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ABSTRACT
Elastic time-reverse imaging offers a robust wavefield-based approach for locating mi-
croseismic events; however, event location accuracy greatly depends on the veracity of
the elastic velocity models (i.e., VP and VS) used for wave propagation. In this study,
we propose a methodology for microseismic image-domain wavefield tomography us-
ing the elastic wave equation and zero-lag and extended source images, the focusing
of which is used as a quality control tool for velocity models. The objective function
is designed to measure the focusing of time-reversed microseismic energy in zero-lag
and extended event images. The function applies penalty operators to source images
to highlight poorly focused residual energy caused by backpropagation through erro-
neous velocity models. Minimizing the objective function leads to a model optimiza-
tion problem aimed at improving the image-focusing quality. P- and S-wave velocity
model updates are computed using the adjoint-state method and build on the zero-lag
and extended image residuals that satisfy the differential semblance optimization crite-
rion. Synthetic experiments demonstrate that one can construct accurate elastic veloc-
ity models using the proposed method, which can significantly improve the focusing
of imaged events leading to, e.g., enhanced fluid-injection programs.
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1 INTRODUCTION

Understanding the distribution and properties of passive sources is one of the main objectives in seismic monitoring at a variety
of different scales. In unconventional oil and gas fields, inferring the locations and mechanisms of (micro) earthquakes caused
by induced or triggered seismicity is crucial for evaluating the success and safety of fluid injection programs such as hydraulic
fracturing and waste-water disposal (Maxwell and Urbancic, 2001). Accurate event locations provide useful information when
characterizing fracture lengths and heights for hydraulic stimulation as well as analysing reservoir stress change and potential
hazards (Maxwell, 2014; Weingarten et al., 2015). Similarly, at regional and global scales, accurately determining event hypocenters
is of particular interest to many geoscientists looking to gain better insight into the spatio-temporal characteristics of faults and their
potentially devastating effects (Kiser and Ishii, 2017).

A traditional approach for locating (micro)-earthquakes is based on picking the P- and S-wave traveltimes. Given VP and VS
velocity models, the traveltime picks can then be inverted to estimate the spatial location of the recorded event. However, the arrival
time information can also be used for tomographic updates to improve velocity models. For instance, the double-difference method
commonly used in earthquake seismology relies on traveltime differences between pairs of events or stations to find optimal velocity
models and event locations (Waldhauser and Ellsworth, 2000; Zhang and Thurber, 2003). In microseismic monitoring, first-break
traveltime tomography is commonly used to calibrate isotropic/anisotropic velocity models along raypaths between perforation
shots with known spatial and temporal origin and downhole receiver arrays (Bardainne and Gaucher, 2010; Grechka and Yaskevich,
2013). The success of these phase-based picking approaches is, though, heavily dependent on the robustness of traveltime picking
process, which is a challenging task for low signal-to-noise ratio (S/N) data.

Alternatively, migration-based event location algorithms have been widely used for passive source scenarios. Like pick-based
methods, Kirchhoff-migration techniques require computing ray-traced traveltimes from each candidate event location in the ve-
locity model to each receiver (Kao and Shan, 2004; Baker et al., 2005). The data are then stacked across traveltime trajectories and
over all possible source origin times to find the maximum stack power, which is assumed to represent the event location. Although
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Kirchhoff techniques are computationally efficient, they struggle for noisy data scenarios, which can affect the accuracy of trav-
eltime picks analogous to the aforementioned methods. Moreover, ray-based methods typically rely on simplifying assumptions
(e.g., infinite frequency approximation) and thereby have limited ability to handle complex subsurface models (e.g., neglecting
multipathing).

Full-wavefield time-reverse imaging (TRI) techniques are a second type of migration approach that recently have gained popu-
larity (Artman et al., 2010; Chambers et al., 2014; Douma and Snieder, 2015; Witten and Shragge, 2015; Nakata and Beroza, 2016;
Rocha et al., 2019; Oren and Shragge, 2021a). By solving the acoustic or elastic wave equation, this class of imaging methods accu-
rately handles wave propagation through complex models, and offers numerous imaging conditions that stack wavefield energy over
the time axis, ideally obtaining a well-focused event image. However, TRI methods require computationally expensive wavefield
extrapolation as well as accurate velocity models to obtain reliable event location estimates. In most cases, though, such information
is not available at monitoring sites due to limited well information (e.g., well logs, perf shots) or other direct or indirect subsurface
constraints. This lack of knowledge can lead to inaccurate velocity models that significantly degrade the accuracy of event location
estimates. Possible failures in such geophysical observations (e.g., inaccurate location estimates) may comprehensively affect the
process of assessing and derisking fluid-injection programs as well as understanding the cause of seismicity.

In TRI applications, the full-wavefield migration-based imaging process typically involves two steps: (1) extrapolating recorded
microseismic event data in reverse time through subsurface velocity models (McMechan, 1982), and (2) evaluating an imaging
condition (i.e., zero-lag auto/crosscorrelation) that generates a zero-lag image (Artman et al., 2010). If the subsurface model is
satisfactorily accurate and a judicious preprocessing is applied to the recorded event data (e.g., source radiation pattern mitigation
and/or noise elimination), the peak amplitude of the resulting zero-lag image can be inferred as the correct spatial event location. In
such ideal conditions, one can produce complementary PP, SS, and PS zero-lag images by autocorrelating and crosscorrelating the
extrapolated P and S wavefields reconstructed from (multicomponent) event data. When these conditions are not met, though, the
zero-lag images exhibit erroneous misfocusing energy at incorrect locations. In these instances, a notable shortcoming of zero-lag
images is that they rarely provide sufficient information about how to overcome model inaccuracy through velocity updating.

To address the limited sensitivity of zero-lag images to velocity errors, different types of extended imaging conditions have
been proposed that may be useful for updating migration velocities for passive seismic scenarios (Witten and Shragge, 2015; Rocha
et al., 2019; Oren and Shragge, 2021a). Extended images are an extension of zero-lag images and are typically calculated at the
estimated event location. Velocity accuracy information can be directly extracted from extended image volumes by examining
whether energy focuses at or away from spatial/temporal zero correlation lag (Rickett and Sava, 2002; Sava and Fomel, 2006; Sava
and Vasconcelos, 2011; Witten and Shragge, 2015). Given sufficiently accurate elastic velocity models, extended images should
focus at zero lag and the complementary PP, SS, and PS zero-lag images should produce a focal maximum at the same spatial
location due to a self-consistency principle (Witten and Shragge, 2015).

