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CWP Policy on Proprietary
Printed Material

New printed material that is produced at the Center for Wave Phenomena under Con-
sortium support is presented to Sponsors before it is released to the general public. We delay
general publication by 60 days so that Sponsors may benefit directly from their support of
the Center for Wave Phenomena.

During this delay, Sponsors may make whatever use of the material inside their organi-
zation that they deem proper. However, we expect that all Sponsors will respect the rights
of other Sponsors, and of CWP, by not publishing these results externally and indepen-
dently, in advance of this 60-day delay (even with attribution to CWP). Please refer to your
Consortium Membership Agreement under the paragraph entitled “Sponsor Confidentiality
Obligation.”

Those reports in this book that were produced primarily under consortium support
and have not been previously distributed or submitted for publication, will be available for
general distribution after July 10, 2005. If you have independently generated results that
duplicate or overlap these, and plan to submit them for publication under your own name
before this date, please notify us immediately, so that misunderstandings do not arise.
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INTRODUCTION

This edition of the report on the Consortium Project at the Center for Wave Phenomena summarizes
much of the research conducted within CWP, as it enters its twenty-second year. Note that the papers in
this report and those presented orally during the Annual Project Review Meeting, May 10-12, 2005, only
partially overlap. Also, in addition to these papers, several last-minute manuscripts will be distributed
during the Meeting and mailed to representatives of sponsor companies.

Papers in This Report

The 19 papers in this volume are grouped into the following six categories: data processing, seismic
interferometry, anisotropic attenuation, multicomponent seismology, migration and imaging, and faults
and fractures. These categories show both similarities to and differences from those of the past few
years, indicative of both the continuity and expanding breadth of our research program. Readily, several
papers could have been placed in another category, and the categorization could have been different from
that selected.

The two papers on data processing deal with the practically important issues of nonhyperbolic move-
out correction and attenuation of internal multiples. One of the papers presents an efficient and accurate
method for nonhyperbolic moveout correction in VTI (transversely isotropic with a vertical symmetry
axis) media based on rational interpolation. For large offset-to-depth ratios and models with substan-
tial anellipticity, this method performs better than algorithms based on the widely used nonhyperbolic
moveout equation. The high accuracy of the new technique is corroborated using both synthetic and
field (land) data. The second paper implements the theory for attenuating imaging artifacts caused
by internal multiples that was presented at last year's Project Review Meeting. Synthetic examples
illustrate how these artifacts can be estimated as part of the imaging process, resulting in an efficient
algorithm.

The field of seismic interferometry is rapidly emerging both in industrial and academic research.
Five papers on this topic present derivations of the main principles of seismic interferometry and discuss
important implementation issues. One of the papers contains an overview of different approaches to
interferometry. For simple models of the subsurface, the extraction of the Green’s function from sources
at the surface can be explained using the principle of stationary phase. The paper shows, however, that
when only sources at the surface are used, the reconstructed Green’s function contains artifacts caused by
spurious multiples that cannot be removed with standard techniques of multiple suppression. The utility
of seismic interferometry is not limited to monitoring the subsurface. One of the papers demonstrates how
interferometry helps to extract the response of a building from incoherent signals. The building response
can be seen either as a sum of normal modes, or as a superposition of propagating waves; this provides
complementary information about the response. This application of seismic interferometry can also
be helpful in processing of borehole data, and in monitoring mechanical structures such as platforms.
Another paper treats the issue of bias in coda-wave interferometry. With the goal of increasing the
number of usable independent time windows in interferometry by including windows further into the
coda, this paper develops a correction to the cross-correlation coefficient that removes the bias induced
by the presence of noise.

Another relatively new topic for CWP is anisotropic attenuation. The three papers in this section
include both theoretical analysis of attenuation coefficients in anisotropic media and applications to
physical-modeling data and to a wide-azimuth field data set. The theoretical contribution extends the
Thomsen-style notation for attenuative VTI media to more complicated orthorhombic models. The new
notation, based on the same principle as Tsvankin’s velocity-anisotropy parameters for orthorhombic
media, leads to simple linearized equations for the symmetry-plane attenuation coefficients of all three
modes. The attenuation-anisotropy parameters also make it possible to simplify the P-wave attenuation
coefficient outside the symmetry planes and develop an analytic framework for inverting P-wave atten-
uation measurements over fractured reservoirs. Another paper includes physical modeling and analysis
of P-wave attenuation anisotropy in a transversely isotropic sample made of phenolic material. Whereas
the symmetry axes of the angle-dependent attenuation coefficient and of the velocity function have close
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orientations, the magnitude of the attenuation anisotropy far exceeds that of the velocity anisotropy.
The quality factor @ increases more than tenfold from the symmetry (slow) direction to the isotropy
plane (fast direction). The paper devoted to field measurements of attenuation provides estimates of the
azimuthally varying P-wave quality factor for the East Decatur field in Texas using the spectral-ratio
method and a regularized linear inversion scheme. For the two superbins used in this work, the algorithm
yields a substantial magnitude of the azimuthal variation of the effective Q-factor, with the principal
directions close to the axes of the corresponding NMO ellipse.

The three papers on multicomponent seismology discuss several aspects of the moveout and amplitude
analysis of mode-converted PS-waves. One paper demonstrates, with physical-modeling data, that the
combination of long-spread reflection traveltimes of PP- and PS-waves can be inverted for the parameters
of a horizontal TI layer with a tilted symmetry axis. Application of the modified “PP+PS=SS” method
to the PP and PS traveltimes yields the time and offset asymmetry attributes of the PS-waves, which
play the critical role in the parameter estimation. The inverted model is validated by reproducing the re-
sults of transmission experiments; in particular, the transmitted SV wavefield exhibits a prominent cusp
(triplication) accurately predicted by the inversion results. Another paper employs the principle of the
PP+PS=SS method to develop an exact technique for constructing the interval traveltime-offset func-
tion in a dipping anisotropic (target) layer beneath a horizontally layered overburden. This methodology
can be used to estimate the interval parameters of tilted TI formations in such important exploration
areas as the Canadian Foothills. Other potential applications are in the dip-moveout inversion for the
key time-processing parameter 7 and in the exact computation of the interval long-spread (nonhyper-
bolic) moveout. The third paper presents an analytic and numerical study of the small-angle reflection
coefficients of the split converted waves PS; and PS, for a horizontal interface separating two tilted
TI halfspaces. While isotropic models predict no P-to-S conversion at normal incidence, the oblique
orientation of the symmetry axis results in significant zero-offset PS-wave reflection coefficients reaching
0.1. The developed analytic solutions provide a foundation for AVO-inversion algorithms operating with
multicomponent data acquired over tilted TI media.

The section on migration and imaging includes three papers. One of them discusses the use of
curvelets in common-offset time migration and introduces a procedure based on translating, rotating
and dilating curvelets, where the translation and rotation are governed by prestack map time-migration
equations. The method is illustrated with synthetic data examples. Another paper is devoted to time-
reverse imaging — a technique in which one propagates a pulse through a medium, records the signal and
then back-propagates it through the same medium to refocus the energy at the original source location.
When the back-propagation velocity is different from that for the forward propagation, the waves refocus
at a different location. The shift in the location of the refocused pulse can help to estimate the velocity
perturbation. The third paper describes a number of imaging tests with smoothed velocity fields for a
simple synthetic 2D model of reflectors beneath salt. Past studies on the smoothing of velocities used
for migration have applied smoothing operators to known synthetic velocity. The primary reason for
smoothing, however, is that the initial velocities are never known with perfect accuracy. This work
shows that, depending on the type of error in the initial velocity model, smoothing of the velocities can
improve image, sometimes substantially. :

The last section (faults and fractures) is devoted to seismic fracture characterization and fault imag-
ing. Conventional fracture-characterization techniques operate with the idealized model of penny-shaped
cracks and ignore the roughness (microcorrugation) of fracture surfaces. One of the papers analyzes the
NMO ellipses, AVO gradients, and shear-wave polarizations for an effective triclinic medium formed
by two microcorrugated, vertical, orthoganal fracture sets in isotropic background rock. Such a model
adequately describes the orthogonal fracture networks at Weyburn field in Canada, where the axes of the
P-wave NMO ellipse deviate from the fast shear-wave polarization direction. Two other papers are based
on Matt Haney’s recently defended thesis on imaging fault zones. One of them shows the connection
between the fault-zone reflectivity and pore pressure distribution in the South Eugene Island reservoir
in the Gulf of Mexico. The other paper describes the evidence of a fluid pulse that propagates along a
fault zone with a speed of about 140 meters per year.
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OVERVIEW OF DEVELOPMENTS IN CWP

Changes in the Past Year

In August 2004, Ken Larner retired from his position as C.H. Green Professor of Exploration Geo-
physics and Director of CWP. Ken has been named the University Emeritus Professor at CSM and
continues his association with CWP and Geophysics Department as a research professor. We expect
that Dave Hale, who has been selected as the new C.H. Green Chair, will work closely with CWP
faculty and students.

The leadership of CWP remains strong, with both Ken and Norm Bleistein remaining part of the
team, in their “retirement,” to support the full-time academic faculty, Martijn de Hoop, Roel Snieder,
and Ilya Tsvankin. It has been decided to make CWP Director a rotating position, with Ilya serving
the first two- or three-year term. CWP faculty are determined to maintain the balance of applied and
long-range projects that has made our consortium one of the premier academic research groups for the
past 20 years.

Center Support

This past year the Consortium sponsorship has held steady at 25 companies, despite continuing
constraints on corporate budgets for research. We thank the representatives of our sponsor companies
for their continued support. A full list of sponsors over the term of the past year appears on the
acknowledgment page at the beginning of this volume.

We have received about $500K of government support since last June from the Department of Energy,
National Science Foundation, and U.S. Geological Survey. Our industrial and government support for
research and education complement one another; each gains from, and strengthens, the other. As a
net result, for the present annual fee of $45K, a company participates in a research project whose total
funding level is about $1.5M, which gives a leverage factor of over 33.

In addition, the SEG Foundation has continued to provide support for Seismic Unix (SU) software
package that is under John Stockwell’s leadership.

Joint Projects with Shell International E&P and Total

Roel Snieder and CWP student, Kurang Mehta, are carrying out a collaborative project on seismic
interferometry with Rodney Calvert and Jon Sheiman at Shell International E&P. This project aims
at optimizing the use of seismic interferometry for imaging and monitoring reservoirs. Though this
project is not strictly part of the CWP Consortium, Shell is willing for CWP to share the results with
Consortium sponsors, within constraints of Shell’s research agreement.

Henri Calandra, of Total in Houston, has been working with and providing support for the research
that Alison Malcolm and Martijn de Hoop have been doing in data continuation and attenuation of
internal multiples. Total, also, has agreed to make their research results and code available to CWP
Sponsors.

We encourage similar types of directly sponsored research with other companies that could lead to
sharing of results with the Consortium.

Summer Workshop on Subsalt Imaging Problems

Martijn de Hoop and Ken Larner are co-organizers (with Henri Calandra, Chris Corcoran, Joe
Higginbotham, Jacques Leveille, and Scott Morton) of the workshop on Subsalt Imaging Problems
which will be held July 13-14, 2005, on the CSM campus. The workshop will focus on seismic imaging
issues arising from exploration in the Gulf of Mexico. The expected attendance is 60-80 people, evenly
divided between industry participants and non-industry researchers.
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Interaction with Other Research Projects at CSM and Elsewhere

During this past year, as in previous years, faculty and students of CWP have interacted closely
with other industry-funded research projects in the CSM Department of Geophysics. These include
the Reservoir Characterization Project (RCP), led by Tom Davis; the Physical Acoustics Laboratory
(PAL), led by John Scales and Kasper van Wijk; the Center for Rock Abuse, led by Mike Batzle; and
the Gravity/Magnetics Project (GMP), led by Yaoguo Li. Some CWP students receive joint support
from these consortia.

In addition, various CWP faculty have engaged in collaborative efforts with researchers elsewhere.
Examples include:

¢ Norm Bleistein
- Sam Gray, Veritas DGC, Calgary
- Guanquan Zhang, Academica Sinica, Beijing
= Yu Zhang and Xu Sheng, Veritas DGC, Houston

e Martijn de Hoop
~ Sergey Goldin, Siberian Branch of the Russian Academy of Sciences
— Rob van der Hilst and Rod Hager, MIT
— Chris Stolk, Ecole Polytechnique, Paris
— Gunther Uhlmann, University of Washington
= Bjgrn Ursin, NTNU, Trondheim, Norway

¢ Roel Snieder
— Rick Aster, New Mexico Institute of Technology
- Rodney Calvert and Jon Sheiman, Shell International E&P
— Joan Gomberg and Bill Stephenson, US Geological Survey
— Eldad Haber, Emery University
— Peter Malin, Duke University
— Kees Wapenaar, Delft Institute of Technology

o llya Tsvankin
- Andrey Bakulin and Vladimir Grechka, Shell International E&P
— Pat Berge and Jim Berryman, Lawrence Livermore National Lab
— Peter Leary, University of Edinburgh
— Ivan Psen¢ik, Czech Academy of Sciences

Travels and Activities of CWP People

Interactions and collaborations that have taken place away from Golden include the following.

o Norm Bleistein
— Alexander von Humboldt Foundation Senior Fellowship, University of Karlsruhe, Germany
(Spring 2005)
~ Visits to IFP and Ecole des Mines in Paris (April 2005)
— Plans to present two papers at the Workshop on Seismic Waves in Laterally Heterogeneous Me-
dia, Czech Rebublic (June 2005)
— Prepared a full-day short course and two papers for the upcoming BSGF meeting in Salvador de
Babhia, Brazil

¢ Martijn de Hoop (was on sabbatical from CSM this academic year)
— Several collaborative visits with researchers from Total in Houston and Pau, France, throughout
the year
- Numerous collaborative visits with faculty and students at MIT throughout the year



— Meeting on Inverse Problems, Helsinki, Finland (May-June 2004)

- 5th International Conference of AIMS, Pomona, CA (June 2004)

— Collaborative research with Sergey Goldin on the CRDF grant, Novosibirsk, Russia (July-August
2004)

— Invited Colloquium at Purdue University, Lafayette (November 2004 and February 2005)

— IPAM Meeting, Los Angeles (November 2004)

— Collaborative research with Gunther Uhlmann at the University of Washington (November—
December 2004)

— SRI Workshop near Frankfurt, Germany, as well as collaboration with Bjorn Ursin and others
(February—March 2005)

e Ken Larner
— Keynote Speaker for the annual Canadian SEG Doodletraining Week, Calgary (November 2004).
While there, participated as a co-instructor with Brian Russell and Larry Lines for the two-day
course “Seismic imaging and inversion”

e Roel Snieder
- AGU Fall Meeting, San Francisco (December 2004)
- Annual meeting of the Society of Mining Engineers, Salt Lake City (February 2005)
— Trips to meetings of the Earth Science Council of the Department of Energy
— Seismology chair of the organizing committee of the joint Spring Meeting of the American Geo-
physical Union and SEG

e Ilya Tsvankin
— Two-day tutorial on seismic anisotropy at BHP Billiton in Houston (June 2004)
— Technical Program Co-Chairman and member of the Organizing Committee, 11th International
Workshop on Seismic Anisotropy, St. John’s, Canada (July 2004)
— Taught the SEG Short Course on Seismic Anisotropy (two days) at the SEG Annual Convention
in Denver (October 2004), in Houston (November 2004), at Petrobras in Rio de Janeiro, Brazil
(March 2005), and in New Orleans (April 2005)
— Second edition of the monograph “Seismic signatures and analysis of reflection data in anisotropic
media” published by Elsevier (March 2005)

Our students traveled considerably as well. Pawan Dewangan and Yaping Zhu presented papers at
the 11th International Workshop on Seismic Anisotropy in St. John’s, Canada (July 2004).
Matt Haney, Kurang Mehta, and Greg Wimpey visited Shell Bellaire Research Centrer in Houston for
extended periods of time to participate in joint research related to Roel Snieder’s project with Shell.
Huub Douma and Alison Malcolm traveled to Houston several times doing on-site research with Total.
Huub also spent a month (September 2004) working with Dr. Emmanuel Candes in the Department of
Applied and Computational Mathematics at Caltech.
Pawan Dewangan, Tamara Gipprich, Matt Haney, and Alison Malcolm attended the AGU Fall Meeting
in San Francisco (December 2004).

Visitors to CWP

CWP has benefited again this year from visits by a number of scientists and friends from other
universities and industry. We strongly encourage visits from our sponsor representatives, whether it be
for a single day, or for an extended period. Below is a list of those who spent time at CWP.

e Speakers at the Summer School on Mathematical Geophysics and Uncertainty in Earth Models
(June 2004): Andrew Curtis (Schulmberger), Chris Farmer (Schlumberger), Eldad Haber (Emery
University), Brian Kennett (Australian National University), Alan Levander (Rice University),
Stewart Levin (Landmark Graphics), Alberto Malinverno (Schlumberger), Doud Oldenburg (Uni-
versity of British Columbia), George Papanicolaou (Stanford University), Malcolm Sambridge
(Australian National University), and Bill Symes (Rice University);
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¢ Anton Duchkov, a graduate student from the Siberian Branch of the Russian Academy of Sciences,
collaborating with Martijn (June-July 2004); will return to CWP in October 2005 for a two-year
term as a post-doc;

e Maureen Long, a student at MIT, working with Martijn (one week);

e Andrey Bakulin, Shell E&P, collaborating with Ilya and Roel (one week);

¢ Vladimir Grechka, Shell E&P, collaborating with Ilya;

¢ Bjgrn Ursin, NTNU, Trondheim, Norway, collaborating with Martijn;

o Art Weglein, University of Houston, CWP seminar and SEG Distinguished Lecture;

e Sergey Fomel, University of Texas at Austin, Heiland Lecture;

e Eldad Haber, Emery University, collaborating with Roel;

e Sverre Brandsberg-Dahl, BP, CWP seminar;

e John Etgen, BP, CWP seminar and Heiland Lecture;

e Ray Abma, BP, CWP seminar;

e Bill Dragoset, WesternGeco, CWP seminar and Heiland Lecture;

e Jerry Schuster, University of Utah, Heiland Lecture;

e Christof Stork, WesternGeco, CWP seminar

e Henry Calandra, Total, several visits to work with Martijn de Hoop and Alison Malcolm;
e Jim Gaiser, WesternGeco, Denver, numerous visits as participant in the A (nisotropy)-Team, and

speaker.

Students and post-docs

Four CWP students completed their studies this past year: Pawan Dewangan, Alex Grét, Matthew
Haney, and Alison Malcolm.

Anton Duchkov will join CWP as a post-doctoral fellow beginning in October 2005. Anton completed
his Ph.D. in December 2004 at the Institute of Geophysics, Novosibirsk, Russia; his advisor was Sergey
Goldin.

During the 2004-2005 academic year, CWP provided full or partial funding for 15 students.

Papers at SEG

Once again, CWP students and faculty presented a large number of papers at the SEG Annual
Meeting. During the 2004 Annual Meeting in Denver, they gave a total of 13 oral presentations, poster
papers, and workshop contributions. A number of these presentations result from the CSM Department
of Geophysics requirement that Ph.D. students must complete research papers in two different areas
with two separate faculty members (recently, the requirement has been changed to one research paper
and a thesis proposal). The two goals of this policy are to broaden students’ educational background in
geophysics and to encourage them to embark on research early in their Ph.D. studies.

For other meetings where CWP personnel presented papers, see page x, “Iravels and Activities of
CWP People.”
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Publications

We recently distributed to our sponsors theses written by CWP graduates: Alex Grét, Pawan De-
wangan and Matthew Haney. The thesis of Alison Malcolm, defended April 1, will be distributed during
the upcoming summer. If you did not receive a copy of these publications and would like one, please
contact Barbara McLenon at barbara@dix.mines.edu.

Since the 2004 Project Review meeting, 14 papers authored or co-authored by CWP faculty and
students have been published and approximately 30 papers are currently under review or in press
for publication in a variety of journals. In your meeting folder, you can find a list of recent re-
ports in the CWP list of “Available Papers.” The complete list of CWP papers is on our web site
at http://www.cwp.mines.edu/bookshelf. html.

On the Web

Samizdat Press, http://samizdat.mines.edu/, the Internet archive that distributes free books and
sets of lecture notes, has grown to a listing of 26 titles. The newest additions are “Course of Differential
Geometry” and “Multidimensional Geometry,” both by Ruslan Sharipov, and “Solving the Sealevel
Equation” by Giorgio Spada. Samizdat Press is a creation of John Scales of the CSM Department of
Geophysics, and Martin Smith of New England Research.

Computing Environment

The CWP research computing environment includes a 32 processor Linux cluster system. Each of the
16 nodes consists of a dual processor Pentium Xeon 2.4 GHZ PC system with 2 GB of RAM available
per processor, and about 160 GB total of hard-disk storage for each node. We have had this unit for
nearly two years, and plan to upgrade it with eight more nodes.

Each student and faculty member has a desktop system of 2 Ghz or faster running Linux, with at
least 40 GB of storage space per desktop. In addition to these desktop systems, we have purchased a
3.0 Ghz server with .4 Terabytes of disk space. We plan continued expansion of storage and processing
capacity.

For data transport, our preferred medium consists of USB hard drives, formatted with the ext3
filesystem. Students make regular use of the following commercial packages: Mathematica, Matlab,
NAG95 (Fortran 90/95 compiler), and the Intel compiler (free version).

Software Releases

CWP releases both open-source software as well as software that is proprietary to the Consortium.
Most proprietary codes depend heavily on the free software environment, so both of these are relevant
to the Consortium. The proprietary period is three years. Some of the codes developed at CWP are
part of government-funded research projects, and are required to be released as open source. However,
we have descretion as to the classification of other codes. Software developed using in-house resources
of sponsor companies generally is not available to us for release.

Tentative plans for future proprietary software releases include Alison Malcolm’s multiple-suppression
research code MULMIG, as well as software related to Huub Douma and Martijn de Hoop’s curvelet
migration research.

The primary vehicle of open software distribution is the CWP/SU:Seismic Un*x (SU) package. This
package has been installed at more than 3300 sites in 62 countries (where a country is defined by its
independent country code), and has an active worldwide user group.

Release 38 of SU was issued on December 23, 2004, and contained many updates and new software,
including the anisotropic migration velocity analysis codes of Debashish Sarkar. Since the beginning of
2005 we have issued 5 beta releases. Future plans include a modification of the SU data format to permit
the reading and writing of data in the new SEG Y Rev 1 format.

xiii
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Annual Project Review Meeting

This year’s Annual Project Review Meeting, May 10-12, 2005, will be held for the second time at
the Stanley Hotel, Estes Park, Colorado. The historic hotel proved a convenient and hospitable venue
for CWP’s 20th Anniversary Meeting last year. During the three-day meeting, students and faculty will
present more than 20 papers. A tradition of recent years is that, prior to the the Meeting, we hold .a
tutorial for sponsors on a topic of particular interest within CWP. This year, Roel Snieder will give a
two-hour tutorial entitled “Interferometric imaging: Who needs a seismic source?”

WELCOME

With great pleasure, we welcome representatives of our sponsor companies to the 21st Annual Project
Review Meeting, and look forward to the opportunity to exchange with you ideas and thoughts about
this past year’s projects.

Ilya Tsvankin, Director
Center for Wave Phenomena
May 2005
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CWP-498

Nonhyperbolic moveout analysis in VTI media using
rational interpolation

Huub Douma!, Alexander Calvert? and Edward Jenner?

1 Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401-1887, USA
2GX Technology, 225 East 16th Avenue, Suite 1200, Denver, CO 80203, USA

ABSTRACT

We present a rational interpolation approach to nonhyperbolic moveout correc-
tion in the ¢ — z domain, for qP-waves in homogeneous transversely isotropic
media with a vertical symmetry axis. This method has no additional compu-
tational overhead compared to using expressions explicit in the relevant pa-
rameters, i.e., the anellipticity parameter 7 and the (zero-dip) normal moveout
velocity Vapo. The lack of such additional overhead can be attributed to the
observation that, for a fixed value of 7 and a fixed zero-offset two-way travel-
time tp, the moveout curve for different values of Vxpro can be calculated by
simple stretching and squeezing of the offset axis, where the amount of stretch
or squeeze depends on the change in V0. This observation is based on the
generally accepted assumptions that the traveltimes of qP-waves in transversely
isotropic media, depend mainly on 1 and Vypo0, and that the shear-wave ve-
locity along the symmetry axis has a negligible influence on these traveltimes.
The accuracy obtained with this method is as good as that of these approxima-
tions. The method can be tuned to be accurate to any offset range of interest,
by increasing the order of the interpolation, making it accurate for arbitrary
offsets.

We test the method using both synthetic and field data, and compare it with the
nonhyperbolic moveout equation of Alkhalifah and Tsvankin (1995). Both data
types confirm that for 7 > 0.1 our method significantly outperforms the nonhy-
perbolic moveout equation in terms of combined unbiased parameter estimation
with accurate moveout correction. A comparison with the shifted hyperbola
equation of Fomel (2004) establishes almost identical accuracy of the rational
interpolation method and his equation. Under the above-mentioned approxima-
tions, we show that the correction factor for the Alkhalifah-Tsvankin equation
introduced by Grechka and Tsvankin (1998), is independent of Vy a0, and we
present a method to estimate its optimal value in practice. This factor can be
used to maximize the performance of the Alkhalifah-Tsvankin approximation.

Key words: Moveout analysis, nonhyperbolic, anisotropy, anellipticity, VTI,
rational interpolation

Introduction isotropic (TI) model adequately describes the intrinsic
anisotropy of shales (Sayers, 1994), wave propagation in
TI media has attracted much attention. Because the dis-
persion relations govern the propagation velocities of the
different wave modes (and hence the traveltimes used in
seismic data processing), and because these relations are
nonlinear in the elastic coefficients, many authors have

Over the past two decades, the importance of anisotropy
and its influence on seismic data processing have be-
come increasingly appreciated. Since 75% of the clas-
tic infill of sedimentary basins consists of shale forma-
tions (Tsvankin, 2001, p.11), and since the transversely
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worked on approximations of the dispersion relations in
TI media (Dellinger et al., 1993; Tsvankin & Thom-
sen, 1994; Alkhalifah, 1998; Schoenberg & de Hoop,
2000; Zhang & Uren, 2001; Stovas & Ursin, 2004; Fomel,
2004), with varying levels of accuracy; Fomel’s (2004)
shifted hyperbola approach seemingly the most accu-
rate of all. Fowler (2003) gives a comparative review of
some of these approximations with an emphasis on TI
media with a vertical symmetry axis (VTI media).

Here, we propose a rational interpolation scheme
for traveltimes of qP-waves in homogeneous VTT me-
dia that requires no additional computational over-
head compared to methods using approximations ex-
plicit in the physical relevant parameters, such as those
just mentioned. The choice to use a rational interpola-
tion was motivated by the observation that several of
the aforementioned approximations achieve high accu-
racy through the use of rational approximations [e.g.,
Schoenberg and de Hoop (2000) and Stovas and Ursin
(2004)], and by the form of the nonhyperbolic moveout
equation of Tsvankin and Thomsen (1994), which re-
sembles a rational approximation. We refrain from an
attempt to derive yet another approximation to travel-
times of qP-waves in such media that is explicit in the
relevant parameters. Instead, we simply make use of the
facts that the shear-wave velocity along the (vertical)
symmetry axis, Vso has negligible influence on the trav-
eltimes of qP-waves in TI media (Tsvankin & Thom-
sen, 1994; Tsvankin, 1996; Alkhalifah, 1998; Alkhali-
fah, 2000), and that these traveltimes depend mainly on
the anellipticity parameter n and the (zero-dip) normal-
moveout velocity Vnaro (Alkhalifah & Tsvankin, 1995).
That is, the influence of Thomsen parameter § is only
small. We show that these two assumptions cause the
influence of Vvaro on the nonhyperbolic moveout of qP-
waves in a horizontal homogeneous VTI layer, for fixed
anellipticity parameter 1 and two-way zero-offset trav-
eltime to, to be a simple horizontal stretch (or squeeze),
i.e., along the offset axis, of the moveout curve for some
reference value of Vyaro, where the amount of stretch
(or squeeze) depends on the change in Vyaso. This sim-
ple observation allows the traveltimes needed for the ra-
tional interpolation to be calculated from a small num-
ber of precomputed traveltimes stored in a table. Within
the limits of the accuracy of the above two approxima-
tions, our rational interpolation approach can be tuned
to almost arbitrary accuracy at any offset-to-depth ra-
tio (ODR) (or group angle) of interest. A comparison
of our approach with the shifted hyperbola approach
of Fomel (2004) shows that our method has accuracy
almost identical to that of Fomel.

For velocity analysis in VTI media using qP-waves,
the nonhyperbolic moveout equation for a single hor-
izontal VTI layer, derived by Tsvankin and Thomsen
(1994), is the current standard in seismic data process-
ing. Alkhalifah and Tsvankin (1995) have rewritten this
equation in terms of Vyao and 5. Even though this

approximation is exact at zero offset and infinite offset,
Grechka and Tsvankin (1998) mention that at interme-
diate offsets “this approximation can be somewhat im-
proved by empirically changing the denominator of the
nonhyperbolic term.” Fhis limited accuracy at interme-
diate offsets was also noted by other authors [e.g., Zhang
and Uren (2001), van der Baan and Kendall (2002),
and Stovas and Ursin (2004)]. In an attempt to over-
come this limitation in accuracy, Grechka and Tsvankin
(1998) introduce a correction factor C in the denomi-
nator of the nonhyperbolic term. We show that within
the two approximations mentioned above, this correc-
tion factor depends only on the ODR and 7, and we
present a figure that shows C as a function of both ODR
and 7, for ODR up to four and 0 < 5 < 1. We explain
how this figure can be used in practice to determine the
value of C, that minimizes the bias in the estimated
value of 7 when the nonhyperbolic moveout equation
of Alkhalifah and Tsvankin (1995) is used. Through a
study of the accuracy of this equation, we establish its
limits of applicability.

The motivation for higher accuracy at larger ODR
stems from the observation that a larger ODR pro-
vides better resolution for the anellipticity parameter 5
(Alkhalifah, 1997; Grechka & Tsvankin, 1998; Wookey
et al., 2002). Hence, improved accuracy at larger ODR
can help reduce the uncertainty in inversion for n [within
the limits of the trade-off between 1 and Vnmo, as
observed by Grechka and Tsvankin (1998)] when large
ODR is available in the data. We show that our rational
interpolation approach provides significantly more accu-
rate traveltimes than does the currently standard non-
hyperbolic moveout equation, especially for larger ODR
(larger than two), and for arbitrary levels of anellip-
ticity, with no additional computational overhead. The
lack of such overhead stems from the influence of Vo
being limited to a stretch (or squeeze) along the offset
axis of the moveout curve for some reference value of
Vnumo, and for fixed n and to.

The outline of this paper is as follows. First, we
study the accuracy of the nonhyperbolic moveout equa-
tion from Tsvankin and Thomsen (1994) and analyze
the influence of the introduction of the correction fac-
tor of Grechka and Tsvankin (1998) on this accuracy.
Subsequently, we introduce the rational interpolation
approach to nonhyperbolic moveout for qP waves in
VTI media, and explain the stretch-squeeze influence
of Vnamo on the moveout curve of P reflections in a
single horizontal homogeneous VTI layer. Subsequently
we explain the influence of this observation on the cor-
rection factor C in the nonhyperbolic moveout equation.
Synthetic tests, for both a single homogeneous horizon-
tal VTT layer and a horizontally layered VTI medium,
verify the improved accuracy of the method when com-
pared to the nonhyperbolic moveout equation. Finally
these findings are confirmed by an application of the
method to field data. Also, a comparison between our
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Figure 1. Comparison of the accuracy of the nonhyperbolic
moveout equation without the correction factor, i.e,, C =1
(a), with the optimal correction factor C (b), and of the
[2/2] rational interpolation (c), for a range of models (com-
binations of 7 and Viyaro) that spans most models of prac-
tical interest. Contours are drawn for the maximum absolute
percentage error in traveltime (compared to ray-traced trav-
eltimes where ray tracing was done with Vso = 0 km/s and
§ = 0) for a single horizontal VTI layer, over a range of ODR
values up to two. The contoured values are shown in percent-
age of to. Subfigures (d) through (f) show the same contours
as in subfigures (a) through (c), except for a range of ODR
values up to four. The stars in subfigures (d) through (f) in-
dicate the model parameters used for the residual moveout
plots in Figure 4.

method and the shifted hyperbola method of Fomel
(2004) establishes the almost identical accuracy of the
two methods.

Accuracy of the nonhyperbolic moveout
equation

The nonhyperbolic moveout equation of Tsvankin and
Thomsen (1994), rewritten in terms of the anellipticity
parameter 77 by Alkhalifah and Tsvankin (1995), is given
by

z? 2zt )
Viro Vimo [88Vimo + (1 +2n) %]

where to is the two-way traveltime at zero offset,  is
offset, and Vivpmo is the (zero-dip) NMO velocity. Note
how the moveout reduces to hyperbolic moveout for el-
liptical anisotropy (n = 0), as pointed out by Helbig
(1983). This equation is exact at both zero offset and
infinite offset. In an attempt to increase the accuracy
at intermediate offsets, Grechka and Tsvankin (1998)
introduce a correction factor. Noting that for a single
horizontal VTI layer the absolute error in 7 is at least
twice as large as the relative error in the horizontal ve-

t2(z) = t3+

locity Vior = Vnmo+/T + 27, they rewrite equation (1)
in terms of Vnmo and Vior,

$2 _ (thor - VI\ZIMO) 1:4
Vivwo Viwmo t&Vimo +CVi,a?)’

where C is the above-mentioned correction factor.

Figure 1a show contours of the maximum absolute
traveltime difference (in percentage of to) between ray-
traced traveltimes for a single horizontal VTI layer and
the nonhyperbolic moveout equation without the cor-
rection factor, for virtually all combinations of  and
Vnao of practical interest. The maximum ODR is two,
and to = 1 s for all models considered. The ray-traced
traveltimes were determined with Vso = 0 km/s and
5 = 0. The differences in the traveltimes are of the or-
der of a percent, which in this case amounts to 10 ms.
For a dominant frequency of 50 Hz in surface seismic
data, this amounts to a traveltime error of about half
a dominant period. Such errors are not negligible, can
lead to substantial reduction in stacking power, and thus
cause errors in the estimation of 7 and Vyamo in velocity
analysis. Note that here we use the true values of 7 and
Vnmo for the moveout analysis rather than the best-
fit values, since we want to analyze the accuracy of the
nonhyperbolic moveout equation for a known model. It
is known that the traveltime differences shown in Figure
1a can be reduced by using the best-fit values of 5 and
Vnumo, rather than the true ones.

Grechka and Tsvankin (1998) state that, for a single
horizontal VTI layer, introducing the coefficient C = 1.2
minimizes deviations from the exact traveltimes for the
range of offset-to-depth ratio (ODR) 1.5 — 2.5. They
also mention that the correction factor can be used as
an optimization parameter by comparison of traveltimes
obtained using equation (2) and ray-tracing. Figure 1b
is as Figure la, except now the optimized correction
factor was determined for each combination of n and
Vimo shown and then used in equation (2). Note that
indeed the introduction of the correction factor reduced
the maximum errors in the traveltimes substantially, re-
sulting in errors of the order of a tenth of a percent. A
straightforward application of the C = 1.2 for all mod-
els (not shown here), did reduce the errors somewhat,
but the errors were still of the order of a percent. This
indicates that a straightforward application of C = 1.2
is in general not recommended, except for models where
C = 1.2 may happen to be the optimal correction fac-
tor. It is worth mentioning that in practice the opti-
mal value of C can be determined only approximately
because the true values of 7 and Vnpo are unknown.
Therefore, Figure 1b represents the best accuracy that
can be obtained using the nonhyperbolic moveout equa-
tion with the correction factor.

As pointed out by Alkhalifah (1997), a larger maxi-
mum ODR (say larger than 1.5) provides increased sta-
bility and resolution for the inversion for 7 using non-
hyperbolic moveout. With current acquisition systems,

2 (x) = t3 + (2)
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such values of ODR are feasible, especially for shallow
targets. Moreover, the need for cost-effective acquisition
systems could, with time, increase the maximum ODR,
in acquisition systems. Also, in near-surface (or shallow)
geophysical application, large ODR is common. F igures
1d and 1e are as Figures 1a and 1b, respectively, except
that here the maximum ODR is four. The introduction
of the optimal correction factor again reduces the errors
in traveltime significantly, but the errors are of the order
of a percent; that is, they are sizable.

The dependence of nonhyperbolic moveout for
a single VTI layer on n and Vyao

From simple geometric considerations, it follows that for
a homogeneous horizontal VTI layer, the traveltime is
given by
e Vo to
vecosy

)

where Vpg is the P-wave traveltime along the vertical
symmetry axis, 1 is the group angle, and v is the group
velocity for propagation in direction 3. The offset z as-
sociated with this traveltime is given by

T = Vpo totany . (4)

In a TI medium, the phase velocity is given by
(Tsvankin, 2001, p.22)

Ve = Vpo{1+esin20— g (1—

1/2
2esin®0\°  2(e - &)sin?20
\/(1+ ) - 7 ) (%)

where 6 is the phase angle, € and & are the Thomsen
parameters, and f = 1 — VZ,/V3,, with Vso the S-
wave phase velocity along the symmetry axis. For such
a medium, the group angle is related to the phase angle
through (Tsvankin, 2001, p.29)

L 4V
V() 48
“tanfdv ©)

V(9) do

while the group velocity v is given by

2
v=V(0)‘/1+(%%) . (7)

It is known that the qP-wave phase-velocity in TI
media depends only weakly on Vso (Tsvankin & Thom-
sen, 1994; Tsvankin, 1996; Alkhalifah, 1998). For all
kinematic problems regarding qP waves, Vs is there-
fore usually ignored. We likewise set Vo = 0 (or f=1)
in equation (5). This is the acoustic approzimation
from Alkhalifah (1998; 2000). Note that Alkhalifah and

tané +
tany =

Tsvankin (1995) obtained equation (1) from the nonhy-
perbolic moveout equation of Tsvankin and Thomsen
(1994), by also setting Vo = 0. In addition, Alkhalifah
and Tsvankin (1995) showed that the time signatures
of qP-waves in homogeneous VTI media depend mainly
on the (zero-dip) normal-moveout velocity Vo and
the anellipticity parameter 7, with an almost negligi-
ble influence of Vpo. Since we are interested only in
traveltime calculations, we can choose § = 0, and thus
Vpo = Vnmo and € = 7, in equation (5). That equation
then becomes

V(G) = Vwnwmo {nsin2 6+ % <1 +...
1/2
\/(1 + 27 sin? 9)2 — 2nsin? 29) } , (8

while equations (3) and (4) for the traveltime ¢ and the
associated offset =, become

Vinmo to
— MO 0 9
t vcosy ©)
and
z = Vimo totan , (10)

respectively. Note that the phase velocity V(8) now
depends linearly on Viaro. This linearity causes the

term in equations (6) and (7) to be indepen-

1 4V
V(6) do
dent of Vyaro. Since the dependence of the group angle
on the anisotropic parameters is governed by the term

dv . .
m@ [cf. equation (6)], the group angle v is inde-

pendent of Vi ao and depends only on 7. In addition,
it follows from equation (7) that the group velocity v
depends linearly on Vyaso since the phase velocity de-
pends linearly on Vivaro. From equations (9) and (10) it
then follows that the traveltime t becomes independent of
Vumo and that the associated offset x depends linearly
on Vnumo. Also, tg is a simple scaling factor for both
the traveltime ¢ and the associated offset z. In a single
horizontal VTI layer, this means that for fized 1 and to,
the moveout curve for different values of Vo can be
calculated by simple horizontal stretching and squeezing
along the offset azis (see Figure 2). This important ob-
servation is a straightforward consequence of the neg-
ligible influence of Vso on qP-wave traveltimes in TI
media and the fact that the kinematics of gP-waves in
homogeneous VTI media depend mainly on Vo and
7. To make explicit the independence of the traveltimes
of Vnamo, we rewrite equation (9) as

to
t Vv aro=1€08% (1)
where vIVNMO=1 denotes the group velocity calculated
for Vopmo =1 km/s.
Figure la (as well as b-e) shows that the con-
toured maximum traveltime differences between ray-
traced traveltimes and traveltimes calculated using the



Nonhyperbolic moveout analysis using rational interpolation 5

X -

Figure 2. Under the customary assumptions that travel-
times of qP-waves in VTI media depend mainly on 1 and
VNmo, and that the shear-wave velocity along the symme-
try axis (Vso) has negligible influence on the traveltimes of
qP-waves in such media, the nonhyperbolic moveout curve
for fixed 7 and tg, but varying Vyamo, can be calculated by
simple horizontal stretching (or squeezing) along the offset
axis. The amount of stretch is determined by the change in

VNnmo-

nonhyperbolic moveout equation without the correction
factor are independent of Vyao. This is now easily un-
derstood in light of the previous observation that the
nonhyperbolic moveout for fixed 7 (and to) but differ-
ent values of Viamo, are simply horizontally stretched
or squeezed versions of each other. Note that we used
Vso = 0 and & = O for the ray tracing to determine the
traveltime differences shown in Figure 1.

For hard rocks, setting Vso = 0 is not as good an
approximation as for softer rocks (Tsvankin, personal
communication). For such geology (say carbonate reser-
voirs) it is better to use an ‘intelligent estimate’ of the
V,/ Vs ratio. Note that in this case the traveltimes ¢ are
still independent of Vy o because f is simply equal to
some appropriately chosen constant value. Therefore,
the moveout curves for fixed values of 7 and o but dif-
ferent values of Vyaro are again horizontally stretched
or squeezed versions of each other.

Implications for the correction factor C
Rewriting equation (2) in terms of 7 and VNmo gives

t2(z) = &+ (z/Vwmo)® ...
2n (z/Vnmo)*
[B+C(1+29) (z/VNmo)?]

Using the observation that the offsets z are linear in
Vnao, i.e., using equation (10), it follows that

_ k2 nk?
t2(k)_t§{l+j—2(4+C[1+2n]k2)}, (13)

where we used k/2 = tan®), with k the ODR.. This equa-
tion shows explicitly that, under the above-mentioned

(12)

Figure 3. Optimal correction factor C as a function of ODR
(k) and 7.

approximations, the traveltimes for a given ODR k (or
group angle ¢) are independent of Vnmo. Note that
using k/2 = tan in equation (10) gives
2z
" toVmo
Strictly, k is a true ODR only if § = 0. For convenience,
we refer to k as the ODR. throughout the remainder of
this paper.

Under the above-mentioned two approximations,
the traveltimes t(k) on the left-hand side of equation
(13) are independent of Viamo. It follows that under
these approximations the correction factor C is inde-
pendent of Vnaro. Therefore we need only study the
dependence of C on n and k. We determine the optimal
C by minimizing the maximum traveltime difference be-
tween ray-traced traveltimes (with Vso = 0 km/s and
5 = 0) and the traveltimes calculated using equation
(13) for different values of 1 and k. Figure 3 shows a
contour plot of C as a function of 7 and k. Clearly,
the optimal C value is not a constant, but rather varies
with 7 and k. Grechka and Tsvankin (1998, p-959) state
that, for a single horizontal VTI layer, “introducing the
coefficient C = 1.2 ... minimizes deviations from the ex-
act traveltimes for the most practical range of offsets
1.5h < = < 2.5h,” where h is the depth of the reflector.
Figure 3 shows that for this range of ODR, C=12is
optimal only for values of 5 ranging from 0.08 to 0.18.
Therefore, their statement should be understood with
the added qualifier that the optimal value of C is close
to 1.2 for these particular values of ODR range in com-
bination with these particular values of 7 only.

In practice, neither 77 or k are known. However, an
estimate of Vi amo and 7 can be obtained using equation
(12) [or (2)] with C = 1. Subsequently, an estimate of

(14)
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k can be obtained using the estimated value of Vnamo
in equation (14). Then, the optimal C value can be ob-
tained from Figure 3 using the estimated k and 7.

Nonhyperbolic moveout using rational
interpolation

Fitting function values at various points (that are not
necessarily distinct) using a rational function is usually
referred to as multipoint Padé approzimation (Baker &
Graves-Morris, 1981a). Such approximation is also re-
ferred to as N-point Padé approrimation, Newton Padé
approzimation, or rational interpolation, depending on
the context. Since in this paper, we do not use coinci-
dent interpolation points (often referred to as confluent
interpolation points), we prefer to use the term rational
interpolation.

A rational approximation to a function T(z) is writ-
ten as

~ Ni(z)

T(z) ~ Da(z)’ (15)
where N (z) is a polynomial of maximum order L, and
Dii(z) a polynomial of maximum order M. We denote
such an approximation as [L/M] and use the normal-
ization Np(0) = T(0) and Da(0) = 1.0, after Baker
(1975, pp. 5-6). Given n = L + M function values T; at
points z;, withi = 1,...,n, we arrive at a linear system
of n equations with n unknowns, the coefficients of the
polynomials. Once the coefficients are found, the result-
ing [L/M] approximant can be used to find the function
values T(zx) at values of z different from the interpola-
tion points z;. The solution to this system for the [2/2]
rational approximation is given in appendix A.

As with any linear system of equations, the system
may be singular. This is a known hazard of rational in-
terpolation. Hence, blind use of rational interpolation
can be problematic. There exist reliable algorithms, in
the sense that if an interpolant to the function values
t; exists, they find it, whereas if no interpolant exists
because the linear system is degenerate, the algorithm
exits with an error. An example of such a reliable al-
gorithm is the modified Thacher-Tukey algorithm, e.g.,
Graves-Morris and Hopkins (1981). Baker and Graves-
Morris (1981b, pp. 7-17) give an overview of different
algorithms for rational approximations.

Here we use rational interpolation to approximate
nonhyperbolic moveout in a horizontal transversely
isotropic homogeneous layer with a vertical symmetry
axis. Rewriting equation (2) in the form of a rational
approximation using the definition of Baker (1975, pp.
5-6), gives

t(z) = {3+ (A + Vimo) 2 + Vitiots 2 (A+ ...
[V&ro — ViZ,] /Vinmo) '}/ (1+ At5%2?) | (16)

where A = CV} Vy wo- This expression reveals that
the nonhyperbolic moveout equation can be viewed as a

[2/1] rational approximation for t? as a function of z2.
Therefore, we could try a [2/1] rational interpolation to
approximate nonhyperbolic moveout. In this paper, we
choose a [2/2] rational interpolation in an attempt to
gain extra accuracy.

To calculate the four unknown coefficients for the
[2/2] rational interpolation using equations (A2)-(A5),
we need four traveltimes and four associated offsets. Let
t; (i =1,...,4) be the traveltime for a fixed ODR k;
(or group angle v;), and let the associated offset be ;.
From the previous section, we know that the traveltimes
t; are independent of Vyao and depend on to through
a simple scaling only. This means that the traveltimes ¢;
needed for the rational interpolation can be calculated
from a small subset of traveltimes calculated for a fixed
reference value of to, denoted as 3%/, and a range of n
values, say from —0.2 to 1.0 in steps of 0.01. This subset
can be precomputed and stored in a table. Hence, when
the traveltimes ¢; for a particular combination of to,
Vinmo, and 7 are desired, a simple lookup in this table
for the particular 5 combined with scaling with #o Jtoe!
[cf. equation (11)], gives the traveltimes ¢; needed for the
rational interpolation. That is, the desired traveltime ¢;
is obtained from

b= giee (Lo ) (17)
to°

where #!°%'¢ is the value of t; obtained from the table
(evaluated for to = t;¢), for ODR k; and the desired
value of 7. Evaluating the table for t;/ = 1 s allows
the calculation of ¢; to be done by scaling of t!**¢ with
to only. Using the given values of Vwao and tg, the
corresponding offsets x; are then found simply from

2 = VNnmo to ki ' (18)
2

The traveltimes and offsets obtained using the
method outlined above, allow us to perform velocity-
analysis in VTI media using our [2/2] rational inter-
polation. The efficiency of this approach is comparable
to that of current velocity analysis using nonhyperbolic
moveout equations (1) or (2), since the small subset of
traveltimes for ¢o = 1 s and a range of 7 values, is pre-
computed and stored in a table. Hence, no computa-
tional overhead is required compared to that of current
methods. In other words, the nonhyperbolic moveout
equation is replaced simply with the rational interpola-~
tion formula, and the needed traveltimes are read from
the precomputed table.

To precompute the table of traveltimes, a standard
anisotropic ray-tracing algorithm can be used. Here, to
calculate the traveltimes, we first solve

tan9i+i ﬁiK
ki Vi db |, 19)
2 | tanbi dv[ (
Vi o,
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Figure 4. Residual moveout as a function of ODR using
the nonhyperbolic moveout equation without the correction
factor, i.e., C = 1 (dashed), with the optimal correction
factor (dotted), and [2/2] rational interpolation (solid). For
all three cases the model parameters used are = 0.3 and
Vnmo = 2.4 km/s (indicated by the star in Figures la-c).
The inset shows the residual moveout for the [2/2] rational
interpolation on a larger scale. At the interpolated ODR val-
ues 1, 2, 3, and 4, the residual moveout is identical zero.

for 0; numerically, using the Matlab function ‘fsolve’
which uses an interior-reflective Newton method to solve
nonlinear equations (Coleman & Li, 1994; Coleman &
Li, 1996). To obtain equation (19) we used tany; =
k:/2. In equation (19), Vi is the phase velocity associ-
ated with ODR k;. The traveltime is then found through
calculation of the group velocity UiIVNM0=1 using equa-
tions (8) and (7) with Vvmo = 1 km/s, and subsequent
use of this velocity in

tref

)
l t -1 ki
Vi VNmo=1 COSs an —2

[cf. equation (11)]. We found that using the group angle
as an initial guess for the phase angle generally worked
well. We did not investigate different methods to solve
for the phase angles 8;. Using the ‘fsolve’ function in
Matlab, the calculation of a table with four traveltimes
for about 100 values of 7 takes on the order of one
minute on a modern PC.

t:able —

(20)

Accuracy comparison between rational
interpolation and the nonhyperbolic moveout
equation

Figure 1c shows contours of the maximum absolute per-
centage traveltime difference between ray-traced trav-
eltimes for a single horizontal VTI layer and travel-
times resulting from the [2/2] rational interpolation.
Here to = 1 s, and the maximum ODR is two. The ODR

. . . 1
values used for the rational interpolation are ki = X

ko =1, ks = g, and k4 = 2. Here the maximum trav-

eltime errors are of thé order 1072% of to (or 0.01 ms
in this case), which is one-to-two orders of magnitude
more accurate than that using the nonhyperbolic move-
out equation with the optimal correction factor, and
two-to-three orders of magnitude more accurate than
the accuracy of this equation without the correction
factor. With a dominant frequency of 50 Hz, the trav-
eltime errors are about 0.05% of the dominant period,
and are hence negligible. Figure 1f shows the same con-
tours, but now for a maximum ODR of four (the ODR
values used for the rational interpolation are k1 = 1,
ky = 2, ks = 3, and k4 = 4). The traveltime errors
are now somewhat larger and of the order of 10~2% of
to (or 0.1 ms in this case), but still one-to-two orders
of magnitude smaller than those for the nonhyperbolic
moveout with or without the correction factor. Again,
compared to a dominant period of 20 ms, these errors
are negligible (0.5% of the dominant period). Hence, ra-
tional interpolation achieves a significant improvement
in accuracy up to large ODR, and is highly accurate for
all models of practical interest, without the use of an
optimization parameter such as the correction factor C
in the nonhyperbolic moveout equation (2).

We explained earlier that rational interpolation can
lead to a degenerate linear system. For our [2/2] rational
interpolation, this happens if the moveout is purely hy-
perbolic. Figure 1, however, shows that for virtually all
anisotropic models of practical interest such degeneracy
does not occur. Figure 1 was calculated using discrete
offsets and discrete values of Vnmo and 7. If degener-
acy would somehow occur for values in the continuous
range between the discrete values we used for 7 and
Vnmo, adding a small amount of numerical noise (say
on the order of 10”2 ms) should overcome. Numerical
tests showed that adding such a small amount of nu-
merical noise, indeed removed the degeneracy for purely
hyperbolic moveout.

Figure 4 shows the residual moveout as a function
of ODR for the nonhyperbolic moveout equation with-
out (dashed) and with (dotted) the optimized correction
factor, respectively, and for the [2/2] rational interpola-
tion (solid). Here we used Vnmo = 2.4 km/s*, n = 0.3
(indicated by the star in Figures 1d-f), and to = 1s.
Notice that the correction factor introduces a bias in
the residual moveout; the undercorrection at intermedi-
ate offsets is compensated by an overcorrection at large
offsets. The inset shows the residual moveout for the
[2/2] rational interpolation at a larger scale. The resid-
ual moveout is strictly zero at the specified ODR values
of k1 =1, k2 = 2, ks = 3, and ks = 4. We note that

*Because of our observation that the traveltime errors do not
depend on Vyumo, the actual value of Vymo is irrelevant.
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Figure 5. Accuracy of the [2/2] rational interpolation as a
function of the separation in ODR of the interpolation trav-
eltimes for 5 = 0.3 and 7 = 1.0. In both cases Vyp0 = 2.4
km/s. Even if the separation in ODR is two, i.e., the max-
imum ODR is 8, the percentage errors in traveltime are of
the order 101,

extrapolation beyond k4 is dangerous and can result in
large errors in traveltimes because the rational approx-
imation starts oscillating with typically increasing am-
plitudes. The onset of such oscillation can be seen in
Figure 4 for ODR values beyond k4 = 4. Rational inter-
polation should never be used for extrapolation. That
is, k4 should be chosen such that it exceeds the largest
offset in the data.

Comparing Figures 1c and 1f, it seems that use of
larger intervals of Ak between the k; causes the max-
imum traveltime errors to increase. To analyze the in-
fluence of Ak, and to see what maximum ODR can be
reached with [2/2] rational interpolation with consid-
erable accuracy, Figure 5 shows the maximum absolute
percentage traveltime error as a function of Ak. The top
horizontal scale of the figure shows the maximum ODR.
Here we used Vyao = 2.4 km/s and to = 1 s, and plot
the traveltime errors for two different values of n, i.e.,
N = 0.3 (solid) and 1 = 1.0 (dashed). Note again that
the value of Vypo is irrelevant; errors do not depend
on VNanro, as explained previously. The high 7 value for
the dashed curve can be taken as a worst-case scenario
with respect to accuracy. For practical values of n, the
maximum error in traveltime for ODR values up to 8
(achieved with k1 = 2, ky = 4, ks = 6, and kg4 = 4), is of
the order of a tenth of a percent of to. Therefore, for al-
most all practical cases, our [2/2] rational interpolation
provides an accurate nonhyperbolic moveout approxi-
mation. If needed, higher-order rational interpolation,
combined with Ak = 1, would obtain extra accuracy.

