce optimal results. In the sequence-to-sequence RNN the vectors h1 to hn represent the network hidden state vectors, x1 to
xn the inputs vectors, and y1 to yn the corresponding output vectors. The training process starts by injecting the first input x1

into the network, along with its corresponding output y1. Vector h0 is updated based on what the network has learned from the
connection between x1 and y1 to produce h1. The process is repeated for the remaining input-output pairs. The final output yn is
computed using the continually updated state vector hn which, in principle, carries the cumulative network learning along with the
final input.

The network structure in Figure 2b is well suited to applying a frequency-domain multi-scale scheme for seismic velocity
model building. The lowest usable frequency data are injected as the x1 vector, followed by sequentially higher frequencies until
the highest frequency data are injected as xn. The output at each step, y1 to yn, ideally contains the model wavenumber components
corresponding to the highest frequency used to that point. Because such velocity models are not straightforward to construct, we
apply a 2D Gaussian filter of varying radius to smooth velocity models to an appropriate degree for the maximum frequency used.



4 Alzahrani & Shragge

Figure 2. Diagrams illustrating the four different types of RNNs. (a) A one-to-one RNN and (b) the many-to-many RNN network used in this work.

Using this structure, the network first learns the connection between the lowest data frequency and the general velocity model
trend. The learned connection is then carried along in the form of the hidden state vector to help the network learn the connection
between the second frequency and a less-smoothed velocity model. The cumulative network knowledge learned in the first two
steps is carried along in the same manner to the last frequency in the data. We assert that this frequency-stepping approach allows
the network to reconstruct complex velocity models by recovering their components in a multi-scale fashion (i.e., from simplest to
most complex).

3.1 Long short-term memory RNNs

A common drawback with standard RNNs is the vanishing or exploding gradient problem (Bengio et al., 1994). To address these
issues, Hochreiter and Schmidhuber (1997) develop a particular class of RNNs called long short-term memory (LSTM). LSTMs
can hold information for a longer duration by introducing a gating mechanism at each step to determine the relevant information
that should be carried forward to the next step in the sequence, and the irrelevant information that should be discarded. In addition
to the hidden state vector that serves as the short-term network memory, LSTM adds a cell-state vector to serve as the long-term
network memory.

Figure 3b illustrates how information flows inside an LSTM cell. Each light-green box represents a layer, with its own set of
weights and biases learned during training, and a predefined activation function. The text inside each square represents the layer’s
non-linear activation function, which introduces non-linearity into the system and can restrict output values to fall within a certain
range. Layer σ represents a sigmoid function that normalizes the input between [0, 1], while ReLU (rectified linear units) sets all
negative values to zero while keeping the positive values untouched. As opposed to a standard single-layer RNN cell (Figure 3a), an
LSTM cell (Figure 3b) consists of four trainable layers. The four layers constituting an LSTM cell are (from left to right) the forget,
input, candidate-cell-state, and output layers. Each layer in an RNN cell has two inputs xt and ht−1. Consequently, each layer has
two different weight matrices; one applied to the cell input xt, the other to the hidden state of the previous cell ht−1. All four layers
take the same two xt and ht−1 inputs. The cell-state vector is updated using the outputs of the first three layers, while the output
of the fourth layer contributes to updating the hidden-state vector. The ReLU box with a white background is an activation function
applied to the input vector and does not constitute a layer.

To simplify the operations of an LSTM cell (Figure 3b), consider the history of the cell-state vector as it is updated from ct−1

to ct. When progressing through the LSTM cell it undergoes point-wise multiplication and addition operations with other vectors.
The first operation is a multiplication with the forget vector (ft), which is the output of a sigmoid layer (or a ’forget layer’) that
takes xt and ht−1 as input, and produces a vector with values ranging between 0 (which means completely forget) and 1 (which
means completely retain) as output. Therefore, the updated cell-state vector at this stage is given by (ct = ft × ct−1 + ...). The
second more complicated addition operation involves multiple steps. First, we compute the it vector using the weights of the input
layer and the input xt and ht−1 vectors. Next, we compute C̃t using the same inputs and the weights of the candidate-cell-state
layer. Then, we perform a point-wise multiplication of these two vectors (i.e., it × C̃t) and add the result to ft × ct−1. Therefore,
the full equation for computing the updated cell-state vector is ct = ft × ct−1 + it × C̃t. This process first removes what the
network believes to be irrelevant information, and then adds in the relevant information that the network learned at this step. After
computing ct, we use it to compute the updated hidden-state vector ht. We first use the weights of the output layer along with the
input xt and ht−1 vectors to compute the output vector ot. Next, we apply an activation function (ReLU in our experiment) to the



