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CWP Policy on Proprietary Printed
Material

New printed material that is produced at the Center for Wave Phenomena under Con-
sortium support is presented to Sponsors before it is released to the general public. We
delay general publication by at least 60 days so that Sponsors may benefit directly from
their support of the Center for Wave Phenomena.

During this delay, Sponsors may make whatever use of the material inside their organi-
zation that they deem proper. However, we expect that all Sponsors will respect the rights
of other Sponsors, and of CWP, by not publishing these results externally and indepen-
dently, in advance of this 60-day delay (even with attribution to CWP). Please refer to your
Consortium Membership Agreement under the paragraph entitled “Sponsor Confidentiality
Obligation.”

Those reports in this book that were produced primarily under consortium support
and have not been previously distributed or submitted for publication, will be available for
general distribution by October 1, 2008.

If you have independently generated results that duplicate or overlap these, and plan
to submit them for publication under your own name before this date, please notify us
immediately, so that misunderstandings do not arise.




Welcome From the Director

The Center for Wave Phenomena celebrates its 25th Anniversary this year. This milestone
marks the continued innovation and education of a center originally founded by Norm Bleistein,
Jack Cohen, Frank Hagin, and John DeSanto. It is a privilege in my new role as director of
CWP to give leadership to our center. I am thankful for my predecessors, including recent
past directors Ken Larner and Ilya Tsvankin, for giving shape to such a vibrant center focused
on discovery and learning. Over the summer we held a retreat with the faculty and staff of
CWP to rethink and articulate our goals and values. Central in the outcome of the retreat
was that we aim at not only producing world-class research, but also at creating a nurturing
environment for students; a research and learning environment that helps students realize their
potential and that fosters a balanced growth in intellectual and human skills needed for effective
and compassionate leadership. The students, staff, and faculty at CWP constitute a wonderful
composite of people. What a joy it is to work with this group!

With great pleasure, we welcome representatives of our sponsor companies to the 25th
Annual Project Review Meeting, and look forward to the opportunity to exchange ideas and
thoughts about this past year’s projects and about plans for the future. Dialogue with spon-
sor representatives helps us to focus on the scientific problems that are important to your
organizations. We look forward to using the Project Review Meeting as a platform for such
discussions.

This edition of the report on the Consortium Project at the Center for Wave Phenomena
summarizes much of the research conducted within CWP since the 2008 Project Review Meet-
ing. Note that the papers in this report and those presented orally during the meeting, May
11-14, 2009, only partially overlap.

Roel Snieder, Director

Center for Wave Phenomena
May 2009

Papers in this Report

The papers in this volume are grouped into the following categories: interferometry, electro-
magnetic fields, time-lapse, anisotropy, imaging, and image processing & interpretation. These
categories show both similarities to and differences from those of the past few years, indicative

of both the continuity and expanding breadth of our research program.

Interferometry

The section on interferometry opens with an overview paper of Snieder, Miyazawa, Slob,

Vasconcelos, and Wapenaar who compare approaches to interferometry based on correlation,
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stress-related prestack traveltime shifts for a compacting reservoir embedded in a medium with
different elastic properties. They show that, although the excess stress field is sensitive to the
contrast in the rigidity modulus across the reservoir boundaries, the influence of background
heterogeneity is mostly confined to the reservoir and its immediate vicinity. As is the case
for a homogeneous background medium, the offset dependence of traveltime shifts for realistic
layered models is mostly controlled by stress-induced anisotropic velocity perturbations. Fuck
and Tsvankin employ the theory of nonlinear elasticity based on third-order elastic tensors to
study stress-induced anisotropy observed, for example, near compacting hydrocarbon reservoirs
and salt bodies. They present an intuitive and algebraically simple formalism designed to
predict the anisotropic symmetry of a stressed medium from the symmetry of the third-order

elastic tensor and properties of the applied stress/strain.

Anisotropy

Four papers comprise the section on anisotropy. Behura and Tsvankin study the influence
of the angle between the real and imaginary parts of the wave vector (“inhomogeneity angle”)
on attenuation and velocity in arbitrarily anisotropic media using the first-order perturbation
theory verified by exact numerical modeling. They show that the group attenuation coefficient
measured from seismic data is insensitive to the inhomogeneity angle and can be used to esti-
mate the intrinsic quality factor and the relevant attenuation-anisotropy parameters. Séliner,
T'svankin, and da Silva present a time-migration methodology for multi-azimuth P-wave data
from azimuthally anisotropic, weakly heterogeneous media. They derive the azimuthally varying
diffraction time function and define the “migration-velocity ellipse,” which solves the mismatch
problem that occurs in conventional processing of multi-azimuth surveys. The algorithm is suc-
cessfully tested on synthetic data generated for a horizontally layered azimuthally anisotropic
medium and an isotropic model with a dipping interface in the overburden. Wang and Tsvankin
combine 2D P-wave stacking-velocity tomography with borehole data to estimate the interval
parameters of tilted transversely isotropic (T'TI) media and build an initial anisotropic model
for migration velocity analysis. They show that if the symmetry axis is nearly orthogonal to
the medium interfaces, the algorithm can resolve the interval symmetry-direction velocity Vpg
and the anisotropy parameter ¢, while the parameter € cannot be constrained without using
nonhyperbolic moveout. Yan and Sava describe a procedure for elastic wave-mode separation in
anisotropic TTI media based on polarization vectors evaluated at every location in space. This
technique is implemented in the space-domain using finite-difference operators that represent
the polarization vectors as functions of elastic parameters and tilt. The main application of

this procedure is in multi-component elastic reverse-time migration.

Imaging

Research on imaging is reported in four contributions. Yang and Sava explore the kinematic

attributes of extended space-time imaging conditions developed for wave-equation migration.
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Overview of Developments in CWP

CWP Faculty and Staff

There has been no change in the CWP faculty group since the 2008 Project Review Meeting.
The full-time CWP academic faculty includes Dave Hale, Paul Sava, Roel Snieder (director), and
Ilya Tsvankin. In accordance with the rotation plan approved by the CWP faculty in 2004, Roel
Snieder assumed the position of CWP director in June 2008. Ken Larner and Norm Bleistein
remain part of the team in their “retirement,” and are actively involved in many aspects of
our research and education program. In December, 2008, Michelle Szobody changed positions
and now is office manager of the Department of Geophysics at the Colorado School of Mines.
She is succeeded in CWP by Pam Beckman who is the new program assistant. Pam manages
the CWP office in a professional and cheerful way. Publication specialist Barbara McLenon
provides essential assistance in preparing our publications. John Stockwell not only manages
the computer systems of CWP, but his insight and expertise in the mathematical aspects of
geophysics are also invaluable. John is the manager of Seismic Unix and is instrumental in

maintaining and promoting this software for seismic data processing.

Students, Post-Doctoral Fellows, and Long-Term Visitors

During the 2008-2009 academic year, 14 graduate students were doing research in CWP. Five
new CWP students (Filippo Broggini, Luming Liang, Francesco Perrone, Bharath Shekar, and
Mamoru Takanashi) started their graduate studies in the Fall of 2008. During 2008, three stu-
dents completed their degree work: John Mathewson, MSc.; Gabriela Melo, MSc.; and Rodrigo
Fuck, PhD. Eduardo Filpo Ferreira da Silva joined CWP as a post-doctoral fellow starting in
March, 2007 for an 18-month period. Eduardo is a geophysicist with Petrobras, Brazil. Evert
Slob has joined CWP as visiting professor for the period January-July, 2009, while on leave
from Delft University of Technology. We have been pleased to welcome for several months,
three of Evert’s students from Delft: Jurg Hunziker, Mattia Miorali, and Ali Tehrani. Also
joining Evert has been postdoctoral fellow Seiichiro Kuroda. Chenghong Zhu, from Sinopec, is
visiting CWP from March through September, 2009, with the goal of establishing a collabo-
ration between Sinopec and CWP. Walter Séllner of PGS (Oslo, Norway) spent six months of
2008 with CWP as a visiting scholar working on joint research projects.

Center Support

Currently the Consortium is supported by 25 companies including our newest sponsor, Marathon
Oil Corporation. We thank the representatives of our sponsors for their continued support. A
full list of sponsor companies over the term of the past year appears on the acknowledgment
page at the beginning of this volume.

We have received approximately $840K of additional support since June, 2008, from the U.S.
Department of Energy, National Science Foundation, Petroleum Research Fund of the American
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the Consortium.

Educating our Students

The Department of Geophysics and other departments at the Colorado School of Mines offer
numerous graduate courses from which CWP benefits. In addition to these courses, we have

taken the following initiatives to educate CWP students.

English writing € speaking

For many students, especially international students, writing scientific papers is an onerous
activity. Over the past several semesters, Diane Witters, a writing consultant whose expertise
is English as a second language, has worked with CWP students to improve their writing skills,
through one-on-one tutoring sessions and writing workshops. Diane closely coordinates her
efforts with CWP faculty. In addition to helping students advance their writing skills, she
has assisted foreign students to transition from the work-culture in their home country to the

professional style common in the United States.

Mathematics

In order to ensure that CWP students master the mathematics needed for wave propagation and
imaging, John Stockwell teaches a math clinic, which is a graduate course covering the mathe-
matics needed for much of the research within CWP. The course is attended by a record number
of students from CWP as well as from other research groups in the geophysics department. The

feedback from students has been extremely positive.

The Art of Science

Roel Snieder offers the course “The Art of Science,” which is aimed at helping graduate students

develop effective research habits.

Short Courses and Workshops

The CWP faculty has been active in sharing their professional expertise by offering short courses
to groups in academia and industry. Please contact CWP if you are interested in hosting one

of these short courses.

e Ilya Tsvankin, with his long-time collaborator Vladimir Grechka of Shell, continued to
offer the short course Seismic anisotropy: Basic theory and applications in exploration
and reservoir characterization as part of the SEG Continuing Education Program. The
course provides the necessary background information about anisotropic wave propagation
and discusses modeling, inversion, and processing of seismic reflection and VSP data in
the presence of anisotropy. The main emphasis of the course is on practical parameter-
estimation methods for transversely isotropic and orthorhombic subsurface models.
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Rock Abuse, led by Mike Batzle; and the Gravity/Magnetics Project, led by Yaoguo Li.

In addition, the CWP faculty have engaged in collaborative efforts with researchers else-
where. Ilya Tsvankin is spending the Spring 2009 semester on sabbatical leave. He is working
on a new book and plans an extended trip to Europe where he will do joint research with Sergei
Shapiro at the Free University of Berlin and other colleagues from academia. He will also teach
the anisotropy course in several European locations, give a seminar at the PGS office in Oslo,
and present a paper at the EAGE Conference in Amsterdam. Other collaborations of the CWP

faculty include:

e Norm Bleistein
— Sam Gray and Yu Zhang (CGGVeritas)
— Guanquan Zhang (Chinese Academy of Sciences)

e Dave Hale
— Sverre Brandsberg-Dahl (PGS)
— Richard Clarke (BP)
— Marco Maucec and Bob Howard (Landmark)
— Dave Nichols and John Mathewson (WesternGeco)
— Joe Stefani (Chevron)

e Paul Sava
— Clara Andreoletti and Nicola Bienati (ENI)
— Sergey Fomel (UT Austin)
— Paul Fowler (WesternGeco)
— Ivan Vasconcelos (ION Geophysical)
— Scott Morton (Hess)
— Michael Payne, Jie Zhang, Anupama Venkataraman, Rongrong Lu, Alex Martinez
(ExxonMobil)
— Ioan Vlad (StatoilHydro)
— Stewart Wright (Dawson Geophysical)
- Yu Zhang and Sam Gray (CGG Veritas)
— Malcolm McNeil (Woodside Energy)
— Peter Traynin and Lorie Bear (ExxonMobil)
— Eduardo Filpo Ferreira da Silva (Petrobras)

e Roel Snieder
— Andrew Curtis and David Halliday (Edinburgh University)
— Malcolm Sambridge (Australian National University)
— Johannes Singer and Jon Sheiman (Shell International E&P)
— Ivan Vasconcelos and Huub Douma (ION Geophysical)
— Kees Wapenaar and Evert Slob (Delft Institute of Technology)
— Kasper van Wijk (Boise State University)
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— Served as Chair of the Board of Directors of the SEG Advanced Modeling Project
(SEAM).

— Served on the Organizing Committee of the 13th International Workshop on Seismic
Anisotropy (13IWSA), Winter Park, Colorado, August, 2008.

— Invited speaker for the Geophysical Society of Houston/SEG 2009 Spring Symposium
honoring Frank Levin.

e Paul Sava

— Presented a paper at the EAGE Annual Meeting in Rome (June 2008).

— Served on the Technical Program Committee for the Annual SEG Meeting, Las
Vegas.

— Presented a paper at the SEG Annual Meeting, Las Vegas (November 2008), and
co-authored two other presented papers.

— Co-author of paper presented at the 13IWSA, Winter Park, CO (August 2008).

— Traveled to Houston to collaborate with colleagues from ExxonMobil.

— Traveled to Milan, Italy, to collaborate with colleagues from ENI.

— Presented the two-day course Wavefield Seismic Imaging (WSI) in Houston, Paris,
London, Singapore, Kuala Lumpur, Perth, Calgary, and Perth (again).

— Served on the EAGE research committee.

— Co-organized the Madagascar School held in Golden, Colorado (May, 2008).

e Roel Snieder

— Served on the selection panel of the Spinoza Award of the Netherlands Organisation
for Scientific Research. He made two trips to the Netherlands for meetings of the
panel. '

— Served on the Earth Science Council of the US Department of Energy (DOE). He
presented the lecture “Education for the Global Energy Challenge” at DOE

— Organized, with co-conveners Kasper van Wijk, Alex Calvert, Matt Haney, and Al-
bena Mateeva, the session “Innovations in Geophysics: A Tribute to Rodney Calvert”
at the 2008 SEG Annual Meeting in Las Vegas.

— Served on the SEG committee Geoscientsts Without Borders and organized the
session “Increasing the societal impact of geophysics” at the 2008 Fall meeting of
the American Geophysical Union.

— Presented five papers at the 2008 Fall meeting of the American Geophysical Union.

— Presented his outreach lecture “The Global Energy Challenge” more than 50 times at
universities, community colleges, high school and elementary schools, service clubs,
and churches. More information can be found at
http://www.mines.edu/~rsnieder/Global Energy.html.

— Visited the University of Edinburgh to give a seminar on coda wave interferometry
and present his course “The Art of Science” in a condensed form.
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o Alexandre Araman, from Total S.A. in Pau (France) came to CSM in January 2008 to
collaborate with CWP and RCP (the Reservoir Characterization Project) on research
projects. Alexandre also took courses in the Professional M.S. Program and recently

transferred to the thesis-based M.S. Program in geophysics.

e Clement Fleury, an MSc student from The City of Paris Industrial Physics and Chemistry
Higher Educational Institution (ESPCI) is doing research with Roel Snieder (March—
September 2009).

We also had a number of short-term visitors:

e Brad Artman, Spectraseis

e Craig Beasley, WesternGeco

e Jack Bouska, BP

e Sverre Brandsberg-Dahl (PGS)

e Richard Clarke (BP)

e Peter Duncan, Micro Seismic Inc.

e Richard Lindsay, Nobel Energy

e Marco Mauéec and Bob Howard (Landmark)
e Rustom Mody, Baker Hughes

e Peter Molnar, University of Colorado

e Louise Pellerin, Green Engineering

e Kaoru Sawazaki, Tohoku University

e Niven Shumaker, Nobel Energy

e Don Vasco, Lawrence Berkeley National Lab
e Paul Williamson, Total

e Dan Wisecup, Wisecup Geophysical Consulting
e Frank Wuttke, Bauhaus University

Papers at SEG

CWP students and faculty presented a total of fifteen oral presentations, poster papers, and
workshop contributions at the SEG Annual Meeting in Las Vegas. A number of these presen-
tations resulted from collaborations with sponsor companies and academic groups. In addition,
CWP faculty and students contributed seven presentations at the 2008 EAGE meeting in Rome.
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base is the active membership in the “seisunix” listserver group (750 to 800 members), and
general interest via downloads of more than 10 per day, though these may be more reflecting
of internet bots, rather than real users. Release 42 of SU was issued on April 20, 2008, and
contained many updates and new software. For details, please download the release notes from
http://www.cwp.mines.edu/cwpcodes.

The open-source Mines Java Toolkit is available online from Dave Hale’s home page at
http://www.mines.edu/~dhale/jtk/. This software is the foundation for most of Dave’s
teaching and research, and is also being used by commercial software companies. Anyone with
a web browser can view and download the always up-to-date source code repository.

Paul Sava and his students continue to work with and develop software for Madagascar,
an open-source software package for geophysical data processing and reproducible numerical
experiments. Its mission is to provide a convenient and powerful environment and a technology
transfer tool for researchers working with digital image and data processing. The technol-
ogy developed using the Madagascar project management system is transferred in the form
of recorded processing histories, which become “computational recipes” to be verified, ex-
changed, and modified by users of the system. This open-source package is available from

http://rsf.sourceforge.net/.

Annual Project Review Meeting

This year’s Annual Project Review Meeting will be held on May 11-15, 2009, in Vail, Colorado.
A tradition of recent years is that, prior to the meeting, we hold a short course for sponsors on
a topic of particular interest within CWP. This year, in the afternoon of May 11, Bill Symes of
Rice University will give a short course entitled “Velocity Analysis and Waveform Inversion.”
During the following three days, CWP students and faculty will present more than 20 research
papers. In addition, the program will include two guest speakers: John Etgen from BP and
Bill Dragoset from Western Geophysical. Thank you for joining us!
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CWP-619

A comparison of strategies for seismic interferometry

R. Snieder!, M. Miyazawal?, E. Slob?, I. Vasconcelos* and K. Wapenaar®

L Center for Wave Phenomena, Colorado School of Mines, Golden CO 80401 email rsnieder@mines.edu
2 Now at Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan

3 Dept. of Geotechnology, Delft University of Technology, 2600 GA Delft, The Netherlands

4 Now at ION Geophysical, GXT Imaging Solutions, Egham, Surrey, U.K.

ABSTRACT

The extraction of the response from field fluctuations excited by random sources
has received considerable attention in a variety of different fields. We present
three methods for the extraction of the systems response that are based on cross- '
correlation, deconvolution, and the solution of an integral equation, respectively. j
For systems that are invariant for time-reversal the correlation method requires |
random sources on a bounding surface only, but when time-reversal invariance is

broken, for example by attenuation, a volume distribution of sources is needed.
For this reason the correlation method is not useful for diffusive or strongly
attenuating systems. We provide examples of the three methods and compare
their merits and drawbacks. We show that the extracted fields may satisfy
different boundary conditions than does the physical field. This can be used,
for example, to suppress surface-related multiples in exploration seismology, to
study the coupling of buildings to the subsurface, and to remove the airwave in
controlled source electromagnetics (CSEM).

Key words: interferometry, correlation, deconvolution, CSEM

1 INTRODUCTION dividing a system that conserves energy into a part one
is interested in, and a part that is irrelevant. The energy
flow from the first part to the latter part then effectively
acts as dissipation. We show that dissipation plays an
interesting role in Green’s function extraction.

As with so many developments in geophysics, Aki
(Aki, 1957) pioneered in 1957 the use of microseis-
d seismic interf trv. In th lorati . ) mic noise to extract the properties of the near surface.
and seismic interterometry. n the exploration Selsmot Lobkis and Weaver (Lobkis & Weaver, 2001) gave the
ogy community, the name seismic interferometry is now . . c . s

. i field new momentum with their derivation of Green’s
mostly used (Curtis et al., 2006). P . ion based 1 Th d

The theory for the extraction of the Green’s unction extraction based on normal modes. They made

two contributions. First, they showed that the Green’s

function from field fluctuations has been known in . - .
the physi it der th fluctuati function can be extracted assuming that each mode is
¢ Physics community under the name fluctuation- excited with the same energy, in other words: thermody-

dissipation theorem (Callen & Welton, 1951; Weber, namic equilibrium is not essential. This is important, be-

1956; Kubo, 1966; Rytov et al., 1989; Le Bellac et al., . . .
. B . cause the field fluctuations in a macroscopic body, such
2004). This theorem states that for a Hamiltonian sys- . . .
as the Earth, generally are not in thermodynamic equi-

tem in therr.nodynamlc equlllbrlum. the correlation of librium. Their second contribution is that they showed
field fluctuations are related to the impulse response of , . . .
how useful the Green’s function extraction can be in

the system. The name is poorly chosen, because there . ..

. . . o . . practical applications.

is, strictly speaking no dissipation in Hamiltonian sys- L . .

: Tatarskii (Tatarskii, 1987) solved thi blem b A flurry of applications appeared in different
ems. Latarskil { Latarskil, sofved this problem by fields that include ultrasound (Weaver & Lobkis, 2001;

The extraction of information from random field fluc-
tuations is a rapidly growing field in physics, acoustics,
engineering, and geophysics. The widespread applica-
tion of this idea has led to a variety of different names
used for the method that include Green’s function ex-
traction, daylight imaging, the virtual source method,
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Figure 3. Cross-correlation between the waveforms at the
top sensor and those at other sensors for different compo-
nents: (a) vertical, (b) east-west, and (c) north-south. Grey
lines indicate the travel time for P-waves (panel a) and S-
waves (panels b and c). The P and S-wave velocities are
known at Cold Lake.

averaged the cross correlations measured over a period
of one month. The result, after bandpass-filtering be-
tween 10 and 55 Hz, is shown in figure 3 for the three
components of the recorded motion. A downward prop-
agating wave is clearly visible in the cross-correlation
of the vertical components (panel a), and its arrival
time agrees well with the travel time of a downward
propagating P-wave. The cross correlation of the sig-
nals recorded at the vertical component thus clearly ex-
tracts downward propagating P-waves that are hidden
in the noise of figure 2. The cross correlations of the
east-west and north-south components (panels b and c,
respectively) show waves that propagate downward with
the shear velocity. The cross correlations of the horizon-
tal components successfully extract downward propa-
gating S-waves. By rotating the horizontal components,
Miyazawa et al. (Miyazawa et al., 2008) were able to
measure shear wave splitting based on correlating the
noise measurements.

There is a plethora of derivations of the Green’s
function extraction from cross-correlation starting from
the derivation of the fluctuation-dissipation theorem for
Hamiltonian systems in thermal equilibrium (Callen &

Welton, 1951; Weber, 1956). Derivations based on nor-
mal modes are particularly elegant (Tatarskii, 1987;
Lobkis & Weaver, 2001). Only closed system have, in
general, normal modes. Alternative derivations, also
valid for open systems of acoustic waves, have been de-
veloped using time-reversal invariance (Derode et al.,
2003b; Derode et al., 2003a; Bakulin & Calvert, 2004),
representation theorems (Wapenaar et al., 2005; Wape-
naar & Fokkema, 2006), and the summation of ran-
dom incident plane waves (Weaver & Lobkis, 2005). The
derivation based on representation theorems has been
extended to elastic waves (Wapenaar, 2004).

For the Fourier convention  f(t) =
J F(w) exp(—iwt)dw, with w is the angular frequency,
the extraction of the frequency domain Green’s function
for acoustic waves is formulated mathematically as
(Snieder et al., 2007b)

G(ra,rg) — G*(ra,rB)

=21 ! G G* ds W
- zw\favm (I‘A,r) (err) .

In this expression G(r 4, rp) is the Green’s function that
accounts for wave propagation from rp tora, p the mass
density, ¢ the wave velocity, and the asterisk denotes
complex conjugation. The integration is over a closed
surface OV that encloses receivers at rg and r4. Since
a radiation boundary condition is used in this deriva-
tion (Wapenaar et al., 2005), the closed surface must be
sufficiently far from the receivers. Expression (1) and
all other expressions in this work are valid in the fre-
quency domain. For brevity the frequency-dependence
is omitted throughout this work.

We first establish the connection with random pres-
sure sources g at the boundary 0V that excite field fluc-
tuations. Suppose that these sources are spatially un-
correlated and satisfy

iy — IS

(q(rl)q (1‘2)) p(l‘1)C(l’1)
where |S(w)|® is the power spectrum of the noise
and (---) denotes an ensemble average. In practice
this ensemble average is replaced by a time average
(Larose et al., 2006a). The integral in expression (1)
can be written as § § (p(r1)c(r1)) "' G(ra,r1)é(r1 —
r2)G*(rp,r2)dS1dSs, together with equation (2) this
gives

G(ra,r)—G'(ra,rp) = WQ(T“’), (p(ra)p (c5)) » (3)

d(r1 —r2), (2)

where p(ro) = § G(ro,r)q(r)dS are the field fluctuations
excited by the random sources on the bounding surface.
When sources are present only on part of the bound-
ing surface, the correlation may lead unphysical arrivals
(Snieder et al., 2006b; Snieder et al., 2008; Mehta et al.,
2008a).

Since complex conjugation in the frequency do-
main corresponds to time-reversal in the time domain,
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Figure 4. Left panel: the sigsbee model with a salt body shown in white. The hypothetical location of a drill bit and receivers
(triangles) in a borhole are shown. Middle panel: the image obtained from deconvolution interferometry. Right panel: the image

obtained from correlation interferometry.

The numerator in the last term of equation (5) de-
scribes the correlation of the Green’s function that is
similar to the integrand of expression (1). This suggest
that deconvolution and correlation give virtually the
same results. This would indeed be the case when the
power spectrum |G(rg,r)|? in the denominator would
be a smooth function of frequency. But this is not neces-
sarily the case, especially for the important application
where the Green’s function consists of the superposition
of interfering waves. The resulting notches in the power
spectrum may make the power spectrum of the Green’s
function rapidly fluctuating with frequency. In this case
one cannot expect that the deconvolution resembles the
correlation.

The property that the deconvolution does not de-
pend on the source spectrum is desirable, but this prop-
erty comes at a price. Consider the special case where
the points r4 and rp coincide. In that case the decon-
volution in equation (5) reduces to Vaa(w) = 1, which,
in the time domain, corresponds to

VAA(t) = 5(t) . (6)

This means that the field obtained by deconvolution
vanishes for nonzero time when the receivers coincide.
Physically this means that the deconvolved fields satisfy
a clamped boundary condition (Vasconcelos & Snieder,
2008a) at one of the receivers. This tells us that decon-
volution does not give the true Green’s function, unless
that Green’s function also happens to satisfy a clamped
boundary condition at that receiver. In that case, the
field fluctuations would vanish as well at that receiver,
and there would be nothing to record.

It is, however, not needed to deal with the clamped
boundary condition when a perturbation approach is
used. Suppose that the medium can be divided in a
reference medium with field po and Green’s function
Go, and a perturbation with associated perturbations
ps and Gs in the field and Green’s function, respec-
tively. The reference medium could be smoothly vary-

ing medium, and the perturbation could be the rough
medium fluctuations that generate reflected waves, but
alternatively the reference medium could account for
the subsurface before a time-lapse perturbation, and the
perturbation could be the time-lapse change. The latter
approach is natural in monitoring applications (Snieder
et al., 2007a).

Suppose one can separate for each source at loca-
tion r the field into the field perturbation and the un-
perturbed field, and that one deconvolves those fields:

+_ps(ra) _ Gs(ra,r) _ Gs(ra,r)Gi(rs,r)

~ po(re)  Go(rs,r)  |Go(rs,r)2
()
Integration over all sources gives
' Gs(ra,r)Gi(rs,r)
VapdS = ds. 8
f vinas = [, S ®

When the reference medium is smooth, Go does not con-
sist of many interfering waves and usually is a smooth
function of frequency. The numerator in expression gives
the correlation between wavefield perturbations at r4
and unperturbed waves at rg. When the source is at
such a location that it launches direct waves to rp that
are then reflected by the medium perturbation to propa-
gate to r4, one retrieves the perturbed waves that prop-
agate from rp to ra (Vasconcelos & Snieder, 2008a). In
practice one sums over a range or sources near the sta-
tionary phase region for these arrivals. In practice one
does not know the precise location and extent of the
stationary phase regions, and one employs sources over
a larger region that can be assumed to include the sta-
tionary phase zones.

In this approach one needs to separate the unper-
turbed field from the field perturbations. For waves this
can sometimes be done using a time gate that separates
the direct waves from reflected waves. This does, how-
ever, not work when the excitation has a long duration
in the time domain. In that case the direction of wave
propagation may be used to carry out this separation.
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not give the response to a unit source at r’, but instead
relates the upgoing field at r generated by a unit down-
going field at r’. This operator can be used, though, for
imaging the region under the acquisition surface.

In figure 5 the upgoing and downgoing fields are
indicated by straight lines, but that does not imply
that the fields propagate in a homogeneous medium.
In fact, the fields propagate through the real subsur-
face, which can be arbitrarily heterogeneous. Figure 5
depicts a point source at location rg, but in reality the
source may have a finite extent. We simply use the co-
ordinate rs to label different sources. The source signal
need not be known in the following. In the frequency do-
main the upgoing field is formed by the superposition
of the downgoing field at all locations multiplied with
the reflectivity operator

Ulr,rs) = / R(r,v')D(t',rs)dS’ , ©)

where the integration [ ---dS’ is over the locations r’
in the acquisition surface.

When the upgoing and downgoing fields are known,
equation (9) is an integral equation for the reflectivity
R(r,r’"). For a single source the solution of this equation
is ill-posed. Physically this can be understood as follows.
Suppose one has just one source at location rs, then it
makes sense that one can not retrieve the reflectivity op-
erator R(r,r’) for all locations r and r’, especially when
the source is not at a favorable location as it is in figure
5. When there are, however, many sources at different
locations rs, can use the combined set of equations (9)
for all sources to solve for the reflectivity operator. The
number of sources that are needed in practice for a sta-
ble reconstruction of the reflectivity operator depends
on the frequency of the involved fields, the complexity
of those fields, and on the location of those sources.

The connection with the deconvolution method of
the previous section follows by assuming that downgo-
ing fields are only present at one fixed location r’ and
that that downgoing fiels correspond to the unperturbed
field while the upgoing field is the field perturbation. In
that case U(r,rs) = R(r,r')D(r',rs), and the reflec-
tivity follows by deconvolving upgoing and downgoing
fields: R(r,r') = U(r,rs)/D(r',rs). The deconvolution
method of the previous section can thus be seen as an
approximation to the multidimensional deconvolution
method.

A major advantage of the multidimensional decon-
volution approach is that the retrieved reflectivity de-
pends neither on the medium parameters above the ac-
quisition surface, nor on the possible presence of a free-
surface above the acquisition surface. The multidimen-
sional deconvolution method is akin to Noah’s deconvo-
lution proposed by Riley and Claerbout (Riley & Claer-
bout, 1976), in which the ocean with a free surface is
replaced by an unbounded water layer above the acqui-
sition surface. Because of this replacement the retrieved
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Figure 6. Electric field for the model without reservoir
(dashed curve) and the model with a reservoir (solid curve).
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Figure 7. Electric field for the model without reservoir (bot-
tom curve) and the model with a reservoir (top curve).

estimate of the reflectivity is not influenced by the re-
flections off the free surface above the acquisition plane.

Note that the multidimensional deconvolution
method can be applied to any kind of field. We show an
example of electromagnetic fields that propagate in the
Earth’s subsurface. Because of the electrical conductiv-
ity and employed frequency (0.25 Hz), such fields are of
a diffusive nature, except in the air where the field prop-
agates as wave. This application is of particular interest
because in marine applications the propagation of elec-
tromagnetic fields through a shallow water layer and the
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Figure 9. Waveforms of figure 8 after deconvolution with
the motion in the basement.

Claerbout, 1976; Kennett, 1979; Verschuur et al., 1992;
van Borselen et al., 1996; Weglein et al., 1998)

We illustrate the freedom to change the boundary
conditions in seismic interferometry with the response of
the Millikan library at Caltech extracted from recorded
vibrations of the building after an earthquake (Snieder
& Safak, 2006). This building is shown in the left panel
of figure 8 and the location of accelerometers in the
basement and the 10 floors is marked with solid circles.
The north-south component of the acceleration after the
Yorba Lina earthquake is shown in the right panel. The
motion increases with height in the building because of
the increased sway of the building with height.

The response extracted by deconvolving the motion
at every floor with the motion in the basement is shown
in figure 9. As discussed in section 3 the extracted re-
sponse now satisfies a clamped boundary condition in
the basement, and indeed, in figure 9 the motion in the
basement is a bandpass-filtered delta function in the
basement. For nonzero times, the extracted motion in
the basement vanishes. This is, of course, not the case
for the real building. In fact, one can see in the bottom
trace of the original data in figure 8 that the build-
ing is being shaken at its base throughout the arrival
of the body wave coda and the surface waves that ex-
cite the building. In contrast, the extracted response
in figure 9 is for a fictitious building whose base is ex-
cited by a bandpass filtered delta pulse and then remains
fixed. Such a fictitious building has reflection coefficient
R = —1 at the base, which precludes the transmission
of energy from the subsurface into the building!

As another example we present in figure 10 the mo-
tion of the Millikan library after deconvolution with the
motion at the top floor. Now the motion at the top floor
is collapsed into a bandpass-filtered delta function. Note
that this response is a-causal, but it still is a valid wave
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Figure 10. Waveforms of figure 8 after deconvolution with
the motion at the top floor.

state of the building that consists of one upgoing wave
that is reflected by the top of the building into a down-
going wave. Note that this downgoing wave is not re-
flected at the base of the building, this wave state thus
corresponds to a fictitious building that has reflection
coefficient R = 0 at its base. Physically, the reflection
coefficient vanishes for this wave state because now the
the deconvolved motion at the top floor is a bandpass-
filtered delta function, hence the deconvolved motion at
the top vanishes for nonzero time. Because of the ab-
sence of significant internal reflections in the building,
see figure 10, any wave reflected upward at the base of
the building would cause a nonzero displacement at the
top for ¢ > 0. Since the deconvolution precludes such
motion, the base of the building must be reflection-less
for this wave state. This would not be the case if the
building would generate significant internal reflections.

The examples of figures 9 and 10 show that from
the same data one can retrieve wave-states that satisfy
different boundary conditions. The real building has nei-
ther reflection coefficient R = —1 nor R = 0. In the first
case, energy would not be able to be transmitted into
the building, while the latter case precludes the reso-
nance that is clearly visible in figure 8 because all wave
energy is radiated downward at the base. Examples of
wave-states of the building that have reflection coeffi-
cient R = 0, but that are either purely causal or a-causal
can be found in ref. (Snieder et al., 2006a). Note that
the extracted response in the figures 9 and 10 is solely
based on processing of the recorded motion in figure 8.
It does not involve numerical modeling of the building
and the mechanical properties of the building need not
be known.

In marine seismology the idea to change the bound-
ary condition is of particular importance because reflec-

e
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Correlation Deconvolution Multidimensional deconvolution
+ exact + valid for dissipative systems + valid for dissipative systems
+ stable + noise spectrum not needed + noise spectrum not needed

+ works for two receivers

+ works for two receivers

+ overburden is removed

+ enhances temporal resolution  + enhances temporal resolution

- volume sources for dissipative systems - may be unstable
- correct to first order only

- needs power spectrum

- needs up/down separation
- equation may be ill-posed
- needs complete coverage

Table 1. The advantages (+) and disadvantages (-) of the correlation method, the deconvolution method, and the multidimen-

sional deconvolution method.

obtained reasonable models for the attenuation in Cal-
ifornia (Prieto et al., 2009). As shown in equation (3)
one must know the power spectrum of the excitation in
order to extract the Green’s function. For some appli-
cations this is not a problem, but in some application
this is a restriction that cannot be ignored. As shown
by Mehta et al. (Mehta et al., 2008b), small variations
in the characteristics of an airgun source lead in marine
seismic applications based on the correlation method to
spurious events when those variations are not properly
accounted for.

The deconvolution approach holds for systems that
are not invariant for time reversal as well. Equation
(7) gives the perturbed Green’s function for the two
employed receivers. Note that this expression is solely
based on the decomposition of the field in a reference
field and a perturbation, but it makes no assumption
about the underlying field equation. In the deconvolu-
tion approach the spectrum of the excitation need not
be known because it does not influence the spectral ra-
tio taken in the deconvolution. This is important in
situations where the excitation is unknown, as is the
case, for example in drill-bit seismics (Poletto & Mi-
randa, 2004) when the vibrations of the drill-stem have
not been recorded. As with the correlation approach
one needs just two receivers, unless one employs ar-
ray techniques such as frequency-wavenumber filtering
to separate the unperturbed waves from the perturbed
waves (Vasconcelos et al., 2008b). The deconvolution
corrects for variations in the spectral amplitude of the
source, and therefore gives an extracted response with
a larger bandwidth than cross-correlation does. This
corresponds, in the time domain, to a response with a
greater temporal resolution. This difference can clearly
be seen by comparing the middle and right panels of
figure 4. Deconvolution corresponds, in the frequency
domain, to a spectral ratio. This ratio is unstable near
notches in the spectrum. Many methods exists to sta-
bilize the deconvolution (Webster, 1978); we used the
water-level method in our applications. A drawback of
the deconvolution is that it does not necessarily pro-
duce the Green’s function. The extracted response at
the reference receiver is a band-limited delta function,
the response thus satisfies a clamped boundary condi-

tion at that point. In seismic exploration this may intro-
duce spurious reflections, but these spurious reflections
leave only a weak imprint on seismic images constructed
from multi-offset data (Vasconcelos & Snieder, 2008a).
On the other hand, in the examples of the analysis of
the motion of the Millikan library the clamped bound-
ary condition could be used the extract the building
response under boundary conditions other than those
of the physical building. This can be used to unravel
the contributions of the mechanical properties of the
building from the soil-structure interaction.

The multidimensional deconvolution approach is
valid for systems that are invariant for time reversal as
well as for those that are not invariant for time-reversal.
The spectrum of the excitation needs not be known. In
fact, in contrast to the correlation approach, the power
spectrum of the excitation may vary between different
noise sources, and as with the deconvolution method,
this technique leads to a response with a larger tempo-
ral resolution than is produced by the cross-correlation.
The imprint of the overburden is completely removed
from the estimated reflectivity. This is of particular im-
portance in applications where reflections from the free
surface or an electromagnetic airwave contaminate mea-
sured fields. The method relies on up/down decompo-
sition. This processing step may necessitate the use of
arrays or the measurement of additional fields such as
pressure and displacement in marine seismology or the
measurement of electric and magnetic fields in electro-
magnetic applications, as well as on estimates of the
near-surface impedance. The simultaneous solution of
integral equation (9) for a number of sources may be un-
stable. As with the deconvolution such instability may
be suppressed to a certain degree by regularization, or
it may require increasing the number of sources used. In
order to solve the integral equation one must have an
array of sensors that adequately cover the acquisition
surface. This restriction is particularly important when
fields are measured along a line in the acquisition only.