Extended images are successfully used as a quality control tool to update velocity models using image misfocusing criteria for
active and passive seismic surveys (Shen and Symes, 2008; Burdick et al., 2013; Oren and Shragge, 2020; Shabelansky et al., 2015;
Yang and Sava, 2015; Witten and Shragge, 2017a). Velocity updating can be achieved by differential semblance optimization (DSO)
(Symes and Carazzone, 1991), which is one of the most common migration velocity analysis (MVA) model building approaches
in exploration seismology. The principle of DSO is to minimize differences between neighboring lags or angles associated with a
given reflection (Shen and Symes, 2008). In reflection seismology, common-image-point space- and time-lag gathers are effective
at reconstructing P-wave velocity models for complex geologic structures (Yang and Sava, 2015; Dı́az and Sava, 2017). Similarly,
space-lag common-image-gathers can be constructed through a crosscorrelation-based converted-phase imaging condition to per-
form elastic MVA to jointly update P- and S-wave models (Shabelansky et al., 2015). For microseismic data, Witten and Shragge
(2017a) develop a pseudo-acoustic image-domain inversion method to invert for P- and S-wave velocity models and successfully
apply it to a 3-D field data set (Witten and Shragge, 2017b).

There are several advantages of full-wavefield microseismic image-domain tomography methods. They require neither first-
arrival picking nor the origin time of events, which can be problematic to determine for surface-recorded data exhibiting low S/N.
Also, unlike the recently published full waveform inversion (FWI) approaches (Sun et al., 2016; Wang and Alkhalifah, 2018), image-
domain inversion methods hold less stringent requirements for initial velocity model accuracy to achieve a successful optimization,
and thereby is typically less sensitive to the well-known FWI cycle skipping problem.

In this paper, we present a methodology for computing the isotropic elastic model gradients of an image-domain objective
function for surface-recorded microseismic data. To achieve this goal, we first use the kinetic energy term of the PS energy imaging
condition (Oren and Shragge, 2021a) to form zero-lag and extended source images. We apply several penalty operators to these
images to generate image-domain residuals, which form the basis of a multiterm objective function. Finally, we use the adjoint-
state formalism to form the gradients and simultaneously invert for P- and S-wave velocity model parameters. Distinct from the
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pseudo-acoustic approach proposed by Witten and Shragge (2017a), our methodology is fully elastic and explicitly generalizes to
multiparameter anisotropic inversion, though this extension is not explored here.

We begin by presenting the imaging condition along with the image-domain penalty functions, the combination of which forms
the multiterm objective function to be minimized. Next, we derive expressions for the elastic model gradients through adjoint-state
tomography (Plessix, 2006). To demonstrate the effectiveness of our inversion methodology, we present a number of synthetic
numerical examples. We first highlight the key ingredients of the proposed method by estimating smooth background perturbations
on 2D velocity models. We then present a 3D example using structurally complex models with a realistic source and receiver
geometry as more challenging and “semi-realistic” settings for estimating elastic model updates. Finally, we conclude with a
discussion of the advantages and shortcomings of the proposed inversion methodology as well as its possible applications across
scales from time-lapse monitoring programs (e.g., carbon capture and storage projects) to regional/global tomography.

2 THEORY

The image-domain adjoint-state elastic inversion of microseismic data presented herein is comprised of an iterative application
of the following steps: (1) inject and individually backpropagate separated multicomponent P- and S-wave data of a single event
to reconstruct the wavefields (state variables) using the elastic wave equation; (2) apply the elastic TRI process using the back-
propagated P and S wavefields to generate zero-lag and extended source images; (3) evaluate the objective function by summing
the image-domain residuals formed by applying penalty operators to annihilate energy consistently focused amongst the zero-lag
images or in the vicinity of zero lag in extended images; (4) calculate the adjoint-state variable using the residual energy; (5) form
the gradients by correlating the state and adjoint-state variables; (6) use a line-search method to find an optimal step-length to scale
the model gradients and determine the magnitude of the multiparameter model updates; and (7) update the model parameters. We
detail each inversion process step below.

2.1 Steps 1 & 2: Elastic time-reverse propagation and imaging

We consider the source-free elastic wave equation (EWE) in a slowly varying isotropic medium in a unbounded domain:

ü = α̂∇(∇ · u)− β̂∇× (∇× u), (1)

where u(x, t) is the displacement field as a function of space (x) and time (t); α̂(x) and β̂(x) are defined through the P- and
S-wave velocities (i.e., VP and VS) as α̂ = V 2

P = (λ + 2µ)/ρ and β̂ = V 2
S = µ/ρ; λ(x), µ(x), and ρ(x) are the two Lamé

parameters and density, respectively; ∇, ∇·, and ∇× are the gradient, divergence, and curl operators; and two superscript dots on
the displacement field u denote second-order time differentiation.

To generate microseismic source images from which we derive event location estimates, we use an elastic TRI procedure in-
volving backpropagating injected P- and S-wave data components separated beforehand through data-domain preprocessing (Oren
and Shragge, 2021a) and applying an imaging condition. Because we consider isotropic elastic inversion in this study, we find it
sufficient to compute zero-lag and extended source images using only the kinetic energy term of the PS energy imaging condition
(Oren and Shragge, 2021a) to derive the gradient terms:

Iαβ(x,λλλ, e) =

∫ tmax

tmin

ρ(x + λλλ) u̇†α(x + λλλ, t, e) · u̇†β(x− λλλ, t, e) dt, (2)

where u̇†α(x, t, e) and u̇†β(x, t, e) approximately represent P- and S-wave particle velocity fields where the † symbol denotes ad-
joint; λλλ = (λx, λy, λz) is the vector space-lag extension (Sava and Vasconcelos, 2011); and e is the event index. The extended
imaging condition is described in a generic form and reduces to the zero-lag imaging condition when (λx, λy, λz) = (0, 0, 0) m.
Due to the unknown source origin time, the imaging condition involves a summation over time to marginalize the temporal depen-
dence. While equation 2 is specific for computing PS crosscorrelation zero-lag and extended images; it can also be used to generate
zero-lag PP and SS autocorrelation images

(
i.e,. Iαα(x, e) and Iββ(x, e)