RNN Velocity Inversion 5

Figure 3. Diagrams showing the structure of (a) a standard RNN cell and (b) an LSTM cell. ht−1 and ct−1 are the hidden and cell state vectors
coming from the previous cell, xt is the cell’s input, and ht and ct are the updated hidden and cell state vectors. Each green rectangle represents a
layer with its own weights and biases. The text inside each square represents its activation function. While a standard RNN cell has one layer, an
LSTM cell has four layers. From left to right, these are the forget layer, the input layer, the candidate-cell-state layer, and the output layer. The gray
circles represent point-wise mathematical operations between two vectors.

updated cell-state vector ct and multiply the resulting vector with the output vector (ot). Therefore, the equation for computing the
updated hidden state vector is ht = ReLU(ct) × ot.

Looking at the diagrams in Figure 3 and with the preceding description, it should be evident why LSTM-RNNs are better
than standard RNNs at retaining relevant information for long sequences. The cell-state vector in an LSTM cell acts as a filter on
what information to keep in the hidden-state vector, what information to forget, and what information to add at the current step.
The absence of a similar vector in standard RNNs means that at each step every element of the hidden state vector is updated using
information learned at the current step, which causes information learned at early steps to be overwritten at later steps.

Figure 4 shows the network architecture used in our experiment (starting at the bottom and moving upward). Each gray square
represents an LSTM cell. An LSTM layer consists of a sequence of LSTM cells, with the sequence length being the number of
frequency steps in the input data (here nine). The curved arrows show network recurrence, where the output at each step is reinjected
as input at the next step (hence recurrent neural networks). To illustrate how information flows through the network in a forward
pass (i.e., computing velocities from seismic data), Figure 5 shows the network unrolled with no recurrence arrows. As illustrated
previously, computing the output of an LSTM cell requires an input vector in addition to the hidden- and cell-state vectors of the
previous (frequency) step. The initial state vectors (i.e., hi0 and ci0 for i = 1, 2, 3) are all initialized to zero. A forward run of the
network in Figure 5 begins by injecting the 1.1 Hz seismic data for all sources as the x1 vector and initializing h10 = c10 = 0.
Using the weight matrices of LSTM11 (i.e., the weight matrix for each of the four layers comprising the cell) and the process
explained previously, we compute the updated output hidden-state h11 and cell-state c11 vectors.

During the next stage the network proceeds both vertically (to the next layer) and horizontally (to the next frequency). We will
consider the vertical propagation of information first. The LSTM12 cell takes h11 as its input vector and the null h20 and c20 vectors
and uses the layer weights to compute h21 and c21. The same process is repeated for LSTM31, where h21 acts as the input vector,
to produce h31 and c31. Next, we compute the velocity model at 1.1 Hz using the weights of the fully connected output layer and
the vector h31 as the layer input. It is important to emphasize that while the network’s long-term memory (i.e., c31) is not used to
construct the 1.1 Hz velocity model, it is used inside each LSTM cell to compute the hidden-state vector. Therefore, the information
stored in c31 is encoded in the final hidden-state vector h31, which we use to compute the velocity model for the current frequency.

Next, we go back to the LSTM11 cell to demonstrate the propagation of information in the same layer from one frequency to
the next. LSTM12 takes the seismic data for all sources that correspond to 2.2 Hz as input vector x2, along with the hidden-state
h11 and the cell-state c11 vectors of the previous cell in the same layer. It then uses its weights to compute h12 and c12. Using
this procedure, the information learned from the lowest frequency is carried along in the cell-state vector to the highest usable
data frequency. With this procedure, data from all frequencies as well as the memory of all layers contribute to the velocity model
predicted at 9.9 Hz.

The training process performs a forward run using the network weights at that epoch (iteration) to produce nine output velocity
models. We then compute the mean-squared error misfit between each predicted and true velocity models, which is used to update
the weights for each layer through backpropagation. Figure 6 shows an example of the set of nine velocity models that are injected



6 Alzahrani & Shragge

Figure 4. A sketch of the RNN used in this work consisting of three LSTM layers (LSTM1-LSTM3) with each having its own hidden state. The
curved arrows indicate recurrence, with the h and c outputs at each step i are injected as input at i+ 1. Increasingly higher frequencies are injected
successively along with their corresponding filtered velocity models.

as the network output along with the data frequency to which they are attached. The 1.1 Hz model only has the general trend of
the velocity values; however, higher wavenumber components are incorporated slowly as higher frequencies are introduced until
reaching the 9.9 Hz velocity model (with a filter size of only 2 × 2 grid points, it has all the velocity structures in the true model).