This overview shows that one has considerable
freedom in the choice of the method for extracting the
system response from field fluctuations. The overview
of merits and drawbacks of table 1 may aid the
reader in choosing the optimal method for a particular
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1 INTRODUCTION

ABSTRACT

The extraction of the Green’s function from field fluctuations has led to for-
mulations where for a particular application one retrieves either the real part
of the Green’s function G + G* or the imaginary part G — G*. We explore the
connection between these different formulations for Green’s function extraction
for general linear scalar systems and derive equations for the extraction for both
the real or imaginary part of the Green’s function. We show that for systems
that are invariant under time reversal, one can either extract G — G* when the
field is excited by sources on the boundary, or G + G* when sources are present
throughout the volume. The freedom to extract either of these functions is im-
portant in situations where the imaginary part of the Green’s function vanishes.
This is the case, for example in static problems where the Green’s function is
real. We derive the Green’s function extraction for potential field problems and
for direct current problems in conducting media. For diffusive fields, the new
formalism provides the ability to extract the Green’s function either from injec-
tion sources or from current sources. We show for acoustic waves that G — G*
can be obtained for systems that satisfy a radiation boundary condition, and
that G 4+ G* can be extracted for systems that satisfy homogeneous bound-
ary conditions. The Green’s function extraction formulated here corresponds,
for acoustic waves, to a Lagrangian formulation rather than the Hamiltonian
(energy) principles were used previously.

Kohler et al., 2007; Sabra et al., 2008; Todorovska,
2009), and medical diagnostics (Sabra et al., 2007).

The Green’s function extraction from field fluctuations
is an area that has recently gone through a spectacu-
lar growth (Wapenaar et al., 2008). The technique is
ultimately based on the fluctuation dissipation theo-
rem (Callen & Welton, 1951; Weber, 1956; Tatarskii,
1987) formulated decades ago, but applications flour-
ished when ultrasound measurements showed that this
technique could be used in practice (Lobkis & Weaver,
2001; Weaver & Lobkis, 2001; Weaver & Lobkis, 2003;
Malcolm et al., 2004). The technique found many ap-
plications that include ocean acoustics (Roux & Fink,
2003; Roux et al., 2004; Sabra et al., 2005b), crustal
seismology (Campillo & Paul, 2003; Sabra et al., 2005a;
Roux et al., 2005), exploration seismology (Bakulin &
Calvert, 2006; Mehta et al., 2007; Hornby & Yu, 2007;
Miyazawa et al., 2008; Schuster, 2009), structural engi-
neering (Snieder & Safak, 2006; Snieder et al., 2006;

There are several derivations for the theory of Green’s
function extraction that hold for a large class of lin-
ear scalar and vector systems (Wapenaar et al., 2006;
Snieder et al., 2007; Weaver, 2008).

Derivations for Green’s function extraction yield
the sum or the difference of the causal Green’s function
and it’s time-reversed counterpart. In the frequency do-
main, this corresponds to retrieving G + G* or G — G*,
where the superscript asterisk denotes the complex con-
Jjugate. (A notable exception is a derivation (Vasconcelos
& Snieder, 2009) for the extraction of field perturbations
for acoustic waves, that lead to expressions for the per-
turbed Green’s function G rather than Gs + G%.) In
practice, it is not a problem that one extracts the su-
perposition G £+ G*; because of the causal properties
of the Green’s function one can reconstruct the time-
reversed Green’s function from the causal Green’s func-
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G*(ra,rg) = Z(—iw)"/van(r)G(r, ra)G*(r, rB)dV—/VG*(r, rg)H(r)G(r,ra)dV . (4)

Interchanging the indices A and B, taking the complex conjugate, and using reciprocity (G(ra,rg) = G(rg,ra))
gives

Gra,rs) = 3 (+iw)" /V a4 (r)G(r,r4)G" (r,v5)dV — /V Clr,ra)H* (£)G" (r,r5)dV . )

Expressions (4) and (5) hold for the Green’s function and its complex conjugate separately. For time-dependent
problems, these functions are nonzero either for positive or negative time, and have for this reason been called
one-sided Green’s functions (Vasconcelos & Snieder, 2009).

Equations (4) and (5), in their current form, are not directly applicable to the extraction of the Green’s function
from field fluctuations. In order to extract the Green’s function from field fluctuations, one needs to multiply the right
hand side of these expressions with uncorrelated noise and rewrite the Green’s function multiplied by the noise as the
field fluctuations, e.g. (Wapenaar et al., 2005; Snieder et al., 2007). The volume integral [ GHG*dV is, in general,
not symmetric in G and G* because of the action of the differential operator H. In order to use expressions (4) and
(5) for Green’s function extraction, one must first rewrite the volume integral in such a way that it is symmetric in
G and G*.

To illustrate this last point we consider the important case

H(r)f(r) =V -(D(r) - V(1)) . (6)

For the diffusion equation D is the diffusion parameter, for acoustic waves D(r) = 1/p(r), with p the mass-density,
and for Schrédinger’s equation D = —/%/2m. For the operator in expression (6) the application of Gauss’ law gives

c')G(r,

/ G* (v, r) H(r)G(r, ra)dV = ?{ D(r)G" (r, rp) 2CF:T4) ”‘)ds / D(r)VG*(r,r5) - VG(r, r4)dV 1)

where 9/0n denotes the derivative normal to the boundary 8V. The surface integral vanishes when either the field
or its normal derivative vanishes on 8V, in which case

/V G* (v, v8) H(r)C(r, ra)dV = — /V D(r)VG*(r,r5) - VG(r,r4)dV ®)

In the left hand side the operator H acts only on G(r,ra), hence G*(r,rp) and G(r,ra) enter the left hand side
in different ways. Expressions for Green’s function extraction are based on the correlation of fluctuations u(ra) =
J G(r,ra)q(r)dV and u(rs) = [ G(r,rp)q(r)dV, or on similar expressions containing the gradient of G (see section
4). For this reason, G(r,ra) and G*(r,rp) must enter the resulting integral in the same way, and hence the used
expression must be symmetric in G(r,r4) and G*(r,rg). This is not the case with the left hand side of expression
(8), but the right hand side does have the required symmetry in G(r,r4) and G*(r,rg). In sections 4-6 we apply this
property to a number of examples.
We next analyze the linear combination G + G*. Subtracting expression (4) from (5) gives

G(ra,rg) —G*(ra,rp) = —2% .  ..(—iw)™ [ Re(an(r))G(r,ra)G*(r,r5)dV
=232, cven(—w)" [ Im(an(r))G(r, ra)G* (r,rp)dV 9)
+ [(G*(r,r)H(r)G(r,ra) — G(r,ra)H*(r)G*(r,rp)) dV ,
where Re and I'm denote the real and imaginary parts, respectively. Adding expressions (4) and (5) gives
G(ra,rg)+G*(ra,rp) = 2iy,  ..(—iw)" [ Im(an(r))G(r,ra)G*(r,r5)dV
+23, cven(—iw)™ [ Re(an(r))G(r,ra)G*(r,rp)dV (10)
— [(G*(r,rB)H(r)G(r,ra) + G(r,ra)H*(r)G*(r,rp)) dV
Equation (9) and its application to the diffusion equation, acoustic waves, and quantum mechanics, was discussed

earlier (Snieder et al., 2007). In the following we discuss the connection between expressions (9) and (10) and the
application to Green’s function extraction from field fluctuations.
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In the notation of expression (2), all a, = 0, while H is given by expression (6) with D replaced by €. We make this
replacement throughout this section. If instead of the electrostatic problem we consider direct currents in a conducting
medium, then the charge density q(r) is replaced by a volume density of charge injection or extraction rate —g(r) (the
minus sign comes from the historical convention that the loss of charge from the source region constitutes a positive
electric current), and the electric permittivity (r) is replaced by the conductivity o(r). This leaves equation (18)
intact with different symbols (Stratton, 1941). This results in a formulation for direct current methods in conducting
media.

First note that the Green’s function solution to expression (18) is real, hence G — G* = 0 and therefore one
cannot retrieve G from the difference G — G*. Using expression (10) together with equation (17) does lead to the
following nontrivial relation for G + G*:

G(ra,rs) + G (rars) =—f,, (r) <G(r, ey &0re)  COra) gy, rs)) ds "o

+2 [, e(r) (VG(r,ra) - VG*(r,rp))dV .

We now assume that either the potential G or the electrical field E = —VG vanishes at 8V, or that the boundary is
at infinity. In those cases the surface integral vanishes and

Glra,t5) + G*(ra,r8) = 2 /V e(r) (VG(r,r4) - VG (r,r5)) dV . (20)

In appendix A we verify expression (20) explicitly for the special case of a homogeneous medium.
In order to establish the connection of this equation with the Green’s function extraction from field fluctuations
we will use the field generated by an electric dipole distribution p(r) (Griffiths, 1999)

u(ro) = / (VC(ro,r)) - p(r)dV . (21)
v
We next consider random dipole sources that are spatially and directionally uncorrelated and satisfy
(pi(r1)pi(r2)) = |S|*e(r1)d(r1 — r2)di; (22)

where |S|? measures the strength of the dipole sources. For the moment we consider an ensemble of identical elec-
trostatic systems, each with their own excitation by dipoles, and (---) denotes the ensemble average. Multiplying
expression (20) with |S|?, using the fact that for this problem G is real, and using the summation convention, gives

G(ra,rs)|S? =2|S]? [, e(r)8:G(r,r4)8:G* (r,rp)dV

=2 [, [, e(r1)d(r1 — r2)8:;0:G(r1,14)0;G*(r2,r5)dV1dV;
(23)
= 2(fV 6iG(r1,rA)p,-(r1)dV1 fV 3]'0* (1’2, rA)pj(rz)de)

= 2(u(ra)u(rp)) ,

where the identity [ fi(r)g:(r)dV= [ [ fi(r1)é(r1—r2)di;g;(r2)dV1dV2 has been used in the second identity, expression
(22) in the third equality, and expression (21) in the last identity.

This means that the electrostatic Green’s function G(ra,rg) follows from the ensemble average of the correlation
of field fluctuations recorded at r4 and rp that are excited by uncorrelated dipole sources. In reality one may not
have an ensemble of identical electrostatic systems, but one may have a system where random sources fluctuate
with time. When the characteristic time of the temporal variations in these dipole sources is large compared to the
time it takes for light to propagate through the system, the response of the system is quasi-static. In that case the
ensemble average can be replaced by a temporal average over the field fluctuations. In fact, the approach to replace
an ensemble average by an average over time is common in seismology where averaging over multiple non-overlapping
time windows is used to extract the dynamic Green’s function (Larose et al., 2006; Shapiro et al., 2005; Sabra et al.,
2005a). By applying the same principle to quasi-static field fluctuations one can extract the electrostatic Green’s
function from temporal field fluctuations.

Charges are not created or destroyed in macroscopic amounts in a source-free region. This means that only
dipoles or higher order multi-poles can excite field fluctuations. For the expected small moment fluctuations, where
the local charge separation is orders of magnitude smaller than that of the measurement scale, the contribution of the
dipole moments dominates the potential field, and, the electric potential is given by equation (21). The occurrence
of dipole moments in a material can have four basic causes: electronic, ionic, dipolar and space charge polarization
(Khesin et al., 1996).

T
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G(ra,rg) — G*(ra,rg) = 2iw% %cG(r, ra)G*(r,rp)dS . (33)
av

This well-known equation (Derode et al., 2003; Wapenaar & Fokkema, 2006; Snieder et al., 2007) states that the
Green’s function can be extracted from field fluctuations excited by sources on a closed surface surrounding r4 and
rs.

When f and g satisfy the radiation boundary condition (32), f8g*/8n + g*0f/0n = 0. This term also vanishes
when either the field or its normal derivative vanishes at the boundary (p = 0 or 9p/8n = 0 at V). We show in
appendix B that for homogeneous boundary conditions the Green’s function is real, hence G — G* = 0, and only
G + G* can provide a nontrivial expression for Green’s function extraction.

Using the radiation boundary condition or homogeneous boundary condition in expressions (10) and (17) gives
the following for the sum G + G*

G(ra,rg) + G*(ra,rg) = Z/V % <(VG'(r, ra) - VG*(r,rg)) — (;LjG(r, ra)G*(r, r3)> av . (34)

The last term on the right hand side comes from the contribution of az to expression (10). This term has the same
dependence on the Green’s function as does the surface integral in expression (33), but now appears in a volume
integral.

When the field satisfies the radiation boundary condition (32), the difference G — G* can be extracted by cross-
correlating the pressure field excited by uncorrelated sources with power spectrum |S(w)|? at the bounding surface
OV which leads to an expression identical to equation (27) but now for acoustic waves (Snieder et al., 2009a). The
situation is more complicated for the case of equation (34) for the sum G + G*, which is applicable under radiation
boundary conditions or under homogeneous boundary conditions.

For a general excitation ¢(r) the pressure is given by p(ro) = [ G(ro,r)q(r)dV. Using the decomposition (31) in
injection sources and body forces, the pressure can be written as

p(ro) = —iw / C(ro,1) Q(r)dV / Clro,r)V - (fgrg)dv (35)

Using Gauss’s law, the last integral can be written as §,,, G(ro, r)f(r)/p(r)-dS — [(VG(ro,r))- (f(r)/p(r)) dV. When
the body force vanishes on the boundary 0V, the first term in this expression vanishes, and the pressure is given by

p(xo) = —iw / Clro,r) f((r’)) dv + / (VG(ro,r)) - (Z—%) av . (36)

Consider first an experiment where only random injection sources excite field fluctuations and that these injection
sources are spatially uncorrelated and satisfy :

(Q(r1)Q" (r2)) = A(r1)|S(w)|*8(r1 — r2) . (37)

We assume there are no body forces acting (f = 0), and denote the associated pressure response by p?. This response
is given by the first term in the right hand side of equation (36), and the cross-correlation of the pressure fluctuations
satisfies

(pQ(rA)pQ*(l'B)) — w2<f G(TA, rl) g((::ll)) A% fG*(I'B, r2)Q(( 2))d )

G(ra,r1)G*(rp,r2)
rl)n(rg)

=’ [ (Q(r1)Q"(r2))dV1dVa (38)

2
=IS@* [ 25 G(ea,1)G" (a, 1)V,

where expression (37) and the relation x = pc? have been used in the last identity. Consider next another experiment
where the field fluctuations are excited by uncorrelated body forces that satisfy

(fi(r1)f5 (r2)) = p(r1)|S(W)I*6(r1 — r2)835 (39)

and that there are no injection sources (Q = 0). The pressure field p’ for these sources is given by the last term of
expression (36), and the correlation of the field fluctuations satisfies

e




We have shown that for acoustic waves that
satisfy a radiation boundary condition at a closed
surface, uncorrelated sources at that surface suffice
for the extraction of G — G*. When volume sources
are present, one can obtain the Green’s function from
the sum G + G*. A practical limitation of the latter
approach is that in this case one needs to record the
field fluctuations generated by injection sources and by
body forces separately. The ability to extract G — G*
and G + G* from field fluctuations gives the principle
of Green’s function extraction a new degree of freedom
that has the potential to open up new opportunities
for the extraction of the system response from field
fluctuations.
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In the absence of attenuation the modes are real. The orthogonality relation of the modes follow from a standard
derivation consisting of multiplying this expression with a mode u,,, integrating over volume, interchanging n and
m and subtracting, applying Gauss’ theorem and using that on the boundary either u = 0 or du/dn = 0. This gives
the following orthogonality relation that also defines the normalization of the modes

/ %unude Y (B2)

Eliminating u, /& in expression (B2) using the second term of equation (B1) and applying Gauss’ theorem gives the
following alternative orthogonality relation

/ %(Vun V) dV = w26 | (B3)
The Green’s function has the following normal mode expansion (Snieder, 2004)

Un(r1)un(r2)
G(r1,r2) = Z W : (B4)

n
Since the modes are real, G is a real function as well.
We next express the integrals in the right hand side of equation (34) in normal modes. Using the previous
expression and the relation x = pc? gives

w? . w? 1
/V G, TG (r,75)dV = n§m: g v ( / mun(r)um(r)dv) n (T A) U (rB) - (B5)
The orthogonality relation (B2) reduces the double sum in the right hand side to a single sum:
2
w . _ ax™ Un(ra)un(rp)
/‘; ;C_EG(r, rA)G (r> rB)dV =w En W . (B6)

This expression differs from the the normal mode expansion (B4) by the square of the frequency difference in the
denominator.
The first term in the right hand side of expression (34) can also be expressed in the normal mode expansion

(B4):

/ l(VG(r ra)) - (VG (rre))dV =3 - </ - (Vtn(r) - Vu (r))dV) un(ra)um(rs) .(B7)
ve , , n,m (w’% - wz)(wgn - (“;2) p(r) " i " m

With the orthogonality relation (B3) the double sum can be reduced to a single sum over modes

/V % (VG(r,ra)) - (VG (r,r5)) AV = 32 MnEa)un(rs) (B8)

(W2 —w?)?

The dominant contribution to the response comes from eigenfrequencies wy close to the frequency of excitation (w).
A comparison of expressions (B6) and (B8) shows that the two integrals in equation (34) are of the same order of
magnitude.

Subtracting equations (B6) and (B8) gives

/V % ((VG(r, ra)-VG*(r,rB)) — i—zG(r, ra)G(r, rB)) dV = ; Un(ra)un(rs) ) (B9)

w2 —w?

By virtue of the expansion (B4) this is equal to the Green’s function G(ra,rg). Since the Green’s function is real,
expression (B9) constitutes an alternative proof of equation (34). Note that in order to obtain this result it is essential
to subtract expressions (B6) and (B8) because it is this subtraction that gives the contribution (w2 — w?) needed to
make the numerator in expressions (B6) and (B8) equal to that of the Green’s function in equation (B4).
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ABSTRACT

We show that the two-point cross-correlation of potential-field recordings is
equal to the Green’s function between the two points. This holds under the con-
dition that spatially and temporally uncorrelated noise sources exist throughout
the volume. They should have a known amplitude spectrum and their correlated
strengths should be equal to the real part of the dissipative medium property
function. Natural fluctuations, such as thermal noise, may occur that satisfy
the necessary conditions. When these fluctuations are random deviations from
a state of thermal equilibrium the fluctuation-dissipation theorem determines
these external sources. This allows for Green’s function retrieval for all types
of fields that satisfy a similar quasi-static field equation. Under equilibrium
conditions, possible downhole reservoir applications include virtual source DC
electric resistivity measurements, fluid flow measurements and local tempera-
ture estimations.

Key words: Green’s function retrieval, potential fields, thermal fluctuations,
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down hole.

1 INTRODUCTION

The notion of interferometry to mean the extraction of
transmission or reflection responses from passive record-
ings, and use of the newly constructed data for imaging
the surroundings has been known for more than 20 years
(Scherbaum, 1987; Buckingham et al., 1992). During
the past eight years many interferometric methods have
been developed for random fields and for controlled-
source data. Many of the underlying theories have in
common that the medium is assumed to be lossless. The
main reason for this underlying assumption is that the
wave equation in lossless media is invariant for time-
reversal. For an overview of the theory of seismic in-
terferometry or Greens function retrieval and its appli-
cations to passive as well as controlled-source data, we
refer to a reprint book of Wapenaar et al. (2008), which
contains a large number of papers on this subject.

It has been shown (Snieder, 2006; Snieder, 2007;
Weaver, 2008) that a volume distribution of uncorre-
lated noise sources, with source strengths proportional
to the dissipation parameters of the medium, precisely
compensates for the energy losses. This approach holds

both for waves in dissipative media and for pure dif-
fusion processes. Recently Wapenaar et al. (2006) and
Snieder et al. (2007) showed that interferometry by
cross-correlation, including its extensions for wave fields
and diffusive fields in dissipative media, can be repre-
sented in a unified form. This naturally leads to the
question of whether potential fields can also be retrieved
by cross-correlation of noise measurements. Potential
fields are the late-time limits of quasi-static fields. Low
frequency induced polarization methods use quasi-static
electric fields. In practice potential field values are ob-
tained by integrating measured field values. This is done
by sampling the field at a certain rate and averaging
the results over a predetermined time window. This av-
erage value is then stored as the value corresponding to
the potential field. Therefore all potential field measure-
ments involve a frequency bandwidth within which the
potential field is measured. That is why there can be
measurable effects of temporal fluctuations in a poten-
tial field.

Physical mechanisms for the noise sources were not
identified in the previous studies on field correlations in




continuous outward pointing unit normal vector n¥ =

{n1,n2,n3}, to give
/VAdesr = /(VVA) -0 - (VVB)dar
D D

—¢ Van-6-VVpdr. (12)
oD

To arrive at equation (12), integration by parts and
Gauss’ divergence theorem has been used in the in-
tegral containing the divergence operator. The result-
ing boundary integral runs over the outer boundary,
where continuity conditions or explicit conditions of the
Dirichlet and/or Neumann types are assumed to apply.
In the latter case the boundary integral vanishes. Sim-
ilarly, equation (4) for state A can be multiplied with
Vp and integrated over the domain D, resulting in

/ Velad®r = / (VVa)-6-(VVp)d3r
D D

— VBn -0 - VVAdzr. (13)
oD
Notice that the volume integral in the right-hand side
of equation (12) is equal to the volume integral in the
right-hand side of equation (13).
We now use delta functions for the sources, AB =
d(r — ra,B), and the potentials become Green’s func-
tions as defined by V ap = G(r, 7 4,). For these sources
and fields equations (12) and (13) become

O(ra,ra) = /D (VE(r,74)) - 6 - (VO(r, r5))d r

- ¢ CG@r,ra)n-6-VG(r,rp)d’r, (14)
oD

G(ra,rs) = /D (VE(r,14)) - & - (VE(r, r5))dr

-~ ¢ G(r,rp)n-6-VG(r,ra)d*r. (15)
oD
Here we have assumed that both points 7 4,p are inside
D.
Subtracting equation (14) from (15) gives

G(ra,rB) —é(rB,rA)zf (é(r,rA)n-&~Vé(r,r3)
oD
-é(r,rB)no&-VGA’(r,rA))d2r. (16)

For two fixed locations, 74 and 7rp, the left-hand side
of equation (16) is fixed, independent of the choice of
D, therefore the right-hand side is also fixed and in-
dependent of the choice of . The right-hand side of
equation (16) is therefore independent of the size and
shape of D as long as the points r4,p are both inside
the volume. When the volume is taken as infinite space
the surface integral goes to zero. This is because the
Green’s function is proportional to the inverse of dis-
tance, while its gradient is proportional to the inverse
of distance squared; hence, the product goes to zero pro-
portionally to inverse distance cubed and we sum over a
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spherical surface proportional to only distance squared.
Combining this with the value of the left-hand side that
is independent of choice of D, implies that the boundary
integral is zero for any bounded volume, even when the
medium is arbitrarily heterogeneous outside ID. This es-
tablishes the well-known source-receiver reciprocity re-
lation G(ra,78) = G(rp,r4), and also leads to the
relation

G(r,ra)n & - VG(r,rp)d’r
oD

=¢ G(r,rp)n-6-VG(r,ra)d*r, (17)
aD

which remains valid when both 74 p are outside the

volume, because then the left-hand side of equation (16)

is always zero. Note that each integral in equation (17)

vanishes when the volume is taken as infinite space.

3 GREEN’S FUNCTION RETRIEVAL

Taking the complex-conjugate state for state A is equiv-
alent to taking the time-reversed causal state in the time
domain. Using this in equations (12) and (13) leads to
expressions involving cross-correlations of quantities in
the time-domain. Using this in the frequency-domain
and using source-receiver reciprocity, we directly obtain
the global interactions by taking the complex-conjugate
Green’s function for state A in equations (14) and (15),
as

G (rp,ra) = /D (VG (r,7a))-6-(VC(r, r5))dr

- }g G (r,ram-6-VE(r,re)d'r, (19)
G(rp,ra) = /D (VG*(r,74))-6" -(VG(r,rp))d°r

- j{mc‘:(r,rg)n-&*-vé*(r,m)d%. (19)

where the superscript * denotes complex conjugation.
We extend the domain D to three-dimensional infinite
space R® and use the fact that in that case each sur-
face integral goes to zero. We then obtain two integral
relations for the Green’s function directly as

& (rp,ra) = /R (V6" (ra,))-6-(VO(rs, m)d*r, (20)

Grp,ra) = /R (VG (ra,7))6"-(VO(ra,m)dr. (21)

Interestingly, the only difference between the right-hand
sides of equations (20) and (21) is in the complex con-
ductivity. By adding and subtracting equations (20) and
(21), we obtain

${G(rp,7a)} =

- /IR a(Vé*(rA,r)) {6} (VG(rp,r)dr, (22)




finite time window. The sampling rate defines the max-
imum frequency and the time-window defines the mini-
mum frequency of the experiment. This implies that the
measurement can be written in the frequency-domain as

Wmax

/ V()0 (w)dw = 2ksT R(wmax — wmin). (33)
W=Wmin ™

This is under the assumption that the resistance is a

constant for all frequencies involved and the capacitance

plays no role. When the total resistance varies as a func-

tion of frequency, equation (33) is modified to

/ T V(W) (w)dw = 2ksT /

W=Wmin W=Wmnin

W,

R{Z(w)}dw,

(34)
where Z denotes the impedance of the circuit. In the
case of Johnson’s experiment the impedance is given by
7 =(R1'- iwC)™!, C being the capacitance of the
circuit, and R{Z} = R/(1 + (wRC)?); hence, for a non-
conductive circuit, R — oo leads to R{Z} — 0.

These results were later generalized by Callen and
Welton (1951) in the FDT. Using these observations
in the general form of FDT for piecewise continuous
macroscopic systems, we find that when a scalar observ-
able V is related to a field [ through a linear response
function R as V = IR, the power spectrum of the ob-
servable is proportional to the real part of the linear re-
sponse function R{R}. For a general linear medium and
the frequency dependent conductivity being a piecewise
continuous function of position we can use the same the-
orem for thermal fluctuations of the electric field vector
to satisfy (Landau & Lifshitz, 1960) the relation that is
written in vector components as

/ Ey(r)Er(r")d®r = ZkBTm{ﬁk,(r)}. (35)
T/€R3 m

Only equation (30) can be used for Green’s function
retrieval using this thermal fluctuational field, because
the right-hand side of equation (35) contains the real
part of the electric resistivity matrix, which is contained
in equation (30). By writing the observation of electric-
potential at 74 or rp as a response to a thermal noise
source in accordance with equation (5) as

V(ra = o GVE(ra,r)- E(r)d®r, (36)
€

V(rs) = /T Rs GYE(rg,r)  E(r")d3, (37)
‘e

and using equation (35) in the product of V*(ra) and
V(rp) results in

Ve Ves = [ [ € eany B

E@")-GVE(rp,v)d3r ' d®r,

- %kBTAB[éVE(rA,r)]* -R{C} - GVE(rp,r)d%r, (38)

which is equal to the right-hand side of equation (30),

Potential field interferometry 31

apart from the energy factor 2kgT' /7. This gives the de-
sired Green’s function retrieval formulation from cross-
correlation of the potential measurements between 7 4
and rp

V*(ra)V (rs) = %ksT?R{é('rA,'rB)}. (39)

Snieder (2006) was the first to propose a similar ex-
pression for the scalar diffusion equation. The Green’s
function in the right-hand side of equation (39) is the
electric potential at 4 due to a current injection at rp.
This is an observable for actual dipole current sources
and potential differences measured in the field, which
are easily obtained by combining different observations.

When the medium is not dissipative everywhere in
R3, the non-dissipative part of the medium can be ex-
cluded to allow the boundary to run at the intersection
of the dissipative and non-dissipative domain. Under
quasi-static electric field conditions, the earth surface
is such an interface, and Dirichlet conditions apply to
the normal component of the electric current, so that
the boundary integrals present in equations (18) and
(19) are still zero and equation (23) remains valid in
the reduced volume where the medium is dissipative.
This implies that the electric response of the earth as
a heterogeneous half space can be determined by cross-
correlations of thermal fluctuational noise recordings. If
other source mechanisms are present, these thermal fluc-
tuations might be too small to be measured, although
increasing the measurement time enhances the signal-
to-noise ratio in the correlation results.

4.2 Strengths of electric thermal noise signals

The expected strength of the thermal noise fields de-
pends on the thermal energy. Boltzmann’s constant is
ks ~ 1.4 x 10~?* J/K, and for a room temperature of
T ~ 300 K, we find kgT ~ 4.2 x 1072! J. The total
energy delivered between two electrodes is equal to the
energy dissipated in the medium by the resistance of the
medium, which is related to the location of the two elec-
trodes. This results in |V|?/R = 2kpT Aw/m, where R is
the apparent resistance of the medium and Aw is the an-
gular frequency bandwidth of the measurement. The en-
ergy depends on the bandwidth of the instrument used
in the experiment; we assume a frequency bandwidth
of Af = 10kHz, and use Aw = 2w Af, f being natural
frequency. The power is 4kpTAf ~ 1.7 x 1071¢ Watt. If
the apparent resistance of the measurement is 50 €2, the
mean fluctuation of the squared electric potential dif-
ference between these two points is |V|? ~ 0.85 x 107*
which corresponds to measuring a voltage difference be-
tween the two electrodes of V' &~ 90nV. This is a small
number, but certainly within the measurable range of
modern equipment. Furthermore, in our estimate we
have not made use of any amplification of the recorded
signal. If we have a high quality amplifier that has a
linear behavior over the whole frequency bandwidth,

T —




flow in the reservoir, thereby obtaining information as if
any location of a measurement is a virtual injection or
production point. The response to such a virtual source
or sink is obtained from cross-correlating recordings of
the head differences at any two measurement locations
in a well or between two wells. This could then be used
to gain a better insight in the reservoir flow properties
and in the changes in these properties over sufficiently
large production windows.

A third potentially attractive application is the
possibility of measuring downhole temperatures using
cross-correlations of electric noise measurements. The
cross-correlation of the local electric potential difference
between two electrodes is equal to the product of the lo-
cal temperature and the Green’s function between the
electrodes, which is an apparent resistance. When an
active measurement is performed between the same two
electrodes to obtain the local apparent resistance value
corresponding to that measurement configuration, the
ratio of the noise measurement and the active measure-
ment directly gives the temperature scaled by Boltz-
mann’s constant and 2/7. This can be a possible so-
lution for the downhole temperature measurement at
many locations inside or outside a well. The practical
applicability depends on the strength of the thermal
noise signal. This should be such that the necessary time
windows, over which the signal should be averaged, are
short enough to assume a relatively constant tempera-
ture. Calibration and testing of the method under vari-
ous circumstances could be achieved by simply combin-
ing this procedure with independent temperature mea-
surements in or near a well. Combining passive and
active measurements at many receiver locations across
wells could be used to obtain an estimate of the volu-
metric temperature distribution. Specimen temperature
has been estimated in the lab on an aluminum cylinder
from cross-correlations of acoustic thermal noise record-
ings and calibrating them to active recordings (Weaver
& Lobkis, 2003).

Under the assumption of subsurface steady state
and thermal equilibrium conditions all three pro-
posed possible applications can have some merit for
measurement-and-control type reservoir management
systems. More applications are deemed possible.

7 CONCLUSIONS

We have derived interferometric relations to obtain the
Green’s function of a quasi-static field between two
points from the two-point correlation of noise measure-
ments. This has led to representations for the imagi-
nary part and for the real part of the Green’s function.
The static potential function is the late-time limit of
the quasi-static field and is a real function. For this rea-
son the representation for the real part is of interest.
We have shown the relationship between the autocor-
relation of the electric potential over an electric circuit
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and the resistance of the circuit. This is extended by the
fluctuation-dissipation theorem to arbitrary linear dis-
sipative systems and can be used for Green’s function
retrieval. We have shown that thermal fluctuations of
electric fields have volume-integrated correlations equal
to the real part of the local resistivity times the ther-
mal energy. This directly leads to the identity for the
cross-correlation of thermal noise measurements at two
locations being equal to the Green’s function between
those two locations.

Based on the analysis for the quasi-static electric
field and the general form of the fluctuation-dissipation
theorem, we have generalized the quasi-static field
Green’s function retrieval formulation to any linear sys-
tem satisfying a similar modified Laplace equation. Sub-
surface fluid flow was given as an example. According to
the fluctuation-dissipation theorem, thermal noise gives
the correlation functions of the sources that are required
by the Green’s function retrieval formulation from the
reciprocity theorem.

Finally, we have proposed three possible downhole
applications in reservoir environments. Full coverage DC
electric resistivity measurements can be generated from
correlations of electric noise recordings. A volumetric
distribution of flow properties can be determined from
correlations of thermal noise measurements of the hy-
draulic head at all possible well locations. Downhole
temperature can be computed from the ratio of cross-
correlation of electric potential thermal noise recordings
to active resistivity measurements between the same
electrodes. These applications depend on the assump-
tion that thermal noise is the major source of fluctua-
tions and requires that the system is in steady-state and
in thermal equilibrium.
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Controlled source electromagnetic interferometry by
multidimensional deconvolution: Spatial sampling
aspects
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ABSTRACT

We review electromagnetic interferometry by multidimensional deconvolution
(MDD) and investigate its sensitivity to spatial sampling. Two Sea Bed Logging
datasets were modeled numerically. One represents a shallow sea situation with
a small vertical source-receiver distance and the other a deep sea situation with
a large vertical source-receiver distance. The reflection response from below the
receivers was retrieved by interferometry by MDD after decomposition of the
field into up- and downgoing fields. This reflection response is independent of
any effects of the water layer and the air above and consequently the same for
the shallow sea and the deep sea situation. We showed, that to decompose the
fields and apply MDD successfullyfor a shallow sea situation a denser sampling
is necessary than for a deep sea situation.

Key words: Controlled Source Electromagnetics (CSEM), Sea Bed Logging

(SBL), Interferometry, Multidimensional Deconvolution (MDD)

1 INTRODUCTION

In seismics, interferometry is known as the process of
cross-correlating two traces at two receiver positions
to retrieve the Green’s function between these two re-
ceivers. The theory has been derived by various authors
for a lossless medium (Wapenaar (2004), Schuster et al.
(2004)) and for a dissipative medium (Snieder, 2006)
and it has been applied in passive (Draganov et al.,
2006) as well as in active seismics (Bakulin & Calvert,
2006). A more complete overview on seismic interferom-
etry can be found in Wapenaar et al. (2008c) or Schuster
(2009). Interferometry by crosscorrelation has also been
derived for electromagnetics (Slob et al., 2007).

It has been shown that the process of cross-
correlation can be replaced by a multi-dimensional
deconvolution (MDD) in the controlled-source case
(Wapenaar et al., 2008b) and in the passive case (Wape-
naar et al., 2008a). The advantages of MDD include
elimination of the source signature, improved radiation
characteristics of the retrieved source and relaxation of
the assumption of a lossless medium. On the other hand,
MDD is more expensive and the matrix inversion in-

volved may be unstable. Furthermore a decomposition
of the measured fields into up- and downgoing fields is
necessary. Interferometry by MDD also requires an ar-
ray or a network of sensors and can not be done with
two receivers only, as this is the case in interferometry
by cross-correlation.

In this paper Controlled Source Electromagnetic
(CSEM) data in a marine environment is considered.
This is often referred to as Sea Bed Logging (SBL),
where an electric-dipole source is towed behind a boat
emitting a low-frequency electric field, which propagates
through the subsurface and through the water. The re-
sulting EM-field is recorded at the ocean bottom by hor-
izontal multicomponent receivers as a function of offset.
At small source-receiver offsets the field is dominated
by the direct field and reflections from the sea surface.
At large offsets the refraction from the sea surface (air-
wave) is very strong (Amundsen et al., 2006). Conse-
quently the recorded signal depends on the thickness of
the water layer.

By applying interferometry by MDD the source is
redatumed to the receiver level, the direct field is elim-
inated and the water layer is replaced by a vertically
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datasets are decomposed into up- and downgoing fields
in the wavenumber-domain. Since the medium is lat-
erally invariant, equation 3 can be solved efficient in
the wavenumber-domain, where MDD becomes a sim-
ple division. The inverse-Fourier transformed result is
equivalent with Rar retrieved by MDD. The complete
processing flow is shown in figure 2.

4 RESULTS

The magnitude of the two electromagnetic field compo-
nents Hy and E; are shown in figure 3 in a semi logarith-
mic plot. The shallow sea situation is plotted with a gray
line and the deep sea situation with a lighter gray line.
The slope of the curve representing the shallow sea case
is steeper at small offsets for both field components than
in the deep sea case, because in the deep sea situation
the source is vertically further away from the receivers
than in the shallow sea situation. Note that the horizon-
tal tails of the electric field between approximately 3500
m and 5000 m have not a physical origin, but stem from
the Fourier Transformation, which requires periodicity
of the signal.

As can be seen in figure 4, the steeper field gradi-
ents in space-domain for the shallow sea situation cor-
respond in the wavenumber-domain to energy at higher
wavenumbers compared to the deep sea situation. In
other words, if the source is vertically close to the re-
ceivers (shallow sea situation), the data has a higher
bandwidth than if the source is vertically further away
from the receivers (deep sea situation). In figure 4 it can
also be seen that the wavenumber spectra of the mag-
netic and the electric fields behave similarly. The inlets
magnify the fields near the zero wavenumber. The fields
differ clearly from each other in this area. These differ-
ences, combined with the high amplitude and different
phase behavior around small wavenumbers, lead to the
pronounced differences between the magnetic and the
electric fields in the space-domain.

The reflection response Ry, which is retrieved after
decomposition into up- and downgoing fields and MDD,
is shown in figure 5 for the shallow sea (dark gray line)
and the deep sea situation (light gray line) as a function
of offset for different spacings dz. The total offset is kept
constant, therefore with increasing spacing dz the num-
ber of samples N decreases. Since MDD replaces the
water layer with a halfspace, the reflection responses
for the shallow sea and the deep sea situation should
be identical (in case of correct sampling). The retrieved
reflection responses are compared with a directly mod-
eled reflection response (black solid line), which is the
exact response when the water layer is replaced by a
halfspace.