)
by calculating the dot product of the corresponding

adjoint particle velocity field with itself and summing over time.
To attenuate imaging artifacts (i.e., fake modes and/or truncation wavefronts that are correlated with the true wave modes (Yan

and Sava, 2008; Rocha et al., 2019)) that arise due to elastic time-reversal wavefield extrapolation, we apply the imaging condition
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within a time window t = [tmin, tmax] that is narrower than the original data window (i.e., t = [0, T ]) (Oren and Shragge, 2021a).
Therefore, the integral evaluation in equation 2 in practice starts from a maximum time (tmax < T s) and progresses in reverse
time back to a minimum time (tmin ≥ 0 s) using the adjoint isotropic EWE operator. Finally, this imaging condition precludes the
costly wave-mode decomposition during backpropagation, which offers an advantage over its crosscorrelation counterpart outlined
in Shabelansky et al. (2015). In the elastic TRI procedure, we first compute the zero-lag PP, SS, and PS image volumes using
the current velocity models for each event. Because the zero-lag PS image produces higher resolution results compared to its
autocorrelation counterparts, we base our event location estimates on the spatial location of maximum absolute amplitude of the
PS image. The TRI process is finalized by computing the extended image at the estimated event location. We exclude the negative
values in the extended images, which degrade the image residuals as well as the gradient computation procedure in practical
implementations.

2.2 Step 3: Image-domain residuals and objective function evaluation

For the inversion procedure, we define our multiterm objective function J over all selected events to be minimized as

J =
1

2

∑
e

∫ [
ε1

∫ λλλ

−λλλ
P 2
λ(λλλ) I2αβ(x,λλλ, e) dλλλ + P 2

αβ(x, e)
(
ε2 I

2
αα(x, e) + ε3 I

2
ββ(x, e)

) ]
dx, (3)

where ε1, ε2, and ε3 are scalar weights that determine the relative contribution of each term in the objective function, and Pλ(λλλ) and
Pαβ(x, e) are to-be-specified extended and zero-lag image-domain penalty operators. These operators are designed to respectively
annihilate the focal energy at and about zero lag and at the estimated event location; whatever energy remains is considered to be
the image-domain residual. A number of different extended penalty operators have been proposed to serve this purpose (Shragge
et al., 2013; Yang and Sava, 2015; Dı́az and Sava, 2017), but herein we use a Gaussian function centered at zero lag to penalize the
extended image volumes:

Pλ(λλλ) = 1− exp

(
− λ2

x

2σ2
x

−
λ2
y

2σ2
y

− λ2
x

2σ2
x

)
, (4)

where σσσ = (σx, σy, σz) controls the variances of the Gaussian function in the shift dimensions. Because Iαβ(x, e) produces the
highest resolution among all the zero-lag images due to the P and S wavefields backpropagating at different velocities and coexist-
ing over a narrower zone in space and time, we create the zero-lag penalty operator Pαβ(x, e) based upon Iαβ(x, e) to measure the
inconsistency in the zero-lag autocorrelation images (Shragge et al., 2013):

Pαβ(x, e) = sech
[

w Iαβ(x, e)

max
(
Iαβ(x, e)

)], (5)

where w is a dimensionless parameter used to adjust the penalty width. This multiplicative penalty operator removes the maximum
focal energy where the PS and PP or SS zero-lag images are consistent, and tends to unity elsewhere. The energy remaining in the
penalized images forms the zero-lag image-domain residuals.

2.3 Steps 4 & 5: Adjoint-state variables and gradient computation

We calculate the gradients (sensitivity kernels) of the objective function in equation 3 with respect to model parameters α̂ and β̂
(see equation 1) by using the perturbation theory with the goal of obtaining an expression like

δJ =

∫ (
δα̂Kα̂(x) + δβ̂Kβ̂(x)

)
dx, (6)

whereKα̂(x) andKβ̂(x) are the gradients of the objective function, which is perturbed with respect to the model parameters α̂ and
β̂, respectively. Following the adjoint-state method (Plessix, 2006), we obtain the gradient terms as

Kα̂(x) = −
∑
e

∫ T

0

u†α(x, t, e) · υυυα(x, t, e) dt (7)
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and

Kβ̂(x) =
∑
e

∫ T

0

u†β(x, t, e) · υυυβ(x, t, e) dt, (8)

where υυυα(x, t, e) and υυυβ(x, t, e) denote the adjoint-state variables, respectively. As seen in equations 7 and 8, the gradients are
computed by correlating the state- and adjoint-state variables that are calculated using the forward propagation of an adjoint source,
which is a function of backpropagated P- and S-wavefield energy and the penalized zero-lag and extended images. Appendix A
presents the full derivation and definitions of the adjoint-state variables as well as the gradient terms. In practice, after calculating
the individual gradients for each event, we apply illumination compensation (Warner et al., 2013; Yang et al., 2013) leading to more
accurate results by reducing the artifacts at and around source locations. This approach requires dividing the gradient by a stabilized
measure of the total adjoint-state wavefield energy. This procedure is followed by the application of a smoothing operator in both
vertical and horizontal directions to the individual gradients, which are then summed over the selected events.

2.4 Steps 6 & 7: Step length determination and velocity model updating

After calculating the gradients, we determine the final step length through a multiparameter line-search approach (Tang and Ayeni,
2015) based on the gradient-descent optimization scheme (Nocedal and Wright, 2006). We first search for individual P- and S-wave
step lengths and then perform a second line search along a 2D vector whose components are defined by the determined individual P-
and S-wave step lengths (Witten and Shragge, 2017a). We then scale the negative of gradients by the final step length to determine
the magnitude of the update and add it to the current velocity model:

mk
i+1 = mk

i − hiKki , k = α̂, β̂, (9)

where m is the velocity model, h is the step length, and i is the iteration number. We iterate the given steps until reaching conver-
gence or meeting a stopping criterion.

3 NUMERICAL EXPERIMENTS

This section describes two synthetic numerical experiments that illustrate the ability of the developed method to reconstruct velocity
models leading to improved location estimates. The first numerical experiment presents a 2D example, in which we use elastic
velocity models consisting of a smooth 1D gradient background with Gaussian low and high velocity anomalies that represent
the inversion targets. The second experiment presents a more realistic example that includes complex 3D subsurface models with
sparse acquisition geometry. In our experiments, we model microseismic sources using an Ormbsy wavelet specified by the four
corner frequencies [f1, f2, f3, f4] = [2, 3, 20, 25] Hz (experiment 1) and a 15 Hz Ricker wavelet (experiment 2) with events
characterized by a moment-tensor stress-source mechanism. In forward modeling, we use a graphics processing unit (GPU)-based
finite-difference time-domain (FDTD) solver with the second-order temporal and eighth-order spatial accuracy stencil (Weiss and
Shragge, 2013).