Figure 6 shows semblance scans (at fixed o) as a
function of Viy a0 and Vi, calculated using the nonhy-
perbolic moveout equation without the correction fac-
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Vror (ki¥/s)
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Figure 6. Semblance scans and moveout-corrected gathers,
where the moveout correction was done with the parameters
related to the maximum semblance values. The model for
each subfigure consists of a single horizontal VTI layer, and
the maximum ODR is two. For all models, tg = 1 s. The
true model parameters are indicated by the star, and are:
VMo = 2.0 km/s and Vj,, = 2.3 km/s (i.e., 7 = 0.16) in
subfigures a - ¢; Vyaro = 2.892 km/s and Vi, = 3.745 km/s
(i.e., 7 =0.34) in d - f (shale under zero confining pressure);
and Vyaro = 2.46 km/s and V},, = 3.88 km/s (i.e., n =
0.74), in g - i (Green River Shale). In the first column, the
differences are calculated using equation (2) with C = 1,
while in the second column the optimal correction factor was
used. In the third column the [2/2] rational interpolation was
used.

tor (a, d, and g), with the optimal correction factor
(b, e, and h), and the [2/2] rational interpolation (e,
f, and i). In each row of figures the true model pa-
rameters (indicated by the star) vary, and are, respec-
tively, VNamo = 2000 m/s and Vior = 2300 m/s (or
n = 0.16) for a-c, VNmo = 2892 m/s and Vior = 3745
m/s (or 7 = 0.34) for d-f, and Vvamo = 2464 m/s and
Vhor = 3880 m/s (or n = 0.74) for g-i; the semblance
maxima are indicated by the squares. Note that the syn-
thetic gathers were generated using ray-traced travel-
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times, where the ray tracing was done using the true
values of 6, i.e., § = 0 for a-c, § = —0.05 for d-f, and
§ = —0.22 for g-i, while we used Vso = 0 km/s for all
models.

The model parameters for the lower row of figures
correspond to the model parameters used in Figures 1
and 2 of Grechka and Tsvankin (1998). [These parame-
ters were originally chosen because such values of n were
observed on field data (Alkhalifah et al., 1996)]. For the
middle row, the model parameters correspond to a shale
under zero confining pressure, and for the top row, the
parameters correspond to Green River shale [see Table
1 in Thomsen (1986) for these two cases|. For all subfig-

ures (i.e., a - i) we used to = 1 s and a maximum ODR
1

of two. For the rational interpolation we used k1 = >
ko =1,ks = g, and ks = 2. Since for the lower row in
Figure 6 the model parameters are identical to those in
Figures 1 (and 2) of Grechka and Tsvankin (1998), our
Figure 6a is the semblance scan equivalent of Figure 1
in their paper. The C values used in Figures 6b, e, and
h were determined in the following way: the estimates
of Vnmo and Vior determined without the correction
factor were used to determine the optimal C-value for
this model from Figure 3. This method mimics the way
C would be determined in practice.

Figures 6a, d, and g show that the the nonhyper-
bolic moveout equation (2) without the correction factor
obtains high semblance values, but for the wrong val-
ues of Vhor; Vivaro seems largely unbiased. This means
that the associated common midpoint (CMP) gathers
are well flattened using the wrong value of Vi,r, hence
introducing a bias in the estimated value of Vhor, and
thus 7. The associated moveout corrected gathers for
all three models are shown above the semblance scans;
the gathers are well flattened with the biased estimate
of Vior. Note that for all three models, the semblance
maximum (indicated by a square) for the nonhyperbolic
moveout equation without the correction factor (Fig-
ures 6a, d, and g) indicates a value of 7 smaller than
the true value (a smaller difference between Vi, and
Vniaro than the difference between their true respective
values). Hence, this method seems to underestimate .
Without the correction factor, accurate i values are ob-
tained only when the true 1 values are small (< 0.1).

Figures 6b, e, and h indicate that using the correc-
tion factor in equation (2) gives maximum semblance
values for values of Vyamo and Vo that almost coin-
cide with the true values, except for the model with ex-
treme anisotropy (Figure 6h); for this model the method
slightly underestimates Vior (and thus 7). The asso-
ciated moveout-corrected CMP gathers are well flat-
tened although careful analysis of the moveout corrected
gather for the model with extreme anisotropy indicates
a slight residual moveout. Overall, we conclude that
even for large levels of anellipticity and ODR up to
two, the correction factor in the nonhyperbolic move-
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Figure 7. Same as Figure 6, except that the maximum ODR
is now four.

out equation (2) allows for accurate estimation of the
model parameters Vamo and Vhor, even though use
of the correction factor leaves some distortion in the
moveout correction that becomes more noticeable with
increasing anisotropy. Straightforward application of a
correction factor C = 1.2 (not shown here) provided
accurate estimates for the model shown in the bottom
row only, for which the optimum C value was close to
1.2. The optimum C values for Figures 6b, e, and h,
found from Figure 3, were C = 1.23, C = 1.36, and
C = 1.46, respectively. Straightforward application of
the [2/2] rational interpolation method provides, for all
models, maximum semblances that coincide with the
true model parameters, and accurately flattens gathers
without any residual moveout (see Figures 6c, f, and i).
Of course no optimization is required.

Figure 7 shows the same semblance scans and move-
out corrected gathers, for the same models and methods
as in Figure 6, except that here the maximum ODR is
four. For the rational interpolation we used k1 = 1,
ky = 2, ks = 3, and k4 = 4. Notice that for all mod-
els and methods, the peak of the semblance scans is
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much better defined than in Figure 6; that is, the large
semblance values span a much smaller range of Vjor
(and thus ) values, and a somewhat smaller range of
Vnamo values. Indeed the higher resolution for 7 for
larger offset ranges was mentioned by Alkhalifah (1997),
Grechka and Tsvankin (1998), and Wookey et al. (2002).
Aside from the improved resolution in 1, Figures 7a,
d, and g, show again the underestimation of 7 when
the nonhyperbolic moveout equation is used without
the correction factor, just as in Figures 6a, d, and g.
The maximum semblance, however, now deteriorates
with increasing levels of anellipticity, and the associ-
ated moveout-corrected CMP gathers clearly indicate
a distortion in the moveout, even for the model with
7 = 0.16 (see Figure 7a). For the optimum correction
factor C (Figures 7b, e, and h), the bias in the estimated
values of 7 is much reduced, but the associated resid-
ual moveout is more pronounced than without the use
of the correction factor. Again, this is clearly observed
even on the model with 7 = 0.16 (Figures 7a and b).
The rational interpolation method (Figures 7c, f, and
i) gives unbiased estimates of 1 and Vyaro combined
with no residual moveout. This is a direct consequence of
the high accuracy of the rational interpolation method
shown in Figure 1f for this ODR.

From Figures 6 and 7, for ODR up to two, the
nonhyperbolic moveout equation without the correction
factor allows for accurate moveout correction for arbi-
trary levels of anellipticity, but does so with a biased
estimate of Vior (and thus n). The bias in 7 can sub-
sequently be corrected for by determining the optimal
value of the correction factor C using Figure 3, and re-
doing the semblance scans. The value of n determined
in this way, is largely unbiased, and results in accurate
moveout correction except for the model with extreme
anisotropy (see Figures 7g and h), where a slight bias
in 77 and residual moveout correction remains. With in-
crease of ODR up to four, the nonhyperbolic moveout
equation no longer gives accurate moveout correction,
not even for the model with 7 = 0.16. Use of the opti-
mal correction factor C reduces the bias in the estimated
value of 7, but increases the residual moveout. The ra-
tional interpolation method we propose, combines accu-
rate moveout correction with unbiased parameter esti-
mation, for arbitrary levels of anellipticity and ODR up
to four. If accuracy is desired for larger offsets, higher-
order rational interpolation can be used, or [2/2] ratio-
nal interpolation can be used with an increased interval
between the ODR k; (say k; = 2, ky = 4, ks = 6,
kq = 8). Figure 5 shows that with the [2/2] rational
interpolation we can achieve reasonable accuracy up to
ODR of 8.
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Figure 8. Comparison of accuracy between the nonhyper-
bolic moveout equation without the correction factor (dot-
ted), the shifted hyperbola method of Fomel (2004) (dashed),
and our squeeze-stretch approach (solid), for Greenhorn-
shale anisotropy (7 = 0.34 and Vypo = 2935 m/s). The
absolute traveltime errors are calculated with respect to ray-
traced traveltimes. The model parameters are: Vpy = 3094
m/s, Vso = 1510 m/s, § = —0.05, and € = 0.256 (Greenhorn

shale).

Accuracy comparison with the nonhyperbolic
moveout approximation of Fomel

Recently, Fomel (2004) proposed a shifted-hyperbola
approximation for the group velocity and converted this
into the following moveout equation for a single homo-
geneous horizontal VTI layer,

3+4n 1

t(z):z:2 (21)
Q+20) Vo’

where H(z) represents the hyperbolic part,

\/Hz(z) + 169 (1 + n)

= 22)
(1+20) Vino (
Fomel (2004) showed that this approximation is signif-
icantly more accurate than the nonhyperbolic moveout
equation (1) of Alkhalifah and Tsvankin (1995).

Our rational interpolation approach is based on the
approximations that (1) the influence of Vgo on qP-
wave traveltimes in TI media is negligible, and (2) the
kinematics of gP-waves in homogeneous VTI media de-
pend mainly on Vyaro and 7; i.e., we can set § = 0.
Figure 8 shows the traveltime difference between ray-
traced traveltimes for a single horizontal VTTI layer with
Greenhorn-shale anisotropy (Jones & Wang, 1981) and
the nonhyperbolic moveout equation (1) form Alkhali-
fah and Tsvankin (dotted), the shifted hyperbola equa-
tion (21) from Fomel (dashed), and traveltimes result-
ing from ray tracing with Vso = 0 km/s and § = 0

H(z) =t§+
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ODR =2
C=1.0 optimal C RI
layer s Vimo Vier W s Vemo  Vhor 7 s VMo Vhor 7
1 1.00 2097 2101 000 100 2097 2101 000 1.00 2099 2101 0.00
2 008 2058 2179 006 0.98 2056 2188 007 098 2058 2188 0.7
3 1.00 2271 2839 028 098 2253 2096 0.38 100 2252 3022 0.40
4 099 2313 3012 035 093 2290 3255 051 100 2282 3285 0.54
ODR = 4
C=1.0 optimal C RI
layer s VMo Vhor 0 s VMo Veer 71 s  VnmMo Vier 0
1 1.00 2094 2099 000 1.00 2094 2099 0.00 1.00 2096 2099 0.00
2 095 2020 2207 009 095 2025 2218 010 096 2035 2218 0.9
3 057 2238 2894 0.34 0.54 2299 2892 029 084 2189 3158 0.54
4 057 2320 3038 036 057 2300 3152 044 087 2241 3391 0.64

Table 1. Comparison of obtained semblance values (s),

VNMO,s Vhor, and n,for the three methods, for maximum ODR of

two (top) and four (bottom), for a layered medium. The model consists of four horizontal homogeneous VTI layers with the
following values of Vy o and 7. The parameters for each layer are given in the main text.

but the same values of Vnmo and 7 (solid). The an-
sitropy parameters are Vpo = 3094 m/s, Vso = 1510
m/s, § = —0.05, and € = 0.256 (i.e., Vnmo = 2935 m/s
and 7 = 0.34), and to = 646.5 ms. Except for the solid
line, Figure 8 reproduces Figure 7 of Fomel’s (2004) pa-
per. Note that the accuracy of the shifted hyperbola
approximation is marginally better than the ray-traced
traveltimes with Vso = 0 km/s and 6 = 0 but the same
values of Vwmo and 7. The maximum difference be-
tween these two traveltime approximations is about 1
ms (i.e., 0.15% of to) for this particular model. From
a practical point of view, the two approximations are
therefore identical. Even though we have not calculated
the solid line with a rational interpolation, we can ap-
proximate the solid line to almost arbitrary precision
with rational interpolation (i.e., with [M/N] rational
interpolation where M, N > 2). For ODR up to four,
we showed this in Figure 1f using a [2/2] rational inter-
polation. Since the rational interpolation method that
we propose uses traveltimes calculated with Vso = 0
km/s and § = 0, we conclude that the accuracy of our
method is basically identical to that of the shifted hy-
perbola approximation of Fomel (2004). Comparison of
semblance scans and moveout corrections calculated us-
ing equation (21) and the rational interpolation method
(not shown here), for the models and offsets studied in

Figures 6 and 7, showed basically no difference between
both methods.

Application to horizontally layered VTI media

Up to this point, we have treated only a single horizontal
VTI layer. In this section we test the applicability of the
rational interpolation method to a horizontally layered
VTI medium, and compare its accuracy to that of the
nonhyperbolic moveout equation with and without the
correction factor. Based on the work of Tsvankin and
Thomsen (1994), Grechka and Tsvankin (1998) showed
that the nonhyperbolic moveout equation (1) remains
valid in horizontally layered media provided the param-
eters  and Vivpmo are replaced by ‘effective’ values that
are some average over the vertically heterogeneous over-
burden. Also, they rewrite the Dix-type inversion pro-
cedure, originally introduced by Tsvankin and Thomsen
(1994), in terms of n and VNmo. In that method, the
effective values of 7 and Vymo, obtained from apply-
ing the single-layer equation (1) to data from a layered
medium, are used to estimate the interval values of n
and Vymo.

We compare the effective values of 77 and VNamo ob-
tained using the nonhyperbolic moveout equation, with
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Figure 9. Field data used to test the rational interpolation method. Inline (a), crossline (b), and plan view of the residual
topography of the event used for testing (indicated by the arrows in a and b} after removal of the regional dip (c). The dotted
lines in ¢ denote the locations of the inline and crossline sections shown in a and b. The dashed line in ¢ denotes the location

of a regional fault.

and without the correction factor, and the rational in-
terpolation method, through application of all methods
to a horizontally layered medium with the following pa-
rameters:

e layer 1: h =1 km (h is the depth of the bottom of
the layer), Vivaro = 2098 m/s, Vior = 2098 m/s, n =0,
(Vpo = 2000 m/s, € = 0.05, § = 0.05),

e layer 2: h = 2 km, Vyyo = 2000 m/s, Vhor = 2300
m/s, n = 0.16, (Vpo = 2000 m/s, € = 0.16, § = 0),

e layer 3: h = 3km, Vyao = 2892 m/s, Vior = 3745
m/s, 1) = 0.34, (Vo = 3048 m/s, € = 0.255, § = —0.05),

e layer4: h = 4 km, Vyao = 2460 m/s, Vior = 3880
m/s, n = 0.74, (Vpo = 3292 m/s, € = 0.195, § = —0.22).

For all models we used Vs = 0 km/s. Note that here
the first layer is elliptically anisotropic, and the second
through fourth layers have the same model parameters
as those in the models studied in the first through third
row of Figures 6 and 7, respectively.

Table 1 shows the results from all three methods
for a maximum ODR of two (top) and four (bottom).
These results closely resemble the results obtained from
the single layer numerical tests shown in Figures 6 and
7. Since all methods are for a single-layer VTI medium
only, and because we apply these methods to layered
VTI media, the 7, VN amo, and Vo, values in Table 1 are
all ‘effective’ values. For maximum ODR=2, the nonhy-
perbolic moveout equation without the correction fac-
tor gives consistently lower estimates of 7 than do the
other methods, and the differences increase with depth,
l.e.,, as we increase the level of anellipticity. For that
method, the semblance values (indicated with s in Ta-
ble 1) are high for all layers, indicating high quality
moveout correction. Use of the optimal correction fac-

tor gives comparable values of 7 and Vivaro to those
obtained with the rational interpolation method, for
all layers, just as for the single-layer case (see Figure
6). Also, the semblance values from the nonhyperbolic
moveout equation with the correction factor slightly de-
crease with increasing depth (or level of anellipticity),
Just as for the single-layer case. For maximum ODR=4,
the nonhyperbolic moveout equation with and without
the correction factor result in decreasing semblance with
depth (i.e., increasing level of anellipticity), indicating
a lack of ability to accurately moveout-correct the data.
Again this is analogous to the results from the single-
layer case (Figure 7). That the rational interpolation
method has substantially larger semblance values than
do the other two methods, for all layers, indicates that
this method is able to flatten the gathers best, with the
least residual moveout. From a practical point of view,
the method that flattens the gathers best, is expected
to give the most confidence in the estimated values of
1 and Vnumo. From this point of view, the rational in-
terpolation therefore provides more robust estimates of
n and Vyaro than do the other two methods, for maxi-
mum ODR=4.

It thus seems that the rational interpolation
method, which is based on a single horizontal VTI
layer, is suitable for application to a horizontally lay-
ered medium, at least up to maximum ODR=4 and ar-
bitrary levels of anellipticity. For maximum ODR=2,
the nonhyperbolic moveout equation with the correc-
tion factor gives comparable estimates of the effective 7
and Vnaro and comparable semblance values to those of
the rational interpolation approach. This indicates that
for maximum ODR=2, even for extreme levels of anel-
lipticity the effective values of 7 and Vyao estimated
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Figure 10. Semblance scans (a-c) for one CMP gather, lo-
cated at the crossing of the horizontal lines in Figure 9¢; its
location is also indicated by the dotted lines in Figures 9a
and b. The associated moveout corrected gathers are shown
in subfigures d-e. The methods used for parameter estimation
(i.e., to calculate the semblance scans) and moveout correc-
tion are, respectively, nonhyperbolic moveout without (a,d)
and with (b,e) the optimal correction factor, and the [2/2] ra-
tional interpolation (c,f). A 100-ms window centered around
to = 750 ms was used in the computation. The contours
in a-c indicate the semblance values. Maximum semblance
values for the different methods are, respectively, 0.37 (a),
0.32 (b), and 0.40 (c), and the resulting estimates for  and
Vnao are, respectively, n = 0.34 and Vypmo = 3100 m/s
(a), n = 0.45 and Vyaro = 3100 m/s (b), and n = 0.33 and
Vnamo = 3250 m/s (c).

with the rational interpolation method can be used in
the Dix-type inversion procedure given by Grechka and
Tsvankin (1998). The role of the correction factor in
this procedure, however, is currently unclear to us. For
maximum ODR=4, the effective values of  and Vymo
for substantial anellipticity (say effective 7 values larger
than 0.2) differ substantially between all methods, with
the rational interpolation method uniformly giving the
best moveout correction (i.e., highest semblance values).
This indicates room for extending the rational interpo-
lation method to the vertically heterogeneous case, and
thus for developing an inversion procedure based on ra-
tional interpolation. It remains to be seen if such an
extension is possible.

Field data example

Figures 9a and b show inline and crossline stacked time
sections from a land dataset that contains a reflector
at about 750-ms two-way traveltime (indicated by the
arrows), illuminated with ODR ranging to larger than
four. We focus attention on this event throughout the
remainder of this section. The geology consists of rel-
atively flat (dip less than two degrees), predominantly

shale layers, such that a layered VTI model seems, at
first sight, appropriate for these data. Although the
structure on the horizon of interest is limited to within
420 ms of a best-fit planar dip, a subtle NNE-SSW
structural trend, associated with deeper faulting (Fig-
ure 9c¢), exists. The dashed line indicates the location
of a regional fault. The inline and crossline spacings are
both 110 ft.

To test our method, we calculated semblance as
a function of Vaamo and Vior for the whole dataset
over a 100-ms window centered on the event of interest.
The offsets used in the analysis were limited to offsets
with a maximum ODR of approximately four. Figure
10a-c show the semblance scans for all three methods:
(a) the nonhyperbolic equation without and (b) with
the optimal correction factor, and (c) the [2/2] ratio-
nal interpolation, for a randomly selected CMP gather.
The location of this gather is indicated by the inter-
section of the dotted lines in Figure 9c; the location is
also indicated by the vertical dotted lines in Figures 9a
and b. This gather was generated by collecting traces
from a 3-by-3 super bin of adjacent CMPs, and subse-
quent offset-binning. The change of shape of the sem-
blance contours observed on Figures 10a-c, resembles
the change observed from the synthetic data tests; the
nonhyperbolic moveout equation without the correction
factor exhibits no clear evidence of the inherent trade-
off relation between 1 and Vnmo, whereas the other
two methods do display this known trade-off. The sem-
blance peak is most clearly defined for our [2/2] rational
interpolation method because of its higher accuracy for
such a large ODR range. The derived 7, Vnmo, and
maximum semblance values for the three methods are
respectively: 0.34, 3100 m/s, 0.38 (no correction factor);
0.45, 3050 m/s, 0.33 (correction factor); 0.33, 3250 m/s,
0.40 (rational interpolation).

Figure 10d-f shows the moveout-corrected gather
for the three methods, whit the semblance-derived val-
ues of 7 and Vwao used for the moveout correction.
Note that the residual moveout for the nonhyperbolic
moveout equation with and without the correction fac-
tor is substantial, whereas the rational interpolation
method gives well corrected moveout. The estimated
values of 7 are close to the 1 value for the modeled
results shown in Figure 7d-f. Notice the striking resem-
blance between the semblance scans and the residual
moveouts obtained from both the synthetic and field
data (cf. Figure 7d-f). We found that straightforward
application of the correction factor C = 1.2 resulted in
even larger residual moveout than that shown in Figure
10e.

Figure 11a, b, and ¢ show mapviews of the val-
ues of 7 obtained for the event of interest over the en-
tire dataset, using, respectively, the (a) nonhyperbolic
moveout equation without and (b) with the optimal cor-
rection factor, and (c) the [2/2] rational interpolation
method, for maximum ODR of two. The 7 values ob-
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Figure 11. Map view of 7 derived from the event of interest in the field data with maximum offset of 2250 m, i.e., ODRas 2
(a~c), using semblance scans with the nonhyperbolic moveout equation without (a) and with the optimal correction factor (b),

and the [2/2] rational interpolation method (c). Subfigures d-f are as a-c,
4. Estimates of 7 at locations with poor offset distributions were set to white.

ODR=~

tained using nonhyperbolic moveout equation without
the correction factor (a), are generally smaller than the
estimated 7 values from both other methods, just as
in our synthetic data examples (cf. Figure 6). The es-
timates of 7 obtained using the rational interpolation
method (c) and the optimal correction factor approach
(b) are quite comparable. This striking similarity is con-
sistent with the results from the synthetic data also. The
same comparison for Vy aro (not shown) showed that all
three methods gave similar estimates of Vnato, just as
in the synthetic examples.

Figure 11d, e, and f, are as a, b and ¢, but here the
maximum ODR is four. Notice, that the estimated 7 val-
ues are spatially less variable, for all methods. This can
be understood in light of the improved resolution in n for
larger ODR, together with the lack of evidence of sub-
stantial lateral heterogeneity from the seismic data (cf.
Figure 9). Here, the correction-factor approach results

except that the maximum offset is 4500 m, i.e.,

in large estimates of 1, compared to those of the other
methods. From the synthetic tests, we would expect this
method to give 7 values comparable to the estimated
71 values obtained using rational interpolation. None of
our synthetic tests, however, included amplitude-versus-
offset (AVO) variations, whereas the field data example
clearly does (cf. Figure 10). Some additional synthetic
tests (not shown), indicate that the rational interpo-
lation method is less sensitive to such AVO variations
than is the nonhyperbolic moveout equation method,
with or without the correction factor; this can be ex-
plained by the high accuracy of the rational interpo-
lation method'. Therefore, the lack of resemblance be-
tween the estimated 7 values for the correction factor
approach and the rational interpolation may be due to

tWe did not include phase changes with offset in the tests
concerning sensitivity to AVO variation.
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the AVO variations in the field data. Note that the pres-
ence of AVO variations causes semblance based moveout
correction to be biased towards the offsets with higher
amplitudes. Such bias is especially noticeable when an
inaccurate moveout approximation is used to moveout
correct the data.

The 7 values resulting from the rational interpola-
tion method are on average slightly higher than those
from the nonhyperbolic moveout equation method with-
out the correction factor; 7,, = 0.28 for the rational
interpolation method, and 74, = 0.25 for the nonhy-
perbolic moveout equation method. The lower values
of 7 for the nonhyperbolic moveout equation method
without the correction factor are consistent with the re-
sults from the synthetic-data tests (cf. Figure 7). For
all methods, the 7 values are high compared to values
typically reported from nonhyperbolic moveout analysis
[e.g. Toldi et al. (1999)). Of course the relatively high
7 values are likely a result of the particular lithology
of this area. However, most studies reporting estimates
of n have been done on marine data, where a substan-
tial waterlayer reduces the effective values of 1, hence
introducing a bias in what are traditionally considered
acceptable values of 7.

The [2/2] rational interpolation resulted in more
spatially smooth and continuous values of both 7 (and
Viamo) that in some parts correlate somewhat with the
geologic trend (cf. Figure 9c). It is important to note
that this spatial continuity was not imposed, but fol-
lowed from a straightforward application of the ratio-
nal interpolation method presented here. Since the seis-
mic data show no indication of substantial lateral het-
erogeneity (cf. Figure 9), the relatively smooth spatial
variation of 7 is consistent with the seismic data. This
increases our confidence in the i values obtained using
the rational interpolation method.

Figure 12a shows the normalized semblance differ-
ence between nonhyperbolic moveout equation method
with and without the optimal correction factor, for max-
imum ODR=2. The normalized semblance difference is
the difference between the semblances from both meth-
ods divided by the semblance for the nonhyperbolic
moveout equation method without the correction factor.
Figure 12b is as Figure 12a, but it shows the normalized
semblance difference between the (2/2] rational inter-
polation method and the nonhyperbolic moveout equa-
tion without the correction factor. For these offsets, all
methods result in similar semblances, indicating similar
ability to flatten the gathers. This supports our findings
from the numerical tests that all methods obtain com-
parable results in terms of moveout correction, for an
ODR range up to two (cf. Figure 6). Figures 12c and d
are as 12a and b, except that here the maximum ODR
is four. For this range of ODR, the correction-factor ap-
proach has on average 7% lower semblance values than
does the nonhyperbolic moveout equation without the
correction factor, whereas the [2/2] rational interpola-
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Figure 12. Normalized semblance difference between the
nonhyperbolic moveout equation with, and without the cor-
rection factor (a), and between the [2/2] rational inter-
polation method and the nonhyperbolic moveout equation
method without the correction factor (b), for a maximum
offset of 2250 m, i.e., ODR= 2. Subfigures c and d are as a
and b, respectively, except for a maximum offset of 4500 m,
i.e., ODR= 4.

tion has on average 10% higher semblance values. This
supports (for the whole dataset) our findings from the
synthetic results that the correction factor approach in-
creases distortion in the moveout correction and that
the rational interpolation method results in more accu-
rate moveout correction.

In conclusion, for a maximum ODR larger than two,
the [2/2] rational interpolation method provided gener-
ally improved moveout correction, improved semblance
values, and more spatially continuous estimates of n for
this field data example. This supports the applicability
of the rational interpolation method to a horizontally
layered VTI medium, observed on synthetic data in the
previous section. As the numerical tests showed similar
results, we expect these findings to generalize to other
datasets. For maximum ODR up to two, all methods
had similar ability to flatten the gathers, but the non-
hyperbolic moveout equation approach gave comparable
estimates of 7 to those of the the rational interpolation
method only when the optimal correction factor was
used.
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Discussion

We have shown that for ODR values up to 8, the
[2/2] rational interpolation results in an accuracy of
0(1071)% of to for most models of practical interest. If
higher accuracy is desired, or accuracy up to larger ODR
is needed (e.g., in near-surface seismic experiments),
higher-order polynomials can be used in the rational ap-
proximation. The added computation time for inclusion
of several extra terms is negligible; hence the efficiency
of the proposed method remains essentially the same.
We have not done any numerical testing for polynomi-
als of order higher than two.

In the field data example, we treat the overburden
of the reflection event of interest as a single horizon-
tal homogeneous VTI layer. As a result, the estimated
values of 7 and Va0 are effective parameters. The geo-
logical significance of such effective quantities is difficult
to establish, and an approach assuming a layered over-
burden and resulting interval estimates of nand Vyyo
would remove this difficulty. Although we do not demon-
strate such an approach in this paper, we believe that
such an approach is feasible by applying rational in-
terpolation in a layer-stripping fashion. We leave the
verification of this idea to a future study. Meanwhile,
the single-layer approach outlined here can be used to
obtain more accurate estimates of the average (or ef-
fective) values of  and Vivaso in layered media. Using
these values in current Dix-type averaging procedures
could lead to better interval estimates of these parame-
ters.

We showed that our rational interpolation ap-
proach achieves accuracy almost identical to that of
the shifted hyperbola approximation of Fomel (2004).
Since we show the applicability of the rational interpo-
lation method to horizontally layered VTI media, the
almost identical accuracy of both methods implies the
applicability of the shifted hyperbola approximation of
Fomel to such media also. For horizontally layered me-
dia, a plane-wave decomposition, obtained through a
T — p transform, is the natural decomposition of the
data. This fact was successfully used by Van der Baan
and Kendall (2002) and Van der Baan (2004), to obtain
interval estimates of 7 and Vivaso from moveout in the
7 — p domain. Even though they successfully estimate
interval values of 7 and Vivaso, the acquisition geome-
try does not always allow a straightforward 7 — p trans-
form. Therefore, there is room to try to extend our t —
based rational interpolation method to render interval
estimates of n and Vyo.

The geometry of straight rays involved in velocity
analysis for a horizontal homogeneous layer and the ge-
ometry of the rays associated with point scattering in
a medium with constant velocity are identical. There-
fore, the rational interpolation method proposed here
is immediately applicable to the problem of post-stack
and pre-stack time-migration in VTT media. Larger off-
sets in the context of moveout velocity analysis are the

equivalents of steeper dips in time-migration. There-
fore, the increased accuracy for large maximum ODR
provided by the rational interpolation for traveltimes
of gP-waves in such media suggests improved accuracy
when the rational interpolation scheme is used in imag-
ing of steep reflectors in the context of pre and post-
stack time-migration in VTI media.

Conclusions

We have presented a rational interpolation approach to
nonhyperbolic moveout correction of qP-waves in VTI
media. The accuracy of the method was tested using
both synthetic and field data and compared with that of
the nonhyperbolic moveout equation, which is the cur-
rent standard in seismic data processing. Both synthetic
and field data results confirm that our method signifi-
cantly outperforms the nonhyperbolic moveout equation
in both unbiased parameter estimation and the quality
of moveout correction when a maximum ODR larger
than two is used. For a single horizontal VTI layer, and
for a maximum ODR up to four, the errors from the
[2/2] rational interpolation are O(1072)% of to or less;
this is one to two orders of magnitude more accurate
than the nonhyperbolic moveout equation of Tsvankin
and Thomsen (1994). Even for a maximum ODR up to
8, the traveltime errors resulting from the [2/2] ratio-
nal interpolation are O(107')% of to, for virtually all
models of practical interest.

Under the customary assumptions that traveltimes
of gP-waves in VTI media depend mainly on 7 and
Vnmo, and that the influence of Vo on traveltimes of
gP-waves in TI media is negligible, we found that the
traveltimes in a single horizontal VTI layer, for fixed
group-angle, n, and to, are independent of Vi aso, while
the associated offsets are linear in Vyao. As a conse-
quence, therefore, the nonhyperbolic moveout curve for
different values of Vyao, but fixed n and to, can be
calculated by simple horizontal stretching or squeezing,
i.e., along the offset axis, where the amount of stretch or
squeeze is determined by the change in Vivaro. This ob-
servation allows us to calculate the traveltimes needed
for the interpolation from a small number of traveltimes
for a reference value of ¢ (conveniently t7¢/ =1 s) and
n values ranging from -0.2 to 1.0 in steps of, say, 0.01.
This range of 7 covers most models of practical interest.
The few hundred traveltimes for a reference value of to
and 7 values ranging from -0.2 to 1.0, can be precom-
puted in about a minute on a modern PC and stored
in a table. Therefore, the rational interpolation method
has no additional computational overhead compared to
that of the nonhyperbolic moveout equation method.

We show that the observation of the stretch-squeeze
influence of Vv aro on the nonhyperbolic moveout causes
the correction factor C in the Alkhalifah-Tsvankin non-
hyperbolic moveout equation (2) to be independent
of VNao, under the above-mentioned approximations.
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This correction factor therefore depends on 77 and maxi-
mum ODR only. We calculated this correction factor for
0 < 1 € 1 and maximum ODR between one and four,
and presented a contour plot of C(n, ODR). If one wants
to get the best use out of the Alkhalifah-Tsvankin non-
hyperbolic moveout equation (2), this plot can be used
in practice to determine the optimal correction factor in
the following way; first estimate  and Vnmo with the
nonhyperbolic moveout equation without the correction
factor, then use the estimated Vyao to estimate the
maximum ODR using equation (14), and subsequently
determine the optimal value of C from Figure 3 using
the estimated k& and 7. For maximum ODR up to four
and large levels of anellipticity, tests with synthetic data
showed that this correction factor works well to reduce
the bias in 1 that would be obtained if the nonhyper-
bolic moveout equation without this correction factor
was used. The field-data example confirmed this for
maximum ODR up to two, but the presence of AVO
variation for offsets with maximum ODR between two
and four caused this method to fail for ODR up to four.
For maximum ODR less than two, this reduction in bias
goes together with largely accurate moveout correction,
even for strong anellipticity. For ODR up to four, how-
ever, the reduction in bias of 7 goes together with signif-
icant distortion in the moveout correction caused by the
inaccuracy of the nonhyperbolic moveout equation. In
this case the Alkhalifah-Tsvankin nonhyperbolic move-
out equation fails to accurately flatten the CMP gath-
ers. The rational interpolation method combines unbi-
ased estimates of  and Vymo with accurate moveout
correction in all cases.

From synthetic tests and field data, we found that
straightforward application of the correction factor C =
1.2, recommended by Grechka and Tsvankin (1998),
typically leads to less than satisfactory results. For max-
imum ODR=4 and 5 < 0.1, the shortcomings in move-
out correction and estimated values of 7 obtained using
the nonhyperbolic moveout equation approach without
the correction factor are small and probably negligible
from a practical point of view. Even though in this par-
ticular case satisfactory results can be obtained with the
Alkhalifah-Tsvankin nonhyperbolic moveout equation,
straightforward application of the rational interpolation
method combines unbiased parameter estimation with
accurate moveout correction, for arbitrary ODR ranges
and arbitrary levels of anellipticity.
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APPENDIX A: [2/2] RATIONAL
INTERPOLATION FOR NONHYPERBOLIC
MOVEOUT IN A SINGLE HORIZONTAL
VTI LAYER

Using the definition and normalization of the rational
approximation outlined in the main text, we can write
the [2/2] rational approximation for squared traveltimes
T as a function of squared offset X as

To+ X 4 na X?
1+di X +d2 X2

where Ty = t3 is the squared zero-offset two-way trav-
eltime, and n1 2 and dy,2 are the coefficients of the nu-
merator and denominator of the rational approximant,
respectively. Using four squared traveltimes T; = 2,
with ¢ = 1,...,4, and four accompanying squared off-
sets X; = z? as interpolation points, we arrive at a
linear system of four equations with four unknowns, the
coefficients ny 2 and d; 2. Since there are only four co-
efficients, we simply solve (using Mathematica) for the
coefficients in terms of T;, X;, and Ty. The resulting

T(X) ~ (A1)

expressions for the coefficients are given by

d = ((To - T4)X1X2X3(T1X1(X2 - Xa) + ...
T3X3(X1 - Xz) -+ T2X2(X3 - Xl)) —- ..
(T —T2)(To - T3) X3 X3 +...

(T2 ~ To)(Ty - T3) X2 + ...

(To - TW)(T2 — T3) X)) XHXa + ...

(To - T3) X1 X2(Th X1 — ToXo + ...

Tu(X2 — X1)) = (To - T2)(Th — Ta)X{ — ...
(To = TW)(T2 — Ta) X3) X3 + ...

(TS - T4)(T1X2 —Te X1 +...

To(X1 - X2))X3)X3)/ ...

(X1 X2 X3(To(T3(X2 — Xa)(X1 — X4) — ...
Ta(X1 — Xa)(X2 - X4)) +...

Ty (Ta(X2 — Xa)(X1 — Xa) — ...

T3(X1 — Xa)(X2 — X4) +...

T2 (X1 — X2)(Xs — Xa)) +....

TaTu(X1 — X2)(Xs — X4))X4) , (A2)

d, = (—To(X1 — Xz)(X1 — X3)(X2 - X3) +...

T3X1X2(X1 - X2)(1 + d1X3) +...

Xa3(Ti X2(1 + d1 X1)(X2 — X3) + ...

X1 (1+ di X2)( X3 — X1)))/ ...

(X1 X2 Xa3(TaX2(X1 — Xa) + ...

TsX3(X2 — X1) + TiX1(Xs — X2))),  (A3)
ne = To(Xi—Xa)+...

Ti(1+ X1(dy + d2 X1)) X2 — ...

ToX1(1+ Xao(dy + d2X2))/ ...

X1X2(X1 — Xz), (A4)

DDy~ daT)X, . (A5)

X1
Note that only the expression for d; is explicit in just
Ti, Xi, and T, whereas dz also depends on di, n2 on
di,2, and n1 on n2 and dy,;. Calculating the coefficients
n1,2 and d; 2 using the above expressions and the in-
terpolation traveltimes ¢; and offsets z;, we can use the
resulting values of n1,2 and di2 in equation (A1) to
evaluate interpolated traveltimes ¢ for offsets = between
offsets z;.

1 = T1d1 -
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ABSTRACT

First order internal multiples are a source of coherent noise in seismic images.
There are a number of techniques to estimate internal multiples in the data,
but few methods exist that estimate imaging artifacts caused by internal mul-
tiples. We propose a method to do this in which the artifacts are estimated
as part of the imaging process. Our technique is based on a hybrid of the
Lippmann-Schwinger scattering series and the generalized Bremmer coupling
series. Although we require knowledge of the velocity model this allows us to
estimate internal multiples without assumptions inherent to other methods.

Key words: internal multiple attenuation, Bremmer series, downward contin-

uation, imaging artifacts

1 INTRODUCTION

Internal multiples have been recognized as a problem in
seismic experiments for a long time (Sloat, 1948). Al-
though there are many techniques to attenuate these
multiples in seismic data (Buttkus, 1979; Fokkema
et al., 1994; Berkhout & Verschuur, 1997; Verschuur &
Berkhout, 1997; Weglein et al., 1997; Jakubowicz, 1998;
Kelamis et al., 2002; ten Kroode, 2002; van Borselen,
2002) it is still not possible to estimate multiples in data
with sufficient accuracy to remove all the errors they
introduce in seismic images. Techniques like the angle-
domain filtering proposed by (Sava & Guitton, 2005)
are promising because they attenuate multiples directly
in the image as opposed to in the data. In this way,
even though the multiples are still not completely re-
moved their location in the image is known. Thus, they
are less likely to be misinterpreted as primary reflection
energy. In this paper, we propose a technique for esti-
mating imaging artifacts caused by internal multiples as
part of the imaging process.

Fokkema & van den Berg (1993) use reciprocity to
show the possibility of modeling surface-related multi-
ples through a Neumann series expansion. Here, we use

a related technique based on a hybrid of the Lippmann-
Schwinger and Bremmer series to estimate internal mul-
tiples as part of the imaging process. Using a hybrid of
the two series allows us to construct an inverse series
following the ideas of the Lippmann-Schwinger series,
while maintaining a structure consistent with the, con-
vergent, Bremmer series. Because we estimate artifacts
in the image rather than the data, we require knowl-
edge of the velocity model. Technically this knowledge
is necessary only to the depth of the shallowest reflector
involved in the internal multiple (the depth of the up-
to-down reflection). Our technique is similar to that of
Jakubowicz (1998) in that it uses the techniques of so-
called wave-equation migration to model internal mul-
tiples. Our method differs from Jakubowicz (1998) in
that we propose to estimate the artifacts caused by first
order internal multiples in the image rather than esti-
mating the multiples in the data. In addition, Jakubow-
icz uses implicitly a version of the generalized Bremmer
series (de Hoop, 1996) whereas we use a hybrid of the
Lippmann-Schwinger and Bremmer series.

The Lippmann-Schwinger series is introduced by
Lippmann (1956) to model particle scattering. In the
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Figure 1. Illustration of the traveltime monotonicity as-
sumption. The assumption states that if z; < 2, then
t; < ta.

development of this series the wave-equation is solved
in a known background model, with successive terms in
the series being of successively higher order in the con-
trast operator. The contrast operator is the difference
between the operator in the known background model
and the true model. This idea is developed further by
Moses (1956), and Prosser (1969); and Razavy (1975)
where the series is developed for the quantum scatter-
ing problem. Weglein et al. (1997) uses this series to
develop techniques for both surface and internal multi-
ple attenuation; they choose water velocity as the known
reference model. ten Kroode (2002) describes the math-
ematics behind this approach. In particular he notes
that the suggested method requires two assumptions.
The first assumption is that there are no caustics in
the wavefield and the second is the so-called traveltime
monotonicity condition. This condition is illustrated in
Figure 1 and states that a wave excited at s and scat-
tered at depth z; will arrive at the surface in less time
than a wave following the same path from s to z1, but
scattering at z2 instead, whenever z; is shallower than
z2.

The Bremmer series was introduced for planarly
layered models by Bremmer (1951) and generalized to
laterally heterogeneous models by de Hoop (1996). In
the Bremmer series, the wavefield is split into up- and
down-going constituents; these constituents are then
coupled through reflection and transmission operators.
Each term involves one more reflection/transmission
and propagation step than the previous term. The first
term of the series models direct waves, the second mod-
els singly scattered (where scattering may be reflection
or transmission) waves and so on. The Bremmer series
has been applied in many problems (see van Stralen
(1997) for an overview) and the convergence of various
generalizations of the original series has also been a sub-
Ject of interest (Atkinson, 1960; Corones, 1975; Gray,
1983; McMaken, 1986). Aminzadeh & Mendel (1980;
1981) propose a method, using the Bremmer series, to
attenuate surface-related multiples in a horizontally lay-
ered medium.

To estimate artifacts in the image caused by first-

order internal multiples (FOIM), we proceed in two
steps. We first develop a method to model FOIM, using
the hybrid series; this is described in Section 2. Next,
we use the modeled FOIM to estimate the artifacts they
cause in the image, using ideas from the inverse series
in Section 3. In Section 4 we describe an algorithm to
perform these two steps at the same time. We illustrate
the application of this algorithm to synthetic data in
Section 5.

2 THE SCATTERING SERIES

We begin by decomposing the wavefield into its up- and
down-going constituents. Following Stolk & de Hoop
(2004a), we define

_1( @)t -mg,
-7 (@ ) M
where H denotes the Hilbert transform in time and *
denotes adjoint. This operator relates the propagator
for the full wave equation, G, to the propagator for the
up-going one way equation, G_, (— denotes an up-going
constituent and + a down-going constituent) via

G=Q G_HQ._. (2)

The Q matrix, along with its inverse, diagonalizes the
wave operator written as a first order system and thus
splits the wavefield into its up- and down-going con-
stituents. The wavefield in the diagonal system, us is
related to the full wavefield, u, via

u=Qius +Q u-, 3)

applying the Q! matrix to the the vector (ug,u)T.
Denoting by U; the vector (u4 j,u— ;)T of up- and
down-going wave constituents scattered j times, the

terms in the hybrid forward scattering series are related
by

SUL(V) = DLo(VUs), (4)
and
§Um (V) = D2Lo(VUnm_1 (V).

Here V represents a matrix of reflectivities, and

Gy O

Lo = ( 0 G-) (5)
denotes the matrix of one-way propagators evaluated in
the background velocity model. We use a subscript 0
to indicate the field in the background model and § to
represent a contrast, thus the field U in the true medium
is related to that in the background medium by U =
Uo +8U. Denoting by R the restriction of the wavefield
to the acquisition surface (depth z = 0), we define Mo =
RQ™'Lo. The data are then modeled as

5D = (ad d) - —D?Mo(V(Uo+sz;(—1)m+15Um(‘7)))‘
(6)



The leading order term on the right-hand side represents
the singly scattered or Born contribution. This contri-
bution is written explicitly in terms of the propagator
H of the double-square-root (DSR) (Claerbout, 1985)
equation as

d1(SO,T0,t) = %D?Q:.TO(O)Q‘—.SO(O)

Aozle(O, Z)Q-,rl (ZI)Q—,Sl (Zl)

(E1E2a)(z1, 81,71, 1t0),
(7)
where
E1 i k(z,x) - 6(r — 8)k(z, T£2),
Es l(z,7,8) — 8(t)l(z, 1, 8).

We denote by a = 2¢j 35¢ the velocity contrast, in which
¢co denotes the smooth background velocity and éc de-
notes the velocity contrast. Together the E; and E; op-
erators map the velocity contrast at depth to data at
depth.

3 INVERSE SCATTERING

In inverse scattering the goal is to solve for V in terms
of the data d (cf. (6)). To this end, we assume that the

-~

contrast operator V' can be written as a series

V=3 Vul), (8)

meN

where V,,, is of order m in the data. Substituting this
equation into (6) leads to the following relation between
the Vin(d),

D*Mo(VinlUo) = DiMo(Vim-1Lo(Villb)).  (9)
From this it follows that

—DMo(VUp) = 6D — (Z DfMo(VméU)) . (10)
meR
If we ignore the second term on the right-hand side, the
problem of expressing V in terms of the data reduces
to inverse scattering in the Born approximation (Stolk
& de Hoop, 2004b). In the context of wave-equation
migration, the inverse scattering procedure is split into
two parts: downward continuation and imaging.
We apply the adjoint propagator H(0,z)* to the
modeled data in (7) yielding the downward continued
data at depth z, for ¢t >0

di(2) = H(0,2)°Q~ ,(0)7' Q% -(0)d. (11)

This downward continuation uses the usual migration
velocity model to estimate the data that would have
been recorded at the depth z. Next, we apply the imag-
ing condition to the downward continued data

ai(z,.) = Mdi(2) (12)
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Q) ¥ di(x) = ds(2)

Figure 2. Illustration of equation 13, the estimation of the
multiple at the depth z. The lines represent wavepaths rather
than rays and do not connect as the imaging condition has
not been applied.

where M is the imaging operator discussed by Stolk &
de Hoop (Stolk & de Hoop, 2004a). We apply (11)-(12)
to (10), from which we obtain an image (first term on
the right-hand side) minus artifacts (second term). We
compare our method with that of Weglein et al. (1997)
and ten Kroode (2002) in Appendix B of Malcolm & de
Hoop (2005).

The removal of negative times in the construction
in (11) is an important step in our algorithm. It can
also be computationally expensive to do this because
windowing in time requires returning to the time do-
main. It is also this step that, in practice, imposes a
limitation on the thickness of the multiple generating
layer from which we can estimate multiples. To be able
to attenuate internal multiples in a certain layer it is
necessary to be able to remove the primary from the
top of the layer without attenuating the reflection from
the bottom of the layer.

4 ARTIFACTS DUE TO INTERNAL
MULTIPLES IN IMAGING

First modeling internal multiples in the data and then
constructing an estimate of the artifacts in the image is
computationally expensive. The modeling step requires
several propagation steps through the velocity model
in addition to the cost of a depth migration needed to
estimate artifacts in the image. To avoid these compu-
tational costs, we propose an algorithm summarized by
the following flow chart

T
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Figure 3. Top: Velocity model for fat example. Bottom:
Surface data (CMP) for flat example.
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The algorithm can be divided into several steps. First,
in (a), we downward continue the data to the depth z.
Next we form an estimate, a(z,z), of image from the
data in (d). This estimate is used, in (b), to model the
internal multiple downward continued to depth z via,

J3(z) s,1,t) = Dt2 fQi,s’ (z)(Ela)(zr 3,) TI)Q:,r’ (2)

di(z,¢',r,") @ di(z,s,7",-)ds'dr" .
. (13)
Expression (13) is valid upon restricting d; to ¢ > 0 and
assumes a point source. If the point source assumption
is not satisfied, an estimate of the wavelet should be de-
convolved from the estimated multiple. Equation (13)
is illustrated in Figure 2. Note the similarity between
this expression and that used in the surface-related
multiple elimination (SRME) procedure of Fokkema &
van den Berg (1993) and Berkhout & Verschuur (1997).
An estimate of the artifacts in the image is also made
at the current depth in (f).
We then downward continue both the data and the
estimated multiples to the next depth. To downward
continue the multiples, d3, we make use of the relation

a(50,70,1) = @y (0@ 10 (0) [ dsH(0,2)ds(z,.),
’ (14)
which states that the multiple, d3 can be estimated at
the surface, z = 0 from the multiple, ds estimated at
the depth 2. Using relation (14) along with (11) we find
that artifact in the image caused by FOIM at the depth
z can be estimated by

as(z,.) = Mds(z), (15)

the analog of (12). This step is (f) of the flowchart. The
entire procedure is repeated for subsequent depths, with
the estimated multiples at the depth z+Az being added
to the multiples downward continued from depth z.

5 EXAMPLES

We begin with a simple, layered, example to illustrate
the theory and then proceed to more complicated exam-
ples. The first example is a single layer, 1 km thick ex-
tending from 1.5 to 2.5 km, with a velocity of 2 km/s em-
bedded in a homogeneous model with velocity 6 km/s.



Synthetic data were computed in this model with finite
difference modeling, 101 midpoints were generated with
101 offsets at each midpoint and a spacing of 15 m in
both midpoint and offset (we define offset as (s —7)/2);
4 seconds of data were recorded at 4 ms sampling. Fig-
ure 3 shows the velocity model and the modeled data.

In our method, the data are first downward con-
tinued as part of a standard wave-equation migration
technique ((a) in the flowchart). The algorithm used
to generate the examples shown here uses a pseudo-
screen propagator with an implicit finite difference wide-
angle correction (Jin et al., 1998). In Figure 4 we show
di(z = 1.5), a single common-midpoint gather (cmp)
downward continued to the depth z = 1.5 km of the top
of the layer. The primary reflected from the top of the
layer is located around t = O, the reflection from the
bottom of the layer at about ¢ = 1 s and the first order
internal multiple at about ¢t = 2 s.

We now estimate the multiples at depth using (13).
This requires restricting d; to time t > 0. The proce-
dure removes the primary reflection from the current
depth (which theoretically arrives at ¢ = 0), in this
case 1.5 km, before doing the convolution. If this pro-
cess is not done correctly and energy remains at t < 0,
all subsequent primaries will be duplicated in the esti-
mated multiples section. In this model a simple time-
windowing procedure is sufficient, because the reflec-
tions are far apart in time. In some situations, we find
a 7-p filter to be more effective. This is because we typ-
ically see diffraction tails at small positive and negative
times caused by the band-limited signal and imperfec-
tions in the imaging procedure. A 7-p filter is more ef-
fective at removing these tails when they are mixed with
later reflections. Figure 4 show the results of applying
the 7-p filter to the data.

Once the negative time contributions to the data
have been removed, the multiple is estimated with (13),
through a convolution with the data in a procedure sim-
ilar to Surface Related Multiple Elimination (SRME)
(Fokkema & van den Berg, 1993; Berkhout & Ver-
schuur, 1997; Verschuur & Berkhout, 1997). The con-
volved wavefield is multiplied by an estimate of the im-
age at the current depth, in this case z = 1.5 km (this
is the (E1a)(z,s’,7’") appearing in (13)). This completes
(b) of the flowchart. The estimated multiple is shown in
Figure 5. The event at about ¢t = 3 s in the estimated
multiple is a second-order internal multiple. This event
is formed from the convolution of a primary with a first-
order internal multiple. It is not present in the data
panel because it arrives later than the final recorded
time.

We now proceed to (c) of the flowchart and propa-
gate both the data and the estimated multiples to the
next depth. From the data, an image at the current
depth is formed containing both primaries and multi-
ples using (12) ((d) of the flowchart). Another image is
also computed at the current depth, containing an es-
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Figure 4. Data downward continued to the 1.5 km, the
depth of the first reflector. Top: before the removal of the
part of the data at t < 0. Bottom: after the removal of the
part of the data at ¢t < 0.

timate of the artifacts caused by FOIM, using (15) ((f)
of the flowchart). The image containing both primaries
and multiples gives the estimate of a(z,z), which feeds
back into the estimation of the multiples through (e) of
the flowchart.

Figure 6 compares the estimated multiple to the
true multiple. The estimated artifact aligns well with
the artifact in the data, despite the fact that we have
not accounted for the shape of the source wavelet. (Al-
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offset (km)
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Figure 5. The estimated multiple, in the data, at a depth
of 1.5 km; note the agreement with the true multiple in Fig-
ure 4.

though the wavelet has not been deconvolved, the data
have been shifted so that the peak of the source wavelet
is at zero time.)

To illustrate the ability of the method to estimate
multiples in more complicated velocity models, we add
a low-velocity lens to the model. The resulting veloc-
ity model is shown in Figure 7. The layer in this model
is the same as the layer in the previous model except
that it is 0.5 km deeper to allow more space for the
low-velocity lens. The lens is located in the center of
the model; it is circular with Gaussian velocity varia-
tions, a diameter of 600 m and a maximum contrast
of —2 km/s. The addition of the lens has a large influ-
ence on the recorded data. A shot record directly above
the lens is shown in Figure 8. Note the ringing, perhaps
caused by numerical dispersion in the data modeling,
that is particularly strong on the multiple. We use a
double-square-root propagator that works in midpoint-
offset coordinates rather than shot and receiver. To ac-
commodate this choice, we use a subset of the available
offsets so that each midpoint has the same number of
offsets. The data from a midpoint of 9.8 km are shown
in Figure 9. The first arrival is highlighted in this fig-
ure to show the triplications caused by the lens more
clearly.