In figure 5 a) the spacing dz is equal to 2.5 m. Both
retrieved reflection responses and the directly modeled
reflection response show exactly the same shape ver-
ifying that MDD was successful in removing the im-

print of the water layer for both cases. This is also true
for a spacing of dz = 5 m. A spacing of dz = 10 m
shows tiny artifacts around zero offset in the shallow
sea case, as can be seen in the inlet of figure 5 b). Due
to the small amplitude of these artifacts, they can be ne-
glected, but if the spacing is increased further to dz =
20 m (figure 5 c), these artifacts at small offsets become
more dominant in the shallow sea situation. As seen
in figure 3 and mentioned earlier, the electromagnetic
fields for the shallow sea case decay faster in the space-
domain and have therefore a higher bandwidth in the
wavenumber-domain. Increasing the spacing means in
the wavenumber-domain to limit the range of wavenum-
bers. Consequently, a larger spacing introduces aliasing
for the high wavenumbers and therefore affects the de-
composition algorithm. Improperly decomposed fields
lead to artifacts in the retrieved reflection response. A
sampling of dz = 20 m seems to be too large. For the
deep sea situation, the fields decay less strong and there-
fore this sampling is still sufficient. To detect reservoirs
in the subsurface, the small offsets are not of interest,
and therefore the artifacts in this region can be ignored.
If the spacing is further increased to dz = 40 m as shown
in figure 5 d), the reflection response for the shallow
sea situation is now also for intermediate offsets not re-
trieved correctly. On the other hand, for the deep sea
situation ﬁ.ﬂ{ could be retrieved perfectly. Further in-
crease of the spacing decreases the quality of fia' for
the shallow sea situation as expected even more while
the reflection response can be retrieved with good qual-
ity for the deep sea situation up to a spacing dz equal to
320 m. Artifacts are introduced in the deep sea situation
if a spacing of 640 m is reached.

Hunziker et al. (2009) show an empirical rule to de-
fine the sampling dz as a function of the vertical source-
receiver distance zs-. Since the stabilization parameter €
is fixed in their study, but not in this one, their rule can
be relaxed. To be precise, the rule presented here is four
times less restrictive. Consequently, sampling should be
chosen such that dz < z,-/2.5 to retrieve the reflection
response perfectly. If small artifacts around zero offset
on f{g' can be ignored, sampling is sufficient if dx < zs,.
But it should be taken into account, that for bigger sam-
pling distances, the stabilization of the inversion is more
difficult. With real data it might not be possible to find
the best choice for the stabilization parameter ¢ and
stricter rules should be applied. Fan and Snieder (2009)
found a similar rule for electromagnetic fields emitted
by a source with a length of 100 m.

5 CONCLUSIONS

SBL data were modeled for a shallow sea and a deep sea
situation for a point source. The electromagnetic fields
were decomposed and the reflection response Ry was
retrieved with interferometry by MDD. Different spac-
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Figure 5. Reflection Responses for different receiver spacings as a function of offset. Spacing dzr and the
amount of datapoints N is given in the figure captions. The spatial sampling dz is given in meters. The
axises span in all plots over the same range. The inlet in subfigure b) magnifies the area between -100 m and
100 m and an amplitude range between 3 x 10~* and 3.7 x 107%.
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ABSTRACT

Controlled Source Electromagnetic (CSEM) is an important technique in hy-
drocarbon exploration, because it uses the large contrast in electrical resistivity
to distinguishes between water and hydrocarbons. In a shallow sea environment,
the airwave that is refracted from the air-water interface dominates the recorded
signal at large offsets. Therefore, the hydrocarbon detection ability of the CSEM
is weakened, because the airwave is independent on the properties of the sub-
surface. For a layered earth model, we apply multi-dimensional-deconvolution
interferometry to synthetic 3D CSEM data and estimated the reflection response
of the subsurface. The difference in the models with and without a resistive layer
is significantly increased by the employed interferometric analysis. However, the
required receiver spacing is much denser than that of current CSEM surveys.
In order to apply this technique in a field survey, we are currently working on
how to relax the required receiver criterion for this technique.
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1 THEORY AND MOTIVATION

1.1 Basic theory and history of virtual source
technique

The concept of interferometry was first introduced to
the seismic community by Jon Claerbout in 1968. It
became a hot research topic in geophysics in the last
decade. The method is also referred to as the wirtual
source technique and in a wider sense Green’s function
reconstruction. In this work, we refer to the same tech-
nique using these three terms. The key idea of this tech-
nique is the following. The Green’s function that de-
scribes wave propagation between two receivers can be
reconstructed by cross-correlation of the wavefields at
two receiver positions provided that the receivers are
enclosed by uncorrelated sources on a closed surface.
Because of the advantages of this technique and its use
in the passive survey, research on seismic interferom-
etry has progressed significantly during the last eight
years Lobkis and Weaver (2001); Weaver and Lobkis
(2001); Derode et al. (2003); Campillo and Paul (2003);
Weaver and Lobkis (2004); Wapenaar (2004); Snieder
(2004); Malcolm et al. (2004); Bakulin and Calvert
(2004); Calvert et al. (2004); Wapenaar et al. (2005);

Shapiro et al. (2005); Roux et al. (2005); Sabra et al.
(2005a,b); van Wijk (2006); Larose et al. (2006); Bakulin
and Calvert (2006); Snieder (2007); Mehta and Snieder
(2008).

Snieder (2006) showed that interferometry can be
applied not only to wavefields, but also to diffusive
fields. This discovery inspired further research and novel
applications to the diffusive fields, as has happened
for wave fields. The diffusive fields have a wide range
of applications and use in physics, chemistry, medi-
cal physics, earth science A.Mandelis (1984); Yodh and
Chance (1995); Basser et al. (1994); Mori and Barkar
(1999); Koyama et al. (2006); Constable and Srnka
(2007). In earth science, diffusive fields are ubiquitous.
Examples include heat conduction, flow in porous me-
dia, and low-frequency electromagnetic fields in the con-
ductive subsurface. In this work, we focus on the appli-
cation of interferometry to low-frequency electromag-
netic fields in the subsurface. However, we may easily
extend the concept to other diffusive fields. Because the
electromagnetic field is sensitive to the electric resistiv-
ity, it has been used in medical physics and the mining
industry for a long time. In recent years, electromagnetic
survey became increasingly popular in the petroleum in-




(4) is a discretized version of equation (3) for a sigle
source at s

gl Ri1 Ri2 --+ Rin gl
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where the subscript 1 to n of U and D are the discretized
sampling points of the surface B1, R;; denotes the reflec-
tion response between the position ¢ and j. The arrays
of U and D are the known data and R is the unknown
matrix. In general, there is no unique solution for ma-
trix R because there are more unknowns (n?) than the
number of equation (n). Using reciprocity, the number
of unknowns can be reduced to n(n + 1)/2. The expres-
sion below is a similar equation but combines sources at
position zs and another position z,

Uy, Ui R R R Dy, Dy
11 * Rin

Uz, Us Ro o D2, Dy

Un, U,,ll Rpp +ov oo Ran Dn, D;L

where U’ and D’ are the new upgoing and downgoing
fields generated by the source at position z,,. The ma-
trix R remains the same as it is independent on the
source. By increasing the number of sources, the num-
ber of columns in U and D increases. The matrix R can
be accurately estimated if a sufficient number of sources
are used. However, this calculated maxtrix R does not
necessarily represent the real medium response R.

When discretizing equation (3), only a finite num-
ber of the receivers from a limited range of the surface
B can be used. This raises the question how to choose
the receiver distribution in order to represent the inte-
gral in equation (3) accurately for a band-limited re-
sponse R (receiver density and the range of the surface
where the receiver are located)?

1.2 Why do we apply interferometry in
marine CSEM?

Figure 2 shows a typical configuration of an offshore
marine CSEM survey. A resistive layer (e.g hydrocar-
bons) in the subsurface, acts as a secondary source that
generates an upgoing EM field. We can distinguish be-
tween models with and without the resistive layer from
the secondary fields which the subsurface generates. The
large difference in the electrical resistivity between wa-
ter and hydrocarbons makes CSEM an accurate tool to
distinguish between these pore fluids. Most of the cur-
rent successful applications of CSEM are offshore be-
cause the water strongly attenuates anthropogenic and
natural noise. However, one of the most significant prob-
lems in offshore CSEM is the airwave when the water
layer is shallow. The airwave is the secondary EM field
refracted from the water-air interface as shown in figure

I
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Figure 2. A simple configuration of a offshore CSEM survey
in a layered earth model.

overburden half space

Figure 3. The configuration of CSEM after the application
of the multi-dimentional-deconvolution interferometry.

2. The airwave weakens the difference between the sig-
nal with a target layer and the signal without a target
layer because it is much stronger than the target signal.

If we can successfully apply the multi-dimension-
deconvolution interferometry as described in the last
section to CSEM, one of the receivers is converted into a
source and the overburden is extended upwards to a ho-
mogeneous half space Wapenaar et al. (2008). The new
configuration after applying this technique is shown in
figure 3. In this configuration, the air-water interface
and the sea floor are removed, and there is no secondary
field is refracted from the medium above the receivers.
Note that the sea floor interface may or may not be
removed depending on the boundary condition which
we use in the decomposition process. Therefore, by ap-
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Figure 8. The inline profile of the E; field in the log10 scale.

almost no difference between these two curves because
the direct field dominates. For large offsets (> 7 km),
the electric field is strongly influnced by the airwave,
which does not depend on the subsurface properties at
all. Consequently, targets leave useful imprint only for
intermediate offsets (2km to 7km). Because this inter-
mediate range is narrow and the difference between the
signals with and without target is weak, it is difficult
to interpret the difference between the signals with and
without the target, especially in the presence of noise.
We next, apply the multi-dimentional-
deconvolution interferometry to these synthetic
data. The first step of this technique is to decompose
the total field into upgoing and downgoing components.
The implementation of the up-down decomposition
follows the theory in the appendix of Wapenaar et al.
(2008). Note that the up-down decomposed field is
the square root of energy flux, not the E (electric)
or H (magnetic) field. The input data used in the
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Figure 9. The inline profile of the downgoing fields with and
without the target using the water parameters.

decomposition are the horizontal E and H fields. The
measured electric and magnetic fields can be related
with the upgoing and downgoing flux with the formula

P=L""'Q (6)

where P is the decomposed upgoing and downgoing po-
tential, normalized to energy flux, @ contains the input
horizontal E and H fields and L™' is the conversion
operator. Wapenaar et al. (2008) shows a numerical ex-
ample for a 2D field with a layered model. With an inline
dipole source, the physical meaning of P = [Py, P.]" is
the decomposed energy flux of the TM (transverse mag-
netic) mode (subscripts d and u represent the downgo-
ing and upgoing, respectivly). The downgoing field is
defined as the field which decays downwards and the
upgoing field is defined as the field which decays up-
wards.

In our synthetic example, the field is 3D, hence
Q contains four components E, Ey, Hy, Hy and P has
four components as well [P, Pt, P7, P2].Because the re-
ceivers are located at the boundary of the water and the
sea floor, we can choose the parameters for L™! from
the upper medium (water) or the lower medium (sea
floor) in the process of the field decomposition. These
two choices of the medium parameters lead to a differ-
ent physical meaning for the decomposed field. Using
the water parameters for the up-down decomposition,
we obtain the upgoing and downgoing fields in the wa-
ter just above the sea bottom. If the sea floor parameters
are used, we obtain the upgoing and downgoing fields in
the sea bottom just below the acquisition surface. Fig-
ures 9 to 12 compare the upoing and downgoing fields
in these two choices. For demonstration purposes, only
the inline profile of the fields is shown. However, we do
need to calculate the upgoing and downgoing fields for
all the receivers in the 2D array. When the water pa-
rameters are used in the decomposition, the difference
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Figure 14. The impulse reflection response R with target in
the logl0 scale.

used in equation (9) to calculate the impulse response.
The calculated impulse responses are shown in figure
13 (without target) and figure 14 (with target). The
difference of the impulse response is significant between
the two models with and without target. Comparing
with the inline profile of the total E field (figure 8), the
inline profile of the impulse response (figure 15) gives
much more pronounced difference between the models
with and without the target.

3 DISCUSSION

The 3-D synthetic example in this paper shows that
the virtual source technique in CSEM can significantly
increase the sensitivity of detecting the high-resistivity
layer (such as hydrocarbon reservoir) in the submarine
environment. Note that in order to apply this technique
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Figure 16. Decomposed downgoing fields using different re-
ceiver distributions.

accurately, a dense receiver array is required. We find
that the required receiver separation Ar must be less
than the height hs of the dipole source above the sea
bottom to adequately carry on the up-down decompo-
sition (Ar < hs). The following two figures (figures 16
and 17) demonstrate the effect on the up-down decom-
position of the different receive distributions. The thick
solid lines shows the downgoing (figure 17) and upgo-
ing field (figure 16) using a over sampled dense receiver
array (Ar = hg/2). The dashed lines represent decom-
posed fields using a receiver spacing of Ar = hs /2. The
oscillations in the dashed lines imply that this spacing
is at the edge of the aliasing. When the receiver sam-
pling separation Ar is larger than hs, the up-down de-
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Uncertainty analysis for the integration of seismic and
CSEM data

Myoung Jae Kwon & Roel Snieder
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ABSTRACT

Geophysical inverse problems consist of three stages: the forward problem, opti-
mization, and appraisal. We study the appraisal problem for the joint inversion
of seismic and controlled source electro-magnetic (CSEM) data and utilize rock-
physics models to integrate these two disparate data sets. The appraisal problem
is solved by adopting a Bayesian model and we incorporate four representative
sources of uncertainty. These are uncertainties in (1) seismic wave velocity, (2)
electric conductivity, (3) seismic data, and (4) CSEM data. The uncertainties in
porosity and water saturation are quantified by a posterior random sampling in
the model space of porosity and water saturation of a marine one-dimensional
structure. We study the relative contributions from the four individual sources
of uncertainty by performing several statistical experiments. The uncertainties
in the seismic wave velocity and electric conductivity play a more significant role
on the variation of posterior uncertainty than do the seismic and CSEM data
noise. The numerical simulations also show that the assessment of porosity is
most affected by the uncertainty in seismic wave velocity and the assessment of
water saturation is most influenced by the uncertainty in electric conductivity.
The framework of the uncertainty analysis presented in this study can be uti-
lized to effectively reduce the uncertainty of the porosity and water saturation
derived from integration of seismic and CSEM data.

Key words: uncertainty analysis, Metropolis-Hastings algorithm, CSEM

1 INTRODUCTION approaches for joint inversion that integrate disparate
data sets. Some of them assume a common structure
(Musil et al., 2003) or similar structural variations of
different medium properties (Gallardo & Meju, 2004).
More recently, the application of rock-physics models
for joint inversion has been studied (Hoversten et al.,
2006). Rock-physics models enable us to interrelate seis-
mic wave velocity and electric conductivity with the
reservoir parameters such as porosity, water saturation,
or permeability. The main advantage of the approach
is that the reservoir parameters have great economic
importance. The application of a rock-physics model is
limited, however, by the fact that such a model is site-
specific and there are not yet any universal solutions to
the inverse problem. Furthermore, even for any partic-
ular area of interest, any rock-physics model is gener-
ally described as a cloud of samples. These limitations

Currently, there is an increasing interest in the inte-
gration of the seismic and controlled source electro-
magnetic (CSEM) method in deep marine exploration
(Harris & MacGregor, 2006). Although the CSEM
method has less resolution than the seismic method, it
provides extra information about, for example, electric
conductivity. This property is important for the eco-
nomic evaluation of reservoirs. Therefore, the CSEM
method is considered an effective complementary tool
when combined with seismic exploration.

The seismic and CSEM methods are disparate
exploration techniques that are sensitive to different
medium properties: the seismic method is sensitive
to density and seismic wave velocity and the CSEM
method to electric conductivity. There have been several




Figure 2. A hierarchical dependency structure represented
by a directed graph. The nodes represent stochastic vari-
ables, the dashed arrows represent probability dependencies,
and the solid arrows represent deterministic relationships. p
and ¥ denote expectation vectors and covariance matrices,
respectively. my and mg,, represent two reservoir parame-
ters: medium porosity and water saturation. dy, and do,
denote P-wave velocity and logarithm of electric conductiv-
ity, respectively. ds and d. represent two different data sets:
seismic and CSEM data.

as follows:

Tpost (Mg, ms,, [dv,,ds,,ds,de)
x 7(mg, mg,,dvp,do.,ds,de)
= Tprior(Mg)Tprior(Ms,,)
f(dv, |mg, msw) f(do, jmg, msw)
f(ds|dvp) f(de|ds. ). (3)

Equation (3) indicates that the posterior probability is
proportional to the product of individual priors and like-
lihoods.

In statistics, the central limit theorem states that
the sum of a sufficiently large number of identically dis-
tributed independent random variables follow a normal
distribution. This implies that the normal distribution is
a reasonable choice for describing probability. Therefore,
throughout this project, we assume the priors and likeli-
hoods to follow multivariate Gaussian distribution with
expectation vector yu and covariance matrix 3, such that

exp [—%(x W= =), @

X
X

Fx) =
- V/enrE

where x denotes data or model and n denotes the di-

mension of x. The covariance matrix is modeled as a
diagonal matrix as follows:

> = diag {0%,0%,--- ,02}, (5)
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where 0? denote the variance value of a datum or model
parameter. If the error structure is apparently different
from Gaussian, another appropriate probability func-
tion should be modeled. Equation (4) expresses the gen-
eral form of the probability function used in this project
and the covariance matrices for individual prior and like-
lihoods are discussed later. Note that since the forward
operations in this project (solid arrows in Figure 2) are
nonlinear, the posterior distributions are not necessarily
Gaussian.

2.2 Prior and likelihood model

In the Bayesian context, there are several approaches
to represent prior information (Scales & Tenorio, 2001).
The prior model encompasses all the information we
have before the data sets are acquired. In practice, the
prior information includes the definition of the model
parameters, geologic information about the investiga-
tion area, and preliminary investigation results. There-
fore, the prior model is the starting point of a Bayesian
approach, and we expect to have a posterior probability
distribution with less uncertainty than the prior prob-
ability. The prior model also plays an important role
in Bayesian inversion to eliminate unreasonable models
that fit the data (Tenorio, 2001). Obvious prior informa-
tion we have is the definition of the porosity and water
saturation, such that 0 < mg, < 1and 0 < ms,,, < 1.
This implies that the prior distributions of the poros-
ity and water saturation are intrinsically non-Gaussian.
However, when the variances of the distributions are
sufficiently small, the deviation from the Gaussian ap-
proximation is negligible. We adopt this assumption and
take the Gaussian approximations for the modeling of
the prior probabilities. We further assume that the co-
variance matrices X4 and X, (Figure 2) are diagonal
and that the diagonal elements within each covariance
matrix are identical.

For the hierarchical Bayesian model shown in Fig-
ure 2, there are four elementary likelihoods. Each of
these likelihoods describes how well any rock-physics
model or geophysical forward modeling fits with the
rock-physics experiment results or the noisy observa-
tions. The details of the likelihood modeling are covered
in the modeling procedure section.

2.3 MCMC sampling

The assessment of the posterior probability requires
great computational resources and, in most cases, it
is still impractical for 3-D inverse problems. Pioneer-
ing studies about the assessment were performed for 1-
D seismic waveform inversion (Gouveia & Scales, 1998;
Mosegaard et al., 1997). The posterior model space of
this project encompasses porosity and water saturation
of several layers. We use a Markov-Chain Monte Carlo




Uncertainty analysis 55

¢ (%)  Sw (%) Vp(km/s) oe (S/m)
soft shale layer 35 90 2.30 0.430
gas saturated sandstone layer 25 10 3.57 0.003
hard shale layer 10 50 4.86 0.018

Table 1. Ground truth values of the porosities ¢, water saturations Sy, P-wave velocities V,, and electric conductivities oe of

the 1-D model shown in Figure 4.

clay mineral CEC (coulomb/kg)

kaolinite 2,000 - 10,000
illite 10,000 - 38,000
montmorillonite 67,000 - 77,000
smectite 77,000 - 144,000

Table 2. Typical ranges of the cation exchange capacity
(CEC) value for authigenic forms of the clay minerals.

2004) as follows:

K=K (- &)
=Ki+—F———7F—5%

6 | 1-6 _ Ky’

% TR Tk

where K4, Ko, and Ky are the bulk modulus of the
dry rock, mineral material, and pore fluid, respectively.
We model two phases of pore fluid: water and gas. A
mixture of two different pore fluids can be regarded as
an effective fluid model and the bulk modulus is derived
from Wood’s equation (Batzle & Wang, 1992) as follows:

1 Sw  1—Sy

¥~ Ko + K, ' )
where K., and K, are the bulk modulus of the water
and gas phase. One more factor that has significant ef-
fect on the P-wave velocity of a medium is the clay
content. Han’s empirical relations (Mavko et al., 1998)
state that the clay content c¢ reduces the P-wave veloc-
ity. Applying a Han’s empirical relation, we derive the
P-wave velocity as

K4+ 4
v, = ‘/% — 2.18¢ km/s, (10)

where the bulk modulus K and shear modulus p are
in GPa and density p is in g/cc. In this project, the
clay contents are assumed to be constant (20%, 1%, and
10% for the soft shale, sandstone, and hard shale layer,
respectively). e

The relationship between the reservoir parameters
(porosity ¢ and water saturation S,) and electric con-
ductivity is given by Archie’s second law (Mavko et al.,
1998), which describes the electric conductivity in clean
sands. The electric conductivity in shaley sands is com-
plicated by the presence of clays and is described by
Waxman-Smits formula (Revil et al., 1998; Waxman &

(8)

Smits, 1968):

0 =73 [ou+ 522 (11)
Sw

where m is cementation exponent, n is saturation ex-
ponent, and o, is electric conductivity of pore fluid.
Empirically, the cementation and saturation exponents
are close to 2 for most sedimentary rocks (Mavko et al.,
1998), and this value is used in this project. The param-
eter B is an equivalent counterion mobility and Q. is
the excess of surface charge per unit pore volume. The
parameter B is given empirically at 25°C by

B =5 [1 —06exp (— 0.36013)] ’ (12)
where 04, is in S/m and the maximum counterion mo-
bility By is given by 4.78 x 1078 m?/volt/s (Revil et al.,
1998). The parameter Q. is related to the grain density
pg (in kg/m®) and the cation exchange capacity (CEC)
(Waxman & Smits, 1968) by

Qu = pg%cm. (13)
The CEC is usually significant only for clay minerals
and the vaules for the representative clay minerals are
shown in Table 2. As is indicated in the table, the vari-
ation of the CEC for the different clay mineral is dra-
matic. For a mixture of sand grains and clay minerals,
the CEC of the sediment is calculated by

CEC = f. » x: CEC;, (14)

where f. is the mass fraction of clay minerals, x; are
the relative fractions of each clay minerals in the shale
fraction, and CEC; is thé cation exchange capacity of
each of these clay minerals. Because of the large grain

‘size, the CEC of the quartz grains can be neglected.

In this project, we simplify the contribution of the clay
contents on the electric conductivity and assume that
the clay content in the shale fraction is only composed
of kaolinite. ‘ -

We assume that the distribution of P-wave velocity
follows a Gaussian distribution. In contrast, considering
that the electric conductivity exhibits exponential vari-
ation in most geologic environments, we assume that
the electric conductivity follows a lognormal distribu-
tion. The P-wave velocity and electric conductivity are
derived from equations (10) - (11), and Gaussian and

e e L
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Figure 9. Ray tracing based seismic traces for the 1-D model
shown in Figure 4. The modeled reflection events are gener-
ated on the top and bottom boundaries of the gas saturated
sandstone. The central frequency of the source wavelet is 30
Hz and the time sampling interval is 3 ms.

method is effective for the least-squares misfit optimiza-
tion for the velocities (Jannane et al., 1989; Snieder
et al., 1989). Seismic waveform data is synthesized by
a ray-tracing algorithm (Docherty, 1987) and we model
the primary reflections of the P-wave from the top and
bottom boundaries of the target sandstone layer. Fig-
ure 9 shows the representative time traces simulated
from the 1-D model shown in Figure 4. Typical reflec-
tion parabola and phase shift at post-critical incidence
(Aki & Richards, 2002) are observed. In this project,
we use the time series data that corresponds to 2 km
source-receiver offset and add random noise to the syn-
thesized data.

There are many sources of seismic noise in a ma-
rine environment: ambient noise, guided waves, tail-
buoy noise, shrimp noise, and side-scattered noise (Yil-
maz, 1987). We model the seismic noise by adding band-
limited noise as shown in Figure 10. The frequency band
of the noise is between 10 and 55 Hz, and the central fre-
quency of the source wavelet is 30 Hz. Figure 11 shows
a realization of noisy seismic data that is contaminated
by band-limited noise. The maximum amplitude of the
noise is 30% of the maximum amplitude of the noise-free
signal.

We assume that the seismic data likelihood proba-
bility f(ds|dv,) follows the multivariate Gaussian dis-
tribution (equation (4)). For the calculation of the like-
lihood, it is necessary to evaluate the covariance matrix
¥, (Figure 2). For band-limited noise, the covariance
matrix follows from the power spectrum of the band-
pass filter and the resulting covariance matrix is not
diagonal. We approximate the covariance matrix of a
band-limited noise as the covariance matrix of a white

0 5 L o N . = . o0
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4 60
frequency (Hz)

Figure 10. Band-width of the noise (solid line) and am-
plitude spectrum of the source wavelet (dashed curve). The
amplitude spectra are normalized for comparison.

32 33 34 35
time (s)

Figure 11. Time trace of a data contaminated by the band-

limited white noise (solid curve) and noise free data (dashed

curve). The exact P-wave velocities are used for the seismic

data calculation shown here.

noise. We therefore model the covariance matrix as a
diagonal matrix as shown in equation (5), where the
variance values o7(ds) are identical.

3.3 CSEM data likelihood modeling

The controlled source electo-magnetic (CSEM) method
has been studied for the last few decades (Cox et al.,
1978) and the feasibility for the delineation of a hy-
drocarbon reservoir has recently been discussed (Mehta
et al., 2005). There are several data acquisition geome-
tries in the CSEM method and horizontal electric dipole
transmitter and radial electric field response is generally
preferred (Chave & Cox, 1982).

Contrary to seismic wave propagation, EM energy
transport within the earth is diffusive and the EM field
strength decreases to 1/e order in a length called skin
depth (Jackson, 1999), defined as

[ 2 [1°
6= =~ 0. k
v 0.503 o] m, (15)
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Figure 15. Histograms of posterior porosity (¢) samples of
the sandstone layer. Vertical line indicates the ground truth
value.

The CSEM data we utilize consists of the real and
imaginary parts of the CSEM signal. We design the
CSEM noise from the amplitude of the CSEM response
and then add the noise to the real and imaginary parts
of the response. The CSEM noise is categorized as sys-
tematic and non-systematic noise as shown in Figure 13.
The systematic noise includes the instrument noise and
the positioning error. We assume the systematic noise
to be proportional to the amplitude of the CSEM sig-
nal whereas the non-systematic noise is independent of
the signal. A realization of noisy CSEM data is shown
in Figure 14, where the systematic noise is 5% of each
noise-free amplitude and the non-systematic noise is
5 x 107 V/m. The CSEM signal decreases with fre-
quency and the CSEM noise is more obvious.

We assume the CSEM data likelihood probability
f(de|ds. ) to follow the multivariate Gaussian distribu-
tion (equation (4)). For the calculation of the likelihood,
we assume that the CSEM data noise is independent.
We model the covariance matrix Z. (Figure 2) as a di-
agonal matrix shown in equation (5). Assuming that
the systematic and non-systematic noise are uncorre-
lated, the diagonal elements of the covariance matrix is
derived as

Uf(de) = a?(ssys) + U?(anonsys), (16)

where £sys and £nonsys denote the systematic and non-
systematic noise, respectively. Note that 02 (esys) values
vary with frequency whereas o (Enonsys) is independent
of frequency.

4 UNCERTAINTY ANALYSIS

4.1 Histogram analysis of posterior
distributions

We perform MCMC sampling to describe the poste-
rior probability distribution (equation (3)). The random
sampling is performed within a six dimensional model
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Figure 16. Histograms of posterior water saturation (Sw)
samples of the sandstone layer. Vertical line indicates the
ground truth value.

space that accounts for porosity or water saturation of
soft shale, sandstone, and hard shale layers (Figure 4).
The random samples of the porosity and water satura-
tion are retrieved from the posterior probability distri-
bution of three different cases: using seismic data only,
CSEM data only, and both seismic and CSEM data.
The uncertainty levels applied to the comparison are
summarized as the base state variances in Table 3. The
posterior distributions of the porosity and water satura-
tion of the target sandstone layer are summarized as his-
tograms as shown in Figures 15 and 16. Note that for the
given uncertainties of rock-physics model and data noise
levels, the histograms show that the single interpreta-
tions weakly constrain porosity and water saturation.
However, the histograms from the joint interpretation
exhibit a narrower sample distribution of the porosity
and water saturation. The figures also show that the
seismic data is more sensitive to the porosity than to
the water saturation. This is connected with the rock-
physics models in Figures 5 and 6 which show that the
P-wave velocity has weaker correlation with the water
saturation than with porosity. The relatively poor res-
olution from the CSEM data is attributed to the fact
that the sandstone layer is electrically shielded by the
more conductive overburden (soft shale layer). These
examples illustrate the strength and limitation of both
seismic and CSEM methods and explain the motivation
of the joint interpretation of seismic and CSEM data.
The histograms of the joint interpretation show smaller
posterior uncertainty than do the single interpretations.
The reduction of uncertainty is more pronounced for the
water saturation than for the porosity.

We next compare the histograms that describe
the posterior probabilities of different layers. Figure 17
shows the joint posterior distributions of the porosity of
three layers. The posterior distribution for the soft shale
layer is less constrained than that of the other layers.
This is a consequence of the relatively weak correlation
between the porosity and P-wave velocity of the soft




tude value, and the CSEM data uncertainty is defined
as a sum of systematic and non-systematic noise. Fig-
ures 17 and 18 represent the posterior probability for
the base uncertainty level. The histograms for the im-
proved uncertainty level are shown in Figures 19 and
20. The reduced uncertainty level leads, of course, to a
sharper posterior probability distribution than the base
state and thus enhances the assessment of porosity and
water saturation. This stronger constraint is more obvi-
ous for porosity than for water saturation. This is due to
the smaller resolution of the CSEM method compared
to the seismic method.

4.2 Different scenarios for uncertainty
reduction

In the previous section, we presented histograms that
characterize the posterior uncertainty. As stated be-
fore, we assume the multivariate Gaussian distribution
(equation (4)) for the calculation of prior and likelihood.
However, there are several factors that make the distri-
bution of the posterior samples non-Gaussian. First, the
porosity or water saturation have values between 0 and
1. Second, the porosity sampling is bounded by the crit-
ical porosity ¢.. The critical porosity is the threshold
value between the suspension and the load-bearing do-
main and denotes the upper porosity limit of the range
where the rock-physics model can be applied (Mavko
et al., 1998). The critical porosity values we apply for
the soft shale, sandstone, and hard shale layer are 0.6,
0.4, and 0.4, respectively. These bounds can lead to
skewed sample distributions. If the sample distributions
are significantly skewed, another appropriate probabil-
ity distribution should be applied for the probability
assessment of the random samples. In this project, the
distributions of the samples shown in Figure 17 through
20 do not display hard bounds or skewed distribution
and indicate that the Gaussian distribution is a good
approximation. The posterior distributions, however, do
not necessarily follow the Gaussian distribution because
of the nonlinearity of the forward models. The posterior
uncertainty can generally be assessed by sample mean
and sample variance. For reasons of clarity, we use the
Gaussian curves for the representation of the sample
mean and sample variance.

In this project, we model four factors of uncer-
tainty: rock-physics model uncertainties of the P-wave
velocity and electric conductivity, and noise of the seis-
mic and CSEM data. The posterior probabilities of the
porosity and water saturation for the base and improved
uncertainty levels (Table 3) are discussed in the previ-
ous section (Figures 17 - 20). We perform the following
numerical experiments to quantify the contributions of
the four possible sources of uncertainty. The initial sim-
ulation is performed based on the base uncertainty level.
For the analysis of the contributions of each of the fac-
tors on the posterior uncertainties, six subsequent simu-
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uncertainty of the individual factors

base level
treatment-1
treatment-2

none of the factors are improved

only reducing P-wave velocity uncertainty
only reducing electric conductivity
uncertainty

only reducing seismic noise level

only reducing CSEM noise level

reducing P-wave velocity uncertainty

and seismic noise level

reducing electric conductivity uncertainty
and CSEM noise level

reducing all of the four uncertainty factors

treatment-3
treatment-4
treatment-5

treatment-6

improved level

Table 4. Eight numerical experiments for the analysis of
the contributions of four possible factors of uncertainty. Two
states of uncertainty for the individual factors are listed in
Table 3.

lations are performed with reduced uncertainty levels of
one or two of the four factors of uncertainty. We perform
the last simulation based on reduced uncertainty lev-
els of all factors of uncertainty (improved level). These
eight numerical experiments are summarized in Table
4. We compare the posterior distributions from differ-
ent treatments with the base and improved level, and
deduce how much a treatment contributes on the overall
change of the sample variances. The posterior distribu-
tions of the porosity and water saturation are shown in
Figures 21 - 26.

Figures 21 and 22 show the posterior probability
distributions for the treatments 1 and 2. When we re-
duce uncertainty levels of P-wave velocity or electric
conductivity the resultant posterior distributions ex-
hibit smaller sample variances than the base level. Fur-
thermore, the sample means generally are closer to the
ground truth values as we reduce the individual uncer-
tainty levels. The probability density distribution for
porosity of the sandstone layer (Figure 21) reveals that
the P-wave velocity uncertainty plays a significant role
on the overall uncertainty reduction of the porosity and
the contribution of the electric conductivity uncertainty
is limited. In contrast, Figure 22 shows that the over-
all uncertainty variation of the water saturation is more
strongly influenced by the uncertainty of the electric
conductivity than by the uncertainty of the P-wave ve-
locity. This is consistent with the simulated rock-physics
models shown in Figures 5 - 8. From the rock-physics
models, we can deduce that the porosity strongly influ-
ences both the P-wave velocity and electric conductiv-
ity. The rock-physics models also show that the water
saturation strongly influences the electric conductivity
while its influence on the P-wave velocity is limited.

The posterior probability distributions for the
treatments 3 and 4 are shown in Figures 23 and 24.
When we reduce the noise levels of the seismic or CSEM
data, the improvements of the posterior uncertainties of
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Figure 25. Posterior probability distributions of porosity ¢
of the sandstone layer. The distributions from the treatments
5 and 6 (Table 4) are compared with those from the base
and improved levels. Vertical line indicates the true porosity
value.
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Figure 26. Posterior probability distributions of water satu-
ration Sy, of the sandstone layer. The distributions from the
treatments 5 and 6 (Table 4) are compared with those from
the base and improved levels. Vertical line indicates the true
water saturation value.

the water saturation, the acquisition of more detailed
electric conductivity information and the suppression
of CSEM data noise will be preferred.

5 CONCLUSIONS

We have shown that the posterior probability random
sampling based on the Metropolis-Hastings algorithm
is capable of assessing the multi-dimensional probabil-
ity distribution of the porosity and water saturation. We
have also shown that the joint inversion of the seismic
and CSEM data can be achieved by introducing rock-
physics models that interconnect the P-wave velocity
and electric conductivity. There are four representative
sources of uncertainty that influence the posterior prob-
ability density of the porosity and water saturation.
These uncertainties are related to seismic wave veloc-
ity, electric conductivity, seismic data, and CSEM data.
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sample variance (x1073)  S2(¢) S2(Sw)

base level 1.56 1.63
treatment-1 0.13 1.38
treatment-2 1.24 0.50
treatment-3 1.19 1.16
treatment-4 1.44 1.27
treatment-5 0.13 1.06
treatment-6 1.11 0.45
improved level 0.12 0.13

Table 5. Sample variances S? of porosity ¢ and water sat-
uration S, of the sandstone layer. The details about the
treatments are in Table 4.

Even when the single interpretations poorly constrain
the posterior distributions of the porosity and water sat-
uration, the distributions from the joint interpretation
are well constrained and exhibit reduced uncertainty.

Assuming two levels of overall uncertainty, we
study the relative contributions from the four individ-
ual sources of uncertainty. The numerical simulations
show that rock-physics model uncertainties play a more
significant role on the overall uncertainty variation than
do seismic and CSEM data noise. The numerical exper-
iment also suggests different ways of accomplishing un-
certainty reduction depending on whether our interests
focus on porosity or on water saturation. When porosity
is our prime concern, we can effectively accomplish un-
certainty reduction by acquiring more precise P-wave
velocity information and suppressing the seismic data
noise. On the other hand, if we need a more accurate
assessment of water saturation, the acquisition of more
detailed electric conductivity information and the sup-
pression of CSEM data noise are desirable.

It is necessary to emphasize that the conclusions
explained above depend on the parameters chosen in
this project. Furthermore, there are many sources of
uncertainty that we do not take into account such as
lithologic variation, variation of mineralogical composi-
tion of clay, depth of layers. The methodology of the
uncertainty analysis presented in this project can, how-
ever, be extended to a specific problem. The employed
method can be used for experimental design, and for
targeting the source of error that constributes most to
the posterior uncertainty.
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Iterative extended Born approximation based on
CG-FFT integral equation method for low-frequency
3D modeling
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ABSTRACT )

We present a fast method for modeling three-dimensional low frequency con-
trolled source electro-magnetic (CSEM) problems. We apply the method to
the marine controlled source electromagnetic (MCSEM) exploration situation
where conductivity and permittivity are different from the known background
medium. For 3D problems fast computational methods are relevant for both for-
ward and inverse modeling studies. Since this problem involves a large number
of unknowns, it has to be solved efficiently so that the results can be obtained in
a timely manner, without compromising accuracy. For this reason, the Born ap-
proximation (BA), extended Born approximation (EBA) and iterative extended
Born approximation (IEBA) are implemented and compared with the full solu-
tion of the conjugate gradient fast Fourier transformation method (CG-FFT).
These methods are based on an electric field domain integral equation formu-
lation. It is shown here how well the IEBA method performs in terms of both
accuracy and speed with different configurations and different source positions.
For forward modeling the solution at the sea bottom is of interest because that
is where the receivers are usually located. But for inverse modeling, the accuracy
of the solution in the target zone is important to be able to obtain reasonably
accurate conductivity values from the inversion using this approximate solution
method. Our modeling studies show that the IEBA method is suitable for both
forward and inverse modeling.

Key words: CSEM, Modeling, Iterative Extended Born Approximation, In-
tegral Equation, Low Frequency

1 INTRODUCTION ward modeling solution algorithms are especially impor-
tant for solving a parametric inverse problem. Examples
of inverse scattering solutions using integral equations

For three-dimensional diffusive electromagnetic model-

1r11gbp1;obleirllls, dloc{a,l znethod? seem to have c?utp erf;)rmeg can be found in Abubakar & van den Berg (2004) and
globa. :n: © ls ;fn tem%sho mermory recflun'emen.s an Gribenko & Zhadnov (2007). A modification to the orig-
computational efforts. Lhe main reason Ior pursuing in- inal CG method (Hestenes & Stiefel, 1952) is an efficient

tegral equation methods for modeling is that for a large
class of problems the modeling domain can be reduced
to the target volume. For such problems integral equa-
tions are useful, because they are based on primary-
secondary, or direct-scattered field separation and allow
for several types of suitable approximations. The inte-
gral equation uses the unperturbed field as a kernel mul-
tiplying the unknown perturbation on one side, with the
source of the perturbation on the other side. Fast for-

way for solving integral equation problems (van den
Berg, 1984). An additional advantage in computational
efficiency is achieved when the background medium can
be chosen as a homogeneous space or a horizontally
layered earth. Then the convolutional structure of the
system matrix is exploited by using the FFT routine
for fast computation of the discrete convolutions while
the background medium is homogeneous (Zwamborn &




where z € D*°.