Due to GPU memory limitations, we downsample the velocity models from 500×500 first to 250×250 and then to 125×125

grid points. During each downsampling step, the value at each point in the coarser grid is computed as the weighted average of nine
points on the finer grid. Because of the frequency range used in this experiment, we expect the recovered models to be smooth.
Therefore, this downsampling procedure has negligible effects on the resolution of the recovered models. The batch size for network
training is 100 input/output pairs. We compute a total of 2000 training epochs and perform frequency-dependent velocity smoothing
on the fly. Figure 7 shows the training and validation curves for the network. We use the networks weights at 1200 epochs as this
is the point after which the validation curve remains nearly constant. The observed high-frequency oscillations are likely due to
clipping the y-axis to a small range (i.e., [0, 0.5]) to more clearly show the behavior of both curves.

4 NETWORK TESTING

The trained RNN is tested using the 5, 000 models reserved for the testing phase. For each set of input seismic data, the trained
network outputs nine different velocity models with different smoothing levels (i.e., one velocity model for each input frequency).
Figure 8b and 8c show the nine recovered models along with their cross-sections for the testing model in Figure 8a. Following the
trend of the training data shown in Figure 6, the recovered 1.1 Hz model is a very smooth representation of the true one. As the
input frequency increases, the network incorporates more details to the recovered model until at 9.9 Hz it exhibits all the features
of the true model. This behavior is most apparent at the vertical cross-sections (Figure 8c). The predicted velocity starts as the
mean of the two layers. However, as the input frequency increases, the predicted model forms two distinct layers, with the velocity
gradient of the top layer being accurately recovered by 9.9 Hz. This behavior is also observed in the thin portion of the top layer



RNN Velocity Inversion 7

Figure 5. A sketch of the RNN used in this work consisting of three LSTM layers (rows LSTM1-LSTM3) and nine different frequencies (columns
1.1 Hz-9.9 Hz) with each having its own hidden state. The LSTMij boxes indicate recurrence, with the hi and ci outputs at each frequency step i

are injected as input at i+ 1. Increasingly higher frequencies are injected successively along with their corresponding filtered velocity models.

toward the upper-left corner of the model. This portion is completely absent from the models recovered at lower frequencies, and
it is first resolvable by the seismic data (as well as the trained RNN) at approximately 5.5 Hz. Its shape and size gets accurately
reconstructed by 9.9 Hz.

We first assess the accuracy of the trained LSTM-RNN qualitatively by analyzing four testing models that show features
representing most of the predicted models (Figure 9). The testing model in Figure 9a consists of a number of relatively thin
layers at the shallow section and a thick deep layer, with velocities increasing with depth. The recovered model (Figure 9b and
9c) accurately captures the general velocity structure trend. Due to their thinness, the top layers are approximated with a velocity
gradient. However, the deeper thick layer shape and velocity are more accurately recovered. We see a similar behavior in the second
testing example (Figure 9d-9f), where the network approximates the thick shallow layers with a velocity gradient that accurately
captures the low-wavenumber trend. The cross-section in Figure 9f shows that the velocity values of the two deeper layers are
close, which might explain why the network seems to recover them as one thick layer with an averaged velocity value. The third
testing example (Figure 9g-9i) shows a common phenomenon where the velocities of the shallower layers are well recovered, while
those of the deeper layers are poorly estimated especially when they are relatively thin. However, this could be due to the lack of
illumination of the deeper layer. Figure 9j-9l shows another common form of misfit between true and predicted models. When there
is a strong velocity inversion (i.e., between the third and fourth layers), the recovered model trends toward the third layer velocity,
but before reaching its true velocity value moves in the opposite direction to recover the slower velocity of the deeper layer.

To obtain a more robust assessment of network performance, we use the trained network to estimate the velocity models for
all 5000 testing-data inputs. We then compute the normalized rms (NRMS) misfit between the true and predicted 9.9 Hz models.
Because the recovered and true models have different dimensions (i.e., 125 × 125 and 500 × 500 grid points, respectively), we



8 Alzahrani & Shragge

Figure 6. A training velocity model with different smoothing levels. The frequency value at the top of each model denotes the frequency value that
models is attached to in the RNN.