To estimate the multiple, we propagate the data
to 2 km, the top of the layer, and again show the cmp
at midpoint 9.8 km Figure 10 along with the estimated
multiples at this depth. Note that the caustic has been
removed by the propagation through the lens and that
the multiple is accurately estimated. At this point, since

midpoint (km)

depth (km)

midpoint (km)
0 0.5 1.0 1.5

depth (km)
D

Figure 6. On the top is the image with an artifact from a
first-order internal multiple at about 5.7 km depth. On the
bottom is the estimated artifact.

we have removed the effects of the lens, the example is
essentially the same as the flat case and the multiples
are estimated accurately as is shown in Figure 11. Once
again, the multiple is relatively weak in the estimated
image. This is because of the residual moveout on the
common image gather, which is shown in Figure 12.
To illustrate the dependence of this method on the
background velocity model, we perturb the velocity in
this section to ascertain the influence of the velocity on
the final result. In theory, from equations (14) and (15),
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Figure 7. Velocity model, similar to the flat layered exam-
ple discussed previously, with the addition of a low-velocity
lens to demonstrate that the method works in laterally het-
erogeneous velocity models.
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Figure 8. Shot record from s = 10 km, directly above the
lens. Note the caustic introduced by the lens around zero-
offset. The ringing on the second primary (at about 2 s) and
the multiple (at about 3 s) is most likely numerical dispersion
from the modeling of the data.
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Figure 9. Common midpoint gather at 9.8 km, with only
the offsets used to compute the images shown later. Note the
triplications caused by the lens. Top: full gather. Bottom:
zoom of the primary reflection from the top layer.

knowledge of the velocity is necessary only to the depth
of the shallowest reflection, in this case the top of the
layer at 2 km depth. To test this we perturb the model
in two ways: first we make the layer thicker, and then
we add a second lens, with properties identical to the
first lens, below the layer. In the first case, we expect
the multiple to be imaged at a shallower depth but oth-
erwise to remain unchanged as the perturbation in the
velocity is independent of midpoint. Figure 13 shows
that we are still able to estimate the artifact accurately
despite this error in the velocity model. There is more
noise present in the image (left of Figure 13) here than
in the correct velocity case (Figure 11). Part of the rea-
son for this is that we have used a smaller agc window
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Figure 10. Top: Common midpoint gather at 9.8 km and
2 km depth. Note the disappearance of the multi-pathing as
the data are now below the lens. Bottom: estimated multiples
at this depth.

to enhance the image of the bottom of the layer. In
the second case, since the perturbation now depends on
midpoint the estimated multiple also depends on mid-
point. Although the estimated artifact does not match
the image artifact as well in this case as when the cor-
rect velocity is used, the estimate remains quite good,
as shown in Figure 14.

The theory presented here does require knowledge
of the velocity model to the depth of the up to down
reflection (top of layer at 2 km depth). To test the sen-
sitivity of the method to errors in this velocity, we re-
move the lens and estimate the image and the multiple
in this incorrect velocity model. The results are shown
in Figure 15. Although the estimated artifact remains

midpoint (km)

depth (km)

1.0

depth (km)

Figure 11. Top: Image with an artifact from the first-order
internal multiple at approximately 6 km depth. Bottom: Es-
timated artifacts from first-order internal multiples.

at roughly the correct depth, there is a phase differ-
ence between it and the actual artifact and the varia-
tion in the image with midpoint is not accurately es-
timated. Removing the lens entirely is a large change
in the model and thus we expect a large change in the
image. In Figure 16, we demonstrate that we can still
estimate the multiple with reasonable accuracy when
the velocity perturbation is less dramatic. In this case
the lens has been moved 0.2 km shallower than in the
true velocity model, and with the exception of the phase
change between the artifact and our estimate, the result
is still good.

The next synthetic model is based on a Shell field in
the North Sea. The velocity model is a 2D slice of a 3D
velocity model with the steeply dipping reservoir inter-
val added manually. The velocity model is shown in Fig-
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Figure 12. Common image gathers for midpoint 9.8 km.
Top: image with artifact. Bottom: estimated artifact.

ure 17; the chalk layer beginning at about 3 km depth
is expected to be the largest generator of internal mul-
tiples because of the strong velocity contrast between
the chalk and surrounding layers. Some of the layers
discussed later are labeled on this figure. The acquisi-
tion was designed to simulate a marine experiment. A
total of 601 shots were computed with finite differences
at a 25 m increment beginning at 15 km and continuing
to 30 km. The streamer consists of 241 receivers (hy-
drophones) spaced at 25 m increments beginning with
zero-offset. For the tests shown here we use a subset of
241 midpoints, beginning at 15 km with a spacing of
50 m, with 31 offsets at 50 m spacing beginning at zero-
offset. A total of 6 s of data were computed with a 4 ms
time sampling interval. A small subset of the available
offsets were used to avoid imaging refracted waves vis-
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Figure 13. In these images, the reflector has been extended
to 3.5 km from 3 km to test the sensitivity of the method
to the velocity model. Top: Image with artifacts from inter-
nal multiples. Bottom: Estimated artifacts from first-order
internal multiples.

ible at long offsets, and to avoid to the extent possible
numerical dispersion, which is stronger at larger offsets.

In Figure 18, the data are shown downward contin-
ued to a depth of 2.5 km, just above the top of the chalk
(the chalk layer is labeled in Figure 17). This figure il-
lustrates that in this instance a simple time windowing
is not sufficient. Instead we use a 7-p filter to attenuate
the reflection from the top of chalk. By using a 7-p filter
rather than a simple time windowing we are also able to
apply the filter less frequently as it allows us to remove
the entire top of chalk reflection at once, from above the
chalk layer.

Figures 19 and 20 compare the estimated artifacts
to the true artifacts in the image. The multiples were es-
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midpoint (km)

depth (km)

depth (km)

Figure 14. In these images, a second lens has been added
beneath the layer to introduce a laterally varying velocity
perturbation. Top: Image with artifacts from internal mul-
tiples. Bottom: Estimated artifacts from first-order internal
multiples.

timated in a depth window from 2.5 to 4.2 km depth and
the 7-p filter was applied at 2.5 and 3.25 km. Thus we
expect to see the multiples from the top and bottom of
the chalk layer. The estimated multiples are imaged at
approximately the depth expected based on the velocity
model. The multiple at about 4.5 km depth is imaged
at the depth expected for an internal multiple entirely
within the chalk layer extending from approximately 3
to 4 km depth. The multiples at about 5.5 km are either
peg-legs from the bottom of the chalk and the bottom of
layer 2 or internal multiples with both deeper scattering
points at the bottom of the layer 2. The artifacts caused
by these multiples in the image are not easy to see, how-
ever, as they are obscured by other ringing in the data.

midpoint (km)

depth (km)

midpoint (km)

0 0.5 1.0

depth (km)

Figure 15. The lens was removed from the velocity model
before generating these images. Because this perturbation is
above the top of the layer, we expect this to have an impact
on the estimated multiple. Note the change in the accuracy
of the estimate beneath the lens. Top: Image with artifacts
from first-order internal multiples. Bottom: Estimated arti-
facts from first-order internal multiples.

This ringing does not appear in the estimated artifacts
because these estimates are made using the primaries,
which arrive at earlier times and are thus less strongly
influenced by the ringing. To highlight the multiples as
much as possible, we have stacked only the smallest p-
values (i.e. the first few traces of the common image
gather) to make the image and we have low-passed fil-
tered the image to remove as much of the high-frequency
noise visible after the chalk layer as possible, without
damaging the imaged structure. In Figure 20 we com-
pare our estimate to one made by ten Kroode (2005),
in which he estimates the multiples from the top of the



midpoint (km)

depth (km)

midpoint (km)
0 0.5

1.0

depth (km)

Figure 16. In this model the lens was moved 0.2 km deeper
than in the correct velocity model. Because this perturbation
is above the top of the layer, we expect this to have an impact
on the estimated multiple. Note the phase difference between
the estimated artifact and the image. Top: Image with arti-
facts from first-order internal multiples. Bottom: Estimated
artifacts from first-order internal multiples.

chalk layer and compares them to the multiples in the
data. This is an extremely coarse comparison as it is
not possible to show his image, but the arrows indicate
several locations at which artifacts from multiples are
present in his image.

6 DISCUSSION

We have described a method to estimate imaging ar-
tifacts caused by first-order internal multiples. This
method requires knowledge of the velocity model down
to the top of the layer that generates the multiple (the
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Figure 17. Velocity model for the North Sea example.

depth of the up-to-down reflection). The main compu-
tational cost of the algorithm comes from the propa-
gation of the data and the internal multiples. Because
two data sets are propagated (the data themselves and
the estimated multiples), the cost of the algorithm de-
scribed here is about twice that of a usual pre-stack
depth migration, plus the cost of the removal of nega-
tive times. The removal of negatives times can be ex-
pensive because it is necessary to return all of the data
to the time domain to window the data. Using the 7-p
filter reduces this cost because the negative times can
be removed less frequently, although the cost of the 7-
p transform is much higher than that of a simple time
windowing. By estimating the multiple in depth rather
than in the data, we avoid difficulties caused by caustics
in the wavefield or the failure of the traveltime mono-
tonicity assumption. In addition, estimating artifacts in
the image rather than estimating multiples in the data
shows clearly which part of the image has been contam-
inated by internal multiples, even if those multiples are
poorly estimated or incompletely subtracted.
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ABSTRACT

Seismic interferometry yields the Green’s function that accounts for wave prop-
agation between receivers by correlating the waves recorded at these receivers.
We present a derivation of this principle based on the method of stationary
phase. Although this derivation is applicable to simple media only, it provides
insight into the physical principle of seismic interferometry. In a homogeneous
medium with one horizontal reflector and without a free surface, the correla-
tion of the waves recorded at two receivers correctly gives both the direct wave
and the single-reflected waves. When more reflectors are present a product of
the single-reflected waves occurs in the cross correlation that leads to spurious
multiples when the waves are excited at the surface only. We give a heuris-
tic argument that these spurious multiples disappear when sources below the
reflectors are included. We also extend the derivation to a smoothly varying

inhomogeneous background medium.

Key words: siesmic interferometry, stationary phase, multiples

1 INTRODUCTION

Traditionally, imaging techniques are based on the il-
lumination of an object by a coherent source. In many
applications coherent sources are not available. Seismic
interferometry is a technique in which the Green’s func-
tion that describes the waves that propagate between
two receivers is extracted by computing the correlation
of signals recorded at these two receivers. These signals
may have been excited by either coherent or incoher-
ent sources. The advantages of this technique are that
incoherent noise can be the source of the waves used
for imaging and that one can effectively use a wavefield
that is excited at one of the receivers, even though no
physical source exists at that location.

The first formulation of this technique is due to
Claerbout [1968] , who used the phrase “daylight imag-
ing” because the daylight that we use in our vision also
provides an incoherent illumination of the objects that
we view. His derivation was applicable to layered medjia.
The emergence of the Green’s function was subsequently
derived for general media using normal-mode theory
[Lobkis and Weaver, 2001]. That derivation is applica-

ble only for finite media that have a discrete frequency
spectrum. This requirement was relaxed in an alterna-
tive derivation based on the representation theorem for
one-way wave propagation [Wapenaar et al., 2004], and
by using the general representation theorem [Weaver
and Lobkis, 2004; Wapenaar, 2004]. Alternative, but
equivalent proofs of the emergence of the Green’s func-
tion have been formulated using the principle of time-
reversed imaging [Derode et al., 2003ab; Bakulin and
Calvert, 2004; Roux and Fink, 2003]. The relationship
between these approaches is shown by Wapenaar et al.
[2004] .

The reconstruction of the Green’s function from
recordings of incoherent signals has been shown obser-
vationally using ultrasound [Weaver and Lbkis, 2001;
Larose et al., 2004; Malcolm et al., 2004]. Seismic inter-
ferometry has been used in helioseismology [Rickett and
Claerbout, 1999; Rickett and Claerbout, 2000], in explo-
ration seismology [Bakulin and Calvert, 2004; Schuster
et al., 2004], in crustal seismology for the retrieval of
the surface wave Green’s function [Campillo and Paul,
2003; Shapiro and Campillo, 2004; Shapiro et al., 2005],
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and for extracting the response of buildings from an in-
coherent excitation [Snieder, 2005].

The mechanism of seismic interferometry can be ex-
plained using the method of stationary phase [Snieder,
2004a]. This is not surprising because the stationary
phase approximation is the natural tool to account for
the destructive and constructive interference that forms
the physical basis of seismic interferometry. The deriva-
tion of seismic interferometry with the principle of sta-
tionary phase is approximate, but, as shown by Roux
et al. [2005] , the stationary phase integral can also be
evaluated exactly using elliptical coordinates. This gives
exactly the same final result as the stationary phase ap-
proximation. The derivation of seismic interferometry
based on stationary phase has also been used for waves
in a waveguide [Sabra et al., 2005).

The derivation of stationary phase is applicable for
simple media only where one can easily account for the
different rays that propagate through the media. In this
sense the derivation based on stationary phase is less
general than derivations based on normal modes, rep-
resentation theorems, or time-reversed imaging. Despite
this limitation, the derivation based on stationary phase
is useful because it sheds light on the physics that under-
lies seismic interferometry. The value of this derivation
is mostly didactic, but it also highlights sampling issues
and the generation of spurious multiples.

Here we show that singly reflected waves that prop-
agate between two receivers in the subsurface can cor-
rectly be reproduced by correlating the waves that have
been excited by uncorrelated sources at the surface and
are recorded at the two receivers. We derive this for the
simplest case for a homogeneous medium without a free
surface and flat horizontal reflectors in the subsurface.

In section 2, we derive the general framework for il-
lumination of the subsurface by incoherent sources, and
introduce the employed single-scattering model in sec-
tion 3. In section 4 we show how this leads to the re-
trieval of the direct wave that propagates between the
receivers, and, in section 5, we show that this proce-
dure also correctly leads to the single-reflected wave that
propagates between the receivers. The correlation of the
single-reflected waves leads to a contribution that is pro-
portional to the square of the reflection coefficient. We
show in section 6 that this term is kinematically equiva-
lent to the direct wave that propagates between the re-
ceivers. In section 7 we show a numerical example that
illustrates the role of stationary phase in seismic inter-
ferometry. In section 8, we generalize the derivation to
the case of a layered medium with more than one reflec-
tor, and we show that the product of singly-reflected
waves from different reflectors gives a nonzero contribu-
tion to the cross-correlation. We refer to these terms as
spurious multiples because these terms depend on the
product of reflection coefficients, just like real multiples
do. The spurious multiples, however, have arrival times
that differ from those of real multiples.

2 ILLUMINATING THE SUBSURFACE
FROM SOURCES AT THE SURFACE

Consider the problem wherein many sources at the sur-
face z = 0 illuminate the subsurface. These sources can
be either coherent or incoherent, and the may act either
simultaneously or sequentially. The sources are placed
at locations rs = (z,y,0) and have a source-time signal
Ss(t) that corresponds in the frequency domain to the
complex spectrum Ss(w). The Earth response that is
excited by these sources is recorded at two receivers at
locations ra = (z4,0,z4) and rg = (8,0, 2B), respec-
tively. Without loss of generality, we align the z-axis of
the employed coordinate system with the horizontal sep-
aration of the sources; hence in this coordinate system
the y-coordinate of both sources vanishes.

The source-time functions Ss(t) may be impulsive,
but they might also correspond to functions with a more
random character, as would be excited by, for example,
traffic noise in a land survey or wave noise at the sea-
surface during a marine survey. In the sequel we assume
that the source time functions for sources at rs and rg-
are uncorrelated when averaged over time and that the
power spectrum of the source time functions is identical:

/Taver Ss(t)SSI(t+T)dt=555/C(7') ) (1)
0

where Taver denotes the length of the time-averaging
and C(1) the autocorrelation of the source time func-
tions. The autocorrelation is the Fourier transform of
the power spectrum. Since all sources are assumed to
have the same power spectrum, they have the same au-
tocorrelation as well.

The source-time functions may have a differ-
ent character in different imaging experiments. In
the virtual-source experiments of Bakulin and Calvert
[2004] the shots do not overlap in time. The shots are
recorded and processed one after the other, and the cross
terms between the shots in expression (1) by definition
vanish. The situation is more complicated when truly
incoherent sources illuminate the surface. Consider for
example the seismic noise generated by waves at the
sea-surface. The seismic waves excited at different lo-
cations on average are uncorrelated. Snieder [Snieder,
2004a] has shown that for random sources the ensemble
average of expression (1) vanishes and that, in a single
realization, the ratio of the cross term S # S’ to the
diagonal term S = §’ is given by

|cross terms|
~
|diagonal terms|

tCOTT
NSOUTCCSTG,‘UGT ’ (2)
where Nsources denotes the number of sources and tcorr
is the temporal width of the cross-correlation C(7). This
width is inversely proportional to the bandwidth A f
of the sources. The product of the bandwidth and the
averaging length Toyer is equal to Nfreedom, the number
of degrees of freedom in the data [Landau, 1967; Bucci
and Franceschetti, 1989). Therefore the ratio of the cross
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Figure 1. The geometry of an imaging experiment with a
source at the surface and two receivers at r4 and rg. The
mirror image of these receivers in the reflector is indicated
at the locations r 4 and r g, respectively.

terms to the diagonal terms in a single realization is
equal to

|cross terms| 1
—_ e ——————— e N .
|d1agona1 terms| \/Nsourcestreedom

®3)

It follows from expression (2) that for random, in-
coherent, source-time functions the cross terms can be
made arbitrarily small by increasing the length of the
time window over which the averaging is carried out. In
the following we assume that the cross-terms S # S’
can be ignored altogether. In that case, expression (1)
corresponds in the frequency domain to

Ss(w)Ss(w) = 8ss [SW)[* . (4)

This condition of uncorrelated sources was also used by
Wapenaar [2004] , who assumed that the sources are
located in the deep subsurface.

We now consider correlation of the waves recorded
at two receivers for the special case of an acoustic
medium. The waves recorded at the receivers A and B
are given by

ua(w) = g G (ra,rs,w)Ss(w) ,
(5)
uB (w) = Zs Gfu”(rB) rs’w)SS(w) )

with G the full Green’s function which consists of the
direct wave, primaries, and multiples. In the frequency
domain the temporal correlation of the waves recorded
is given by

Cap(w) = ua(w)up(w), (6)

where the asterisk denotes the complex conjugate. In-
serting equation (5) in the previous expression gives

Cap(w) =Y GM'(ra,rs)G"*"*(rp,rs)Ss(w) S5 (w) -

S,s’

(7)

z=0

z=D

Figure 2. Definition of the geometric variables in the anal-
ysis of term 1.

Since the sources are uncorrelated, as stated in expres-
sion (4), the cross-terms S # S’ in this double sum
vanish; hence

Cas(w) =Y GM" (ra,rs)G ™" (rz,1s) [SW)|* .
S
(8)

When the sources are densely distributed along the sur-
face, with n sources per unit surface area, the sum over
sources can be replaced by an integration: } g(---) —
n f(- -+ )dz over the surface; this gives

Can(w) = |S@)[n / G (x4, 15) G (rp, vs)dady |

(9)
with z and y the coordinates of the source at the surface
as shown in figure 1.

3 A SINGLE-SCATTERING MODEL

In order to better understand the physics of seismic in-
terferometry, we illustrate this technique with a model
that consists of a single reflector with plane-wave re-
flection coefficient r that is embedded in a homoge-
neous medium. The Green’s function in the homoge-
neous medium is given by

eikR
R’
with the wavenumber given by k = w/e, ¢ the wave
velocity, and R the distance of propagation. We pre-
sume that there is no free surface, so this model does
not include any multiply reflected waves. As shown in
figure 1, rra denotes the reflection point of the wave
that propagates to r4. The full Green’s function is the
superposition of the direct wave and the single-reflected
wave:

G (ra,rs) =G(|ra —rs])
+7 G(Jra — rral + |rra —rs]),

G(R) = - (10)

GM!(rp,rs) =G(rp —rs|)
+r G(|rp —rrB| + |rrRB —T5]) .

(11)
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In this expression, we used that the reflected wave is given by the Green’s function that accounts for the propagation
from the source to an image point of the receiver below the reflector. The image points of the receivers A and B are
indicated in figure 1 by r’; and r’g, respectively. As shown in that figure, for receiver A the total distance covered by
the reflected wave is |r4 — rra| + |[rra —rs|.

Inserting equation (11) into expression (9) gives an expression for the correlation, which consists of a sum of four
terms:

Cas(w) =n|Sw)P / G(Ira — Hf)G" (Ir5 - rl)dedy

T1

+n|S(w)? 7'/ G(lra —r|)G*(|lrB — rrB| + |rrE — r|)dzdy

J/

~

T2
(12)

+n|S(w)]? r/G(IrA —rral|+ [rra — r|)G*(Jr5 — r|)dzdy

~ J/
-~

T3

+n|S(W)? r? / Gllra — tral + [rra — £)G* (Irs — trE| + [rrE — r|)dzdy .

7

T4
Term 1 (T1) is the correlation of the direct waves that propagate to the two receivers; this term does not depend
on the reflection coefficient. Terms 2 and 3 are proportional to the reflection coefficient r, for this reason they can
be expected to account for the single-reflected waves in the Green'’s function that are extracted from the correlation.
Term 4 depends on 72. In the following, we analyze terms 1-4 in order to establish the connection between the
correlation and the Green’s function for this simple wave propagation problem.

4 ANALYSIS OF TERM 1

The derivation shown in this section is similar to that in an earlier analysis [Snieder, 2004a]. Using the lengths L4
and Lpg, as defined in figure 2, and the Green’s function (10), term 1 can be written as

1 exp (tk(La — Lp))
Ti= / i dzdy . (13)

The integrand has an oscillatory character, but as we will see, the integrand has a stationary point. For this reason
we analyze this integral in the stationary phase approximation [Bleistein, 1984; Snieder, 2004b]. Referring to figure
2, the lengths LA, p are given by

Lap= \/(m —za) +y2+ 22 5. (14)

The stationary point of the integrand follows by setting the partial z- and y-derivatives of L = L4 — Lg equal
to zero. For the y-derivative this gives

v v (15)

8y La Lg
This derivative vanishes for y = 0; hence the condition of stationarity with respect to y implies that the stationary
source point lies in the vertical plane of the receivers. The stationarity condition with respect to the z-coordinate

gives

L -4 z-—2B . .
=%= .~ In =siny, —sinyg , (16)
where the angles 9, and ¢ 5 are defined in figure 2. The phase thus is stationary when
Y=g and y=0. 17)

The stationarity condition v, = 9 is illustrated in figure 3; it implies that the stationary source point at the
surface is aligned with the line joining the two receivers. In these figures the receivers are at different depths.
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Note that when the receivers are at the same depth
(za = zB) there is no stationary source position, except
for sources infinitely far away. Any attenuation will sup-
press the contribution of those sources.

Kinematically, expression (13) gives a contribution
at a lag-time that is equal to the time it takes for the
wave to propagate from receiver B to receiver A because
the wave that propagates along the path shown in fig-
ure 3 arrives at receiver A with a time delay jra —rg|/c
compared to the wave that arrives at receiver B. It is
nontrivial that the evaluation of the integral in (13)
gives a contribution that is also dynamically equal to the
Green’s function of the waves that propagate between
the receivers A and B. In the following we evaluate the
integral in the stationary phase approximation.

Evaluating the second derivatives of L = L4 — Lp
while using (17) for the stationary point gives

L _ iz _2a 1 _zp 1
Oz? _Li LsB_L"ALA L3 Lp
(18)
—eos?w (L L
—cosw(LA LB)’
and

2 2 2
E_LA LB=_1_ 1 (19)

oy2 LY L} La Ls’

In this example, and the following examples,
8°L/3xBy = 0 at the stationary point, and the
two-dimensional stationary phase integral reduces to
the product of two one-dimensional stationary phase
integrals over the z- and y-coordinates, respectively.

In the following, L4 and Lp are the path lengths
for the stationary source position as shown in figure 3.
Note that in the geometry of figure 3, Ly > Lp so
that L' — Lz' < 0. Evaluating the integral (13) in the
stationary phase approximation thus gives

1 exp(ik(La— L))
" (4m)? LaLlp

: [2m 1
—imw/4
xXe ——-k \/

T1

cos 2 (—LI—B - %) (20)

; 27 1
—in/4
xe 1 [ —
kBe/L 1
Lg La

Using the relation k = w/¢, we can write this expression
as
B c exp (ik (La — Lg))
"~ 8m(~iw) cosyP Lsa-Lp !
The distance L 4 — Lp is equal to the receiver separation
R shown in figure 3. With expression (10) and including

T1 (21)

z=0

z=D

Figure 3. Definition of the geometric variables for the sta-
tionary source position in term 1.

Figure 4. The relation between an element PP’ along the
surface and the corresponding element QQ’ perpendicular to
the receiver line.

the factor n |S(w)|? of expression (12), this gives a total
contribution that is equal to

2
1 MS@IEe  G(R)
2cosy —iw

(22)

This means that the contribution of term 1 to the
correlation is, in the frequency domain, proportional to
the Green’s function of the direct wave that propagates
between the receivers. Note that this Green’s function
is multiplied by the source density n at the surface; a
denser source distribution gives a stronger correlation
than does a less dense one. The Green’s function is
also multiplied by the power spectrum |S(w)|® of the
sources. This power spectrum can be measured, and
one can correct for this term. In order to retrieve the
Green'’s function from term 1, one needs to multiply
with —iw. Because of the employed Fourier transform,
f(t) = [ F(w)exp(—iwt)dw, this multiplication corre-
sponds to a differentiation in the time domain. This dif-
ferentiation corrects for the integration that is carried
out in the cross-correlation. This need to carry out the
differentiation was also noted in other formulations of
seismic interferometry, e.g., [Lobkis and Weaver, 2001;
Snieder, 2004a; Weaver and Lobkis, 2004].

The term cosv in the denominator is an obliquity
factor that corrects for the fact that the length element
QQ' of figure 4 perpendicular to the ray corresponds to
a line element PP’ along the surface whose lengths that
are related by QQ’' = PP’/ cos.

In the virtual-source experiment of Bakulin and

|
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Calvert [2004], the sources at the surface were placed
in a line. In that case there is no integration over the y-
coordinate, and the latter terms in expression (20) that
come from the y-integration are absent; in that case

. 2
Tliine = M 11 G(R). (23)
V8t —iwcosyp V L La
Note the presence of the factor i and the term 1/v/—iw.
Correcting for these terms involves a Hilbert trans-
form and a fractional derivative. These correction fac-
tors are common in two-dimensional imaging experi-
ments [Yilmaz, 1987; Bleistein et al., 2001; Haney and
Snieder, 2005]. Without these corrections the recon-
structed Green’s function does not have the proper
phase and frequency dependence. More seriously, in con-
trast to equation (22), expression (23) depends explic-
itly on the distances L 4 and Lg. It turns out that when
the derivation leading to expression (23) is repeated us-
ing the Green’s function in two dimensions, an expres-
sion analogous to equation (22) is obtained. The pres-
ence of the fractional derivatives and the lengths L4
and Lp is thus due to a mismatch between the dimen-
sionality of the physical space through which the waves
propagate (3D versus 2D) and the dimensionality of the
source distribution (2D versus 1D). The derivation of
seismic interferometry by Roux and Fink [2003] is based
on wave propagation in three dimensions, while the em-
ployed sources are placed along a line. As shown by the
example of expression (23), this leads to a Green’s func-
tion that is kinematically correct, but whose amplitude
and phase is not.

A complex overburden located between the surface
sources and the receivers in the subsurface acts as a
diffusor of seismic waves because the waves radiated
from a single source arrive at a receiver from various di-
rections resulting from the scattering and multipathing
that has occurred in the overburden. In the experiment
of Bukulin and Calvert [2004] the shots were placed on a
line at the surface, but the complex overburden in their
experiment created multipathing that provided a more
diffuse illumination of their receivers in the subsurface
that helps to focus the waves onto the virtual sources.

The analysis of this section can be generalized for
a heterogeneous medium in which the velocity is suf-
ficiently smooth to warrant the use of ray theory. We
show in appendix A that term 1 is then given by

n|S(w)|2vs y G (ra,rB)

T1 =
2cosy — 1w

, (29)

stat. points

where G™*¥(r4,rg) is the ray-geometric Green’s func-
tion for the waves recorded at ra that are generated by
a point source at rg. The summation in this expression
is over all the stationary source points on the surface
z = 0. These points can be found by tracing rays from
ra to rp and by extending these rays to the surface
z = 0. The angle v is the angle between these rays at

z=0 rS=(Xry:9)

r5=(xg,0,2g)

1a=(%a,0, Zp)

r=(XR,YR:D)

Figure 5. Definition of the geometric variables in the anal-
ysis of term 3.

the surface and the vertical, while vs is the velocity at
the intersection of these rays with the surface.

5 ANALYSIS OF TERM 3

The analysis of this term could be achieved by apply-
ing the theory of the previous sections to receivers at
the image points r,4. and rp/ of figure 1. Here we show
explicitly that the cross-correlation correctly produces
the single-reflected waves. Using the lengths defined in
figure 5 this term is given by

1 exp (ik (L1 + L2 — L))
T3 = dzdy . (25
@n)? / @+ L) Lo y. (%)
Before we can analyze this expression we need the co-
ordinates of the reflection point rr because this deter-
mines the lengths L; and L. The condition that the
reflection angle is equal to angle of incidence gives

(D—z24a)z+ Dzxa
2D — z4 !

TR =
(26)
_(D—za)y
YR = 2D —z4

Using this, the lengths Liand L are given by
2
L? = ( D ) (:l! - 23A)2

2D — z4
(27)

D\,
+(2D—zA) v+ D7,

and
D—za\?
2 _ 2
L= (2D—ZA) (z—2a)

2
+(D"‘") v+ (D —24)°

2D — z4

(28)

while Lp is given by expression (14).
The stationary points of the integral (25) follow
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Figure 6. The angles 81, 82, and 83 and their relation to
the geometric variables for the reflected wave.

from the first partial derivatives of L = L; + L2 — Lp:

0oL _(_D \'(u
T8y T \2D-za I

(D=2 (v v
2D — ZA L2 LB )
Again, the stationary source position occurs for y = 0;

it is located in the vertical plane of the receivers. The
condition for stationarity in the z-direction is

0__2[: - D 2 T —TA
T 9r  \2D-—za L,

+ D—za\*(z—za A
2D—ZA L2 LB ’
(30)

In order to interpret this last condition geometri-
cally it is useful to relate the ratios in this expression
to the angle of incidence at the reflector. Referring to
figure 6, the following identities hold: cos@, = D/L;,
cosBy = (D—za)/L2, and cos83 = (2D —z4)/(L1+ L2).
Since these angles are all equal to the angle of incidence
6 4 of the reflected wave, we obtain:

D D-za 2D-2z4
L_1 T Ly T Li+Ly
Also, since z — x4 = L; sin 8, + L2 sin 82, and since both
angles are equal to 84,

(29)

(31)

cosf4 =

T—Ta
Li+ Ly’
Dividing this expression by the last identity of (31) gives

(32)

sinf4 =

T —Th
tanf, = D s (33)

Finally, from (31),
D L1 D — ZA L2 (34)

9D —z24 In4Ls’ 2D—24 ILi+L2’

Using expression (34) in (30), and using (32) to elim-
inate £ — x4, gives, with the relation (z — zg)/Lp =

z=0

z=D

Figure 7. Definition of the geometric variables for the sta-
tionary source position for the analysis of term 3.

siny g,

oL .
O=-£=sm9,1—sm1/)3. (35)

The integrand thus is stationary when the source
position satisfies

04 =Yg and y=0. (36)

This condition is depicted in figure 7: waves radiated
from the stationary source position at the surface travel
in a straight line from the source through receiver B via
a specular reflection to receiver A. Just as in the anal-
ysis of term 1, the time delay of this wave recorded at
the two receivers is equal to the time it takes the wave
to travel from receiver B via the reflector to receiver
A. Thus the correlation is kinematically equal to the
Green’s function for the reflected waves. With the fol-
lowing stationary phase evaluation of the integral (25),
we verify that the retrieved Green’s function is also dy-
namically correct.

From expression (27) we get at the stationary point

9L _( D )2D2

Ox? 2D — 24 L—"f
L1 2 D2 1 Ll 2
- ) === = ——— _cos“f.
(Ll + L2) L? Ly (L + L2)?

(37)
In the second identity we have used expression (34),
while the last identity follows from equation (31). In a
similar way it follows that

9Ly, Lo
9z%  (Ly + L2)?

cos’ 6, (38)

Z=E - cos®9. (39)

In the last expression, we used the stationary phase con-
dition ¥ = 8. Combining these results in the path dif-
ference L = L1 + L2 — L gives

oL 2 1 1
a—mz-——COS 0(.L1—+L—2_—[;) . (40)

P
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Differentiation of (27) gives
8Ly D _\* 2
dy? {(2D—z,4) (&~ z4)

D \* 5l .3
+<—_2D—z,.> D }/Ll.

With expressions (33) and (34) this is equal to
L. (DN’ 1 ( Li \*°, ,
Using the identity D/L, = cos @ this gives
*L, L

(41)

= . 43
oy? (L1 + L2)2 (43)
A similar analysis for L gives
62
Ly L, (44)

9y?  (Li+ L)?
This gives, for the curvature of L with respect to y,

2
oL__ 1 1 (45)
3y Ly 4 Ly Lp
In these expressions it is understood that all lengths are
evaluated at the stationary point.

The stationary phase evaluation of the integral
(25) can now be carried out. Keeping in mind that
(L + Ly)™ ' — LEI < 0, and using the same steps as
in section 4, gives

T3 =

1 exp(ik(L1 + L2 — L)) (e—iw/4)2
(4m)? (L1 + L2)Lg

Lo (1 -t
kcos@ \Lp L+ Lo '
(46)

As shown in figure 7, Ly — Lg = Ry, and Ly = Rs.
With the definition (10) for the Green’s function this
gives after taking the rn|S(w)|? terms into account:

2
T3 — n|S(w)|"e » rG(Rl .+R2) .
2cosy —tw

(47)

Note the resemblance with expression (22) for the con-
tribution of term 1 that gives the direct wave that prop-
agates between the receiver. Expression (47) shows that
the contribution of term 3 leads to the singly-reflected
wave that propagates from receiver B via the reflector
to receiver A. The same corrections must be applied to
this term as to term 1 as discussed in section 4.

The same analysis can be applied to term 2 of ex-
pression (12), the final result is the complex conjugate
of expression (47) so that

_ nlSW)|e G(R1+ R2)\"

The stationary point now lies at the location on the

220 ro=(x.0)
rB=(XB’OJZB)
a=(Xa:0, Za) A
0,! B
z=D '
ke B

Figure 8. Definition of the geometric variables in the anal-
ysis of term 4.

surface such that the direct wave from the source to re-
ceiver A propagates along the same path as the wave
that travels from the source to the reflector, and ulti-
mately to receiver B.

The Green’s function in expression (47) is the
causal Green’s function, while its complex conjugate
in equation (48) is the acausal Green’s function. It is
known that seismic interferometry gives the superpo-
sition of the causal and the acausal Green’s function
[Lobkis and Weaver, 2001; Derode et al., 2003a; Mal-
colm et al.,, 2004; Derode et al.,, 2003b]. The causal
Green’s function can easily be retrieved from the cross-
correlation either by truncating the cross-correlation for
t < 0, or by averaging the cross-correlation for negative
times and positive times.

6 ANALYSIS OF TERM 4

For the analysis of term 4, we carry out the stationary
phase analysis of the following integral:

1 exp (tkL)
T4 = dzdy | 49
(47r)2/ X e “9)
with
L =|ra—rpra|+|rra —rs|
(50)
—|rB —rrB| — |rrRB —rs|
and
X =(ra —rra|l+|rra —1rs|)
(51)

X ([tp —rrB|+ |rrB — rs])

where all variables are defined in figure 8. The stationary
point follows from setting the z- and y-derivatives of
the phase equal to zero. As in the previous sections,
the stationarity condition with respect to y leads to the
condition y = 0; this means again that the stationary
point lies in the vertical plane of the receivers. Using the
same steps that led to expression (35), one finds that the
stationarity condition with respect to z is given by

oL | .
0= P sin@4 —sinfg , (52)
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Figure 9. Definition of the geometric variables in the anal-
ysis of term 4 for the stationary source position.

where the angles 84 and 8 are defined in figure 8. The
point of stationary phase thus is defined by the condi-
tions

0a =08 and y=0. (53)

This condition of stationary phase corresponds to
the source position shown in figure 9. The stationary
source position launches two waves that, after reflec-
tion at the interface, both propagate along the line that
joins the receivers. Since both reflected waves are pro-
portional to 7, this contribution to the correlation is
proportional to 72. The correlation of the waves shown
in figure 9 is nonzero for a lag-time that is equal to the
time it takes for the waves to propagate between the re-
ceivers. Kinematically, this term can thus be expected
to correspond to the Green’s function of the direct wave
that propagates between the receivers.

In order to carry out the stationary phase analy-
sis, the second derivatives of the phase is needed. These
derivatives follow from the expressions (37), (38), (43)
and (44). Using the lengths defined in figure 9, term 4
is given in the stationary phase approximation by

1 exp(tk(L1 + Laa — L1 — L2B)) (e—ir/4)2

T =G @+ L) (Ti + L2n)

2 1 1 -
kcosd (Ll +Laa L+ ng) :
(54)
According to the geometry of figure 9, R = Lap — Laa.
With the definition (10) for the Green’s function this
gives, after taking the 7°n |S(w)|* terms into account,

T4=%“2‘|;cxr2 (GT(:—‘?) . (55)

Apart from the r2-term and a complex conjugation
of the Green’s function, this term is similar to term 1
as given in expression (22). The r2-term arises because
both of the waves that are reflected upward from the
reflector are proportional to the reflection coefficient.
The fact that this contribution is multiplied with 2
is simply due to the fact that both interfering waves
that contribute to this term are proportional to 7. The

complex conjugate appears because the wave arrives at
receiver A before it hits receiver B.

7 A NUMERICAL EXAMPLE

We present a numerical example of the theory. For sim-
plicity we consider the theory in two dimensions. A re-
flector with reflection coefficient » = 0.8 is located at
a depth 1500 m below the surface. This is not a small
reflection coefficient, but since there is only one reflec-
tor and no free surface, this model does not generate
any multiple reflections, regardless of how large the re-
flection coefficient is. The wave velocity is ¢ = 2000
m/s, and the receivers are located at ra = (0, 1000)
m and rg = (300, 500) m, respectively. We used noise
sources at the surface with a spacing Az =20 m., and a
Ricker wavelet with a dominant frequency of 50 Hz for
the power spectrum |S(w)|? of the noise.

The contributions of the sources at the surface to
the terms T1-T4 is shown in the left panel of figure 10,
while the sum over all source positions is shown in the
right panel. The right panel panels shows four distinct
arrivals. The arrivals T1 and T3 are causal, while the ar-
rivals T2 and T4 are acausal. T1 is the strongest arrival,
because it does not depend on the reflection coefficient.
The arrivals T2 and T3 are weaker, because they are
the singly reflected waves, while the arrival T4 is the
weakest because it varies as rZ.

Note that each of the arrivals in the right panel
of figure 10 corresponds to a stationary source point in
the left panel of that figure. The nonzero contribution
of these arrivals is solely due to the stationary source
points, the sources placed at other locations give con-
tributions that interfere desctructively.

Figure 11 shows for term T3 a comparison between
the exact waveform, computed with the 2D Green’s
function, that is shown with the solid line, and the term
3 obtained by summing the correlation over the sources
at the surface (shown with crosses). The waveform ob-
tained from seismic interferometry matches the exact
waveform well. Note that the shown waveforms do not
look like a Ricker wavelet; as theory predicts they are
shifted over a phase angle equal to 7 /4.

The left panel of figure 10 shows weak arrivals be-
tween T1 and T4. These weak arrivals are due to end-
point contributions from the sum over the traces on
the left panel of that figure, especially for the end-
points where the arrival time tends to a constant. In
the numerical example we tapered the contribution of
traces near the endpoints of the source region. With-
out this tapering these endpoint contributions are much
stronger. This is of importance for virtual source imag-
ing [Bakulin and Calvert, 2004] because a careless sum-
mation over all source positions may lead to endpoint
contributions that could be confused with waves re-
flected off reflectors in the subsurface.
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Figure 10. Left panel, the contribution of sources at the surface to the terms T1-T4 as a function of the source position z. For
clarity only every fifth source position is shown. Right panel, the sum over all source positions at the surface.
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Figure 11. Solid line, the exact arrival for term T3 com-
puted with the 2D Green’s function. The crosses indicate
the sum of the correlation for term T3 over all sources at
the surface. This sum is tapered near the end of the source
region.

8 THE CASE OF MORE THAN ONE
REFLECTOR

Up to this point the analysis has been based on the
assumption of a single reflector in the subsurface. Sup-
pose there are more reflectors at depths D; with re-
flection coefficients ;. Assuming that the wave velocity
remains constant, the second term in each of equations
(11) needs to be replaced by a sum over all reflectors. In
expression (12), the term T1 contains the direct waves
only; this term is not influenced by the presence of more

than one reflector. The terms T2 and T3 in expression
(12) involve the cross term between the direct wave and
the single-reflected waves. Since these terms are linear in
the reflection coefficients, one can retrieve the sum of all
the single reflected waves by summing the terms T2 and
T3 over the different reflectors. This means that in the
presence of more than one reflector, the cross terms T2
and T3 between the direct wave and the single-reflected
waves produce the full set of single reflections.

The term T4 in expression (12) contains the prod-
uct of the single reflected waves. This means that for
more than one reflector this term contains double sum
>, 3T (-++). This double sum can be split into the
terms j' = j and the terms j # j':

Sorrae) = 3orEe )+ Y ) (56)
7.3’ J Jj#.3’
Analysis of the first term is identical to that of the term
T4 in section ??. This means that one can simply sum
expression (55) over all reflectors in the subsurface.
The last contribution that needs to be accounted
for is the contribution of the second sum in the right
hand side of equation (56) to the term T4. We consider
two reflectors at depths D; and Dy with reflection coef-
ficients r1 and r2, respectively. The derivation holds for
any pair of reflectors. The wave paths associated with
two different reflectors to term T4 is shown in figure 12.
The integrand in the term T4 of expression (12) now
contains a phase term expikL with

L=L{" 4+ - L - L7 (57)

where these lengths are defined in figure 12. As before,
the phase is stationary with respect to the y-coordinate
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Figure 12. Definition of the geometric variables for the con-
tribution of term 4 from waves reflected off two different re-
flectors.
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Figure 13. The stationary source points rg; and rgs for the
correlation of waves reflected from two different reflectors.
The corresponding wave paths to the receivers are shown
with solid and dashed lines, respectively.

when y = 0. The condition that the phase is stationary
with respect to x gives the condition

aL
0=22 —si _si
5 — b 04 —sinfp, (58)
where the angles 6 4 and 8 are defined in figure 12. This
follows from the derivation that led to the first term in
the right hand side of expression (35). The stationary
phase condition for this term therefore gives

04 =0g ) y=0. (59)

The stationary phase condition (59) gives two sta-
tionary source points rs; and rso at the surface that are
shown in figure 13. The wave paths shown in solid lines
indicates the cross correlation of the waves that propa-
gate along the following trajectories: rs; — reflector 1
— rp and rg; — reflector 2— r 4, while the wave paths
shown in dashed lines indicate the correlation of the
waves that propagate along the following trajectories:
rs2 — reflector 1 — r4 and rs2 — reflector 2 — rp.
These wave paths act as the direct and exchange scat-
tering events in quantum mechanics [Lévy-Leblond and
Balibur, 1990].
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Z=D1
r Y
Z=D2 X %I’ \\
N
N
N
[N
.
[N
[N
N

z=z N

m -

Tsm

Figure 14. The stationary source points rg; at the surface
z = 0 and rg,, at the surface z = z,, for the correlation
of waves reflected from two different reflectors. The corre-
sponding wave paths to the receivers are shown with solid
and dashed lines, respectively. The reflection coefficients for
the different reflected waves are indicated.

The difference in the travel time of the waves that
propagate along the two trajectories shown in the solid
lines is not equal to the time it takes to propagate be-
tween the receivers. The stationary phase contributions
that correspond to these cross terms are nonzero. This
implies that the correlation of the waves reflected off dif-
ferent reflectors give stationary phase contributions that
are proportional to r172. These contributions depend on
the product of reflection coefficients, hence the correla-
tion of the single-reflected waves from different reflectors
gives spurious arrivals that dynamically are equivalent
to peg-leg multiples that are reflected once from the free
surface and twice from reflectors in the subsurface, be-
cause the peg-leg surface multiples are also proportional
to rira.

This is a puzzling conclusion, since theory predicts
that the full Green’s function can be retrieved when the
sources are placed on a closed surface that surrounds
the region of interest [Wapenaar et al., 2004; Wapenaar
et al., 2005]. The key point is that in the derivation of
this paper the sources are placed at the upper surface
only. Let us consider what would happen if we also had
sources at a surface z = 2z, that is located below the
reflectors as shown in figure 14.

The reflection response and transmission response
of the subsurface are not independent [Claerbout, 1968;
Wapenaar et al., 2004]. This suggests that sources below
the reflectors are essential for the cancellation of the
cross-terms on singly-reflected waves, and we provide a
heuristic argument that this is indeed the case.

Consider the situation in figure 14 where sources
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are present at the surface z = 0 above the reflectors,
and at the surface 2z = 2z, below the reflectors. The
points rs) and rsm, on these surfaces are the stationary
source points for the cross-terms that correspond to the
path indicated with solid lines and dashed lines, respec-
tively. The waves excited at the surface z = 0 propagate
along the paths shown with solid lines, while the waves
excited below the reflectors propagate along the paths
shown in dashed lines. These wave paths coincide after
their first encounter with reflector 1, hence the contri-
bution of waves radiated from the stationary point; rs;
and rs;, to the cross-correlation is nonzero for the same
delay time. The contribution of the waves excited at rs;
is proportional to 7,72, while the contribution of the
waves excited at rs, is equal to —r;7r2, because the re-
flection coefficient of reflector 1 for a downward reflected
waves is —r; rather than ;. As shown in the examples
in the previous sections, it does not matter how far the
stationary point is removed from the surface. Therefore,
the stationary points rs; and rs,, give contributions to
the cross-correlation that are equal, but have opposite
sign. This means that the sum of the cross terms of the
cross-correlation of these two stationary points gives a
vanishing contribution.

In practical situations the sources are typically lo-
cated at the surface z = 0 only; this is for example the
case in the virtual-source experiment of Bakulin and
Calvert [2004]. In that case the cross terms of waves re-
flected from different reflectors give a non-zero contribu-
tion that is proportional to the product of reflection co-
efficients. These non-zero contributions are proportional
to the product of reflection coefficients. Therefore, vir-
tual source imaging introduces spurious multiples when
the sources cannot be placed on a closed surface.

9 DISCUSSION

Inserting expression (22), (47), (48) and (55) into equa-
tion (12) gives for one reflector the following total con-
tribution to the correlation:

Canlw) = M5 e {G(R) L (G(R)>.

2cosy —iw —iw

(60)

+7r
—iw —iw

G(R, .—}-Rz) 4y (G(Rl .+R2)>‘} .

In the presence of more reflectors, one can sum the last
three terms over the different reflectors. The correlation
is a weighted average of the causal and acausal Green'’s
function for the direct wave and the singly-reflected
waves. Note that for the direct wave, the acausal Green’s
function is weighted by 2. This is becausc the contribu-
tion of upgoing waves is v times the contribution to the
Green’s function from the downgoing waves. In practi-
cal applications of seismic interferometry in reflection
seismology, this contribution to the direct waves is not

relevant because the primary reflections rather than the
direct waves are used to image the subsurface.

Note that it is arbitrary how the cross-correlation
is defined. When the cross-correlation is defined by
Cap{w) = uj(w)up(w) instead of expression (6) the
roles of the causal and acausal Green’s functions are
interchanged. Since in practice one extracts the causal
Green’s function from the correlation, this arbitrariness
in the definition of the correlation does not matter.

The four terms in expression (60) correspond to the
waves that propagate along the four trajectories shown
in figure 15. The waves in the upper diagrams are the
direct waves that propagate in opposite directions be-
tween the two receivers. The waves in the bottom di-
agrams are the single-reflected waves that propagate
in opposite directions between the receivers. These di-
agrams provide an illustration of why the correlation
leads to the superposition of the causal and acausal
Green's function.

In the derivation of this paper we did not explicitly
account for the radiation pattern of the point source. It
follows from the figure 15 (and figure Al for a heteroge-
neous medium) that the paths that render the phase
of the correlation stationary correspond to rays that
propagate in the same direction to the two receivers.
This means that if the source does not radiate energy
isotropically, the two receivers are still illuminated with
the same source strength. Similarly, when the reflection
coefficient depends on the angle of incidence, the sta-
tionary phase approximation selects the reflection angle
at the angle of the reflected wave that propagates be-
tween the receivers A and B, as shown in figure 15.

When more reflectors are present, the contribution
of term 4 is proportional to r;r;;. When only sources
at the surface z = 0 are used, these cross terms lead
to spurious multiples that have the same strength as
peg-leg multiples. These spurious multiples are not re-
moved by algorithms for the removal of surface-related
multiples [Verschuur et al, 1992; van Borselen et al.,
1996; Dragoset and Jerievié, 1998] because kinemati-
cally they do not correspond to peg-leg multiples.

The analysis of this paper shows that the Green’s
function is retrieved from the stationary phase con-
tribution from the integration (summation) over all
sources. The sources far from the stationary point
give an oscillatory contribution that averages to zero.
When random noise is used as a source, these source
in general are spread out over the surface. When
man-made sources are used, however, one may limit
these sources to the stationary phase region.
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Figure 15. The wave paths that correspond to the stationary contributions to the correlations for the causal direct wave from
term 1 (upper left panel), the acausal direct wave from term 4 (upper right panel), the acausal reflected wave from term 2
(lower left panel), the causal reflected wave from term 3 (lower left panel).
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APPENDIX A: SEISMIC
INTERFEROMETRY OF THE DIRECT
WAVES IN THE RAY-GEOMETRIC
APPROXIMATION

In this appendix, we show that the arguments used in
this paper for a homogeneous medium can be general-
ized to heterogenous media where the velocity variations
are sufficiently smooth to justify the use of ray theory
for the Green’s function. In order to avoid complications
due to curved reflectors, we analyze only term T1. For
simplicity we assume that the density is constant. The
ray-geometric Green’s function that gives the response
at r; due to a point source in ra is given by expression
(15) of [Snieder and Chapman, 1998]:

1 [v exp (iwT12)
4 v2 \/le

In this expression vy = v(r;), 712 is the travel time
for the propagation from rs to r;, and Ji2 is the as-
sociated geometrical-spreading factor. Because of reci-
procity [Snieder and Chapman, 1998], this Green’s func-
tion is also equal to

G™*¥(r1,r2) = — (A1)

1 [vz exp (iwT21)

‘G V1 \/‘]21 ’

Note that the travel time is reciprocal:
Ti2 = T2l , (A3)

Gmy(l‘1,r2) = — (A2)
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Figure A1l. The stationary phase condition for term 1 for a
heterogeneous reference medium.

but the geometrical spreading is not [Snieder and Chap-
man, 1998].

Inserting the Green’s function (A2) in term T1 of
expression (12) gives

1 vs exp(iw(Tsa — Tsg))
T1= dady
(4m)* J vavs VJsadse Y
(A4)
where vs = u(rs) = v(z,9,0), va = v(ra), and

vp = v(rg). By analogy with the situation shown in
figure 3 the stationary points in this integral correspond
to the rays that propagate from the source S through
receiver B to receiver A as shown in figure Al. By virtue
of reciprocity, these stationary points can be found by
tracing rays from receiver A to receiver B and by con-
tinuing these rays to the surface z = 0. In general there
may be more than one stationary point. In the following
we analyze the contribution of one stationary point, but
in the end one needs to sum over all stationary points. It
may happen, in fact, that the region of stationary phase
does not consist of a finite number of points, but of a
line or surface area. In that case, point A is a caustic
and ray theory breaks down [Berry and Upstill, 1980].
Let the travel time along the ray from A to B to
S be given by 7¢. The travel time for an adjacent ray
follows from the second-order Taylor expansion in the
ray-centered coordinates ¢; and g2 that measure the per-
pendicular distance to the ray in two orthogonal direc-
tions. According to expression (50) of Cerveny and Hron
[1980] the travel time along an adjacent ray is given by

1
r=to+3a-M-q, (A5)

with M a matrix of second-order derivatives of the travel
time. In the following it is convenient to replace the in-
tegration over the surface 2 = 0 in expression (A4) by
an integration over the ray-centered coordinates q; and
q2. The orientation of these coordinate axes is ambigu-
ous, since any choice of axes perpendicular to the ray
is admissible. In the following we choose the gz-axis to
be aligned with the plane z = 0, as indicated in figure
A2. The other coordinate, g1, then measures the dis-
tance to the ray in the orthogonal direction. As shown
in figure A2, the associated ¢;-axis makes an angle 9
with the horizontal that is equal to the angle between
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Figure A2. Definition of the ray-centered coordinates g
and g2. The g2-axis lies in the z, y-plane and is perpendicular
to the ray. The angle v is the angle between the ray direction
and the vertical.

the ray and the vertical. An element dgs corresponds
to an element dy’ in the x,y-plane, while an element
dq, corresponds to an element dq; = cosdxz’. We use
primed coordinates since the ray direction is not neces-
sarily aligned with the original z-axis. This means that
a surface element in the surface integral can be related
to a surface element dqidge using

1
cos Y

This expression can be used to evaluate integral
(A4) in the stationary phase approximation. With Tay-
lor expansion (A5) for the rays from A to S and from B
to S, this integral in the stationary phase approximation
is given by

dzdy = dx'dy’ = dqidgs . (A6)

exp (iw (Tsa — 7sB))
VJsaJdss

1 vs

T1 = 5
(47)* cosyp v/vavs

x [ exp (%q (Msa —Msg) - CI> dqidgs .
(AT)
The integration over the g-variables gives [Bleistein,
1984]

71— 1 vs exp(iw(Tsa — 7sB))
8w cos Y \/vavs VJsadsge
exp (isgn 7 /4)

V/ldet (Msa — Msg)| '

(A8)
where sgn is the number of positive eigenvalues of
Msa — Mgp minus the number of negative eigenval-
ues. Using the same reasoning as in the derivation of
expression (6.21) of [Snieder and Lomax, 1996], T1 is
equal to

_ i vs exp (iw (Tsa — TsB))
8mwcosy \/vaUB \/JsaJspdet (Msa — Msp) '
(A9)

Since the points ra, rg, and rg are located on the

T1

same ray,
TSA—TSB =TAB , (A10)

this is the travel time along the ray that joins the re-
ceivers A and B. This means that T'1 is kinematically
identical to the Green’s function that accounts for the
wave propagation between the receivers A and B. In the
following we show that expression (A9) also accounts
dynamically for this Green’s function by using a deriva-
tion similar to that presented in [Snieder and Lomax,
1996).