We can solve this integral equation of the second
kind through reducing the integral equation to a lin-
ear system of algebraic equation, then discretizing this
system and approximating the unknown total electric
field.

Once the total field has been found for all points
inside the reservoir, we can compute the total field at
the receiver,

Ei(z,2°) = Bi(z,2°) + EX°(z, 2°). (7

The incident field can be found from equation (2),
whereas the scattered field can be written as the follow-
ing representation,

E¥(z,2,s) = /

z/eDpse

GE(z,2',)Xx° (z') Er (2, s)d%Z' (8)

where z € D;.

For low frequencies, small contrasts and a scatter-
ing domain that is small compared to the total domain,
we can show that approximating the total internal elec-
tric field by the background field gives us almost the
same accuracy. The scattered field is then computed at
low computational cost. Thus analysis of the Born and
extended Born approximations are of interest. In cases
where the scattered field only consists of inductive ef-
fects at low frequencies, the Born approximation works
well and there is no need to use more complex methods
with many terms to converge.

If we consider

B (z,5) = Ei(z,5), )

which means total field strength inside the scatterer
equals to the background field then we are using the
Born approximation (BA).

On the other hand,

EM(z,s) = Ei(z,s)

+ / GE! (2,7, 5)x° (&) EQ (&, 5)dv,
z'eDse

(10)

and iterative Born approximation would be as follow,

El(cn)(z,s) = Ellc(xv S)

4 / GE (2,2, s)x" (') E™ (&, )dv,
z’eDsc

In the following expression which is the so-called
Extended Born approximation (EBA) the method is
based on dominant contribution of the integral equa-
tion at locations where the Green’s function is singular,
leading to

EQ(z,s) = L Ei(z, 9), (12)
where
LskMkr = 531' (13)

(11)
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and

My = 6k — / Gl (2, )X (2)d’z . (14)
E' €Dsc
According to Eq.(12) the iterative form of approx-
imating the scattered field while using extended Born
approximation would be,

E{(z,s) = Ei(z,s) + KE;v V(z, s), (15)

where

K= Gl (z, 2, s)x° (¢')d’z’. (16)
z/epse

The accuracy of EBA can be increased iteratively
as formulated in Eq.(12). Notice that the iterative form
of the Born approximation requires the full volume in-
tegration over the scattering domain, while the iterative
form of the extended Born approximation as formulated
in equation (15) only requires a local update at every
location in the scattering domain which makes it essen-
tially as fast as the EB method itself. This is why our
formulation of the iterative extended Born approxima-
tion is so fast. We will investigate on this approach by
numerical computations in the next section.

On the other hand the Born approximation is com-
puted at the cost of zero iterations and EBA is com-
puted at the cost of one iteration compared to the full
solution with a large number of iterations. The iterative
extended Born approximation requires a computational
cost of just one iteration of the operator just as the
EBA, then we need only local iterations so it has al-
most the same speed as EBA. We must consider that
we have different processing time for the first iteration
and the iterations afterward. '

2.1 Numerical results

2.1.1 Accuracy of IEBA and the number of the
iterations

We use the configurations depicted in Figure 2 for the
three dimensional numerical examples.

Figure 2 shows a layered earth of air, sea and
ground with an assumed reservoir. The background con-
ductivity in the ground is 1 S/m and the reservoir’s con-
ductivity is 0.02 S/m. Air and sea have conductivity of
0 and 3 S/m respectively. The source is located above
the center of the reservoir and situated 25 m above the
sea bottom, whereas the receivers are spread in the area
of 8x16 km. Depth of water is 1 km and the reservoir is
located at the depth of 1 km below the sea bed. Dimen-
sions of the reservoir are 4000x2000x300 m®. A single
frequency of 1 Hz is used in this example.

In this section we investigate the accuracy of the
approximation at the receiver level. Later the accuracy
of the method will be investigated at the reservoir level
where we need high level of the accuracy for inverse
modeling.
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Figure 5. Diffusive fields present in a three media configu-
ration with two reservoirs.
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Figure 6. 3D electric scattered field at the receiver level with
two assumed reservoirs and source is located 25 m above the
sea bed at top of the middle of two reservoirs. The full solu-
tion is compared with solutions using the Born approxima-
tion, extended Born approximation and iterative extended
Born approximation.
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Figure 7. 3D electric scattered field at the receiver level
with one assumed reservoir and source is located 25 m above
the sea bed at top of the middle of the reservoir. Iterative
extended Born approximation is compared with electric field
in absence of the reservoir.
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Figure 8. 3D electric scattered field at the receiver level with
one assumed reservoir and source is located 25 m above the
sea bed at top of the left edge of the reservoir (2 Km in the
left-hand side of the center of the configuration). Iterative
extended Born approximation is compared with electric field
in absence of the reservoir.

Figures 7,8,9 and 10 aim to show the sensitivity
of the method for both aforementioned examples as a
function of horizontal source position along the z-axis.
Figure 7 shows the scattered 3D electric field at the re-
ceiver level in the case of one assumed reservoir and
source located 25 m above the sea bed in the middle of
the reservoir. The iterative extended Born approxima-
tion result is compared with the electric field in absence
of the reservoir. Figure 8 shows the 3D scattered electric
field at the receiver level with one assumed reservoir and
the source located 25 m above the sea bed at the left
edge of the reservoir, which means 2 km away from the
center of the configuration at the left hand side. The
iterative extended Born approximation result is com-
pared with the electric field in absence of the reservoir.

Also Figure 9 shows the 3D scattered electric field at
the receiver level with two assumed reservoirs and the
source is located 25 m above the sea bed above the mid-
dle of the reservoirs. Iterative extended Born approxi-
mation is compared with electric field in absence of the
reservoir.

It can be seen in Fig 8 where we have the source at
the edge of the reservoir we have more response com-
pared to the others in Figures 7,9 and 10.

So in more detail the configuration shown in figure
11 gives the biggest response as we mentioned before,
but if the source is located above the middle of the reser-
voir (Figure 12) we have less response.

The minimum response comes from the case when
we have two reservoirs and the source is located above
the middle in between them (Figure 13).

The reason is that the strong direct incident field
from source to the receivers along the z-axis does not
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Figure 13. 3D electric scattered field at the receiver level
with two assumed reservoirs and source is located 25 m above
the sea bed at top of the middle of the reservoirs. Iterative
extended Born approximation is compared with electric field
in absence of the reservoir in more details.
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Figure 14. 3D electric scattered field at the receiver level
with two assumed reservoirs and source is located 25 m above
the sea bed at top of the left edge of the left reservoir (2 Km in
the left-hand side of the center of the configuration). Iterative
extended Born approximation is compared with electric field
in absence of the reservoir in more details.

Also high order solutions have been implemented suc-
cessfully for low frequency inversion of 3D buried objects
(Cui et al., 2006). Now we investigate the accuracy of
the iterative extended Born approximation. In Figure
15 and 16 we can see that IEBA gives accurate result at
the reservoir level along the z-axis while y=0 and the
center along the vertical direction of the reservoir z is
1150 m from the sea floor.

Figure 15 shows the scattered field responses of the
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Figure 15. Scattered field responses of full solution and ap-
proximation at the reservoir level for one single reservoir.
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Figure 16. CGFFT vs. IEBA at the reservoir level.

full solution and the approximation at the reservoir level
for one single reservoir.

In this figure the cross plots are along the source
in z-direction and the source is located 25 m above the
sea bed above the middle of the reservoir.

In Figure 16 the normalized difference in percent;
between the CG-FFT result and the iterative extended
Born approximation result along the line shown in Fig-
ure 15. The normalized error is in average less than four
percent, while the maximum error is less than ten per-
cent. It means this method can work well also for inverse
modeling.

3 CONCLUSIONS

An iterative extended Born approximation is proposed
here to solve 3D diffusive electromagnetic field scatter-
ing problems based on the integral equation method.
Theoretical formulations and numerical results, where
the unknown object is an modeled reservoir in the lay-
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ABSTRACT

A technique capable of capturing the dynamics of reservoir fluids in the proxim-
ity of production wells would provide enormous benefits to the reservoir man-
agement. In fact, monitoring can be used to develop a feedback loop between
measurements and control technologies to optimize production. This paper ex-
amines the feasibility of a borehole radar tool for near-wellbore imaging. Mod-
eling results show that the maximum imaging range depends mainly on the
conductivity of the formation in which the radar borehole system lies. Another
constraint is given by the operating frequency of the system. Too low frequen-
cies compromise the electromagnetic wave propagation in favor of diffusion phe-
nomena and too high frequencies drastically attenuate the signal. In case of a
relatively low conductive reservoir and a limited band of frequencies higher than
100 MHz, we have defined the optimal imaging capacity of the radar system
to be in the order of ten of meter. We suggest borehole radar measurements
as a promising approach to monitor steam chamber growth in Steam Assisted
Gravity Drainage (SAGD) processes and to prevent water encroachment in thin
oil rims. The penetration capacity of a radar system fits the required imaging
depth for these environments.

Key words: electromagnetic (EM), borehole radar, Enhanced Oil Recovery
(EOR), thin oil rim, Steam Assisted Gravity Drainage (SAGD)

1 INTRODUCTION obtained from down-hole sensors. Addiego-Guevara et
al. (2008) have demonstrated that control strategies al-
ways enhance production and mitigate reservoir uncer-
tainty; a typical application is the management of un-
desired fluid to prevent early breakthrough within the
production wells. Currently the most used permanent
down-hole sensors measure pressure and temperature,
but give a poor description of the fluid reservoir con-
ditions outside the well. There is an intense research
effort to discover new monitoring techniques that could
capture the fluid dynamics at larger distances from the
well. For example, Saunders et al. (2008) have suggested
that electrokinetic potential measurements should be
sensitive to the movement of an approaching water front

In this last decade an important innovation in the oil in-
dustry has been the development of a new generation of
wells called smart wells. These wells are equipped with
down-hole sensors to monitor well and reservoir con-
ditions and with valves to control the inflow of fluids
from the reservoir into individual well segments (Robi-
son, 1997). Figure 1 shows a schematic representation
of a smart horizontal well (Jansen et al. (2008)). The
combination of monitoring and control has the potential
to significantly improve oil and gas recovery (Glandt,
2005). In fact, the adjustable settings of the inflow con-
trol valves (ICVs) can be varied to optimize the inflow
profile along the well in response to monitoring data
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frequencies.

We have used a volumetric model to get effective val-
ues of relative permittivity e.sy, therefore the dielectric
properties of a rock are based on the relative volumes of
the different components and their individual dielectric
characteristics. The Complex Refractive Index Model
(CRIM), proposed by Birchak et al. (1974), is the most
used mixing model in the radar range of frequency, since
it is the one that better fits laboratory measurements
(Roth et al. (1990) and Seleznev et al. (2004)); in case
of three components it is given by the following formula:

&y = (1= )& + 06" + (¢ - 0)es/?, (5)

where €5, €, and €, are respectively the relative permit-
tivity of the solid, the water and the oil, ¢ is the porosity
and 0 is the volumetric water content. To get effective
values of conductivity we have used the classic Archie’s
law (Archie, 1942). These effective EM properties of a
rock are mainly controlled by the amount of pore wa-
ter. In fact, the relative permittivity of water is much
higher than the one of the other reservoir components
(6w = 80, €6 = 2 — 3 and €; = 4 — 10) and just the
electrical conductivity of water can reach values that
would have strong impact on the EM wave propagation
(6 > 0.1 S/m), o, is lower than 107° and o, is scat-
tered over several orders of magnitude but for reservoir
material it does not exceed 107*. The EM properties of
water, instead, can be strongly affected by temperature
and salinity. As temperature increases, thermal agita-
tion reduces the interaction between the dipoles and
the electric field, while it facilitates the movement of
the ions, so the overall effect is a reduction of €, and an
increase of . The addition of salt to water decreases
€, since the amount of the molecules able to polarize
is reduced. The electrical conductivity, instead, is di-
rectly proportional to the total dissolved salt ions, since
the conduction of current in an electrolyte depends on
the concentration of ionic species. Consequently, both
temperature and saline concentration have a relevant
influence on the effective EM properties of a rock.

As an example, we present in figure 3 attenuation
and phase distortion for three frequencies (10, 100 and
300 MHz). Analysis shows, that for the given range of
medium parameters, wave propagation starts to dom-
inate around 100 MHz; at lower frequencies the phase
distortion is met tolerable (fig. 3d), and, on the other
side, higher frequencies make the attenuation increase
(fig. 3c). The effect of phase distortion can be clearly
seen in the time domain. Figure 4 shows that for a fixed
propagation distance there is an additional time delay
for higher values of PHerr. This compromises a local-
ization of a water/steam front, since the interface would
appear at higher distance than what it actually is. Time
delay of 3 ns corresponds to approximately 30 cm for a
typical EM velocity of high resistive medium (9 x 107
m/s), which reflects the formation around the produc-
tion well where the borehole radar system would be lo-
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err
1 . . , r
_1 i : 1 i
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Figure 4. Electric field in the time domain for waves that
travel the same distance but with different value of phase
distortion: PHerr = 1, PHerr = 1.5, PHerr = 2, PHerr =
2.5.

cated. For PH., = 2, it can be seen that the time delay
is already bigger that 3 ns, so a shift of approximately
50 cm would occur. This is already too much in an en-
vironment where the investigation depth can be only 5
m. Moreover, higher PH,,, values reduce the resolution
of the wave and consequently the ability to distinguish
multiple reflections. Another observation that can be de-
duced from figure 3 is the strong effect of conductivity
on both attenuation and phase distortion: increase of o
makes ATT and P H,, raise, hampering the wave prop-
agation domain. Therefore, we conclude that a borehole
radar system should operate above 100 MHz and that
the natural regime for EM propagation would be favor-
able in reservoirs with ¢ < 0.03 S/m.

3 REFLECTIVITY OF WATER/STEAM
FRONT

Another important parameter to be considered for a
feasibility study of borehole radar is the reflectivity of
medium discontinuities: if the reflectivity of an interface
is weak, a radar system may not be able to detect the
reflection from the interface. The reflectivity expresses
the amount of reflected energy and it depends on the re-
flection coefficient, which can be split into a transverse
electric (TE) mode and into a transverse magnetic mode
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Figure 5. Reflectivity of a single planar interface with vary-
ing properties of medium 2 at 100 MHz. Medium 1 has fixed
properties: ¢, = 10 and o = 0.01 S/m. Fig. 5a and 5b shows
|rrE|? when the angle of incidence 6 is respectively 0 and 45
degrees; fig. 5¢ shows |rrps|? when 6 is 45 degrees.

minimum detectable signal and depends on technical
features of the system: transmitting and receiving an-
tenna directional gains, transmitting and receiving an-
tenna coupling efficiencies an transmitted power. On the
right hand side are the medium and target-dependent
parameters: attenuation a, wavelength A, reflectivity T’
and maximum penetration depth Rmax. Using equation
(8), it is possible to estimate the SP that a radar sys-
tem must satisfy to detect interfaces between two media
with different EM properties and for different penetra-
tion depths. A broad range of EM contrasts at oil-water
and oil-steam interfaces in oilfield conditions have been
considered, and the calculated SP values are shown in
figure 6. Medium 1 has been modeled with proper e,
and o of high oil saturation rock, while we have allowed
the EM properties of medium 2 to assume a broad range
of values characteristic of rock saturated by undesired
fluids like water or steam. It seems that permittivity
variations of the remote medium do not affect the SP
(fig. 6a); instead, conductivity variations of the remote
medium affect the SP and a conductivity increase causes
a reduction of the SP needed to detect the same inter-
face (fig. 6b). Therefore, in case of favorable EM prop-
erties of the first medium, larger penetration depths can
be reached if the discontinuity has a strong conductivity
contrast. Moreover, it seems that investigation depths in
the order of ten meters can be achieved with typical SP
of current radar systems being around 160 dB and an
operating frequency of 100 MHz.

5 MODELING RESULTS

In order to evaluate the most significant parameters for
the feasibility of a borehole radar tool, we have mod-
eled the electric field reflected by transitions between
oil-rich zones to water/steam-rich zones. We have used
the reflection operator approach given in Nguyen et
al. (1998). This technique requires a layered configu-
ration embedded in two half spaces. Every layer has
relative permittivity e,;, conductivity o; , relative mag-
netic permeability p.;, = 1 and propagation constant
vi = tw/e\/€ri — (i0/€ow) with 2 = 1,..., N . Based on
the wave equation and the boundary conditions at each
of the N layers, the reflection operator can be expressed
by the following recursion formula:

f = Tt Bnyiexp (=2vn+1hnt1)
1+ 7'an+1 exp (_2’)'n+1hn+1) ’

n=0,..,N (9)

where hp41 = 2n4+1—2n is the thickness of each layer and
Tn = (Yn — Yn+1) / (Y + Yn+1) is the reflection coeffi-
cient of each interface. Source and receiver are located
in the upper half space, so once the reflector operator
at the first interface Ro is known, it is possible to cal-
culate the scattered electric field E° at the position of
the receiver z:

E*(2,w) = RoEinc exp(—02), (10)
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Figure 7. Modeled reflected electric field as a function of time for three sequent positions of a steam front in a SAGD process.
In fig. 7a, 7b and 7c the three different geometries of the process are shown: the black color represents the steam rich zone,
the gray color the transition zone and the white color the oil rich zone. The gray layers at the top and at the bottom of the
figures represent respectively the injection and the production well. Source and receiver are located in the production well. Two
different conductivity of formation water are considered: 0.01 S/m (7d,7e,7f) and 1 S/m (7g,7h,7i)
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Facing the main challenges in carbon capture and

sequestration

Roel Snieder and Terry Young
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ABSTRACT

We discuss the main hurdles in implementing carbon capture and sequestration,
these are (1) reducing the cost to a level that is comparable with the cost
of steps towards energy efficiency and conservation, (2) upscaling the current
technology with a factor 1000, and (3) monitoring leakage rates less than a
percent per year. Unless we are able to address these question in a satisfactory
way, carbon carbon and sequestration holds little promise for being helping curb
anthropogenic global warming.

Key words: carbon capture and sequestration

Anthropogenic emission of greenhouse gases, no-
tably COg2, contributes significantly to global warm-
ing (Pachauri & Reisinger, 2007). Economic growth
in developing countries, increasing reliance on non-
conventional oil, and use of coal as a power source are
all leading to increased emissions of COy (Kerr, 2008).
Carbon Capture and Sequestration (CCS) is viewed
by some as a panacea. The US Department of Energy
(DOE) made $3.4 billion available for fossil fuel re-
search, a significant fraction for CCS (Charles, 2009),
and DOE supports a number of trial projects for CO2
sequestration (Litynski et al., 2008).

Injecting CO3 in the subsurface has an out-of-sight,
out-of-mind appeal because the CO3 is prevented from
entering the atmosphere. This approach is, however, not
without its drawbacks and research needs to focus on
making CCS effective both technically and economically
on the scale needed to mitigate anthropogenic contribu-
tions to global warming. In order to assess this issue it
is essential to look at the numbers involved in CCS.

Let us assume that in order for CCS to have
a significant effect, we sequester worldwide about 4
GtCOy/year. This is about 1/6th of the current global
production, and it is roughly the same as the amount
of CO2 sequestered as one of the seven steps needed for
capping the CO2 concentration at 550 ppm(Pacala &
Socolow, 2004) (twice the pre-industrial level of CO3).
To put this in perspective, this is the same mass as the
total annual global oil production (Central Intelligence
Agency, 2009). To sequester such an amount in the sub-

surface takes an infrastructure that is comparable to the
one used now for petroleum production worldwide.

Currently, COz is injected at a number of pilot
projects in countries that include Canada (Weyburn),
the Norway (Sleipner), and Algeria (In Salah). In the
multiple pilot projects supported by DOE in the con-
tinental USA, typically about 1 MtCOg/year is to be
injected. Therefore, the pilot-project technology cur-
rently used must be replicated or up-scaled by a fac-
tor of 1000 to be effective for mitigating global climate
change. The current cost of CCS is between 40-70 $/ton
CO2 (Metz et al., 2005). The annual cost of seques-
tering 4 GtCOg/year at a cost of $50/ton CO2 is 200
billion $/year. Even though this amount is not large
compared to the global expenditure for energy, one may
question whether society is willing to cover an expense
of this magnitude in order to mitigate climate change.
Moreover, the recent McKinsey report Reducing U.S.
greenhouse emissions: How much at what cost? (McK-
insey&Company, 2007) showed that the USA can avoid
about 40% of its CO2 emissions by taking actions such
as driving more efficient cars and trucks, and imple-
menting combined heat and power generation. Most of
these actions are cheaper than CCS and actually pay for
themselves in the long-term. Over the time-scale of sev-
eral hundred years, CO2 has the potential to react with
the host rock in some geologic formations and to be-
come permanently stored in the subsurface (Metz et al.,
2005). In order for CCS to be effective, CO2 must be se-
questered for several hundred years. Losing 0.5% of the
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ABSTRACT

Compaction induced by pore-pressure decrease inside a reservoir can be mon-
itored by measuring traveltime shifts of reflection events on time-lapse seismic
data. Recently we presented a perturbation-based formalism to describe trav-
eltime shifts caused by the 3D stress-induced velocity field around a compact-
ing reservoir. Application of this method to homogeneous background models
showed that the offset variation of traveltime shifts is controlled primarily by the
anisotropic velocity perturbations and can provide valuable information about
the shear and deviatoric stresses.

Here, we model and analyze traveltime shifts for reservoirs whose elastic proper-
ties before compaction are different from those of the surrounding medium. For
such models, the excess stress is influenced primarily by the contrast in the rigid-
ity modulus p across the reservoir boundaries. Synthetic examples demonstrate
that a significant (25% or more) contrast in p enhances the isotropic velocity
perturbations outside the reservoir. Nevertheless, the influence of background
heterogeneity is mostly confined to the reservoir and its immediate vicinity,
and the anisotropic velocity changes are still largely responsible for the offset
dependence of traveltime shifts. If the reservoir is stiffer than the host rock,
the background heterogeneity reduces anisotropic velocity perturbations inside
the reservoir, but increases them in the overburden. As a result, in that case
the magnitude of the offset variation of traveltime shifts is generally higher for
reflections from interfaces above the reservoir.

We also studied compaction-induced stress/strain and traveltime shifts for a stiff
reservoir embedded in a softer layered model based on velocity profiles from Val-
hall Field in the North Sea. Despite producing discontinuities in strain across
medium interfaces, horizontal layering does not substantially alter the overall
behavior of traveltime shifts. The most pronounced offset variation of travel-
time shifts is observed for overburden events recorded at common midpoints
close to the reservoir edges. On the whole, prestack analysis of traveltime shifts
should help to better constrain compaction-induced velocity perturbations in
the presence of realistic background heterogeneity.

Key words: time-lapse seismic, traveltime shifts, prestack time shifts, hetero-
geneity, compacting reservoirs, excess stress, stress-induced anisotropy.

1 INTRODUCTION surveys) have become a common tool for monitoring
dynamic changes in hydrocarbon reservoirs caused by
Traveltime shifts (i.e., the differences in traveltime for depletion. For example, Guilbot and Smith (2002) em-

the same reflector measured between time-lapse seismic ploy traveltime shifts to detect and monitor reservoir
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where g = (Vp/Vs) 2. Since typically g < 1, Aegi is
inversely proportional both to V3 and VZ/VZ.

2.2 Traveltime shifts

To give an analytic description of P-wave traveltime
shifts above a compacting reservoir, Fuck et al. (2009)
assume the compaction-induced velocity changes to be
small. Traveltime shifts are then obtained from the first-
order perturbation of traveltimes along reference rays
traced in the background model. The approximation of
Fuck et al. (2009) includes two terms, one of which is
“geometric” (i.e., the time shift related to the displace-
ment of the sources, receivers and interfaces), while the
other depends on the velocity perturbations along the
ray. Since the compaction-related displacements in the
elastic regime yield relatively small traveltime shifts, the
geometric term can be neglected.

Using the nonlinear theory of elasticity, the stiffness
tensor c;;r; of the deformed medium can be represented
as

o
Cijkl = Cijkt + Cijkimn Demn , (4)

where c;i; is the stiffness tensor of the background
medium, ¢;jkimn is the strain-sensitivity tensor, and
Aemn is the tensor of the elastic strains induced by the
reservoir compaction. Hereafter, the summation conven-
tion over repeated indices is assumed.

It is convenient to rewrite equation 4 by employing
Voigt notation, which maps each pair of indices ij to a
single index a:

a=1i8; +(9—i—3)(1—6;), (5)

where d;; is Kronecker’s symbol. The strain tensor Aemn
then becomes a vector (denoted by AE,), and equa-
tion 4 takes a concise matrix form (Fuck and Tsvankin,
2009):

Cap = Cap + CapyAE, . (6)

A detailed analysis of the symmetry of the deformed
medium based on equation 4 can be found in Fuck and
Tsvankin (2009). :
Assuming both the background stiffness tensor and
the strain-sensitivity tensor to be isotropic, the velocity-
related P-wave traveltime shifts are obtained as (Fuck

et al., 2009)

T2
5t = 1 / [BlAekk + B2 (nTAe l’l)]dT , (M
2 o S~ e —

volumetric deviatoric

where n is the unit slowness vector of the reference ray,
and 7 is the time along the ray. The constants B; and
B are given by
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Since C1s5 = (C111 — C112)/4, traveltime shifts in equa-
tion 7 depend on just two combinations of the three lin-
early independent elements C,g3- of the isotropic tensor
Cijkimn- Equation 7 separates the velocity-related trav-
eltime shifts into the isotropic term, which depends on
the volumetric strain (Aekx) and the anisotropic term
associated with the deviatoric strain elements (Ae;;).

3 MODELING METHODOLOGY

Following Fuck et al. (2009), we employ a three-step pro-
cedure to simulate depletion-related traveltime shifts.
First, the excess stress and strain fields are computed
for several 2D models with a heterogeneous background.
We use finite elements (COMSOL™ package) to solve
for the displacements, stresses and strains caused by a
pore-pressure drop inside a rectangular reservoir. The
modeling is carried out in 2D by assuming a plane-
strain model (i.e., there is no deformation in the x2-
direction). The accuracy of the numerical solutions is
checked by comparing the results for a homogeneous
model with those obtained from the analytic expres-
sions of Hu (1989). The top of the model is specified as
a free surface; to avoid artifacts due to the finite model
dimensions, the model’s height and width are 10 times
larger than those of the reservoir.

At the second step, we compute the stiffness and
velocity perturbations from the strain changes using
equation 6. Finally, the traveltime shifts are obtained
either from approximation 7 or by subtraction of the ex-
act (ray-traced) traveltimes calculated for the perturbed
and background velocity models. The anisotropic ray-
tracing algorithm is based on the equations of Cerveny
(2001) for heterogeneous anisotropic media, which are
solved by the fifth-order Runge-Kutta method (Press
et al., 1992). To avoid errors in traveltime shifts caused
by smoothing of velocity models, we account for reflec-
tion/transmission at interfaces using Snell’s law.

q[Here, we express the traveltime shifts in terms of the devia-
toric strain rather than deviatoric stress to facilitate compari-
son between the contributions of the isotropic and anisotropic
velocity changes.
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deviatoric strains observed above a more rigid reservoir
(compare Figures 3b and 3c) produce larger traveltime
shifts with more pronounced offset variation. Traveltime
shifts beneath the reservoir are strongly dependent on
the strains accumulated inside it. In particular, the re-
duction in the volumetric strain and increase in the de-
viatoric strains inside a softer reservoir result in a more
pronounced offset variation of traveltime shifts for deep
reflectors (Figures 4a and 4b). )
Figures 8 and 9 illustrate how the contrast in p
influences the behavior and composition of traveltime
shifts. In general, traveltime shifts vary more rapidly
with offset, if the contrast in g increases the devia-
toric strains above the reflector. On the whole, offset-
dependent traveltime shifts for this group of models are
governed primarily by the anisotropic velocity pertur-
bations. )

4.2 Layered model

Next, we examine a model that consists of eight horizon-
tal layers whose parameters were adapted from veloc-
ity profiles estimated at Valhall Field in the North Sea
(Figure 10). The components of the strain-sensitivity
tensor are taken from the measurements for North Sea
shales made by Prioul et al. (2004) under two differ-
ent ranges of hydrostatic load. Taking into account the
weight of the overburden, the layers above 2 km were
assigned the values of Cjj;i for the load ranging from
5 MPa to 30 MPa [except for the water (0-0.1 km)
where C;j, = 0]; the deeper layers were assigned Cij
measured for the load between 30 MPa and 100 MPa.
To obtain the static velocity values similar to those pub-
lished by Herwanger and Horne (2005) for their Valhall
model, the seismic velocities were reduced by 40%.

4.2.1 Stress/strain modeling

Apart from the discontinuities in strain across the layer
boundaries, the compaction-induced strains for the lay-
ered model are generally similar to those observed
for the simpler models investigated above. For exam-
ple, since the reservoir is stiffer than the rocks of the
overburden, the deviatoric strains tend to concentrate
around the reservoir rather than spread through the up-
per part of the model (Figure 11). Also, as predicted by
equation 2, the deviatoric strains are smaller beneath
the reservoir than above it because of the higher P-wave
velocities in the two bottom layers (Figures 11a—c).
The volumetric strain Aeg is largely confined to
the reservoir, where it exceeds the deviatoric strain
Agij. Outside the reservoir, however, the deviatoric
strains dominate the strain field (compare Figures 11a
and 11d). Some of the features of the distribution of the
volumetric strain can be explained using equation 3.
For instance, because Aeyy is inversely proportional to

VZ/VZ, the largest volumetric strain outside the reser-
voir is accumulated in the seventh layer, which has a
small value of Vp/Vs = 1.6.

Figure 12 summarizes the influence of the
compaction-induced strains on the velocity perturba-
tions. As expected from our previous results (Fuck et al.,
2009), the initially isotropic velocity model composed
of homogeneous layers becomes anisotropic with a het-
erogeneous velocity field inside each layer. For our 2D
model, velocity anisotropy in all layers is elliptical with
a tilted symmetry axis (in 3D the symmetry becomes
orthorhombic). Because the strain-sensitivity elements
Cjr are much larger for the shallow layers (down to
2 km), the velocity perturbations are restricted primar-
ily to the upper part of the model (Figure 12a). The sign
of the Thomsen anisotropy parameter € = § indicates
that the horizontal velocity is higher than the vertical
velocity outside the reservoir (¢ > 0) and smaller inside
it (¢ < 0, Figure 12a). The rotation of the symmetry
axis from the vertical (caused by the shear strain) does
not exceed 1°.

4.2.2  Offset variation of traveltime shifts

Figure 13 displays ray-traced and approximate travel-
time shifts for a range of reflector depths and a CMP
located above the reservoir center. In contrast to the re-
sults of Fuck et al. (2009) for the homogeneous model,
approximation 7 is more accurate for deeper reflectors
because the largest velocity perturbations are concen-
trated in the upper part of the model.

Another factor contributing to the poor perfor-
mance of the linearized approximation for reflectors at
the shallow depths (0.85 km, 1.5 km, and 2 km) is sig-
nificant ray bending, which is not taken into account by
equation 7. Ray bending makes the traveltimes more
sensitive to the horizontal and shear components of
the deviatoric strain tensor, which increases the off-
set variation of the exact (ray-traced) shifts. Also, the
approximation deteriorates for common midpoints near
the edges of the reservoir due to the pronounced accu-
mulation of the shear strain around the reservoir cor-
ners (Figure 11b). For example, the difference between
the ray-traced and approximate traveltime shifts for re-
flectors above the reservoir increases as the CMP ap-
proaches the reservoir edge located at z = 1 km.

Since the compaction-induced velocity perturba-
tions occur mostly above the reservoir, the largest shifts
(as well as their most pronounced offset variation) are
observed for the overburden events, especially in com-
mon midpoints located above the reservoir corner (Fig-
ure 14). As was the case for the “homogeneous host
rock” models with a relatively rigid reservoir, the reflec-
tions from the base of the reservoir and interfaces close
to it exhibit the smallest offset variation of the shifts,
particularly if the CMP is above the reservoir center
(Figure 13c). The near-offset traveltime shifts for the

—
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6 CONCLUSIONS

We studied the influence of heterogeneity of the back-
ground velocity model on compaction-related travel-
time shifts and their variation with offset. The main
goal of our numerical simulations was to verify whether
prestack analysis of traveltime shifts provides useful in-
formation for reservoir characterization in the presence
of background heterogeneity.

When the reservoir is embedded in a medium with
different elastic properties, the contrast in the rigid-
ity modulus p may cause substantial changes in the
compaction-related strains. In particular, the contrast
in p influences the relative magnitude of the deviatoric
strains responsible for the anisotropic velocity pertur-
bations. Still, the most pronounced isotropic velocity
changes (which are related to the volumetric strain),
are largely restricted to the reservoir itself. Therefore,
as was the case for homogeneous background mod-
els, offset-dependent traveltime shifts are mainly gov-
erned by the anisotropic velocity perturbations. Thus,
the offset variation of traveltime shifts estimated from
prestack data can provide useful information about the
compaction-induced deviatoric strains.

The numerical experiments allowed us to formu-
late some simple “rules of thumb” about the properties
of the strain field and traveltime shifts. For example,
if the reservoir is more rigid than the host rock, the
deviatoric strains tend to increase (compared with the
homogeneous background model) outside the reservoir
and decrease inside it. Hence, the largest offset variation
of traveltime shifts for a rigid reservoir is observed for
reflectors in the overburden.

The geomechanical modeling for a realistic layered
background medium indicates that vertical heterogene-
ity does not dramatically alter the compaction-induced
strain. For example, the magnitude of the deviatoric
strains in each layer is inversely proportional to the
squared P-wave velocity, while the magnitude of the
volumetric strain is also inversely proportional to the
squared P-to-S velocity ratio. Moreover, despite the
strain discontinuities across layer boundaries, the spa-
tial distribution of strain is generally similar to that for
models with a simpler background. For instance, be-
cause the reservoir in the layered model is more rigid
than the overburden, the volumetric strain dominates
inside the reservoir, while the deviatoric strains accu-
mulate mostly above it. The deeper layers are stiffer
and less strain-sensitive than the rest of the background
model, which also contributes to the concentration of
the strain-induced velocity perturbations in the upper
part of the section. Therefore, the most pronounced off-
set variation of traveltime shifts is observed for overbur-
den reflections, especially if the CMP is located close to
the reservoir edge.

We also showed that reservoirs that have rectan-
gular and elliptical cross-sections with the same area
and aspect ratio produce similar spatial distributions of

compaction-induced strains. As a result, the magnitude
and offset variation of traveltime shifts are insensitive
to such differences in the reservoir shape.
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Figure 3. Influence of the contrast in the rigidity modulus p
on the compaction-related horizontal deviatoric strain Aej;.
(a) No elastic contrast across the reservoir boundaries; b) the
velocity Vg is 20% lower outside the reservoir; d) Vg is 20%
higher outside the reservoir. The contrast in Vg is equivalent
to the contrast in u because the density is held constant. The

contour step is 0.5 x1075.
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Figure 2. Compaction-related volumetric strain Aeg for
models with different elastic contrast between the reservoir
and host rock. (a) No elastic contrast across the reservoir
boundaries; b) the velocity Vp is 25% higher outside the
reservoir; c¢) the velocity Vg is 20% lower outside the reser-
voir; d) Vs is 20% higher outside the reservoir. Negative val-
ues are contoured in white, zero and positive values are in
black. The contour step is 0.25 x1075.
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Figure 6. Approximate traveltime shifts for a shot above
the center of the reservoir. The background velocity Vg is
20% smaller outside the reservoir. Traveltime shifts caused
by the a) isotropic and b) anisotropic velocity changes; c)
the total shifts.
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Figure 7. Approximate traveltime shifts for a shot above
the center of the reservoir. The background velocity Vs is
20% smaller outside the reservoir. Traveltime shifts caused
by the a) isotropic and b) anisotropic velocity changes; c)
the total shifts.
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Figure 10. Velocity and density profiles adapted from pub-
lished results for Valhall Field in the North Sea. The model is
composed of eight homogeneous layers, and the rectangular
reservoir (gray bar) is located inside layer 6. The ocean depth
(i-e., the thickness of the first layer) is 100 m, with Ciji = b
Vs = 0. For layers two through four, C11; = —11300 GPa, ( )
C112 = —4800 GPa, and C123 = 5800 GPa. For layers five
through eight, C111 = —3100 GPa, C112 = —800 GPa, and
C123 = 40 GPa.

Depth (km)

Depth (km)

(d) |

-2 -1 0 1 2

strain x10~%

Figure 11. Deviatoric and volumetric strains caused by the
pore-pressure drop Ap = —2.5 MPa, inside the reservoir for
the model from Figure 10. The deviatoric strains a) Ae€g; b)
Ae€13; c) Aesz; and d) the volumetric strain Aeg. Negative
strain values are contoured in white, positive values in black.
The contour step is 0.5 x 10~5 in (a), (b), and (c), and 0.25 x
1075 in (d). The color scale is clipped for better contrast. At
the center of the reservoir (0 km, 2.55 km), Ae;; = 1.2 x
1074, Aegz = —2.5 x 1074, and Aegy = —3.9 x 10-4.
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Figure 14. Ray-traced traveltime shifts for common midpoints located at £ = 1.1 km
and at z = 2 km (right column). The reflector de
depth is 2 km (solid) and 2.5 km (dashed);
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Figure 18. Vertical deviatoric strain Aesz for reservoirs
with a) rectangular; and b) elliptical cross-sections. The area
of the cross-section and its aspect ratio (1/20) are the same.
The model parameters are taken from Figure 1.
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Figure 17. Shear strain Ae13 around compacting reservoirs
of different shapes. The reservoir cross-section is a) circular;
b) elliptical with the aspect ratio 1 /4; c) elliptical with the
aspect ratio 1/20; and d) rectangular with the aspect ratio
1/20; the area of the cross-sections is fixed. The model pa-
rameters are taken from Figure 1, with no elastic contrast
between the reservoir and host rock (i-e., the background is
homogeneous).
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ABSTRACT

Velocity variations caused by subsurface stress changes play an important role
in monitoring compacting reservoirs and in several other applications of seismic
methods. The most general way of describing stress-induced (or, equivalently,
strain-induced) velocity fields is by employing the theory of nonlinear elastic-
ity, which operates with third-order elastic (TOE) tensors. These sixth-rank
strain-sensitivity tensors, however, are difficult to manipulate because of the
large number of terms involved in the algebraic operations. Thus, even evalu-

ation of the anisotropic s
be a challenging task. He

ymmetry of a medium under stress/strain proves to
re, we employ a matrix representation of TOE tensors

that allows computation of strain-related stiffness perturbations from a, linear
combination of 6 x 6 matrices scaled by the components of the strain tensor.
In addition to streamlining the numerical algorithm, this approach helps to
predict the strain-induced Symmetry using relatively straightforward algebraic
considerations. For example, our analysis shows that a transversely isotropic
(TT) medium acquires orthorhombic symmetry if one of the principal directions
of the strain tensor is aligned with the symmetry axis. Otherwise, the strained
TT medium can become monoclinic or even triclinic.