Using the true velocity models, we first forward model synthetic elastic multicomponent microseismic data. Prior to imaging,
we separate the direct P- and S-wave arrivals by applying hyperbolic mute functions to the data (Oren and Shragge, 2021a). We
then individually image all events by following the elastic TRI strategy (equation 2) using the inaccurate initial velocity models.
This step is followed by calculating the model gradients for each event and stacking over all sources to obtain the final results
(equations 7 and 8). Finally, using the iterative approach described above, we update the velocity models, which are then used in the
TRI procedure to obtain enhanced event locations. To stabilize the gradient computation and balance the resolution of the resulting
gradients, we apply a low-pass filter below 9 Hz and 6 Hz to the P- and S-wave mode data, respectively, prior to the forward and
adjoint wavefield propagations.

3.1 Experiment 1: : Gradient background model

In the first numerical experiment, we illustrate our method using the P- and S-wave velocity models shown in Figure 1. The models
share the same kinematics and include smooth background P- and S-wave velocities, VP (z) = 3 + z/2 km/s and VS(z) =√

3+z/2 km/s shown in Figure 1c and 1d, along with two Gaussian low and high velocity variations with maximum and minimum
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(a) (b)

(c) (d)

Figure 1. True (a) P- and (b) S-wave velocity models with two Gaussian anomalies in homogeneous background gradients. Background (c) VP and
(d) VS model overlain with the true (black dots) and initial estimated (white dots) event locations.

(a) (b) (c) (d)

Figure 2. Simulated (a) uz and (b) ux components of 2D microseismic data associated with a single event located at [x, z] = [2.50, 1.91] km
computed using the true velocity models in Figure 1. (c) P- and (d) S-wave modes in the ux component separated in the data domain using
hyperbolic time muting. Although not shown here, the corresponding wave modes in the uz component are similarly separated.

perturbations of ∆VP = ∆VS = ±0.3 km/s visible in Figure 1a and 1b. We also use a constant density model of ρ = 2.0 g/cm3.
The numerical setup consists of a computational domain of dimension [Nx, Nz] = [608, 224], Nt = 5001 time steps, temporal
and spatial sampling intervals of ∆t = 0.5 ms and ∆x = ∆z = 0.01 km, respectively, with no free-surface boundary condition
applied. The simulated data are recorded at multicomponent (vertical and horizontal motions) receivers placed on the surface at
each computation grid point (∆r = 0.01 km).

Figure 2a and 2b respectively displays the vertical and horizontal components of the surface-recorded 2D elastic data simulated
from a single event at [x, z] = [2.50, 1.91] km using the true velocity models in Figure 1. To enhance the S/N of the imaging
condition results, we apply a mask around the direct P- and S-wave arrivals in the data domain prior to injection. The wave-mode
separation procedure (completed using hyperbolic mute operators) is repeated for all events. This operation is followed by the
individual backpropagation of the separated wave modes (Figure 2c and 2d) using the EWE operator (Step 1), and evaluating the
imaging condition in equation 2 (Step 2).
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(a) (b)

(c) (d)

Figure 3. (a)-(b) Zero-lag and (c)-(d) space-lag extended images computed using the true (left column) and background (right column) velocity
models. The larger green and smaller red dots respectively denote the true and estimated source locations. The blue crosshairs in the extended
images highlight the zero lag. Extended images are evaluated only at the estimated source locations, which correspond to the zero-lag image
maxima indicated by the red dots.

As shown in Figure 1c and 1d, we generate the initial velocity models by simply removing the two Gaussian anomalies
from the background linear gradient trends. This experiment uses nine irregularly distributed microseismic sources centered about
1.85 km depth, the original locations of which are denoted by black dots in Figure 1d. Using the initial models, we construct the
zero-lag images for each event to estimate the event locations as the maximum value in each image. To attenuate the imaging
artifacts discussed in the previous section, we generate the zero-lag images computed in the time window [tmin, tmax] = [0, 0.4] s.

Figure 3a and 3b respectively show the zero-lag images calculated using the true and initial velocity models for the multicom-
ponent data shown in Figure 2. The energy (red dot) in Figure 3a is collapsed at the true source location (larger green dot), which
is expected when imaging with the correct velocity models, whereas Figure 3b shows a focus (smaller red dot) smeared due to the
inaccurate imaging velocities. We also compute the corresponding extended images constructed for [ |λx|, |λz| ] ≤ 0.2 km at the
estimated event locations (i.e., maximum amplitude points) in the zero-lag images (Figure 3a and 3b) using the true and background
velocity models for evaluating their sensitivity to velocity inaccuracy. As observed in Figure 3c, the extended image is well-focused
around zero lag due to the correct velocities while the extended image in Figure 3d exhibits energy shifted away from zero lag due
to the inaccurate velocities. The extended image in Figure 3d also reveals the directions of the required velocity updates. Moreover,
the event locations estimated from the zero-lag images generated using the initial models are shown as white dots in Figure 1d, and
have a mean spatial root-mean-square (RMS) error of 128 m.

For the inversion parameterization, we choose the weight parameters that adjust the contribution of each term in the objective
function as [ε1, ε2, ε3] = [1.0, 0.01, 0.0001]; the broadness of the zero-lag and extended penalty functions that effectively remove
the well-focused energy in the images are w = 5.0 and [σx, σz] = [0.05, 0.05], respectively, determined through trial and error.
The values for ε2 and ε3 balance the influence of the zero-lag terms as well as decrease their contributions one order of magnitude
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(a)

(b)

Figure 4. Inverted (a) VP and (b) VS model overlain with the true (black dots) and final estimated (white dots) event locations.

compared to the extended term, whose optimization is the primary focus of the inversion procedure due to its highest velocity
sensitivity amongst the images. Moreover, because the magnitude of the backpropagated S wavefield u̇†β is typically higher than
that of the P wavefield u̇†α, we downweight the image Iββ more strongly to equalize their relative energy in the waveform.