According to expression (68) of Cerveny and Hron
[1980], the matrix M is related to the curvature matrix
of the wavefronts by the relation

M = %K . (Al1)
Since M is a 2 x 2 matrix this, together with expression
(A10), implies that

i v exp (iwT aB)

8mwcosy \/vavs \/JSAJSB det (Ksa — Ksg) '
(A12)
Following equation (76) of Cerveny and Hron [1980], the
curvature matrix satisfies the following matrix Ricatti
equation:
dKsa 1dv

1
s " s Ksa— K& — ;V ) (A13)

where v = vs, and the matrix V is defined by Vi; =
8%v/8¢;0q;, and where s is the distance along the ray
from ra through rp to the surface, as indicated in fig-
ure Al. Using this expression, and the corresponding
expression for Ksp it follows that the difference satis-
fies the following differential equation

d(Ksa—Ksp) _1ldv

1

(Ksa — KSB)‘_(KgA - K?sa) .

ds vds
(A14)
From this it follows after a lengthy calculation that
d 2 dv
Z; det (KSA — ng) = ;a det (KSA - KSB)

—(tr Ksa +tr Ksp)det (Ksa — Ksg) ,
(A15)
where tr denotes the trace. According to expression (70)
of Snieder and Chapman [1998]

trK ===, (A16)

Using this expression to eliminate the trace of Ksa and
Ksp from expression (A15), the result can be integrated
to give

d {JSAJSB det (I:SA —KSB)} =0, (A17)
ds Vs
or
JsaJsp det (§<SA —Ksb) = const. (A18)

Vs
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This expression holds for any point S along the ray in
figure Al. The constant can be found by evaluating this
expression for a point S along the ray at a small distance
£ beyond the receiver B, as shown in figure A1, and by
letting this distance go to zero. At a small distance from
receiver B, the medium can be considered to be locally
homogeneous, and the curvature matrix attains its value
for a homogeneous medium:

1/¢ ©

0 e | - (A19)
In the limit & — O these terms dominate the
contributions from Ksa in expression (Al8) and
det (Ksa — Ksp) — 1/£% as € — 0. In that limit the ge-
ometrical spreading is given by Jsp = £2, Jsa — Jpa,
and vs — vp. Inserting these results in expression (A12)
shows that the constant in that expression is given by
const = Jpa/vp. Inserting this in expression (A18) fi-
nally gives

Ksp =

2
JsaJspdet (Ksa — Ksgp) = z—fJBA ) (A20)
B

or

VIsadsp det (Ksa — Ksp) = :t:—Z\/JBA . (A21)

At this point, the sign in the right hand side is arbitrary.
This last result can be used to eliminate

vdet (Ksa — Ksg) from expression (A12), giving
Tl = +ivs vB exp (iwTap)

T 8nwcosy \ va  VJga

Following expression (45) of Snieder and Chapman
[1998], the reciprocity property of the geometrical
spreading is given by Jpa = (vB/va)? Jap; hence

(A22)

_ ivs U_Aexp(iw'r,\g)
" 8rwcosy \ vB VJaB

A comparison with the ray-geometric Green’s function
(A1) gives

B!

(A23)

ray
T1 FUs X ¢ (rA’rB).

~ 2cos P —tw (A24)

After multiplying with the terms n|S(w)|?, this result
can directly be compared with the corresponding ex-
pression (22) for a homogeneous medium. This implies
that the lower sign in expression (A21) must be used.
After taking the source spectrum and the scatterer den-
sity into account, this finally gives equation (24).
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ABSTRACT

We compare two approaches for deriving the fact that the Green'’s function in
an arbitrary inhomogeneous open system can be obtained by cross-correlating
recordings of the wave field at two positions. One approach is based on physical
arguments, exploiting the principle of time reversal invariance of the acoustic
wave equation. The other approach is based on Rayleigh’s reciprocity theorem.
Using a unified notation for both approaches, we discuss their similarities and

differences.

Key words: seismic interferometry

1 INTRODUCTION

Since the work of Weaver and Lobkis (2001; 2001), many
researchers have shown theoretically and experimentally
that the cross-correlation of the recordings of a diffuse
wave field at two receiver positions yields the Green’s
function between these positions. In most cases it is
assumed that the diffuse wave field consists of normal
modes (with uncorrelated amplitudes) in a closed sys-
tem. Much less attention has been paid to the theory of
Green's function retrieval in arbitrary inhomogeneous
open systems. Nevertheless, the first result stems from
1968, albeit for one-dimensional media, when Claerbout
(1968) showed that the seismic reflection response of
a horizontally layered earth can be synthesized from
the autocorrelation of its transmission response. Re-
cently we generalized this to 3-D arbitrary inhomoge-
neous media (Wapenaar et al., 2002; Wapenaar, 2003;
Wapenaar, 2004). Using reciprocity theorems of the cor-
relation type, we showed in those papers that the cross-
correlation of transmission responses observed at the
earth’s free surface, due to uncorrelated noise sources
in the subsurface, yields the full reflection response (i.e.,
the ballistic wave and the coda) of the 3-D inhomoge-
neous subsurface. Weaver and Lobkis (2004) followed
a similar approach for a configuration in which the 3-
D inhomogeneous medium is surrounded by uncorre-
lated sources. Derode et al. (2003a; 2003b) derived ex-
pressions for Green’s function retrieval in open systems
using physical arguments, exploiting the principle of

time reversal invariance of the acoustic wave equation.
Their approach can be seen as the ‘physical counter-
part’ of our derivations based on reciprocity. In this let-
ter we compare the physical arguments of Derode et al.
(2003a; 2003b) with our approach based on Rayleigh’s
reciprocity theorem (Wapenaar et al., 2002; Wapenaar,
2003; Wapenaar, 2004). Moreover, we indicate the links
with ‘reverse time migration’ and ‘frequency domain mi-
gration’, respectively. We use a unified notation, which
facilitates the comparison of both approaches.

2 PHYSICAL ARGUMENTS

In this section we summarize the physical arguments of
Derode et al. (2003a; 2003b) for deriving expressions for
Green’s function retrieval. Consider a lossless arbitrary
inhomogeneous acoustic medium in a homogeneous em-
bedding. In this configuration we define two points with
coordinate vectors x4 and xp. Our aim is to show that
the acoustic response at xg due to an impulsive source
at x4 [i.e., the Green’s function G(xB,Xa,)] can be ob-
tained by cross-correlating passive measurements of the
wave fields at x4 and xp due to sources on a surface S
in the homogeneous embedding. The derivation starts
by considering another physical experiment, namely an
impulsive source at x4 and receivers at x on S. The
response at one particular point x on S is denoted by
G(x,%xa,t). Imagine that we record this response for
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all x on S, revert the time axis, and feed these time-
reverted functions G(x,xa, —t) to sources at all x on
S. Huygens’ principle states that the wave field at any
point x’ in S due to these sources on S is then given by

u(x',t) (xj{ G(x',x,t) *G(x,x4,—t)d’x, (1)
o L S
‘propagator’ ‘source’

where * denotes convolution and o« ‘proportional to’.
According to this equation, G(x’,x,t) propagates the
source function G(x,x4,—t) from x to x" and the re-
sult is integrated over all sources on S. Due to the in-
variance of the acoustic wave equation for time-reversal,
the wave field u(x’,t) focusses for x’ = x4 at t = 0.
McMechan (1983) exploited this property in a seismic
imaging method which has become known as reverse
time migration. Derode et al. (2003a; 2003b) give a new
interpretation to equation (1). Since u(x’,t) focusses for
x' = x4 at t = 0, the wave field u(x’,t) for arbitrary
x" and ¢ can be seen as the response of a virtual source
at x4 and ¢ = 0. This virtual source response, however,
consists of a causal and an anti-causal part, according
to

u(x',t) = G(x',xa,t) + G(X', xa, —1). (2)

This is explained as follows: the wave field generated
by the anti-causal sources on S first propagates to all
x' where it gives an anti-causal contribution, next it fo-
cusses in X4 at £ = 0 and finally it propagates again
to all x" giving the causal contribution. The propaga-
tion paths from x’ to x4 are the same as those from
Xa to X', but are travelled in opposite direction. Com-
bining equations (1) and (2), applying source-receiver
reciprocity to G(x,Xa, —t) in equation (1) and setting
x' = xp yields

G(xp,x4,t) + G(xB,Xa, ~t) x 3)
}{ G(xB,%,t) * G(xa,x, —t)d*x.
s

The right-hand side of equation (3) can be interpreted
as the integral of cross-correlations of observations of
wave fields at xp and x 4, respectively, due to impulsive
sources at x on S; the integration takes place along the
source coordinate x. The left-hand side is interpreted
as the superposition of the response at xp due to an
impulsive source at x4 and its time-reversed version.
Since the Green’s function G(x g, x 4,t) is causal, it can
be obtained from the left-hand side of equation (3) by
taking the causal part. The reconstructed Green’s func-
tion contains the ballistic wave as well as the coda due
to multiple scattering in the inhomogeneous medium.

3 RAYLEIGH’S RECIPROCITY THEOREM

In this section we summarize our derivation based on
Rayleigh’s reciprocity theorem (Wapenaar et al., 2002;

Wapenaar, 2003; Wapenaar, 2004). This reciprocity the-
orem relates two independent acoustic states in one and
the same domain (De Hoop, 1988; Fokkema and van den
Berg, 1993). Consider an acoustic wave field, character-
ized by the acoustic pressure p(x,t) and the particle
velocity vi(x,t). We define the temporal Fourier trans-
form of a space- and time-dependent quantity p(x, t) as
p(x,w) = [exp(—jwt)p(x,t)dt, where j is the imagi-
nary unit and w the angular frequency. In the space-
frequency domain the acoustic pressure and particle
velocity in a lossless arbitrary inhomogeneous acoustic
medium obey the equation of motion jwp?; + 8;p = 0
and the stress-strain relation jwkp + 8;0; = §, where &;
is the partial derivative in the z;-direction (Einstein’s
summation convention applies for repeated lowercase
subscripts), p(x) the mass density of the medium, x(x)
its compressibility and §(x,w) a source distribution in
terms of volume injection rate density. We consider the
‘interaction quantity’ 9;{padi g ~ 0:,app}, where sub-
scripts A and B are used to distinguish two indepen-
dent states. Rayleigh’s reciprocity theorem is obtained
by substituting the equation of motion and the stress-
strain relation for states A and B into the interaction
quantity, integrating the result over a spatial domain
V enclosed by S with outward pointing normal vector
n = (n1,n2,n3) and applying the theorem of Gauss.
This gives

[ {pato—dupa)a’x = § (ain—oapainid®. (4
1% S

Since the medium is lossless, we can apply the princi-
ple of time-reversal invariance (Bojarksi, 1983). In the
frequency domain time-reversal is replaced by complex
conjugation. Hence, when p and ¥; are a solution of the
equation of motion and the stress-strain relation with
source distribution §, then p* and —9; obey the same
equations with source distribution —¢* (the asterisk de-
notes complex conjugation). Making these substitutions
for state A we obtain

/ (Pris+dapo}dix = f (Biabip 407 aps}med?x. (5)
v S

Next we choose impulsive point sources in both states,
according to §a(x,w) = §(x—x4) and §p(x,w) = 6(x—
x8), with x4 and xp both in V. The wave field in state
A can thus be expressed in terms of a Green’s function,
according to

pAA(x$w) = G(X,XA,UJ), (6)

Bi,a(%,w) = —(jwp(x)) ' 0:G(x, x4, W), (7)
where é(x, XA, w) obeys the wave equation
pOi(p~10:G) + (w? /)G = —jwpd(x — xa), (8)

Lo
with propagation velocity e(x) = {x(x)p(x)}"2; simi-
lar expressions hold for the wave field in state B. Sub-
stituting these expressions into equation (5) and using
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source-receiver reciprocity of the Green’s functions gives

2R{G(xB,xa,w)} = (9)

ﬁﬁ(&é(xa,x,w)é'(x/"x"")

—G(xB,x,w)d:G" (xa,X, w))nid2x,

where R denotes the real part. Note that the left-
hand side is the Fourier transform of G(xg,xa,t) +
G(xB,xa, —t); the products 8;G G* etc. in the right-
hand side correspond to cross-correlations in the time
domain. Expressions like the right-hand side of this
equation have been used by numerous researchers (in-
cluding the authors) for seismic migration in the fre-
quency domain. Esmersoy and Oristaglio (1988) ex-
plained the link with the reverse time migration method,
mentioned in the previous section. What is new (com-
pared with migration) is that equation (9) is formu-
lated in such a way that it gives an exact representa-
tion of the Green’s function G(xp,Xa,w) in terms of
cross-correlations of observed wave fields at xp and xa.
Note that, unlike in the previous section, we have not
assumed that the medium outside surface S is homo-
geneous. The terms G and 8;G under the integral rep-
resent responses of monopole and dipole sources at x
on S; the combination of the two correlation products
under the integral ensures that waves propagating out-
ward from the sources on S do not interact with those
propagating inward and vice versa. When a part of S is
a free surface on which the acoustic pressure vanishes,
then the surface integral in equation (5) and hence in
equation (9) need only be evaluated over the remain-
ing part of S. Other modifications of equation (9), in-
cluding the elastodynamic generalization, are discussed
in (Wapenaar et al., 2002; Wapenaar, 2003; Wapenaar,
2004). Van Manen and Robertsson (2005) propose an ef-
ficient modelling scheme, based on an expression similar
to equation (9).

Next we show with subsequent approximations how
equation (9) simplifies to equation (3). First we assume
that the medium outside S is homogeneous, with con-
stant propagation velocity ¢ and mass density p. In the
high frequency regime, the derivatives of the Green’s
functions can be approximated by multiplying each con-
stituent (direct wave, scattered wave etc.) by —j% cosa,
where « is the angle between the pertinent ray and the
normal on S. The main contributions to the integral in
equation (9) come from stationary points on S (Snieder,
2004; Schuster et al., 2004; Wapenaar et al., 2004). At
those points the ray angles for both Green’s functions
are identical (see also the example in the next section).
This implies that the contributions of the two terms un-
der the integral in equation (9) are approximately equal
(but opposite in sign), hence

2R{G(xB,xa,w)} = (10)
;2— 8:G(xp,x,w)G" (x4, X, w)n:d?x.
Jwp Jjs

If we assume that S is a sphere with large enough radius
then all rays are normal to S (i.e., a =~ 0), hence

2R{C(xB,xa,w)} = p%:?{ G(xB,x,w)G" (x4, x, w)d’x.
s
(11)

Transforming both sides of this equation back to the
time domain yields equation (3) (i.e., the result of
Derode et al. {2003a; 2003b)), with proportionality fac-
tor 2/pc. Finally we consider a variant of our deriva-
tion. The Green’s function introduced in equation (8)
is the response of an impulsive point source of volume
injection rate. Let us define a new Green’s function Go
obeying the same wave equation, but with the source
in the right-hand side replaced by —pd(x — xa), hence
Go = lwé Following the same derivation as above, we
obtain instead of equation (11)

2i3{Go(x5,%Xa,w)} = (12)
_2](0' % éo(XB, X, w)éa(xA) X, w)d2x1
S

pc
where ' denotes the imaginary part. This expression
resembles the results of Weaver and Lobkis (Weaver and
Lobkis, 2004) and Snieder (Snieder, 2004), who retrieve
the two-sided Green’s function from the time-derivative
of cross-correlations.

Note that for the derivation of each of the expres-
sions (3) and (9) — (12), we assumed that impulsive
point sources were placed on the surface S. This is the
approach taken e.g. by Bakulin and Calvert (2004) in
their experiment on virtual source imaging. Our deriva-
tion also holds for uncorrelated noise sources on S
whose source-time function satisfies s(x,t) * s(x’, —t) =
§(x—x")C(t), with C(t) the autocorrelation of the noise.
When the noise is distributed over the surface, the cross-
correlation of the observations at x4 and xp leads to a
double surface integral. The deita function reduces this
to the single surface integral in the theory presented
here (Wapenaar et al., 2002; Wapenaar, 2003; Derode,
et al., 2003b; Wapenaar, 2004; Weaver and Lobkis, 2004;
Snieder, 2004). A further discussion is beyond the scope
of this letter.

4 NUMERICAL EXAMPLE

We illustrate equation (10) with a simple example.
We consider a 2-D configuration with a single diffrac-
tor at (z1,z3) = (0,600)m in a homogeneous medium
with propagation velocity ¢ = 2000 m/s, see Figure 1,
in which C denotes the diffractor. Further, we define
x4 = (—500,100)m and x5 = (500, 100)m, denoted by
A and B in Figure 1. The surface S is a circle with
its center at the origin and a radius of 800 m. The
solid arrows in Figure 1 denote the Green’s function
G(xB,Xa,t). We model the Green’s functions in equa-~
tion (10) with the Born approximation, which means
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Figure 1. Single diffractor (C) in a homogeneous model.
The receivers are at A and B. The integration is carried out
along the sources on the surface S. The main contributions
come from the stationary points a-d. The contributions from
stationary points e and f cancel.

I
=

Figure 2. (a) Time domain representation of the integrand
of equation (10). (b) The sum of all traces in (a).

that we consider direct waves and first order scattering
only. To be consistent with the Born approximation, in
the cross-correlations we also consider only the zeroth
and first order terms. Figure 2a shows the time-domain
representation of the integrand of equation (10) (con-
volved with a wavelet with a central frequency of 50 Hz).
Each trace corresponds to a fixed source position x on S;
the source position in polar coordinates is (¢, = 800).
The sum of all these traces (multiplied by rd¢) is shown
in Figure 2b. This result accurately matches the di-
rectly modelled wave field G(xg,xa,t) + G(xB,xa, ~t)
(convolved with a wavelet), see Figure 3. The events
labelled ‘a’ and ‘¢’ in Figure 2 are the direct and scat-
tered arrivals; the events ‘b’ and ‘d’ are the correspond-
ing anti-causal arrivals. This figure clearly shows that
the main contribution to these events come from Fres-

Figure 3. Zoomed-in version of event ¢ in Figure 2b. The
solid line is the directly modelled wave field. The circles rep-
resent the integration result of equation (10) (i.e., the sum
of the traces in Figure 2a). The dashed line represents the
integration result of equation (11).

nel zones around the stationary points of the integrand
(Snieder, 2004; Schuster et al., 2004; Wapenaar et al.,
2004). The sources at these stationary points are marked
in Figure 1 with the same labels. We discuss event ‘¢’ in
more detail. The path ‘cCB’ in Figure 1 represents the
scattered wave in G(xp, x,t), for x at the stationary
point ‘c’. The path ‘cA’ represents the direct wave in
G(x4,x,t). By correlating these two waves, the travel-
time along the path ‘cA’ is subtracted from that along
the path ‘cCB’, leaving the traveltime along the path
‘ACB?’, which corresponds to the traveltime of the scat-
tered wave in G(xp, X 4,t). This correlation result is in-
dicated by ‘¢’ in Figure 2a and the integral over the
Fresnel zone around this point is event ‘c’ in Figure 2b.
The other events in Figure 2b can be explained in a
similar way. Finally, note that there are two more sta-
tionary points, indicated by ‘e’ and ‘f’ in Figures 1 and
2a, of which the contributions cancel each other.

A similar numerical evaluation of equation (11)
yields the result represented by the dashed curve in
Figure 3. We observe that the traveltime of the scat-
tered wave is accurately captured by this equation, but
the amplitude is slightly overestimated. By increasing
the radius of S to 10000 m we obtained a result with
equation (11) that again accurately matches the directly
modelled wave field (not shown).

5 CONCLUSIONS

In the literature several derivations have been proposed
for Green’s function retrieval from cross-correlations.
We have shown that the derivation by Derode et al.
(Derode, et al., 2003a; Derode, et al., 2003b), which
is based on physical arguments, leads essentially to
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the same result as our derivation based on Rayleigh’s
reciprocity theorem (Wapenaar et al., 2002; Wape-
naar, 2003; Wapenaar, 2004). Moreover, using another
definition of the Green’s function in Rayleigh’s reci-
procity theorem, we obtained a representation in terms
of the time-derivative of cross-correlations, similar as
in Weaver and Lobkis (Weaver and Lobkis, 2004) and
Snieder (Snieder, 2004).
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ABSTRACT

The motion of a building depends on the excitation, the coupling of the building
to the ground, and the mechanical properties of the building. We separate the
building response from the excitation and the ground coupling by deconvolving
the motion recorded at different levels in the building, and apply this to record-
ings of the motion in the Robert A. Millikan Library in Pasadena, California.
The waveforms obtained from deconvolution with the motion in the top floor
show a superposition of one upgoing and one downgoing wave. The waveforms
obtained by deconvolution with the motion in the basement can be formulated
either as a sum of upgoing and downgoing waves, or as a sum over normal modes.
Since these deconvolved waves for late time have a monochromatic character,
they are most easily analyzed with normal-mode theory. For this building we
estimate a shear velocity ¢ = 322 m/s and a quality factor @ = 20. These values
explain both the propagating waves as well as the normal modes. We show for
this application of seismic interferometry that deconvolution of waveforms is
superior to correlation.

Key words: seismic interferometry, building response

1 INTRODUCTION

The response of a building to natural or man-made
shaking is largely determined by the velocity of shear
waves and the attenuation of the building. The shear
velocity, together with the geometry of the building,
controls the resonant frequencies of the building. The
attenuation determines the rate of energy dissipation in
the building, which in turn controls the motion of the
building for a given excitation.

A complicating factor in the response of a building
to shaking is that this response depends both on the
properties of the building, as well as on the nature of
the coupling to the subsurface (Safak, 1995). It has been
documented that the resonant frequencies of a building
can change after heavy precipitation, that changes the
coupling between the building and the ground with soil-
moisture (Clinton, 2004). In order to fully understand
the response of the building, one needs to unravel the

properties of the building itself from the coupling of the
building to the ground.

The combined response of a building and the
ground coupling could be retrieved from an impulsive
loading of the building. In general, such an impulsive
load cannot be applied for practical reasons, and even
if it could, the response of the building to this excita-
tion depends on the properties of the building itself, as
well as on the ground coupling. This work is aimed at
retrieving the building response from the recording of
incoherent shaking of the building, and to unravel the
properties of the building itself from the coupling of the
building to the subsurface.

We analyze this problem using a technique referred
to as seismic interferometry. This technique is based on
the correlation of wave recorded at different receivers.
When the excitation of the waves is evenly distributed in
space, or among the normal modes of the system, this
correlation can be shown to lead to the Green’s func-
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Figure 1. Vertical cross section of the Millikan Library in
the north-south direction.

tion that accounts for the wave propagation between
receivers (Lobkis & Weaver, 2001; Derode et al., 2003;
Snieder, 2004a; Wapenaar, 2004; Snieder, 2005; Wape-
naar et al., 2005). This technique is valuable as it makes
possible the study of the waves that propagate between
receivers, without needing a source at one of the re-
ceiver locations. It does not matter whether the waves
recorded at the receivers are excited by coherent sources
or incoherent sources. Here we apply this technique to
extract the building response of the Robert A. Millikan
Library in Pasadena, California. In contrast to earlier
work on seismic interferometry we base our analysis on
the deconvolution of the recorded waves at different lo-
cations in the building rather than on the correlations.

In section 2 we give details on the Robert A. Mil-
likan Library and the employed recordings of the motion
of the building. We describe the deconvolution that we
use in section 3. In section 4 we present a simple ana-
lytical model of the motion of the building that is based
on interfering upgoing and downgoing waves. We show
that the deconvolution gives a response that is inde-
pendent of the excitation and that it does not depend
on the coupling of the building with the ground. We
show that these deconvolved waves can be interpreted
either as propagating waves or as normal modes. We
use the deconvolved waves in section 5 to determine the
shear velocity and the attenuation of the building. In
appendix A we use integration in the complex plane to
show how the normal modes of the building can be ob-
tained from the deconvolved waveforms.

2 THE MILLIKAN LIBRARY AND THE
RECORDED WAVES

The Robert A. Millikan Library is a 10-story reinforced
concrete building located on the campus of the Cali-
fornia Institute of Technology in Pasadena, California.
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Figure 2. Floor plan of the Millikan Library. On the floors
1-9 seismometers measure the motion in two horizontal di-
rections on the west side of the building, and the north-south
motion on the east side, as indicated by the arrows.

Completed in 1967, the building is 21 x 22.9 m in plan,
and 43.9 m high from the ground level. The north-south
elevation of the building, and the plans for a typical
floor and the foundation are given in figures 1 and 2, re-
spectively. There is a 4.3 m deep basement level below
the ground. The structural system includes moment-
resisting frames and shear walls. The shear walls at the
center of the building, form the elevator shaft and carry
lateral loads in the north-south direction, whereas the
curved shear walls at the north and south ends carry
lateral loads in the east-west direction. The foundation
system is composed of a central pad 32 feet wide by 4
feet deep that extends between the east and west curved
shear walls. In addition, 10 feet wide and 2 feet deep con-
tinuous foundation beams run in the east-west direction
beneath the columns at the north and south ends of
the building. The alluvium under the foundation con-
sists of medium to dense sands mixed with gravels to
the bedrock at a distance of about 275 m. The water
table is about 11 m deep (Kuroiwa, 1967; Luco et al.,
1987). More on the structural system can be found in
refs. (Kuroiwa, 1967; Foutch et al., 1975; Foutch, 1976;
Luco, 1986; Clinton, 2004).

The building was first instrumented in 1968 with 2
permanent tri-axial accelerometers, located on the roof
and the basement. A 10-channel strong motion array
was added to the instrumentation in 1979, with channels
on the basement, the 6th floor, and the roof. After the
1994 Northridge, California, earthquake, the instrumen-
tation was upgraded to a 36-channel, triggered system
with three horizontals at each floor plus three verticals
in the basement; the locations and directions of these
are shown by the arrows in figure 2. In 2000, the system



Building response from seismic interferometry 87

i
%-

- N [W | OO N | [

(o]

r IinteMaH interval 2

0 5 10 15 20 25 30 35 40
time (s)

Figure 3. The north-south component of the motion in the
west side of the Millikan Library recorded in the basement
(B) and the floors indicated by the numbers next to the dif-
ferent traces.

was converted to a 19-bit real-time system recording
continuously at 200 Hz. Also, a separate 24-bit tri-axial
accelerometer was installed on the 9th floor recording
continuously as a CISN (formerly TriNet) station MIK.
Figure 2 shows the current sensor layout in the building.

Since its construction, the building has been a field
laboratory for researchers in earthquake engineering. A
synchronized shaker was permanently installed on the
roof of the building in the early 1970’s (Hudson, 1962),
which is still operational and used for forced vibration
testing experiments. A large number of studies on the
dynamic behavior of the building have been completed
by using vibration data from shaker experiments and
real earthquakes (Kuroiwa, 1967; Trifunac, 1972; Ud-
wadia & Trifunac, 1974; Luco, 1986; Luco et al., 1987;
Foutch et al., 1975; Foutch, 1976; Foutch & Jennings,
1978; Clinton, 2004).

The recorded motion after an earthquake is shown
in figure 3. The P-waves generated by the earthquake
arrive before t=9 s, these wave couple weakly to the hor-
izontal motion in the building. The S-wave that arrives
around t=11 s is the strongest phase. The surface waves
that arrive later excite a resonance in the building with
an amplitude that increases with the floor level.

3 THE DECONVOLVED WAVEFORMS

In this study we extract the building response by decon-
volving the waves recorded at all floors either with the
waveform recorded in the basement, or with the signal
recorded at the top floor of the building. The deconvo-
lution of two signals u; (w) and u3(w) is in the frequency

L L L " 1 L | M
-1 0 1 2 3 4 5
time (s)

Figure 4. The waveforms of figure 3 at the different floors
after deconvolution with the waves recorded in the basement.

domain given by
D(w) = wa(w)/uz(w) . (1)

This expression is unstable near the notches in the spec-
trum of u; because the denominator goes to zero. In or-
der to stabilize the deconvolution we used the following
estimator for the deconvolution instead:

_ m(w)ui(w)

D(w) - |u2(w)|2 +e ) (2)
where the asterisk denotes the complex conjugation.
When ¢ = 0 this expression reduces to expression (1).
In this study the parameter ¢ was set to 10% of the
average spectral power.

The waveforms deconvolved with the signal
recorded in the basement are shown in figure 4. The
deconvolved wave in the basement is a single spike be-
cause a signal deconvolved with itself is a delta function.
The deconvolved waves at all the floors are causal, i.e.
they vanish for ¢ < 0. The first-onset of the deconvolved
waves is a wave that propagates upward in the building.
A reflection of this wave by the top of the building is
visible as the second peak in the waves that propagates
downward in the building. The early part of the decon-
volved waves consist of a superposition of upward and
downward propagating waves. Since these waves inter-
fere, it is difficult to identify the individual upward and
downward propagating waves. The later part of the de-
convolved waves consists of the resonance of the build-
ing. This resonance grows in amplitude with the floor
level, and is fairly monochromatic.

The waveforms deconvolved with the signal
recorded in the basement are fairly complex. In contrast,
as shown in figure 5, the waveforms deconvolved with
the signal recorded at the top floor are much simpler.
These deconvolved waves are acausal and consist of the
superposition of one upgoing wave and one downgoing
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Figure 5. The waveforms of figure 3 at the different floors
after deconvolution with the waves recorded at the top floor.

wave. There is little indication that these upgoing and
downgoing waves are reflected within the building. The
reflection coefficients by the floors within the building
(Safak, 1999) therefore must be small. The reflection
coefficient for elastic waves by a floor in the building
depends on the product of the frequency and the mass
of the floor (Doyle, 1989; Safak, 1999). This means that
the absence of waves reflected off the floors in the build-
ing may be due to the relatively low frequencies in the
waveforms used in this study. In addition, the domi-
nant wavelength of the employed waves spans several
floors, this further suppresses reflections generated by
the individual floors because a medium with small-scale
variations can be treated as an effective medium that be-
haves like a homogeneous medium with properties that
are determined by the background velocity and the em-
bedded scatterers (Frisch, 1968; Keller & Karal, 1966;
Tatarskii & Gertsenshteini, 1963).

The deconvolved waveforms in the figures 4 and 5
are computed from the full waveforms shown in figure 3.
It is, however, not necessary to use the full waveforms.
We have also deconvolved the signals using the time in-
tervals 1 and 2 as shown in figure 3. Interval 1 straddles
the S-wave arrival and is 4 s long, while interval 2 con-
tains the surface wave arrivals and has a duration of 25
s. Both intervals were padded with zeroes to a duration
of 40 s. The signals deconvolved with the waves recorded
in the basement for each of the intervals are shown in
figure 6. The thick line denotes the deconvolved wave-
forms from interval 1 while the thin line denotes the
deconvolved waves from interval 2.

The similarity of the waves deconvolved over differ-
ent time intervals is striking. Note how the deconvolved
waves from interval 1 display the resonance of the build-
ing, despite the fact that these waves are based on the
impulsive S-wave arrival only. The broadband nature of

time (s)

Figure 6. The waveforms of figure 3 at the different floors
after deconvolution with the waves recorded in the basement
using only part of the data of figure 3. The deconvolved waves
shown in thick lines are obtained by using only the data in
interval 1 of figure 3, while the deconvolved waves shown in
the thin lines are computed from the data in interval 2 of
figure 3.
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Figure 7. The waveforms of figure 3 at the different floors
after deconvolution with the waves recorded in the top floor
using only part of the data of figure 3. The deconvolved waves
shown in thick lines are obtained by using only the data in
interval 1 of figure 3, while the deconvolved waves shown in
the thin lines are computed from the data in interval 2 of
figure 3.

the S-wave ensures that sufficient low-frequency infor-
mation is present to reproduce the resonance. Note also
that the deconvolved waves from interval 2 are based on
the surface wave signal. Nevertheless, these deconvolved
waves display the upward and downward propagating
waves early in the deconvolved signal.
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The recorded waves in interval 2 are dominated by low-frequency surface waves. These waves visually mask the
higher frequency components in interval 2. The deconvolution equalizes the frequency content and therefore brings
out the high-frequency propagating waves in figure 6. Interval 1 is shorter than interval 2, and one might think that
interval 1 therefore contains less information than interval 2. Because of the impulsive character of the S-wave, the
waves in interval 1 have a larger bandwidth than the waves in interval 2. This larger bandwidth helps stabilize the
deconvolution. The similarity of the deconvolved waves for the intervals 1 and 2 shown in the the figures 6 and 7
implies that for the level of shaking used in this study the building responds linearly.

The waves deconvolved with the signal recorded at the top floor for interval 1 and interval 2 is shown in figure 7
with a thick and thin line, respectively. As in the preceding figure, these deconvolved waves are similar. This implies
that the S-wave and the surface wave both contain information about the upward and downward propagating waves
in the building. The deconvolution defined in equation (2) and the choice of ¢ are not optimized. A more careful
choice of the deconvolution algorithm could make the deconvolved waves from the intervals 1 and 2 even more similar.

The deconvolved waves behave in the same way as a hologram. A part of a hologram can be used to reconstruct
the image, albeit with a degraded resolution compared to the image of the full hologram (Lauterborn et al., 1995).
As shown in the figures 6 and 7, the deconvolved waves that are computed from different sub-intervals of the whole
signal lead to the same deconvolved waves.

4 A SIMPLE MODEL FOR THE WAVE PROPAGATION IN THE BUILDING

In this section we present a simple model for the wave propagation for the building. The base of the building is
exposed to an external motion s(t) with Fourier transform S(w). In this model, the wave propagates upward in the
building with a velocity ¢ that is the shear velocity of the building. At the top of the building with height H the waves
are reflected with reflection coefficient +1. During the upward and downward propagation the waves attenuate; for
a wave that travels over a distance L this is described by an attenuation operator A(L,t). For a constant Q-model,
this attenuation operator is in the frequency domain given by (Aki & Richards, 2002):

A(L,w) = exp(—v|w|L/c) , (3)
where v is related to the quality factor by
v=1/2Q. 4)

The downward propagating waves reflect off the base of the building with a reflection coefficient R(w) that corresponds
in the time domain to a reflection operator r(t). A wave S(t) that travels upward in the building is given by S(t —z/c).
When the wave reflects off the top of the building, with reflection coefficient +1, the downgoing wave is given by
S(t — (2H — z)/c. When this downgoing wave reflects off the base of the building, it is deconvolved with the reflection
operator r(t). The wave that then travels upward is given by r(t) * S(t — (2H + 2)/c). The delay time 2H/c accounts
for the time needed to propagate once up and down the building. This process can be continued for all the upward and
downward propagating waves and is similar to the treatment of water-layer reverberations of Backus (Backus, 1959).
After a convolution with the attenuation operators for each upward and downward going wave, the total response of
the building is in the time domain given by

u(z,t) = A(z,t)*s (t - E)

+A(2H — z,t) x s (t— 2H—z)

c

+r(t) « A2H + z,t) * s (t - 2Hc+ z) (5)

c

+r(t) x AH — z,t) x s (t_ 4H_z)

+ o
With the wave number defined by
k=w/c, (6)
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and for the attenuation model (3), this expression is in the frequency domain given by

u(z,w) = Z?:o S(w)R™(w) {eik(an+z)e-—y|k|(2nH+z)

(7)

+ eik(2(n+l)H-—z)e—-ylkl(2(n+l)H—z)} .

In this expression n counts the number of bounces off the base of the building. The first term denotes the upward
propagating waves, while the last term accounts for the downward propagating waves that have bounced n times in
the building.

The motion at height z deconvolved with the motion at the top floor is denoted by T'(z,w), so that in the
frequency domain

u(z,w)
= 8
T(zw) u(z = H,w) ®)
Similarly, the motion deconvolved with the motion at the bottom floor is denoted by B(z,w), hence
u(z,w)
e 9
B(zw) u(z = 0, w) ©

Let us first analyze T(w). Inserting expression (7) in the numerator and denominator of the definition (8) gives

o0 S(w)R"(w) {eik(2nH+z)e—'1|k|(2nH+z) +eik(Z(n-}-l)H—z)e—7|k|(2(n+l)H—z)}

n=0

T(z,w) = 9 23;0 S(w)R" (w)eik2(n+1)H g—vlk|2(n+1)H (10)
This expression can also be written as
{eik(z—H)e—7|k|(z—H) + eik(H—z)e—'y|k|(H—z)} P S(w)Rn(w)eik2(n+l)He—7|k|2(n+1)H
T(z,w) = (11)

92 ZT:O S(UJ)R" (w)eik2(n+l)He—1|k|2(n+l)H

The excitation S(w) and the sum with the reverberations in the numerator and the denominator cancel, so that
T(z,w) = 1 {eik(z—H)e—vlkl(z—H) +eik(H—z)e—v|k|(H—z)} ‘ (12)
2

This means that T'(z,w) accounts for the sum of one attenuating upgoing wave and one downgoing wave. Since z < H,
the upgoing wave is acausal. The cancellation of the sum over reverberations means that T'(z,w) is independent of the
reverberations in the building. The cancellation of the reflection coefficient R(w) implies that T'(z,w) does not depend
on the coupling of the building to the subsurface. The cancellation of S(w) means that the deconvolved response in
independent of the excitation of the building.

A similar analysis can be applied to the building response deconvolved with the motion at the base. Inserting
expression (7) in the numerator and denominator of expression (9) gives

Zoo S(w)R"(w) {eik(2nH+z)e—-'7|k|(2nH+z) + eik(‘2(n+l)H—z)e—‘ﬂkl(?(n-{—l)H—z)}

B(z,w) = S S(w) R (w) {eF2nH e—IkI2nH { gik2(nt DHg—~IF2(nF DH | (13)
Factoring out the summations this can be written as
{eikze—7|k|z + eik(zy-z)e-~,|k|(2ﬂ-z)} T, S(w)Rn(w)eik2nHe—'y|kl2nH
B(z,w) = {1+ ZFH -2 NH} 5 S(w)Rr (w)eikenH ¢—Ik2nH (14)
The summation over the reverberations, the reflection coefficient R{w), and the excitation S(w) cancel, so that
Blz,w) = etkze=klz | oik(2H—2) —|k|(2H ~2) 15)

1+ e2tkH g—2v|k|H

Just as for the signals deconvolved with the top floor, this deconvolved signal depends neither on the coupling with
the ground nor on the excitation.

The deconvolved response T(z,w) is the superposition of one acausal upgoing wave and one causal downgoing
wave. Such a simple interpretation cannot be applied to B(z,w) because the numerator depends on frequency. The
deconvolved response can be interpreted in two ways: as a superposition of traveling waves, or as a superposition of
modes. The traveling wave interpretation is obtained by using the following geometric series:

1 = n 2iknH —-2vlk|nH
T e mE = 2 (-1 e e (16)
=0
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Because of the attenuation this sum is guaranteed to converge. Inserting this in equation (15) gives B(z,w) as an
infinite sum of upgoing and downgoing traveling waves:

B(z,w) = > o (=1 {eik(2+2nH)e—1Ik|(z+2nH)
(17)
+eik(2(n+l)H—z)e—7lk|(2(n+1)H_z)} ]

The difference with expression (15) is that the frequency-dependent denominator has disappeared. Note that since the
argument of each of the complex exponentials is positive, B(z,w) is a causal function. This deconvolved response is an
infinite sum of upgoing and downgoing attenuated waves. This sum differs from the sum of upgoing and downgoing
waves in the building, because B(z,w) does not depend on the ground coupling, whereas the original sum of upgoing
and downgoing waves (7) does depend on the ground coupling through the reflection coefficient R(w).

In expression (17) the reflection coefficient at the base of the building is equal to —1, because the wave that
has bounced n times off the base of the building is proportional to (—1)". There is a simple explanation for this
(Jon Sheiman, personal communication, 2004). The deconvolution of the motion of the basement with itself gives,
by definition, a bandpass-filtered delta function as shown in the bottom trace of figure 4. When the wave that has
reflected off the top of the building propagates downward, it must give a vanishing contribution at the base of the
building because the deconvolved wave at that level vanishes for ¢ > 0. The motion at the base can only vanish
when an upward propagating wave is launched upward with the opposite polarity as the downward propagating wave
that strikes the basement. This corresponds to a reflection coefficient for the deconvolved waves that is equal to —1
rather than the reflection coefficient R(w) of the subsurface. It has been shown earlier that interferometric imaging
can be used to determine waveforms for the system with different boundary conditions than the physical boundary
conditions (Riley & Claerbout, 1976; Wapenaar et al., 2004). Riley and Claerbout (Riley & Claerbout, 1976) coined
the phrase Noah’s deconvolution for this technique.

An alternative way to interpret B(z,w) is based on normal modes. Using the inverse Fourier transform, and
expression (6), the deconvolved response is in the time domain given by

(18)

o0 e—iw(t-—z/c)e—'ylulz/c+e—iw(t—(2H—z)/c)e—'ylwl(?H—z)/c
B(Z,t) =/ 1 e2iwH/ce—27|w|H

As shown in appendix A this integral can be solved by contour integration. The integrand has simple poles when
1 +e2in/ce—2'y|w|H — 0’ (19)
the location of the poles in the lower half-plane is shown in figure 8. For t > (2H — z)/c, the contour must be closed

in the lower half plane, and as shown in appendix A the integral (18) can be written as a sum of damped normal
modes:

4 o m
B(z,t) = FC St o (—1) +1 exp(—ywmt)

(20)
X cos (%Ii_i)) sin (wmt) ,
with
Wm = (m+11{/2)7"0 m=0,1,2,--- (21)

It should be noted that these normal modes are not the normal modes of the building, because its normal modes
depend in general on the coupling to the ground. The normal modes in the sum (20) are independent of the reflection
coefficient R(w), hence the normal modes in the deconvolved response depend on the properties of the building only.
This is consistent with the traveling wave formulation of expression (17), where the reflection coefficient for the
deconvolved wave is equal to —1 rather than the reflection coefficient R(w) of the subsurface.

Each term in the sum (20) is exponentially damping. The term with the fundamental mode (m = 0) has the
smallest damping. This means that for large times (¢ > 2H/xc) the fundamental mode dominates and hence

B(z,t) =~ 4—17_;—6 exp(—ywot) cos (ﬂ(_]i;z)) sin (wot) , (22)

with
e

=0 (23)
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The period that corresponds to this angular fre-
quency is given by
4H
o

To = (24)
Note that this is the time needed to propagate up and
down the building twice. This period is determined by
the factor (—1)™ in expression (17). Because of this fac-
tor the wave changes polarity if it propagates up and
down the building once. If the wave travels up and down
the building twice and covers a distance 4H, the polar-
ity changes twice and the reverberating wave reinforces
itself to form a resonance.

5 INTERPRETATION OF THE
DECONVOLVED WAVEFORMS

The theory of the previous section agrees with the de-
convolved waves in the figures 4 and 5. Let us first con-
sider the waves deconvolved with the waves at the top
floor as shown in figure 5. These deconvolved waves are
given by expression (12) that gives the superposition of
an acausal upgoing wave and a causal downgoing wave;
both waves are clearly visible in figure 5. Given the floor
spacing of 4.27 m (Clinton, 2004) these waves can be
used to estimate the shear velocity in the building. It
follows from eexpression (12) that if there is no attenu-
ation (y = 0), and if the data have infinite bandwidth,
that the deconvolution is in the time domain given by
a superposition of upward and downward propagating
delta functions

T(z,t):w{é(t— z_cH> +6(t+z_cH)} :
(25

(In deriving this result expression (6) is used.) The at-
tenuation and the finite bandwidth of the data cause
the broader pulses shown in figure 5.

We measured the arrival time of the upward and
downward propagating waves by picking the maximum
of these waves. These arrival times are shown in figure
9. The distance is measured relative to the position of
the accelerometer at the top floor. For the upward prop-
agating wave this distance is given a negative value. For
the floors 4-10 the upward and downward propagating
waves overlap. This may bias the travel time measure-
ments. The travel times at these floors are indicated
with open squares. The travel time determined from the
waves recorded in the basement may be biased by the
presence of the solid earth below the basement, these
travel times are also indicated with open squares. De-
spite these reservations, the measurements in figure 9
display a fairly linear dependence of the travel time with
distance, this indicates a constant shear velocity in the
building.

According to expression (12), the upward and
downward propagating waves both decay due to atten-
uation. This attenuation can be seen in figure 5 because
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Figure 8. The location of the poles in the complex w-plane
and the contour integration that is used for ¢t > (2H — z)/c.
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Figure 9. The arrival times of the upgoing and downgo-
ing waves in figure 5. A negative distance/time corresponds
to the upgoing wave, a positive distance/time to the down-
going wave. The travels times at the floors 1-3 are marked
with solid circles. The solid line indicates the travel time pre-
dicted for the shear velocity inferred from the normal mode
measurements that give a velocity of 322 m/s.

the downward going wave has a consistently smaller am-
plitude than the upward propagating wave. The abso-
lute value of the amplitude at different floors cannot
be compared with great accuracy, because the absolute
amplitude is affected by the receiver coupling and other
uncertainties. The ratio of the amplitude of the down-
going wave and the upgoing wave, however, does not
depend on the receiver coupling. Figure 10 shows the
natural logarithm of the ratio of the downgoing wave
and the upgoing wave at each floor. The amplitude mea-
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Figure 10. The natural logarithm of the ratio of the ampli-
tudes of the upgoing and downgoing waves of figure 5 as a
function of the two-way distance to the top of the building.
The amplitude ratio for the floors 1-3 is indicated with solid
circles. The log-amplitude ratio predicted by the attenuation
of expression (28) is shown with the straight line.

surements in the floors 4-10 and in the basement are
likely to be unreliable because of the interference of the
upgoing and downgoing waves and the presence of the
solid earth below the basement, respectively. The am-
plitude ratios at these levels are indicated with open
squares. The amplitude ratio for the floors 1-3 is indi-
cated by solid circles and are most reliable. The two-way
distance is measured relative to the receiver at the top
floor. The scatter in the amplitude ratio is considerable
because the amplitude difference between the upgoing
and downgoing waves is fairly small. In a taller build-
ing these amplitude differences would be larger, and the
attenuation can be determined with greater accuracy.

According to expressions (17) and (20), the signals
deconvolved with the bottom floor can be seen either as
a superposition of upward and downward propagating
waves, or as a sum of normal modes. The interpretation
in terms of propagating waves is most useful for the
early part of the deconvolved waves in figure 4. In that
figure, the upward and downward propagating waves
are not as clear as in figure 5 for the waves deconvolved
with the signals at the top floor, because in figure 5 only
one upgoing wave and one downgoing wave are present,
whereas according to expression (17) many upgoing and
downgoing waves interfere with each other in figure 4.
For this reason we analyze the waves deconvolved with
the signal in the basement in figure 4 from the normal
mode point of view as formulated in expression (20).
Since the fundamental mode is much stronger than the
higher modes, we use the expressions (22) through (24)
in the following.

The amplitude spectrum of the deconvolved waves
of figure 4 averaged over all the floors has a pronounced
peak at 1.72 Hz. This reflects the monochromatic nature

In(envelope) + floor number

" " [l "
0 5 10 15 ' 20
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Figure 11. The natural logarithm of the envelope of the
deconvolved waves in figure 4 after applying a bandpass filter
with corner frequencies of 1 Hz and 3 Hz, respectively. For
clarity the floor number is added to each curve. The best-
fitting straight line to each curve is indicated with thick solid
lines.

of the resonance. Given that the height of the building
measured to the basement is 47 m, this gives with ex-
pression (24) a shear velocity of

c=322m/s. (26)

The travel time as a function of distance for this velocity
is indicated by the solid line in figure 9. The proximity of
this travel time curve to the arrival times of the upward
and downward propagating waves, shows that the trav-
eling waves and the normal modes predict a shear veloc-
ity that is similar. This provides a consistency check on
the analysis. A systematic difference between the veloc-
ity of the propagating waves and the normal modes can
be due to dispersion caused by the internal structure in
the building, and to amplitude variations between floors
that are ignored in expression (4) that forms the basis
of the mathematical model of section 4.

According to expression (22) the resonance decays
with time due to anelastic attenuation. In order to quan-
tify the attenuation we bandpass filtered the decon-
volved waves of figure 4 with a Butterworth filter with
cutoff frequencies of 1 and 3 Hz, respectively. This fil-
ter extracts the fundamental mode from the waveforms.
The natural logarithm of the envelope of the bandpass-
filtered waveforms is shown in figure 11. Since the res-
onance is weak for the lowest floor, we used only the
top 9 floors in the normal-mode analysis. We added the
floor number to each curve in order to separate them
in the figure. Since only the slope depends on the at-
tenuation this offset does not affect the analysis. Note
that, apart from some fluctuations, the envelope of the
deconvolved waves decays with time. This contrasts the
original waveforms in figure 3 that do not decay with
time because the motion is continuously excited by the
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surface waves. The deconvolution extracts the decay of
the resonance with time, this makes it possible to mea-
sure the anelastic attenuation in the building.

Between 1.5 s and 14 s the logarithm of the envelope
decays linearly with time, this is consistent with the
exponential decay in expression (22). For later times
the resonance is of the same order of magnitude as the
ambient noise, and the exponential decay is not valid.
In order to determine the attenuation we fitted straight
lines to the curves for 1.5 s < t < 14 s. The least-squares
fit of the envelopes is shown by the solid lines in figure
11. The slopes are similar and the average slope is given

by
slope = —0.1321 £0.0017s™" . (27)

The error is determined by the standard deviation of
the slope for the deconvolved waves at different floors.
According to the expressions (4) and (22) the slope is
equal to —w/2Q. For the resonant frequency of 1.72 Hz,
this gives

Q =2045. (28)

This value of the attenuation can be compared with
the attenuation of the propagating waves shown in fig-
ure 10. The propagating waves in figure 5 have a dom-
inant frequency of about f = 5Hz. The propagating
waves decay with distance as exp(—nfz/Qc). For the
value of Q given above, and a velocity of 322 m/s, this
decay is shown by the solid line in figure 10. The vari-
ability in the amplitude measurements in that figure is
fairly large. For the lower three floors where the upgo-
ing and downgoing waves don’t interfere, the attenua-
tion inferred from the resonance agrees will with ampli-
tude decay determined from the propagating waves as
indicated with the solid circles. The comparison of the
attenuation from the normal modes and the propagat-
ing waves provides a consistency check on the employed
model of wave propagation in the building.

6 DISCUSSION

We have shown that the deconvolution of the motion
recorded at different floors in the building is an effec-
tive tool for extracting the building response. The de-
convolution with respect to the signals recorded in the
basement and the top floor provide complementary in-
formation. The deconvolution with the signal recorded
at the top floor gives a one upgoing and one downgoing
propagating wave that clearly are separated. The decon-
volution with the waveforms recorded in the basement
provides information on the fundamental mode of the
building.

The deconvolved waves are independent of the ex-
citation and of the ground coupling. This can be seen
in expressions (12) and (15) that are independent of the
excitation S(w) and the reflection coefficient R(w) at the

time (s)

Figure 12. The waveforms of figure 3 at the different floors
after correlation with the waves recorded in the basement.

base of the building. Suppose that instead of the decon-
volution we had used the correlation, as is common in in-
terferometric imaging (Lobkis & Weaver, 2001; Derode
et al., 2003; Snieder, 2004a; Wapenaar, 2004; Snieder,
2005). In the frequency domain, the correlation of the
waves recorded at height z with those in the basement
is given by

C(z,w) = u(z,w)u"(z = 0,w) . (29)

When equation (7) is inserted in this expression, the re-
sult contains the power spectrum |S(w)|? of the excita-
tion as well as products of the reflection coefficient R(w).
In contrast to this, the deconvolved waves of expressions
(12) and (15) depends on neither of these quantities. It
is instructive to consider the waveforms obtained from
correlation with the signal in the basement as defined
by equation (29), these correlated waveforms are shown
in figure 12. This figure should be compared with figure
4 for the deconvolved waves. The deconvolved waves are
causal while the waveforms obtained by correlation are
not. This is due to the fact that the waveforms com-
puted by correlation depends on the power spectrum
|S(w))? of the excitation. The multiplication with the
power spectrum in the frequency domain corresponds in
the time domain to a convolution with the autocorrela-
tion of the excitation. For the surface waves that excite
the building, this autocorrelation has a fairly long time
duration. This leads to a-casual arrivals in the correlated
waves of figure 12. Note that the waveforms computed
from correlation show neither the upgoing and down-
going waves nor the clear resonance of the deconvolved
waves of figure 4. This means that for this application
deconvolution is superior to correlation.

Expression (12) can be generalized for SH-waves
in an arbitrary layered medium. In this case the de-
convolved waves T'(z,w) are equal to the Pij-element
of the propagator matrix (Trampert et al., 1993). This
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contrasts formulations of seismic interferometry based
on correlation where the Green’s function is obtained
(Lobkis & Weaver, 2001; Derode et al., 2003; Snieder,
2004a; Wapenaar, 2004; Snieder, 2005). According to
expression (7.43) of Aki and Richards (Aki & Richards,
2002), the Pi;-element of the propagator matrix for SH-
waves in a lossless homogeneous medium is given by

Pyy(2,H) = cosk(z — H) = % (eik(z_H) + eik(H_z)) .

(30)
Apart from terms that depend on the attenuation this
expression is identical to equation (12). We can show
that this is also the case for a general layered medium
that has internal reflections.

The deconvolved waves can be used to estimate
the shear velocity and attenuation in the Millikan
Library. The waves deconvolved with the motion in
the top floor lead to clear upgoing and downgoing
waves. The velocity of propagation can be measured
from the arrival time of these waves, while the ratio
of the amplitude of the upgoing and downgoing waves
constrains the attenuation. The waveforms obtained by
deconvolution with the motion in the basement gives
the motion of the fundamental mode of the building.
The frequency and temporal decay constrain the shear
velocity and attenuation as well. As shown in figures
9 and 10, these complementary pieces of information
are consistent. This shows that the deconvolution of
the motion in the building recorded at different levels
can successfully be used to eliminate the imprint of the
excitation and the ground coupling, and that the values
of the shear velocity and attenuation from propagating
waves and from the fundamental mode are consistent.
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APPENDIX A: EVALUATION OF THE
FOURIER INTEGRAL (18)

In this appendix we evaluate the Fourier integral (18)
using complex integration. For t > (2H — z)/c the in-
tegration along the real w-axis must be closed in the
lower half plane to obtain a vanishing contribution of
the semi-circular integration path that is added in the
contour integration (Snieder, 2004b). The value of the
contour integral over the path shown in Figure 8 is de-
termined by the poles of the integrand in expression
(18) in the lower half-plane. The pole-positions are de-
termined by expression (19). To first order in v the poles
are located at

We = FWm — 1w (m=0,1,2,---), (A1)

with wy, given by expression (21). There are infinitely
many poles at locations in the lower half-plane as shown
in Figure 8.