Key words: anisotropic symmetry, nonlinear elasticity, stress-induced
anisotropy, stiffness tensor, third-order elastic tensor, time-lapse seismic.

1 INTRODUCTION

Monitoring subsurface stress/strain fields and their
time-lapse variations is an important research area with
applications in velocity model-building (e.g., Sengupta
and Bachrach, 2008) and reservoir geophysics (e.g., Fuck
et al,, 2009). For example, pore-pressure drop due to
hydrocarbon production leads to reservoir compaction,
which produces excess stress and strain not only in the
reservoir itself, but also in the surrounding rock mass.
Seismic velocities can help to monitor subsurface
stress and strain fields because numerous laboratory ex-
periments have demonstrated that the stiffness tensor
changes under stress/strain (Eberhart-Phillips et al.,
1989; Prasad and Manghnani, 1997). In the elastic
regime, stress stiffens grain contacts and closes frac-
tures, making rocks more rigid and increasing P- and
S-wave velocities. Therefore, some theoretical models
describe the stress/strain sensitivity of seismic velocities

through the stiffening of grain contacts (e.g., Gassman
and Hertz-Mindlin models discussed in Mavko et al.,
1998), while others relate the velocity variation to clos-
ing (or opening) of microcracks (e.g., Mavko et al.,
1995; Sayers, 2006).

An alternative approach that has been successfully
applied to this problem is based on the nonlinear theory
of elasticity (e.g. Sinha and Kostek, 1996; Winkler et al.,
1998; Sinha and Plona, 2001). In contrast to the Hertz-
Mindlin theory, it employs a Taylor series expansion
that yields the full elastic tensor of the strained medium
(Thurston, 1974, p. 276). Unlike fracture-based models,
nonlinear elasticity operates not with the fracture orien-
tations and compliances, but with a third-order elastic
(TOE) tensor responsible for the strain sensitivity of the
rock mass.

We start by reviewing the nonlinear theory of elas-
ticity and application of TOE tensors to model stress-

T —




for all possible symmetry classes. Here, we use their re-
sults to construct the matrix representation for several
symmetries relevant in the context of exploration geo-
physics. We proceed from the lowest possible symmetry
(triclinic), which is characterized by the absence of any
symmetry elements (i.e., symmetry axes or planes), to
the isotropic tensor, which is invariant with respect to
any coordinate transformation. A more detailed analy-
sis of the matrices Cap for various symmetry classes
can be found in Appendix A.

3.1 Triclinic symmetry

Although the triclinic TOE tensor contains no symme-
try elements, only 56 out of a total of 3¢ = 729 elements
are independent (equation 6). All six matrices that form
the vector Ca(sy) in equation ?? are symmetric because
the indices 3 and -y can be interchanged:

Ca11 Catz Ca1s Cara Cats Cuags
Ca12 Ca22 Ca2s Caza Cazs Cuags
c _ | Ca13 Cazz Cass Caszs Cass Cass
BN = Cora Ca2a Cazs Cotss Cass Cous
Ca1s Cazs Cass Cass Cass Class
Ca16 Ca26 Case Cass Cass Coss

(7)
a=12...,6.

3.2 Monoclinic symmetry

The matrix representation of monoclinic TOE tensors
can be derived from equation 7 by defining either a plane
of mirror symmetry or a 2-fold symmetry axis (Winter-
stein, 1990)." The independent elements Capy are in-
variant with respect to rotation by § = m around the
symmetry axis; the same set of independent Capy can
be obtained by using a symmetry plane perpendicular
to this axis. If the horizontal plane [x1,z2] is the plane
of symmetry, the monoclinic TOE matrices for o = 1,
2, 3, and 6 have the following form (Appendix A):

Cat1 Caiz Coais 0 0  Cais

Ca12 Caz2  Coaas 0 0 Casgs

C _ | Ca13 Ca2z Cass 0 0 Case
a(p) 0 0 0 Coas  Causs 0
0 0 0  Coss Cass 0

Cats  Coaos  Chaas 0 0 Caes

fa direction is called a k-fold symmetry axis when a tensor
is invariant with respect to rotations by 6 = 27 /k around it
(Helbig, 1994).

b
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When o = 4 or 5,

0 0 0 Ca1a Cais 0

0 0 0 Ca24 Ca25 0

c _ 0 0 0 Caszs  Cass 0
BN = Cora Co2s Cosa 0 0 Caus
Cais  Cazs  Chass 0 0 Cass

0 0 0 Ca46 Ca56 0

Interestingly, the matrices described by equation 8 have
the same structure (i.e., the same nonzero elements)
as the matrix representing the monoclinic SOE tensor
(e.g., Helbig, 1994). The matrices in equation 9, how-
ever, contain nonzero elements in place of the vanish-
ing elements in equation 8. According to equations 8
and 9, the total number of independent elements Capy
for monoclinic symmetry is 32.

3.3 Orthorhombic symmetry

Orthorhombic symmetry is characterized by three or-
thogonal 2-fold symmetry axes, or, correspondingly,
by three orthogonal mirror symmetry planes (Helbig,
1994). Because orthorhombic symmetry is a special case
of the monoclinic model, the matrix representation of
the orthorhombic TOE tensor can be obtained from
equations 8 and 9 by requiring invariance with respect
to rotations by 6 = 7 around the z1- and zs-axes. These
constraints reduce the number of independent elements
to 20, and, when o = 1, 2, and 3, the orthorhombic
matrices Copy can be written as (see Appendix A)

Ca1t1 Car2 Cas 0 0 0

Ca12 Ca22  Caos 0 0 0

C _ | Ca1z Cazzs Cazzs 0 0 0
CR N B 0 0 Casa O 0

0 0 0 0 Ca55 0
0 0 0 0 0 Case

(10)
For a =4, 5, and 6,
0 0 0 Cua 0 0
0 0 0 Coua 0 0
c 0 0 0 C3y4 0 0
46BN = | Cras Cous Ciqs 0 0 0 ’
0 0 0 0 0 Cise
0 0 0 0 Cse O
(11)
0 0 0 0 Ciss 0
0 0 0 0 Coass 0
oo |0 0 0 0 s o0
BN = o 0 0 0 0 Cuse |’
Ciss  Cass  Cass 0 0 0
0 0 0 Cise 0 0
(12)
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and
0 0 0 Claa 0 0
0 0 0 Ciss 0 0
co |0 0 0 s 0 o0
BN T [ Craa Ciss Ciss 0 0 0 ’
0 0 0 0 0 Cuse
0 0 0 0 Cws6 O
(28)
where (Thurston and Brugger, 1964)
C111 =C123 + 6C144 + 8Cusé , (29)
Chri2 =C123 + 2C144, (30)
Cis5 =Craa +2C4s6 . (31)

The remaining matrices can be obtained from the fol-
lowing permutations:

Ca(pm) = R1CipmR1,  Csgy) = RaCi(ayR2, (32)
Csem) = R1CapmRi,  Coy = RaCaay)R2. (33)

The matrix Rz has the same block structure as R from
equation 25, but with P; substituted by P, a matrix
that interchanges the first and third rows or columns of

3 X 3 matrices:
0 1
1 0. (34)
00

4 SYMMETRY OF THE DEFORMED
MEDIUM

0
P,=10
1

The matrix representation of the TOE tensor helps to
devise an algebraic procedure to evaluate the symmetry
of a medium under stress/strain. Using Voigt notation,
equation 3 can be expressed in terms of the TOE matrix
Casy:

Cpy = C3y + Capy AEa, (35)

where the vector AE, = (e11, e22, ess, 2e23, 2€13, 2e12) "
is obtained from the symmetric strain tensor Aem, by
applying Voigt notation. Hereafter, the strain tensor
with vanishing off-diagonal components AE,, AEs and
AEg will be called diagonal. If the elements AE;, AEs
and AEj3 of a diagonal strain tensor are equal, such a
tensor represents volumetric strain change (Fuck et al.,
2009).

Each perturbation stiffness element ACs, =
Capy AE, in equation 35 is obtained as a linear combi-
nation of the Cy(s,) matrices scaled by the components
of the vector AE,. Due to the significant difference in
the structure of the matrices Co(py) for a =1, 2,3
and o = 4, 5, 6, it is possible to separate the contribu-
tions of the normal (diagonal) and shear (off-diagonal)
strain components in equation 35. Next, we analyze the
symmetry of the perturbation matrix AC,s using the
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results of the previous section. The structure of the re-
sulting stiffness matrix Cp., is defined by the stiffnesses
of the undeformed medium and the nonzero elements of
ACg,.

4.1 Isotropic TOE tensor

When the TOE tensor is isotropic, the symmetry of the
matrix AC,p is entirely controlled by the structure of
the strain tensor. This can be proved by substituting
the matrix representation of the isotropic TOE tensor
into equation 35.

For a volumetric strain change (AE; = AE; =
AFEs; AEy = AEs = AEs = 0), the term Copy AE, re-
duces to the sum of the matrix C1(s+) from equation 27
and its two permutations, Cy(g-) and C3(s+), multiplied
by the normal strain AE;. The resulting tensor AC,p
is isotropic:

AC11 = ACy2 = AC33 = (C111 +2C112) AE1, (36)
ACy4 = ACs5 = ACss = (Craa + 2C155) AE1,  (37)
AC12 = AC13 = ACa23 = AC11 — 2ACus

= (Ci23 +2C111) AE1.  (38)

This confirms our expectation that any object undergo-
ing volumetric change will remain just a scaled version
of itself by conserving its original shape or symmetry.

If the applied strain is uniaxial, then the stiffness
perturbation from equation 35 is transversely isotropic
(TI). For example, the vertical strain AEs yields the
tensor ACqg with VTI symmetry:

AC1 =AC3 = C112 AE3; (39)
AC33 =Ci11 AE3; (40)
ACy =ACss = Ci55 AE3; (41)
ACes =C144 AF3; (42)
Aclz =AC11 - 2A066 — 0123 AE:; 3 (43)
AC13 =ACs3 = C112 AE3. (44)

When the strain tensor is diagonal, each matrix
Co(sy) (a0 =1,2,3) is multiplied with a different normal
strain component, which results in the stiffness pertur-
bation that has orthorhombic symmetry:

ACap =

ACn ACi2 AChs 0 0 0
AC12 AC3 ACs3 0 0 0
AC13 ACa3 ACss 0 0 0

0 0 0 ACyy 0 0

0 0 0 0 ACss 0

0 0 0 0 0 ACss

(45)

Furthermore, if the TOE tensor is isotropic, the
symmetry of AC,g is always orthorhombic or higher,
with the principal directions of the strain tensor defin-
ing the 2-fold symmetry axes of the deformed medium.

—




ing perturbation tensor is triclinic. Likewise, for a mon-
oclinic TOE tensor, any shear strain not defined in the
symmetry plane (i.e., in the plane perpendicular to the
2-fold symmetry axis) produces a triclinic perturbation
ACqp. Therefore, misalignment of the principal strain
directions with the symmetry elements of the TOE ten-
sor lowers the symmetry of AC,g.

Finally, if the TOE tensor is triclinic (i.e., with no
symmetry axes or planes), the stiffness perturbation al-
ways has triclinic symmetry as well, regardless of the
structure of the strain tensor.

4.4 Symmetry of the resulting stiffness tensor

The above discussion was focused on the symmetry of
the perturbation stiffness matrix ACgy = Cagy AE, in
equation 35. Once this matrix has been obtained, it is
straightforward to evaluate the symmetry of the effec-
tive elastic tensor Co 3 which describes the medium after
deformation. In principle, the symmetry of the strained
medium should not be higher than that of either Cas
or ACqp. There might be situations, however, in which
some of the off-diagonal terms in C35 and AC4g cancel
out, resulting in the deformed medium with a higher
symmetry than those of the background model and the
stiffness perturbation. Although this issue should be
studied further, such strain-induced compensation of in-
trinsic anisotropy seems unlikely.

5 CONCLUSIONS

Using the theory of nonlinear elasticity based on third-
order elastic (TOE) tensors, we analyzed the symme-
try of a medium under stress/strain. Application of
Voigt notation leads to a convenient representation of
the TOE tensor ¢;jkimn in terms of a 6 X 6 x 6 matrix
Capy. The strain-induced stiffness perturbation ACj.,
is then obtained by summing 6 x 6 TOE submatrices
scaled by the components of the strain tensor. This for-
malism provides a direct way to assess the contribution
of each strain component to the stiffness perturbation
for a given symmetry of the TOE tensor. In particular,
our approach helps to separate the influence of the nor-
mal and shear strains on the symmetry of the perturbed
medium.

In the simplest case of a purely isotropic TOE ten-
sor, the perturbation ACp, always has orthorhombic
or higher symmetry with the the 2-fold symmetry axes
defined by the principal directions of the strain tensor.
When the strain is uniaxial, the stiffness perturbation is
transversely isotropic, and the symmetry axis is parallel
to the strain direction. The deformed medium remains
isotropic only if an isotropic TOE tensor is combined
with volumetric strain (i.e., the strain tensor has only
identical diagonal elements).

When the TOE tensor is hexagonal (transversely
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isotropic), a uniaxial strain applied in the direction of
the symmetry axis conserves TI symmetry. If the strain
tensor is diagonal or a uniaxial strain is confined to the
plane orthogonal to the symmetry axis, the stiffness per-
turbation becomes orthorhombic. The influence of the
off-diagonal (shear) strains may lower the symmetry of
ACs, to monoclinic or even triclinic.

On the whole, our algebraic procedure significantly
facilitates application of TOE tensors to analysis of
strain-induced velocity perturbations. The formalism
introduced here is as intuitive as that describing the
strain sensitivity of seismic velocities through closing or
opening of microcracks. Our results should be helpful
in modeling and inversion of anisotropic velocity fields
caused by excess strains/stresses near salt bodies and
compacting hydrocarbon reservoirs.
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Figure 1. 2D stress and strain changes due to a 5 MPa drop in pore pressure inside a compacting rectangular reservoir (after
Fuck et al., 2009). Aoss and Aoy are the normal deviatoric stresses, Ao13 is the shear deviatoric stress, and Aeyy, is the trace
of the strain tensor. Negative values imply compression for stress and contraction (shortening) for strain. Inside the reservoir the
maximum stresses are Aosz = —2.2 MPa and Ac;1=1.7 MPa, while the volumetric change is constant: Aeg, = —4.6 x 10™4.
The plots were clipped for better visualization.
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Figure 2. Anisotropy parameters and the symmetry-axis orientation of the strain-induced TI medium for the reservoir model
from Figure 1 (after Fuck et al., 2009). a) The anisotropy parameter 6 = € (color scale is clipped); b) contours of the angle
between the symmetry axis and the vertical (positive angles correspond to clockwise axis rotation) near the right edge of the
reservoir (gray rectangle). Inside the reservoir § = —0.18, while the tilt of the symmetry axis at the reservoir corners (where
the shear strains become infinite) approaches +45° (for more details, see Fuck et al., 2009).




A5 Isotropy

A simple way of making the TOE tensor isotropic is to
require that the 10 independent elements of the hexag-
onal tensor remain unchanged for arbitrary rotation
around any axis. For example, ¢;jkim» should stay the
same when we interchange any two indices. Hence,

C111 =Ca22 = Class; (A7)
Cr12 =C133 = Ch23 = C113 = Cl22 = Caas; (A8)
C144 =Cas5 = Cies; (A9)

C1s5 =Ca66 = C3a4 = C166 = Caaq = C3s5;  (A10)

Taking into consideration the constraints in equations
14-22, the identities in equations A7-A10 also imply
that

Cri2 =C123 + 2C144, (A11)
Cr11 =C123 + 6C144 + 8Cls6 . (A12)

Therefore, the isotropic TOE tensor is completely de-
fined by three independent constants (Ci23, Ciaa and
Cis6), as shown in several publications (e.g. Barsch
and Chang, 1968). The matrix representation of the
isotropic TOE tensor is given in equations 27-33.

Symmetry of a stressed medium
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ABSTRACT

The inhomogeneity angle (the angle between the real and imaginary parts of
the wave vector) is seldom taken into account in estimating attenuation coef-
ficients from seismic data. Wave propagation through the subsurface, however,
can result in relatively large inhomogeneity angles £, especially for models with
significant attenuation contrasts across layer boundaries. Here, we study the in-
fluence of the angle £ on phase and group attenuation in arbitrarily anisotropic :
media using the first-order perturbation theory verified by exact numerical mod-

eling.

Application of the spectral-ratio method to transmitted or reflected waves yields |
the normalized group attenuation coefficient Ay, which is responsible for the ‘
amplitude decay along seismic rays. Our analytic solutions show that for a L
wide range of inhomogeneity angles the coefficient A, is close to the normalized
phase attenuation coefficient A computed for £ = 0° (A[¢_g.). The coefficient
AI5=0° can be inverted directly for the attenuation-anisotropy parameters, so
no knowledge of the inhomogeneity angle is required for attenuation analysis of
seismic data. This conclusion remains valid even for uncommonly high attenua-
tion with the quality factor @ less than 10 and strong velocity and attenuation
anisotropy. However, the relationship between the group and phase attenuation
coefficients becomes more complicated for relatively large inhomogeneity angles
approaching so-called “forbidden directions.” We also demonstrate that the ve-
locity function remains practically independent of attenuation for a wide range
of small and moderate angles £.

In principle, estimation of the attenuation-anisotropy parameters from the co-
efficient A| ¢=00 Tequires computation of the phase angle, which depends on the
anisotropic velocity field. For moderately anisotropic models, however, the dif-
ference between the phase and group directions should not significantly distort
the results of attenuation analysis.

Introduction Cerveny & Psencik, 2005a,b) where solutions of the
wave equation do not exist. If the wavefield is excited by
a point source, the inhomogeneity angle is determined
by the medium properties including the boundary con-
ditions (Zhu, 2006; Vavrycuk, 2007).

Alternatively, the wave vector in attenuative me-
dia can be parameterized in terms of the “inhomogene-
ity parameter” D (Boulanger & Hayes, 1993; Declercq
et al., 2005; Cerveny & Psencik, 2005a):

In attenuative media, the direction of maximum atten-
uation of a plane wave can differ from the propagation
direction. This implies that the real part of the wave vec-
tor k® (“propagation vector”) deviates from the imag-
inary part k! (“attenuation vector”), as illustrated in
Figure 1. The angle between the vectors k¥ and k' is
called the “inhomogeneity angle,” denoted here by ¢&.
When £ = 0°, the plane wave is often characterized
as “homogeneous;” when £ # 0°, it is called “inho-
mogeneous.” For plane-wave propagation, £ represents such that

a free parameter except for certain “forbidden direc-

tions” (Krebes & Le, 1994; Carcione & Cavallini, 1995; m-n=0, (2)

k =w(on+:Dm), (1)




Elastic
cap rock

Attenuative
reservoir

Figure 2. Illustration of the reflection/transmission prob-
lem at the interface between a purely elastic cap rock and
an attenuative reservoir. k® and k! are the real and imagi-
nary parts of the wave vector of the transmitted wave, while
kR.refl and k!mefl correspond to the reflected wave. As dis-
cussed in the text, the inhomogeneity angle ¢ of the trans-
mitted wave is equal to the transmission angle 1.

tion is measured along the raypath, which deviates from
the phase direction k® when the medium is anisotropic.
Attenuation is commonly computed from seismic
data using the spectral-ratio method (e.g., Johnston &
Toks6z, 1981; Tonn, 1991), which has been extended to
anisotropic media (Zhu et al., 2007). If two receivers
record the same event at two different locations along
a raypath, the attenuation coefficient can be estimated
from the ratio S of the measured amplitude spectra:

InS=Ing -kl (4)

where G contains the reflection/transmission coeffi-
cients, source/receiver radiation patterns, and geometri-
cal spreading along the raypath, k; is the average group
attenuation coefficient, and [ is the distance between the
two receivers. Assuming that the medium between the
receivers is homogeneous, equation 4 can be rewritten
in terms of the group velocity V, and traveltime ¢:

InS=InG—klV,t,

=InG—wA,t, (5)

where w is the angular frequency and A, = kl/kE =
kl/(w/Vy) is the normalized group attenuation coeffi-
cient. It follows from equation 5 that by estimating the
slope of In S expressed as a function of w, we can com-
pute the group attenuation along the raypath, if the
traveltime ¢ is known. Therefore, A is the measure of
attenuation obtained from seismic data.

If the medium is anisotropic (or isotropic, but the
inhomogeneity angle is large, as discussed below), the
group-velocity vector V4 deviates from the phase direc-
tion parallel to k®. To simplify the analytic develop-
ment, we choose a coordinate frame in which k* coin-
cides with the axis z3 and k is confined to the [z1, z3]-
plane (Figure 3). The group attenuation coefficient ké
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can be found by projecting the phase attenuation vector
k' onto the group direction:

1
k=g (V) (6)
= kzl(cos §cosp + sin€siny cos @), (7)

where 9 is the angle between k¥ and V, (group angle)
and ¢ is the azimuth of V, with respect to the [z1, z3]-
plane (Figure 3). If the vectors V,, k¥, and k! lie in
the same plane (i.e., ¢ = 0), k; is given by

kg = k' cos(¢ — ). 8)

Using equation 7, the normalized group attenuation co-
efficient A, can be represented as

k; _ k! cos & cos (1 + tan & tan vy cos ¢)

'Ag = Egﬁ w/vg (9)

The group velocity can be obtained from the well-known
relation (e.g., Cerveny & Psencik, 2006):

1. g _
—kt V=1, (10)
or
% = kR cosyp. (11)
Substituting equation 11 into equation 9 yields
I
Ay = TR cos& (1 + tané tant cos @) . (12)

Equation 12 can be used to compute the exact coeffi-
cient Ay for arbitrarily anisotropic, attenuative media
and any angle &. If the group-velocity vector is confined
to the plane formed by k7 and k! (see above), cos ¢ = 1
and equation 12 becomes

_ K cos(¢—9)

Ay = R cosp (13)
For a zero inhomogeneity angle, the coefficient A, re-
duces to

o_ K
Ag(§=0°) = kR = Alg:oo . (14)

=00

Equation 14 demonstrates that even for arbitrary
anisotropy, the group attenuation coefficient coincides
with the phase attenuation coefficient for £ = 0° (Zhu,
2006). It is unclear, however, how A4, is related to phase
attenuation for a nonzero £ and what role is played by
the inhomogeneity angle in the estimation of the atten-
uation coefficient.

2 ISOTROPIC MEDIA

To evaluate the influence of the inhomogeneity angle on
velocity and attenuation in isotropic media, we obtain
the real and imaginary parts of the vector k from the




I _ w _Qcosf
¥ = et (125 ) @9

Dropping quadratic and higher-order terms in Q cosé,
we find

kI
A=k—R=1—-Qcos§. (25)
The velocity of wave propagation, determined by the
denominator of the expression for k® (equation 23), is
proportional to v/Q cos € and goes to zero when the in-
homogeneity angle approaches 90°.

When £ — 90°, the influence of the inhomogeneity
angle on the group quantities v, Vg, and A, is no longer
negligible. The group angle for large inhomogeneity an-
gles becomes (Appendix A)

taney = % —cos§. (26)

Equation 26 demonstrates that for strong attenuation
(small Q) the group-velocity vector deviates from the
phase direction.

The coefficient A4 for large angles ¢ can be obtained
by substituting equations 25 and 26 into equation 12:

Ag =(1—-Qcost) [cos§ + (-(15 - cos&) sin.ﬁ] .27

Linearizing equation 27 in cos ¢ yields

1

Ag o) cos€. (28)
Equation 28 shows that the group attenuation coeffi-
cient A, for large inhomogeneity angles reduces to just
tant (see equation 26). Therefore, whereas the real
and imaginary parts of the wave vector (equations 23
and 24) become infinite as £ — 90°, the group atten-
uation coefficient approaches 1/Q and is about twice
as large as Al,_o (Figure 4). Hence, for large angles
& close to 90°, seismic attenuation measurements in
isotropic media do not provide a direct estimate of the
quality factor because A4 rapidly increases with ¢ from
1/(2Q) to 1/Q.

Although the presence of anisotropy makes treat-
ment of wave propagation in attenuative media much
more complicated, several key conclusions drawn above
prove to be valid for models with anisotropic velocity
and attenuation functions.

3 ANISOTROPIC MEDIA

The dependence of attenuation on the inhomogeneity
angle £ in anisotropic media is influenced by the an-
gular variation of the phase quantities and by the dif-
ference between the group and phase directions. Using
the Christoffel equation B1, the phase attenuation coef-
ficient A can be computed for arbitrary values of the
angle . Then general group-velocity equations (e.g.,
Tsvankin, 2005) can be employed to obtain the group
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(a)

180°

00°

0°

Figure 4. Exact P-wave (a) and S-wave (b) coefficient
Alg—go (equation 3, red curve) and the normalized group
attenuation A, (equation 12, blue curve) in isotropic media
as a function of the inhomogeneity angle £ (numbers on the
perimeter). The quality factors are Qp = Qg = 5.

attenuation coefficient. It would be useful, however, to
develop analytic expressions for phase and group attenu-
ation that provide physical insight into the contribution
of the inhomogeneity angle. To derive analytic expres-
sions for k¥, k, and A, in arbitrarily anisotropic media,
we use the first-order perturbation theory, as discussed
in Appendix A. The analytic development is supported
by numerical modeling based on exact solutions.
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(a) €=0° (b) € =170°

90° 90°

(c)£=0° (d) £ =70°

90° 90°

(e) §=0° (f) £ =70°

Figure 5. Exact real part £ (in 100 m~1) of the P-wave vector k (solid lines) and approximate k® = kf:0 4 AkR from
equation 29 (dashed lines) for £ = 0° (a,c,e) and £ = 70° (b,d,f) as a function of the phase angle (numbers on the perimeter).
The model in (a,b) is isotropic; in (c,d) it is anisotropic in terms of velocity but has isotropic attenuation, while in (e,f) it has
isotropic velocity and anisotropic attenuation (Table 1). The frequency is 30 Hz.
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3 € s Y Qpro  Qso €Q 6Q Yo

Figs. 5a,b 0°,70° 0 0 0 10 10 0 0 0
5c,d 0°,70° 0.3 0.2 0 10 10 0 0 0

5e,f 0°,70° 0 0 0 10 10 0.6 04 0

Figs. 6a,b,c  0°,45°,70°
6def 0° 45°,70°
6g,hi 0°,45°,70°

Fig. 7a 0° 0.3 0.2
7b 0° 0 0

Fig. 8 - 0.3 0.2
Fig. 9a 60° 0 0
9b 60° 0.3 0.2

9c 60° 0.6 04

9d 60° 0 0

Fig. 10a,b 60° 0.6 04
10c,d 60° 0 0
Fig. 11 - 0 0
Fig. 12a - 0 0
12b - 0 0

Same as in Figures 5a,b
Same as in Figures 5¢,d
Same as in Figures 5e,f

0 10 10 0.6 04 0
0.3 10 10 0 0 0.5
0 5 5 0.6 04 0
0 10 10 0 0 0
0 10 10 0 0 0
0 10 10 0 0 0
0 10 10 0.6 04 0
0 10 10 0.6 04 0
0.5 10 10 0 0 0.5
0.3 5 5 0 0 0.5

1 5 5 0 0 -0.5
0.3 5 5 0 0 -05

Table 1. Medium parameters used in the numerical tests. For all models, the P- and S-wave symmetry-direction velocities (Vpo

and Vgg) are 2800 m/s and 1700 m/s, respectively.

and attenuation-anisotropy parameters to obtain

Agp = m% (1+6,sin®Ocos® 8 +e,sin*6).  (34)
Similar approximate expressions for the group attenu-
ation coefficient of SV- and SH-waves are given in Ap-
pendix C (equations C10 and C11).

Therefore, the inhomogeneity angle has no influ-
ence on the approximate group attenuation coefficient.
Furthermore, A, p in equation 34 coincides with the
linearized P-wave phase attenuation coefficient for a
zero inhomogeneity angle (Al,_,0) derived by Zhu and
Tsvankin (2006). Equation 34 deviates from the exact
Ag only when the angle ¢ approaches forbidden direc-
tions (Figure 8); the behavior of A, for large inhomo-
geneity angles is analyzed in more detail below.

Note that the linearized A4 (equations 34, C10, and
C11) is controlled by attenuation anisotropy and does
not depend on the velocity-anisotropy parameters. This
conclusion is confirmed by the exact modeling results
in Figures 9a and 9b where the coefficient A4 remains
insensitive even to strong velocity anisotropy with € =
0.6 and 6 = 0.4 when £ = 60° (Figure 9c). The presence
of attenuation anisotropy, on the other hand, results in
a substantial change in Ay (Figure 9d).

3.3 Relationship between group and phase
attenuation

The normalized phase attenuation coefficient Al,_y.
can be obtained from the Christoffel equation and ex-
pressed through the attenuation-anisotropy parameters
(Zhu & Tsvankin, 2006). As shown above, the coeffi-
cient Ay coincides with Al._q. for a wide range of ¢ in
isotropic media and for £ = 0° in anisotropic media.

Using perturbation analysis, we obtained closed-
form expressions for the coefficient A|,_. in arbitrarily
anisotropic media linearized in Aa;; (Appendix B). For

P-waves,
1 1 [Adk I

g - -A . 35
Ao = 79~ 577 (- aak). ()

Similar expressions for Si- and So-waves are given in
Appendix B. Comparison of equations 33 and 35 shows
that for a wide range of angles £ (except for values close
to 90°; see below), the linearized coefficient .44 coincides
with Al,_g. This conclusion is also valid for S1- and
Se-waves (compare equations B30 and B31 with equa-
tions B24 and B25).

The approximate P-wave phase attenuation coef-
ficient for TI media can be found as a simple func-
tion of the attenuation-anisotropy parameters (Zhu &
Tsvankin, 2006):

1

Ale_op = 070 (1+ 6, sin®@cos® 0 + ¢, sin* §) .

(36)

Zhu & Tsvankin (2006) also provide similar linearized
expressions for SV- and SH-waves reproduced in Ap-
pendix B. As is the case for arbitrary ansisotropy, the
coefficient Al,_qo in equation 36 coincides with Ay in
equation 34.

Figures 10a and 10b demonstrate that the max-
imum difference between the exact coefficients .4, and
Al¢_qo does not exceed 10% even for strong attenuation
(Q33 = 10) and uncommonly large anisotropy parame-
ters (€ = €, = 0.6 and § = 6, = 0.4). The coefficients
Ay and A|._,. are also close for SV- and SH-waves,
which confirms the analytic results of Appendix C (Fig-
ures 10c and 10d).
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180°

00

Figure 9. Exact P-wave group attenuation coefficient A, for £ = 60° in isotropic (a) and TI (b,c,d) media. In (b,c) only
velocity varies with angle, while attenuation is isotropic; in (d) attenuation varies with angle, while velocity is isotropic. The

model parameters are given in Table 1.

and
1 gcos 20
B = cos ( T P . (40)

Equivalent expressions for the bounds on ¢ for SH-
wave propagation in the symmetry plane of a mono-
clinic medium are given by Cerveny & P3encik (2005a)
in terms of the inhomogeneity parameter D.

For wave propagation along the symmetry axis or
perpendicular to it (§ = 0° or 90°), the angle o = 0° and
the bounds on ¢ are symmetric with respect to & = 0°
(equations 38 and 40; Figure 11). It is also clear from
equation 40 that 8 ~ 90° because the ratio Yo /Qso typ-
ically is small. Hence, for # = 0° and 90° anisotropy does

not signficantly change the bounds on &, which remain
close to £90°. As was the case for isotropic media, when
the angle £ approaches the “forbidden directions,” the
group attenuation coefficient A4 rapidly increases with
|¢] and reaches values approximately twice as large as
Ale—go (Figure 11).

For oblique propagation angles, o does not vanish,
and the bounds on £ become asymmetric with respect
to & = 0°. This asymmetry is controlled by the velocity-
anisotropy coefficient v and reaches its maximum for the
phase angle § = 45° (equation 39). The model in Fig-
ure 12a, taken from Carcione & Cavallini (1995), has an
uncommonly large parameter v equal to unity, and for




..---- --- 90°

< 00%,

_90 -I- -----

0°

Figure 11. Exact SH-wave coefficients Alg—go (red curve)
and Ay (blue curve) in TI media for propagation in the di-
rections 6 = 0° (a) and § = 90° (b) plotted as a function
of the inhomogeneity angle £ (numbers on the perimeter).
The black dashed line marks the bounds of ¢ computed from
equations 38-40. The model parameters are listed in Table 1.

plitudes practically coincide even at large offsets where
the inhomogeneity angle reaches 60°.

The coefficient A| ¢=oo 10 TT and orthorhombic me-
dia can be inverted for the Thomsen-style attenuation-
anisotropy parameters using the formalism developed
by Zhu & Tsvankin (2006, 2007). Note that estimation
of the attenuation-anisotropy parameters from A| £=00
requires computation of the corresponding phase an-
gle, which depends on the anisotropic velocity field.
Even in strongly anisotropic models, however, the in-
fluence of attenuation on velocity is of the second order
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(a)
180°

00

(b)

OO

Figure 12. Exact SH-wave coefficients Alggo (red curve)
and Ay (blue) as a function of £ (numbers on the perimeter)
for 6 = 45° and v = 1.0,7, = —0.5 (a) and y = 0.3, Yo =
—0.5 (b). The black dashed line marks the bounds of £ com-
puted from equations 38-40. The model parameters are listed
in Table 1.

(see above), which implies that velocity analysis can be
performed using existing methods. The reconstructed
velocity field can then be employed to recompute the
known group direction into the phase direction needed
in the inversion for the attenuation-anisotropy param-
eters. Furthermore, given the large uncertainty of am-
plitude measurements, the difference between the phase
and group directions for moderately anisotropic models
should not significantly distort the results of attenuation
analysis.

i

s
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APPENDIX A: COMPLEX WAVE VECTOR
FOR ISOTROPIC ATTENUATIVE MEDIA

We consider a harmonic plane wave with an arbitrary
inhomogeneity angle ¢ propagating in isotropic attenu-
ative media:

A(x,t) = Age' @tk (A1)

where w is the angular frequency and k = k® — ik’
is the complex wave vector responsible for the veloc-
ity and the attenuation coefficient. Substitution of the
plane wave Al into the acoustic wave equation results
in

w2

- i)’
<1+Q

where V' is the real part of the medium velocity, and Q is
the quality factor. Dropping quadratic and higher-order
terms in 1/Q, we rewrite equation A2 as

5) LAy

KD+ k24 k3 = (A2)

kP — 20" k! — (k1) = < (4
—2ik® . kT —( )_W _
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§§\Q\\\. \

N\

Nl

Figure A1l. Isotropic attenuative background medium (a)
is perturbed to make it anisotropic (b). k%% and k79 are
the real and imaginary parts of the wave vector in the back-
ground, and k® = kB0 4 AkR and k! = k!:% + AK! form
the wave vector in the perturbed medium; ¢ is the inhomo-
geneity angle. The vectors k% and kR are parallel to the
vertical z3 direction while k7' and k! are confined to the
[z1, z3]-plane. Vg is the group velocity in the background;
1 is the polar group angle after the perturbation, and ¢ is
the azimuth of the perturbed vector Vg with respect to the
[z1, z3]-plane.

/

k® = |k®| and k7 = |k!|. Equation A3 can be separated
into the real and imaginary parts:
2

K = (K1) = 35, (A4)
kB K = W (A5)
2V2Q

When the medium is non-attenuative and 1/Q = 0,
the right-hand side of equation A5 vanishes. Then the
vectors k¥ and k' of an inhomogeneous (evanescent)
plane wave have to be orthogonal, with the relationship
between k¥ and k! determined by equation A4.

Because the factor Q responsible for attenuation is
positive, equation A5 can be satisfied only if k*-k! > 0,
which requires that cos{ > 0 and ¢ < 90°. (We make




imaginary (Ak!) parts of the wave vector. Because the
inhomogeneity angle ¢ is a free parameter, we choose
not to perturb it when making the medium anisotropic.
This implies that the vectors k% and k™°, as well as k!
and k’*°, are parallel.

We choose k° such that k®° coincides with the
axis 3 and k7*° lies in the [#1, zs]-plane (Figures Ala
and Alb). This approach differs from the one adopted
by Jech & Psencik (1989), Cerveny & Psenéik (2008b),
and Vavrycuk (2008), who used a fixed reference frame.
To compute the perturbations for a different vector k
in the same medium, we rotate the coordinate frame
such that k® coincides with the axis z3 and k! lies in
the [z1, z3]-plane. This approach involves the rotation of
the density-normalized stiffness tensor a;;x; but obviates
the need for introducing two additional angles needed
to define the orientations of k¥ and k.

Bl Real and imaginary parts of the wave
vector

We start with the Christoffel equation in the perturbed
medium:

(Gik - 5ik) g =0, (Bl)

where Gix = ak1p;pi is the Christoffel matrix, p is
the complex slowness vector, and g is the polarization
vector of the plane wave. Perturbation of equation Bl
yields

(G?k + AGik, — bix) (gg + Ag,) =0, (B2)
which can be linearized to obtain
(G% — 6ix) Agy + AGir g =0, (B3)

where g° is the plane-wave polarization in the back-
ground and Ag is the perturbation of the polarization
vector. The polarization g° defines whether the wave
mode is P, SV, or SH. The mode obtained by perturb-
ing the SV-wave will be denoted Si, and the perturbed
SH-wave will be denoted S;. Multiplying equation B3
with g7 (Jech & Psencik, 1989) reduces equation B3 to

AGiu gl gy =0, (B4)
with

0 0 0 0
AGik = Aaijnp; pi + 2045 Ap; pi (B5)

where a?jk, and p° are defined in the isotropic back-
ground, and Aa;jr; and Ap are the perturbations. The
tensors a?jk, and Aa;ji; are given by

R,0 1,0
1]“ - azgkl + Za’z_]kl - az_;kl (1 + ) ’ (B6)
13kl

Aaijr = Aaﬁu + iAainkl , (B7)

where the superscripts “R” and “I” denote the real and
imaginary parts, and Q?jk, is the ratio af';-k, /a{jk,. The
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background slowness p° and its perturbation Ap can be
expressed as

p’= [—ip”o sing, 0, p™° — ip!° COS£] , (B8)

Ap = [-z‘Ap’ sin¢, 0, Ap®™ —iAp” cos 6] , (B9)

where p® 19 and Ap%, Ap! are the magnitudes of
the real and 1mag1nary parts of p° and Ap, respectively.