Figure 7. Training (green) and validation (red) learning curves for the RNN used in this experiment.



RNN Velocity Inversion 9

Figure 8. (a) The true testing velocity model. (b) The nine network-recovered velocity models using the trained network. (c) Vertical cross-sections
extracted at the dashed line of each corresponding model in (b). The same color bar is used for all velocity models.



10 Alzahrani & Shragge

Figure 9. Four testing results of the trained network. (a), (d), (g), and (j) are the testing velocity models. (b), (e), (h) and (k) are the corresponding
recovered models. (c), (f), (i), and (l) show the cross-section through each of the corresponding models at the dashed line. The same color bar is
used for all velocity models.

interpolate the recovered velocities back to their original dimensions of 500 × 500 grid points to perform following quantitative
analysis. Herein, we use an NRMS metric given by

NRMS =
1

2

√∑
(ΦTrue − ΦPred)2∑

Φ2
True

, (1)

where ΦTrue and ΦPred refer to the true and predicted data, respectively. The NRMS measure will be zero for perfectly matched
data, equal to unity where ΦTrue = −ΦPred, and be 0.5 when ΦPred = 0. Figure 10 shows the distribution of the NRMS
error between all 5000 true and 9.9 Hz recovered models. The NRMS misfit has a mean error of around 5.8%, which helps to
quantitatively support and generalize the observations made about Figure 9 above.

To further analyze trained network performance, we use the recovered models to simulate seismic data. We interpolated the



RNN Velocity Inversion 11

Figure 10. A histogram showing the NRMS misfit between the true and recovered 9.9 Hz velocity models calculated using equation 1.

9.9 Hz recovered velocity models from 125 × 125 into the original 500 × 500 size and then used them to synthesize seismic
data using the same modeling procedure discussed above. Figure 11a and 11c compare the associated true and predicted velocity
models. The recovered velocity model appears to have the correct long-wavelength components of the true model. This observation
is confirmed by the fact that both the amplitude and phase curves in Figure 11d and 11d of the synthesized and true data are almost
identical at 2.2 Hz. While still being very close, the two curves somewhat diverge as the frequency increases to 9.9 Hz. In the
second forward modeling test (Figure 12), the recovered model accurately recovers the long-wavelength components of the true
model, though it fails to estimate the velocity of the deeper layer. However, this inaccuracy seems to have little effect on the seismic
data up to the highest frequency used in the experiment. This observation reinforces our assertion that the under-performance in the
recovery of some models may be caused by poor illumination in the true and recovered data alike.

In the third testing example (Figure 13), the recovered model well represents the shallower model structure and heads in the
right direction of the velocity inversion at the deeper layer, but it fails to estimate the true velocity. Similar to the previous example,
this inaccuracy of the recovered model seems to have a negligible effects on the synthesized data in the form of a cycle-skipped
phase shift at 9.9 Hz. The fourth testing example (Figure 14) captures the general trend of the true velocity model from top to
bottom. However, the misfit between true and recovered data appears greater than some previous examples with a less accurate
velocity fit. This could be due to the great variability in the true data, even at 2.2 Hz, which are most likely caused by factors
other than the velocity structure. When using these seismograms as input to the RNN, the data simulated using the recovered model
appear to be a smoother version of the true data.

To better understand how well the RNN-generated models fit the true data, we compute the ensemble NRMS misfit (equa-
tion 1) of the amplitude and unwrapped phase components for data simulated using the true and 9.9 Hz recovered models. Fig-
ure 15a and 15b show the ensemble NRMS of the amplitude and unwrapped phase misfits, respectively. The amplitude and phase
error distributions have means of 7.4% and 4.7%, which are broadly consistent with the observations from Figure 10.

5 CONCLUSIONS

We develop a novel ANN technique that is inspired by the FWI multi-grid approach that uses sequence-to-sequence RNNs. This
approach successively injects higher data frequencies at each step. To constrain the information carried through the network by the
hidden state vector, we also inject a smoothed velocity model as the output for each input frequency. The degree of smoothness
depends on the frequency being injected at that RNN step. The presented examples along with quantitative analysis demonstrates



12 Alzahrani & Shragge

Figure 11. Comparison of the amplitude and phase components of the data simulated using the RNN-recoverd models. (a) True model. (b) Cross-
sections through the true and recovered models at the dashed line. (c) Recovered model at 9.9 Hz. (d) Amplitude and (e) unwrapped phase compar-
isons for data modeled using the model in (c) at 2.2 Hz, 5.5 Hz and 9.9 Hz.