The terms in the integrand in expression (18) are

of the form
I= / ) (A2)

1+ eiwTe—|w|T

where f(w) is an analytic function. Setting w = w. + ¢
and using a first-order Taylor expansion in £ gives

L4 e™Te 0T = _igr 4 O (€2) . (A3)

This implies that the poles are simple and that the
residue for the pole at w, is given by

Rest.) = M ) (A4)
14 etwr —iT
Together with the factor —2mi from the counter-
clockwise contour integration, this gives a contribution
27 f(w.)/7 to the the complex integral. Using this in
the integral (18) and taking the poles in the 3rd and
4th quadrant into account gives:

B(t) = 2z o o€ 7mt {cos (wm(t — z/c))
+ cos (wm(t — (2H — z)/c))} .

(A5)
Using trigonometric identities the terms in curly brack-

ets equals

cos (wm(t — z/c)) + cos (wm(t — (2H — 2)/c))
= 2cos (wmH /c) cos (wm(H — z)/c) cos{wmt) (A6)

—2sin (wm H /c) cos (wm(H — z)/c) sin{wmt) .
According to expression (21), cos(wmH/c) = 0 and
sin(wm H/c) = (—1)™, so that

cos (wm(t — z/¢)) + cos (wm(t — (2H — 2)/c)) =
2(—1)"*! cos (wm(H — z)/c) sin{wmt) .
(A7)
Using this in equation (A5) gives expression (20).
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ABSTRACT

Coda waves are sensitive to changes in the subsurface because the strong scat-
tering that generates these waves causes coda waves to repeatedly sample a
limited region of space. Coda wave interferometry is a technique that exploits
this sensitivity to estimate weak changes in the medium from a comparison of
the coda waves before and after the perturbation. Here I present the general
theory of coda wave interferometry, and show how the time-shifted correlation
coefficient can be used to estimate the mean and variance of the travel time per-
turbation caused by the perturbation of the medium. This mean and average
are defined based on the intensity of the coda waves. I show how this general
theory can be used to estimate changes in the wave velocity, in the location of
scatterer positions, and in the source location.

Key words: coda wave interferometry

Preface

In December 2004, a symposium was held at the Fall
Meeting of the American Geophysical Union in honor
of Keiiti Aki. He is known not only for writing the
seminal textbook “Quantitative Seismology” with Paul
Richards, but also for his prolific and groundbreaking
research in seismology, and for his caring and creative
frame of mind. AKki is one of the pioneers in the analysis
of coda waves; he developed and implemented the anal-
ysis of the decay rate of these waves as a tool to monitor
time-lapse changes in the Earth. He carried out numer-
ous studies to apply this to monitor fault zones and
volcanoes with the ultimate goal to develop better tools
for hazard assessment.

Aki’s use of coda waves has focused on the ampli-
tude of these waves. At the Colorado School of Mines
we developed a new technique, coda wave interferome-
try, that takes the phase information of these waves into
account as well. This provides a tool to monitor time-
lapse changes in the subsurface based on changes in the
waveforms in the coda. We have applied this to measure
velocity changes in rocks due to changes in the temper-
ature or stress, to monitor stress changes in a mining
environment, to determine the distance between earth-
quakes, and for volcano monitoring. We look forward to

collaborate with our sponsors on the application of coda
wave interferometry to reservoir monitoring.

The following paper gives the theory of coda wave
interferometry. It will appear in the special issue of Pure
and Applied Geophysics titled " Advances in Studies of
Heterogeneities in the Earth Lithosphere: The Keiiti Aki
Volume I1.” The treatment of this paper is general and
can be used to a variety of different applications. The
work on coda wave interferometry has been largely fi-
nanced completely with financial support from the Na-
tional Science Foundation.

1 INTRODUCTION

The seismic coda constitutes the tail of strongly scat-
tered waves in a seismogram. Aki was one of pioneers
in using the seismic coda [Aki and Chouet, 1975} . He
used the temporal decay of the seismic coda as mea-
sure of the scattering in the earth, and proposed to use
changes of coda @ to monitor changes in the stress in
the subsurface [Aki, 1985; Jin and Aki, 1986]. This ap-
proach considers the amplitude of the coda waves, but
does not use the phase information in the coda.

Here I present the theory of coda wave interferom-
etry, a technique to monitor time-lapse changes based
on the phase and amplitude information of coda waves.

T
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In a strongly-scattering medium, the waves repeat-
edly sample the same region in space. Such a medium
therefore works as a natural interferometer. Just as in
a man-made interferometer [Lauterborn et al., 1995]
the multiply-scattered waves are extremely sensitive to
minute changes in the medium. In coda wave interferom-
etry we exploit this sensitivity to measure small changes
in the medium.

This idea is not new, the sensitivity of coda waves
has been used to estimate velocity changes in fault zones
[Poupinet et al., 1984], in volcanoes [Ratdomopurbo and
Poupinet, 1995; Matsumoto et al., 2001] , in a mining
environment [Grét et al., 2004] , and in ultrasound ex-
periments [Roberts et al, 1992; Snieder et al., 2002; Grét
et al., 2005] . Temporal changes in the coda waves within
a a couple of days have been observed in a volcano . In
the physics community a related technique called diffus-
ing wave spectroscopy [Weitz and Pine, 1993; Cowan et
al., 2002] has been used to monitor fluidized suspensions
[Cowan et al., 2000; Page et al., 2000].

In this work I present the theory of coda wave inter-
ferometry. Because of the generality of the derivation,
it can be applied to a a number of different applica-
tions of coda wave interferometry. The theory is based
on the path summation (section 2). This is a formula-
tion of scattering that states that the total wave field is
the superposition of the waves that propagate along all
possible scattering paths. In section 3 I show how the
changes in the coda waves can be characterized with
the time-shifted correlation coefficient. This quantity is
related to the distribution of the travel time perturba-
tion when averaged over all scattering paths (section 4).
In principle, the distribution of the travel time pertur-
bation can be obtained from the time-shifted correla-
tion coefficient, but I show in section 5 how in practical
application the mean and variance of the travel time
perturbation can be obtained from the time-shifted cor-
relation coefficients. In section 6 I apply the theory to
three examples; a change in the velocity, uncorrelated
perturbations of the scatterer locations, and a change
in the source position.

2 THE PATH SUMMATION AND THE
CHANGE IN THE WAVES

The theory of coda wave interferometry is based on the
path summation where the wavefield at a given location
is written as a sum of the waves that propagate along
all possible paths [Snieder, 1999]:

w(t) = > Sp(t). (1)
P

The path summation is valid when the wavefield can
be written as a discrete sum over all possible scattering
paths, and expression (1) simply states that the total
wavefield is the sum of the waves that have propagated

along all possible scattering paths. I use a scalar nota-
tion, but expression (1) is also valid for elastic waves; in
that case equation (1) can be used for each of the compo-
nents of the wave motion. For elastic waves conversions
between P and S-waves occur at the scatterers; in that
case the path summation includes a sum P and S waves
for each segment of the scattering path, so that > in-
cludes all the possible wave conversions along each path
as well.

A perturbation of the medium leads to a perturba-
tion of the waves. I assume that the scattering properties
of the scatterers in the medium do not change, but that
either the propagation velocity, the position of the scat-
terers, or the source position is weakly perturbed. These
perturbations correspond to a change in the phase of the
wave propagation changes, the geometrical spreading,
and the scattering angle for every scattering event.

Let us consider a wave that propagates over a dis-
tance | between scatterers. The average distance be-
tween the scatterers, as seen by the waves, is given
by the scattering mean free path [Lagendijk and van
Tiggelen, 1996; van Rossem and Nieuwenhuizen, 1999].
In the frequency domain the propagation over this dis-
tance corresponds to a phase shift exp(ikl). Let us first
consider a change 4l in the path length. This change cor-
responds to a phase change exp(ikdl) = 1+ idkl, so that
a change in the path length gives the following change
in the wavefield:

|8ufP"e%€ ~ |kdlu| (2)

In three dimensions the geometrical spreading for each
segment of propagation varies as 1/, hence the change
in the wavefield due to the geometrical spreading asso-
ciated with a change in path length is given by

3)

|6u| spreading ~

i,
l

A change 4l in the scatterer position leads to a change in
the scattering angle that is of the order 66 ~ 6i/l. When
the scattering amplitude, or source radiation pattern,
varies as cosmf or sinm#, the change in the wavefield
due to this change in scattering angle is of the order
mdl
T
The change is the phase of the wavefield dominates when
the right hand side expression (2) is larger than both (3)
and (4). Since in general [m| > 1 this conditions imply
that the change in the phase is dominant when

[6u|*™9t ~ |méb)u =

(4)

L Iml
where the wavelength is given by A = 27 /k. This means
that the change in the phase dominates the change of
the wavefield when the scattering mean free path is
much larger than a wavelength. If this condition is not
satisfied the waves are localized [van Tiggelen, 1999] and
the theory of this paper does not hold.



This means that when the distance between the
scatterers is changed, the change in the phase is the
most important change. It follows from expression (2)
that the change in the phase varies linearly with fre-
quency, because £ = w/c. Such a change in the phase
corresponds in the time-domain a change in the phase
corresponds to a change in the arrival time of the wave.
A change in the velocity of propagation also gives a
change in the arrival time of the wave. I denote the
change in the travel time of the wave that propagates
along path P by 7p. This means that the perturbed
wavefield is given by

at) =) Se(t—7p). (6)
P

This expression should be compared with equation (1)
for the unperturbed wave.

3 MEASURING THE CHANGE IN THE
WAVEFIELD

The unperturbed and perturbed waves can be compared
using the time-shifted correlation coefficient defined as
t+T I\~ 4l !
T uE YAt + ta)dt
R(ts) = —==L — .
\/ [ wr)ay fH ar()de
In this expression ¢ is the time shift of the unperturbed
and perturbed waves in the correlation. The correlation
is computed of a finite time-window with center-time ¢
and window length 2T. Let us first analyze the numer-
ator of this expression that is given by

t+T

N(t,) = / Wt )a(t + ts)dt’ . (8)
t—T

Inserting the expressions (1) and (6) in this equation

gives a double sum } , o,over paths. Such a double sum

can be divided into diagonal terms, for which P = P’,

and cross-terms P # P’

D=3 (O

PP’ P=P P#P!
with equations (1) and (6) this gives:

N(ts) =3p [T Sp(t')Sp(t +ts — Tp)dt’

+ X pap [T Sp(E)Spi(t +ts — Tpr)dt .

(10)

The cross-terms are uncorrelated, this means that

on average the cross terms integrate to zero. In a single

realization this is not necessarily the case, and the sec-

ond term in expression (10) may not be zero. Snieder

[2004] estimated the magnitude of the cross terms

> pyps to the diagonal terms 3 p_ ., and showed that

when the DC-component of the signal vanishes that in
a single realization

cross terms| [Teorr
|diagonal terms| 2T

(11)
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where Teorr is the width of the autocorrelation of the
signal in the time domain. This width is proportional to
1/Af , with A f the bandwidth of the signal. This means
that the ratio in expression (11) can also be written as

|cross terms| [ (12)
|diagonal terms| Af2T

The bandwidth times the window length is the num-
ber of degrees of freedom in the signal [Bucci and
Franceschetti, 1989; Landau, 1967] , hence the ratio of
the cross-terms to the diagonal terms is for a single re-
alization equal to 1/ Vv/N, with N the number of degrees
of freedom in the data. The important point of expres-
sion (11) is that the cross-terms decrease when the win-
dow length is increased. Note that this argument does
not hold for monochromatic data, because in that case
Af = 0 and the right hand side of expression (12) can-
not be reduced by increasing the window length. This
means that in order to ignore the cross-terms both the
window length and the bandwidth must be sufficiently
large.

In the following I assume that this indeed the case
and that the cross-terms can be ignored, in this approx-
imation

t+T
N(ts) = Z/ Sp(tl)Sp(t’ +ts — Tp)dt/ . (13)
7 Ji-T

This integral can be written as a sum of the cross-
correlations of the waves that have propagated along
the individual paths that is defined as

t+T
Crlto) = / Se)Se(t o) (19)

With this definition I(t,) can be written as
N(ts) =) Cp(ts—7p). (15)
P

A similar treatment can be applied to the terms in
the denominator of equation (7), this gives

/ Tt = / TR = 0p(0). (16)
t P

-T t=T

In deriving this result the same approximations are used
as in the derivation of expression (15), specifically the
cross-terms . prpr Or€ ignored. Inserting the expres-
sions (15) and (16) into the definition (7) of the corre-
lation coeflicient gives

> pCr(ts —7p)
ZP CP(O)

Before we analyze this correlation coefficient I intro-
duce another approximation. In the frequency domain
the definition (14) for the correlation of Sp corresponds
to

R(ts) = (17)

Cp(w) = Sp(w)Sp(w) exp (iwto) = |Sp(w)|? exp (iwto) .

(18)
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I assume that the waves that propagate along the differ-
ent trajactories have a power spectrum with the same
shape, but that the amplitude of each of these waves
may be different. Note that this does not imply that the
waves Sp(t) are the same, because the phase spectrum
may be different. In fact, the phase spectrum will be dif-
ferent because these waves have different arrival times.
Since the autocorrelation is the Fourier transform of the
power spectrum, the assumption that shape of the the
power spectrum of the waves is the same implies that
up to a constant the autocorrelation also is the same,
so that

Cp(to) =IpC(te)  with C(0)=1.  (19)

In this expression C(to) is the autocorrelation of the
Sp(t) normalized at its maximum for ¢, = 0, while Ip
measures the intensity of the wave that has propagated
along path P. Using these results the correlation coeffi-
cient is given by

ZPIPC(ts —Tp) .

R(t,) = 1

(20)

4 THE PROBABILITY DENSITY
FUNCTION OF THE TRAVEL TIME
PERTURBATION

The time-shifted cross correlation coefficient can be de-
termined from the recorded waves using expression (7).
The goal is to infer properties of the travel time pertur-
bation from this measurement. One way to achieve this
is to define the normalized energy of the arrivals in the
employed time window with a travel time shift between
7 and T + dr as P(7)dr. This definition implies that

2P such i Ip
p dr = such that r<7p <7+dr .
(r)dr Yauplp @)

The sum in the numerator is all paths that have a travel
time change between 7 and 7+ dr. Since the denomina-
tor contains a sum over all paths, and hence all relevant
values of 7, the function P(7) is normalized:

/oo P(r)dr=1. (22)

The definition (21) consists of a ratio of positive num-
bers, therefore P(r) is positive and normalized. For this
reason it has the same properties as a probability den-
sity function. Using statistical jargon, we use the follow-
ing definition of an expectation value:

oy = [ " P f(r)dr . (23)

Using expressions (21) this can also be written in the
path summation as

_ ZP Ipf(p) '

(7)) = =B (24)

With the definitions (21) and (24), equation (20)
can be written as

R(ts) = (C(ts — 1)) = / P(r)C(ts — )dr . (25)

The first identity shows that coda wave interferome-
try leads to a weighted average of a function of the
travel time perturbation. The coda waves travel along
all possible paths, and the contribution of the travel
time perturbation is averaged over all possible paths
with a weight function given by the intensity of the
waves for each path.

The second identity of expression (25) states that
the time-shifted correlation coefficient is given by the
convolution of P(7) with C(7). The time-shifted corre-
lation coefficient R(t;) follows from the recorded waves.
The function C(t) follows from the power spectrum of
the recorded waves, and is known as well. In principle
P(7) can the be obtained from expression (25) by decon-
volution. This provides direct information on the distri-
bution of the travel time perturbations over the paths
that have arrivals within the employed time window.
Note that in this approach we do not need to assume
that the travel time perturbation is small.

In practice this deconvolution approach may not
work well for the retrieval of P(7). In the frequency
domain, the right hand side of expression (25) corre-
sponds to the multiplication of the frequency spectra of
P and C. The frequency spectrum of C(7) is the power
spectrum of the data. In general, there is no guaran-
tee that the frequency spectrum of P(7) overlaps with
the power spectrum of the data. This would only be
the case when the distribution of the travel time per-
turbation peaks near the dominant period of the waves.
Since we cannot be sure that this condition is satisfied
in a given experiment we take a different approach and
extract the first and second moments of the travel time
perturbation from expression (25).

5 EXTRACTING THE MOMENTS OF THE
TRAVEL TIME PERTURBATION FROM
THE CORRELATION

In this section we assume that the travel time perturba-
tions do not change vary much among all the different
paths with arrivals within the employed time window.
Specifically, we assume that we can use a second-order
Taylor expansion of C(t). The autocorrelation is an even
function, with C(0) = 1, the second-order Taylor expan-
sion is given by

c))=1- 36 =0, (26)

where the dots denote the second time derivative. In the
following I consider the situation before the perturba-
tion. In that case 7p = 0, and expression (20) gives

C(t) = R(t), (27)



where R(t) is the correlation coefficient defined in ex-
pression (7) with the unperturbed state equal to the
perturbed state: u = @. Using this in expression (27)
gives

Ju(t yu(t’ + t)dt’
Jur(@ydtr

where the integration is over the time-window under
consideration. Note that it follows from this expression
that C(0) = 1, as required in equation (19).

Differentiating expression (28) twice with respect
to time gives

C(t) = (28)

e _J uey &t ) ufitt2+t)dt fu (t)dugl:t)dt,
()= J ()t - Ju2(t)at '

(29)
where second derivative in the last term is with respect
to t’. Setting ¢ = 0, and using an integration by parts
gives under the assumption that u vanishes at the end
of the integration interval:

Ju*(t)at’
Jur()dr

In practice, one tapers the integrand in the correla-
tion coefficient (7) in order to suppress truncation arti-
facts. This taper ensures that the integrand of expres-
sion (7) indeed vanishes at the endpoint of the interval.
The right hand side of expression (30) has the phys-
ical dimension frequency?; for this reason I introduce
the following definition of the mean squared angular fre-
quency:

C(0) = - (30)

— _ [a(at’

W rewar

Note that this quantity can directly be computed from
the recorded data. Using this result in the expressions
(26) and (30) gives the following second-order Taylor
expansion:

(31)

clty=1- %Jf . (32)
Inserting this result in expression (20) gives

— > plp(ts —7p)?
R(ts) = W= e T 33
(1) = 1 - g =r e (33)
It follows by differentiation that the correlation coeffi-
cient attains its maximum when

dR(t) __ —plelts ~7r)
0= = .
dt, 2plp (34
This maximum is reached for

plep
ts =tmax = ==——— -
2plp
This equation states that the correlation coefficient at-

tains its maximum for a time shift that is equal to the
intensity-weighted travel time perturbation. According

(35)
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to the notation of expression (24) this result can also be
written as

tmax = (T) . (36)

The value Rmax of the correlation coefficient at its
maximum follows by replacing ¢, in expression (33) by
the average (7), thus

— S plp(te — (1))
£ > 17 . (37)

Using expression (24) the ratio in the last term satisfies

Sple(re — (1)) 2 2
={{r— {7 =07, 38
S = (@) =at,  (9)
where o2 is the variance of the travel time perturbation.
Combining this result with expression (37) gives

Rmax =1- 2

Runae = 1 — %a_:faf, . (39)

The time-shifted correlation coefficient can for ev-
ery employed time window be computed from expression
(7) given the data before and after the perturbation, and
according to expression (36) the time-shifted correlation
coefficient attains its maximum for a shift time that is
equal to the mean travel time perturbation. According
to equation (39) the value of the time-shifted correlation
coefficient gives the variance of the travel time pertur-
bation. This means that if the unperturbed and per-
turbed waveforms are known, the mean and variance of
the travel time perturbation can be computed. Comput-
ing the two lowest moments of the distribution of the
travel time perturbation is a less ambitious goal than
determining the distribution P(7) of the travel time per-
turbations from equation (25), but as we will see in the
examples of the next section the mean and variance of
the travel time perturbation are useful in a number of
practical applications.

The data may be contaminated with noise. The
noise has two effects on the time-shifted cross correla-
tion coefficient. First, the noise introduces fluctuations
in the estimated coefficient. Without knowing the noise
there is no way to eliminate these fluctuations other
than using non-overlapping time windows of the coda
to obtain independent estimates of the cross-correlation.
Second, noise leads to a bias because noise lowers the
value of the cross-correlation. This bias can be estimated
given the energy in the noise ({n?)) and the energy of
the noise-contaminated data ({(z?)). Douma and Snieder
[2005] show that the bias in the correlation coefficient
can be accounted for by using the corrected correlation
coefficient that is related to the uncorrected coefficient

by the following relation
(n?) (n?)
) \/1 - @ (40)

Reorr = R/ \/
The noise levels (n?) and (72?) before and after the per-
turbation can be estlmated from the data recorded be-

fore the first-arriving waves.
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6 EXAMPLES

In this section I consider three different perturbations
that are of relevance for practical applications; a con-
stant velocity perturbation, random displacement of
scatterers, and a perturbation in the source position.

6.1 A constant velocity perturbation

Suppose that in a medium the velocity is perturbed with
a perturbation v, and that the relative velocity pertur-
bation dv/v is the same at every location in space. The
unperturbed travel time is given by

1
t= /P Las, (41)

where the integration is along path P. The perturbed
travel time is to first order in the velocity perturbation
given by

1 1 v
t B = - — — .
+7p /pv+6vds /P (v v2> ds (42)

With expression (41) this gives

Tp=——/ légdsz_((F_v)/ lds, (43)
puU YV v ) Jpv

where I used in the last identity that the relative velocity
perturbation is assumed to be constant. With expression
(41) the travel time perturbation can be written as

TP = — (é—v)t (44)

v

Note that the velocity v is not necessarily constant. Ac-
cording to expression (44), the travel time perturbation
depends on the arrival time of the wave only, but is in-
dependent of the particular path. This means that in a
small time window the mean travel time perturbation
is also given by

v
tmaz = (7') = - (7) t. (45)
Since the travel time perturbation is the same for all
trajectories, the variance of the travel time perturbation
vanishes

02=0. (46)

As shown in expression (36), the mean travel time per-
turbation is equal to the shift time that gives the max-
imum of the time-shifted correlation coefficient, this
quantity can easily be retrieved from the data. Accord-
ing to expression (45) the relative velocity change then

follows from
61} tmaa:
(7) i (47)

This has been applied by Snieder et al. [2002] to
measure the velocity change in a granite sample with

temperature. In their experiment coda wave interferom-
etry is sufficiently sensitive to detect a velocity change
of about 0.1%. This change in the velocity can be in-
ferred from different non-overlapping time windows in
the coda. This redundancy serves as a consistency check
on the method, and can be used for error estimation. In
these measurements the estimated error in the velocity
change was about 0.02% [Sniedet et al., 2002] . Grét et
al. [Grét et al., 2005] applied this technique also to mea-
sure the velocity change in rocks due to changes in the
stress state in laboratory conditions, and in a mining
environment [Grét et al., 2004].

For elastic waves there are two wave velocitites. It
follows from the intensity-averaged travel time pertur-
bation (35) that for elastic waves the inferred velocity
change is a weighted average of the change in the P-
wave and S-wave velocities [Snieder, 2002]:

3 3
o _ B Ga, 2o 05
v 20343 a 2238+83° 0
where o and 8 are the velocities of P-waves and S-
waves, respectively. Since f < « the perturbation in
the shear velocity dominates the perturbation in the
P-wave velocity. For example, for a a Poisson medium

(o = V30):

% _0.00%% 100198 .
v o B

The theory of this section is valid when the rela-
tive velocity change is independent of location. In re-
alistic situations this is not necessarily the case. The
theory can be extended for situations where the rela-
tive velocity change depends on position. In that case
the mean travel time change is linearly related to the
velocity change:

() = / K(r, £)5u(x)dV (50)

(49)

where the kernel K(r,t) depends on the intensity-
weighted average over all scattering paths. This expres-
sion can be used as the basis of a standard linear inver-
sion for the velocity change dv(r) given the mean travel
time change observed for different source-receiver pairs
and different time windows. The kernel K (r, t) has been
derived both for single-scattered waves [Pacheco and
Snieder, 2005a] as well as for strongly scattered waves
[Pacheco and Snieder, 2005b).

6.2 Random displacement of scatterers

As a second example we consider a perturbation that
consists of uncorrelated movement of the scatterers.
This is of relevance for studying the motion of particles
in colloidal suspensions [Heckmeier and Maret, 1997]
and of bubbles in a turbulent fluid [Cowan et al., 2000,
Page et al., 2000]. The theory presented here is equiva-
lent to diffusing wave spectroscopy [Cowan at al., 2002;



Weitz and Pine, 1993], although the derivation is differ-
ent.

Let us consider scatterers that move independently
in three dimensions and that have a root mean square
displacement § between the two measurements of the
waves that are used to study the motion of the scatter-
ers. On average the path length for each scattered wave
does not change, hence the mean perturbation of the
travel time vanishes:

(r)=0. (51)

Some scattering paths are longer, while other scattering
paths are shorter, therefore the variance of the travel
time perturbation is nonzero.

We compute the variance of the travel time by using
that for a wave that has scattered n times, the variance
in the path length is given by [Snieder and Scales, 1998]:

0% =2n (1 - cosf) 6. (52)

In this expression cosf is the average of the cosine of
the scattering angle over all paths in the employed time
window. The number of scatterers encountered is related
to the travel time by n = wvt/l, where v is the wave
velocity and [ the scattering mean free path. Using this
in expression (52) gives

2uts?

l* ’
where [, is the transport mean free path. This is the
distance of propagation over which the scattered wave
has lost all information about its direction of propaga-
tion [Lagendijk and van Tiggelen, 1996; van Rossum and
Nieuwenhuizen, 1999]. For a constant velocity the vari-
ance in the path travel time is related to the variance
in the path length by o = or /v, so that

. 2t8?

=2, (54)

ol = (53)

With expression (39) this means that the measured
maximum of the cross-correlation is related to the mean
displacement of the scatterers by

w262t
vl

Riyaz = 1— (55)

Given a measured value of the maximum of the
cross-correlation, one can infer the mean scatterer dis-
placement & from this expression if the wave velocity
and the transport mean free path is known. Snieder et
al. [2002] show in a numerical experiment that the mean
scatterer displacement can correctly be retrieved from
the coda waves. The scatterer displacement can be com-
puted from several non-overlapping time windows of the
coda, and they show how this redundancy can be used
to compute error bounds on the scatterer displacement
inferred from the coda waves.
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6.3 A displaced source position

The relative distance between earthquakes can be found
from the absolute location of the events, but in this ap-
proach errors in the employed velocity model may lead
to large errors in the distance between the events [Pavlis,
1992] . An alternative approach is the double-difference
method where the relative event location is computed
from the differential travel time of the direct arrivals
[Shearer, 1997; Astiz and Shearer, 2000; Walhauser and
Ellsworth, 2002] . Coda wave interferometry can also be
used to determine the relative distance between earth-
quakes, provided the source mechanisms of the events
are identical. This provides additional information on
the relative position between events that can be used in
addition to the constraints obtained from the double-
difference method.

Let us consider two nearby seismic sources with the
same source mechanism. When the source position is
perturbed over the distance r, the distance from the
source to the first scatterer along every scatterer path
is perturbed. The distance between the scatterers is un-
perturbed, so we only need to account for the change
in the distance to the first scatterer along every scatter-
ing path. For this reason it does not matter if the wave
travels from the first scatterer along every path directly
to the receiver, or whether the wave visits many other
scatterers first. The theory of this section therefore is
applicable both for single scattering as well as for mul-
tiple scattering.

For a scattering path P with take-off direction tpat
the source, the perturbation in the travel time is given
by

rp=— (56)

For a scattering path where the wave leaves the source
as a P-wave, v is the P-wave velocity at the source loca-
tion, whereas for a path where the wave leaves the source
as an S-wave, v denotes the shear velocity. When the
scatterers are distributed homogeneously, some paths
are longer when the source location is perturbed, while
others are shorter. The resulting mean travel time per-
turbation vanishes [Snieder and Vrijlandt, 2005] . This
can be shown by integrating the travel time perturba-
tion (56) over all take-off directions.

The variance of the travel time perturbation, how-
ever, is nonzero, because some paths are longer when
the source location is perturbed while others are shorter.
The variance of the travel time perturbation depends on
the type of source (explosion, point force, double cou-
ple), as well as on the orientation of the perturbation
of the source location relative to the source mechanism
[Snieder and Vrijlandt, 2005]. An important application
is the location of aftershocks. In that case all events are
located in the plane of the fault-plane of the main shock.
Snieder and Vrijlandt [2005) show that in this case the
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variance of the travel time is given by
(= %)
PR
o = %7‘2 . (57)
2 3
7 26 + F‘

In this expression o is the P-wave velocity, and 3 de-
notes the shear-wave velocity. This expression depends
on both velocities, because the path summation includes
waves that leave the source as a P-wave, as well as waves
that leave the source as an S-wave. The P- and S-wave
velocities in expression (57) are raised to high powers.
Since 8 < a, the terms with the shear velocity dominate.
Note that expression (57) depends on the distance r be-
tween the events, but not on their relative orientation
in the fault plane. The reason for this is that the av-
eraging (38) in this application involves an integration
over all take-off directions. In this directional averaging
information on the direction of the event separation is
lost.

Expression (57) can be used to estimate the source
separation in the following way. For several time win-
dows in the coda the time-shifted correlation coefficient
can be computed from expression (7). Using expres-
sion (39), the maximum of this function can be equated
to the variance of the travel time perturbation given
by equation (57). The resulting expression can then be
solved for the event separation r. In the presence of sig-
nificant noise, the correction factor of equation (40) can
be used to eliminate the bias in the cross-correlation due
to noise.

Snieder and Vrijlandt [2005] applied this technique
to events on the Hayward Fault, California, and showed
that the event separation obtained from the coda waves
agrees with the event separation of the same events de-
termined by Waldhauser and Ellsworth [2002] with the
double-difference method.

Note that the estimation of the event separation
can be carried out with a single station. An error esti-
mate of the event separation can be obtained by com-
paring the event separation inferred from different non-
overlapping time windows in the coda.

7 DISCUSSION

The main result of the theory of this paper is that the
time-shifted correlation coefficient of expression (7) can
be related to the mean and variance of the travel time
perturbation. According to expression (36), the mean
travel time perturbation follows from the shift time that
gives the maximum of the time-shifted correlation coef-
ficient, and equation (39) relates the maximum of the
cross-correlation coefficient to the variance of the travel
time perturbation. This means that the mean and vari-
ance of the travel time perturbation can be obtained
from a comparison of the coda waves before and after
the perturbation. Additive random noise leads to a bias

in the maximum of the correlation coefficient, this bias
can be removed using the correction factor of expression
(40).

The present theory can be applied to a constant
change in the velocity, to uncorrelated perturbations
in the locations of the scatterers, and to changes in
the source position. For a change in the velocity (sec-
tion 6.1), the means travel time perturbation is nonzero
(equation (45)), but the variance of the travel time per-
turbation is zero (expression (46)). For random per-
turbations in the scatterer location the mean travel
time perturbation vanishes (expression (51)), but ac-
cording to equation (52) the variance of the travel time
is nonzero and depends linearly on time. This con-
trasts the case of a perturbation in the source position
where the mean travel time perturbation also vanishes
and where according to expression (57) the variance is
nonzero and independent of time. In general, it may not
be obvious how a medium is perturbed. As shown above,
the three different perturbation leave a different imprint
on the mean and the variance of the travel time per-
turbation. Since these quantities can be estimated for
several independent windows of the coda waves using
the time-shifted correlation coefficient, it is possible to
discriminate between these different perturbations using
the recorded coda waves.
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ABSTRACT

Coda wave interferometry (CWI) utilizes multiply scattered waves to diagnose
small changes in a medium by using the scattering medium as an interferometer.
Since the medium is usually stationary over the duration of a seismic experi-
ment, different (non-overlapping) time windows in the coda allow for indepen-
dent estimates of the medium perturbation. If the seismograms are contami-
nated with noise, only those time windows can be used for which the amplitude
of the coda is above the ambient noise level. This limits the usable number
of independent time windows. Here, we show how bias due to noise in CWI
can be accounted for, by deriving a correction factor for the cross-correlation
coefficient. This correction factor allows more time windows further into the
decaying coda to be used, and hence allows for a reduction of the error bars on
the medium perturbation estimates. We demonstrate the validity of this correc-
tion factor by using data from a numerical experiment and field measurements.
These experiments involve the displacement of point scatterers and a change
in the source location, respectively. The application of our correction factor is
not limited to CWI, but can be used to correct for bias induced by noise in
any application that uses cross-correlation between different signals that are
contaminated with noise.

Key words: Scattering, seismic coda, monitoring, noise, earthquake location

Introduction

Multiply scattered wavefields have been experimentally
shown to be remarkably stable with respect to pertur-
bations of the boundary conditions of experiments with
multiply scattered waves (Derode et al., 1995; Derode
et al., 1999). Due to this stability, the information car-
ried by multiply scattered waves has been successfully
used in an industrial context [e.g. Fink (1997)]. Coda
wave interferometry (Snieder et al., 2002; Snieder, 2002;
Grét et al., 2004b; Grét et al., 2004c; Snieder, 2004a)
uses multiply scattered waves to detect small changes by
using the scattering medium as an interferometer. Since
multiply scattered waves dominate the final portions of
a seismogram, they are usually referred to as coda waves
just as, in musical notation, the coda denotes the clos-
ing part of a musical piece. Hence the name coda wave
interferometry (CWI). Since CWI uses multiply scat-
tered waves, it is inherently more sensitive to changes
in the medium than are techniques based on single scat-

tering, as multiply scattered waves sense changes in the
medium multiple times.

In parallel, but independently, diffusing acoustic
wave spectroscopy (DAWS) (Page et al., 2000; Cowan
et al., 2002) was developed as the classical equivalent
of diffusing wave spectroscopy (DWS) (Maret & Wolf,
1987; Pine et al., 1988; Yodh et al., 1990; Weitz & Pine,
1993). In DWS light is used to study different aspects
of strongly scattering media, whereas in DAWS classi-
cal waves are used to probe such media. DWS has been
used in many applications such as, e.g., determining the
aging of foams, particle sizing, and determining the mo-
tion of particles in fluidized suspensions on angstrom
length scales (Weitz & Pine, 1993). So far, DAWS has
mainly been used to determine the relative mean square
displacement of fluidized suspensions of particles (Page
et al., 1999; Cowan et al., 2000; Page et al., 2000; Cowan
et al., 2002). CWI has been succesfully used to measure
the nonlinear dependence of seismic velocity in rocks on
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temperature (Snieder et al., 2002), to monitor volcanos
(Grét et al, 2004a), and to estimate source displace-
ment (Snieder & Vrijlandt, 2004). The ability to use
CWI to determine the relative mean square displace-
ment of point scatterers from noise-free waveforms was
established using a numerical experiment by (Snieder
et al., 2002). Both CWI and DAWS use the amplitude
information as well as the phase information of the mul-
tiply scattered wavefields, and are both based on a path
summation approach to model the multiply scattered
wavefields. Hence, both methods are in principle the
same, but have been used for different applications.

CWTI is based on a measure of cross-correlation be-
tween multiply scattered wavefields recorded before and
after a medium has changed. The cross-correlation co-
efficients calculated for different (non-overlapping) time
windows provide independent estimates of the medium
perturbations. These independent estimates in turn al-
low for the calculation of error estimates of the pertur-
bation; the larger the number of independent (unbiased)
measurements, the smaller the error estimates.

When the coda is contaminated with noise, the
number of independent time windows that can be used
is limited to traveltimes where the ambient noise level is
small compared to the amplitudes of the multiply scat-
tered waves. To be able to use as many independent time
windows as possible, and hence reduce the error bars on
the inferred perturbation, it is important to correct the
cross-correlation function for the bias caused by noise.
In this paper, we show how this bias in CWI can be cor-
rected for, by deriving a correction factor for the cross-
correlation coefficient. We demonstrate its validity by
using data from a numerical experiment involving the
displacement of point scatterers, and field data involv-
ing the displacement of the source location.

The organization of this paper is as follows. We first
review the principles of CWI and then derive the noise
correction factor. Subsequently we show the validity of
the correction factor using the numerical and field ex-
periments mentioned above. We conclude with a short
discussion of the results. In appendix A we derive a con-
dition for the reliability of the correction factor. This
condition can be used to determine the time windows
in the coda where the correction factor is reliable.

Coda wave interferometry

Coda wave interferometry is based on a path summa-
tion approach, which is a generalization of the Neumann
series solution of the Lippmann-Schwinger equation for
scattering of classical waves [e.g. Snieder (1999)]. This
path summation can be represented as

wl(t) = Ar(t), (1)
T

where T denotes the different trajectories the waves
have traveled, and the function Ar(t) denotes the con-

tribution of trajectory T' to the multiply scattered wave-
field. The subscript in u, (¢) denotes that the wavefield is
recorded from the unperturbed medium. Here, for sim-
plicity, we treat acoustic waves, but the theory has been
generalized to elastic waves (Snieder, 2002).

Now suppose the medium has changed, and that
the main contribution of the change to the wavefields
is a perturbation of the traveltime of each trajectory
T. [This is obviously not universally true for any type
of perturbation of the medium, and limits the appli-
cability of our subsequent results to certain types of
perturbations. For the perturbations studied in this pa-
per however, i.e., small displacement of the scatterers
and change in the source location, this turns out to be
an acceptable assumption.] Using this, we can write the
multiply scattered wavefield in the perturbed medium,
denoted by u,(t), as

up(t) = Y Ar(t—r), ()
T

with 77 the change in the traveltime for trajectory T
due to the perturbation in the medium.

To measure the change in waveform due to the
medium perturbation, we define the correlation coef-
ficient 7(¢, ¢s,tw) as

(s 5)
Pty te tu) = = ety) ,®
\/(uu:u")(t,o,c.,,) (up, “p)(z,o,t..,)
with
ttw ’ ’ !
() = [ @l ), @)
t—ty

where t; is the time-shift in the cross-correlation, and
2ty is the length of the time window. The maximum
of this correlation coefficient occurs at time-shift ¢, =
(7), where (7) is the mean traveltime change given by
(Snieder, 2002)

SrAtrr
Ty = . (5)
SR A
Using equations (1) and (2) in equation (3), Snieder et
al. (2002) and Snieder (2002) show that the maximum
value of this cross-correlation function, r,(,f;.‘x”), is given
by

i =1- 22, (©)

where the frequency w? is given by
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w
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Here, @ denotes the time derivative of u(t). The variance
of the traveltime perturbation, o2, is given by

3 = ZT A%Z(TZ; (T)) . (8)
T'T

o



In expression (8) and equation (5), the summations con-
cern only trajectories with arrival times in the window
with central window time ¢ and window duration 2¢.,.
In deriving equation (6), it is assumed that the dou-
ble sums over trajectories T and T with T' # T’ are
on average incoherent, and used a second-order Tay-
lor expansion of the cross-correlation function in the
quantity 77 — {7) (Snieder, 2002). The latter approx-
imation is valid when the traveltime perturbation due
to the medium perturbation is smaller than the domi-
nant period of the multiply scattered wavefields. Snieder
(2004b) showed that the double sums over trajectories T
and T’ with T # T, are proportional to 1/vZ,Af, with
Af the bandwidth of the signal, so that their impor-
tance thus reduces for larger time windows and larger
bandwidth data.

Correcting for the bias due to noise

So far, we assumed the waveforms u.(t) and u,(t) to be
free of noise. To study the influence of noise on CWI, we
derive a correction factor for the correlation coefficient
when the waveforms u,(t) and u,(t) are contaminated
with noise. We define

wh(t) = ual(t) + nu(t),  up(t) =up(t) +mp(t),  (9)

where u/,(t) and u}(t) are the noise-contaminated sig-
nals, u,(t) and u,(t) the noise-free waveforms, and
nu(t) and n,(t) the noise signals for the unperturbed
and perturbed wavefields, respectively. Using the noise-
contaminated signals, we define the noise-contaminated
cross-correlation coefficient as

1
(%40 ¥p) (1, 1)
\/(u(,, '“'(t)(t,o,zw) (uh ) (£,0,tw)

Our aim is to derive a correction factor ¢(t, s, tw) such
that

T(t, ts, tw) = (b, tsy tw)T' (E ts, tw) - (11)

' (,ts, tw) =

(10)

Throughout the remaining derivation, we assume that
these noise signals are identically and independently
distributed (i.i.d.), and wide-sense stationary with zero
mean [i.e., the mean is zero for all times, and the auto-
correlation depends only on the time shift ¢, (Papoulis,
1991, p. 298)).

Using equation (9), we find

(W) ey = (W080)(e 00y F (B0 0)( e 0)
+ (Ups w12, 1)
+ (M, np)(t,t,,tw) ) (12)
(s u:‘)(t.o.tw) = (U, Uu)g0,00) T2 (us ) (1,0,60)
+ (nu’nu)(z,o,tw) ) (13)

(up, up)(;,o,t..,) + 2 (up, "p)(;,o,tw)

+ (nPsnP)(z,o,zw) . (14)

(u;,, u;’)(t,o,tw)
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In equations (12)-(14), terms of the form (u,n) (., +.,)
appear, where u = u(t) is a deterministic signal and
n = n(t) a realization of a stochastic process. Using
that the noise signals have zero mean, we then find that

(u’ n)(t,g,,tw) =0 ’ (15)

provided the window length t., is at least several dom-
inant periods of the noise-contaminated signal. For the
terms (1w, Np)(y,e, t.) and (np, u)(y 4, ¢,,) 1D equations
(12)-(14), we use the independence of the noise realiza-
tions to find

(nu; np)(g‘ts,gw) ~ 01 (16)

with the same assumption for the window length t., as
used in equation (15). Approximations (15) and (16)
become more accurate with increasing window lengths.

Using equations (15) and (16) in equations (12)-
(14), it follows that

(s “;)(z,:,,zw) (W, Up) (4,40 (17)
(“L’“:‘)(:,o,cw) (U, Uu)(2,0,t0,)
+ (M, M) (0,00 (18)

(up, up)(z,o,z..,)
+ (np, nP)(t,O,tw) . (19)

Using these approximations in equation (10), and sub-
stituting the resulting expression in equation (11), it
follows that the correction factor ¢(t,ts,tw) is approxi-
mately given by

(u;,, up) (£,0,tw)

c(t:t-‘htw) =~

(w8 ) (e.0,t) (5 45) 0.

This correction factor c(t, ts, tw) depends on the un-
known noise signals n.(t) and np(t). In practice, as-
suming the noise is stationary, we can estimate these
noise signals using the recorded wavefields u.(t) and
up(t) before t = 0 of the experiment. This gives us es-
timated noise signals 7 (t) and 7i,(t). Replacing n.(t)
and n,(t) in equation (20) with their estimated coun-
terparts, is a good approximation only if the terms of
the form (u,n),,. ., 2nd (s Mp) (1,1, 1) D €QuUations
(12)-(14) are small compared to the remaining terms.
Hence, for this replacement to be valid, we want the
following inequalities to hold:

[(@as op ) (2,20, t0) T (Ups P ) (1t ,00) T (T 5 ) (2,0 tw) |

& (wuy p)(tytartu) | » (21)
2|(tu, 2 ) (2,0,t)

& (U, Uu)(2,0,) T (Pus Nu)(8,0,tw) | 1 (22)
2|(up, mp) (1,0,t)]

< [(up, up)(£,0,t0) + (M Np)(t.0,tw)) - (23)

In appendix A we rewrite these three inequalities into
one inequality that can be evaluated using only the noise

T
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Figure 1. Unperturbed (filled circles) and perturbed (open circles) locations of the point scatterers in the medium. For display
purposes the differences between the unperturbed and perturbed locations are magnified by a factor 10. The star denotes the
source and the triangles the receivers. The modeled seismograms are shown for three receivers. The drawn seismograms are
related to the unperturbed scatterer locations, and the dotted seismograms to the perturbedlocations. For times later than
t = 4.7 x 10~ 2s (marked by the dotted line), the waves have scattered more than four times. The horizontal bar indicates the
window length for the time-windowed cross-correlations used to calculate the RMS displacement § shown in figure 2.

contaminated signals u,, (t) and u},(¢), and an estimated
noise signal no(t). The resulting inequality [equation
(A5)] then determines if a certain time window has a
reliable correction factor associated with it, when the
unknown noise signals n,(t) and n,(t) in equation (20)
are replaced with no(t). Replacing n.(t) and n,(t) with
no(t) in equation (20), the correction factor is given by

ot te, tw) =

1
(no’no)(t,o,tw) - (no,no)(tlo tw) 2
1~ RS VPV 1= = (24)
wr U/ (8,0,t) (uP’uP)(L,o,tw)

and is considered reliable if inequality (A5) is satisfied
with an appropriate value of v [O(1071)].

To derive condition (A5), we assume that the noise
is stationary and that n,(t) and n,(¢) have about the
same noise levels, (i.e., the same variance). If the noise
levels of n.(t) and n,(t) are substantially different, sep-
arate noise estimates of n,(t) and n,(t) can be used in

equation (20) to calculate the correction factor. In this
case condition (A5) does not apply, and a new condi-
tion could be derived. To avoid belaboring the point, we
refrain from such a treatment.

Displacement of the scatterers

The problem of inferring the average displacement of
scatterers in a strongly scattering medium from the mul-
tiply scattered wavefields, has been used to study fiu-
idized particle suspensions (Weitz & Pine, 1993; Heck-
meier & Maret, 1997; Page et al., 1999; Cowan et al.,
2000; Page et al., 2000; Cowan et al., 2002). In geo-
physics, this problem may be relevant when a strongly
scattering region in the earth is strained, causing the
scattering heterogeneities to move. In such a situation
the displacement of the scatterers is not expected to
be random, but will be correlated among scatterers.



Here, we present a numerical experiment with point
scatterers in a homogeneous background model, where
we randomly perturb the scatterer locations and use
CWI to infer their root-mean-square (RMS) displace-
ment. Although this experiment is not directly related
to a changing strain in the earth, it serves the purpose
of testing the workings of our correction factor.

Snieder & Scales (1998) showed that for inde-
pendent perturbations of the scatterer positions and
isotropic scattering, the variance of the path length L
is given by

ol = 2né? (25)

where n is the number of scatterers in the path, and § is
the RMS displacement of the scatterers in the direction
of either coordinate axis (horizontal and vertical for two
dimensions). Note that Snieder and Scales assume all
directions of random displacement to be equally likely.
As a result, the RMS displacement is the same in each
direction (horizontal and vertical for 2D), i.e., for 2D the
true RMS displacement would be v/25. Using that the
number of scatterers is on average given by n = vt/l*,
with [* the transport mean free path (Lagendijk & van
Tiggelen, 1996) and v the velocity, and using L = vt, it
follows that the variance of the traveltime perturbations
is given by
2
vl*
Inserting this in equation (6), it follows that the RMS
displacment & can be found from

(26)

5= /(1) 2 27)
w2t

Since the perturbations of the scatterer locations are
assumed to be independent, and since the scattering is
assumed to be isotropic, the mean traveltime pertur-
bation (r) = 0. This means that the maximum of the
cross-correlation function r,(,f;,t,l" ) occurs at zero lag, i.e.,
ts =0.

Figure 1 shows the setup of our numerical experi-
ment to test the inference of the scatterer displacements
from the seismic coda using equation (27). This exper-
iment was also outlined by Snieder et al. (2002). One
hundred point scatterers (solid dots) are contained in
an area of 40 x 80 m?, and the waveforms are calcu-
lated using a numerical implementation (Groenenboom
& Snieder, 1995) of Foldy’s method (Foldy, 1945). The
resulting seismograms are shown by the solid lines for
three locations on the edge of the area, and the source
location is indicated by the asterisk. In these calcula-
tions the scattering amplitude was set to —4i, in or-
der to get the maximum possible scattering strength
as constrained by the optical theorem [(Groenenboom
& Snieder, 1995); in their notation we used y = 4].
The background velocity equalled 1500 m/s and the

source spectrum S{w) = e~"/“8 | with w the angular
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Figure 2. Inferred RMS displacement § as a function of the
center window time ¢ (solid line) plus or minus one standard
deviation (dotted lines). The true value of d is indicated by
the horizontal solid line. The range of validity of CWI is indi-
cated by the vertical lines. The half-window time t,, used in

calculating the time windowed correlation coefficient equals
0.01s.

frequency, wo = 27 fo, and fo = 600 Hz. The frequency
band used was 400 — 800 Hz, with a resulting domi-
nant frequency of about 500 Hz due to tapering on ei-
ther side of the spectrum. Since in our experiment we
have isotropic scattering, the transport mean free path
equals the mean free path, ie., I" =L The mean free
path in our experiment was measured to bel = 17.6 m,
which, using n = vt/l, can be used to infer that after
t = 4.7 x 10~ 2 s the waves are on average scattered more
than four times. This time is indicated in Figure 1 by the
dotted vertical line. The perturbed scatterer locations
are indicated by the open circles in Figure 1. For display
purposes the displacements are magnified by a factor 10.
The actual RMS displacement dtrue = 8X 10~2 m in both
the horizontal and vertical direction. This displacement
equals just 1/38 of the dominant wavelength (the dom-
inant wavelength A = 3 m). The resulting waveforms
calculated using the displaced scatterers are shown for
three receivers by the dotted lines.

Figure 2 shows the inferred value of § (using equa-
tion (27)] as a function of the central window time ¢,
where the estimated values for § from all 21 receivers
were averaged. [The receiver spacing was chosen such
that the calculated multiply scattered waveforms were
uncorrelated, meaning they can be treated as indepen-
dent.] The dotted lines show the average inferred value
of § as a function of time plus or minus one standard
deviation. The half-window duration t,, was 1072 s, re-
sulting in a window length of 10 dominant periods, and
\/Zuz — 3.66 x 10° rad/s. The vertical dotted lines indi-
cated the range of validity of equation (27). For early
times (i.e., t < 4.7 X 1072 s) the relation n = vt/l
for the number of scatterings used in the derivation
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Figure 3. An example signal without noise (drawn) and
with noise (dotted). The horizontal bar indicates the win-
dow length for the time-windowed cross-correlations used to
calculate the RMS displacement § shown in figure 4.

of equation (27) is not valid, and for late times (i.e.,
t > 2.9x 107 's), the second-order Taylor approximation
of the auto-correlation of the source signal is inaccurate
by more than 15%. This latter time is indicated by the
rightmost dotted vertical line in Figure 2. Within the
range of validity of equation (27), the true displacement
is recovered within the range given by the average RMS
displacement plus or minus one standard deviation. For
late times, the correlation coefficient is close to zero and,
according to equation (27), the inferred value of § is then

given by /vl/ (Et) This function is indicated by the

dashed line in Figure 2 and indeed agrees well with the
inferred value of § for late times. For these times the in-
ferred value of 4 is of course no longer a good estimate
of the true RMS displacement.

As mentioned in the introduction, when the wave-
fields are contaminated with noise, the number of in-
dependent time windows that can be used is limited to
traveltimes where the ambient noise level is small com-
pared to the amplitudes of the multiply scattered waves.
In order to be able to use as many independent time
windows as possible, and hence reduce the error bars on
the inferred perturbation, it is important to correct the
cross-correlation function for the bias due to the noise.
To test the correction factor in equation (24), we added
band-limited noise to the waveforms for all 21 receivers
from our numerical experiment. The bandwidth of the
noise was the same as that of the noise-free signals (i.e.,
400 — 800 Hz). Figure 3 shows a waveform with and
without the added noise. Using the noise-contaminated
waveforms, we again calculated the inferred values of &
both with and without the correction factor; see Figure
4c and 4b respectively. For reference, Figure 4a shows
the inferred value of § when the noise-free signals were
used. Figure 4b shows that the noise induces a bias in
the estimated value of §; the presence of noise reduces
the correlation between the unperturbed and perturbed
waveforms, and causes the inferred values of §, calcu-
lated using equation (27), to be larger. For early times,
the true value of § is embedded within the average value
of é plus or minus one standard deviation, but the esti-
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Figure 4. Inferred value of § as a function of the central
window time ¢, obtained using equation (27) with the noise-
free signals (a), with the noise-contaminated signals and no
application of the correction factor (b), and with the noise-
contaminated signals and application of the correction factor
using equation (24) (c).

mated average value of § is too high, especially for later
times, where the lower amplitude values of the coda
result in lower signal-to-noise ratios. Figure 4c shows
that the correction factor from equation (24) accurately
accounts for the bias due to the noise. The noise es-
timates were obtained using the signal before the main
first arrival in the seismograms. In the calculation of the
results shown in Figure 4c, we used condition (A5) for
each receiver, with y = 0.125 to select the time windows
used for the inversion of § [note that this is a different
than that used by Groenenboom & Snieder (1995)]. As
a result, the number of receivers that had usable time
windows for a given central window time ¢, varies for dif-
ferent ¢. This causes the jagged appearance of the aver-
age inferred value of § (and the standard deviation). We
used a time window only when at least seven receivers
(i.e., 30% of the receivers) satisfied condition (A5) at
the central window time ¢. After t ~ 9 x 1072 s fewer
than seven time windows satisfied condition (A5) with
7 = 0.125, and hence the correction factor was judged
unreliable. As a result, the noise-corrected estimates of
the RMS displacement are not shown for times larger
than t ~ 9 x 1072 s,

Source separation

Snieder & Vrijlandt (2004) used CWI to estimate the
distance between seismic events having the same source
mechanism, that are recorded at a single station. They
derive the imprint of a change in source location on
the variance of the traveltime differences, and then use
equation (6) to infer this change from the maximum of
the cross-correlation function, i.e., 45 . For two double-
couple sources with a source separation in the fault
plane, they show that the relation between the source



displacement As and the variance of the traveltimes o?
is given by

6.7
of = :(é;r—ﬁ%(m)’ ; (28)

where o and 3 are the P and S wave velocities, respec-
tively. Different non-overlapping time-windows provide
independent estimates of the source separation. These
independent estimates in turn allow for the calculation
of error estimates of the source separation.

Figure 5a shows two seismograms (events 242003
and 242020) from earthquakes on the Hayward fault,
California (Waldhauser & Ellsworth, 2000), recorded at
station CSP of the Northern California Seismic Net-
work. The recorded signal before the arrival of the P
wave shows that the noise level is considerable. Figure
5b shows the maximum of the time-windowed cross-
correlation function without the correction factor (thin
line) and with the correction factor (thick line) applied,
and Figure 5c shows the inferred values of the source
separation using equation (28). Here the estimate of
the noise, i.e., no(t), was obtained from the waveforms
before the first arrivals. The half-window duration %.
used is 5 s (the full window length is indicated by the
horizontal bar in Figure 5a), and the P and S wave ve-
locities used to calculate the source displacement are
a = 5750 m/s and B = 3320 m/s, respectively. Note
that we used overlapping time windows, since we plot

(ttw) . .
ridw) simply as a continuous function of the central
window time t. Of course, non-overlapping windows
could be used to ensure independent estimates of the
source separation.