Figure 4 depicts the VP and VS velocity models recovered after 12 iterations of the adjoint-state tomography framework
described above. Both the inverted VP and VS models show the target Gaussian perturbations with different spatial resolutions.
Considering the shorter wavelength of S waves relative to P waves, the inverted VS model typically features a higher-resolution
recovery compared to the inverted VP model. The inversion results also show that the velocity updates are quite smooth due to the
low spatial wavenumbers of the images and forward-scattering nature of the microseismic direct-wave image-domain tomography
problem. The white dots in Figure 4b indicate the imaged event locations obtained using the inverted models, which are now closer
to the true event locations denoted by the black dots. Figure 5 shows the zero-lag and extended images computed using the inverted
models for the multicomponent data shown in Figure 2. When compared with the initial imaging results shown in Figure 3b and 3d,
the optimized zero-lag image is better focused and at the correct location while the extended image exhibits energy more tightly
focused around zero lag. Finally, Figure 6 presents a crossplot between the initial and final RMS location errors for all events.
The dashed line implies no change in location, while points falling below or above the dashed line indicate decrease or increase
in location errors, respectively. These results demonstrate that the inversion procedure has reasonably improved the event location
estimates and has reduced the average spatial RMS error from 128 m to 52 m or about a 60% reduction in misposition error.

3.2 Experiment 2: SEG/EAEG 3D Overthrust model

The second numerical experiment applies our proposed inversion method to a more complex velocity model – SEG/EAEG 3D
Overthrust model (Aminzadeh et al., 1994) displayed in Figure 7a. Because the original 3D Overthrust model includes only the P-
wave velocity, we define an S-wave velocity model by assuming an oscillatory PS velocity ratio as a function of depth (Figure 7b)
as well as an accompanying density model (not shown) that ranges between ρ = 2.0 − 3.0 g/cm3. We place 12 microseismic
events (larger blue dots in Figure 7c) with an irregular distribution at depths ranging between z = 2.4 and z = 2.55 km. Our
surface receiver geometry is extracted from a field experiment (Witten and Shragge, 2017b) and consists of 192 non-uniformly
distributed 3C receivers (smaller red dots in Figure 7c) covering an approximately 3× 3 km2 area. Using the true models for each
event, we forward model synthetic elastic 3C microseismic data using a 3D computational domain of dimension [Nx, Ny, Nz] =

[140, 140, 140], Nt = 2100 time steps, temporal and spatial sampling intervals of ∆t = 1 ms, and ∆x = ∆y = ∆z = 0.025 km
with no free-surface boundary condition applied.
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(a) (b)

Figure 5. (a) Zero-lag and (b) space-lag extended images computed using the recovered velocity models. The green and red dots respectively show
the true and estimated source locations. The extended image is calculated only at the estimated source location, which correspond to the zero-lag
image maximum indicated by the red dot. Note how the image focusing in (a) is improved and the energy in (b) is shifted towards zero lag after
using the inverted models compared to the imaging results (Figure 3b and 3d) obtained using the initial models.

Figure 6. Crossplot of the initial and final RMS location errors of nine forward-modeled events. Points falling along the dashed line indicates
no change in error whereas those below the line indicate improved event location estimates. The results show an approximately 60% decrease in
location errors for all events.

Our initial model building strategy follows a scenario where we heavily smooth the true VP model along all the spatial axes
to generate an initial VP model as shown in Figure 8a. Using this information, we also assume an erroneous VP /VS ratio of

√
3

when constructing the initial VS model. Figure 8b and 8c respectively depicts the true percentage VP and VS model perturbations
(i.e., the difference between the true and initial models), which are the targets of the inversion process.

Following a similar strategy to the previous 2D inversion experiment, we choose εi values as [ε1, ε2, ε3] = [1.0, 0.001, 0.0001]

to favor the optimization of the extended term while balancing the relative contributions of the zero-lag terms in the objective
function. Moreover, through trial and error, we select the zero-lag and extended penalty parameterizations to be w = 5.0 and
[σx, σy, σz] = [0.1, 0.1, 0.1], respectively, to adequately penalize the well-focused energy in images.

Figure 9 shows the inverted VP and VS models after applying 11 iterations of the proposed tomography formalism. Most of the
update is applied to increase the velocities in both models and corresponds to the smooth part of the high-velocity thrust structure
present in the true models. The VS model updates appear to be more significant compared to those in the VP model likely due to our
stress-source mechanism radiating stronger S-wave energy that dominates the resulting imaged events (Oren and Shragge, 2021a).
Furthermore, because of the events that are located relatively deeper in the model (i.e., z = 2.4− 2.55 km), the updates are likely
affected by this narrow aperture angle between sources and receivers.
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(a) (b) (c)

Figure 7. (a) True P-wave velocity from the 3D Overthrust model and (b) VP /VS ratio used to generate the true S-wave velocity model. (c)
Illustration of source and receiver geometry employed in the 3D inversion experiment. The larger blue dots indicate the projected source coordinates
while the smaller red dots indicate the locations of the multicomponent receivers deployed at the surface.

Figure 10a displays the normalized objective function exhibiting a reduction of∼ 25% after 11 iterations, beyond which point
the convergence curve becomes flat and little-to-no improvement is achieved in the model updates. Figure 10b shows a crossplot
of the initial and final RMS location errors calculated based upon the maximum amplitude of the Iαβ images for all sources. We
observe a reasonable decrease (∼ 45%) in error with the events plotting closer to the horizontal axis.

The zero-lag and extended images constructed using the initial, inverted, and true VP and VS models are displayed in Figure 11
where the crosshairs in the zero-lag panels indicate the true location of a single event at [x, y, z] = [1.26, 2.18, 2.47] km. We
construct the zero-lag images in the time window [tmin, tmax] = [0, 0.3] s to suppress the imaging artifacts and evaluate the
extended image gathers for [ |λx|, |λy|, |λz| ] ≤ 0.25 km. Comparing these results, we note defocused energy in the initial image
shifted away from the correct event location, whereas the final image exhibits relatively better focused energy centralized around
the true location, which is a similar pattern to the image obtained with the true models. Similarly, the final extended image volume
extracted at the maximum location of the relative zero-lag image exhibits a lower degree of moveout pattern in comparison with the
initial extended imaging result.