Assumlng (Q°cos &) > 1, we solve equation B4 for
Ak = wAp? and AKT = wAp!:

AER B! sec? ¢

kRO T T2 T Q0 (1_ 2 ) (B10)
AK! B

e =~ + Q% (B11)

where x® and x! are the real and imaginary parts of
X = Aaijklp?p?g? gﬁ The above analysis is valid for all
three modes (P-, S;-, and Sz-waves). By choosing the
corresponding k° and x, we can compute the perturba-
tions of the complex wave vector for any of the three
modes. The term x for P-, S;-, and Sz-waves has the

form
1 r | Aais 2Aa35 )
=—— | A + tan
XP Vﬁo ( a3z Qro Q 7o '3

v 1 (_Aag%

2Aa% )
— + Aals — tan¢ |,
V2, \ " Qpo T A% T g, tané

(B12)

Aaés Aa{5 - Aa§5 )
t
Qso T Qw1

XS, = Vgo (Aass +

R R _ AR
+ 1_1_ <_ Aags + Aaés - _—Aals Aass tan§> s

Vo Qso Qso
(B13)
and
Aajy | Aalg )
Aagy + + tan
XSy = Vs?o( 044 Qso Qs ang

1 Aaﬁ Aa46 )
— t ; (B14
7z (o Qso ¢ (B1)

Qpo and Qso are the P- and S-wave quality factors in
the background medium. Substituting equations B12—
B14 into equations B10 and B11 and retaining only the
terms linear in Aa;; yields

AKE 1 [Aag‘f; n Aaly (1 B sec2§)

+ 1= + Adl, —

~

S o o (U
I

+Aa35 tan 5] , (B15)
Qpo




I 2
Alisov =(eq — 6Q)g— sin” 6 cos® 6
kg g
sv Q
2-3
+0o e sin® 6 cos? 9
9o
— osin20 cos2ftan¢, (C2)
Ak§ .
kRS,(fI = —ysin0, (C3)
SH
1
% =7 sin?0 — ysin®0 — ysin20tan¢, (C4)

where g = Vpo/Vso, the parameter o = g*(e — §) con-
trols the SV-wave phase velocity, g, = Qpo/Qso, and
the parameters v and v, are responsible for the SH-
wave velocity and attenuation anisotropy, respectively
(Zhu & Tsvankin, 2006).

The normalized SV- and SH-wave phase attenua-
tion coefficients for £ = 0° can be found from equa-
tions B24 and B25:

Aleego sv = 2TQ—15 (1+ 0, sin’6@cos? ), (C5)

1 .
Alemoo 51 = 5555 (1+7gsin" ), (C6)

where the parameter o, (Zhu & Tsvankin, 2006) con-
trols the SV-wave attenuation coefficient:

oy = 51; [20(1 - g0) + 0%(eq — 8)] - (1)

To obtain the linearized shear-wave group angles
in TI media, we use equations B27 and B28 (see also
Tsvankin, 2005):

tan sy cos ¢sy = o sin 26 cos 20 (C8)

and
tan sy cos gsg = ysin 26. (C9)

Substituting the anisotropy parameters into equa-
tions B30 and B31 yields the following group attenua-
tion coefficients:

Agsv = m% (1+ g sin? 0 cos® 0) , (C10)
1 .2
Ag,sH = 0% (1474 sin”0) . (C11)

APPENDIX D: ATTENUATION FOR
LARGE INHOMOGENEITY ANGLES

Here, we develop closed-form expressions for the wave
vector k and group attenuation coefficient A, for large
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angles £. For simplicity, we analyze only S2-waves; ex-
pressions for P- and Si-waves can be derived using the
same procedure. The development follows the same ap-
proach as that described in Appendix B. The group
angle ¥° in the background, however, does not van-
ish (equation 26), and the background vector k° =
kR0 — k10 is given by equations 23 and 24. (Note
that for small and moderate angles £ considered in Ap-
pendix B, the group angle 1° was zero.) For large &, the
real (k™) and imaginary (k’'°) parts of the background
wave vector are related by (equation 25)

kI,O
W:l—roosg, (D1)

and the group angle 9° is expressed as (equation 26)

tany® = % — cosé&, (D2)

where Q° is the background quality factor. The per-
turbation produces a change in both the wave vector
(AKR —iAKT) and the group direction.

First, we obtain k® and k! by solving equation B4
and linearizing the result in Aa;;. Eliminating terms
quadratic or higher-order in Q° cos¢ and those propor-
tional to Aai;Q° cos €, as well as setting terms quadratic
in sin € to one, we find

kg, kg, 1 ( R Aa‘{e)
=2 =1 —_ (Add + =) tan
ks, ks v, (200 F Qs ) 208

1 I Aaﬁ I Aaé% )
+ ——— | Aayy — —— — Aags + .
4V, cos ¢ ( “ 7 Qso o 0

For the special case of TI media, the Sz-mode becomes
the SH-wave, and equation D3 (after eliminating terms
proportional to v/Q%, and Yo/ Q%) takes the form

kS, k&, 142520

Yo cos260 1
kgz'o N ké’zo 2

4Qso cos&

(D4)

tan & —

The product tan cos ¢ needed to find Ay can be
obtained from equation A16:

1 [ 2Aa£6

—5 — 6Aak;
a2, | @so Q46

tan cos ¢ = 61_ —cos& —
S0

+

n <3Aaf4 Aak
Qso Qso

+ Aaly — 5Aa{56) sin 5] .
(D5)

The group attenuation coefficient A, is found by
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ABSTRACT

Conventional prestack time-migration velocity analysis is designed to estimate |
diffraction time functions in a fixed azimuthal direction from narrow-azimuth :
reflection data. Therefore, it can build accurate 3D migration operators only if

the subsurface is isotropic (or azimuthally isotropic) and laterally homogeneous.
Here, we extend time-migration methodology to multi-azimuth or wide-azimuth
data from azimuthally anisotropic, weakly heterogeneous media.

We derive the azimuthally varying diffraction time function from the most gen-
eral form of Hamilton’s principal equation and apply a Taylor series expansion to
the traveltime in the vicinity of the image ray. This approach helps to relate the
Taylor series coefficients to the corresponding multi-azimuth imaging parame-
ters. The second-order coefficients, which define the “migration-velocity ellipse,”
are obtained from time-migration velocity analysis in at least three distinct
azimuthal directions. Our multi-azimuth prestack time migration (MAPSTM)
solves the mismatch problem that occurs in conventional processing when the
same depth point creates different time images in different azimuths. The al-
gorithm is successfully tested on synthetic data for a horizontally layered az-
imuthally anisotropic model and an isotropic medium with a dipping interface.

Key words: time migration, velocity analysis, azimuthal anisotropy, NMO
ellipse, image ray, multi-azimuth surveys. . :

1 INTRODUCTION

Conventional prestack time-migration operators are de-
rived from analytic diffraction time functions. The
diffraction times for any source and receiver position
are defined solely by a single average velocity (i.e., the
RMS velocity) at the image point instead of the true ve-
locity field above the reflector. The time-migration ve-
locity is obtained by focusing analyses on prestack time-
migrated gathers. This approach generally proved to be
robust for narrow-azimuth 2D and 3D seismic data, par-
ticularly when the subsurface is not structurally com-
plex.

However, the limitations of the conventional time-
migration methodology have become obvious with the
advent of multi-azimuth and wide-azimuth seismic sur-
veys. The most important advantages of multi-azimuth

data acquisition are improved noise suppression, mul-
tiple attenuation and target illumination (Manning
et al., 2007); wide azimuthal coverage can also help in
anisotropic parameter estimation. As discussed by Keg-
gin et al. (2007), one of the the biggest problems in con-
ventional processing of multi-azimuth data is that sum-
mation of signals acquired at different azimuths does
not account for traveltime differences due to azimuthal
anisotropy and/or lateral velocity variation.

Time imaging for orthorhombic symmetry, which
adequately ~ describes fracture-induced azimuthal
anisotropy, is discussed by Grechka & Tsvankin
(1999). They show that all P-wave time processing
steps (normal-moveout and dip-moveout corrections,
prestack and poststack time migration) for a laterally
homogeneous orthorhombic medium above a dipping




paraxial matrices (Moser & Cerveny, 2007), which de-
scribe the transmission of the central ray between the
anterior and posterior surfaces:

x’ Ay Bo x
(2w )-(e o)) e
P — Py Co Do P — Po

Given the deviations from the central ray in the
initial position (x) and slowness (p — po) vectors, equa-
tion 2 yields the corresponding vectors at the posterior
surface, if the matrices Ao, Bo, Co, and Do are known.
The surface-to-surface paraxial matrix T can also be
computed from the paraxial ray propagator matrix us-
ing surface transformation matrices (Hubral et al., 1992;
Cerveny, 2001; Moser & Cerveny, 2007).

Assuming the existence of the inverse matrix Bg’,
equation 2 can be rewritten after simple algebraic oper-
ations as

P =po+By'x —By'Aox, i ®3)
and
p' =p'o+Cox—DoBy'Aox+ DoBy'x'. (4)

Therefore, the initial and final slowness vectors of any
transmitted ray in the vicinity of the central ray can be
computed from equations 3 and 4, respectively.

2.2 Traveltime of transmitted events

The traveltime difference between the central ray and a
ray displaced at the anterior surface by dX and at the
posterior surface by dx’ can be found from Hamilton’s
principal equation as the total differential,

dt(%,x/) =p’ - dx' — p - d%. (5)

Hamilton’s equation was originally derived from general
variational principles. For example, the proof of equa-
tion 5 for anisotropic media in Buchdahl (1970) is based
on Fermat’s principle. The partial derivatives (1;’ and
—p) of the total differential dt in equation 5 lead to
the fundamental relationship between phase and group
velocity for arbitrarily anisotropic media. Within the
framework of our approximation, it is possible to replace
the three-component vectors in equation 5 by their two-
component counterparts (Bortfeld, 1989):

dt(x,x') =p’-dx' —p-dx. (6)

Equation 6 preserves the general form of Hamilton’s
equation for the two-component position and slowness
vectors.

Substituting equations 3 and 4 into equation 6 and
integrating the resulting expression, we obtain:

t(x,x)=to—po-X+py-x + %x'-DoBglx'

+%x-B51on—x'Bglx'; (7
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to is the exact one-way traveltime along the central ray.
Equation 7, also known as Hamilton’s point character-
istic, yields the traveltimes of paraxial rays transmitted
through an anisotropic heterogeneous medium between
the anterior (x) and posterior (x') surfaces. If known,
the special form of Hamilton’s point characteristic al-
lows one to determine the complete seismic system. This
property is very important for model parameter estima-
tion.

2.3 Multi-azimuth prestack time migration

Time migration moves a weighted sum of the wavefield
amplitudes measured at the diffraction time surface to
the two-way traveltimes at the emerging point of the
image ray. An image ray is a transmitted ray that orig-
inates at the surface with the slowness vector parallel
to the surface normal and ends at the reflection point
(Hubral & Krey, 1980). The diffraction time surface is
obtained as the ensemble of the transmitted times from
all source-receiver combinations to the reflection point.
This type of migration is also called “diffraction stack”
or “Kirchhoff-type migration.”

The weighting functions are commonly applied to
preserve the amplitude behavior of reflected waves, or
in some cases even to compensate the amplitude for
losses caused by geometrical spreading (Schleicher et al.,
2007). For example, simplified versions of such weights
valid for horizontally layered media are often applied in
time migration and are considered as known here.

To define the migration operator, we still need to
obtain the diffraction time function of a hypothetical
diffractor at the reflection point, the associated image
ray and the two-way traveltime along that ray. Since the
reflection point is generally unknown, neither traveltime
can be found. To overcome this difficulty, we reformulate
the problem by starting from the migrated volume. The
amplitude at each time sample is considered to belong
to a time image point built by stacking along the diffrac-
tion times of a diffractor at the endpoint of the image
ray. If no reflector was found at the endpoint of the im-
age ray, the amplitude of the corresponding time image
sample is expected to vanish. A different approach that
leads (theoretically) to the same migration result oper-
ates in the vicinity of the normal ray (see Appendix A).

We consider an arbitrary image ray (coveniently
treated as the central ray) and build the diffraction time
function for every time sample. Parameters related to
this central ray will be denoted by the subscript “I.”
For example, the traveltime of the ray that connects
the receiver x, and the diffraction point x’ at the re-
flector is obtained from Hamilton’s point characteristic
for transmitted rays (equation 7) by employing the im-
age ray condition pr = 0 (Bortfeld, 1989; Hubral et al.,




an intermediate plane dipping interface (Figure 2). The
synthetic volume included two 3D data sets with the
acquisition azimuths in the dip and strike directions of
the interface. Conventional prestack time migration in-
cluding common-image-gather (CIG) velocity analysis
was applied to each data set separately. Figure 3 shows
image gathers for the horizontal reflector beneath the
dipping interface computed in the dip and strike direc-
tions. Although the gathers obtained with the best-fit
velocity in each direction are flat, they show a time dif-
ference sufficient to degrade the quality of stacking. This
difference, caused by the 30°-dip of the intermediate in-
terface (i.e., by lateral heterogeneity), is the reason for
destructive intereference on time-migration stacks often
observed in multi-azimuth time imaging.

For isotropic media, conventional processing leads
to distortions when the overburden is laterally hetero-
geneous and the image point is located outside the in-
cidence (sagittal) plane. The presence of heterogeneity
requires application of an azimuthally-dependent migra-
tion operator, while out-of-plane image rays correspond
to azimuthal imaging angles (i.e., the angles between
the z-axis and the lines from the source/receiver posi-
tions to the emergence point of the image ray) different
from the source-receiver azimuth. In our simple exam-
ple, the image rays for reflections recorded on the strike
line deviate from the incidence plane, which distorts the
migration result obtained using a single best-fit velocity.

Next, the same image gathers in dip and strike di-
rections were computed by our multi-azimuth prestack
time migration, which takes the azimuthal velocity vari-
ation into account (Figure 4). After application of the
optimal migration-velocity ellipse, flat gathers from dif-
ferent azimuthal directions are recorded at the same
time and can be stacked to obtain a high-quality final
image.

We also tested our algorithm on a laterally ho-
mogeneous azimuthally anisotropic model that includes
an HTI layer sandwiched between two isotropic layers.
The parameter V), which determines the elongation
of the P-wave NMO ellipse in HTI media (Tsvankin,
1997), was intentionally chosen to be uncommonly large
by absolute value. The synthetic data were generated
with anisotropic ray tracing code ANRAY developed
by Gajewski & Psencik (1987). Figure 5 shows several
input common-offset, common-azimuth sections for the
reflection from the bottom of the HTT layer.

The substantial time difference between the reflec-
tions in the planes parallel and perpendicular to the
symmetry axis is caused by the pronounced azimuthal
anisotropy (here associated with the parameter 5<V)).
This difference would result in a significant imaging mis-
match after conventional time migration, if a single ve-
locity is used for both principal azimuthal directions.
Note that image rays excited in either vertical symme-
try plane of the HTI layer do not deviate from the in-
cidence plane. Therefore, for this model it is possible to
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avoid the mismatch by migrating narrow-azimuth data
for each symmetry plane with the best-fit velocity es-
timated for that plane by the conventional algorithm
(i.e., the approach that failed for the isotropic model
discussed above).

To carry out multi-azimuth time-migration velocity
analysis, we used equation 12. The time-migration ve-
locity ellipse was estimated by flattening the common-
image gathers for the available offsets and azimuths.
Because the symmetry-axis orientation is assumed to
be known, velocity analysis has to be applied only in
the principal directions of the model. The time-migrated
images of the azimuth-offset sections from Figure 5 are
displayed in Figure 6. Clearly, the reflection from the
bottom of the HTI layer is imaged at the same posi-
tion using all azimuth-offset combinations in the input
data. Figure 7 shows the time-migration response of one
of the constant-azimuth, constant-offset volumes in the
form of a time-slice, as well as in-line and cross-line sec-
tions.

4 CONCLUSIONS

We introduced a method for multi-azimuth prestack
time migration (MAPSTM) based on the azimuthally-
dependent diffraction time function. Hamilton’s prin-
cipal equation helped to obtain a relationship be-
tween azimuthally varying time-migration velocities and
3D prestack time-migration operators for arbitrarily
anisotropic, weakly heterogeneous media. The current
version of the method employs a second-order travel-
time approximation, which makes the MAPSTM oper-
ator sufficiently accurate only for small- and moderate-
offset data. The operator depends on three independent
parameters that form the “time-migration velocity el-
lipse.” The ellipse is obtained from time-migrated multi-
azimuth data by flattening common-image gathers for
all available offsets and azimuths. In contrast to exist-
ing migration methods for azimuthally anisotropic (e.g.,
orthorhombic) media, our algorithm does not require es-
timation of the normal-moveout velocities and relevant
anisotropy parameters.

To compare MAPSTM with conventional process-
ing, we generated multi-azimuth synthetic data for two
models, one of which is isotropic but laterally het-
erogeneous (it contains a dipping interface), while the
other includes an HTI layer with strong azimuthal
anisotropy. Although conventional migration may pro-
duce flat gathers in the principal azimuthal directions,
the time of migrated events varies with azimuth. This
time difference is sufficient to cause destructive interef-
erence on time-migration stacks often observed in multi-
azimuth time imaging. The time mismatch problem was
fully resolved for both models by applying MAPSTM
with the best-fit time-migration velocity ellipse.

i




6.6

6.8

Time (s)
7

7.2

7.4

0 2 4 6 8
Offset

(@)

6.6

6.8

Time (s)
7

7.2

7.4

0 2 4 6 8
Offset

(b)

Figure 3. Conventional CIG gathers in the dip (a) and strike
(b) directions for the isotropic model from Figure 2. The
gathers are computed with the optimal migration velocity
for each direction.
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Figure 4. Multi-azimuth CIG gathers in the dip (a) and
strike (b) directions for the isotropic model from Figure 2.
Both gathers are computed with the optimal migration-
velocity ellipse. The first offset and the offset increment in
the CIG are 400 m.
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the midpoint at the origin of the coordinate system is
obtained from equation A2 by setting 1 (x, + x,)=0:

T2(x,,x5) = Te+2Th % (xr—xs)-Bgle% (%, —x2).(A3)

We denote the three independent elements of the sym-
metric 2 X 2 matrix Bgle by Wi1, Wiz, Was, and
express the offset vector x, — xs through its magnitude
h and angle o with the z-axis. After carrying out the
vector-matrix operations, equation A3 becomes:

T?(xr, %) = T + % (W11 cos® a + 2W2 cos asina

+ Wag sin® o) 2 = T§ + (A4)

h2
Vino(@)’
where

Vn;:‘)o(a) = % (W cos? o + 2Wi cos asin o

+ Waz sin’ ). (A5)

Equations A4 and A5 are equivalent to the equation
of the NMO ellipse derived by Grechka & Tsvankin
(1998). The parameters Wi, Wia, and Wae of the
global matrix combination By'Ao define the NMO
ellipse and can be estimated from hyperbolic moveout
analysis for at least three distinct azimuths of the
CMP line. The NMO-velocity equations A4 and A5
appear to be similar to equations 10 and 11 for the
azimuthally-varying time-migration velocity. However,
NMO and time-migration velocities are identical only
in the special case when the normal and image rays
coincide, which happens in horizontally layered media.
In order to derive a time-migration operator from NMO
velocities (around the normal ray), it will be necessary
to add dip information.

A1 Time migration based on NMO velocities

To develop a time-migration formalism using the normal
ray and NMO velocities, we use an approach different
from the one described in the main text. As before, we
consider the diffraction time function of a hypothetical
diffractor at the reflection point. But here we start from
the normal ray (instead of the image ray) treating every
time sample along the normal ray as a possible reflection
point and stacking along the corresponding diffraction
time function. The stacked amplitude value is assigned
to the image time (two-way traveltime along the image
ray). The image ray is the transmitted ray between the
earth’s surface and the reflection point, whose initial
slowness vector is perpendicular to the surface. If no
reflector is found at the endpoint of the normal ray, the
amplitude obtained by summation is expected to vanish.

The diffraction time function of a diffractor at the
endpoint (x’ = 0 and p’ = 0) of the normal ray (in this
case chosen as the central ray) is obtained from Hamil-
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ton’s point characteristic in equation 7. For example,
the traveltime from the receiver x, to the diffraction
point is

t(xr,x'=0)=to—po~xr+%x,--Bglexr, (A6)

where to is the exact one-way traveltime along the cen-
tral ray; the initial slowness vector po and the prod-
uct By 1Ag also correspond to that ray. The second-
order (hyperbolic) approximation is obtained by squar-
ing both sides of equation A6 and dropping third- and
higher-order terms:

t2(xr,x' = 0) = [to — po - Xr]> + to X, - By ' Ao X, . (A7)

The three independent elements W11, W12, Waa of the
2 x 2 symmetric matrix By Ao can be found from az-
imuthal moveout analysis, as discussed above (equa-
tions A4 and A5). Finally, the diffraction time function
is obtained by substituting the NMO ellipse into equa-
tion A7 and adding a similar traveltime term for the
transmitted ray from the source position Xs:

iz
TD:\/””"""’]”W
5
e

The distances [ and l; are measured from the normal
ray (where the NMO ellipse is determined), and ~ and
¢ are the azimuths to the source and receiver, respec-
tively. Given the NMO ellipse and the initial slowness
vector of the central ray, equation A8 yields the diffrac-
tion times for any source-receiver combination in the
prestack data. The final image time and image position
are found by simply searching for the shortest two-way
time among all rays transmitted from the surface to the
diffraction point.

Equation A8 helps us understand the difference
between the two time-migration approaches discussed
here. Whereas the algorithm based on the image-ray pa-
rameters (equation 12) requires only the time-migration
velocities, time migration operating with the normal-ray
parameters (equation A8) needs not just the NMO el-
lipse but also the initial slowness vector po (i.e., the
horizontal slowness) of the normal ray. However, with
the vector po estimated from zero-offset time slopes,
the two approaches produce equivalent time-migration
operators (in the second-order approximation). A post-
stack version of time migration based on NMO veloci-
ties and zero-offset slopes is used in Sollner & Andersen
(2005) for 3D kinematic imaging.

T —
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ABSTRACT ‘

Transversely isotropic models with a tilted symmetry axis (TTI) play an in-
creasingly important role in seismic imaging, especially near salt bodies and in
active tectonic areas. Here, we present a 2D parameter-estimation methodology
for TTI media based on combining P-wave normal-moveout (NMO) velocities,
zero-offset traveltimes, and reflection time slopes with borehole data that in-
clude the vertical group velocities as well as the reflector depths and dips.

For a dipping TTI layer with the symmetry axis confined to the dip plane of
the reflector, estimation of the symmetry-direction velocity Vpo, the anisotropy
parameters € and 6, and the tilt v of the symmetry axis proves to be ambiguous
despite the borehole constraints. If the symmetry axis is orthogonal to the
reflector (a model typical for dipping shale layers), Vpo and ¢ can be recovered
with high accuracy, even when the symmetry axis deviates by +5° from the
reflector normal. The parameter €, however, cannot be constrained for dips
smaller than 60° without using nonhyperbolic moveout.

To invert for the interval parameters of layered TTI media, we apply 2D
stacking-velocity tomography supplemented with the same borehole constraints.
The dip planes in all layers are assumed to be aligned; also, the symmetry axis
is set orthogonal to the reflector in each layer, which helps to avoid ambigu-
ity caused by an unknown tilt v. Synthetic tests confirm that estimation of
the interval parameters Vpo and § remains stable in the presence of Gaussian
noise in the input data. Our algorithm can be used to build an accurate initial
TTI model for post-migration reflection tomography and other techniques that
employ migration velocity analysis.

Key words: transverse isotropy, tilted axis, TTI, moveout inversion, interval
parameters, stacking velocity, dipping reflectors, tomography, borehole data

1 INTRODUCTION

Ignoring anisotropy in P-wave processing causes imag-
ing and interpretation errors, such as mispositioning
of horizontal and dipping reflectors (e.g., Alkhalifah &
Larner, 1994; Alkhalifah et al., 1996; Vestrum et al.,
1999). While many widely used migration algorithms
have been extended to transversely isotropic (TI) me-
dia, constructing an accurate anisotropic velocity model
remains a challenging problem. For TI models with a
vertical symmetry axis (VTI), the depth-domain P-wave
velocity field is controlled by the vertical velocity Vpo
and the Thomsen (1986) parameters € and 6. To re-

solve all three parameters individually, P-wave moveout
typically has to be combined with shear modes (SS- or
PS-waves) or borehole data (Tsvankin & Grechka, 2000;
Sexton & Williamson, 1998).

Vertical transverse isotropy has proved to be ade-
quate for most horizontally stratified, unfractured sedi-
ments. However, in progradational clastic or carbonate
sequences, as well as in the presence of obliquely dipping
fractures, the symmetry axis is tilted (Figure 1). Also,
TI with a tilted symmetry axis (TTI) is an appropri-
ate model for dipping shale layers near salt domes and
in fold-and-thrust belts such as the Canadian Foothills
(Isaac & Lawton, 1999; Vestrum et al., 1999; Charles




flector depths, but also with the dips of all interfaces.
First, we introduce a semi-analytic inversion procedure
for a single TT1I layer above a dipping interface and show
that the medium parameters cannot be resolved with-
out constraining the tilt of the symmetry axis. Then
we develop joint tomographic inversion of moveout and
borehole data for a stack of TTI layers with the symme-
try axis orthogonal to the layer boundaries. Synthetic
tests with a realistic level of Gaussian noise illustrate
the stability of estimating the interval parameters Vpo,
€, and 4.

2 INVERSION FOR A SINGLE TTI LAYER

We start by considering the simple model of a homo-
geneous TTI layer above a planar dipping reflector. To
make the problem 2D, the symmetry axis is assumed
to be confined to the dip plane. The tilt angle v is
taken positive, if the symmetry axis is rotated counter-
clockwise from the vertical. P-wave surface data pro-
vide the zero-offset reflection time to, the reflection slope
(horizontal slowness) p on the zero-offset time section,
and the NMO velocity Vimo. Because the layer is homo-
geneous, it is sufficient to have the estimates of to, p,
and Vamo for a single common midpoint (CMP). At a
location where a vertical well is available, we can mea-
sure the P-wave vertical group velocity along with the
depth and dip of the reflector.

2.1 Arbitrary axis orientation
2.1.1 Inversion methodology

The exact P-wave phase-velocity function in TT media
expressed through the Thomsen parameters is given by
(Tsvankin, 1996, 2005)
v? i
-‘E =1+e€sin“0 — 5

f 4sin® 6 ) 462 sin* 6
+ 5 1+ 7 (26 cos? § — ecos26) + 72

(1)
where 6 is the phase angle with the symmetry axis (as-
sumed to be positive for counter-clockwise rotation),
Vpo is the symmetry-direction velocity, and

Y

Vso is the symmetry-direction velocity of S-waves. Be-
cause the influence of Vs on P-wave kinematics is neg-
ligible, the value of f can be set to a constant using a
typical Vpo/Vso ratio (e.g., Vpo/Vso = 2). Therefore,
the phase velocity V represents a function of the four
medium parameters (Vpo, €, 8, and v) and the phase
angle 6 with the vertical:

szl(VP07€767é,V); (3)
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the phase angle with the symmetry axis in equation 1
is0=0—v.

For the zero-offset reflection, the phase-velocity
(slowness) vector is perpendicular to the reflector, and
the phase angle with the vertical 6 is equal to the dip
¢w (Figure 3a; the subscript “w” denotes well data).
The phase velocity for the zero-offset reflection can be
computed through the known values of ¢, and p as

Sin ¢y
Vi = —— . 4
; , (4)
Substituting equation 4 into equation 3 yields
sin ¢
Fi(Veo, 6,8, 6u,0) = 202 )

The P-wave group velocity Ve in TI media can be
found as a function of the phase velocity V' and its
derivative with respect to 8 (e.g., Tsvankin, 2005):

1dv\?
Ve=V 1+(V-d—0) . (6)
Therefore, Vi represents a function (different from f1)
of the parameters Vpo, €, §, 6, and v:

Vo = f2(Vpo,€,6,6,v). (7

The P-wave group angle ¢ with the symmetry axis is
also controlled by the angle-dependent phase velocity
(e.g., Tsvankin, 2005):

tanzb:———-l_t_:ie_ﬂ . (8)

Therefore, the angle + with the vertical in a TTI layer
can be rewritten as

1Z=f3(VP0)576’§7V)' (9)

For the zero-offset reflection, the phase angle § = ¢,
(Figure 3a), so

Vo =f2(VP07676’¢w7V)7 (10)
and the group angle with the vertical is
1;0=f3(VP0a€,6’¢w1V)' (11)

The length of the zero-offset raypath (AB in Figure 3a)
can be calculated from the vertical thickness z,, of the
layer and the angles ¢, and Yo (Figure 3a). AB can also
be expressed through the two-way zero-offset reflection
time to and the group velocity given by equation 10:

2wCosdw _ Vaoto
cos(4ho — dw) 2

o is found from equation 11. Note that if the CMP
is displaced from the well by a known distance, equa-
tion 12 can be modified accordingly. Hence, we have
constructed two equations (5 and 12) for the four un-
known parameters.

(12)




Actual Estimated

mean sd

Vpo (km/s) 250 292 0.25

€ 025 015 0.77
] 010 -0.14 0.14
v (°) 50 20 33
Dip (°) 30 - _

Depth (km) 1 - -

Table 1. Actual and estimated parameters of a TTI layer.
The dip and depth are measured at the well location. The
input data were contaminated by Gaussian noise with the
standard deviations equal to 1% for p and to, and 2% for
Vamo and Vg, . The standard deviations and mean values of
the inverted parameters are denoted by “sd” and “mean,”
respectively.

to be highly unstable, with small errors in the data pro-
ducing large distortions in the estimated parameters.
This instability is partially caused by the nonlinear de-
pendence of the phase velocity V on the tilt v (Grechka
et al., 2002a). Similar results were obtained for a wide
range of model parameters.

2.2 Symmetry axis orthogonal to the reflector

If TTI symmetry is associated with dipping shale layers,
the symmetry axis is typically orthogonal to the layer
boundaries (Isaac & Lawton, 1999; Vestrum et al., 1999;
Charles et al., 2008). Fixing the orientation of the sym-
metry axis helps to overcome the nonuniqueness of the
inversion procedure (Grechka et al., 2002a; Zhou et al.,
2008; Behera & Tsvankin, 2009).

2.2.1 Inversion methodology

If the symmetry axis is orthogonal to the reflector, the
tilt v is equal to the reflector dip ¢, measured in the
well. Also, the phase-velocity vector of the zero-offset
reflection is parallel to the symmetry axis, and the ve-
locity Vpo can be obtained directly from surface data
and the dip ¢w:

Vpg = ——. 22
0 ’ (22)

The NMO velocity for v =¢,, is given by the isotropic
cosine-of-dip relationship (Tsvankin, 2005):

_ Vnmo(o)
Vamo = COS¢w ) (23)

where Vamo(0) = Vpov/1+ 26. Since Vpo is already
known, equation 23 constrains the parameter 6.
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Because the group and phase velocities in the sym-

metry direction coincide, equation 18 contains only

known quantities and can be used to check the validity
of the model. Therefore, the inverse problem reduces to
estimating the parameters € and 6, from the vertical
group velocity (i.e., from equations 19 and 20):

fZ(VP07 €, 5) éwa ¢'w) = VGUJ ) (24)
f3(VP0a €, 6;éw,¢‘w) =0. (25)

Evidently, when v = ¢, the inversion equations do not
include z,, and are independent of the CMP location.
Moreover, if the well is not vertical but its inclination
is known, equations 24 and 25 retain the same form
with a nonzero group angle on the right-hand side of
equation 25.

2.2.2 Synthetic examples

First, we perform a test on noise-contaminated data
for a model with v = ¢, = 30° and typical values
of the Thomsen parameters (Figure 4a). The param-
eters Vpo and § can be estimated with high accuracy;
the mean value of Vpo is 2.50 km/s with the standard
deviation 1%; the mean value of § is 0.10 with the stan-
dard deviation 0.03. However, the parameter € is prac-
tically unconstrained (the standard deviation is 1.37).
The instability in estimating e can be explained us-
ing the linearized weak-anisotropy approximation. For
weak anisotropy, the phase and group velocities coincide
(Thomsen, 1986), and for the vertical ray

Vew = Vpo(l + 8sin? ¢y, cos® du + esin’ ¢u) . (26)

For moderate dips, such as ¢, = 30° used in the test,
the contribution of € is much smaller than that of §
because € is multiplied with sin® ¢..

We repeated the test for a range of dips with the
results listed in Table 2. The estimates of Vpo and § are
sufficiently accurate, with small (and practically con-
stant) standard deviations for all dips. The errors in
the parameter €, however, are much larger; to resolve €
from the vertical group velocity, the dip (and tilt) should
reach at least 60°. Our algorithm operates with NMO
velocity, which controls reflection moveout for offset-
to-depth ratios limited by unity. If long-spread P-wave
data (with the offset-to-depth ratio reaching two) are
available, it is possible to estimate ¢ from nonhyperbolic
moveout (Behera & Tsvankin, 2009).

If the symmetry axis is not orthogonal to the re-
flector, the algorithm based on setting v = ¢, produces
errors in the inverted parameters. However, for typical
moderate magnitudes of € and § (|e] < 0.5; |§] < 0.3),
the errors in Vpo and § remain small, if the symme-
try axis deviates from the reflector normal by less than
5° and the dip ranges from 5° to 50° (Table 3). For
example, we computed the input data with the actual
tilt » = 15° and dip ¢, = 20°, then obtained the pa-
rameters Vpo = 2.5km/s and § = 0.11 under the as-
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Figure 4. Inversion results (dots) for a TTI layer with the symmetry axis orthogonal to its bottom. The inversion was carried
out for 1000 realizations of input data contaminated by Gaussian noise with the standard deviations equal to 1% for the
reflection slope p and 2% for Vamo and Vg,,. Due to the large standard deviation (1.37) of ¢, the e-axis on plot (b) is clipped.
The actual parameter values are marked by the crosses. The starting model was isotropic.

also obtained by ray tracing in the trial model. Fitting
the interval velocity Vé’:v) is equivalent to solving equa-
tions 24 and 25 for a single layer because the phase angle
0., for the vertical ray is obtained from the trial medium
parameters.

Reflection slopes in layered media cannot yield the
interval symmetry-direction velocities directly (as in
equation 22). Instead, we use the slopes p(n) and zero-
offset traveltimes to(n) (equation 28) to construct the
one-way zero-offset rays for the trial TTI parameters
and compute the “trial” reflector depths in the well. For
the first layer, the vertical slowness of the zero-offset
ray and the slowness vector as a whole can be com-
puted from the trial parameters m; and the horizontal
slowness p(1) using the Christoffel equation. The group-
velocity vector (zero-offset ray) in the first layer is then
calculated from the slowness vector. The zero-offset re-
flection point is found from the traveltime to(1), which

allows us to compute the depth of the first reflector zﬁi}c
at the well location. After the first interface has been re-
constructed, we repeat the same procedure for the sec-
ond interface by tracing “back” the zero-offset ray with
the slope p(2) (see Grechka et al., 2002b). Continuing
this procedure downward yields the estimated reflector
depths z((::l)c, which can be compared with the measured
values.

The interval parameters V}(;(;), €™ 6™ are esti-

mated by minimizing the following objective function

that contains the differences between the calculated
(“calc”) and measured quantities:

N
f(ﬁz’) = Z (”Vnmo,calc(n) - Vnmo(n)”
n=1
+ |IZ"(Zt):alc - z‘(”n)” + “VC(J?U),calc - VG(::1) ”) .
(29)

Grechka et al. (2002b) fit only P-wave NMO el-
lipses in their objective function, because their input
data did not include borehole information. Our algo-
rithm operates with 2D data, so we use a single NMO
velocity instead of the three parameters of the NMO
ellipse. However, we also add two quantities (z,(”") and
Vé:?) measured from borehole data. Note that the dips
¢SZ’ ) have been used to constrain the tilt »(™ of the
symmetry axis in each layer.

For a single layer, the parameter € is constrained
only by equations 24 and 25. However, for layered TTI
media, €™ also contributes to zézl)c and Vimo,caic(n) (ex-
cept for n = 1). Therefore, although we established
that €™ cannot be resolved from conventional-spread
P-wave data for dips smaller than 60°, it has to be es-
timated together with V,&'g’ and 6. This tomographic
inversion can be applied to a single CMP since each
layer is laterally homogeneous with planar boundaries.

It should be emphasized that we invert for all inter-
val parameters simultaneously without employing layer
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Figure 6. a) Interval symmetry-direction velocities V}gg) and b) anisotropy parameters (") (n = 1,2,3) estimated by the
tomographic inversion for the model from Figure 5 and Table 4. The dots mark the exact values, and the bars correspond to

the + standard deviation in each parameter.

reflector depth. By performing the inversion for all lay-
ers simultaneously, the algorithm mitigates error accu-
mulation with depth. As is the case for a single layer,
Vpo and § are well-resolved, while ¢ is poorly constrained
for small and moderate reflector dips. If long-spread P-
wave data are available, € can be obtained from nonhy-
perbolic moveout inversion.

Our algorithm can be extended in a straightforward
way to 3D wide-azimuth P-wave data by replacing the
NMO velocities in the objective function with the NMO
ellipses. If the dip and strike of each reflector are mea-
sured in the borehole, the orientation of the symmetry
axis in each layer is known. Therefore, wide-azimuth
data provide additional information for estimating the
same interval TTI parameters (Vpo, €, and &), which
should enhance the stability of the inversion procedure
and reduce errors caused by the deviation of the sym-
metry axis from the reflector normal.