Figure 5b shows that the corrected values of ritte )
maintain a fairly constant level for times ¢ late in the
coda, whereas the uncorrected values decrease earlier in
the coda because the noise decreases the similarity be-
tween both waveforms. As a result, the inferred values
of the source separation using equation (28) are more or
less constant for larger traveltimes when the corrected
values of r,(,:;,t,;") are used (Figure 5c). This indicates
that the correction factor c(t,ts,tw) given by equation
(24), accurately corrects for the influence of the noise
on the cross-correlation function. For very large times
(say t > 40s) the corrected values are more variable
because the correction factor becomes unreliable. We
purposely showed the times where the corrected val-
ues become variable, to indicate the level of variation
caused by an unreliable correction factor. Of course,
the time where the correction factor becomes unreliable
could have been estimated using condition (A5) with an
appropriate value of y [0(1071)].
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Figure 5. Two seismograms from two earthquakes on
the Hayward fault, California, recorded at station CSP of
the Northern California Seismic Network (a), their cross-
correlation maximum 1'5,‘.1:;’ ) (b), uncorrected (thin line) and
corrected (thick line), and the inferred source displacement
(c) using both the uncorrected (thin line) and corrected
(thick line) values of rs,t,;ta‘g" ) shown in (b). The horizontal
line in (a) indicates the window length used in the cross-
correlation.

Conclusion

We have derived a factor that corrects for the influ-
ence of noise on the cross-correlation function, and have
shown its accuracy using both numerical and field data.
The application of this correction factor is shown in the
context of CWI, for the inference of the RMS displace-
ment of scatterers and a displacement of the source,
from multiply scattered wavefields. For the displace-
ment of the scatterers, we showed that in the presence
of noise, a displacement of only 1/38 from the dominant
wavelength can be succesfully retrieved from the cross-
correlation between the unperturbed and perturbed sig-
nals. This shows the power of CWI when compared to
methods that use singly-scattered waves only.

Since for both the scatterer displacement and
source separation cases, the perturbation is independent
of the traveltimes of the multiply scattered waves, using
non-overlapping time windows to estimate the pertur-
bations provides a consistency check of the method, and
allows the calculation of error estimates. In this context,
our correction factor is relevant, as it increases the num-
ber of usable time windows and hence allows for a re-
duction of the error estimates. In addition the correction
factor adjusts for bias in the cross-correlation induced
by the noise. Since our factor depends on an estimate of
the noise level in the data, we present a condition that
allows determination of the reliability of the correction.
This condition can be verified using only noise contam-
inated signals and an estimate of the noise level in the
data. Using this condition, the time windows used in the

il
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windowed cross-correlation can be judged to be reliable
or not.

The use of the proposed correction factor is of
course not limited to CWI. Any application that uses
cross-correlations between different and noisy signals,
and needs to correct for bias induced by noise, can ben-
efit from the correction factor presented here.
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APPENDIX A: A CONDITION TO
ESTIMATE THE RELIABILITY OF THE
CROSS-CORRELATION CORRECTION
FACTOR

Equation (20) for the correction factor of the cross-
correlation coefficient, depends on the unknown noise
functions n,(t) and n,(t). In practice, we don’t know
these noise functions, and can at best estimate the aver-
age noise levels. Since in practice we often only have one
estimate of the noise level, as opposed to some ensem-
ble average, we want the correction factor to be reliable
when the unknown noise signals in equation (20) are
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replaced by a single estimate of the noise. If inequalities (21)-(23) are satisfied, the correction factor will only weakly
depend on the estimate of the noise signals. Here we rewrite these inequalities into one inequality that can be verified
using the noise contaminated signals and an estimate (or single realization) of the noise no(t).

To write inequalities (21)-(23) as a single one, we first add the left- and right-hand sides of equations (21)-(23),
while multiplying equation (21) by two for convenience in the further derivation. This gives

2 (| (s Pp)(e,tartu) F+ (o ) (1,20,00) + (s Pp) et | T |(uu, B (2,0,60)| + | (ps Tp) 20,80)])
<
2ty Up) (1,80 ,00) | F (Uit U ) (1,0,00) F+ (Ms M) (1,0,8) + (Upr Up)(0,0w) + (M0 M) (10,80 » (A1)
where we have used that zero-lag auto-correlations are positive definite. If conditions (21)-(23) hold, equations (17)-

19) from the main text are good approximations. We can use these approximations, together with the linearity of
g P
(* 5 )(t,t0,ta) @Nd equation (9), to approximate inequality (A1) as

20(th, Mp)(tt0,t) F (s T ) (t1t0,00) — (P Tip) (1t )|
+2| (1, u ) (2,0,80) — (P, ) (1,0,80) | T+ 2|(up, np)(1,0,tu) — (75, 1) (2,0,t) |
<
2| (U, Uy ) (trt0t0) | F (s W) (2,0,820) F (s Up) (£,0,t0) - (A2)

Since in CWI we assume that the travel-time perturbations in the time window [t — tw,t + tw] are small, we
expect a positive cross-correlation between the signals u(t) and up(t) for times where CWI is valid. Using this, we
can write condition (A2) as

(0 + 1, 70) (1,00 00y | F (e 10) (20,60 — (110, 20)(t.0,60)| + (U 0)(2,0,60) — (M0s M0) (10,01
< 2[us + upl/2, [ + 45}/2)(e.0,00) (A3)

where we substituted for both noise signals n.(t) and n,(t) the estimated noise signal no(t), and we assumed
|(nu,np)(,,t,,¢w)| & (Ui mo)iestartw) + (Uhy Mu)(t,t0,t0) | to eliminate the (nu,mp)(et,,e,) term. The latter approxi-
mation is more appropriate for larger signal-to-noise ratios, larger time windows, and uncorrelated noise realizations
nw(t) and n,(t). Note that substituting a single noise signal for both unknown noise signals n.(t) and np(t) is ap-
propriate only, if both noise signals have similar noise levels. Dividing both sides of condition (A3) by (70, 70)(t,0,tw)
(which is positive definite), and defining the ratio

([t + up)/2, [ +u3l/2) 4 0,00

(it tw) = (Ad)
(“O:no)(:,o,tw)

inequality (A3) leads to

1 ( (W + Uy 0) bt |, | Wirm0)worw) 4| |prm0de0tw) 4 ) Tt tw) <7 (A5)

2 (n0,70)(£,0,tw) (10,70)(,0,t,) (n0,10)(£,0,tw)

where v is O(107!). Here /T'(¢,tw) can be interpreted as the average signal-to-noise ratio.

Condition (A5) is satisfied only for time windows that have a large average signal-to-noise ratio. The L.h.s of
condition (A5) can be evaluated using the noise contaminated signals u’,(t) and u,(t), and an estimated noise signal
70(t). This condition can thus be used as a selection criterion to determine which time windows have reliable correction
factors associated with them, when an estimated noise signal no(t) is used (i.e., when equation (24) is used to calculate
the correction factor). Note that « can be interpreted as the inverse of the signal-to-noise ratio.
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ABSTRACT

Observing the azimuthally varying seismic attenuation in data that show az-
imuthal velocity anisotropy could contribute not only to the interpretation of
the subsurface symmetry systems, but also to the characterization of its phys-
ical parameters. In this paper, we estimate azimuthal variations of the P-wave
effective quality factor (Q) from field surface seismic data. We also provide an
interpretation of our results taking into account the NMO ellipse parameters
measured from the data, and potential bias caused by systematic noise. By
assuming that Q is frequency independent, and the medium at each particu-
lar azimuth the medium is laterally homogeneous, we use the spectral ratio
method and a regularized linear inversion scheme to estimate the quality factor
in azimuth-sectored data. The regularization parameters are chosen by a x?
criterion that is based on estimates of the variance in the field data. Tests on
synthetic data show that this regularized inversion provides robust estimates
of Q for signal-to-noise ratios lower than those observed in the data. Appli-
cation of this methodology to P-wave data from the East Decatur Field in
Texas yields non-negligible azimuthal variations in Q. The azimuthal signature
of attenuation appears to be consistent with the effective NMO ellipse from
the same interface. However, data residuals show non-random structures that
suggest a strong systematic component to the noise. We provide a brief analy-
sis of scattering-related absorption and of frequency imprints of source-receiver
arrays as possible sources of systematic noise.

Key words: attenuation, azimuthal anisotropy, regularized inverse solution

1 INTRODUCTION

An important dynamic effect for wave propagation in
elastic media is attenuation. In media containing aligned
cracks on scales smaller than the dominant seismic
wavelength there should be azimuthally variable signa-
tures of attenuation. These azimuthal attenuation varia-
tions may be valuable tools in identifying and character-
izing fractures in the subsurface. Fractured formations
are also known for showing azimuthal velocity aniso-
tropy signatures. Jenner (2001) used azimuthally vary-
ing normal-moveout (NMO) velocities and AVO signa-
tures from P-waves to identify fracture zones at the
Weyburn field in Canada. Adding shear-wave splitting

analysis to the information obtained by Jenner (2001),
Cardona (2002) was able to interpret the predominant
anisotropic symmetry systems at the reservoir level at
Weyburn. Cardona (2002) also suggested that shear-
wave splitting at vertical incidence could be affected by
changes in saturation for certain fracture rheologies.

It is somewhat intuitive to expect that formations
that are anisotropic with respect to velocities should
have associated signatures of attenuation anisotropy.
Indeed, experiments conducted in anisotropic physical
models (Hosten et al., 1987; Arts and Rasolofosaon,
1992) showed that not only attenuation has a directional
dependence but also the magnitude of its anisotropy
can be more significant than that of velocity. Another
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experiment conducted by Prasad and Nur (2003) re-
lates P-wave attenuation anisotropy to the texture of
sedimentary rocks. Clark et al. (2001) estimated az-
imuthal variations of attenuation from four sail-line pro-
files extracted from a 3D marine dataset acquired off-
shore West Africa. Their interpretation of the princi-
pal orientation of the azimuthally variable attenuation
is consistent with fracture orientations infered from az-
imuthally variable AVO.

Taking attenuation into account is also important
because of its sensitivity to fluid content. Through 1D
Biot equations for poroelastic media, Gurevich et al.
(1997) provided an analytical description on how inter-
layer flow caused by wave displacement influences atten-
uation. From crosswell data collected at the Buena Vista
Hills field, Hackert et al. (2001) used attenuation esti-
mates in lithology identification which served as input
to a later study by Parra et al. (2002), who used the
information of higher attenuation zones to character-
ize fluid infill in fractured shale formations. Obtaining
azimuthally variable estimates of attenuation can help
not only in estimating the orientation of fractures, but
also in characterizing some of their physiral properties
(Rathore et al., 1995; Lynn et al., 1999).

A common parameter used in attenuation estima-
tion is the quality factor, or Q, which is inversely pro-
portional to attenuation. There are many methodolo-
gies available for estimating Q. Dasgupta and Clark
(1998) use the spectral ratio method to invert for Q
using stacked power spectra extracted from stretch-
compensated NMO-corrected gathers. In a physical
modeling experiment Zhu (2005a) applies the spectral
ratio method to analyze variations of attenuation with
polar angle. Using prestack data, Hicks and Pratt (2001)
apply a tomographic approach based on local descent
methods to estimate the quality factor. Also in the con-
text of surface seismic data, Zhang and Ulrych (2002)
use the peak frequency shift in the power spectra from
different time windows to invert for Q. Quan and Har-
ris (1997) also rely on the peak frequency shift method
in crosswell tomography to estimate attenuation. Ac-
cording to Mateeva (2003), Q can be estimated reliably
from surface seismic as long as the subsurface can be de-
scribed by a model with stationary reflectivity, bounded
by a free surface. The methodology we describe in this
paper makes use of the spectral ratio method (Mateeva,
2003; Dasgupta and Clark, 1998; White, 1992) to esti-
mate Q.

Estimating Q related to intrinsic absorption may
prove to be an involved procedure as scattering from
thin layering also contributes to attenuation. In this pa-
per, we use the term effective Q to refer to the total at-
tenuation effect that is due to both intrinsic and scatter-
ing absorption. Mateeva (2003) describes a methodology
to separate intrinsic absorption from multiple scattering
effects in the context of check-shot VSP experiments.
Her approach relies on well log reflectivity data to model

only the scattering component of attenuation, which is
then removed from the effective Q measurements. In
Vasco et al. (1996) scattering absorption is predicted
analytically by ray perturbation theory. We chose to
mode] the scattering component of absorption in an ap-
proach similar to Mateeva (2003). With well log infor-
mation, we can generate synthetic common-shot gathers
using the reflectivity method (Miiller, 1985) with only
layering-induced absorption.

The main goal of this paper is to devise and imple-
ment a methodology that allows for azimuthally varying
estimates of the quality factor. This project was inspired
by the observation of azimuthal velocity anisotropy sig-
natures in the East Decatur field that are likely caused
by fracturing in the reservoir level. This observation
suggested that there would be attenuation anisotropy
signatures associated with velocity anisotropy. By as-
suming our model to be horizontally layered, laterally
homogeneous and that Q only varies with azimuth we
impose that any two trace pairs in a certain azimuth
should yield the same estimate of Q. In practice we en-
force the roughness penalty by means of Tikhonov reg-
ularization (Hansen, 1998). Since the reliability of our
estimates is an important issue, error estimation is done
by linear error propagation (Hansen, 1998; van Wijk et
al., 2002). In order to obtain estimates of the variance in
the data that are independent of model parameters, we
use a nonparametric fitting approach (van Wijk et al.,
2002; Grey and Silverman, 1994). We apply our method-
ology first to synthetic data and then to data from the
East Decatur field. To describe one of the systematic
noise components of the estimates from East Decatur
we predicted the frequency response of scattering at-
tenuation. Another source of systematic noise in our
estimates are frequency distortions caused by stacking
records from source and receiver arrays. Such noise is
analyzed by computing the transfer functions of source
and receiver arrays with the acquisition geometry of the
East Decatur data. A simple formalism for computing
array transfer functions is covered in Appendix B.

2 ESTIMATING THE QUALITY FACTOR

Since the objective of our study is to determine whether
or nor it is possible to measure azimuthal variations of
attenuation from the East Decatur field data, we need
to design an inversion methodology that yields robust
solutions in the presence of noise. Furthermore, it is of
great importance for the chosen methodology to provide
meaningful error estimates to determine if measured az-
imuthal variations of Q are representative of physical
phenomena.

The vast majority of existing methods for Q inver-
sion assume 2D media. The main reason for this is that
until recently there were no models that presented a
closed-form description of the azimuthal variation of Q.
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Figure 1. Noise-contaminated power spectra of the reflected
signal for three traces with offsets 1 > z2 > z3. Model
parameters are the P-wave velocity V = 2.0 km/s, Q = 250
and the reflector depth 1 km. The source pulse was modeled
with a Ricker wavelet. The bandwidth used in the inversion
tests is 30 — 80H z.

In this paper, we assume that any vertical plane repre-
sents a section of horizontally layered, laterally homo-
geneous and isotropic medium. Such assumption allows
us to use all data within a given narrow azimuth sec-
tor to obtain an estimate of the quality factor at that
azimuth. It is therefore necessary to assume that the az-
imuthal variation of Q within a sector is negligible such
that the medium can be considered as laterally homo-
geneous with respect to attenuation.

In a homogeneous isotropic attenuative medium,
the spectrum of the signal at a certain trace j is given
by:

Si(f) = A; W(f)e @ (1)

where f is frequency, t; is traveltime, Q is the quality
factor of the medium and W(f) is the spectrum of the
source pulse. Here we will consider amplitude effects due
to angle-varying reflectivity and geometrical spreading
to be frequency independent, and these effects are ac-
counted for by the term Aj; in equation (1). From equa-
tion (1) we can see that attenuation in a homogeneous
medium at a given frequency is a function of only the
traveltimes, and Q . If we consider two signals recorded
in the same medium and with the same source pulse, by
dividing the spectra S1(f) and S2(f) of the waveforms
recorded at traveltimes ¢, and t2, we find:

Si(f) _ Are @
S:(f)  p,eTF

(2)

Taking the logarithm of equation (2) gives;

Equation (3) shows that the quality factor @ can be
directly estimated from the slope of the ratio of the
spectra (in logarithmic scale) for any two traces, if the
difference in traveltime between the traces is known.
This is the so-called spectral ratio method for invert-
ing for Q (Mateeva, 2003; Dasgupta and Clark, 1998;
White, 1992). For later discussion, note that in equa-
tion (3) the absorption-related effects are contained
in the slope term (frequency dependent), whereas all
frequency-independent effects are contained in the in-
tercept term.

According to equation (3), any two traces with a
given azimuth can be used to obtain an estimate of Q. In
an ideal case, this means that if we had an estimate for
the quality factor for each possible trace pair for a gather
with a fixed azimuthal orientation, then Q should always
be the same. The methodology presented here seeks to
take advantage of this “redundancy” by introducing a
regularization operator. If there are N possible trace
combinations in our azimuth gather, we can take the
i** trace pair and write our inverse problem based on
equation (3) in the form of the following linear system:

Aim; =d;, (4)
where,
—-wfilt; 1
—mfaAt; 1
A.i = . ) (5)
—anAt,' 1

(f1, f2, .., Fn) are the sampled frequency values cor-
responding to the spectral ratio values in d; (left-hand
side of equation (3)), and At; is the traveltime difference
between the two traces in the i** trace pair. The ma-
trix m; contains the intercept and slope (proportional
to 1/Q) model parameters from the two terms in equa-
tion (3). At; is computed from the hyperbolic two-way
traveltime at each trace, taking into account the ellipti-
cal form of the azimuthal variation of normal-moveout
velocity (Grechka and Tsvankin, 1998).

Our model objective function to be minimized in
the inversion is designed in the following manner:

N
f(mi,s) = S [|Aim; — il + X*|[Rs||*;  (6)

i=1
s is a N x 1 matrix whose elements are the slope model
parameters from all m; (1/Q, Appendix A), R is a reg-
ularization matrix and X is its regularization weight-
ing parameter. This particular choice of s assures that
we regularize our inverse problem only with respect
to the slope term in equation (3), without imposing

T
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Figure 2. Generation of the data vector d (equation 8) from seismic traces using equation (6). Seismic data is sorted according
to the CMP number and offset (left hand side). The waveform of the reflection event of interest is windowed on each trace (red
dotted lines denote the time window). Then, for any two traces, we compute the ratio of the power spectra of the event (in
logarithmic scale) on a sample-by-sample basis, which yields the data points on the right hand side panel in the figure. Each
pair of traces provides the data d;, separated by the dashed lines.

any assumptions on the frequency-independent inter-
cept term. The form of the objective function in equa-
tion (6) falls into the category of direct regularization
methods known as Tikhonov regularization (Hansen,
1998).

The first term in equation (6) seeks to minimize the
total misfit between the data (the spectral ratio) mea-
sured for each trace combination and data predicted by
its corresponding m;. This term would be sufficient to
carry out the inversion if the model assumptions were
correct and the data were noise-free. Acknowledging the
existence of non-negligible variance in our data, the sec-
ond term in equation (6) penalizes the norm of R. times
the model. This allows us to find a solution that does not
provide the minimum misfit, but complies to the model
constraints enforced by Rs. In our case, R. is the sum of
the first and second derivative operators. The regular-
ized inverse operator related to the objective function
in equation (6) can be found from its normal equations
followed by simple linear operations that reduce our in-
verse problem to a single linear system. These steps are
described in Appendix A. Our regularized inverse solu-
tion has the same form as the standard Tikhonov regu-
larized inverse:

m' = Afd, (7)

where A is the so-called regularized pseudo-inverse op-
erator,

A" = (ATA + \?RTR)'AT. (8)
Substituting equation (8) into equation (7) gives
m' = (ATA + 2 RTR)'ATd. (9)

The relationship between the matrices in equation (6)
and in equation (9) are described in Appendix A. Of
course, it would be simpler to just apply the General-
ized Least Squares (GLS) solution (Hansen, 1998; Green
and Silverman, 1994) and get independent estimates
of attenuation for each trace pair. However, as we will
see later on, if estimates of QQ obtained independently
for each pair, the actual inverted values for two noise-
contaminated, closely neighboring trace pairs may be
different by a factor of three. So, if we chose the best
possible fit to the data (the GLS solution) we would vio-
late the homogeneity assumption made in equation (3).

As mentioned earlier, it is important to provide
meaningful model variances, such that the final results
can be properly interpreted. The variance in the model
parameters can be directly estimated from the inverse
operator A' [equation (8)] and the data covariance ma-
trix (Hansen,1998; van Wijk et al., 2002). For our par-
ticular case, we assume the data covariance matrix is a
diagonal matrix of the data variances o4,;. To estimate
the variance in the data (gq4,;) we follow the approach
described in van Wijk et al. (2002) and minimize the
function

g(us) = llps = dil|* + Al [Rapsl? (10)

with respect to u;, for a chosen operator Rg4. This gives
us an estimate u;x, for a given A4, a smoothed ver-
sion of our data vector d; according to the structure
imposed by the operator Ry4. This type of fitting pro-
cedure is also know as nonparametric regression (Green
and Silverman, 1994). If R, is chosen so that it repre-
sents a certain structure present in the data, then the
variance of pu;x, — d; yields an estimate of o4; (van
Wijk et al., 2002), the data variance with respect to the
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Figure 3. (a) Data from vectors d; (equation 6) as in Figure 2(circles) and the smoothed data p; (equation 10, crosses). di
were computed from noise-contaminated power spectra (Figure 1). The choice of Ag,; that gives p; can be done by picking
Ag,; that yields the maximum curvature of L-curves in (b); for this value of Ag,; the data variance is approximately constant
(c). Each of the four curves in (b,c) pertain to the data vectors d; in (a). The data in (a) with i = 1,2,3,4 have respectively
increasing differences in offset.

lem, the choice of the weighting parameter A determines

structure predicted by Ra. In our particular application
m'. For our particular application we apply a combined

we expect the data to have a linear dependence on fre-

quency, hence we choose Rq to be a second derivative
operator. The procedure of choosing the optimum Ag4
will be described in the next section.

Another separate issue is determining the solu-
tion m!. Once the regularized inverse operator is es-
tablished, we can apply it to our data and obtain a
regularized model. As in any other regularization prob-

L-curve/x? criterion. If the L-curve criterion (Hansen,
1998) alone is used, and the L-Curve varies smoothly,
there is a wide range of A values that satisfy the crite-
rion but would result in vastly different models. If an
estimate of the variance in the data is available, setting
its corresponding x? to some confidence level allows one
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to compute a misfit cut-off for the L-curve that gives the
best A (van Wijk et al., 2002).

There are important practical issues related to the
inversion methodology discussed above. To use equa-
tion 3 in our inversion scheme, we need to make an ex-
tra assumption. Since at a particular azimuth our model
is supposed to consist of homogeneous layers with hori-
zontal interfaces, while equation (3) is valid for homoge-
neous half-spaces, the contrasts between layers are as-
sumed to be small and raypaths should be close to ver-
tical. In practice, this assumption is enforced by only
taking into account only near-offset traces (i.e., offset-
to-depth ratio less than 1).

The forward operator A; [equation (3)] and the
data vector d; pertain to a windowed portion of the
corresponding traces containing the reflection event of
interest. The center of window is equal to to the travel-
time of the event predicted using the estimated moveout
parameters for the corresponding CMP gather. Once the
window center positions are determined, the window-
ing is carried out with a Hanning-type taper (Priestley,
1981). Mateeva (2003) discussed some of the implica-
tions of windowing in the Q estimation process. Her
studies show that the window size imposes a bias on
attenuation estimates, and this bias decreases with in-
creasing window size. Our window size was typically on
the order of 1.5 times the dominant wavelength of the
signal. Mateeva (2003) also shows that windowing data
with no tapering can severely distort estimates of Q, but
the choice of the tapering function has little influence
on the results.

After windowing, we pad the time series with zeros
(for as many as ten times the length of the windowed
series) to ensure a dense enough sampling of the power
spectra. Next, we determine the signal frequency band-
width by comparing the spectrum of our windowed time
series with the spectra from far-offset traces for time
windows positioned before the first arrival. The reason
for this is that data before the first arrival should be
representative of background noise.

3 SYNTHETIC DATA TESTING

Since one of our assumptions about the data is that
each vertical plane can be treated as a horizontally lay-
ered, laterally homogeneous medium, the main focus
of our synthetic data test is to assess the performance
of our inversion methodology on CMP-sorted, surface
seismic data that would represent an azimuth sector.
Given that our main objective is to study the robust-
ness of the regularized inverse operator in the presence
of noise, the simplest model for our synthetic example is
that of a homogeneous, isotropic, attenuative layer. For
such a model, we can predict the the power spectrum
of the signal at any trace simply by using equation (1),
and having as input our medium parameters and the
power spectrum of the source pulse. The synthetic data

were then modeled with P-wave velocity V = 2.0km/s,
Q =250, a reflector depth of 1km and a Ricker source
wavelet. The data was then contaminated with Gaussian
random noise. Noise variances in the synthetic spectra
were chosen to be at least two orders of magnitude larger
than that of real data traces for times before the first
arrival. Figure 1 shows noise-contaminated power spec-
tra of the reflected signal from four traces. F igure 1 also
illustrates that as the traveltime increases (with increas-
ing offset), the frequency peak of the power spectrum
shifts towards lower frequencies. This behavior should
always be observed in data for media were the constant
Q assumption is valid, and the attenuation coefficient is
proportional to frequency.

Once the synthetic power spectra were generated,
we computed the data vectors d; [equation 6)] by taking
the natural logarithm of the ratio between the spectra of
all possible trace pairs (Figure 2). Before we can find the
regularized inverse solution, it is necessary to estimate
04, (the variance in the data). After many iterations
over the value of Aq; we produce the L-curves in Fig-
ure 3b. The choice of Ag; can be made by picking some
point where the L-curve has the maximum curvature.
Another option for the choice of As; comes from the
curves in Figure 3c that show that as A4 ; increases, the
data variance increases rapidly at first and then becomes
approximately constant. A natural choice for the regu-
larization parameter would be the value Ay ; at which
the increase data variance is negligible. After establish-
ing the optimum value for the regularization parameter,
we can predict the modified data vector p (Figure 3a)
and the total data variance. For the data with the high-
est offset difference between the two traces (i = 4) the
corresponding o4 ’is smallest (Figure 3). This happens
because all power spectra had their samples randomly
distorted with the same variance and the ratios that
correspond to spectra with a higher attenuation differ-
ence will show smaller variance. If the noise in our data
is limited to random fluctuations in the power spectra,
traces with larger offset differences will give more stable
estimates of Q. As to the issue of how reliable the es-
timates of the data variances (04,;) are, we refer to the
work of van Wijk et al. (2002).

With an estimate for the variance in the data, we
set a threshold for the maximum tolerable misfit for
a certain confidence level, according to the x? test for
goodness of fit (van Wijk et al., 2002). This threshold
can then be used to decide the amount of regularization
we can impose in our data. In practice, we wish to be
conservative about the model smoothness in such a way
we choose the value of A (equation 9) that provides a
misfit under the confidence level threshold. Figure 4 il-
lustrates the L-curve for R, with the corresponding mis-
fit threshold set by the x? criterion. For the chosen \ we
can find the regularized inverse solution (Figure 5a,c).
Figure 5a,c shows that the regularized inverse solution
is closer to the true model than the standard general-
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ized least squares (GLS) solution. We can also observe
that there is some structure in the regularized inverse
solutions. This structure is related to the ordering of the
data vectors d; within d, which in turn is related to how
traces are sorted in the input data.

If the data variance estimation procedure provided
perfect estimates and we decided to push the regular-
jzation to higher confidence levels, the structure of the
regularized solution would be somewhat less smooth, de-
pending on where the misfit threshold (determined from
x?) intersects the L-curve. The regularized inverse so-
lution in Figure 5c is less structured and closer to true
model than in Figure 5a because its solution requires
less regularization, since the data variance estimate is
smaller. Figures 5b,d show the fit of the regularized and
GLS solutions, for most trace pairs it is hard to visually
distinguish the regularized from the non-regularized fit.
This difference is small because the traveltime difference
between traces is small, which translates into small dif-
ferences in attenuation magnitudes. However, the differ-
ences between the regularized and non-regularized solu-
tions for the same data are quite noticeable.

There may be cases when a structure in the solu-
tion induced by the use of differencing-type regulariza-
tion operators is unwanted (e.g. if the structure is very
steep). Another option for regularizing our problem is to
penalize the norm of the residuals between each model
parameter and the mean (exemplified in Appendix A).
This particular choice of R will eliminate the structures
caused by applying differencing type regularization op-
erators. However, since the cause of structured solutions
usually is the presence of extreme values, depending on
the difference between the outlier values and the mean of
the remaining solutions, the overall mean of the model
parameter shifts towards the outliers.

4 EAST DECATUR FIELD DATA

Our field data study was conducted on prestack 3-D
wide-azimuth P-wave data acquired over the East De-
catur field, located in North Texas. The formation of
interest is the Barnett formation, which is composed
of thick fractured shale beds. The Barnett shale is one
of the largest producing gas reservoirs in the United
States, and it has been reported that its best produc-
tion rates come from wells drilled in areas where natural
fractures were present. Hence, the detection of natural
fractures a crucial step toward identifying and charac-
terizing areas of better production for reservoirs like the
Barnett shale.

Figure 6 shows an Inline section from the the East
Decatur field data after 3-D zero-offset migration. The
subsurface geology at the East Decatur field is close to
horizontally layered (as dips are in the order of 2°), with
mild lateral velocity variations. Apart from the struc-
tural simplicity, this particular dataset was chosen for
pronounced lateral variations of the P-wave azimuthal
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Figure 4. L-Curve for R [equation (8)]. Picking the value
of )\ corresponds to the misfit at the 68% confidence level
results in the smoothest possible model according to the data
variance.

anisotropy. Figure 7 shows NMO ellipse parameters for
the reflection at the bottom of the Barnett formation.
For this field, azimuthal anisotropy is mainly attributed
to fractures in the Barnett shale beds since the interval
NMO ellipse orientations coincide with fracture orien-
tations from well observations and geologic data. The
pronounced azimuthal velocity anisotropy signatures re-
lated to intrinsic properties (fracturing) of the Barnett
formation immediately raised the question of whether
there should associated azimuthal variations of attenu-
ation anisotropy. The goal of the project was to obtain
azimuthally variable estimates of the total effective at-
tenuation and check if the results are in agreement with
fracture orientations and velocity anisotropy signatures.

We applied the inversion methodology described
above to estimate the azimuthally varying Q. The seis-
mic data were sorted into CMP geometry, and the only
pre-processing step applied was source-receiver statics.
Because the windowing of the desired events is based
on predicting reflected traveltimes, static corrections
are important to assure proper windowing. Here, we
show the azimuthal attenuation analysis for two 9 x 9
superbins, hereafter referred to as CMP1 (inline co-
ordinate 1380, crossline 5285, Fig. 7) and CMP2 (in-
line 1398, crossline 5292), respectively. Traces were then
sorted into 5° azimuth bins and the inversion for each
bin was conducted for the horizon at approximately
1.3 s, interpreted as the reflection from the bottom of the
Barnett formation. The window length was set constant
to 98 samples, Figure 8a shows waveforms extracted
from data traces. Their corresponding power spectra
are displayed in Figure 8b. The real data spectra are
smoother than the spectra in Figure 1 because random

-
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Figure 5. Inversion results for the synthetic data with different signal-to-noise ratios. The power spectra that generated data
for (a,b) are distorted with twice the variance as the spectra for the results in (c,d). (a) and (b) show the Q estimates from the
Tikhonov generalized least squares solution (TGLS, 27¢ order stands for the use of a first and second derivative operators in
R, Appendix A) and the standard generalized least squares. The error bars represent the variance in the model parameters. (c)
and (d) are the models fitted to the data, where the regularized fits are related to the TGLS solutions and the non-regularized

fits pertain to the GLS solutions.

noise levels are likely smaller than those in synthetic
tests.

Once the reflection event at a given azimuth bin
has been windowed, we can set up our data space d
[equation (8)] from the data vectors d; computed for
all trace pair combinations from offset-to-depth ratios
up to 1.0. Next we estimate the variance in the data,
which, from a simple visual examination of the smooth-

ness of the power spectra (Figure 8) is expected to be
less than the that in our synthetic examples. However,
although there is little random noise in the spectra, we
observe pronounced, repeatable, nonlinear structures in
the spectral ratios (Figure 9b).

The algorithm described above treats these struc-
tures in the fit residuals as random noise. Clearly, the
presence of non-random repeatable structures point to
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Figure 6. Post-stack migrated image of the East Decatur field data at Inline 1350. The Barnett shale formation is located
approximately in the 1.0s to 1.3 s interval. The overburden is composed of sand /shale sequences.
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the fact that the assumptions do not account for all the
relevant physical phenomena behind the data, although
the model can represent a component of the data(Green
and Silverman, 1994; Gu, 2002). In other words, we can
take advantage of the fact that the regularization pa-
rameters can be tuned to set how much we impose a
model structure. Then, it is possible to fit a linear com-
ponent of the spectral ratio by trying to account for the
fact that the data variances may be overestimated due
to the presence of correlated noise components. We do
this in practice by setting our A to a value that corre-
sponds to a misfit lower than the threshold set by the
estimated 0q. We can then try to pick a value of A such
that we get a model with reduced norm, at the same
time being conservative towards the regularization as
we try to keep the misfit and the regularization-induced
bias as small as possible. Figure 9 shows the estimated
model and corresponding data fit obtained following this
approach, before and after regularization. To find the
value of Q for a given azimuth, we chose to take the me-
dian of the regularized Q measurements for each trace
pairs to minimize the contribution of outliers.

The effective quality factor for 5° azimuth bins with
20° azimuth increments are displayed for both superbins
in Figure 10. It is clear from Figure 10 that if our as-
sumptions and estimates of the variance in the data are
accurate, there is a non-negligible azimuthal signature
of attenuation. The direction of maximum attenuation
(lowest Q) is close to the semi-minor axis of the NMO

1310

azimuth bin at an azimuth of 40°
1614 m, 3 = 1661 m and z3 = 1708 m. The inversion was carried out considering frequency samples from

Power

Frequency(Hz)
(b)

(a), and their corresponding power spectra

ellipse, approximately oriented East-West (Figure 7). If
the fractures in the shale are fluid-filled, a possible phys-
ical interpretation is that waves traveling perpendicu-
lar to the most prominent set of fractures should have
smaller velocities and experience higher attenuation. It
is also interesting to observe that the magnitude of az-
imuthal attenuation anisotropy is much larger than that
of azimuthal NMO velocity anisotropy. The interpreta-
tion of these results, however, has to include systematic
components, which is discussed next.

If all or some of the nonlinear structure in the data
is related to physical phenomena, it is not clear whether
or not a linear fit to the data makes any physical sense.
Here, we attempt to model nonlinear noise due to dif-
ferent physical phenomena, evaluate its influence on the
data, and briefly discuss how it should be dealt with.
Correcting for possible sources of noise and employ-
ing more involved parameter fitting techniques such as
semiparametric fitting and residuals analysis (Grey and
Silverman, 1998; Gu, 2002) would be preferable. These
procedures, however, are beyond the scope of this paper.

We attribute the nonlinearities in the spectral ra-
tios to two distinct physical phenomena. First, in our
measurements we cannot separate the contribution of
intrinsic absorption from that of layering-induced ab-
sorption. As it is discussed by Mateeva (2003), the at-
tenuation caused by multiple scattering may influence
the data in different ways, depending on the media prop-
erties. Second, for the East Decatur field, the data were
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acquired using source and receiver arrays. Since the re-
sponse of each array component is simply stacked to
form the data, the signature of the source-receiver ar-
rays is frequency dependent (Appendix B).

For our particular dataset, it is also important to
find out if multiple scattering due to thin layering could
add a nonlinear component to the spectral ratios, and
if this component has a structure that correlates to
that observed in the data (Figure 9b). Using velocities
(compressional and shear-wave) and densities from well
logs, we generated a synthetic seismogram (Figure 11)
for East Decatur with the reflectivity method (Muller,
1985). This method produces a complete wave-field with
all multiples but no intrinsic absorption. Figure 12a
shows that there is a clear offset-dependent nonlinear
frequency imprint of scattering-induced attenuation in
the spectral ratios. The data structure in Figure 12b is
somewhat different from that observed in field data (e.g.
Figure 9b), as field structures not only vary with offset,
but also differ from one azimuth bin to another.

Even though layering-induced absorption causes
nonlinear behavior in the spectral ratios, its influence
should be azimuthally independent, as long as the
medium is laterally homogeneous. This means that the
bias in the estimates of Q related to multiple scattering
should be the same at all azimuths. Also, in Figure 12
we can observe that the bias in the fitted slopes intro-
duced by thin layering is offset dependent. This implies
that if our data is not corrected for scattering absorp-
tion, the regularized solution may contain a structure
related to the bias in each Q measurement, depending
on how regularized the solution is. If too much smooth-
ing (regularization) is applied to uncorrected data, it
is difficult to assess how the bias from scattering ab-
sorption translates into errors in the estimated model
parameters.

As discussed before, use of source and receiver ar-
rays in acquisition creates frequency signatures that
may distort the spectral ratios. In Appendix B we show
how to obtain the frequency signatures of arrays for a
simple homogeneous, isotropic model. For East Decatur
field data, receiver arrays are composed of eight sen-
sors, each at a distance of two meters from the cen-
ter of the array with equal step in azimuth. Source ar-
rays are made of a line of three vibrator trucks, with
a 20 m separation between the trucks. The source line
is always oriented in the direction 45°N. Because the
spacing between the sources is considerably bigger than
that between receivers in their respective arrays, the
source array should produce a more substantial distor-
tion in the power spectra. Also, there should be some
azimuthal dependence of the source-receiver transfer
function because the sources are set in a line with a
fixed orientation for any source-receiver azimuth. The
maximum contribution of the source array should be
for the source-receiver azimuth that coincides with the
source array orientation, and the minimum should cor-

Offset(m)

S

Figure 11. Synthetic seismogram of East Decatur data. The
seismogram was computed using the reflectivity method with
well log data as input. The event of interest in the seismo-
gram is at approximately 1.28 s.

respond to the orthogonal direction (Appendix B). Us-
ing the results of Appendix B, we computed the fre-
quency signatures of the source-receiver arrays for East
Decatur data (Figure 13a,c). The biggest deviations of
the spectral ratios occur at the 45°N direction, while
they become negligible at the 135°N direction (Fig-
ure 13b,d). These azimuths coincide with the predicted
directions of the maximum and minimum contribution
of the source array, which confirms that the influence
of the receiver array is relatively minor. Figure 13 also
suggests that the bias in the spectral ratios induced by
the source and receiver arrays varies with both offset
and azimuth. Furthermore, the frequency dependence
of this bias within the signal bandwidth can be consid-
ered as approximately linear. Hence, there will be an
apparent azimuthal variation of attenuation due only
to the particular geometry of the source and receiver
arrays.

5 DISCUSSION AND CONCLUSION

With the objective of estimating the azimuthally vary-
ing attenuation, we proposed a methodology that as-
sumes that at each azimuth the medium can be consid-
ered, as horizontally layered and laterally homogeneous.
The methodology includes a search for a pseudo-inverse
operator that can both fit the spectral ratio data and
honor the model assumptions. In the regularization we
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Figure 12. (a) Power spectra for the data modeled with the reflectivity method for the event of interest in Figure 11 at offsets
11, 21, 31 and 41 m. (b) Data vectors d; (circles) and their smoothed versions p; (crosses), used to predict the variance in the
data. The data in (b) are computed for the same bandwidth as the spectral ratios for the field data in Figure 9.

use equally weighted first and second derivatives opera-
tors to impose smoothness on the estimates of Q within
each azimuth bin. This methodology is also designed to
provide reliable error estimates. The variances in the
model parameters are computed from the regularized
pseudo-inverse operator and from the data variances
obtained with a nonparametric fitting technique. The
estimates for data variance also provide the basis for
choosing the regularization weighting parameter.

Noisy synthetic data were generated by distorting
power spectra with uncorrelated Gaussian noise. For
this type of noise, estimates of Q from traces with larger
traveltime differences tend to be more stable because the
data variances are smaller. This synthetic test shows
that even for signal-to-noise ratios smaller than those
typically observed in real data, the regularized inverse
solution is considerably closer to the true model than
the standard generalized least squares (GLS) solution.
While the regularized solution is always smoother than
the GLS solution, for data with higher noise levels, it
may contain structures that related to the particular or-
der of the input data. In our case, this order is associated
to the sorting of the field data traces.

In the East Decatur dataset, we applied our inver-
sion methodology to two 9 X 9 CMP-sorted superbins
that lie within one of the areas of strongest azimuthal
velocity anisotropy. Since most of the azimuthal aniso-
tropy observed in the East Decatur is is believed to be
caused by the fracturing in the Barnett shale forma-
tion, our studies focused on the reflection from its bot-
tom. The only pre-processing step applied to the data
was source-receiver statics correction, which is necessary
because the position of the window around the signal de-

pends on reflected traveltimes computed from moveout
parameters.

In contrast to the synthetic data, the spectral ra-
tios from the field gathers contained very little random
noise. Instead, we observed a strong nonlinear system-
atic component to the noise, which produces nonlinear
structures in the spectral ratios. Because our method-
ology cannot separate systematic and random compo-
nents of the noise, the data variance may be overesti-
mated. In evaluating the linear component of the spec-
tral ratios, we chose to avoid smoothing the data too
much, keeping the misfit under the 68% confidence level
threshold and the regularization-induced bias as small
as possible. In this context, our results for the inversion
for Q in 5° azimuth sectors from both superbins show a
similar azimuthally variable signature. The direction of
the maximum attenuation is approximately East-West,
which coincides with the average orientation of the semi-
minor axis of the P-wave NMO ellipse.Taking fluid-filled
fractures with a single predominant orientation as a
model for the Barnett shale, maximum attenuation oc-
curs in the direction perpendicular to the fracture strike.
An important observation is that the magnitude of the
azimuthal variations of attenuation is much larger than
that of NMO velocities. In the context of East Decatur
field, this suggests that attenuation measurements are
much more sensitive to the anisotropy induced by the
presence of fluid-filled cracks.

We considered two possible causes for systematic
noise in the spectral ratios: absorption effects due to
thin layering and frequency distortions caused by stack-
ing the response of source and receiver arrays. We ana-
lyzed the first case by computing spectral ratio data for
synthetic seismograms generated with the reflectivity
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Figure 13. Transfer functions T, (a) and (c), of the source and receiver arrays combined as a function of the emergence angle
6 and frequency w. (a) Source-receiver transfer function for the source-receiver azimuth that yields the maximum frequency
distortion (azimuth 45°N), and (c), the source-receiver azimuth that gives the smallest frequency distortion. The frequency
signatures in (a) and (c) translate into the signatures in the spectral ratios shown, respectively, in (b) and (d). Each curve on
the spectral ratio plots is computed between one of the signals with the from the legend and a signal with the 5° emergence
angle. The same source and receiver array geometries used here were employed in the East Decatur field data acquisition. The

emergence angles 8 are directly related to offsets.

method. This way can generate shot gathers accounting
only for the attenuation caused by multiple scattering
for the reflectivity properties of the East Decatur field.
Spectral ratios from the modeled data showed nonlinear
features that change from one trace pair to the other,
which suggests that the bias in slope estimation intro-
duced by layering-induced absorption is a function of

the trace offsets. For a horizontally layered, laterally ho-
mogeneous medium, attenuation effects due to multiple
scattering are independent of azimuth.

To examine the frequency signatures of the source
and receiver arrays, we computed their corresponding
transfer functions using the source and receiver array
geometries from field data. The frequency distortions in-
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troduced by the receiver array are negligible compared
to those caused the source array. Also, since the sources
are set up in a line with fixed orientation, its frequency
signatures are azimuthally dependent. These signatures
translate into the spectral ratios with a weak nonlinear
dependence on frequency. The source and receiver ar-
rays introduce a negative bias in slope estimates from
spectral ratios, which is a function of both offset and az-
imuth. This generates an apparent azimuthally variable
attenuation effect due only to the source and receiver
array geometry, where attenuation is strongest at the
45°N direction and weakest at 135°N.

By accounting for layering-induced absorption and
for the array transfer functions we could not completely
reproduce the structures in the spectral ratios from field
data. Strictly, in attenuative media reflectivity and ge-
ometrical spreading should be frequency dependent be-
cause of velocity dispersion. These effects would be de-
pendent on incidence angle, which in turn would yield
structures in the spectral ratios that should vary with
offset. Source and receiver radiation patterns in lossy
media also become frequency dependent, and their ef-
fects in spectral ratios should be corrected for.

In azimuthally anisotropic attenuative medium, in-
trinsic absorption will have a dependence in polar an-
gle as well as in azimuth (Zhu, 2005b). For the results
presented in this paper we ignored the influence of the
polar angle. However, the methodology presented here
could be applied to trace clusters with different offset
ranges to obtain an estimate of the dependence of at-
tenuation with polar angle. With closed form expres-
sions for anisotropic attenuation in terms of anisotropic
parameters as in Zhu and Tsvankin (2004, 2005b), the
methodology described here could be applied to charac-
terize anisotropic attenuation. Furthermore, our inver-
sion procedure can be applied to other types of datasets
with redundant wave-field information (e.g. walkaway
vertical seismic profiles, tomographic experiments}, and
to time lapse studies.
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APPENDIX A: THE TIKHONOV
GENERALIZED LEAST SQUARES
SOLUTION

Since our objective is to impose smoothness in the mea-
surements of Q from one trace pair to another, it is im-
portant to incorporate the linear systems from all trace
pairs into a single linear system that sets up the so-
called generalized least squares problem.

Our model objective function is:

N
flmis) = 37| Aim; — di|* + A%|[Rs|[?;  (Al)

i=1

where the forward operators:

—nfildt; 1
—mwfaAt; 1

A= . 1, (A2)
*anAti 1

for the i*h trace pair. There are n frequency samples
in the signal bandwidth and At; is traveltime difference
between the two traces. The model parameters matrices

m;:
m; = (QL-> , (A3)

a

where Q; is the Q measurement and a is the intercept of
the line fitted to the spectral ratio. The data d; contain
the values of the natural logarithm of the spectral ratio
that correspond to the frequency samples in A;. The
vector s in equation (A1) contains all of the elements

equal to the 1/Q; elements from all of the m; matrices,
sich that:

1
3
Q2
s=1 . . (A4)
1
AN
To find the solutions that minimize equation (A1), we

must differentiate it with respect to all model vectors
(mjy,ms,...,mpy,s), and set the result to zero:

9

55/Rsll> =0;  (A5)

Ny
> g lAmm: — di® + A2
= om:

From which we obtain the following normal equations:

N N
D ATAm; +NR™Rs =3 ATd:;; (a6
i=1 i=1
Let A be a matrix that contains all of our A;’s
[equation (A2)] such that:

A =ay,, (A7)

here ay,; are the elements of A with row k and column .
From here on we will use k and ! to denote respectively
row and column indices of any matrix. Its only nonzero
elements are

Qpin(i-1),2i-1 = —TfzAt, 1<z <n (A8)
and
Qzin(i-1),2e = L, 1<z <n (A9)

where 1 < i < N and maps elements from A to the
corresponding i‘h trace combination, The index z scans
over frequency samples. The matrix A has N times n
(Nn) rows and 2N columns, and contains the informa-
tion from the forward operators of all trace pair combi-
nations. With A we can set up a linear system:

A=md (A10)

where m contains all model matrices m; and d contains
all data matrices d;.

Now, to go from the normal equation in equa-
tion (A6) to the final form of the pseudo-inverse so-
lution, let’s rewrite the matrices A;, m; and d; in the
following manner:

A; =T;A, (Al1)
m; = Q,-m, (A12)
d; =Tid, (A13)
where
;= REND (A14)

ﬂi = Wk !, (A15)
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with nonzero elements

Vrtn(i—ztnii-1) = L 1 <z <n, 1<i< N (Al6)

wi12i =1 1 <i< N (A17)

both I'; and §2; are square matrices of dimensions Nn
and 2N, respectively. Thus our new A;’s dimensions are
Nn x 2N, m; is now 2N x 1 and d; is Nn x 1. Also,
with the objective of designing the pseudo-inverse oper-
ator, we can simply replace s by m, and make sure R
only operates on the slope terms by setting his elements
that correspond to intercept terms to zero. This way, we
can use equation (A12) and equation (A13) to rewrite
equation (A6):

N N
(S"ATAQ)m + ¥RTRm = (3 AlT:)d; (A18)

i=1 i=1

From equation (A11) and equation (A16), the sum of
all A; over N results in A. Likewise, summing € and
T over N results in identity matrices. When then get:

ATAm +XR"Rm = A"d; (A19)
From which we obtain the pseudo-inverse solution:
m' = (ATA + X2RTR)'ATd. (A20)

To provide an example of the regularization opera-
tor R, let us consider:

1
-4 0 ~% 0 .0 —$
-& 0 1-% o0 VJ—
R = .
A U
-4 0 -4 0 .. 0 1-y%

(A21)
This would be the regularization operator to be used if
we choose to penalize the norm of the residuals from the
mean of the model parameters. All the zeros in equa-
tion (A21) correspond to the intercept terms in m.

APPENDIX B: TRANSFER FUNCTIONS OF
SOURCE AND RECEIVER ARRAYS

Let us consider an array geometry according to Fig-
ure Al. From such geometry, we can define the quanti-
ties R = |7 — & and d(p) = |p'— &. If we simply stack
the responses of the array components, then the total
displacement % of the array:

@(w,7) = S(w) /c C(F p)dp (B1)

where S(w) is the source function in the frequency do-
main, and G(7, p) is the Green’s function of the medium
between 7 and p. C is a closed contour (away from the
origin) over which array elements are placed.

=3

‘}Z

Figure Al. The array geometry used to derive the array’s
transfer function. An array centered at ¢ has n array com-
ponents with position denoted by 7. The array records an
arrival from 7 that makes an emergence angle § with the ver-
tical. The array element at 7 makes an angle of ¢p with the
x-axis, and 7 makes an angle of ¢r.

For a point force source in a homogeneous, isotropic
medium:
kI (B)]

AT CRk

k being wavenumber, and xi(p) is a unit vector with
the same orientation as p— €. For convenience, in equa-
tion (B2) we set the array center ¢ to the origin of the
coordinate frame. Then putting equation (B2) in equa-
tion (B1) we get:

(B2)

M@

T i 4
c IF+d@E)xi(@)|
and, if we assume R >> d(p):

i(w,7) = S(w) (B3)

o) = Z) [ Hrreon@lap (B0
C

Now, we can write
7+ d@)xi(@)? = R? + 2d(P)[Fxi] + d* (@), (BS)
with
7xi = Rsind cos(pp(P) — r)- (B6)

Because R >> d(§) we can drop the term quadratic on
d(p). Next, by taking the square root of equation (B5)
and performing a Taylor expansion of the radical on the
right-hand side we get:

7+ d(@)xi(B)|* = R + d(p) sinb cos(p(P) — r)- (BT)
Which, if replaced in equation (B4), gives:
kR () ind cos(p(F)—9e)
(0,9 = S) - [ AP (B8)
c

or

ii(w,) = S(w) G(,8) T(w)- (B9)
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Equation (B8) represents the total displacement @ in
terms of the source function S(w), the Green’s function
at the center of the array G(7, ) and the transfer func-
tion of the array:

T(w) =/ k() sind cos(ipp(F)—r) gz (B10)
c
or simply,

T(UJ) =1 + / eikd(ﬁ) sinf cos(npp(ﬁ')—(p,.)dﬁ.’ (Bll)

c
for an array with a component in its center. From equa-~
tion (B10) we can see that if d() is constant and the
array geometry is such that for an array component with
a given azimuth ¢, there is another component with az-
imuth ¢, + 7 (i.e. C is symmetric with respect to the
coordinate axes in the surface plane), T'(w) is a purely
real function. The consequence of this is that there are
only amplitude distortions related to stacking the re-
sponse of array components, while arrival phases suffer
no distortions. This is the case for the geometries in the
East Decatur field data.

To incorporate the effects of both the source trans-
fer function Ti(w) and the receiver’s Tr(w) into the
source-receiver array function Ts7(w) we simply take the
product:

T(w) = To(w) Tr(w), (B12)

with, for example,

Tr(w) — / eikd" sin@cos((pp,, (p‘}.)—«p,.)dp.;" (B13)

r

TS(LL)) =1 + / eikd_, sinBcos(gp,,s(p'_,)—‘p,.—-;r)dp-;’ (B14)
these being the transfer functions to be used for East
Decatur field geometries. The distance d(p) is constant
for both source ds and receiver d,. Since 7 is between
the source and receiver, we add —7 to the argument
of the cosine in the exponential of either the source or
receiver array transfer function, in this case, to 7% (w).
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1 INTRODUCTION

Effective velocity models of fractured reservoirs often
have orthorhombic or an even lower symmetry (Schoen-
berg and Helbig, 1997; Bakulin et al., 2000). It is

ABSTRACT

Orthorhombic velocity and attenuation models are needed in the interpreta-
tion of the azimuthal variation of seismic signatures recorded over fractured
reservoirs. Here, we develop an analytic framework for describing the attenu-
ation coefficients in orthorhombic media with orthorhombic attenuation (i-e.,
the symmetry of both the real and imaginary parts of the stiffness tensor is
orthorhombic).

The analogous form of the Christoffel equation in the symmetry planes of or-
thorhombic and VTI (transversely isotropic with a vertical symmetry axis) me-
dia helps to obtain the symmetry-plane attenuation coefficients by adapting the
existing VTI equations. To take full advantage of this equivalence with trans-
verse isotropy, we introduce a set of attenuation-anisotropy parameters similar
to the VTI parameters €, 65, and v, This notation, based on the same princi-
ple as Tsvankin’s velocity-anisotropy parameters for orthorhombic media, leads
to simple linearized equations for the symmetry-plane attenuation coefficients
of all three modes (P, S1, and Sy).

The attenuation-anisotropy parameters also allow us to simplify the P-wave
attenuation coefficient Ap outside the symmetry planes under the assumption
of weak attenuation and weak velocity and attenuation anisotropy. The ap-
proximate Ap has the same form as the linearized phase-velocity function, with
Tsvankin’s velocity parameters (12 and §(1:%3) replaced by the attenuation pa-
rameters €(1?) and 6221’2’3). The exact attenuation coefficient .Ap, however, also
depends on the velocity-anisotropy parameters, while the body-wave velocities
are almost unperturbed by the presence of attenuation.