4 DISCUSSION

The proposed inversion methodology is typically less prone to the well-known cycle skipping problem of FWI, but generally
produces lower resolution inversion results relative to microseismic FWI (Shabelansky et al., 2015; Witten and Shragge, 2017a).
However, our inversion results demonstrate that generating model updates that exhibit relatively lower resolution can still produce
sufficiently accurate event locations. Additionally, because stacking-based migration methods enhance the S/N of microseismic
data, image-domain inversion generally does not suffer from low S/N data as severely as data-domain methods. Furthermore, our
inversion approach can be extended to anisotropic media by incorporating the potential wavefield energy term in the PS energy
imaging condition as described by Oren and Shragge (2021b). Perturbing the stiffness tensor present in the potential energy term
with respect to anisotropy parameters can allow for such an extension. To determine a prospectus for image-domain anisotropic
elastic inversion, Oren and Shragge (2021b) present a 3D sensitivity analysis of the PS energy imaging condition to the Thomsen
(1986) anisotropy parameters for various transversely isotropic symmetries (e.g., transversely isotropic with a vertical and horizontal
symmetry axes as well as orthorhombic). Their analysis demonstrates that the imaged events mostly are affected by errors in ε and
δ, but show almost no sensitivity to γ for the SEG Advanced Modeling (SEAM) Barrett Unconventional model (Regone et al.,
2017).

Because the developed inversion method relies on the forward and adjoint numerical solutions of the elastic wave equation
for each seismic event, its computational cost remains as a primary drawback, particularly for 3D applications. Each imaging step
requires one P- and one S-wave propagation to construct zero-lag and extended images. The number of space lags used to build
extended images is one of the main factors affecting the computational expense. To increase the computational efficiency, we com-
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(a) (b)

(c) (d)

Figure 8. Initial (a) VP and (b) VS models along with the true model perturbations for (c) VP and (d) VS models, which are the targets of the
inversion. The initial VS model in (b) is constructed by assuming VS = VP /

√
3.

pute the zero-lag and extended images during a single imaging experiment. We first independently propagate the P and S wavefields
backward in time within the original data window (i.e., t = [0, T ]) to form the zero-lag image between tmin and tmax, which is then
used to extract the maximum amplitude point for extended imaging. This step is followed by propagating the P and S wavefields at
t = 0 forward in time until t = tmax and evaluating the extended imaging condition at the maximum zero-lag image point between
tmin and tmax. By doing so, we avoid two extra P- and S-wave propagations for extended image construction, which appears to
be a substantial increase in efficiency considering the high computational expense of iterative inversion process. The gradient com-
putation requires four elastic propagations (i.e., two backward propagations for calculating P- and S-wave adjoint sources and two
forward propagations for calculating P- and S-wave adjoint-state wavefields). The computational cost also depends on the number
of spatial locations at which the extended images are calculated for the adjoint source computation (see equations A.17 and A.26).
For extended image calculation, we use the same number of spatial locations and space lags per event in our numerical experiments.
Finally, the 2D step length determination process requires three imaging steps (i.e., six propagations for P- and S-wave data) for
each event, but we opt to perform the first objective function evaluation within the first imaging step to reduce this requirement
to two imaging steps. Therefore, we must compute ten elastic wavefield propagations for a single iteration, which, for instance,
takes approximately two hours for the previously presented 3D synthetic example when using a single device on a NVIDIA V100
GPU card. However, the aforementioned computational cost can be further reduced using a domain-decomposition strategy across
multiple GPU nodes.
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(a) (b)

Figure 9. Inverted (a) VP and (b) VS models, which exhibit the main high-velocity thrust structure.

(a) (b)

Figure 10. (a) Normalized objective function and (b) crossplot of the initial and final RMS location errors of 12 forward-modeled events.

The image-domain tomography approach presented herein could be applied for a variety of different (time-lapse) monitoring
programs (e.g., gas hydrates, geothermal, and CO2 sequestration projects) (Deichmann and Giardini, 2009; Kim et al., 2018; Kumar
et al., 2018) using surface-recorded passive data or active-source vertical seismic profiling (VSP) measurements. The active-source
VSP acquisition configuration allows one to exploit the principle of reciprocity by exchanging the locations of sources and receivers
to set up a computationally efficient imaging and tomography problem with the sources and receivers located at the borehole and
surface, respectively. This configuration mimics a conventional surface microseismic monitoring investigation, which is a very
similar scenario to the one we have successfully validated our imaging and inversion algorithms. The proposed inversion method
may have practical applications not only in exploration seismology, but also in earthquake seismology to obtain regional or global
tomographic models, which could be helpful to further reduce the uncertainty associated with the Earth’s heterogeneous structure
and dynamics.

5 CONCLUSIONS

We develop a fully automatic adjoint-state wavefield tomography method for multicomponent passive data to jointly reconstruct
elastic velocity models. We define a multiterm objective function that optimizes the focusing of different types of event images. We
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(a) (b) (c)

(d) (e) (f)

Figure 11. Zero-lag image volumes associated with a single event located at [x, y, z] = [1.26, 2.18, 2.47] km computed using the (a) initial, (b)
recovered, and (c) true models. The blue crosshairs in the zero-lag images denote the true source location. Note how the maximum image amplitude
shown in white in (b) gets closer to the true event location. The extended image volumes extracted at the corresponding zero-lag image maxima
calculated with the (d) initial, (e) recovered, and (f) true models. Note how the final extended image in (e) shows less moveout relative to (d).

conduct 2D and 3D synthetic numerical experiments that gradually present more complex models along with more realistic source
and receiver configurations. The numerical experiments show that one can generate accurate elastic models that result in location
errors considerably reduced relative to the initial model estimates. In addition to microseismic monitoring, the proposed inversion
technique can be possibly applied in other fields including regional/global-scale seismology as well as (time-lapse) gas hydrates,
geothermal, and CO2 sequestration monitoring projects.
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APPENDIX A - GRADIENT DERIVATION

To derive the P- and S-wave model gradientsKα̂(x) andKβ̂(x) in equations 7 and 8, we perturb each term in the objective function
(equation 3) with respect to the image for a single event e. We separately present the derivations for the extended and zero-lag terms
of the objective functional in the subsections below.
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Term 1: Extended image

We introduce J1 as the extended term of equation 3

J1 =
ε1
2

∫ ∫
P 2
λ(λλλ) I2αβ(x,λλλ) dλλλdx, (A.1)

and perturb equation A.1 with respect to the state variables u†α and u†β to obtain

δJ1 = ε1

∫ ∫
δIαβ(x,λλλ)R(x,λλλ) dλλλdx, (A.2)

where R(x,λλλ) = P 2
λ(λλλ) Iαβ(x,λλλ) and

δIαβ(x,λλλ) =

∫
ρ(x + λλλ)