Stacking-velocity tomography, possibly supple-
mented with nonhyperbolic moveout inversion for ¢, rep-
resents an efficient tool for building an initial model for
migration velocity analysis (MVA) and post-migration
reflection tomography. After carrying out the interval
parameter estimation at well locations, the Vpo- and
o-fields can be computed by interpolation between the
wells. An accurate initial TTI model is critically im-
portant to ensure the convergence of MVA-based algo-
rithms.
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Elastic wave mode separation for TTI media
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Center for Wave Phenomena, Colorado School of Mines

ABSTRACT

The separation of wave modes for isotropic elastic wavefields is typically done using
Helmholtz decomposition. However, Helmholtz decomposition using conventional di-
vergence and curl operators does not give satisfactory results in anisotropic media and
leaves the different wave modes only partially separated. The separation of anisotro-
pic wavefields requires the use of more sophisticated operators which depend on local
material parameters. Wavefield separation operators for TI (transverse isotropic) mod-
els can be constructed based on the polarization vectors evaluated at each point of the
medium by solving the Christoffel equation using local medium parameters. These po-
larization vectors can be represented in the space domain as localized filters, which
resemble conventional derivative operators. The spatially-variable “pseudo” derivative
operators perform well in 2D heterogeneous TI media even at places of rapid variation.
Wave separation for 3D TI media can be performed in a similar way. In 3D TI media, P
and SV waves are polarized only in symmetry planes, and SH waves are polarized or-
thogonal to symmetry planes. Using the mutual orthogonality property between these
modes, we only need to solve for the P wave polarization vectors from the Christoffel
equation, and SV and SH wave polarizations can be constructed using the relationship
between these three modes. Synthetic results indicate that the operators can be used to
separate wavefields for TI media with arbitrary strength of anisotropy.

Key words: elastic, imaging, TTI, heterogeneous

1 INTRODUCTION

wave-equation migration for elastic data usually consists of
two steps. The first step is wavefield reconstruction in the sub-
surface from data recorded at the surface. The second step is
the application of an imaging condition which extracts reflec-
tivity information from the reconstructed wavefields.

The elastic wave-equation migration for multicomponent
data can be implemented in two ways. The first approach is
to separate recorded elastic data into the compressional and
transverse (P and S) modes and use these separated modes for
acoustic wave-equation migration respectively. This acoustic
imaging approach to elastic waves is used most frequently, but
it is fundamentally based on the assumption that P and S data
can be successfully separated on the surface, which is not al-
ways true (Etgen, 1988; Zhe & Greenhalgh, 1997). The sec-
ond approach is to not separate P and S modes on the surface,
extrapolate the entire elastic wavefield at once, then separate
wave modes prior to applying an imaging condition. The re-
construction of elastic wavefields can be implemented using
various techniques, including reconstruction by time reversal

(RTM) (Chang & McMechan, 1986, 1994) or by Kirchhoff in-
tegral techniques (Hokstad, 2000).

The imaging condition applied to the reconstructed vec-
tor wavefields directly determines the quality of the images.
The conventional cross-correlation imaging condition does not
separate the wave modes and cross-correlates the Cartesian
components of the elastic wavefields. In general, the various
wave modes (P and S) are mixed on all wavefield components
and cause crosstalk and image artifacts. Yan & Sava (2008b)
suggest using imaging conditions based on elastic potentials,
which require cross-correlation of separated modes. Potential-
based imaging condition creates images that have a clear phys-
ical meaning, in contrast to images obtained with Cartesian
wavefield components, thus justifying the need for wave mode
separation.

As the need for anisotropic imaging increases, processing
and migration are performed more frequently based on ani-
sotropic acoustic one-way wave equations (Alkhalifah, 1998,
2000; Shan, 2006; Shan & Biondi, 2005; Fletcher etal., 2008).
However, less research has been done on anisotropic elastic
migration based on two-way wave equations. Elastic Kirch-




medium in the symmetry plane, and they can change from lo-
cation to location according to the material parameters.

The separation of P and SV wavefields can be similarly
accomplished for both VTI and TTI media. However, the fil-
ters for TTI and VTI media are different. The main differ-
ence is that for VTI media, waves propagating in all vertical
planes are simply P and SV wave modes. However, for TTI
media, only P and SV wave modes are polarized in the ver-
tical symmetry plane, and SH waves are decoupled from P
and SV modes, while in other vertical planes, the propagating
waves are a mix of P, SV, and SH modes. Therefore, the 2D
wave mode separation works for the vertical symmetry plane
or other non-vertical symmetry planes of TTI media.

For a medium with arbitrary anisotropy, we obtain the
polarization vectors U(k) by solving the Christoffel equation
(Aki & Richards, 2002; Tsvankin, 2005):

[G-pV’T|U=0, 3)

where G is the Christoffel matrix with Gi; = c¢;jkin;jny, in
which c¢;;; is the stiffness tensor, n; and n; are the normal-
ized wave vector components in the j and ! directions with
i,7,k,l = 1,2, 3. The parameter V' corresponds to the eigen-
values of the matrix G and represents the phase velocities of
different wave modes as functions of the wave vector k (cor-
responding to n; and n; in the matrix G). For plane waves
propagating in a symmetry plane of a TTI medium, since gP
and ¢SV modes are decoupled from the SH mode and polar-
ized in the symmetry planes, we can set k, = 0 and get

2
[Gu -pV G2 ] [Uz] —o0, @

G2 Gaz — pV?| U,
where
Gll = Cllki —+ 2615kzkz + 055]95 ) (5)
G12 —_ c15k3 + (013 e (355) kzkz + 035k§ ) (6)
G22 = C55k§ =+ 2035k¢kz + 033]‘33 . (7)

This equation allows us to compute the polarization vectors
Up = {U,,U.} and Usy = {-U,,U,} (the eigenvectors
of the matrix) for P and SV wave modes given the stiffness
tensor at every location of the medium. Here, the symmetry
axis of the TTI medium is not aligned with vertical axis of the
Cartesian coordinates, and the TTI Christoffel matrix takes a
different form than the VTI form.

Figure 2(b) shows the z and = components of the P wave
polarization vectors of a TTI medium with a 30° tilt angle, and
Figure 2(c) shows the polarization vectors projected onto the
symmetry axis and the isotropy plane (30° and -60°). Com-
paring Figure 2(a) and 2(c), we see that the polarization vec-
tors of this TTI medium are rotated 30° from those of the VTI
medium. However, notice that: the z and z components of the
polarization vectors for the VTI medium, Figure 2(a), are sym-
metric with respect to 2 and z axes, respectively; while the po-
larization vector components for the TTI medium, Figure 2(c),
are not.

In order to maintain the continuity at the negative and
positive Nyquist wavenumbers, —7 and 7 radians, we apply a
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taper to the vector components. For VTI media, a taper corre-
sponding to the function (Yan & Sava, 2008a)

8sin (k)  2sin(2k) 8sin(3k) sin (4k)

IR ===~k 105k © 1406 ©
can be applied to the = and z components of the polarization
vectors. The taper ensures that the Fourier domain derivatives
are 0 at the positive and negative Nyquist wavenumbers in the
derivative directions. They are also continuous in the z and
z directions, respectively, due to the symmetry. The taper ap-
plied to isotropic polarization vectors k leads to the normal
finite difference operators in the space domain (Yan & Sava,
2008a). Therefore, the VTI operators degenerate to normal
derivatives a% and % when the anisotropic parameters € and
4 are both zero.

For TTI media, due to the asymmetry of the Fourier do-
main derivatives, we need to apply a rotational symmetric ta-
per to the polarization vector components. A simple Gaussian
taper

2
16) = £ap |- L] ©)

can be applied to both components of TTI media polarization
vectors. We choose a standard deviation of ¢ = 1. In this case,
at the positive and negative Nyquist wavenumbers (—7 and 7
radians), the magnitude of this taper is about 3% of the peak
value, and the components can be safely assumed to be con-
tinuous across the Nyquist wavenumbers. However, after ap-
plying this taper, even for isotropic media, the space domain
derivatives are not the conventional finite difference operators.
Compared to conventional finite difference operators which
are 1D stencils, the derivatives constructed after the applica-
tion of the Gaussian taper are represented by 2D stencils.

Figure 3 illustrates the application of the Gaussian taper
to the polarization vectors shown in Figure 2. Figures 3(a), 4(a)
and Figures 3(b), 4(b) are the k and = domain representations
of the polarization vector components for the VIT medium
and the TTI medium after applying the Gaussian taper, re-
spectively; Figures 3(c) and 4(c) are the polarization vectors
projected on the symmetry axis and isotropy plane of the TTI
medium. We see that the derivatives in the k£ domain are now
continuous across the Nyquist wavenumbers in both = and 2
directions, and that the = domain derivatives are 2D compared
to the conventional 1D finite difference operators.

We can apply the procedure described here to heteroge-
neous media by computing two different operators, namely U,
and U., at every grid point. In any symmetry plane of a TTI
medium, the operators are 2D and depend on the local values
of the stiffness coefficients. For each point, we pre-compute
the polarization vectors as a function of the local medium pa-
rameters and transform them to the space domain to obtain the
wave mode separators. We assume that the medium parameters
vary smoothly (locally homogeneous), but even for complex
media, the localized operators work similarly as the long finite
difference operators would work for locations where medium
parameters change rapidly.

If we represent the stiffness coefficients using Thomsen
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Figure 1. The gP and ¢S polarization vectors as a function of normalized wavenumbers k¢ and k, ranging from —1 to +1 cycles, for (a) a VTI
model with Vpg = 3 km/s, Vo = 1.5 kmi/s, € = 0.25 and § = —0.29 (b) a TTI model with the same model parameters as (a) and a symmetry
axis tilt v = 30°. The arrows in almost radial directions are the gP wave polarization vectors, and the arrows in almost tangential directions are the

gS wave polarization vectors.

the SV wave is obtained by
;S\'T/ = iUsv(k) . W

= —iUU. W, —iUU. W, +4(U2+ U)W,

= sv,/uz+Uz, @5)

and the SH wave is obtained by

qSH iUsu(k)- W
= —iU, Wy +iU, W,

= SH\/Uz+U2. (26)

We can see that SV and SH waves are scaled differently than
the P wave. The SV and SH waves are scaled by the magnitude
/U2 + UZ, which more or less characterizes wave propaga-
tion directions. This scaling factor goes from zero in the verti-
cal propagation direction to unity in the horizontal propagation
directions.

For general 3D TI media whose symmetry axis has
non-zero tilt and azimuth, we simply need to represent
the symmetry-axis vector as {sin v cos &, sin v, sin «, cos v},
where v and « are the symmetry axis tilt and azimuth an-
gles, respectively (Figure 5(b)). The P wave polarization can
be computed from the TTI Christoffel equation, and SH and
SV wave polarizations can be calculated from P wave polar-
ization and the symmetry axis vector using the orthogonality
between these modes.

The wave polarization vectors for P, SV, and SH waves

can be brought to space domain to construct spatial filters for
3D heterogeneous TI media. Therefore, wave mode separation
would work for models that have complex structures and trib-
utary tilts of TI symmetry.

4 EXAMPLES

We illustrate the anisotropic wave mode separation with a
simple fold synthetic example and a more challenging elas-
tic model based on the elastic Marmousi II model (Bourgeois
etal,, 1991). We then show the wave mode separation for a 3D
isotropic model and a 3D VTI model.

4.1 2D TTI fold model

We consider the 2D TTI model shown in Figure 7. Pan-
els 7(a) to 7(f) shows the P and S wave velocities along
the local symmetry axis, parameters €, ¢ and the local tilts
v of the model, respectively. The symmetry axis is orthog-
onal to the reflectors throughout the model. Figure 8 illus-
trates the pseudo-derivative operators obtained at different lo-
cations in the model defined by the intersections of x coordi-
nates 0.15, 0.3, 0.45 km and z coordinates 0.15, 0.3, 0.45 km,
shown by the dots in Figure 7(f). The operators are projected
onto their local symmetry axis and the isotropy plane (the di-
rection orthogonal to it). Since the operators correspond to dif-
ferent combinations of Vp /Vs ratio along the symmetry axis
and parameters ¢, 6 and tilt angle v, they have different forms.
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Figure 3. The polarization vectors in the wavenumber domain for the models shown in Figure 2. The wavenumber domain vectors are tapered by
2 2
the function Exp | — kﬁ;—ki to avoid Nyquist discontinuity. Panel (a) corresponds to the VTI medium, panel (b) corresponds to the TTI medium,

and panel (c) is the projection of the polarization vectors shown in (b) on the tilt axis and the isotropy plane.
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Figure 5. (a) A schematic showing the elastic wave modes polarization in a 3D VTI medium. S is the source, and x represents the coordinates of
a spatial point. n = {0, 0, 1}is the symmetry axis of the VTI medium. The wave mode P is polarized in the direction {Uz, Uy, U}, the wave
mode SV is polarized in the direction {~U, U, —~UyU,,U2 + U2}, and the wave mode SH wave is polarized in the direction {—Uy, Uz, 0}.
(b) A schematic showing the symmetry axis for a general TTI medium whose tilt and symmetry axis are both non-zero. The symmetry axis

={sinv cos a, sin v, sin @, cos v'}.

As we can see, the orientation of the operators conforms to
the corresponding tilts at the locations shown by the dots in
Figure 7(f).

Figure 9(a) shows the vertical and horizontal components
of one snapshot of the simulated elastic anisotropic wavefield;
Figure 9(b) shows the separation to gP and ¢S modes using
VTI filters, i.e., by assuming zero tilt throughout the model;
and Figure 9(c) shows the mode separation obtained with the
correct TTI operators constructed using the local medium pa-

rameters with correct tilts. A comparison of Figure 9(b) and
9(c) indicates that the spatially-varying derivative operators
with correct tilts successfully separate the elastic wavefields
into gP and ¢S modes, while the VTI operators only work in
the part of the model where it is locally VTL The separation
using VTI filters fails at locations where the local dip is large.
For example, at coordinates z = 0.42 km and z = 0.1 km, we
see strong S wave residual in the gP panel; and at coordinates
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Figure 13. Separated P, SV and SH wave modes for the elastic wavefields shown in Figure 12. P, SV, and SH are well separated from each other.

5.2 S mode amplitudes

Although the procedure used here to separate S waves into N\Y%
and SH modes is simple, the amplitudes of S modes are not
correct due to the scaling factors in Equations 25 and 26. The
amplitudes of S modes obtained in this way are zero in the
symmetry axis direction and gradually increase to one in the
symmetry plane. However, since the symmetry axis direction

usually corresponds to normal incidence of the elastic waves,
it is important to obtain more accurate S wave amplitudes in
this direction. The main problem that impedes us from con-
struct 3D global S-wave separators is that the SV and SH
polarization vectors are singular in the symmetry axis direc-
tion, i.e., they are defined by plane-wave solution to the TI
elastic wave equation. Various studies (Kieslev & Tsvankin,
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Figure 15. Separated P, SV and SH wave modes for the elastic wavefields shown in Figure 14. P, SV, and SH are well separated from each other.

of the quasi-ellipse of the S-wave polarization, which can be 6 CONCLUSIONS
obtained incorporating the first-order term in the ray tracing o . ) L
method. We present a method of obtaining spatially-varying derivative

operators for TI models, which can be used to separate elas-
tic wave modes in complex media. The main idea is to utilize
polarization vectors constructed in the wavenumber domain
using the local medium parameters and then transform these
vectors back to the space domain. The main advantage of ap-
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Moveout analysis of wave-equation extended images
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ABSTRACT

Conventional velocity analysis applied to images produced by wave-equation migra-
tion with a cross-correlation imaging condition makes use either of moveout infor-
mation from space-lags or of focusing information from time-lags. However, more
robust velocity estimation methods can be designed to take advantage simultaneously
of the moveout and focusing information provided by the migrated images. Such joint
velocity estimation requires characterization of the moveout surfaces defined jointly
for space- and time-lag common-image gathers. Such surfaces estimated for single
events (shots) are non-planar but they reduce naturally to the conventional space-lag
and time-lag moveout functions. The superposition of those surfaces for many exper-
iments (shots) in a common-image gather forms a shape which can be characterized
as a “light-cone” in the lag space. When imaged with correct velocity, the focus of
the light cone is located at the correct image depth and at zero space- and time-lags.
When imaged with incorrect velocity, the focus of the light cone shifts both in depth
and along the time-lag axis. The characteristics of the light cones are directly related to
the quality of the velocity model, thus their analysis provides a rich source of informa-
tion for velocity model building. Joint migration velocity analysis technique exploiting
the entire information provided by the extended imaging condition has the potential to
benefit from the combination of the robustness of depth focusing analysis and of the
high resolution of conventional semblance analysis.

Key words: wave-equation, extended imaging, focusing, semblance

1 INTRODUCTION

A key challenge for imaging in complex geology is an accu-
rate determination of the velocity model in the area under in-
vestigation. Migration velocity analysis is based on the prin-
ciple that image accuracy indicators are optimized when data
are correctly imaged. A common procedure for migration ve-
locity analysis is to examine the alignment of images created
with data from many complementary experiments. An optimal
choice for image analysis in complex areas is the angle domain
which is free of complicated artifacts present in surface offset
gathers (Stolk & Symes, 2004). If images constructed by illu-
minating a point from various directions are aligned, then the
velocity model used for imaging is said to be accurate. This
idea is usually referred to as the semblance principle (Yilmaz,
2001) and it represents the foundation of most velocity analy-
sis methods in use today.

Often, semblance analysis is performed in the angle do-
main. Several methods have been proposed for angle decom-
position (Sava & Fomel, 2003b,a; Fomel, 2004; Biondi &

Symes, 2004). All these procedures require decomposition of
extrapolated wavefields or of migrated images in components
that are related to the reflection angles. This imaging proce-
dure requires the application of an extended imaging condi-
tion (Sava & Fomel, 2006) which implements a point-by-point
comparison of the source and receiver wavefields extrapolated
from the surface. In general, the comparison is done using sim-
ple image processing procedures applied at every location in
the subsurface. If the source and receiver wavefields match
each-other, then their cross-correlation maximizes at zero lag
in space and time; otherwise, their cross-correlation does not
maximize at zero lag indicating wavefield reconstruction error
which may have different causes, e.g., velocity inaccuracy.
The source and receiver wavefields used for imaging are
4D objects, function of space coordinates and time (or fre-
quency). For simplicity, we discuss in this paper only time-
domain imaging, although our analysis applies equally well to
frequency domain imaging. For such 4D objects, the images
obtained by extended imaging conditions are characterized
in general by a 3D space-lag vector and a 1D time-lag. The
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Figure 1. Geometry of a reflection experiment. S, R and
C identify the positions of the source, receiver and image,
respectively. The reflector is located at distance d from the
source position in the direction of the vector n. The position
of the CIG relative to the source is indicated by the vectors
candz.
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Figure 2. (a) Source wavefield in a homogeneous medium represented by a cone in space-time. (b) Receiver wavefield in a homogeneous medium
represented by the mirror image of the source wavefield relative to the reflector. (c) Intersections of the source and receiver wavefields reconstructed
with correct velocity. The projection of the intersection onto Cartesian spatial coordinates indicates the position of the reflector.
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Figure 3. (a) Source wavefield in a homogeneous medium constructed using an incorrect velocity. The wavefield forms a cone in space-time and
has a different shape compared with the wavefield constructed with the correct velocity model. (b) Receiver wavefield in a homogeneous medium
constructed using an incorrect velocity. The wavefield forms a cone in space-time and has a different shape relative to the wavefield constructed
in the correct velocity, and is also shifted along the time axis. (c) Intersections of the source and receiver wavefields reconstructed with incorrect
velocity. The curved dash line, which is the projection of the intersection onto Cartesian spatial coordinates, indicates the position of the reflector.
The image is distorted compared to the case when the correct velocity model is used.
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R

Figure 4. Cartoon describing wave propagation in an in-
homogeneous medium. The wavepaths in the local re-
gion around the reflection point can be approximated with

straight lines.

which characterizes the moveout at an image point function of
space- and time-lags.

On the other hand, we have the following relations for the
reflection geometry:

p, — P, = 2ncosf, (25)
P, +P, = 2gqsinf, (26)
where n and q are unit vectors normal and parallel to the re-
flection plane, and 0 is the reflection angle. Combining equa-

tions 24-25-26, we obtain a simplified moveout function for
plane-waves:

2 7) =do — tanf (q- A) L @7
N n,cosé
The quantity do is defined as
do = d—(c-m) , (28)

Nz
which represents the depth of the reflection corresponding to
the chosen CIG location. Thus the quantity is invariant for dif-
ferent plane-waves, and it is used as a constant here.
When incorrect velocity is used for imaging, based on the
analysis in the preceding section, we can obtain the moveout
function

tanfm (q,, - A) |, vm (T —ta)
— +
Nmz NemzCOSOm

z (A,T) = dOf ) (29)
where doj is the focusing depth of the corresponding reflection
point, v, is the migration velocity, tq is the focusing delay, n.
and q,,, are the new normal and parallel vector to the reflector.

In this analysis, we derive the moveout functions describ-
ing the extended images for a single seismic experiment. How-
ever, typical imaging employs multi-shot seismic experiments
for better illumination of subsurface and analysis of the imag-
ing redundancy which indicates velocity accuracy. Thus, it is
important to understand the characteristics of the extended im-
ages in such situations and understand the moveout functions
characterizing reflection experiments.

Since the wave equation is a linear partial differential
equation, its solutions comply with the linear superposition
principle . This is also true for the extended images, thus for

multi-shot experiments the total extended images are the linear
superimposition of the extended images from all the individual
single-shot experiments. In this case, the moveout surface rep-
resents the envelope of the surfaces characterizing individual
seismic experiments.

According to the definition, the envelope of a family of
curves is obtained by setting both the implicit definition of the
family and the derivative with respect to index parameter equal
zero, and solving the system of equations. Therefore, the en-
velope representing a multi-shot image in extended CIGs with
space-lag A and time-lag 7 is given by the system

G(z,\1,0) = 0, (30)
8G (z,A,T,0)
a0 0, (€2))

where G represents the moveout function 27 for correct ve-
locity and 29 for incorrect velocity, respectively. Solving the
envelope system yields the following solutions:

2
2(A,7) =do + ﬂ\ﬁ— (M) (32)
Nz vT

for correct velocity, and

_ Um (T — ta) Tms (4 - A) )
2O = dog 4 2= ¢1_(vm(7_td))
(33)

for incorrect velocity.

Analyzing the envelope functions for the cases of correct
and incorrect velocities, we note that both envelope functions
share a similar form, thus they should have similar proper-
ties. The envelope functions become singular when 7 = 0
or T = tg, because at these special time-lags, all the indi-
vidual surfaces corresponding to various experiments intersect
at the same location. Mathematically, the envelope function is
equivalent to a delta function at this 7, which represents a sin-
gularity. Also, the square-root term in the formula contains a
subtraction, thus we have to ensure that the content under the
square-root is non-negative otherwise the formula fails. This
implies that the range of variable A is limited which suggests
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Figure 5. Light cone formed by the envelope of the moveout surfaces corresponding to individual plane-waves for a horizontal reflector in (a) the
correct velocity case, the focus of the cone occurs at zero space- and time-lags and (b) the incorrect velocity case, the focus of the cone shifts to a
nonzero time-lag. Light cone formed by the envelope of the moveout surfaces corresponding to individual plane-waves for a dipping reflector in (c)
the correct velocity case, the focus of the cone occurs at zero space- and time-lags and (d) the incorrect velocity case, the focus of the cone shifts to
a nonzero time-lag. The thick line corresponds to the slice of the cone cut at zero time-lag.
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Wave-equation migration velocity analysis using extended

images

Tongning Yang and Paul Sava

Center for Wave Phenomena, Colorado School of Mines

ABSTRACT

Wave-equation migration velocity analysis (WEMVA) is a velocity estimation tech-
nique designed to invert for velocity information using migrated images. Its capacity
for handling multi-pathing makes it appropriate in complex subsurface regions charac-
terized by strong velocity variation. WEMVA operates by establishing a linear relation
between a velocity model perturbation and a corresponding migrated image pertur-
bation. The linear relationship is derived from conventional extrapolation operators
and it inherits the main properties of frequency-domain wavefield extrapolation. A key
step in implementing WEMVA is to design an appropriate procedure for constructing
image perturbations. Using time-lag extended images, one can characterize the error
in migrated images by defining the focusing error as the shift of the focused reflec-
tion along the time-lag axis. Under the linear approximation, the focusing error can
be transformed into an image perturbation by multiplying it with an image derivative
taken relative to the time-lag parameter. The resulting image perturbation is thus a map-
ping of the velocity error in image space. This approach is computationally efficient
and simple to implement, and no further assumptions about smoothness and homo-
geneity of the velocity model and reflector geometry are needed. Synthetic examples
demonstrate the successful application of our method to a complex velocity model.

Key words: wave-equation, migration velocity analysis, time-lag extended imaging,

—

focusing

1 INTRODUCTION

In regions characterized by complex subsurface structure,
wave-equation depth migration is a powerful tool for accu-
rately imaging the earth’s interior. However, the quality of
the final image greatly depends on the quality of the veloc-
ity model, thus constructing accurate velocity is essential for
imaging.

Based on the domain in which the velocity estimation
is implemented, velocity analysis techniques can be roughly
divided into two categories. The first category includes tech-
niques developed in the data domain prior to migration and
usually described as tomography. The input for this type of
techniques is the recorded seismic data. Velocity update is
achieved by adjusting the velocity model to minimize the dif-
ference between the recorded and predicted seismograms. The
second category includes techniques developed in the image
domain after migration and usually described as migration ve-
locity analysis (MVA). The input for this type of techniques

is the migrated image obtained using an approximation of the
velocity model. Velocity update is performed by adjusting the
velocity model to optimize certain properties of the images,
e.g. by using focusing or semblance analysis.

In practice, there are many possible approaches to employ
the techniques in the two categories mentioned here. However,
all such realizations share a common element that they need a
carrier of information to connect the input data or image to
the output velocity model. Thus the techniques for velocity
updates can also be divided into two categories as ray-based
and wave-based methods. The first category refers to tech-
niques which use wide-band rays as the information carrier
(Bishop et al., 1985; Stork & Clayton, 1991). By contrast, the
second category refers to techniques which use band-limited
wavefields as the information carrier (Woodward, 1992; Pratt,
1999; Sirgue & Pratt, 2004). Generally speaking, ray-based
methods have the advantages of simple implementation and
efficient computation over wave-based methods. On the other
hand, wave-based methods are capable of handling compli-




T is
or(x,7) _

5 > Qiw) ur (x,w) ul (x,w) ¥ 7. (9)

Notice that the construction of the extended image derivative
requires the same procedure as the one used for constructing
the extended images. The additional term 2iw acts as a scaling
factor applied at each frequency.

In summary, we construct the image perturbations for use
in connection with WEMVA using the following procedure:

e Migrate the image and output time-lag extended images
according to equation 4;

e Measure AT on time-lag panels by direct picking;

e Construct the extended image derivatives according to
equation 9;

o Construct the linearized image perturbation according to
equation 8.

Our methodology has the advantage over the method of
Sava & Biondi (2004a,b) that we do not need to make assump-

tions about the slowness background as is required by the lin-

earized Stolt procedure. Furthermore, our method does not as-
sume horizontal reflectors, as required by conventional depth-
focusing analysis technique. Our method also maintain a low
computational cost, since the calculation of the linearized im-
age perturbation, equation 8, adds just a trivial cost to that of
conventional migration. Overall, our approach provides an ef-
ficient way to construct image perturbations consistent with
the assumptions made about the WEMVA operator.

3 EXAMPLE

We illustrate our procedure using the Sigsbee 2A model (Paf-
fenholz et al., 2002). For simplicity, we consider just one
reflector of the model in order to highlight the behavior of
our operator (Figure 1(a)-1(c)). Given the linear nature of the
imaging process, more reflectors contribute independently to
the velocity update. We use a scaled version of the true model
as the background slowness model for migration with ex-
tended images. We refer to the difference between the true and
background slowness models as the true slowness perturbation
As. Figures 1(b) and 1(c) show the image and time-lag ex-
tended images migrated with the background slowness model.
The reflector is mispositioned due to the incorrect slowness
model.

Figure 2(a) and 2(b) show the time-lag CIG and the con-
structed A7 panel obtained by picking A7 on panel 2(a) and
by spreading that information evenly along the corresponding
reflector. Then we construct the image perturbation by the pro-
cedure introduced in the preceding section.

To verify the accuracy of the constructed image perturba-
tion, we apply the forward WEMVA operator to the true slow-
ness perturbation and obtain the true image perturbation. Fig-
ures 3(c) and 3(d) depict the image perturbations obtained by
the forward WEMVA operator and our method, respectively.
The two images are similar both kinematically and dynami-
cally. We apply the adjoint WEMVA operator to both image
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perturbations to obtain slowness perturbations shown in Fig-
ures 3(a) and 3(b), which also exhibit good similarity. There-
fore, we conclude that the image perturbation constructed by
our method is applicable to WEMVA since it matches the cor-
responding perturbation.

Figures 4(a) to 4(e) depict the slowness perturbation
back-projected from the constructed image perturbation for
different shots, and Figure 4(f) depicts the result of slowness
perturbation stacked for all shots. The images show that the
illumination pattern of the various shots is different, although
consistent with the illumination of the corresponding migra-
tion procedure.

This example demonstrates that our procedure is appli-
cable to a shot-record imaging framework in complex media.
This conclusion makes our technique particularly attractive for
MVA using wide-azimuth data. However, there is no particular
limitation of the type of carrier used to transfer the time-lag in-
formation measured on the migrated images into velocity up-
dates. We could, in principle, use plane waves instead of shot,
thus achieving even higher computational efficiency.

4 CONCLUSIONS

We develop a new method to construct image perturbations
for wave-equation migration velocity analysis. The methodol-
ogy relies on the focusing information extracted from time-lag
extended images. The shift of the reflection focusing along
the time-lag axis provides a measure of error. We use this
information in conjunction with image derivatives relative to
the time-lag parameter to construct image perturbations. Com-
pared with more conventional techniques for constructing im-
age perturbation, our approach is efficient, since it represents
a relatively trivial extension of the time-lag extended imaging
condition, and accurate, since it does not make use of Stolt-
like procedures which incorporate strong assumptions about
the smoothness of the background model. The results obtained
using the complex Sigsbee 2A model demonstrate the validity
of our method in complex environments.
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Probabilistic micro-earthquake location for reservoir
monitoring and characterization
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ABSTRACT

Micro-seismicity is used to monitor fluid migration during reservoir produc-
tion and hydro-fracturing operations. This is usually done with sparse networks
of seismic sensors located in boreholes. The data used for micro-earthquake
monitoring are corrupted by noise which reduces the signal-to-noise ratio to
values as low as 0.1. Monitoring methods based on traveltime picking of various
wave modes (P or S) cannot deal with this level of noise and require extensive
user interaction. An alternative class of methods uses time reversal to focus
micro-earthquake information at the source position. These methods can han-
dle noisier signals, but are also costlier to run. The technique advocated in this
paper exploits time-reversal within the general framework of Bayesian inver-
sion. Given an assumption about the possible locations of micro-earthquakes,
we use recorded data to evaluate the feasibility of micro-earthquakes occur-
ring at various locations in the Earth. The method takes into account imaging
imperfections due to unknown components of the model or acquisition array
aperture. We simulate wavefields corresponding to possible sources distributed
in the model and evaluate their match with the wavefield reconstructed from
real data recorded in the field. In this regard, the method operates like a pattern-
recognition procedure and can exploit a wide variety of techniques designed for
this purpose. We use simple cross-correlation to take advantage of the speed
and robustness of this technique. The wavefields reconstructed at various loca-
tions are used to scan over time the wavefield constructed from field data, thus
our method is able to identify not only the position of the micro-earthquakes
but also their onset times. The final outcome of this automated process is a
map of probabilities indicating the confidence of micro-earthquake occurrence
at various positions and times.

Key words: wave equation, imaging

1 INTRODUCTION

High-pressure fluid injected into oil and gas reservoirs
causes time-invariant stress and strain changes. When
the stress exceeds a threshold characterizing the resis-
tance of rock materials to stress, micro-seismicity is trig-
gered by the release of pressure along pre-existing frac-
tures or through the creation of new fractures (Maxwell
& Urbancic, 2001; Duncan, 2005). Precisely locating
micro-seismic events can be used to monitor the hy-
draulic fracturing and for reservoir characterization
(Rentsch, 2004).

Most location methods currently used require the
identification of seismic arrivals which involves accurate
picking of P- and S-wave arrival times. The onset time
and the coordinates of the hypocenter of micro-seismic
events are given by calculations which require accurate
knowledge of the velocity model and of the physical re-
lationships describing wave propagation in the subsur-
face. The source is located by optimizing a misfit func-
tion between measured and calculated quantities (Pu-
jol, 2004; Lay & Wallace, 1995; Thurber & Rabinowitz,
2000). The methods in this category assume that the ar-
rival time of a specific event can be identified on seismic
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4 CONCLUSION

We present a method for automatic micro-earthquake
location using Bayesian inversion theory. Our method
exploits the unique shape of wavefields partially refo-
cused at the source position. This method does not re-
quire picking of arrival times but relies on wavefield
focusing obtained by time reversal. Our method not
only identifies the spatial location of the source, but

also specifies the onset time of the source. Furthermore, -

since we are using a probabilistic approach to micro-
earthquake location, our method provides confidence
maps of micro-earthquake locations which can be used
for risk assessment.

Synthetic data examples demonstrate the robust-
ness of the method and its applicability to situations
when micro-earthquakes occur in close succession in a
small region in space and are recorded in a noisy envi-
ronment with a SNR as low as 0.1.
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6 APPENDIX A

This appendix summarizes the main elements of
Bayesian inversion theory. Bayesian inversion theory
characterizes our state of knowledge in a probabilistic
manner through the use of probability density functions
(PDFs) linking model and data parameters (Jaynes,
2003). We can define two states of knowledge. The prior
characterizes our knowledge about the model and data
parameters before any measurements are taken. This
information is based on our general knowledge of the
phenomenon under investigation and on the distribu-
tion of model parameters and assumptions about relia-
bility of our measurements. The posterior characterizes
our knowledge about the model and data parameters af-
ter measurements are made and data are processed and
interpreted. Both states of knowledge are characterized
by PDFs linking model and data parameters. Ideally,
the measurements help refine the prior into the poste-
rior state of knowledge which provides a tighter connec-
tion between model and data parameters. In describing
Bayesian inversion theory, we need to discuss the fol-




lowing elements: model (m) and model space, data (d)
and data space, the prior state of knowledge (a priori
PDF p(m, d)), the theoretical relations between model
and data (theoretical PDF ©(m,d)), and the posterior
state of knowledge (a posteriori PDF o(m, d)).

6.1 Model and data spaces

The model space () is composed of a set of individual
models which can be denoted by m; (i € {1,2,..., N}).
The model space represents all the models that can pos-
sibly characterize the physical phenomenon under inves-
tigation.

The data space D is composed of all instrumen-
tal responses to the investigated models which can be
denoted by d; (i € {1,2,..., M}). The data space repre-
sents all data that can possibly be recorded and char-
acterize the physical phenomenon under investigation.

6.2 A priori probability density p(m,d)

We describe p(m,d) by a joint PDF over the model
and data spaces. This prior information is independent
of any measurement. Furthermore, in the special case
when the prior information on the model space pox (m)
is independent of the prior information on the data
space pp(d), the a priori probability density function
p(m, d) is (Tarantola, 2005)

p(m’ d) =P (d)pfm (m) ) (A'l)

where pp (d) describes the measurement uncertainty of
the observed data, and pa (m) illustrates our confidence
in the chosen model parameters.

Two examples of a priori probability density func-
tions are shown in Figures 1(a) and 2(a). The vertical
axis represents the value of the probability that a par-
ticular model characterizes the physical system under
investigation. In Figure 1(a), p(m,d) = pox(m)ds(d —
Deb), where D°* denote the observed data, and the a
priori probability in the model space is a step function.
In this case, no error is associated with the observed

d— pobsy2
data. In Figure 2(a), p(m,d) = pgm(m)e_(WE_L,
where pon (m) is a tapered step function, and Cj is the
measurement uncertainty of the data. We assume that
the data are distributed following a Gaussian distribu-
tion.

6. 3 Homogeneous probability density u(m,d)

In order to remove the effect of the discretization of the
model and data parameters, we define a homogeneous
PDF p(m, d) whose role is to balance the discrete model
and data spaces. By definition, the homogeneous prob-
ability distribution states that a probability assigned to
each region of the space is proportional to the volume of
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the region (Mosegaard & Tarantola, 2002). In the spe-
cial case when the homogeneous probability densities on
the model and data spaces are independent, u(m,d) is
expressed as

p(m, d) = pp (d)/"’im (m) ’ (A'2)

where pon (m) is the homogeneous probability density
on the model space and pp (d) is the homogeneous prob-
ability density on the data space.

For example, in spherical coordinates, the volume of
a standard region is dV (1,0, ) = r®sin0drdfde. The
homogeneous probability distribution is u = kr?sin#,
where k is an arbitrary constant. For 3-D Cartesian co-
ordinates, dV (z,y, z) = dzdydz and y is a constant.

6. 4 Theoretical probability density ©(m,d)

The theoretical probability density ©(m,d) describes
the correlations between the model and data parame-
ters. The defined relationship corresponds to a physical
law and may incorporate uncertainties associated with
theory, for example due to assumptions or simplifica-
tions of the physical law or due to imperfect knowledge
of the physical parameters underlying it. The theoretical
probability density ©(m, d) can be expressed as

©(m, d) = 6(d|m)um (m), (A-3)

where 0(d|m) describes the probability distribution of
data for the given kernel function and model, and
pm(m) is the marginal probability defined in the pre-
ceding section. In Figure 1(b), 6(d|m) = §(d — G(m)),
where G(m) is the kernel function which describes the
physical relationship between d and m. No error is
associated with this kernel function. In Figure 2(b),

_(d=c(m))?
0(dm) = e 26t , where C; describes the theory
uncertainty. The error associated with this kernel func-
tion follows a Gaussian distribution.

6.5 A posteriori probability density o(m,d)

The conjunction between the a priori state of infor-
mation p(m,d) and the theoretical probability density
function ©(m, d), which describes the theoretical rela-
tionship between model and data, provides the a poste-
riori state of information o(m,d):

p(m,d)O(m,d)
=220
p(m,d)
where k is a normalization constant that serves the pur-
pose of keeping the area under the graph of o(m, d)
constant. The expression for k is
k— 1

Jx dXp(m,d)©(m,d)/u(m,d)’

where X = (D, M) is the joint space of the data and the

model.
The posterior information o(m,d) is computed

o(m,d) (A-4)

(A-5)




based on observations. In the special case when both
the model space and the data space are described in
Cartesian coordinates, the posterior information is pro-
portional to the conjunction between the prior informa-
tion and the theoretical information:

o(m,d) x p(m,d)©(m,d). (A-6)

Figures 1(c) and 2(c) show the conjunction between
the p(m,d) and ©(m,d). In Figure 1(c), o(m,d)
6(D°* — G(m)) which is shown in Figure 1(d). Fig-
ure 2(c) gives the conjunction between the PDFs shown
in Figures 2(a) and 2(b). Its physical meaning is that
the observed data are exactly the same as the data
calculated from the kernel function. In Figure 2(c),

obs 2
o(m,d) x e_SD—_é_'CgﬂlL, where C = Cy + C:. Fig-
ure 2(d) shows o(m, d). The probability distribution in
Figure 2(d) shows how well the data calculated from the
kernel function explain the observed data.