Figure 12. Comparison of the amplitude and phase components of the data simulated using the RNN-recoverd models. (a) True model. (b) Cross-
sections through the true and recovered models at the dashed line. (c) Recovered model at 9.9 Hz. (d) Amplitude and (e) unwrapped phase compar-
isons for data modeled using the model in (c) at 2.2 Hz, 5.5 Hz and 9.9 Hz.

that the LSTM RNN network is capable of building relatively complex velocity models with high accuracy. These results are further
corroborated by the forward modeling results that show data simulated with the true and 9.9 Hz recovered models match well. This
holds even for models that do appear somewhat dissimilar when viewed in the velocity model domain. This means that much of the
velocity differences fall within the null space of the experiment.



RNN Velocity Inversion 13

Figure 13. Comparison of the amplitude and phase components of the data simulated using the RNN-recovered models. (a) True model. (b)
Cross-sections through the true and recovered models at the dashed line. (c) Recovered model at 9.9 Hz. (d) Amplitude and (e) unwrapped phase
comparisons for data modeled using the model in (c) at 2.2 Hz, 5.5 Hz and 9.9 Hz. Note that the unwrapped phase shows cycle skipping at the
9.9 Hz frequency.

6 ACKNOWLEDGEMENTS

We thank Saudi Aramco (HA) and the other CWP sponsors whose support made this research possible. Computations were com-
pleted using the CSM Wendian facilities, the TensorFlow package and the Madagascar software environment (www.ahay.org).

REFERENCES

Araya-Polo, M., J. Jennings, A. Adler, and T. Dahlke, 2018, Deep-learning tomography: The Leading Edge, 37, 58–66.
Bengio, Y., P. Simard, and P. Frasconi, 1994, Learning long-term dependencies with gradient descent is difficult: IEEE Transac-

tions on Neural Networks, 5, no. 2, 157–166.
Bunks, C., F. M. Saleck, S. Zaleski, and G. Chavent, 1995, Multiscale seismic waveform inversion: Geophysics, 60, 1457–1473.
He, Q., and Y. Wang, 2021, Reparameterized full-waveform inversion using deep neural networks: Geophysics, 86, no. 1, V1–V13.
Hochreiter, S., and J. Schmidhuber, 1997, Long short-term memory: Neural Computation, 9, no. 8, 1735–1780.
Lailly, P., 1983, The seismic inverse problem as a sequence of pre-stack migration, in Bednar, J.B. and R. Redner, E. Robinson, and

A. Weglein, Eds., Conference on inverse scattering: Theory and Applications: Society of Industrial and Applied Mathematics.
Phan, S., and M. Sen, 2018, Hopfield networks for high-resolution prestack seismic inversion: SEG Technical Program Expanded

Abstracts, 526–530.
Sun, J., Z. Niu, K. Innanen, J. Li, and D. Trad, 2020, A theory-guided deep-learning formulation and optimization of seismic

waveform inversion: Geophysics, 85, no. 2, R87–R99.
Sutskever, I., O. Vinyals, and Q. Le, 2014, Sequence to sequence learning with neural networks: arXiv,

http://arxiv.org/abs/1409.3215.
Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49, 1259–1266.
Vamaraju, J., and M. Sen, 2019, Unsupervised physics-based neural networks for seismic migration: Interpretation, 7, no. 3,

SE189–SE200.
Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74, no. 6,

WCC1–WCC26.
Zhang, Z., and T. Alkhalifah, 2019, Regularized elastic full-waveform inversion using deep learning: Geophysics, 84, no. 5,

R741–R751.



14 Alzahrani & Shragge

Figure 14. Comparison of the amplitude and phase components of the data simulated using the RNN-recoverd models. (a) True model. (b) Cross-
sections through the true and recovered models at the dashed line. (c) Recovered model at 9.9 Hz. (d) Amplitude and (e) unwrapped phase compar-
isons for data modeled using the model in (c) at 2.2 Hz, 5.5 Hz and 9.9 Hz.

Figure 15. Histograms showing the NRMS misfit between data modeled through the true and 9.9 Hz recovered model calculated using equation 1.
(a) Amplitude. (b) Unwrapped phase.