(
δu̇†α(x + λλλ, t) · u̇†β(x− λλλ, t) + u̇†α(x + λλλ, t) · δu̇†β(x− λλλ, t)

)
dt. (A.3)

Substituting equation A.3 into equation A.2 obtains

δJ1 := δJ α̂1 + δJ β̂1 , (A.4)

where

δJ α̂1 := ε1

∫ ∫ ∫ (
ρ(x + λλλ) δu̇†α(x + λλλ, t) · u̇†β(x− λλλ, t)R(x,λλλ)

)
dtdλλλdx (A.5)

and

δJ β̂1 := ε1

∫ ∫ ∫ (
ρ(x + λλλ) u̇†α(x + λλλ, t) · δu̇†β(x− λλλ, t)R(x,λλλ)

)
dt dλλλ dx. (A.6)

To find δu̇†α and δu̇†β in equations A.5 and A.6, we rewrite the isotropic elastic wave equation (equation 1) using linear operator
notation (Shabelansky et al., 2015):

L† u†α = dα, (A.7)

where dα is the separated P-wave data vector and L† is the adjoint isotropic EWE operator:

L† = α̂∇∇ · − β̂∇×∇×− ∂tt. (A.8)

We perturb equation A.7 with respect to the model parameter α̂ and obtain

δL† u†α + L† δu†α = 0, (A.9)

and solve for δu†α

δu†α = −(L†)−1δL† u†α, (A.10)

where
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δL† = δα̂∇∇ · − δβ̂∇×∇× . (A.11)

Introducing δL† into equation A.10 yields

δu†α = −(L†)−1(δα̂∇∇ · − δβ̂∇×∇×)u†α. (A.12)

Because the adjoint displacement vector field u†α is curl-free in isotropic elastic media and if we take the first-order time derivative
of each side, equation A.12 becomes

δu̇†α = −∂t
(

(L†)−1δα̂∇∇ · u†α
)
. (A.13)

If we substitute this expression into equation A.5

δJ α̂1 = − ε1
∫ ∫ ∫

ρ(x + λλλ) ∂t
(

(L†)−1δα̂∇∇ · u†α(x + λλλ, t)
)
· u̇†β(x− λλλ, t)R(x,λλλ)dtdλλλdx. (A.14)

We recognize an inner product and rearrange the integral in equation A.14 using the inner product rule
[

i.e.,
〈
ρ ∂t (L†)−1∇∇ ·

u†α , u̇
†
β R
〉

=
〈
u†α , ∇∇ · L−1 ∂t ρ u̇

†
β R
〉 ]

to remove the operator dependence on δα̂ (Shabelansky et al., 2015; Witten and

Shragge, 2017a):

δJ α̂1 = − ε1
∫
δα̂

∫ ∫
u†α(x + λλλ, t) ·

(
∇∇ · L−1ρ(x + λλλ) ü†β(x− λλλ, t)R(x,λλλ) dλλλ

)
dt dx, (A.15)

where L−1 is the inverse of the forward isotropic elastic wave equation operator. To further simplify the calculation of equa-
tion A.15, we apply a shift in the spatial coordinates (Shen and Symes, 2008) and rearrange the terms as the following:

δJ α̂1 = − ε1
∫
δα̂

∫
u†α(x, t) ·

(
∇∇ · L−1

∫
ρ(x) ü†β(x− 2λλλ, t)R(x− λλλ,λλλ) dλλλ

)
dtdx

= − ε1
∫
δα̂

∫
u†α(x, t) · υυυα1 (x, t) dt dx

=

∫
δα̂Kα̂1 (x) dx,

(A.16)

where

υυυα1 (x, t) = ε1∇∇ · L−1

∫
ρ(x) ü†β(x− 2λλλ, t)R(x− λλλ,λλλ) dλλλ, (A.17)

is the P-wave adjoint wavefield.

The spatial shift that we apply to the residual extended image R(x,λλλ) suggests that we compute numerous extended images in
the vicinity of the estimated event location x, which are then used in the calculation of the adjoint source υυυα1 (x, t).

Similarly, we rewrite the isotropic EWE (equation 1) using linear operator notation to find u̇†β in equation A.6:

L† u†β = dβ , (A.18)

where dβ is the separated S-wave data vector. We perturb equation A.18 with respect to the model parameter β̂ and obtain
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δL† u†β + L† δu†β = 0, (A.19)

and solve for δu†β

δu†β = −(L†)−1δL† u†β . (A.20)

Introducing δL† in equation A.11 into equation A.20 obtains

δu†β = −(L†)−1(δα̂∇∇ · − δβ̂∇×∇×)u†β . (A.21)

Because the adjoint S-wavefield u†β is divergence-free in isotropic elastic media, if we take the first-order time derivative of each
side equation A.21 becomes

δu̇†β = ∂t
(

(L†)−1δβ̂∇×∇× u†β

)
. (A.22)

Substituting this expression into equation A.6

δJ β̂1 = ε1

∫ ∫ ∫ (
ρ(x + λλλ) u̇†α(x + λλλ, t) · ∂t

(
(L†)−1δβ̂∇×∇× u†β(x− λλλ, t)

)
R(x,λλλ)

)
dtdλλλ dx. (A.23)

Using the inner product rule, we remove the operator dependence on δβ̂:

δJ β̂1 = ε1

∫ ∫ ∫ (
∇×∇×L−1ρ(x + λλλ) ü†α(x + λλλ, t) · δβ̂ u†β(x− λλλ, t)R(x,λλλ)

)
dt dλλλdx. (A.24)

To further simplify the calculation of equation A.24, we similarly apply a shift in the spatial coordinates and rearrange the terms as
the following:

δJ β̂1 = ε1

∫ ∫ (
∇×∇×L−1

∫
ρ(x + 2λλλ) ü†α(x + 2λλλ, t)R(x + λλλ,λλλ) dλλλ

)
· δβ̂ u†β(x, t)dt dx

= ε1

∫
δβ̂

∫
u†β(x, t) · υυυβ1 (x, t) dtdx

=

∫
δβ̂Kβ̂1 (x) dx,

(A.25)

where

υυυβ1 (x, t) = ε1∇×∇×L−1

∫
ρ(x + 2λλλ) ü†α(x + 2λλλ, t)R(x + λλλ,λλλ) dλλλ, (A.26)

is the S-wave adjoint wavefield.