6. 6 The marginal probability density om (m)

In order to provide a solution to the inversion problem,
we have to transfer the information provided by o(m, d)
to the model space. We obtain the marginal probabil-
ity density in the model space osm(m) by projecting
o(m,d) onto the model space:

oo (m) = /9 o(m,d)dd . (A-7)

The probability density function provided by oox(m)
indicates what models satisfy at the same time our prior
knowledge on the distribution of model parameters, the
theoretical relationships between model and data and
the measurement uncertainties. A comparison between
pom(m) and oon(m) is shown in Figures 1(e) and 2(e).
The distribution on ogx (m) is narrower on the posterior
relative to the prior indicating the tighter connection
introduced by the recorded data.

6. 7 Negligible theoretical uncertainties

When we assume that no uncertainty is associated with
the kernel function G(m) which describes the physical
relationship between the data and the model, the the-
oretical probability density ©(m,d) can be expressed
as

©(m, d) = §(d — G(m))um (m), (A-8)

where pon (m) is a constant for models parameterized in
Cartesian coordinates. The theoretical probability den-
sity ©(m,d) = 1 when the data equal the value calcu-
lated from the kernel function and zero otherwise.

In this case, the marginal probability in the model
space in equation A-7 can be expressed as

m,d)O(m,d)

ogm(m):/ma(m,d)dd:k/b al )04

(A-9)
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and when ©(m,d) is given in equation A-8, with
p(m,d) = pp(d)pm(m) and p(m,d) = pp(d)um (m),
we can write
d)é(d - G
7on(m) = pon(m) [ £2(D0E ~Clm))
D po (d)

where pp (d) is a function of d and the observed data,
and pp(d) is a constant for data discretized in Carte-
sian coordinates. Thus, equation A-7 for an ideal kernel
function can be written as

oo (m) = vpm (m)pp(G(m), D), (A-11)

dd, (A-10)

where
v= / pan () pp(d, D**)dm (A-12)
mm

is a constant. In equation A-11, gsn (m) is proportional
to the product of the prior probabilities on the model
and data spaces.

T —
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Imaging effects due to multi-scale model heterogeneity
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ABSTRACT

Velocity models used for wavefield-based seismic imaging represent approximations
of the velocity characterizing the area under investigation. We can conceptually de-
compose the real velocity model into a background component which can be inferred
using conventional velocity analysis techniques, and into another unknown component
encapsulating the model heterogeneities. This unknown component is responsible for
mispositioning of reflection energy which usually takes the form of imaging artifacts.
Model heterogeneity can be described stochastically using, for example, correlated
Gaussian random distributions or fractal distributions. Data simulated for the various
distributions are characterized by spectra with different shapes when analyzed in the
log-log domain. For example, Gaussian distributions are characterized by exponential
functions and fractal distributions are characterized by linear functions with fractional
slopes. These properties hold for both data and migrated images after deconvolution of
the source wavelet. On the other hand, the image heterogeneities induced by model het-
erogeneities can be considered as noise to be removed by an image filtering operation.
Among many possibilities, filtering with the seislet transform (a wavelet transform
technique) and Gabor-Wigner distribution (a time-frequency analysis technique) are
effective at suppressing noise, although both techniques affect the signal correspond-
ing to the major geologic structure. Such filtering can be applied at different stages of
wave-equation imaging, for example on data, on the reconstructed wavefields, or on
the migrated image. Of all possibilities, filtering of the wavefield is the most effective.

Key words: multi-scale heterogeneity, noise attenuation

1 INTRODUCTION

Wave-equation migration consists of two steps (Claerbout,
1985). The first step represents wavefield reconstruction at ev-
ery location in the subsurface from data recorded at the sur-
face using a numeric solution to a wave equation. The second
step consists of extracting reflectivity information from the re-
constructed wavefields using an imaging condition. The ac-
curacy of wavefield reconstruction, which directly determines
the quality of migrated images, depends on the accuracy of
both the velocity model and the wave-equation used for wave-
field reconstruction.

Conventionally, we decompose the Earth’s velocity into
two models corresponding to large-scale (low-frequency) and
to small-scale (high-frequency) components. We refer to the
large-scale component as the velocity model and to the small-
scale component as the reflectivity model. The large-scale
component of the model is used for wavefield reconstruction,
and the small-scale component of the model is the object of

the imaging condition. However, real geologic environments
do not follow this clear separation of scales. Evidence from
well logs and rock outcrops indicates that a better description
of the subsurface requires heterogeneity at all scales of varia-
tion (Richter-Bernburg, 1987). We refer to this type of models
as multi-scale. The multi-scale variability is usually ignored
in imaging which usually assumes that the mid-range of vari-
ability does not exist. As a consequence, imaging with smooth
models leads to inaccurate wavefield reconstruction and to cor-
responding distortions of migrated images.

In this paper, we study the effects of multi-scale hetero-
geneity on imaging. First, we analyze various types of het-
erogeneity, their impact on seismic data and migrated images
and whether this information can be extracted from data or
migrated images. Since the mid-scale heterogeneities are not
accounted for in imaging, their effect on images has the char-
acter of artifacts overlapping the geologic structure which cor-
responds to the bi-modal decomposition of the model. Sec-
ond, we evaluate techniques designed to attenuate the arti-
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Figure 1. (a) A smooth background vertical velocity profile that has no significant local heterogeneity to generate details in the reflection coefficients,

which is shown in (b).
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Figure 2. (a) A blocky heterogeneity and (b) its resulting reflection-coefficient series in depth.
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Figure 7. Log-log spectra corresponding to (a) a smooth background velocity, (b) a blocky perturbation, and (c) a depth-correlated Gaussian
random perturbation in log-log spectrum analyses. Thick lines are least-squares fittings of the log-log spectra. Both the smooth background and
blocky perturbations show a trending slope of about 1. The correlated random noise in (c) gives an exponential relationship in the log-log graphic.
In contrast, (d) shows a fractal power-law example, which depicts a linear least-squares fit with slope 3 = 0.5.
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Figure 10. Spectra comparison of data shown in Figure 9(a)-9(c)
in a log-log plot. Solid: blocky-model data in Figure 9(a); dashed:
Gaussian-random data in Figure 9(b); dotted: fractal-random data in
Figure 9(c).

4 IMAGE VARIABILITY DUE TO MODEL
HETEROGENEITY

The analysis performed in the preceding section addresses the
question whether we can access information about the model
heterogeneity through the analysis of recorded data. In this
section we address an alternative question, i.e. whether we can
access the same information through analysis of migrated im-
ages. For this analysis, we use a portion from a well-log ac-
quired in the field. In this case, we do not know a-priori the
nature of the randomness. Figure 12(a) shows the P-wave ve-
locity constructed from well measurements superimposed on
a velocity model obtained as horizontal extension of the well-
log.

Figure 13(a) shows the log-log spectrum of the well-log.
The thick straight line represents the linear least-squares fit
applied to the spectrum. The slope is equal to 1 which is con-
sistent to the fact that the well log is dominated by a smooth
non-constant background component, or put another way, the
spectrum is dominated by a slope inversely proportional with
the wavenumber k (Shtatland, 1991). In order to emphasize
the heterogeneities presented in the model, we first remove
the k~! spectrum. In the k& domain, according to the nonlin-
ear least-squares fitting y = ak ™!, we estimate the intensity
of the k=1 component which corresponds to the background
velocity. Because of the linear assumption of velocity model
composition, we can apply a linear operation in the k£ domain,
i.e. we subtract the nonlinear least-squares fit from the en-
tire spectrum. After removing the k~! component, we analyze
separately the remaining spectrum shown in Figure 13(b). The
slope of the linear least-squares fit is equal to 0.53 which, as
expected, indicates that the model randomness has a fractal
character.

Figure 12(b) shows a simulated shot-record data with a
source located at x = 2.0 km, z = 0 km. The zero-offset

trace is superimposed on the data. Migration of the data in
a smoothed background velocity produces the image shown in
Figure 12(c). The zero-offset image trace is also superimposed
on the image. As for the preceding example, we analyze the
expression of model randomness on image using the log-log
plots of the spectra, after we deconvolve the seismic wavelet
from the image. Figure 14(a) displays log-log spectra of the
zero-offset image trace. As before, we separate the k™! com-
ponent obtaining the spectrum shown in Figure 14(b). The lin-
ear least-squares fit to the image spectrum has a slope of 0.54,
which is close to the slope obtained from the direct analysis
of the well-log. Thus, we can conclude that the migrated im-
age indicates the presence of a model with fractal parameter
3 approximately equal to 0.53. Figure 15 shows the depen-
dence of extracted heterogeneity information from image on
the horizontal position with respect to the source location. It
is apparent that the extracted heterogeneity parameters in the
near offset are more precise than in the far offset.

The procedure discussed here requires knowledge of the
source wavelet to extract heterogeneity parameters from data
or migrated images. However, only the amplitude spectrum
matters, therefore we conjecture that we can still obtain sat-
isfactory results even if small phase errors in our wavelet esti-
mation exist.

Our analysis show that various types of heterogeneity
look different when analyzed in log-log plots, as illustrated in
Figures 11(a)-11(f). Assuming that the background model of
the subsurface is a combination of a relatively smooth back-
ground plus a few strong interfaces with a blocky character,
we can attempt to infer the statistics of model heterogeneities
currently undetectable by conventional seismic methodology.

Alternatively, we can consider the effects of mid-scale
heterogeneities on seismic data as noise and attempt to remove
them from migrated images. Our experiments show that con-
ventional denoising methods based on bandwidth analysis do
not have a good chance of success given the overlap between
various components of the model. However, we suggest that
it would be helpful to understand the statistics of this noise
before attempting to remove it.

5 NOISE ATTENUATION IN SEISMIC IMAGING

Despite the fact that multi-scale heterogeneities are present in
the Earth, we normally describe their expression in seismic
data as noise and their expression on migrated images as ar-
tifacts. This is simply because we do not have good proce-
dures to estimate models with such variability and to image
those data. In this section, we explore the applicability of two
kinds of de-noising procedures: seislet transform (ST) which
belongs to the wavelet transform methods, and Gabor-Wigner
distribution (GWD) which belongs to the time-frequency anal-
ysis (TFA) methods.
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Figure 15. The heterogeneity parameter 3 extracted from the image
at various horizontal positions.

5.1 Seislet transform

The seislet transform belongs to the general family of wavelet
transform. By definition, this transformation decomposes the
signal to different scales using the dominant slope at every
location (Fomel, 2006). ST can be used for de-noising by a
simple soft thresholding operation in the transformed domain
designed to preserve the locally dominant slopes in the data
or image, thus filtering out perturbations from the dominant
slope. Filtering using ST makes the assumption that the data
are correctly described by locally coherent events, while noise
is not.

5.2 Gabor-Wigner distribution

TFA methods decompose non-stationary signals as func-
tions of the local frequency at various times (Cohen, 1995).
This type of transformation can be generalized to multi-
dimensional signals, e.g. to seismic data or wavefields. Wigner
distribution functions (WDF) (Wigner, 1932; Ville, 19438)
are an example of TFA method with a quadratic character
(Hlawatsch & Boudereaux-Bartels, 1992). WDFs are effective
at suppressing noise from data, but suffer from the drawback
that the phase of their output is ambiguous. To alleviate this
problem, we use an alternative TFA transformation, called the
Gabor-Wigner distribution (GWD) (Pei & Ding, 2007), which
has the property that it attenuates the noise similarly to WDF,
but without affecting the phase of the signal. For the multi-
dimensional signal s (x,t), the Gabor-Wigner distribution is
given by

sg (%,1) = sw (x,1) /dth /dxh g(x,t)s(x,t) , (10)

[th|<ST  |xp|<X

where

s t
Sw (X,t) = /dt},, /dxhg(x,t)s(x— %,t— %)
[th|ST  [xplSX

2

Cx=3)? gt—t,i)z
In equations 10 and 11, g(x,t) = e 2% e 27t isa
multi-dimensional Gaussian window with spatial and temporal
standard deviations of oy and o¢, which has the purpose of
reducing cross-talk (Choi & Williams, 1989); s, (X,1) is the
WDF transform result of s (x, t) in the time-space domain; x;,
and ¢y, are variables spanning space and time intervals within
X and T, respectively.

s (x+%,t+ﬁ) (11)

5.3 Strategies for noise attenuation

Wave-equation imaging for shot-record experiments consists
of two steps: first, simulate the source and receiver wavefields
using the background velocity model; second, apply an imag-
ing condition to extract the reflectivity information from the
reconstructed source and receiver wavefields. A conventional
imaging condition extracts the image as the zero-lag of the
cross-correlation between the reconstructed wavefields

Rm=/&mmawmw, (12)

where y denotes the image coordinates, us (y, t) and ur (y, t)
are the reconstructed source and receiver wavefields, and
R (y) is the extracted image.

Wavefields corresponding to propagation in models with
multi-scale heterogeneity are not properly reconstructed in the
subsurface if we use an approximate blocky model for wave-
field reconstruction. Consequently, fluctuations corresponding
to the part of the model that is not accounted for during extrap-
olation are present in the wavefields. The question we address
here is whether we can use one of the noise attenuation tech-
niques outlined earlier to filter out the unwanted component of
data. We discuss three possible strategies corresponding to fil-
tering before wavefield reconstruction (i.e. filter the data), fil-
tering before the imaging condition (i.e. filter the wavefields),
or filtering after the imaging condition (i.e. filter the image) as
illustrated in Figure 16.

In workflow (a), the denoising process is directly applied
to the recorded data before wavefield reconstruction. In this
case, we attempt to remove from the data what we consider to
be unwanted signal and then follow with a conventional imag-
ing procedure. This option is advantageous because it oper-
ates on relatively small data volumes, but it has the disadvan-
tage that data are often complicated with many conflicting dips
which makes it difficult to define a predominant slope at some
location and time.

In workflow (b), the denoising process is applied to the
reconstructed wavefields before the application of the imag-
ing condition. This is the strategy employed by Sava & Po-
liannikov (2008) in the design of the so-called interferometric
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Figure 18 Figure 19
workflow ST GWD ST GWD
a 0.0100 0.0094 0.0104 0.0112
b 0.0076  0.0066 0.0103  0.0088
c 0.0093  0.0107 0.0133  0.0104

Table 2. MSEs comparisons of images in Figures 18 and 19 with the
benchmark image in Figure 17(g).

the ST applied to the data, wavefield and image, respectively,
and panels 19(d)-19(f) correspond to de-noising using GWD
applied to the data, wavefield and image, respectively.

Both ST and GWD used in all three workflows help re-
duce the random fluctuations from the migrated images, al-
though none produces images with the coherence compara-
ble with that of the reference image, Figure 17(g). This is not
surprising since both de-noising techniques attempt to filter-
out information incorrectly positioned in the subsurface, rather
than relocate it. However, it is apparent that better results are
produced when de-noising is applied to the wavefields, rather
than to the data or the image. The main reason for this is that
more coherency exists in the wavefields along the space and
time axes. The data and the image are subsets of the wave-
fields, therefore these domains are not as effective at noise
suppression.

We can quantify the differences between the various de-
noised images and our benchmark image using the mean
squared error (MSE) (Lehmann & Casella, 2003). The MSE
values characterize the dissimilarity between the de-noised
images and the reference and the larger the MSE value, the
more dissimilar the images. The raw images shown in Fig-
ures 17(h) and 17(i) have a mean squared error of 0.011 and
0.014, respectively, relative to the benchmark image shown
in Figure 17(g). Table 2 lists the mean square errors between
the images in Figures 18(a)-18(f) and Figures 19(a)-19(f) rel-
ative to the benchmark image. According to this analysis, the
best denoising strategy is to apply either ST or GWD to the
wavefields after wavefield reconstruction but before the imag-
ing condition, with a slight efficiency advantage for GWD rel-
ative to ST.

7 CONCLUSIONS

We compare different types of multi-scale heterogeneities and
investigate whether information about the parameters charac-
terizing such models can be derived from the images. Assum-
ing that we can estimate the seismic wavelet with sufficient ac-
curacy, we can isolate reflectivity profiles from both recorded
data and migrated images and extract the media properties.
We can identify models with correlated Gaussian fluctuations
by their exponential dependence in log-log spectra. In con-
trast, models with fractal fluctuations show, as predicted by
the theory, a linear dependence of the log-log spectra with a
fractional slope. This conclusion holds for both the data and
image domains. Regardless of the type of fluctuations in the

model, imaging with approximate velocity (e.g. blocky mod-
els) leaves a distinct random-looking imprint on the migrated
images which may obstruct identification of geologic struc-
tures.

We refer to this kind of imprint as noise and attempt to
remove it using conventional statistical procedures. We test
the seislet transform (curvelet-like method) and Gabor-Wigner
distributions (time/fraquency-like method) to attenuate noise
at different stages of depth migration. The noise attenuation
can be applied to the data before wavefield reconstruction, or
to the reconstructed wavefields, or to the migrated image, af-
ter the application of the imaging condition. Of all possibili-
ties, filtering of the wavefield seems to be the most effective
method of noise attenuation, although this option is also the
costliest.
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Figure 3. Two possible paths between seed points (yellow
boxes). The geodesic shortest path (cyan) runs behind the
bump in the surface. The user probably did not have this
path in mind. A path that takes into account the user’s cur-
rent view of the surface is shown in red.

rithm. The method has a worst case computational cost
of O(n?log n), where n is the number of edges in a mesh.

Unfortunately, using the geodesic shortest path to
connect seed points has a drawback which is illustrated
in Figure 3. As we can see, the geodesic shortest path
between points is not easily predictable. This path may
not look like the shortest possible path when the surface
is projected into a 3D perspective view, and may be an
undesirably convoluted path that runs behind parts of
the surface.

Here, I present a method for finding a path along a
surface between seed points that is more intuitive, more
efficient, and easier to implement than the geodesic
shortest distance path. The new method takes into ac-
count the user’s current view of the surface, and ensures
that the path between seed points can be seen. This
leads to less ambiguity in the user interface. The new
path can be found by performing simple object inter-
section tests and can be computed in time proportional
to the number of edges intersected by the cut path.

After a cut path has been created, the area around
the path must be remeshed to open a cut in the sur-
face. As stated above, care must be taken to ensure
that a resulting mesh is valid. Many methods for per-
forming cut remeshing have been presented in the sur-
gical simulation literature (Bielser and Gross, 2000;
Bruyns and Senger, 2001; Nienhuys and van der Stap-
pen, 2001; Choi, 2006) however, these interfaces inter-
actively remesh a cut as a tool is moved along a surface.
I describe a method that is similar to many of the surgi-
cal simulator remeshing algorithms but is better suited
for use with a seed point based cut path.

2 BOUNDARY CONSTRAINT MODELING

BCM uses a simple modeling metaphor that allows a
user to quickly make changes to a surface. In order
to perform a deformation, a user must first select an
area of the surface to be modified. I call this area
the deformable region. An example of a user selected
deformable region is shown in Figure 4a (the green
area). The remaining surface, the part outside of the
deformable region, is defined to be fixed; thus a user
knows that a deformation will only make local changes
to a surface.

It should be noted that, by selecting a deformable
region, a user is actually specifying the boundary con-
ditions of a cost function that will be minimized to find
the new deformed surface. The cost function is made
to favor smooth surfaces. The deformed surface is then
defined to be the surface that meets the boundary con-
straints and minimizes the cost.

There are several possible user interfaces for inter-
actively selecting a deformable region. The deformable
region in Figure 4a was selected by interactively paint-
ing the surface. As a user clicks and drags on the surface,
the vertex nearest to the user’s clicked point is found
and added to the deformable region. The paint brush
size can be enlarged by adding the neighboring vertices
to the deformable region, and an arbitrarily-sized paint
brush can be created by recursively adding the neigh-
bors of already selected vertices to the deformable re-
gion.

Alternatively, a deformable region can be selected
by placing a loop on the surface, and then adding all of
the vertices inside of the loop to the deformable region.
A loop path can be thought of as a cut path that starts
and ends at the same point.

After selecting a deformable region, a user can drag
any point in the region to a desired location. The re-
maining deformable region is smoothly pulled along as
the point is moved (Figure 4b). The deformed surface
is displayed in real time as the point is moved. Nor-
mally, this real-time update would not be possible as
the cost function minimization must be performed many
times per second in order to achieve a sufficient frame
rate. However, Botsch and Kobbelt (2004a) perform
a pre-computation step that allows the minimization
to be performed only once for an entire deformation.
This speedup means that BCM is capable of perform-
ing freeform deformations on a large number of trian-
gles (250k) interactively. By repeating this procedure of
defining a deformable region and pulling on the surface,
a user can quickly create a complicated shape.

3 FINDING THE CUT PATH

Before a cut can be created in a surface, the cut must
be defined. As stated above, the cut path is created by
placing seed points on the surface, and then the soft-
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Figure 8. The triangle strip from Figure 6 after subdividing
the triangles that begin and end the cut path. Newly added
edges are shown in red.

Figure 9. If the cut path seed points are near a boundary,
then the end points are snapped to the boundary and an
edge break operation is performed on the boundary edges.
The broken edges are shown in green and the newly created
edges are shown in red.

break adds a new vertex in the middle of an edge. The
original edge is divided into two edges and two new
edges are added in the neighboring triangles.

Triangle subdivision (Figure 8) creates new vertices
at cut path seed points. The new vertices form the ends
of the cut. A special case arises if the cut path begins
or ends on a boundary. In this case, the cut actually
does not create a new hole the mesh. The cut extends
a preexisting boundary of the mesh, and the normal
subdivide operation is replaced with an edge break op-

Algorithm 1 REMESHCUT(edges, points)

n = LENGTH(points)
{get an empty array of vertices}
verts = GETVERTSARRAY(n)

{subdivide end triangles (Figure 8)
or break end edges (Figure 9)}
verts[0] = SUBORBREAK (verts[0], edges[0])
verts[n — 1] =
SUBORBREAK (verts[n — 1], edges[n — 3])

for i = 1 to n-2 do {Figure 10}
verts[i] = BREAKEDGE(edges[i — 1], points[i]))
end for

for i = 0 to n-2 do {Figure 11}
CLONEEDGEBETWEEN (verts|i], verts[i 4+ 1])
end for

for i = 1 to n-2 do {Figure 12}
CLONEVERTEX (verts[i])
end for

(b)

3

T

— @ @ ——— @

()

Figure 10. The triangle strip from Figure 8 during and after
edge break operation. Each edge that is intersected by the
cut path has been broken. Broken edges are shown in green.
Edges that will be part of the cut are shown in blue and
newly added edges that are not part of the cut are shown in
red.

eration (Figure 9). Note that, a cut of this type may
break the mesh into two pieces.

The next operations, edge cloning (Figure 11) and
vertex cloning (Figure 12), are always performed in tan-
dem and complete the hole in the mesh. In this sense,
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2.3 Summary

Blended neighbor interpolation is a two-step process.

Blended neighbor interpolation
Step 1: solve
Vdx) - Vdx)=1, x¢&4&;
d(x)=0, xeX (20)
for

d(x): the distance ||x — xx|| from x to the nearest
known sample point xx, and

p(x): the known value fi corresponding to the
sample point xj nearest to the point x.

Step 2: for a specified constant e > 2, solve
1
4(x) - - V- d*(x) Va(x) =p(x),  (21)

for the blended neighbor interpolant g(x).

When computing d(x) in step 1, it is straightfor-
ward to simultaneously compute the nearest neighbor
interpolant p(x). Finite-difference approximation of the
eikonal equation 20 is unnecessary, because efficient ex-
act solutions are possible. Park et al. (2006), suggest
using a kD tree for this purpose.

After computing d(x) and p(x) on a uniformly sam-
pled grid, I use an iterative conjugate-gradient method
to solve a finite-difference approximation of equation 21
for the blended neighbor interpolant g(x).

3 BLENDING IN TENSOR FIELDS

In image-guided interpolation I replace Euclidean dis-
tance with time, so that “nearest” corresponds to paths
of minimum time between points x and X, not mini-
mum distance ||x — xx||. The result is again a two-step
process.

Image-guided blended neighbor interpolation
Step 1: solve
Vix)-Dx)Vix)=1, x¢&AX,;
t(x)=0, xeX (22)
for

t(x): the minimum traveltime from x to the nearest
known sample point xx, and

p(x): the value fi corresponding to the sample
point X nearest to the point x.

Step 2: for a specified constant e > 2, solve

4(x) ~ 1 V-£XDR) Va(x) = p(x),  (23)

for the blended neighbor interpolant g(x).
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3.1 Computing the tensor field

The metric tensor field D(x) in equations 22 and 23 is
the link between distance and time. It represents the
coherence, orientation, and dimensionality of features
in the image that will guide interpolation. Intuitively,
this tensor field alters interpolation so that known sam-
ple values within spatially coherent image features are
given more weight than values on opposite sides of such
features or where the image is less coherent.

In some applications, a suitable D(x) is read-
ily available. For example, to track white matter in
diffusion-tensor magnetic-resonance images (DT-MRI),
Jbabdi et al. (2008) choose D(x) to be simply the
inverse of acquired tensor-valued images. For scalar-
valued images, including most seismic images, D(x)
may be computed from structure tensors S(x), which
are smoothed outer products of gradient vectors (van
Vliet and Verbeek, 1995).

In two dimensions, each tensor in the field D(x) is
a 2 X 2 symmetric positive-definite matrix

di di2
D= .
[d12 dzz] (24)

Equations 22 and 23 imply that the tensor elements d;1,
di12, and d22 have units of velocity squared.

Because the units of time ¢ are arbitrary in equa-
tions 22 and 23, I scale the tensor field D(x) so that
the maximum eigenvalue (maximum velocity squared)
in any of these matrices is one. Eigenvalues less than
one therefore imply slower velocities in directions of the
corresponding eigenvectors.

In directions in which velocities are slow, two points
that are nearby in the Euclidean distance map d(x) may
be far apart in the time map t(x), the solution to equa-
tion 22 computed in step 1. Time, not distance, now
determines which neighboring known sample points xx
are nearest in step 1, and the amount of blending of
nearest neighbors performed in step 2.

Figure 8 shows examples of tensor fields D(x) com-
puted from two different 2D scalar-valued seismic im-
ages to guide interpolation of scattered data. Each el-
lipse represents one of the symmetric positive-definite
2 x 2 tensors that I computed for every sample in these
images.

For both images, I computed the displayed tensor
fields D(x) from a structure tensor field S(x) by

S~ (x)

where the constant scale factor s ensures that the max-
imum eigenvalue in D(x) is one. The function ¢(x) is
a measure of coherence computed from structure ten-
sors S(x) using the method suggested by Fehmers and
Hécker(2003).

Alternative measures of coherence (e.g., Bahorich
and Farmer, 1995) in the range 0 < ¢(x) < 1 could be
used instead. The significance of the divisor 1 — ¢(x) is
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must be computed numerically by solving an eikonal
equation 22 for every image sample. And even suppos-
ing that this region could be computed quickly for every
sample, the computational cost of scattering remains
proportional to the areas (or volumes) of such regions
in 2D (or 3D).

In contrast, the cost of solving the blending equa-
tions with the simplest conjugate-gradient method
grows only linearly with distances or times to nearest
known samples. The number of iterations required for
such an iterative solver to converge depends in part on
the accuracy required in the blended neighbor inter-
polant. The number of iterations might be reduced by
the use of preconditioners, including multigrid methods,
but in my experience these techniques have yielded only
moderate improvements in efficiency when tensor fields
are as inhomogeneous and anisotropic as those displayed
in Figure 8.

Closely related to the problem of image-guided in-
terpolation are the problems of computing geodesic dis-
tances and interpolation on surfaces embedded in a
3D space (Kimmel and Sethian, 1998; Boissonnat and
Flototto, 2004; Surazhasky et al., 2005) or manifolds in
higher dimensions (Bronstein et al., 2007). For example,
when interpolating scattered geophysical data acquired
on a global scale, one might use non-Euclidean distances
measured on the earth’s surface. Surfaces on which
geodesic distances are computed correspond to metric
tensor fields, but tensor fields computed as in equa-
tion ?? need not correspond to any surface. Neverthe-
less, improved algorithms for computing geodesic dis-
tances may lead to better algorithms for image-guided
interpolation.

5 CONCLUSION

Blended neighbor interpolation of scattered data is sim-
ilar to the classic method of natural neighbor interpola-
tion, in that both methods smooth a nearest neighbor
interpolant, and the extent of smoothing grows with dis-
tance to the nearest known sample point.

The interpolants are similar but not identical, and
the difference between the two methods lies in their
smoothing filters. In blended neighbor interpolation a
smoothing filter is implied by the solution of a partial
differential equation. In natural neighbor interpolation
the smoothing filter explicitly computes weighted sums
of nearest neighbor sample values.

When Euclidean distances are used, the weights in
natural neighbor interpolation are simply the areas of
polygons, and can be computed efficiently with suitable
data structures. However, in non-Euclidean metric ten-
sor fields, these areas must be computed numerically,
and for this case blended neighbor interpolation is an
efficient alternative to natural neighbor interpolation.

In image-guided interpolation we derive metric ten-
sor fields from images, so that the blended neighbor in-
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terpolant conforms to image features, while retaining
many of the attractive features of the natural neighbor
interpolant.
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Structure-oriented smoothing and semblance
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Figure 1. A seismic image (a) after applying structure-oriented smoothing (b) and semblance (c) filters. E
ABSTRACT I’

Smoothing along structures apparent in seismic images can enhance these struc-
tural features while preserving important discontinuities such as faults or chan-
nels. Filters appropriate for such smoothing must seamlessly adapt to variations
in the orientation and coherence of image features. I describe an implementa-
tion of smoothing filters that does this and is both computationally efficient
and simple to implement.

Structure-oriented filters lead naturally to the computation of structure-oriented
semblance, an attribute commonly used to highlight discontinuities in seismic
images. Semblance is defined in this paper as simply the ratio of a squared
smoothed-image to a smoothed squared-image. This definition of semblance
generalizes that commonly used today, because an unlimited variety of smooth-
ing filters can be used to compute the numerator and denominator images in
the semblance ratio. The smoothing filters described in this paper yield an es-
pecially flexible method for computing structure-oriented semblance.

Key words: seismic image smoothing semblance

1 INTRODUCTION ure lc using a process that (in the sense of Fehmers
and Hocker, 2003) I call structure-oriented semblance.
As shown here, semblance is a normalized measure of
coherence with values between zero and one, where zero
corresponds to no coherence. I used the semblance im-
age in structure-oriented filtering to inhibit smoothing
across the faults in Figure 1b. However, semblance im-
ages like that in Figure lc are often used directly in
seismic interpretation to construct geologic models of
faults and stratigrathic features such as channels (e.g.,
Bahorich and Farmer, 1995; Marfurt et al., 1998).

The purpose of this paper is to describe new meth-
ods for computing smoothed and semblance images like

Images like those displayed in Figure 1 are familiar
in the context of exploration seismology, where spatial
sampling is sufficiently uniform to enable the applica-
tion of a variety of generic image-processing techniques.
For example, coherency-enhancing anisotropic diffusion
filters, as described by Weickert (1997, 1999), have been
adapted by Fehmers and Hocker (2003) for structure-
oriented filtering of seismic images to enhance their in-
terpretation. Figure 1b illustrates a similar structure-
oriented smoothing process that smooths along coherent
reflections while preserving faults.

Faults apparent in Figure 1a are highlighted in Fig-
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are non-negative. The leftmost term in the denomina-
tor is unity because it equals the sum of those weights.
Then, by the Cauchy-Schwarz inequality, we have s < 1.

Equation 16 is written carefully to show that
weighted semblance is equivalent to a normalized corre-
lation coefficient for two sequences y/h[j] and /h[j] f[5].
This coefficient is unity if the sequence f[;] is constant.
‘When this sequence is not constant, more weight is given
to the values f[j] for which the weights h[j] are largest.

To compute weighted semblance in sliding and
seamlessly overlapping windows of the sequence f(j],
we simply write

(snti =150

;h[i = )(f1])

sld]

Both numerator and denominator in this ratio include
convolution with a smoothing filter like those shown
in Figure 5a. In this sense, semblance is the ratio of
a squared smoothed-sequence to a smoothed squared-
sequence.

However, the smoothing filter need not be shift in-
variant. An even more general form of equation 17 is

(5 hli 1s137)”

o= > hli ) (711)”

(18)

In other words, smoothing-filter coefficients hl; j] may
vary with index 7, provided that the properties in equa-
tions 15 are satisfied for all <.

Before extending the notion of weighted semblance
to 2D and 3D images, it will help to simplify notation
further by letting (-) denote smoothing of whatever is
inside the angle brackets, so that semblance becomes
simply

s = (f—>2 (19)

(2

3.4 2D structure-oriented semblance

For 2D images, we have the opportunity to include a
second smoothing, as in the conventional definition of
semblance in equation 13. Using the concise notation
described above, we may rewrite this equation as

_ N n

=T 0
where (-); denotes smoothing along the 1st image axis,
and (-), denotes smoothing along the 2nd axis. The
outer smoothing (-); helps to stabilize semblance values
where the inner smoothing (), accumulates only very
small and perhaps noisy values. Depending on expected
orientations of image features, we might switch the 1st

and 2nd smoothing directions.
For structure-oriented semblance, I simply replace

axis-aligned smoothing with structure-oriented smooth-
ing. When computing semblance for 2D images, we may
define the smoothing filters using eigenvectors u and
v computed from structure tensors. Structure-oriented
semblance is then

(2D
U2 )e 1)

The inner smoothing (), is along image features, and
the outer smoothing (), is across those features.

I computed the structure-oriented semblance shown
in Figure lc using structure-oriented smoothing filters
with M = 4 (a = M (M +1)/6) for inner smoothing (-),,
along image features and M = 16 for outer smoothing
(-}, across those features. As expected, semblance is low
near faults and near the bottom where the image f is
less coherent. ‘

The structure-oriented smoothing filters used to
compute semblance in this and other examples shown in
this paper do not strictly satisfy the second requirement
of equation 15 that all weights be non-negative. Recall
the smoothing-filter weights shown in Figure 4, which
are mostly positive, but on close inspection exhibit neg-
ative values. Non-negative weights are easy to obtain for
1D smoothing; e.g., the smoothed exponential sequence
in Figure 5a. However, I have been unable to guaran-
tee non-negative weights.in useful finite-difference ap-
proximations of the more general anisotropic smoothing
equation 5.

Nevertheless, these smoothing filters yield a useful
semblance measure. I simply clip the values of s, so
that values less than zero are replaced with zero and
values greater than one are replaced with one. In my
experience, computing structure-oriented semblance for

sv,u =

both 2D and 3D images, this clipping occurs rarely. In .

the example shown in Figure lc, no such clipping was
necessary.

Figure 6 shows the same semblance image again for
comparison with a more conventional slope-based sem-
blance image. I computed this slope-based semblance for
a sliding window of nine traces (M = 4). Within each
such window, I used sinc interpolation of each trace to
flatten the nine-trace image before computing the inner
horizontal sums with constant (boxcar) weights. I then
computed the outer vertical sums by applying vertical
Gaussian smoothing for M = 16 (o = \/M(M + 1)/3),
before finally computing the semblance ratios. Although
smoothing filters varied, this example of slope-based
semblance is comparable to that of structure-oriented
semblance because I chose consistent half-widths M = 4
and M = 16 in both examples.

A notable difference between the two semblance im-
ages in Figure 6 is the appearance of faults as piece-
wise vertical features in the slope-based semblance im-
age. This vertical bias is caused by the outer Gaussian
filtering that in the conventional slope-based method
smooths semblance numerators and denominators only
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orthogonal to linear or planar features. The eigenvectors
w, which correspond to the smallest eigenvalues \,,, will
be aligned with linear features, such as the channels in
Figure 7a. Both eigenvectors v and w will lie within the
planes of any planar features.

Structure-oriented semblance measured within lo-
cal planes defined by eigenvectors v and w is then sim-

ply

o DR
vw,u = < <f2)v'w )u. (23)

This equation defines a planar semblance. For the in-
ner curviplanar smoothing, we use smoothing tensors
D = vv? + ww?. For the outer orthogonal curvilin-
ear smoothing, we use D = uu”. Unlike slope-based
semblance, planar semblance remains well defined for
steeply dipping, even vertical, features in 3D seismic
images.

Choosing the eigenvalues of smoothing tensors D in
a different way, we can likewise define a linear semblance

{({f)% uv

S = T Y 24

As its name implies, this linear semblance measures co-
herence along curvilinear paths within an image.

Planar and linear semblance are two extremes in

a continuum of semblance measures we may define by

choosing the eigenvalues of smoothing tensors D in dif-

ferent ways. We may, for example, choose the eigen-

values of D to be functions of the eigenvalues of the

corresponding structure tensors T, perhaps using the

following measures of isotropy, linearity and planarity:

isotropy: Ao = Aw/Au
linearity: A1 = (Ao — Aw)/ A
planarity: Ao = Ay — Ay) /A, (25)

defined here such that Ao+ A1 + A2 = 1. In any case, the
outer smoothing we perform in the semblance calcula-
tion is an orthogonal complement to the inner smooth-
ing.

Figure 8 shows examples of both planar and linear
semblance. All smoothing filters in these examples have
half-width M = 2 samples. (Shorter filters are more
suitable for 3D images than for 2D images because of

. the extra dimension in which smoothing can be per-
formed.) Planar semblance highlights (with low values)
all features that are not planar, such as the channels,
which are linear. Linear semblance highlights variations
within those channels, features that are neither linear
nor planar, but may be significant.

4 CONCLUSION

Structure-oriented smoothing filters as described in this
paper are quite general, with parameters derived mostly
from structure-tensor fields. In contrast to smoothing
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Figure 8. 3D structure-oriented planar semblance Syw,u (a)
and linear semblance sy,4v (b) computed for a 3D seismic
image of buried channels. Shown here are horizontal 2D slices
(coincident with the 2D slices shown in Figure 7) extracted
from 3D semblance images.

filters parameterized by slopes of image features, this
generality enables smoothing of 2D and 3D images with
arbitrary orientations and dimensionalities.

Structure-oriented smoothing filters are also sim-
ple to implement with small computer programs. The
most significant part of the implementation for 2D fil-
ters (not including a necessary but readily available
conjugate-gradient solver) is a computer program with
only 23 lines. A similar program for 3D structure-
oriented smoothing consists of only 42 lines.

From structure-oriented smoothing we may de-
fine structure-oriented semblance as the ratio of a
squared smoothed-image to a smoothed squared-image.
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