The reduction in the number of parameters responsible for the P-wave attenu-
ation and the simple approximation for the coefficient Ap provide a basis for
inverting P-wave attenuation measurements from orthorhombic media. The at-
tenuation processing has to be preceded by anisotropic velocity analysis that can
be performed (in the absence of pronounced velocity dispersion) using existing
algorithms for nonattenuative media.

Key words: attenuation, orthorhombic symmetry, anisotropy parameters,
plane waves, linearized approximation

orthorhombic formations are accompanied by direction-
ally dependent attenuation. Indeed, systems of aligned
fractures or pores are among the most common physi-
cal reasons for anisotropic attenuation (e.g., Mavko and
Nur, 1979; Akbar, 1993; Pointer et al., 1996).

likely that polar and azimuthal velocity variations in
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Physical modeling shows that the P-wave attenuation coefficient in the direction perpendicular to aligned pores
or fractures is higher than that parallel to the pores (Akbar, 1993). Similar results were obtained by Zhu and Tsvankin
(2005b) for a synthetic material, in which thin layers of paper bonded with phenolic resin (i.e., aligned heterogeneities)
create extremely strong attenuation anisotropy. Pointer et al. (1996) found that significant dissipation of energy is
caused by the movement of fluids in interconnected pathways (crack-pore networks). The relationship between the
azimuthal variation of attenuation and horizontal permeability measured over a fractured reservoir was discussed
by Lynn et al. (1999). On the whole, existing experimental data indicate that both velocity and attenuation in
fractured rocks vary with angle, with the type and magnitude of the anisotropy controlled by such factors as the
shape, distribution, and orientation of aligned fractures and pores.

When the dominant wavelength is much larger than the characteristic size of heterogeneities, the scattering
phenomena can be ignored, and the medium can be treated as effectively homogeneous. This paper is devoted to the
attenuation of plane waves propagating in a homogeneous medium that has orthorhombic symmetry for both the
velocity function and attenuation coefficient. As in our previous work on transversely isotropic (TI) media (Zhu and
Tsvankin, 2004, 2005a,b), we study the normalized attenuation coefficient defined as

]CI
A= (1)
where k and k' are the real and the imaginary parts of the wavenumber, respectively. The coefficient .4 determines the
rate of the amplitude decay per wavelength. The two main assumptions used here to simplify the analytic description
of attenuation are as follows:

1) Wave propagation is “homogeneous,” which means that the real and the imaginary parts of the wave vector are
parallel to each other (k|| k).

2) The symmetry of the imaginary part of the stiffness matrix (or stiffness tensor) coincides with that of the real
part. This assumption ensures that the quality-factor matrix Q (Carcione, 2001; Zhu and Tsvankin, 2004, 2005a) has
the same structure as the real part of the stiffness matrix that governs the velocity anisotropy.

The main challenge in describing the attenuation anisotropy in orthorhombic materials is in the large number of
parameters that control the attenuation coefficients. Because of the coupling between the velocity and attenuation
anisotropy, the coefficient .4 depends (for a fixed orientation of the symmetry planes) on the nine real stiffness
coefficients and nine elements of the quality matrix. Here, we show that significant simplifications can be achieved
by extending the principle of Tsvankin’s (1997, 2001) notation for velocity anisotropy to attenuative orthorhombic
media.

The equivalence between the complex Christoffel equation in the symmetry planes of orthorhombic and VTI
(TI with a vertical symmetry axis) media makes it possible to obtain the symmetry-plane attenuation coefficients
from the corresponding VT equations. As shown by Zhu and Tsvankin (2004, 2005a), attenuation anisotropy in VTI
media can be conveniently described by the Thomsen-style parameters €5y 0o, and 7q- Adapting the results of Zhu
and Tsvankin (2004, 2005a) for the symmetry planes of orthorhombic media, we introduce a set of seven anisotropy
parameters that fully characterizes (in combination with the velocity parameters) directionally-dependent attenuation
in orthorhombic materials. Linearizing the P-wave attenuation coefficient in the limit of weak attenuation and weak
anisotropy yields a simple expression outside the symmetry planes that has the same form as Tsvankin’s (1997, 2001)
weak-anisotropy approximation for the velocity function. The accuracy of the approximate attenuation coefficient is
verified using numerical tests for models with substantial attenuation and velocity anisotropy.

2 CHRISTOFFEL EQUATION FOR ATTENUATIVE ORTHORHOMBIC MEDIA
A harmonic plane wave propagating in an attenuative medium has the form
u= fJexp [i(wt - l.<x)] , (2)

where U is the polarization vector, and k = k — ik’ is the wave vector (both vectors are complex). We consider
plane-wave propagation in orthorhombic media with orthorhombic attenuation, which means that the symmetry of
the imaginary part of the stiffness matrix is identical to that of the real part. Then it is convenient to choose a
Cartesian coordinate system aligned with the “natural” coordinate frame of the model, so that each coordinate plane
coincides with one of the symmetry planes.
Substituting the plane wave (2) into the wave equation yields the following Christoffel equation:
5111-33 + 5661.93 + 555793 - pw? (€12 + Eo6) k1 k2 (813 + Es5)k1ka Uy
(G12 + éo6 )1 k2 Zeck? + Caok2 + Eaak? — pu? (G2s + 544)’.62’:93 . (:/2 =0, (3)
(€13 + és5)k1ks (G23 + E1a)koks Es5k? + Gaak2 + éazk? — pw? Us
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where &; = c¢i; + 4cl; is the complex stiffness coefficient. Following Carcione (2001) and Zhu and Tsvankin (2004),
the elements of the quality-factor matrix can be defined as (no index summation is implied)

=G
Ql] e C!- . (4)
ij
Assuming homogeneous wave propagation (k || k! ), the wave vector can be expressed through the unit vector n
in the slowness direction: k = n k. Then the Christoffel equation (3) becomes
[éij - sza,-k] Uk == 0, (5)

where V = % is the complex phase velocity, and G;; are the elements of the complex Christoffel matrix:

G = 5117121, + Ecs'ng + 555713 ,
Gaz = Esen} + Goan + Eaani,
Gz = &ssnt + Gaan + Eaanj,
Gi2 = (€12 + Gss)n1n2,
G13 = (€13 + Gs5)nina,
G23 = (Cas + €44)n2n3 . (6)
The components of the unit slowness (phase) vector n can be expressed through the polar phase angle 8 and the
azimuthal phase angle ¢: n, = sinf cos ¢, nz = sinfsin @, nz = cos 6.

Note that although equation (5) has the same form as the Christoffel equation in nonattenuative (purely elastic)
orthorhombic media, the velocity, polarization and stiffnesses are complex. As a result, plane-wave propagation in

attenuative media is described by two coupled equations obtained by separating the real and imaginary parts of the
Christoffel equation.

3 ATTENUATION COEFFICIENTS IN THE SYMMETRY PLANES

Suppose that the plane wave (2) propagates in the [z1,z3]-plane, so n1 = sin 8, na = 0, and nz = cosf. Then the
Christoffel equation (3) simplifies to

énk? + Gssk3 — pw? : 0 (G1a + &ss)k1ks Ql
0o Gesk? + E4ak3 — pw? ) 0 Uy ¢=0. (N
(613 + 555)/61 k3 0 555’6? -+ 533]6% - pr Us

Equation (7) has the same form as the Christoffel equation for VTI media with VTI attenuation discussed in detail
by Zhu and Tsvankin (2004, 2005a). The only difference between the two equations is that while for VTI media
&1 = @ss, that is generally not the case for orthorhombic symmetry. However, the stiffness 44 influences only
the SH-wave polarized perpendicular to the propagation plane (see below),while &ss contributes to the velocity and
attenuation of the in-plane polarized waves (P and SV). Therefore, the well-known equivalence between the Christoffel
equation in purely elastic VTI media and symmetry planes of orthorhombic media (e.g., Tsvankin, 1997, 2001) holds
for attenuative models with the same symmetries of the real and imaginary parts of stiffness tensor.

Since the Christoffel matrix for wave propagation in the [z1,z3]-plane has four vanishing elements, equation (7)
splits into two separate equations, one for the SH-wave polarized in the za-direction (the displacement component
U,), and the other for the in-plane polarized P- and SV-waves (the components U, and Us). The solutions for the
velocity and attenuation of all three modes can be obtained by simply adapting the results of Zhu and Tsvankin
(2004, 2005a) for VTI media.

Assuming homogeneous wave propagation (l~< = nl::), the Christoffel equation for the SH-wave takes the form

(Ges sin @ + G4 cos’® 9) k- puw?=0. (8)

Using the VTI result of Zhu and Tsvankin (2004, 2005a), the normalized attenuation coefficient of SH-waves in the
[x1,23]-plane can be obtained from equation (8) as

Ag}, = /14 (Qasa®)? — Qua a® , 9

where the superscript (2) stands for the zo-axis orthogonal to the propagation plane (the same convention as in
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Tsvankin, 1997, 2001), and

o® = (1 4+29®)sin? @ + cos? 0

(1+ 27(2))% sin® @ + cos? 9
Qse
For P- and SV-waves in the regime of homogeneous wave propagation, equation (7) reduces to

(&11 sin® @ 4 &5 cos® 0) E? - pw? (€13 + &5) sinf cos 0 k? U,
~ P : 7.2 S a2 = 2 p) 1.2 2 7 =0. (10)
(€13 + és5) sinfcosB k (655 sin® @ + ¢33 cos 0) k?* — pw Us

The wavenumber obtained from equation (10) is described by an expression analogous to that in nonattenuative VTI
media (e.g., Tsvankin, 2001):

k= w\/2p{(511 + &s5) sin® @ + (éa3 + @ss) cos® 8

~1/2
+ \/[(511 — &s5)sin?  — (éaz — &ss) cos? 6] ? ¥ 4(é13 + és5)” sin? f cos? 0} . (11)

The normalized attenuation coefficients Ag)sv were derived from the complex part of equation (11) by Zhu and

Tsvankin (2004, 2005a). For example, the P-wave coefficients Ag) in the vertical and horizontal directions are given
by

AP0 =0%) = Qs (VI+1/Qh 1) ~ 55—, (12)
AR (9 = 90°) = Qu, (\/1+1/Qf1 _1) ~ 56% (13)

The SV-wave attenuation coefficient in both the vertical and horizontal directions is
o 1
ASH(0 = 0°) = AG (0 = 90%) = Qss (VIFT/QE — 1) 9

For plane-wave propagation in the (22, z3)-plane (n; = 0, na = sin8, and ns = cos8), the Christoffel equation (3)
gives

Q

6661;:? + 5551~c§ - pw2 0 0 L (:]1
0 Ga2k + Caakd — pw? (s + Eaa)kiks U, p=0. (15)
0 (C23 + Caa)krks E44k? + E33k% — pw? Us

The SH-wave, which is polarized in the z,-direction, is described by the element Gsck? + Gs5k2 — pw? of the
matrix in equation (15). It is clear from equations (7) and (15) that both the velocity and attenuation of the SH-wave
can be obtained from the corresponding equations for the [z, z3]-plane (or VTI media) by making the substitution
4 — 5 in the subscripts of the stiffnesses and elements Q;;. For example, the normalized attenuation coefficient for
homogeneous SH-wave propagation can be adapted from equation (9):

A = V1+(@QssaM)? - Qss o™, (16)
where
(1 +27")sin? 6 + cos? §

o) =
- Qss5 . o 2,
(1+27(‘))-Q—sm 0 + cos” 09

66

The velocity and attenuation of P- and SV-waves in the |z2, z3]-plane are described by (for homogeneous wave
propagation)

(622 sin® 6 4 &4 cos® 9) K ~ pw? (623 + 4a) sinf cos 0 k2 Us
= % : 7.2 . 2 - 2 9\ 1.2 2 =0. (17)
(€23 + ¢44)sinfcos O k (644 sin® 8 + ¢33 cos 0) k% — pw

The P- and SV-wave attenuation coefficients can be obtained from the equations for the [r1, z3]-plane using the
following substitutions in the subscripts: 1 — 2 and 5 — 4.

The same substitutions were used by Tsvankin (1997, 2001) in his extension of the VTI velocity equations to
the symmetry planes of orthorhombic media. The equivalence with vertical transverse isotropy is also valid for the
complex Christoffel equation in the [z, z2] symmetry plane.
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4 ATTENUATION-ANISOTROPY PARAMETERS

The Thomsen-style notation for velocity anisotropy suggested by Tsvankin (1997, 2001) helps to simplify the analytic
description of a wide range of seismic signatures for orthorhombic media. Tsvankin’s parameters provided a basis
for developing efficient seismic inversion and processing methods operating with orthorhombic models (Grechka and
Tsvankin, 1999; Grechka et al., 1999; Bakulin et al., 2000). Here, we extend his approach to attenuative orthorhombic
media with the main goal of defining the parameter combinations that govern the directionally dependent attenuation
coefficient.

Since our notation is designed primarily for reflection data, we choose the P- and S-wave attenuation coefficients
in the vertical (x3) direction (Apo and Aso) as the reference isotropic quantities. The coefficient Aso corresponds
to the S-wave polarized in the x,-direction, which may be either the fast or slow shear mode depending on the
relationship between the stiffnesses c44 and cs5. According to equations (12) and (14), the approximate (accurate to
the second order in 1/Q) coefficients Apo and Aso are given by

1

APO = m, (18)
1

e — 19

Aso 2055 (19)

To characterize the attenuation of waves propagating in the [z, z3]-plane, we define three attenuation-anisotropy
parameters analogous to the Thomsen-style parameters €4, 05, and 74 introduced for VTI media with VTI attenu-
ation by Zhu and Tsvankin (2004, 2005a). The parameters eg) and 'yg) (the superscript “(2)” stands for the z2-axis
perpendicular to the [z1, z3]-plane) determine the fractional difference between the normalized attenuation coefficients
in the z,- and xs-directions for the P- and SH-waves, respectively. Another parameter, Jg), is expressed through the
second derivative of the P-wave attenuation coefficient in the vertical direction and, therefore, governs the P-wave
attenuation for near-vertical propagation in the [x1, z3]-plane.

(2 _ Q33—Qn
I e 20
@ Qn (20)
— 2 —
Q33 — Qss css (c13 + c33) + 2Q33 Qi3 cra(cra + css)
5P = Qss (cas — cs5) Q13 (21)
Q 033(033 - Css)
4 Qa3 — Qss ¢® 42 Qa3 — Q13 (1+26@ — 26y, (22)
Qss Qi3
@ _ Qas—Qss 93
Yo = T Qe (23)
where equation (22) for 6522) is simplified by assuming that the ratio g? = %5—5 and the absolute value of Tsvankin’s
33

velocity-anisotropy parameter 5@ are small. Since the Christoffel equation in the [z1, z3)-plane has the same form as
in VTI media, equations (20)—(23) are identical to the definitions of the corresponding VTI parameters. In contrast
to VTI models, however, the parameters of orthorhombic media with the subscripts “55” and “44” are generally
different, and one needs to use css and Qss (not cas or Qaa) in equation (21) and Qs (not Qss) in equation (23).

Similarly, we adapt the VTI definitions of Zhu and Tsvankin (2004, 2005a) to introduce three attenuation-
anisotropy parameters in the (z2,zs]-plane:

1 _ Qa3 — Q2
e ) 24
Q —on (24)
- 2 _
Q33 — Qa4 cas (c23 + cas) ) Qs — Qs c23(c23 + Caq)

s = Qe (cas — cas) Qas _

Q caa(c3s — c44)

g 933~ Qua O Q33 — Q2 (1426 — 29V, 9
44 Q23

(1) = @5~ Qoo !

I e (27)

In equation (26), 8(*) is the velocity-anisotropy parameter defined in the [€2, z3)-plane (Tsvankin, 1997, 2001), and

gV = 0—41. Since the attenuation coeflicient is supposed to be positive (otherwise, the amplitude will increase with
33
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distance), the diagonal components of the Q matrix have to be positive as well. This constraint implies the parameters
eg), eg), 'yc(;), and 'yg) are always larger than —1.

The only component of the Q-matrix that is not involved in the definitions of the reference isotropic quantities
and the attenuation-anisotropy parameters in the vertical symmetry planes is Q12. Following the approach of Tsvankin
(1997, 2001), we use Q12 to introduce one more anisotropy parameter, 55?3), which plays the role of the VTI parameter
dq in the [z1, z]-plane (z, is treated as the symmetry axis of the equivalent VTI model):

— 2 -—
Qun QGGCGG (c11 + c12) +2Q11 Q12
2

c12(c12 + ce6)

5@ = Qes (c11 — ces) o (28)
Q cii{c1r — ces)
~ 4 Q11 — Qes g 42 Qu — Qe (1426 — 9g®) (29)
Qes Q2
where §® is another Tsvankin’s velocity-anisotropy parameter defined in the [z1, z2)-plane, and g® = s Although

C11
it is also possible to introduce the parameters eg’) and 'yg’) in the [z1, z2)-plane, they would be redundant.

The nine attenuation-anisotropy parameters defined in equations (18)—(29), combined with Tsvankin’s (1997,
2001) velocity-anisotropy parameters, are sufficient to fully characterize plane-wave attenuation in orthorhombic
media. An additional practically important parameter responsible for the differential attenuation of the split S-waves
in the vertical (z3) direction is described in the next section.

5 APPROXIMATE ATTENUATION COEFFICIENTS IN THE SYMMETRY PLANES

The equivalence between plane-wave propagation in the symmetry planes of orthorhombic media and in VTI media
means that the symmetry-plane attenuation coefficients of all three modes can be obtained by adapting the VTI
equations of Zhu and Tsvankin (2004, 2005a). While the exact attenuation coefficients are rather complicated even
for VTT models and do not provide insight into the influence of various attenuation-anisotropy parameters, much
simpler solutions can be found under the following assumptions:
1. The magnitude of attenuation measured by the inverse Qi; values or the parameters Apg and Asp is small.
2. Attenuation anisotropy is weak, which implies that the absolute values of all attenuation-anisotropy parameters
introduced above are much smaller than unity.
3. Velocity anisotropy is also weak, so the absolute values of all Tsvankin’s (1997, 2001) anisotropy parameters are
much smaller than unity.

In limit of weak attenuation and small anisotropy parameters v(? and 'yg‘)) (|’Y(2)| < 1 and |'yg)| <« 1), the
approximate SH-wave attenuation coefficient in the [z}, z3]-plane can be written as

A(s"’,), = Aso (1+ ’yg) sin6), (30)
where

_ 14+
Aso = L (31)

= = A
2Qa4 N +®

is the normalized attenuation coefficient for the vertically propagating shear wave polarized in the z,-direction.
Equation (30) is obtained by replacing the parameter vq in the VTI result of Zhu and Tsvankin (2004, 2005a) by
'yg‘)) and using the appropriate isotropic reference value Ago. Similarly, the corresponding linearized coefficient in the
[z2, z3]-plane has the form

Al = Aso 1+ sin0). (32)

It should be emphasized that the term “SH-wave” refers to two different shear modes in the vertical symmetry
planes (Tsvankin, 1997, 2001). For example, if c44 > cs5, then the fast shear wave S; represents an SH-wave in
the [z1,z3]-plane where it is polarized in the x,-direction. For wave propagation in the [z2, z3]-plane, however, the
Si-wave becomes an SV mode that has an in-plane polarization vector.

The difference between the attenuation coefficients of the vertically traveling split shear waves can be quantified
by the attenuation splitting parameter ,ygs ):

y _ Aso — Aso _ '7531) - ’Ygl) (33)

Aso 14++P

Il

s
7
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The definition (33) is analogous to that of the widely used S-wave velocity splitting parameter 4 (Tsvankin, 1997,
2001). To keep the parameter ,785’) positive, we assume that Aso > Aso; otherwise, Aso and Aso in equation (33)
have to be switched. Although 'yés) would be redundant as part of our notation for attenuative orthorhombic media,
this parameter should play an important role in the attenuation analysis of reflection shear-wave data.

Substituting the attenuation-anisotropy parameters eg) and Jg) into the VTI equations of Zhu and Tsvankin
(2004, 2005a) yields the following approximate attenuation coefficients of the P- and SV-waves in the {z1,z3]-plane:

AR = Apo (1+ 6g) sin®  cos® 6 + eg) sin*6) , (34)
Ag‘)/ = Aso (1 + O'g) sin” 6 cos? 9) , (35)
where
@) _ 5@
@_ 1 L ae® 4 e "%
Te T @ 201~ 930 ® + 25| (36)

@ - ¢s 2 _ Qs _ Aso o o@) — €@ — 6™
g = -, © = T = =, anda o = T
33 Qss  Apo g
and (35) have exactly the same form as the corresponding linearized phase-velocity equations (Thomsen, 1986).
However, as discussed by Zhu and Tsvankin (2004, 2005a), the dependence of the attenuation-anisotropy parameter
5 on the real parts of the stiffness coefficients reflects the coupling between the attenuation and velocity anisotropy.

In contrast, the anisotropic phase-velocity function is practically independent of attenuation (see below).
The coefficients .A(Pl) and .Afgl‘), in the [z2, z3]-plane are obtained in the same way from the VTI results by using
the attenuation-anisotropy parameters eg) and 68). For example,

. The approximate attenuation coefficients in equations (34)

A(Pl) = Apo (1 + 68) sin® @ cos® 0 + eg) sin® 0) . (37)

6 P-WAVE ATTENUATION OUTSIDE THE SYMMETRY PLANES

This section is devoted to the analysis of the P-wave attenuation coefficient for phase directions outside the symmetry
planes. While the shear-wave attenuation coefficients can be studied numerically by solving the Christoffel equation,
the area of validity of such plane-wave solutions in describing shear-wave amplitudes is significantly reduced because
of the influence of point singularities (Crampin, 1991).

6.1 Influence of attenuation on phase velocity

As pointed out above, the attenuation coefficients depend not just on the quality-factor elements Q;; but also on
the velocity-anisotropy parameters. In contrast, the presence of attenuation has an almost negligible influence on the
phase-velocity function. This result, discussed by Zhu and Tsvankin (2004, 2005a) for VTI media, remains valid for
the symmetry planes of the orthorhombic model. Here, we demonstrate that attenuation-related distortions of phase
velocity remain negligible outside the symmetry planes as well.

In the limit of weak attenuation (221— < 1), the real part of the Christoffel equation (A-2) can be simplified by

1,

dropping terms quadratic in the inverse ]Q components. The resulting equation (A-3) is identical to the Christoffel
equation for the reference nonattenuative medium, both within and outside the symmetry planes.

To evaluate the contribution of the higher-order attenuation terms, we compute the exact P-wave phase velocity
for two orthorhombic models with strong attenuation. For the first model, the attenuation is isotropic with the
uncommonly low quality factor Qas = Qss = 10 (Figure 1). Still, the maximum attenuation-related change in the

phase velocity is limited to 0.5%, which is equal to 2_QT

The second model has the same real part of thesgtiffness matrix, but this time accompanied by pronounced
attenuation anisotropy (Figure 2). Although the deviation of the phase-velocity function from that in the reference
nonattenuative medium increases away from the vertical, it remains insignificant (up to 1%) for the whole range of
polar and azimuthal phase angles. Note, however, that this discussion does not take into account attenuation-related
velocity dispersion.

Hence, seismic processing for orthorhombic media with orthorhombic attenuation can be divided into two steps.
First, one can perform anisotropic velocity analysis and estimation of Tsvankin’s parameters without taking attenu-
ation into account (Grechka and Tsvankin, 1999; Grechka et al., 1999; Bakulin et al., 2000). Then the reconstructed
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Figure 1. Influence of isotropic attenuation on the exact P-wave phase velocity computed from the Christoffel equation (5).
Each plot corresponds to a fixed azimuthal phase angle. The solid curves mark the velocity for a nonattenuative orthorhombic
model with the following Tsvankin’s (1997, 2001) parameters: Vpg = 3 km/s, Vsg = 1.5 km/s, e = 0.25, @ = 0.15,
5 =0.05, 8 = —0.1, 6@ = 0.15, v(1) = 0.28, and (2 = 0.15. The dashed curves are computed for a model with the same
velocity parameters and strong isotropic attenuation (@33 = Qs5 = 10; all attenuation-anisotropy parameters are set to zero).

anisotropic velocity model can be used in the processing of amplitude measurements and inversion for the attenuation-
anisotropy parameters.

6.2 Approximate attenuation outside the symmetry planes

The linearized approximation for the P-wave attenuation coefficient can be extended for arbitrary propagation di-
rections outside the symmetry plane under the assumption of weak attenuation and weak velocity and attenuation
anisotropy. The approximate coefficient Ap, expressed as a function of the polar phase angle # and azimuthal phase
angle ¢, has the form (Appendix A)

Ap(6,¢) = Apg [1 + 6, (9) sin® @ cos® 6 + €q () sin* 0] , (38)
where

€q(9) = eg) sin* ¢ + eg) cos® ¢ + (262") + 6,(23)) sin® ¢ cos® ¢, (39)
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Figure 2. Influence of anisotropic attenuation on the exact P-wave phase velocity. The solid curves are the phase velocities for
the nonattenuative orthorhombic model from Figure 1. The dashed curves are computed for a model with the same velocity

parameters and strong orthorhombic attenuation: Q33 = Qss = 10, eg) = eg) = 0.8, 68) = S(Qz) = 68” = —0.5, and
(1) _ . (2) _
Yo =7a =0.8.

8o (¢) = 04 sin® ¢ + 63 cos” ¢ (40)

Evidently, the linearized P-wave attenuation coefficient in any vertical plane of orthorhombic media is described by
the VTI equation (Zhu and Tsvankin, 2004, 2005a) with the azimuthally varying parameters €4 (¢) and d, (¢). For
wave propagation in the [z1,z3]-plane (¢ = 0°), e = eg), 0o = ég), and equation (38) reduces to equation (34).
Similarly, for the [x2,z3)-plane (¢ = 90°), €5 = eg), 0o = 68), and equation (38) reduces to equation (37).
Remarkably, equations (38)-(40) have exactly the same form as the linearized P-wave phase-velocity equa-
tions (1.107)-(1.109) in Tsvankin (2001). This similarity is explained by the identical (orthorhombic) symmetry
imposed on both the real and imaginary parts of the stiffness matrix and the assumption of homogeneous wave prop-
agation. However, an important difference between the coefficient Ap and phase velocity is that the parameters 68),

68), and (Sg’) include a contribution of the velocity anisotropy, while the velocity function is practically independent
of attenuation. Also, as discussed below, the exact coefficient Ap is influenced by the velocity-anisotropy parameters
even for fixed values of 68'2) and 68’2'3).




116 Y. Zhu & I. Tsvankin

6.3 Attenuation for VTI and HTI media

Transversely isotropic models with both vertical (VTI) and horizontal (HTI) symmetry axis can be treated as special
cases of orthorhombic media. For VTI media with VTI attenuation, all vertical planes are identical, and there is no
velocity or attenuation variation in the horizontal (isotropy) plane:

JRCORNIC)

W 5@ 5 s @ _
8 = s =5 61 =5@ =5,

SIS PV O =
@ _ @ _
§® =0, & =o0.

Then equations (38)-(40) yield the VTI result (Zhu and Tsvankin, 2004, 2005a): €q(0) = €q, 65 (8) = 45, and

— (1) _ (2) _
=6 € =€, =€,

I

Yor

AP = Apo (146, sin?6cos?0 + €g sin’ ). .

Next, suppose that the symmetry axis of the TI medium (for both velocity and attenuation) points in the
x-direction. In this case, the isotropy plane coincides with the [z2, z3]-plane, and

V=0, €=y,
s =0, s =0,
7 =0, 2 =0.

For this HTT model, the parameters 6 and 6223) are not independent because the [z1,z2]-plane is equivalent to

the [y, z3]-plane. If the velocity anisotropy is weak, 6 = § — 2¢?) (Tsvankin, 1997, 2001). For weak attenuation
anisotropy, 623) = Jg) - 2eg), and equation (39) becomes €o(d) = eg") cos? ¢ + (52?2) sin? ¢ cos® ¢. Then the P-wave
attenuation coefficient (38) takes the form

AR = Apg [1 + 63) cos® ¢sin® 0 cos? 0 + (eg) cos® ¢ + Jg) sin? ¢ cos? d)) sin? 9] . (42)

6.4 Parameters for P-wave attenuation

The linearized P-wave attenuation coefficient (38) does not contain the parameters Aso, 'yg), and 'yg), which are
primarily responsible for shear-wave attenuation. An important practical issue is whether or not this conclusion
remains valid for models with strong attenuation and pronounced velocity and attenuation anisotropy. As illustrated
by Figure 3, the dependence of Ap on the shear-wave vertical attenuation coefficient Aso becomes noticeable only
for extremely high attenuation (i.e., uncommonly small values of Qss). The influence of the parameters 'yg) and 'yg)
on the coefficient Ap (not shown here) for typical moderately attenuative models is also negligible.

Therefore, for a fixed orientation of the symmetry planes and fixed velocity parameters, P-wave attenuation is
controlled by the reference value Apg and five attenuation-anisotropy parameters — e}, eg), J(Ql), 6&”, and 6223). An
equivalent result was obtained for velocity anisotropy by Tsvankin (1997, 2001), who showed that the P-wave phase-
velocity function in orthorhombic media is governed Jjust by the vertical velocity and five € and § parameters. However,
while the velocity function is almost independent of attenuation, the P-wave attenuation coefficient does depend on
the velocity anisotropy, even if all relevant attenuation-anisotropy parameters are held constant (see below).

6.5 Accuracy of the linearized solution

To evaluate the accuracy of the weak-anisotropy approximation (38) outside the symmetry planes, we compare it with
the exact coefficient Ap [equation (5)] for a model with pronounced orthorhombic attenuation (Figure 4). The velocity
parameters correspond to the moderately anisotropic model of Schoenberg and Helbig (1997). Since no measurements
of the attenuation-anisotropy parameters are available, each of them was set to be twice as large as the corresponding
velocity-anisotropy parameter (e.g., eg") =2¢® ).

As expected, the weak-anisotropy approximation gives satisfactory results for near-vertical propagation directions
with polar angles up to about 30°. The error becomes more significant for intermediate propagation angles in the
range 30° < @ < 75°. When the vertical incidence plane is close to either vertical symmetry plane (i.e., the azimuth ¢
approaches 0° or 90°), the approximate solution also yields an accurate estimate of .Ap near the horizontal direction.
Overall, the error of the weak-anisotropy approximation for the full range of polar and azimuthal angles is less
than 10%. Note that while the velocity anisotropy for this model is moderate (both €M and €?® are about 0.3),
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Figure 3. Influence of the parameter Ago =1 /(2Qs5) (marked on the plot) on the normalized P-wave attenuation coefficient.
The velocity parameters correspond to an orthorhombic model formed by vertical cracks embedded in a VTI background
(Schoenberg and Helbig, 1997): Vpo = 2.437 km/s, Vso = 1.265 km/s, (1) = 0.329, €(?) = 0.258, 5(1) = 0.083, 6(2) = —0.078,
63 = —0.106, 4(1) = 0.182, and ~+(?) = 0.0455. The P-wave vertical attenuation coefficient is App = 0.01 (Qas = 50);
each attenuation-anisotropy parameter is twice the corresponding velocity-anisotropy parameter: eg) = 0.658, eg) = 0.516,

50 = 0.166, 62 = ~0.156, 63 = —0.212, 7§’ = 0.364, and +& = 0.091.

the attenuation anisotropy is much more pronounced. This and other tests for a representative set of orthorhombic
models confirm that equation (38) adequately describes P-wave attenuation under the assumption of homogeneous
wave propagation.

To identify the source of errors in the weak-anisotropy approximation, we repeat the test in Figure 4 using a
purely isotropic velocity model (Figure 5). The approximate solution (dashed lines) in Figure 5 coincides with that
in Figure 4 because both models have identical attenuation-anisotropy parameters. The exact coefficient Ap (solid
lines), however, is influenced by the velocity-anisotropy parameters in such a way that the error of the weak-anisotropy
approximation becomes much smaller when the velocity field is isotropic (Figure 5).

Hence, the accuracy of the approximation (38) is controlled primarily by the strength of the velocity anisotropy,
even if the magnitude of the attenuation anisotropy is much higher. This can be explained by the multiple linearizations
in the velocity-anisotropy parameters involved in deriving equations (A4), (A7), and (A8).

It should be emphasized that the influence of different subsets of the velocity-anisotropy parameters on the
attenuation coefficient varies with the azimuth ¢. As illustrated in Figure 6, the contribution of the velocity-anisotropy
parameters defined in the [x1,z3]-plane (the azimuth ¢ = 0°) to the coefficient Ap decreases away from that plane
and completely vanishes in the orthogonal direction. Note that according to the Christoffel equation (17), the P-wave
attenuation coefficient in the [z2,x3]-plane (¢ = 90°) is indeed fully independent of the velocity- and attenuation-
anisotropy parameters defined in the other two symmetry planes. Similarly, the maximum influence on Ap of the
velocity-anisotropy parameters defined in the [z2, z3]-plane is observed for azimuths close to 90°.

7 DISCUSSION AND CONCLUSIONS

The attenuation coefficients of P-, S1-, and Sz-waves in orthorhombic media with orthorhombic attenuation depend
on the orientation of the symmetry planes, nine velocity parameters and nine components of the quality-factor matrix.
The large number of independent parameters, compounded by the coupling between the attenuation and velocity
anisotropy, makes the description of orthorhombic attenuation extremely difficult. Here, we demonstrated that the
analysis of attenuation coefficients can be significantly simplified by introducing attenuation-anisotropy parameters
similar to Tsvankin’s parameters for the orthorhombic velocity function.
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Figure 4. Comparison of the exact coefficient Ap (solid curves) with the linearized approximation (38) (dashed) for an
orthorhombic medium with orthorhombic attenuation. The model parameters are the same as in Figure 3 (@s5 = 40).
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Figure 5. Comparison of the exact coefficient Ap (solid curves) with the linearized approximation (38) (dashed) for a medium

with orthorhombic attenuation but a purely isotropic velocity function. The attenuation parameters are the same as in Figures 3

and 4, but the velocity Vpo = 2.437 km/s is constant in all directions.
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Figure 6. Influence of the velocity anisotropy on the exact attenuation coefficient A p. The solid curves are computed for the
orthorhombic model with orthorhombic attenuation from Figures 3 and 4. The dashed curves are obtained by setting to zero

the velocity-anisotropy parameters e(2), 8 and 7(2) defined in the

are unchanged.

[z1, z3]-plane (azimuth = 0°); all other model parameters



The equivalence between the Christoffel equation in
the symmetry planes of orthorhombic and VTI media,
established previously for purely elastic media, holds
in the presence of orthorhombic attenuation. Therefore,
the symmetry-plane attenuation coefficients of all three
modes can be obtained by simply adapting the known
VTI equations. Also, the Thomsen-style VTI notation of
Zhu and Tsvankin (2004, 2005a) can be extended to or-
thorhombic media following the approach suggested by
Tsvankin (1997, 2001) for velocity anisotropy. The set of
attenuation-anisotropy parameters introduced here in-
cludes two reference (isotropic) P- and S-wave atten-
uation coefficients in the x3 direction, Apo and Aso,
and seven dimensionless anisotropy parameters, 68’2),
58'2'3), and 78’2).

Adaptation of the linearized VTI equations leads
to concise expressions for the symmetry-plane atten-
uation coefficients of P-, Si1-, and Si-waves valid for
weak attenuation and weak velocity and attenuation
anisotropy. Furthermore, linearization of the Christof-
fel equation in the attenuation-anisotropy parameters
yields the approximate P-wave attenuation coefficient
Ap outside the symmetry planes as a simple function
of Apo, 68‘2), and 68'2’3). Interestingly, the linearized
coefficient Ap expressed through the phase angles and
attenuation-anisotropy parameters has the same form
as the approximate P-wave phase-velocity function in
terms of Tsvankin’s velocity parameters. Also, as is the
case for velocity anisotropy, the approximate P-wave at-
tenuation coefficient in each vertical plane of orthorhom-
bic media is given by the VTI equation with azimuthally
varying parameters €, and 6.

This equivalence between the linearized equations
for attenuation and velocity anisotropy stems from
the identical (orthorhombic) symmetry of the real and
imaginary parts of the stiffness tensor and the assump-
tion of homogeneous wave propagation. Still, there are
important differences between the treatment of velocity
and attenuation anisotropy. Our analysis shows that in
the absence of pronounced velocity dispersion the influ-
ence of attenuation (i.e., of the imaginary part of the
stiffness tensor) on velocity is practically negligible. In
contrast, the definitions of the attenuation-anisotropy
parameters 58'2'3) include the velocity-anisotropy pa-
rameters 6(52%).

Also, although the velocity anisotropy does not ex-
plicitly contribute to the linearized expressions for at-
tenuation, the exact attenuation coefficient Ap does
vary with the velocity-anisotropy parameters even for
fixed values of 68'2'3). Moreover, the accuracy of the lin-
earized equation for Ap is controlled toa large degree by
the strength of the velocity anisotropy. Numerical tests
demonstrate that the approximate Ap remains close to
the exact value even for strongly attenuative media pro-
vided the velocity anisotropy is relatively weak.

Thus, the P-wave attenuation coefficient is primar-
ily governed by the orientation of the symmetry planes
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and six (instead of nine) attenuation-anisotropy param-
eters: Apo, 68’2), and 68'2'3). Still, due to the non-
negligible influence of the velocity anisotropy on Ap,
inversion of attenuation measurements for orthorhom-
bic media cannot be performed without anisotropic ve-
locity analysis. Also, note that knowledge of the velocity
field is required to correct for the difference between the
phase attenuation coefficient studied here and the group
attenuation coefficient responsible for the amplitude de-
cay along seismic rays (Zhu and Tsvankin, 2004).
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APPENDIX A: APPROXIMATE ATTENUATION OUTSIDE THE SYMMETRY PLANES OF
ORTHORHOMBIC MEDIA

The complex Christoffel equation (5) for homogeneous wave propagation outside the symmetry planes can be rewritten

as
[ (ciin} + cosni + essn3)K1 16,5 — pV2 +i(cnn? + cesn3 + c55n3)Ka (1,65

{ [ (cosn} + coan? + 044n§)/C1,(s,2,4) —pV? +icesn? + ca2n3 + C44n§)/C2,(6,2,4)]

- [(cssm? + caqns + C33n§)/cl,(5_4,3) —pViy i(cssnf + cqqn? + 63317.3)/(:2'(5,4’3)] _
[ (c23 + caa)nana(Ky 93,44y + Ko (23,40))]%}

= [{er2 + ess)runa(Ky (12,66) + 1Kz, 12,66))]

(12 + ce6)n1n2(Ky, (12,66) + K2, (12,66))]

< (c55nf + c“ng + C33TL§),C1'(5'4’3) - pV2 4 i(cssnf + 04411% + 03311.%)1(12,(5,4,3)] _
[(c13 + ess)nins(Ky, 13,55) + 1Ko (13,55))] - [(cos + caa)nans (K, (23,40) + K2 (23.44))]}

+{(c13 + ess)nina(Ky (13,55) + tKq,(13,55))]

{ [ (er2 + ess)nina(Ky (12,66 + iK2,012,66))] - [(c2s + caa)nans(Ky,(23,04) + iKp(23.40))] —
[(c13 + ess)rina(Ky,(13,55) + 2, (13,55))]

[ (cosni + caan? + Cq4n§)/C1,(6,2,4) = pV? +i(coen? + coang + 044n§)’C2,(6,2,4)]} =0,

(A1)
where
2 1-— 42
Ki=1-A"+ =—4, Kz = — 24,
1 Q33 2T TQm
A g
Fraan = Ko+ 2%*" Koign = K2 + —5;3 (1- A?),
Aijk Aj ke
Fram = K+ 2%“4’ Kok = K2 + _(Q]sa L(1- 4%,
cin? Qa = Qi + ¢;in3 Qa3 — Qs + epn? Q33 — Qu
Ay = Qi Qjs Qu
(i.3.0) = cin? + c;;n2 + egn? R
iy +¢j5ng + cung
cii Q33 — Qy; + i Q33 — Qu
A = Qij Qi
(k= Cij + Ct

Note that A = k! /k is on the order of the inverse Q-factor (1/Q). When the attenuation is weak (A < 1), we obtain

1 . . . . .
Ki~1land K3 ~ O 2A by dropping the quadratic and higher-order terms in .A. Assuming that Q33 and Qss are

33
of the same order (the common case), weak attenuation anisotropy implies the same order for all components Q;;.
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Ao s
Hence, the magnitude of the terms A ;1) and A(;j k) cannot be much larger than unity. Then the terms —é’—’ﬁA,
33

A A A
—MLA, —M)—.Az, and —UG2kD 42 4pe either quadratic or cubic in A. Dropping these terms yields Ky, = 1,
Q33 33 Q33 (4,7, )
1+A~_-‘[ 1+A",kl
__(Q;sz_)_ — 2.A, ’Cl.(ij,kl) ~ 1, and K:2,(ij,kl) ~ ——63(:_) —2A.

Next, we denote C; j,1y = ciin? + ¢;;n3 + cund and Cijrr) = (€5 + cxt)nin; and simplify equation (A1) for weak
attenuation and weak attenuation anisotropy as

. 1+Apes)
C ~pVi4iC — e 24
(1,65 — P (1,6,5) ( Qs

14+ Age,2,9)
Q33

| . 14 A, (14 D, ?
LC(S’M) — pV? +iC(s,4,3) (_7;:4—3) - 2A)] — Cla3,44) [1 +1 (—Q:;_“ﬁ - 2A)] }

1+A
—C(12,66) [1 + (_Q;_;z_‘“ﬂ - 2A>]

1+4A . 1+4
{C(xz,sc) [1 + (—Q;—fﬂ - 2A)] : [C(5,4,3) — pV? +iCs,4,3) (—fQ—?%ﬂ - 2A>] -

14 Agsss) 14+ As,a9)
C 14| ———=2-24}|-C 1 24
(13,55) [ ( Oss (23,49) |1+ O

1+ A
+Ca13,55) [1 +1 (—M - 2A)]
Qss

{1+ Ao, {1+ Ds,
{C(lz,ee) [1 +1 (___Q;]s_zs_s) - QA)] - C(23,44) [1 +1 <——Q:§%ﬂ—) - 2A)] —

14+ Apass) 2, . 1+ Age,2,9)
C 1 = 240 - |C —pV C 0 24
(13,55) [ +12 ( Qs (6,2,4) — PV +1 6.2, O )

=0. (A2)

The real part of equation (A-2) is

Ko =

L
{ [C(6,2,4) - pV2 + Cs,2,4)( - 2A)]

(enyn? + coong + cssnd — pV'?)

- [(ceen? + c20m3 + caaml — pV?)(essni + caan + cssnd — pV?) = (c2s + caa) n3n]
—(e12 + cos)n1na

. [(612 + cos)nima(cssni + caan? + caan? — pV?) — (c13 + css)(ces + 044)??-1”271%]
+(c13 + cs5)nins

: [(612 + ce6)(c23 + 044)71171271% — (13 + 055)n1n3(066nf + szng + 044713 - PVZ)] =0,

(A3)
which is identical to the Christoffel equation for the reference nonattenuative medium.
The normalized attenuation coefficient A is obtained from the imaginary part of equation (A2):
1 He
A= b (1), v
2Qs3 Ha (A4)
where

Hu = Dos)Cres) [(Co2,0) = PV (Cisa,3) — PV?) — Clasaay )
+86,2.0C6,2.4) [(Caes — pV?)(Cis,a.3) — PV?) — Chiz,ss))
+0(s5,43C5,4,3) [(Cae5) — PV (Co2,4) — PV?) — Chiz.66))
—~2A13,55)Cla3,55) (C(6,2.4) — pV?) = 2A12,66)Ca2,66)(C5,4,3) — pV?)
—24(23,44)Cla3,44) (C(1,6,5) — pV?)
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+2 (A(13,55) + A12,66) + A(23,44)) C13,55)C(12,66)C(23,44) » (AS5)
and
Ha=pV? [(Cuos) — PV?)(Cs,2,9) — pV?) + (€5 — PV)(Cis,a,3) — pV?)
+(C6,2,4) — PVZ)(C(s,q,s) —pV? - C(212,66) - C(213,55) - C(223,44)] . (A6)

The term % in equation (A4) can be expressed through the velocity- and attenuation-anisotropy parameters.
d

Assuming that the anisotropy is weak for both the velocity and attenuation, we keep only the linear terms in all
anisotropy parameters to obtain

H. = cas(cas — css)® [eg)n‘l‘ + eg)ng + (Zeg") + 623))77,%11,% + 62?2)71?71.3 + 68)ngn§] ,

(A7)

Ha = c33(cas — css)
. {(033 —cs5) (1+2¢Pnf +2WVnd + 26®nin3 + 26MWn2n2 + 4P n2n? + 25(3)71?71%)
+ cas [V (=203 + 6n3) + €@ (—2n2 + 6nd + 12n2n2)
+66(‘)n§n§ + 66(2)nfn§ + 6(5(3)11?112]
+ cs5 [vV (=2 - 2n3) + 4@ (2 = i)} . (A8)

Note that since the term 7, is linear in the anisotropy parameters, it is sufficient to keep just the isotropic part of
the term H,4. Substitution of equations (A-7) and (A-8) into equation (A-4) yields the final form of the approximate
P-wave attenuation coefficient given in the main text [equation (38)).
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ABSTRACT

The amplitudes and frequency content of seismic waves propagating through
anisotropic formations may be strongly distorted by directionally dependent
attenuation. Here, we present physical-modeling measurements of the P-wave
attenuation coefficient in a transversely isotropic phenolic sample.

Using the spectral-ratio method, we estimated the group (effective) attenua-
tion coefficient of P-waves transmitted through the sample for a wide range of
propagation angles (from 0° to 90°) with the symmetry axis. Correction for the
difference between the group and phase angles was used to obtain the normal-
ized phase attenuation coefficient A that was inverted for the Thomsen-style
attenuation-anisotropy parameters €, and d&,. Whereas the symmetry axes of
the angle-dependent coefficient .A and of the velocity function have close ori-

entations, the magnitude of attenuation anisotropy far exceeds that of velocity
anisotropy. The quality factor Q) increases more than tenfold from the symmetry
(slow) direction to the isotropy plane (fast direction).

The robustness of our results depends critically on several factors, such as the
availability of an accurate anisotropic velocity model and the adequacy of the
“homogeneous” concept of wave propagation. The methodology discussed here
can be extended to field measurements of anisotropic attenuation needed for
AVO (amplitude variation with offset) analysis and seismic fracture detection.

Key words: attenuation, attenuation anisotropy, transverse isotropy, physical

modeling

1 INTRODUCTION

Most existing publications on seismic anisotropy are
devoted to the influence of angular velocity variation
on the traveltimes and amplitudes of seismic waves. It
is likely, however, that anisotropic formations are also
characterized by directionally dependent attenuation re-
lated to the internal structure of the rock matrix or the
presence of aligned fractures.

Various issues related to the analytic treatment
of attenuation in anisotropic media were addressed
by Borcherdt and Wennerberg (1985), Krebes and Le
(1994), Carcione (2001), Cerveny and Psentik (2004)
and others. For example, the quality factor Q, widely
used as a measure of attenuation in isotropic media (e.g.,
Johnston and Toks6z, 1981), can be replaced by a matriz

Q that describes anisotropic attenuation. Each element
Q:; of the quality-factor matrix is defined as the ratio
of the real and imaginary parts of the corresponding
stiffness coefficient (Carcione, 2001). Zhu and Tsvankin
(2004, 2005) showed that the angle-dependent attenu-
ation coefficients in transversely isotropic (TI) media
can be obtained in a relatively simple form by using
Thomsen-style attenuation parameters €, 6gs and v,
derived from the anisotropic Q-matrix.

Although experimental measurements of attenua-
tion, both in the field and on rock samples, are rela-
tively rare, they indicate that the magnitude of attenu-
ation anisotropy can exceed that of velocity anisotropy
(e.g., Tao and King, 1990; Arts and Rasolofosaon, 1992;
Prasad and Nur, 2003). For example, according to the
measurements of Hosten et al. (1987) for an orthorhom-
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bic sample made of composite material, the quality fac-
tor for P-waves changes from Q = 6 in the vertical direc-
tion to @ = 35 in the horizontal direction. Hosten et al.
(1987) also show that the symmetry of the attenuation
coefficient closely follows that of velocity.

Here, we extend the spectral-ratio method to
anisotropic media and apply it to P-wave transmis-
sion data acquired in a symmetry plane of a pheno-
lic sample. Fitting the theoretical normalized attenua-
tion coefficient A to the measurements for a wide range
of propagation angles yields large absolute values of
the Thomsen-style attenuation-anisotropy parameters
€, and 6,. Although the experiment was performed
for a synthetic material, the results are indicative of
the high potential of attenuation-anisotropy analysis for
field seismic data.

2 THEORETICAL BACKGROUND
2.1 P-wave attenuation in TI media

Propagation of plane P- and SV-waves in TI media with
TI attenuation is described by the Christoffel equation
(Carcione, 2001; Zhu and Tsvankin, 2004, 2005):

(E11k} + skl — pw’)(ésski + E33k3 — pw?)
— [ (13 + 555)11‘1153]2 =0, (1)

where p is the density, w is the angular frequency,
Cij = ¢ij + icfj are the complex stiffness coefficients
(the symbol “~ " denotes a complex quantity), and
k = k — ik! is the complex wave vector. Generally,
the vectors k and k! (the imaginary part k! is some-
times called the attenuation vector) have different orien-
tations, which means that the phase (slowness) direction
does not coincide with the direction of maximum atten-
uation. In that case, wave propagation is usually called
“inhomogeneous”, and the angle between k and k' is
called the “inhomogeneity angle.” Whereas the inhomo-
geneity angle represents a free parameter in plane-wave
propagation, it is usually small for wavefields excited by
point sources in weakly attenuative media.

As discussed in Carcione (2001) and Zhu and
Tsvankin (2004, 2005), by solving the Christoffel equa-
tion (1) one obtains the (real) phase velocity v = %

I
and the normalized attenuation coefficient A = k—n The
coefficient A, which determines the rate of amplitude
decay per wavelength, is expressed through the quality-
. __ GCij

factor matrix (Q:; = o
T
stiffnesses ¢;;. Even for relatively simple media in which
both ¢;; and c{j have TI (hexagonal) symmetry, the at-
tenuation coefficients of P- and SV-waves have a rather
complicated form.

To facilitate the analytic description of TI attenua-
tion, Zhu and Tsvankin (2004, 2005) developed a nota-
tion based on the same principle as the commonly used

) and the real parts c;; of the

Thomsen (1986) parameters for velocity anisotropy. For
P- and SV-waves, the set of Thomsen-style attenuation-
anisotropy parameters includes two reference (isotropic)
quantities Apo and Aso and the dimensionless coeffi-
cients €, and d, (Appendix A). The parameters Apo =
1/(2Qa3) and Aso = 1/(2Qss) are the P- and S-wave
attenuation coefficients (respectively) in the symmetry
direction, while €, and d, control the angle variation
of the attenuation coefficients between the symmetry
axis and the isotropy plane. In the limit of small at-
tenuation and weak anisotropy (for both velocity and
attenuation), the P-wave attenuation coefficient can be
significantly simplified by linearizing the solution of the
Christoffel equation (1) in the anisotropy parameters
(Zhu and Tsvankin, 2004, 2005):

Ap = Apo (144, sin® @ cos® 6 + € sin ), (2)

where 6 is the phase angle with the symmetry axis.
Equation (2) is obtained under the assumption of “ho-
mogeneous” wave propagation (k || k), which is suf-
ficiently accurate for P-waves generated by a point
source in a homogeneous, weakly attenuative, weakly
anisotropic medium.

Equation (2) has exactly the same form as Thom-
sen’s (1986) weak-anisotropy approximation for the P-
wave phase velocity. The parameter d, is responsible
for the attenuation coefficient in near-vertical directions,
while €, controls Ap close to the horizontal plane. The
definition of the parameter 44, however, is more com-
plicated than that of Thomsen’s parameter § and re-
flects the coupling between the attenuation and veloc-
ity anisotropy (Zhu and Tsvankin, 2004, 2005). If both
€, and §, go to zero, the approximate coefficient Ap
becomes isotropic (i.e., independent of angle).

2.2 Spectral-ratio method for anisotropic
attenuation

The spectral-ratio method is often used to estimate the
attenuation coefficient in both physical modeling and
field surveys. For laboratory experiments, application of
this method typically involves amplitude measurements
made under identical conditions for the sample of inter-
est and for a reference purely elastic (non-attenuative)
sample.

The amplitude spectrum of an arrival recorded for
the reference sample [denoted by the superscript “(0)"]
can be written as

U w w x X i(wt—k(®).x(0)
(0)( ) — S( )G(O)( (0)) —k(0) 4 (0) (wt—k 0) 5 ) ,

where x is the vector connecting the source and receiver,
S(w) is the spectrum of the source pulse, and the factor
G(x) incorporates the radiation pattern of the source
and the geometrical spreading along the raypath. Simi-
larly, the spectral amplitude for the attenuative sample
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(superscript “(1)”) has the form

U (w) = S(w) G (x(V) M= gitwt=k® =)
(4)

If the reference trace is acquired for a purely elastic
medium with k(®! = 0, the logarithm of the amplitude
ratio becomes

W W
Ul _m (%) IO ON (5)

The frequency dependence of the ratio G(l)/ G is usu-

U©)
ally considered to be negligible in certain frequency
(1)

range. Then the slope of the function In T in this

frequency range yields the “local” value of the Q-factor
in the direction x. If this slope changes with frequency w,
then k" = |k(*| is not a linear function of frequency
w, and the assumption of frequency-independent Q is
not valid.

The normalized attenuation coefficient introduced
above is given by

I w1
A= % = kw v, (6)
which is simply the slope of kMW in the frequency
domain corrected by the source-receiver distance and
scaled by the phase velocity in the direction xM,

In isotropic media with isotropic (angle-
independent) attenuation, the group attenuation
coefficient kI, = |k£.| measured along the raypath
using the spectral-ratio method is the same as the
phase (plane-wave) attenuation coefficient k' = K|
For anisotropic media with anisotropic attenua-
tion, however, these two coefficients are different.
If wave propagation is homogeneous (i.e., the inho-
mogeneity angle is negligible), the group and phase
attenuation coefficients are related by the equation
kL = k' cos(y — 6), where 9 and 6 are the group and
phase angles, respectively (Zhu and Tsvankin, 2004).