Terms 2 and 3: Zero-lag autocorrelation images penalized by crosscorrelation image

We derive the adjoint-state variables for the zero-lag autocorrelation images Iαα(x) and Iββ(x) penalized by the zero-lag cross-
correlation image Iαβ(x) by perturbing

J2 =
ε2
2

∫
P 2
αβ(x) I2αα(x)dx, (A.27)

to obtain
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δJ2 = ε2

∫ (
P 2
αβ(x) Iαα(x) δIαα(x) + Pαβ(x) δPαβ(x) I2αα(x)

)
dx, (A.28)

where

δPαβ(x) = −wPαβ(x)Tαβ(x) δIαβ(x), (A.29)

where δIαβ(x) is defined in equation A.3 with (λx, λy, λz) = (0, 0, 0) m, and Tαβ(x) = tanh
(
w Iαβ(x)

)
. Based on the imaging

condition in equation 2, one can form the PP autocorrelation image using

Iαα(x) =

∫
ρ(x) u̇†α(x, t) · u̇†α(x, t) dt, (A.30)

to obtain

δIαα(x) = 2

∫
ρ(x) u̇†α(x, t) · δu̇†α(x, t) dt. (A.31)

If we substitute δPαβ(x) and δIαα(x) into equation A.28, and separate J2 into component functions δu̇†α(x, t) and δu̇†β(x, t), we
find

δJ α̂2 = 2 ε2

∫ (
P 2
αβ(x) Iαα(x)

∫
ρ(x) u̇†α(x, t) · δu̇†α(x, t) dt−wP 2

αβ(x)Tαβ(x) I2αα(x)

∫
ρ(x) δu̇†α(x, t) · u̇†β(x, t) dt

)
dx,

(A.32)

and

δJ β̂2 = − ε2 w
∫
P 2
αβ(x)Tαβ(x) I2αα(x)

∫
ρ(x) u̇†α(x, t) · δu̇†β(x, t) dtdx. (A.33)

If we substitute δu̇†α(x, t) (equation A.12) and δu̇†β(x, t) (equation A.22) into equations A.32 and A.33 and rearrange the terms as
done in equations A.16 and A.25, we find

δJ α̂2 = ε2

∫
δα̂

∫
u†α(x, t) · υυυα2 (x, t) dt dx

=

∫
δα̂Kα̂2 (x) dx,

(A.34)

and

δJ β̂2 = ε2

∫
δβ̂

∫
u†β(x, t) · υυυβ2 (x, t) dt dx

=

∫
δβ̂Kβ̂2 (x) dx,

(A.35)

where the adjoint-state variable contributions for this term are as the following:

υυυα̂2 (x, t) = ε2∇∇ · L−1
(
− 2P 2

αβ(x) Iαα(x) ρ(x)

∫
ü†α(x, t) dt

+ wP 2
αβ(x)Tαβ(x) I2αα(x) ρ(x)

∫
ü†β(x, t) dt

)
,

(A.36)

and
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υυυβ̂2 (x, t) = −ε2 w∇×∇×L−1
(
P 2
αβ(x)Tαβ(x) I2αα(x) ρ(x)

∫
ü†α(x, t) dt

)
. (A.37)

Following a similar strategy used in the derivation for term 2, we find the expressions for term 3
(
J3 = ε3

2

∫
P 2
αβ(x) I2ββ(x)dx

)
to be

δJ α̂3 = ε3

∫
δα̂

∫
u†α(x, t) · υυυα3 (x, t) dtdx

=

∫
δα̂Kα̂3 (x) dx,

(A.38)

and

δJ β̂3 = ε3

∫
δβ̂

∫
u†β(x, t) · υυυβ3 (x, t) dtdx

=

∫
δβ̂Kβ̂3 (x) dx,

(A.39)

where the adjoint-state variables are defined as

υυυα̂3 (x, t) = ε3 w∇∇ · L−1
(
P 2
αβ(x)Tαβ(x) I2ββ(x) ρ(x)

∫
ü†β(x, t) dt

)
, (A.40)

and

υυυβ̂3 (x, t) = ε3∇×∇×L−1
(

2P 2
αβ(x) Iββ(x) ρ(x)

∫
ü†β(x, t) dt

− wP 2
αβ(x)Tαβ(x) I2ββ(x) ρ(x)

∫
ü†α(x, t) dt

)
.

(A.41)

Total gradient

We form the total perturbation of the objective functional using the terms above

δJ = δJ α̂ + δJ β̂ , (A.42)

where

δJ α̂ =

∫
δα̂Kα̂(x) dx

=

∫
δα̂

∫
u†α(x, t) ·

3∑
i=1

υυυαi (x, t) dt dx,

(A.43)

and

δJ β̂ =

∫
δβ̂Kβ̂(x) dx

=

∫
δβ̂

∫
u†β(x, t) ·

3∑
i=1

υυυβi (x, t) dt dx,

(A.44)

where υυυα(x, t) and υυυβ(x, t) are the adjoint-state variables constructed by forward propagating the summation of the individual
adjoint sources derived in the previous subsections. The final adjoint-state variables in equations A.43 and A.44 can be written as
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υυυα(x, t) = ∇∇ · L−1

[
ε1

∫
ρ(x) ü†β(x− 2λλλ, t)R(x− λλλ,λλλ) dλλλ

+ ε2
(
− 2P 2

αβ(x) Iαα(x) ρ(x)

∫
ü†α(x, t) dt+ wP 2

αβ(x)Tαβ(x) I2αα(x) ρ(x)

∫
ü†β(x, t) dt

)
+ ε3 wP

2
αβ(x)Tαβ(x) I2ββ(x) ρ(x)

∫
ü†β(x, t) dt

]
,

(A.45)

and

υυυβ(x, t) = ∇×∇×L−1

[
ε1

∫
ρ(x + 2λλλ) ü†α(x + 2λλλ, t)R(x + λλλ,λλλ) dλλλ

− ε2 wP 2
αβ(x)Tαβ(x) I2αα(x) ρ(x)

∫
ü†α(x, t) dt

+ ε3
(

2P 2
αβ(x) Iββ(x) ρ(x)

∫
ü†β(x, t) dt− wP 2

αβ(x)Tαβ(x) I2ββ(x) ρ(x)

∫
ü†α(x, t) dt

)]
.

(A.46)
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