Here, we employ the following procedure of in-
verting P-wave attenuation measurements for the
attenuation-anisotropy parameters. First, the logarith-
mic spectral ratio yields the amplitude decay factor in
the group (ray) direction, k(! () [equation (5)]. Sec-
ond, using the phase and group angles obtained from
the known velocity parameters of the sample, we evalu-
ate the phase attenuation coefficient k! and normalize it
by the corresponding real wavenumber k [equation (6)]

I

In

to estimate the coefficient A = ——. Third, the mea-

surements of A for a wide range of phase angles 6 are
inverted for the attenuation-anisotropy parameters €,
and . Approximate values of the parameters ¢, and
d, can be found in a straightforward way from the lin-
earized equation (2). More accurate results, however,
are obtained by nonlinear inversion based on the exact
Christoffel equation (1).
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Figure 1. Physical model of a T layer with the symmetry
axis tilted at 70° (from Dewangan et al., 2005). The trans-
mitted wavefield is excited by a transducer at the bottom of
the model and recorded with a laser vibrometer.

Because of the coupling between attenuation and
velocity anisotropy, estimation of the attenuation-
anisotropy parameters requires knowledge of the
anisotropic velocity field. Since the influence of attenu-
ation on velocity is typically a second-order effect (Zhu
and Tsvankin, 2005), anisotropic velocity analysis can
be performed independently of attenuation measure-
ments. Here, we use the results of Dewangan (2004)
and Dewangan et al. (2005) who estimated the velocity-
anisotropy parameters of our sample by inverting the
reflection traveltimes of PP- and PS-waves.

3 EXPERIMENTAL SETUP

The goals of this experiment were to measure the di-
rectional dependence of the attenuation coefficient in
a composite sample and to estimate the attenuation-
anisotropy parameters. The material was XX-paper-
based phenolic composed of thin layers of paper bonded
with phenolic resin. This fine layering produces an ef-
fective anisotropic medium on the scale of the predom-
inant wavelength. The sample was prepared by Dewan-
gan (2004), who pasted phenolic blocks together at an
angle, resulting in a transversely isotropic model with
the symmetry axis tilted from the vertical by 70° (Fig-
ure 1).

Dewangan (2004) and Dewangan et al. (2005) show
that the TTI model adequately explains the kinemat-
ics of multicomponent (P, S, and PS) data in the ver-
tical measurement plane that contains the symmetry
axis (the symmetry-axis plane). Although phenolic ma-
terials are generally known to be orthorhombic (e.g.,
Grechka et al.,, 1999), body-wave velocities and polar-
izations in the symmetry planes can be described by the
corresponding TI equations (Tsvankin, 1997, 2001).

The original purpose of acquiring the transmission
data used here (Figure 2a) was to verify the accuracy of
the parameter-estimation results obtained by Dewan-
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gan (2004) and Dewangan et al. (2005). The P-wave
source transducer was fixed at the bottom of the model,
and the wavefield was recorded with a laser vibrome-
ter at the top of the model with a sampling interval of
2 mm in the same azimuth as that of the symmetry axis.
The spread of the receiver locations was wide enough to
record the full range of propagation angles (from 0° to
90°) with respect to the (tilted) symmetry axis.

For attenuation analysis we separated the first (di-
rect) arrival by applying a Gaussian window to the raw
data. The amplitude spectrum of the windowed first ar-
rival, obtained by filtering out the low (f < 5 kHz) and
high (f > 750 kHz) frequencies, is shown in Figure 2b.
An aluminum block with negligibly small attenuation
served as the reference model. The spectrum of the refer-
ence trace acquired by a receiver located directly above
the source (Figure 3) was used to estimate the attenu-
ation coefficient by means of the spectral-ratio method
described above.

The parameters of the T'TI velocity model needed
to process the attenuation measurements were obtained
by Dewangan et al. (2005) from reflection PP and
PS data (Figure 4). Tilted transverse isotropy is de-
scribed by the the P- and S-wave velocities in the sym-
metry direction (Vpo and Vso, respectively), Thomsen
anisotropy parameters € and § defined with respect to
the symmetry axis, the angle v between the symmetry
axis and the vertical, and the thickness z of the sample.
The known values of v = 70° and z = 10.8 cm were ac-
curately estimated from the reflection data, confirming
that the velocity-inversion algorithm is robust.

4 MEASUREMENTS OF ATTENUATION
ANISOTROPY

4.1 Estimation of the attenuation-anisotropy
parameters

For each receiver position at the surface of the phenolic
sample, we divided the spectrum of the recorded trace
by that of the reference trace (Figure 3), as suggested
by equation (5). Records with a low signal-to-noise ratio
were excluded from the analysis. We use the frequency
band of 60-110 kHz to estimate the attenuation coeffi-
cient. According to the spectral-ratio method described
above, the relevant elements Q;; of the quality-factor
matrix are assumed to be constant in that frequency
band.

The normalized phase-attenuation coefficient A,
obtained after correcting for the difference between
group and phase attenuation (it does not exceed 6%),
exhibits a pronounced variation between the slow (0°)
and fast (90°) directions (Figure 5). The largest atten-
uation coefficient is observed along the symmetry axis
(6 = 0°), where the P-wave phase velocity reaches its
minimum value. Since the symmetry direction is or-
thogonal to the multiple thin layers bonded together
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Figure 2. (a) Raw transmission data excited by a P-wave
transducer, and (b) the amplitude spectrum of the windowed
first arrival. The solid line is the P-wave traveltime modeled
by Dewangan et al. (2005) using the inverted parameters
from Figure 4. The time sampling interval is 2 us, and the
width of the Gaussian window is 40 samples.
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Figure 3. (a) Reference trace for vertical propagation
through an aluminum block, and (b) its amplitude spectrum.

to form the model, the rapid increase in attenuation
toward 8 = 0° is expected.

The polar plot of the attenuation coefficient, shown
in Figure 6, indicates that the symmetry axis of the
function .A(9) is close to that for the velocity measure-
ments. Although we did not acquire data for angles over
90° to reconstruct a more complete angle variation of
A(8), the direction orthogonal to the layering should
represent the symmetry axis for all physical properties
of the model. To quantify the attenuation anisotropy, we
used the Christoffel equation (1) to estimate the best-fit
parameters: Apo = 0.16 (Qa3 = 3.2), ¢, = —0.92, and
0, = —1.84. The weak-attenuation, weak-anisotropy
approximation (2) yields similar values (Apo = 0.16,
€ = —0.86, and §, = —1.91) despite the large angular
variation of A(6) (Figure 6).

While the fact that the largest attenuation coeffi-
cient for this model is observed at the velocity minimum
is predictable, the extremely low value of Q33 = 3.2
is somewhat surprising. It should be mentioned, how-
ever, that estimates of the attenuation coefficient near
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Figure 4. Parameters of the TTI model estimated from the
reflection traveltimes of PP- and PS-waves in the symmetry-
axis plane. The mean values are Vpg = 2.6 km/s, Vgo = 1.38
km/s, € = 0.46, and § = 0.11 (Dewangan et al., 2005). The
error bars mark the standard deviations in each parameter
obtained by applying the inversion algorithm to 200 realiza-
tions of input reflection traveltimes contaminated by Gaus-
sian noise. The standard deviation of the noise times was
equal to 1/8 of the dominant period of the reflection arrivals.

the symmetry axis may be distorted by the relatively
low reliability of amplitude measurements at long offsets
corresponding to small angles 8 (Figure 1). Problems in
applying our methodology for large source-receiver dis-
tances may be related to such factors as the frequency-
dependent geometrical spreading and the increased in-
fluenced of heterogeneity. In general, the spectral-ratio
method may not be adequate for describing the fre-
quency spectrum of the long-offset data.

An essential assumption behind the estimates of the
attenuation-anisotropy parameters is that wave propa-
gation through the model is homogeneous, and the inho-
mogeneity angle is negligibly small. Although the mod-
eled attenuation coefficient provides a good fit to the
measured curve, it is not clear how significant the inho-
mogeneity angle for this model may be and how it can
influence the parameter-estimation results.

4.2 Uncertainty analysis

It is important to evaluate the uncertainty of the atten-
uation measurements caused by errors in the velocity-
anisotropy parameters. Using the standard deviations
in the parameters Vpo, €, §, and v provided by Dewan-
gan et al. (2005), we repeated our inversion procedure
for 50 realizations of the input TTI velocity model (Fig-
ure 7). Although the variation of the estimated atten-
uation coefficients in some directions is substantial, the
mean values of the attenuation-anisotropy parameters
obtained from the best-fit curve A(8) are close to those
listed above. The standard deviations are 2% for Apo,
0.01 for €, and 0.06 for 85, which indicates that the

T
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Figure 6. Attenuation measurements from Figure 5 (thick
solid line) and the best-fit attenuation coefficients obtained
using the Christoffel equation (1) (thin grey solid) and the
approximation (2) (dashed).

influence of errors in the velocity field on our results is
not significant.

Another potential source of uncertainty in the
attenuation-anisotropy measurements is the choice of
the frequency range used in the spectral-ratio method.
Figure 8 shows the distribution of 50 realizations of the
attenuation-anisotropy parameters obtained for variable
upper and lower bounds of the frequency range. The
means of the estimated parameters are Apy = 0.16
(Qas = 3.3), ¢, = —0.90, and 6, = —1.94, with the
standard deviations equal to 3% for Apo, 0.06 for €o
and 0.15 for 4.
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Figure 7. Influence of errors in the velocity model on the
attenuation parameters. The error bars mark the standard
deviations in each parameter obtained by applying our algo-
rithm with 50 realizations of the input TTI velocity param-

eters. The standard deviations in the TTI parameters are
taken from Dewangan et al. (2005).

TTI attenuation parameters
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The sensitivity of the attenuation-anisotropy pa-
rameters to moderate variations in the bounds of the
frequency range is therefore not negligible. Note that
since the parameter €, for our model is close to -1, es-
timates of the normalized attenuation coefficient Q11
in the isotropy plane are unstable (Q11 — oo when
€o — —1). Moderate variations of €, within the er-
rors bars in Figure 7 produce values of Q11 as low as
19.4 and as high as 93.5.

In accordance with the spectral-ratio method, we
assume the quality-factor components Q;; to be inde-
pendent of frequency within the frequency range used
for the analysis. The slope of the attenuation coefficient
k' in the frequency domain, however, is not constant,
which implies that the attenuation-anisotropy parame-
ters may vary with frequency.

A detailed analysis of the influence of noise in the
data on attenuation estimates can be found in Vascon-
celos and Jenner (2005).

5 DISCUSSION AND CONCLUSIONS

Since experimental measurements of attenuation are
scarce, physical modeling of wave propagation through
attenuative materials can provide useful insights into
the magnitude and angular variation of the attenuation
coefficient. Here, we applied the spectral-ratio method
to P-waves transmitted through a transversely isotropic
sample for a wide range of angles with the symme-
try axis. After estimating the group (effective) atten-
uation along the raypath, we computed the correspond-
ing phase (plane-wave) attenuation coefficient using a
known TI velocity model. The difference between the
phase and group attenuation, caused by the influence
of velocity anisotropy, has to be accounted for in the
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Figure 8. Influence of the frequency range used in the
spectral-ratio method on the attenuation parameters. The
error bars mark the standard deviations in each parameter
obtained by applying our algorithm with 50 realizations of
the upper and lower bounds of the frequency range. The
upper bound was changed randomly between 88 kHz and
132 kHz, and the lower bound between 44 kHz and 66 kHz.

inversion of the attenuation coefficient for the medium
parameters.

The reconstructed phase attenuation coefficient was
normalized by the real wavenumber and used to esti-
mate the Thomsen-style attenuation parameters Apo,
€, and J, introduced by Zhu and Tsvankin (2004,
2005). The large absolute values of both €, = —0.92 and
8, = —1.84 reflect the high magnitude of the attenua-
tion anisotropy, with the Q-factor increasing from 3.2 in
the slow (symmetry-axis) direction to almost 40 in the
fast (isotropy-plane) direction. This result corroborates
the conclusions of some previous experimental studies
(e.g., Hosten et al., 1987; Prasad and Nur, 2003) that
attenuation is often more sensitive to anisotropy than
is either phase velocity or refiection coefficient.

While the large difference between the attenuation
coefficients in the two principal directions is unques-
tionable, the accuracy of our measurements strongly de-
pends on several assumptions. First, the radiation pat-
tern of the source and geometrical spreading are taken
to be frequency-independent in the frequency range
used in the spectral-ratio method. Since the sample
is heterogeneous, it is desirable to test the validity of
this assumption, particularly for relatively large source-
receiver offsets. For example, the experiment can be re-
designed by making measurements on two different-size
samples of the same phenolic material. Then it would be
possible to compute the spectral ratios for arrivals prop-
agating in the same direction and recorded at different
distances from the source. In this case, the potential fre-
quency dependence of the radiation pattern would be
removed from the attenuation measurement along with
the spectrum of the source pulse, and no reference trace
would be required.

Second, our analytic solutions for the attenuation

coefficient are based on the common assumption of ho-
mogeneous wave propagation (i.e., the inhomogeneity
angle is assumed to be negligible; see also Hosten et al.,
1987). For strongly attenuative models with pronounced
attenuation anisotropy, this assumption may cause er-
rors in the interpretation of attenuation measurements.
Also, if the model is layered, the inhomogeneity angle is
governed by the boundary conditions and can be signif-
icant even for moderate values of the attenuation coeffi-
cients. Hence, future work should include investigations
of the magnitude of the inhomogeneity angle and of its
influence on the estimates of the attenuation-anisotropy
parameters.

Third, our data-processing sequence did not include
compensation for the possible contribution of attenua-
tion to the coupling (i.e., reflection/transmission) co-
efficients at the source and receiver locations. In gen-
eral, the attenuation-related frequency dependence of
the reflection/transmission coefficients along the ray-
path can cause distortions in the results of the spectral-
ratio method.

Finally, since this work was restricted to compres-
sional data, we were unable to evaluate the strength of
the shear-wave attenuation anisotropy and estimate the
full set of Thomsen-style anisotropy parameters (Zhu
and Tsvankin, 2004, 2005). A more complete charac-
terization of attenuation anisotropy requires combining
P-waves with either shear data or converted (e.g., re-
flected) PS-waves.
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APPENDIX A: THOMSEN-STYLE
PARAMETERS FOR ATTENUATIVE TI
MEDIA

The attenuation coeflicients in transversely isotropic
(TT) media with TT attenuation can be conveniently de-
scribed using the Thomsen-style notation of Zhu and
Tsvankin (2004, 2005). Instead of the five relevant com-
ponents Q;; of the quality-factor matrix, they defined
two “isotropic” reference quantities (Apo and Aso) and
three dimensionless parameters (eg g, and v,) de-
scribing attenuation anisotropy.

The reference parameters Apg and Aso represent

the P- and S-wave attenuation coefficients (respectively)
in the symmetry direction:

Apo = (A1)

_1
2Qss '

Aso = (A2)

1
2Qss
The parameter ¢, denotes the fractional differ-
ence between the P-wave attenuation coefficients in the
isotropy plane and along the symmetry axis:

_1/Qu—1/Q33  Qaz—Qn
Q= 1/Qss3 T Qu (A3)

The parameter J,, is expressed through the curvature
of the P-wave attenuation coefficient in the symmetry
direction and, therefore, governs the angle variation of
P-wave attenuation near the symmetry axis:

€

8o =

Q33 — Qss ess (c13 + €a3)? + 2Q33 — Q13
Qss (caz — es5) Qi3

cas(cas — cs5)

cis(c13 + cs5)

(Ad)

Note that the definition of §,, involves the real parts
of the stiffnesses ¢;; or the velocity-anisotropy parame-
ters, which is indicative of the coupling between the at-
tenuation coefficient and velocity anisotropy. The third
anisotropic parameter, v, is responsible for the atten-
uation anisotropy of SH-waves.

The simplified P-wave attenuation coefficient in
terms of the Thomsen-style parameters Apo, €5, and
8, is given in the main text, equation (2).
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ABSTRACT

Mode-converted PS-waves can provide critically important information for ve-
locity analysis in transversely isotropic (TI) media. Here we demonstrate, with
physical-modeling data, that the combination of long-spread reflection travel-
times of PP- and PS-waves can be inverted for the parameters of a horizontal T1
layer with a tilted symmetry axis. The 2D multicomponent reflection data are
acquired over a phenolic sample manufactured to simulate the effective medium
formed by a system of steeply dipping, penny-shaped cracks.

The reflection moveout of PS-waves in this model is asymmetric, and the
moveout-asymmetry attributes play a crucial role in constraining the TI pa-
rameters. Applying the modified PP+PS=SS method to the PP and PS trav-
eltimes recorded in the symmetry-axis plane, we compute the time and offset
asymmetry attributes of the PS-waves along with the traveltimes of the pure
SS reflections. Then the algorithm of Dewangan and Tsvankin is used to invert
the combination of the moveout attributes of the PP-, SS-, and PS-waves for
the medium parameters and thickness of the sample.

Our estimates of the tilt of the symmetry axis and layer thickness almost co-
incide with the actual values. The inverted model was also validated by re-
producing the results of transmission experiments with both P- and SV-wave
sources. In particular, the transmitted SV wavefield exhibits a prominent cusp
(triplication) accurately predicted by the parameter-estimation results.

Key words: multicomponent data, mode conversions, physical modeling, ve-
locity analysis, anisotropic media

1 INTRODUCTION

Transverse isotropy (TI) is a common anisotropic sym-
metry usually associated with shaly sediments, fine lay-
ering on a scale small compared to seismic wavelength,
or aligned penny-shaped cracks (e.g., Thomsen, 1986;
Helbig, 1994). In active tectonic areas, such as fold-
and-thrust belts, the symmetry axis of TI formations
is often tilted away from the vertical. Such tilted trans-
versely isotropic (T'TI) models are typical for the Cana-
dian Foothills where they cause significant misposition-
ing of imaged reflectors (e.g., Isaac and Lawton, 1999;

Vestrum et al., 1999). An effective TTI medium also
describes a system of parallel, dipping, penny-shaped
cracks embedded in isotropic host rock (Angerer et al.,
2002), as well as progradational sequences.

While conventional migration algorithms can be
readily extended to handle transverse isotropy, param-
eter estimation for TTI media remains a challenging
problem. In particular, Grechka and Tsvankin (2000)
show that P-wave reflection moveout alone does not con-
strain the parameters of a horizontal TTI layer, even
if a wide range of source-receiver azimuths is avail-
able. Furthermore, supplementing P-wave data with
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wide-azimuth SV-wave traveltimes is still insufficient
to make the inversion unique (Grechka and Tsvankin,
2000; Grechka et al., 2002).

Important information for velocity analysis in TTI
media is provided by mode-converted PS (PSV) data.
Because of the deviation of the symmetry axis from both
the vertical and horizontal directions, the moveout of
PS-waves from horizontal reflectors becomes asymmet-
ric (i.e., the PS-wave traveltime does not stay the same
if the source and receiver are interchanged). As demon-
strated by Dewangan and Tsvankin (2004a), moveout-
asymmetry attributes of PS-waves can help to esti-
mate all parameters of a horizontal TTI layer using
solely reflection data. The algorithm of Dewangan and
Tsvankin (2004a), based on a modification of the so-
called “PP+PS=SS" method (Grechka and Tsvankin,
2002; Grechka and Dewangan, 2003), operates with
long-offset PP and PS reflections acquired in the ver-
tical plane that contains the symmetry axis (hereafter
called the symmetry-azis plane).

Here, we show on physical-modeling data that the
combination of PP and PS reflection traveltimes can
indeed constrain all parameters of a horizontal TTI
layer. Multicomponent, multioffset reflection seismic
lines are acquired in the symmetry-axis plane of a phe-
nolic sample to record long-spread moveouts of PP- and
PS(PSV)-waves. Following the methodology of Dewan-
gan and Tsvankin (2004a), the modified PP+PS=SS
method is used to compute pure SS-wave reflection trav-
eltimes and the asymmetry attributes of PS-waves. The
moveout asymmetry information is then combined with
the pure-mode (PP and SS) NMO velocities and zero-
offset traveltimes to estimate the model parameters.
The accuracy of the inverted TTI model is verified by
matching the measured PP and PS traveltimes and re-
producing the results of transmission experiments.

2 EXPERIMENTAL SETUP

To simulate a TTT layer, we used XX-paper-based phe-
nolic composed of thin layers of paper bonded with phe-
nolic resin. The effective medium due to this fine layer-
ing is anisotropic, and phenolic itself is known to have
either TT or orthorhombic symmetry (Isaac and Lawton,
1999; Grechka et al., 1999). The sample was prepared
by cutting a large block of commercially available phe-
nolic into smaller blocks and pasting them together at
an angle to form a TTI medium. To simulate steeply
dipping fractures similar to those identified by Angerer
et al. (2002) on field data, the tilt v of the symmetry
axis from the vertical was chosen to be 70° (Figure 1).

The experiments were conducted in the Institute
for Experimental Geophysics (IEG) at Colorado School
of Mines (CSM). The measurements were made only
in a vertical symmetry plane of the sample, where the
velocities and polarizations are described by TI equa-
tions, even if the medium as a whole has orthorhom-
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Figure 1. Physical model representing a horizontal TTI
layer. The coordinate system is chosen in such a way that
the symmetry axis is confined to the [r;,xz3]-plane and is
dipping in the negative z1-direction. To simulate a reflection
survey, the sources and receivers were placed on top of the
sample in the symmetry-axis plane.

bic symmetry. One reflection survey was acquired using
source and receiver transducers (flat-faced cylindrical
piezoelectric ultrasonic contact transducers). To gener-
ate P-waves, the source transducer was polarized ver-
tically; shear (SV) waves were excited by a horizontal
transducer.

Another reflection data set was generated by the
source transducer and recorded by a scanning laser
vibrometer that measures the absolute particle veloc-
ity on the surface of the sample via the Doppler shift
(Nishizawa et al., 1997; Scales and van Wijk, 1999). The
records of multiple shots were stacked to improve data
quality. The scanning head is programmed to move the
beam after each measurement, so that dense arrays of
data can be recorded automatically. Therefore, data ac-
quisition with the laser vibrometer is much more effi-
cient compared with time-consuming transducer mea-
surements, where relatively large receivers have to be
moved manually.

3 SEISMIC REFLECTION EXPERIMENT

To study the moveout asymmetry of PS-waves and test
the parameter-estimation methodology of Dewangan
and Tsvankin (2004a), we acquired a multioffset 2D re-
flection survey in the symmetry-axis plane, as described
above. The inversion algorithm operates on common-
midpoint (CMP) gathers of PP- and PS-waves and re-
quires the offset-to-depth ratio to reach at least two.
Since recording a CMP gather involves moving both the
source and receiver transducers, it is cumbersome and
prone to error in positioning. Instead, we decided to col-
lect shot gathers (Figure 1) and interpret them as CMP
gathers, which is valid for laterally homogeneous media.

To verify that the lateral heterogeneity of the sam-
ple is negligible, we recorded a constant-offset P-wave
section (Figure 2). The first arrival (the direct P-wave)
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Figure 2. Constant-offset P-wave section acquired to vali-
date the assumption of lateral homogeneity.

and the P-wave multiple at a time of about 0.17 ms
exhibit relatively weak traveltime and waveform varia-
tions along the line. The waveform of the P-wave pri-
mary recorded around 0.08 ms is distorted because of
its interference with the ground roll. The minor lateral
variations in the waveforms may also be related to errors
in receiver positioning and to scattering on air bubbles
between imperfectly glued blocks.

Shot gathers of PP- and PS-waves were recorded
by fixing the P-wave shot transducer at one end of
the model and manually moving the receiver transducer
with an increment of 1 cm until the offset reached 30 cm,
which corresponds to an offset-to-depth ratio of 2.8 (Fig-
ure 1). The whole procedure was repeated by placing
the source transducer at the other end of the model to
record negative offsets. The traces for positive and neg-
ative offsets were then combined to form a split-spread
CMP gather.

Another independent data set was obtained by re-
placing the receiver transducer with the laser vibrom-
eter. The sampling interval for the vibrometer dataset
was 2 mm; the maximum offset-to-depth ratio was lim-
ited to 2.5 (the maximum offset was 27 cm).

3.1 Vertical component (PP-waves)

For the vertical wavefield component recorded with the
contact transducer (Figure 3a), the offset could not
be smaller than 3 cm because of the finite transducer
size. The minimum offset for the densely spaced data
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recorded with the laser vibrometer was 2 cm (Fig-
ure 3b). Since the vibrometer measures the vertical ve-
locity at a point, it is possible to record closer to the
source but the signal quality deteriorates at far offsets.

The two data sets in Figure 3 are quite similar,
but identification of reflection events is hampered by
their interference with the ground roll. To suppress the
ground roll, we applied standard F-K dip filtering that
significantly improved the quality of the section (Fig-
ure 4). The first arrival is the direct P-wave travel-
ing with the horizontal velocity close to 2620 m/s. The
strong ground roll clearly visible in Figure 3 travels with
a velocity of 1285 m/s, which is slightly smaller than
the shear-wave velocity along the symmetry axis. The
P-wave primary reflection from the bottom of the block
and the first multiple can be identified at zero-offset
times of 0.064 ms and 0.128 ms, respectively. Since the
laser dataset is more densely sampled and has better co-
herency, we used it for manually picking the traveltimes
of the primary reflection.

The dominant frequency of the P-wave data de-
creases from 200 kHz at near offsets to around 40 kHz at
far offsets, which indicates that the medium is strongly
attenuative (Figure 5). Assuming a dominant frequency
of 100 kHz, the units of time and distance used in our
experiment should be scaled (multiplied) by 5000 to ob-
tain the corresponding values for seismic field data with
a frequency of 20 Hz; the equivalent thickness of the
layer would be 540 m.

To estimate the P-wave normal moveout (NMO) ve-
locity, we applied conventional hyperbolic velocity anal-
ysis (Figure 6). The influence of nonhyperbolic moveout
was mitigated by muting out long offsets. The maximum
offset-to-depth ratio used to compute the semblance in
Figure 6a was close to one. The best-fit NMO veloc-
ity Vamo, P, which flattens the near-offset primary and
multiple reflections (Figure 6b), is 2350450 m/s.

At large offsets, the NMO-corrected gather in Fig-
ure 6b is not flat, which indicates that the moveout
curve is nonhyperbolic. This deviation from hyperbolic
moveout in a single homogeneous layer indicates that
the medium is anisotropic, and the anisotropy is not
elliptical (e.g., Tsvankin, 2001).

The event arriving at t¢ = 0.11 ms with a lower
moveout velocity than that of the P-waves may be inter-
preted as a converted PS mode. Since the PS-wave po-
larization vector at small and moderate offsets is close to
the horizontal plane, this event is not prominent on the
vertical component. To clearly identify mode-converted
waves and pick their traveltimes, we recorded the hori-
zontal component of the wavefield, as described in the
next section.

8.2 Horizontal component (PS-waves)

The horizontal wavefield component from the vertical
source was recorded with the same settings as the ver-
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Figure 3. Vertical component of the wavefield. (a) Data
recorded with the P-wave contact transducers; (b) ‘densely
sampled data recorded with the laser vibrometer. The first
arrival is the direct P-wave; the PP-wave reflection from the
bottom of the block (solid line) arrives at a zero-offset time
of 0.064 ms.
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Figure 4. Data from Figure 3 after application of F-K fil-
tering to suppress the ground roll.

tical component. The receiver transducer was oriented
horizontally in the symmetry-axis plane to record mode-
converted PS(PSV)-waves (Figure 7a). We verified that
there was almost no energy on the crossline (trans-
verse) component, which indicates that the data were
indeed acquired in a symmetry plane of the medium.
Also, shear-wave splitting along the symmetry axis
was negligible, suggesting that the model is either TI
or a special case of orthorhombic media with equal
anisotropy coefficients (!> and ~@ (Tsvankin, 1997,
2001). Because of the kinematic equivalence between
the symmetry planes of orthorhombic and TI media,
the parameter-estimation algorithm of Dewangan and
Tsvankin (2004a) is valid for both plausible models.

So far, the laser vibrometer system available at
CSM has not been used to record the horizontal compo-
nent of the wavefield. This limitation, however, can be
overcome by recording mode-converted SP-waves and
treating their traveltimes (according to reciprocity) as
those of the corresponding PS-waves. Instead of the P-
wave transducer used before, a shear transducer served
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N
(=]
o

Figure 5. Amplitude spectra of the P-wave traces showing
a decrease in frequency with offset.
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Figure 6. Conventional hyperbolic velocity analysis of the
P-wave data. (a) Semblance panel computed for the maxi-
mum offset-to-depth ratio close to one; (b) the gather cor-
rected for hyperbolic moveout using a moveout velocity of
2350 m/s.

as the source and the laser vibrometer as the detec-
tor of the vertical wavefield component (Figure 7b). In
the moveout analysis below, the traveltimes of the ac-
quired SP-wave were substituted for those of the PS-
wave, while the sign of the SP-wave source-receiver off-
set was reversed when constructing a split-spread PS-
wave gather.

Both acquired sections after application of F-K fil-
tering are displayed in Figure 8. As was the case with
the vertical component, there is close similarity between
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Figure 7. Horizontal component of the wavefield. Data
recorded with: (a) the P-wave source transducer and S-wave
receiver transducer; (b) the S-wave source transducer and the
laser vibrometer as the receiver. The converted wave from the
bottom of the model has an asymmetric moveout curve with
the apex at 0.11 ms. The solid lines are the picked traveltimes
of the PP, PS, and SS arrivals.

the two data sets recorded using different experimen-
tal setups. The moveout of the mode-converted PS-
and SP-waves is strongly asymmetric, with a substan-
tial difference between the traveltimes for positive and
negative offsets. Since the model is laterally homoge-
neous, the PS-wave moveout asymmetry is caused en-
tirely by the oblique orientation of the symmetry axis.
Note that the moveout of converted waves is symmetric
in any laterally homogeneous medium with a horizontal
symmetry plane, including TI models with a vertical
(VTI) and horizontal (HTI) symmetry axis (Grechka
and Tsvankin, 2000; Dewangan and Tsvankin, 2004a).

The traveltime picks of the PS-wave, marked by
the solid line in Figure 8, were made using the laser vi-
brometer dataset. Due to the moveout asymmetry, the
minimum PS-wave traveltime is recorded at an offset of
=6 cm where the wavelet reverses its polarity. To fa-
cilitate visual correlation of PS traveltimes, we removed
this polarity reversal from the sections in Figure 8.

The PP-wave primary reflection can be identified
even on the horizontal component around the zero-offset
time tpo = 0.064 ms. It may also be possible to ten-
tatively pick the SS-wave reflected arrival but, as ex-
pected, in Figure 8 it is much weaker than the converted
modes.

3.3 Data processing

The key processing step was application of the
PP+PS=SS method (Grechka and Tsvankin, 2002;
Grechka and Dewangan, 2003) to compute the travel-
times of the pure SS (SVSV) reflections from the PP
and PS data. The reflection traveltimes of both the PP-
waves (on the vertical component) and the converted
waves (on the horizontal component) were manually
picked from the laser vibrometer dataset. To smooth the
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Figure 8. Data from Figure 7 after application of F-K filter-
ing to suppress the ground roll. Negative offsets are displayed
in reverse polarity to facilitate picking of PS traveltimes.

traveltimes and interpolate/extrapolate them at near
offsets, we fitted a six-order polynomial to both PP and
PS moveouts using the least-squares method.

The idea of the PP+PS=SS method is to identify
two “reciprocal” PS-wave rays with the same reflection
(conversion) point and combine their traveltimes with
that of the PP-wave to compute the moveout of the
SS-wave primary reflection. This can be accomplished
by matching the reflection slopes on common-receiver
gathers of PP- and PS-waves, as illustrated in Fig-
ure 9 (Grechka and Tsvankin, 2002). Since the PS rays
recorded at points z® and z* have the same reflection
point as the PP reflection =M Rz®,| the traveltime 75
of the SS-wave (not physically excited in the survey) is
determined from

Tss($(3)1$(4)) = tps(m(l):x(s)) +tps($(2)yx(4))
_ tPP(:B(l),:E(Q)), (1)

where t,g and tp, are the traveltimes of the PS and
PP reflections, respectively. Note that application of
this technique requires correlating PP and PS reflection
events and picking their traveltimes, although explicit
velocity information is not needed.

Alternatively, PP and PS arrivals with the same
reflection point can be found by computing the time 75
in equation (1) for each desired SS-wave shot-receiver
pair (¥, z(*) and a wide range of the coordinates (=™
and z(?) (Grechka and Dewangan, 2003; Dewangan and
Tsvankin, 2004a):

min 1 3
Tss(w(s)’m“)) = 2 2™ (tPs(x( ),:l:( ))
b

+ tPS(x(2)’x(4)) = tpp (x(l)»x(z))) . (2

The minimum of the function (2) in both the =™ and
2(® directions allows us to identify the P-wave sources
that generate the reciprocal PS arrivals with the same
reflection point. The value of 7 corresponding to this
minimum yields the SS traveltime from (® to ™).
We opted to apply the latter procedure to compute




EPTN

138  P. Dewangan, I. Tsvankin, M. Batze, K. van Wijk & M. Haney

Pep(x D a®y=p, (2D, 2y p @@ 2= p (2, x@)

T @
tPS(x s XY

a1y LGy
tps(x s x)

lPP(x“), x(z)) z)tPP(x(z)‘ x(l))

Figure 9. PP+PS=SS method is designed to find the
source/receiver coordinates of the PP and PS rays with the
same (albeit unknown) reflection point R. By matching the
slopes on common-receiver gathers (i.e., the ray parameters)
of the PP- and PS-waves, the method estimates the record-
ing locations 2(3) and z(4) of the PS arrivals that have the
common P-wave legs with the PP reflection from z(1) to z(2)
(after Grechka and Tsvankin, 2002).

the SS-wave traveltime as a function of the SS-wave
offset 55 = [z® — z™¥| (Figure 10). Then, conven-
tional hyperbolic velocity analysis was applied to the
constructed SS arrivals to estimate their stacking ve-
locity (Vimo,s = 1780 m/s) and zero-offset traveltime
(tso ~ 0.149 ms).

Next, we followed the methodology of Dewangan
and Tsvankin (2004a) in computing the time and offset
asymmetry attributes of the PS-wave:

Atps (29,2) = t,0 (@M, 2D) — 1,4 (2@,2W); (3)

Azps(z(s)yz(d)) = lzps(m(l)’m(s))'
- IzPS($(2))$(4))I' 4)

The time asymmetry factor At,. (Figure 11a)
rapidly increases with offset and reaches about 20% of
the zero-offset time. In contrast, the depth-normalized
offset asymmetry Az,  reaches its maximum (by ab-
solute value) at small SS-wave offsets (Figure 11b),
as predicted by the analytic results of Dewangan and
Tsvankin (2004a) for the symmetry axis deviating by
more than 45° from the vertical. Note that the factor
Az, at zero offset (z® = z(9) is twice the offset
Zmin corresponding to the minimum traveltime in the
PS-wave CMP gather (Tsvankin and Grechka, 2000).

0.17;

0.165} P

0145 5 10 15
SS offset (cm)

Figure 10. SS-wave traveltime computed using the
PP+4PS=8S method (stars) as a function of the SS-wave off-
set. The dashed line corresponds to the best-fit hyperbola
with a moveout velocity of 1780 m/s.
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Figure 11. Moveout-asymmetry attributes of the PS-wave
computed from equations (3) and (4). (a) The time asym-
metry At normalized by the zero-offset PS-wave time; (b)
the corresponding offset asymmetry Az ¢ normalized by the
layer thickness.

3.4 Parameter Estimation

The vector d of input data for the inversion procedure
includes the NMO velocities and zero-offset times of the
PP- and SS-waves and the asymmetry attributes of the
PS-wave:

d = { ‘/nmo,P ) tpo ) Vnmo,S 3 tSO, Atps (mss) )

Azpg(zss) } ) ()

The analytic expressions needed to model these
quantities are given in Dewangan and Tsvankin (2004a),
who used the offset zn of the traveltime minimum
instead of the asymmetry factor Az,;. Here, how-
ever, we prefer to operate with the function (array)
Az, (zgs) that helps to obtain more accurate param-



eter estimates in the presence of noise (Dewangan and
Tsvankin, 2004b).

The model vector m includes the five relevant TTI
parameters and the layer thickness 2:

mE{Vpo,Vso,e,é,u,z}, (6)

where Vpg and Vso are the velocities of P- and S-waves
(respectively) in the symmetry direction, ¢ and § are
Thomsen anisotropy parameters, and v (tilt) is the angle
between the symmetry axis and the verical. To estimate
the elements of m, we applied the nonlinear inversion
algorithm discussed in Dewangan and Tsvankin (2004a),
with the misfit (objective) function given by

o Wansp —Viee)® | (Vims.s = Vamsss)”
T (V) (Vimeass)?
(50 — 5 (15 — £33

)2 (e35™)?

2

zmnx
1
N ZOSS (At(;,asc _ Atr:;as

> =55 Atmeas)2
0 Ps
"é';x calc measy 2
ZO (Am Ps Azps
+ —w : (7)
(X555 Azpg)?
Here, the superscripts “calc” and “meas” denote the
calculated and measured quantities (respectively), and
T2 is the maximum offset of the constructed SS-
wave that corresponds to the offset-to-depth ratio of
the recorded PP data close to two.
The initial guesses for the vertical velocities and
anisotropy coefficients were based on the isotropic rela-
tionships,

Vpo = Vnmo,P =2.35 km/s, Vso = Vnmo,s =1.78 km/s,
€=0,0=0, 2= Vpmo,ptro/2 =T7.52cm. (8)

The initial tilt of the symmetry axis was randomly cho-
sen between 50° and 85°. Although both the tilt v and
thickness z were known, they were estimated from the
data to simulate a field experiment.

To assess the stability of the inversion, the algo-
rithm was applied to multiple realizations of the input
PP and PS traveltimes contaminated by random Gaus-
sian noise with zero mean. The standard deviation of the
noise was equal to 1/8 of the dominant period, which
was assumed to be close to the accuracy of the travel-
time picking. The inversion results for 200 realizations
of the Gaussian noise are shown in Figure 12. The best-
constrained parameter combination is the difference be-
tween e and 8, which controls both the time and offset
asymmetry (Dewangan and Tsvankin, 2004a). Note that
the sample is strongly anisotropic, with the value of €
approaching 50%.

The PP- and PS-wave traveltimes computed for the
estimated model are practically indistinguishable from
the picked traveltimes at all offsets (Figures 4 and 8).
Another indication of the high accuracy of the inversion
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Figure 12. Thomsen parameters of the sample estimated
from 2D PP and PS data in the symmetry-axis plane (the
velocities are in km/s). The mean values are Vpg = 2.6 km/s,
Vgo = 1.38 km/s, € = 0.46, and 6 = 0.11. The estimated tilt
of the symmetry axis and layer thickness (not shown) are
v = 70° and z = 10.9 cm. The error bars correspond to the
following standard deviations in each parameter: 2% for Vpg,
Vso, and z, 0.03 for ¢ and §, and 1° for v.

procedure is that the errors in the known values of v and
z are almost negligible.

4 TRANSMISSION/CALIBRATION
EXPERIMENT

To verify the estimated model using an independent
data set, we conducted a transmission experiment on
the same sample. The P-wave source transducer was
fixed at the bottom of the model, while the laser vi-
brometer scanned the top with a regular interval of 2
mm. The experiment was set up in such a way that the
first-arrival traveltime could be measured for the full
range of propagation angles (0° —90°) from the symme-
try axis.

It is believed that laboratory experiments employ-
ing transducers of relatively large size may yield mea-
surements of phase, not group velocity (Dellinger and
Vernik, 1994). Our transducer, however, was small (15
mm) compared to the thickness of the model (108 mm),
so the traveltimes should be determined by the corre-
sponding group velocities. Therefore, to reproduce the
results of the transmission experiment, we computed the
group velocity Vi and the group angle ¢ for the inverted
model using the standard TI equations (e.g., Tsvankin,
2001):

2
1 dV) : 9)

Ve =V 1+("7%
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tan @ + % %

1— tan 6 dV
vV de

tan ¢ (10)
where V' and 6 are the phase velocity and phase angle.
It was assumed that ray bending was negligible, and the
group angle ¢ corresponds to the source-receiver line.

Figure 13 shows the raw transmission data, with
the zero- and far-offset receiver positions corresponding
to the directions approximately perpendicular and par-
allel (respectively) to the symmetry axis. The first break
is the direct P-wave followed by the relatively weak di-
rect S-wave. The solid line marks the P-wave arrival
time computed for the inverted TTI model using equa-
tions (9) and (10). Evidently, the estimated model pa-
rameters accurately predict the P-wave velocity in the
transmission experiment that includes a wider range of
propagation directions compared to the reflection data
set.

It is interesting that the wavefront of the direct S-
wave arrival in Figure 13 exhibits a cusp (triplication)
at oblique angles with the symmetry axis. The existence
and size of the cusp is mostly governed by the magni-
tude of the anisotropic parameter o = (Vpo/Vs0)? (e—6)
(Tsvankin, 2001; Thomsen, 2002) that reaches 1.24 for
our model. While SV-wave cusps in TI media are well
understood theoretically, their experimental observa-
tions are rare (e.g., Slater et al., 1993).

To identify the cusp more clearly and measure the
transmitted shear-wave traveltimes, we performed an-
other transmission experiment, this time with the S-
wave transducer as the source (Figure 14b). The trans-
mitted wavefield was also computed (Figure 14a) for the
inverted TTI model from Figure 12 using the spectral-
element method (Komatitsch and Vilotte, 1998). Al-
though the spectral-element code is 2D and cannot be
expected to accurately reproduce the recorded ampli-
tudes, the agreement between the measured and mod-
eled wavefields in Figure 14 is excellent.

The spatial extent of the cusp in Figure 14 is signif-
icantly larger than that predicted by the group-velocity
surface (i.e., by ray-theory modeling). This is consis-
tent with the observation by Martynov and Mikhailenko
(1984) that ray theory underestimates the actual size of
the SV-wave cusp in TI media computed by solving the
wave equation. The reflected PS data analyzed above do
not exhibit cuspoidal behavior because the shear-wave
group angles corresponding to the cusp are not reached
during the P-to-S conversion at the bottom of the layer.

The ray-theoretical S-wave traveltimes computed
for the inverted model (solid lines) match the observed
arrivals only up to an offset of about 10 cm. To explain
the discrepancy at larger offsets, we increased the fre-
quency of the signal used in the spectral-element mod-
eling (Figure 15). The higher-frequency wavefield shows
two distinct arrivals with close traveltimes — the direct
S-wave and the refracted P-wave. The interference of
these waves on the lower-frequency section (Figure 14)
produces a complicated wavelet that arrives ahead of the
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Figure 13. Transmitted wavefield excited by the P-wave
transducer and recorded by the laser vibrometer at the top
of the model. The solid line is the P-wave traveltime modeled
using the inverted parameters from Figure 12.
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Figure 14. Shear-wave cusp in the transmitted wavefield
excited by the S-wave transducer. (a) The wavefield simu-
lated with the spectral element method; (b) the wavefield
recorded by the laser vibrometer. The solid line is the S-wave
traveltime computed from the group-velocity surface for the
inverted model in Figure 12.

direct shear wave at large offsets. Another wave more
clearly visible in Figure 15 is the P-wave multiple in the
layer.
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Figure 15. Same as Figure 14a, but the spectral-element
modeling was performed with a higher-frequency wavelet.

5 DISCUSSION AND CONCLUSIONS

To estimate the anisotropic parameters of tilted TI
media, P-wave reflection moveout can be combined
with converted PS-waves. Here, we used 2D physical-
modeling reflection data recorded over a horizontal layer
of phenolic material to demonstrate that long-spread PP
and PS (PSV) reflection traveltimes can be inverted in a
stable way for the orientation of the symmetry axis and
the pertinent Thomsen parameters. The large tilt of the
symmetry axis from the vertical (70°) was designed to
model the effective medium due to a system of steeply
dipping, parallel cracks.

The data were acquired in the plane that contains
the symmetry axis of the material (the “symmetry-axis
plane”) and processed using the modified version of
the PP+PS=SS method developed by Dewangan and
Tsvankin (2004a). In addition to the traveltimes of the
pure SS reflections {which are not physically excited in
the survey), this methodology produces the moveout-
asymmetry attributes of the recorded PS arrivals. Our
case study confirmed the conclusion of Dewangan and
Tsvankin (2004a) that the combination of the PS-wave
time and offset asymmetry factors with the NMO ve-
locities and zero-offset times of the PP- and SS-waves
makes it possible to estimate the medium parameters
and layer thickness. Note that in field experiments the
azimuth of the symmetry axis has to be estimated from
the polarization of PS-waves or the azimuthal variation
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of such signatures as NMO velocities and AVO (ampli-
tude variation with offset) gradients.

The sample proved to be strongly anisotropic, with
the magnitude of P-wave velocity variations approach-
ing 50% (e = 0.46, § = 0.11). The inversion algorithm
provided accurate estimates of the known values of the
tilt of the symmetry axis and the layer thickness. Still, to
verify the parameter-estimation results, we conducted a
transmission experiment using both P-wave and S-wave
transducers. The P-wave group-velocity curve computed
for the inverted model accurately matched the first
breaks of the transmitted P-wave.

The wavefront of the transmitted SV-wave has a
more complicated shape, with a cusp (triplication) be-
tween the symmetry axis and the isotropy plane. Al-
though the observed cusp is noticeably wider than
that predicted by the group-velocity surface calculated
for the estimated model, this discrepancy is caused
by the inadequacy of ray theory in describing trip-
lications. More accurate modeling using the spectral-
element method allowed us to reproduce the cusp and
all other major features of the transmitted wavefield ex-
cited by the shear transducer. Since the shape and spa-
tial extent of SV-wave cusps are highly sensitive to the
medium parameters, the excellent agreement between
the modeling results and recorded wavefield confirms
the robustness of our inversion method.
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ABSTRACT

Building accurate interval velocity models is critically important for seismic
imaging and AVO (amplitude variation with offset) analysis. Here, we adapt the
so-called “PP+PS=SS” method to develop an exact technique for constructing
the interval traveltime-offset function in a dipping anisotropic (target) layer
beneath a horizontally layered overburden. Whereas the overburden is also sup-
posed to have a horizontal symmetry plane, there are no restrictions on the type
of anisotropy in the target layer.

It should be emphasized that the presented algorithm is entirely data-driven
and does not require knowledge of the velocity field anywhere in the model.
Other important advantages of our method compared to the generalized Dix
equations include the ability to handle laterally heterogeneous target layers,
long-offset data and mode-converted waves. Numerical tests confirm the high
accuracy of the algorithm in computing the interval traveltimes of both PP-
and PS-waves in a transversely isotropic layer with a tilted symmetry axis (TTI
medium) beneath an anisotropic overburden.

In combination with existing inversion techniques for homogeneous T'T1 me-
dia, the layer stripping of PP and PS data can be used to estimate the inter-
val parameters of TTI formations in such important exploration areas as the
Canadian Foothills. Other potential applications of our methodology are in the
dip-moveout inversion for the key time-processing parameter 7 and in the exact
computation of the interval long-spread (nonhyperbolic) moveout that provides
valuable information for anisotropic velocity analysis.

Key words: reflection moveout, velocity analysis, multicomponent data, mode
conversions, anisotropic media
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1 INTRODUCTION

Velocity analysis based on reflection moveout is rou-
tinely used for estimating subsurface velocity fields and
imaging target reflectors. However, reflection traveltime
in general and normal-moveout (NMO) velocity in par-
ticular represent effective quantities that are influenced
by the medium properties along the entire raypath of
the reflected wave. Interval parameter estimation for
purposes of prestack and poststack migration requires
application of layer-stripping (e.g., Dix, 1955; Liu, 1997;
Grechka and Tsvankin, 2000; Sarkar and Tsvankin,

2004) or tomographic (e.g., Stork, 1991; Pech et al,
2002a,b) methods. Layer parameters are also needed for
the inversion of the AVO (amplitude variation with off-
set) response, lithology discrimination and fracture de-
tection using seismic data, etc.

In horizontally layered, isotropic media, the NMO
velocity of reflected waves is equal to the root-mean-
square (rms) of the interval velocities. This simple rela-
tionship, first discussed by Dix (1955), makes it possible
to obtain the velocity in any layer using only the NMO
velocities for the reflections from the top and bottom of
this layer. A more general version of the Dix equation
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Figure 2. Transversely isotropic model used to test the
layer-stripping algorithm for pure modes. The first layer has
a vertical symmetry axis (VT medium) and the following pa-
rameters: the symmetry-direction P-wave velocity Vpg = 2
km/s, the symmetry-direction S-wave velocity Vsg = 1 km/s,
the thickness z = 0.25 km, and Thomsen anisotropy param-
eters € = 0.2 and § = 0.1. The second layer is also VTI with
Vpo = 4 kim/s, Vgo = 2 km/s, z = 0.25 km, ¢ = 0.15, and

= 0.05; the third layer is dipping TTI with the symme-
try axis tilted at v = 25°, the dip of the bottom ¢ = 10°,
Vpo = 4 kimm/s, Vg9 = 2 km/s, z = 0.5 km, ¢ = 0.25, and
6 = —0.05. The Thomsen parameters in the TTI layer are
defined with respect to the symmetry axis (Dewangan and
Tsvankin, 2004a,b).

restricted to isotropic media. Also, in contrast to the
Dix-type equation (1), our algorithm can be applied
to long-offset data and can handle a laterally hetero-
geneous target layer.

2.2 Numerical example

The layer-stripping algorithm was tested on PP-wave
reflection data from the layered TI model in Figure 2.
The traveltimes from the dipping reflector and the bot-
tom of the overburden were computed by anisotropic
ray tracing with a shot spacing of 25 m and a receiver
spacing of 100 m (Figure 3). To conform with the 2D
assumptions of the algorithm, the incidence plane co-
incides with the dip plane of the reflector and contains
the symmetry axis of the TTI layer.

In our implementation of the layer stripping we
follow the version of the PP+PS=SS method devel-
oped by Grechka and Dewangan (2003) and Dewan-
gan and Tsvankin (2004a,b). For a given pair of points
[, 2], this algorithm searches for the coordinates
™ and 22 that minimize the interval traveltime in
equation (4). This procedure was shown to produce
the same results as the methodology based on reflec-
tion slopes discussed above (Dewangan and Tsvankin,
2004a,b). Substitution of the estimated coordinates z{%)
and z into equations (4) and (5) yields the interval
traveltime in the target layer for the source and re-
ceiver located at points T and R. Although the depth of

<+——overburden

<«—— effective

=2 -1 0 1 2
Offset (km)
Figure 3. CMP gathers of the PP-wave reflections from
the bottom of the second layer (marked “overburden”) and
the dipping reflector (“effective”) for the model in Figure 2.

The traveltimes were generated by an anisotropic ray-tracing
code.

the top of the target layer is unknown, the goal of the
layer stripping is achieved by obtaining the horizontal
source/receiver coordinates needed to construct the in-
terval traveltime function.

By repeating the above procedure to cover the
whole recorded range of the source-receiver offsets
for the dipping event, we compute the interval PP-
wave traveltime for a number of the corresponding
source/receiver pairs. These pairs do not necessarily
form a common-midpoint (CMP), common-shot, or
common-receiver gather and need to be sorted to an-
alyze the interval traveltime in any desired configura-
tion. This represents a complication compared with the
PP+PS=SS method, in which the type of the output
gather can be specified in advance.

To verify the accuracy of the layer stripping, we
computed the interval PP-wave traveltime in the dip-
ping layer and the corresponding source/receiver coor-
dinates using ray tracing. The agreement between our
method and the ray-tracing results is excellent (Fig-
ures 4 and 5). This and other synthetic tests we per-
formed for a representative set of layered TT models
confirm that the layer-stripping algorithm is exact and
can be applied for large source-receiver offsets.

3 LAYER STRIPPING FOR
MODE-CONVERTED WAVES

3.1 Layer-stripping algorithm

In contrast to the generalized Dix equations, our layer-
stripping algorithm can be easily adapted for mode-
converted (PS or SP) waves. Using the same model as-
sumptions as those in the previous section, we consider
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Figure 4. Source and receiver coordinates at the top of the
target layer obtained for the model in Figure 2 for a range of
surface points [1(3),:1:(4)]. Here and in Figure 5 the triangles
are the output of the layer-stripping algorithm; the solid line
marks the results of ray tracing.
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Figure 5. Interval PP-wave traveltime in the target layer
as a function of offset for the source/receiver pairs from Fig-
ure 4.

the PS-wave converted at a dipping reflector overlaid
by a stack of horizontal layers with a horizontal sym-
metry plane (Figure 6). Since the upgoing leg of the
PS mode represents a shear wave, the algorithm has
to operate with both PP- and SS-waves reflected from
the bottom of the overburden. In the absence of shear-
wave excitation, the needed SS traveltimes (t37) can
be obtained by applying the PP+PS=SS method to the
PP and PS data reflection data (Grechka and Tsvankin,
2002b; Grechka and Dewangan, 2003).

As in the previous section, we consider the reflec-
tion raypath "TQRz® from the dipping interface,
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Figure 6. 2D ray diagram of the layer-stripping algorithm
for PS-waves. The model is the same as that in Figure 1,
with the overburden (the section above points T and R)
composed of laterally homogeneous layers with a horizontal
symmetry plane. The PS reflection from the dipping inter-
face (z(UTQRz(?) and the PP reflection from the bottom
of the overburden (z(1)T z(3)) share the same downgoing leg
(z(T). The upgoing leg of the dipping PS event (Rz?) co-
incides with a leg of the overburden S8 reflection z(2) Rz(4),

but now the downgoing leg represents a P-wave, while
the upgoing leg is an S-wave (Figure 6). By matching
the time slopes at point z(, we identify the overburden
PP-wave reflection VT 23 that shares the segment
zWT with the dipping PS event. The same procedure
at point 2 yields the reflected SS-wave W Rz® that
has the same shear-wave segment Rz? as the PS-wave.
Then the source/receiver coordinates T and R for the
PS-wave propagating in the target layer can be found
from equation (5), while the interval PS-wave traveltime
can be expressed as

tps (T, R) = t57 (2, 2@)

_% [ (@D, 2®) + 272D, 2)] . (©)
Our implementation of this layer-stripping algorithm
for PS-waves is similar to that described above for PP-
waves.

Figure 7 shows ray-traced CMP gathers of the tar-
get PS event and the pure-mode reflections from the
bottom of the overburden for the model in Figure 2.
Note the the PS-wave moveout is asymmetric (i.e., the
traveltime does not stay the same when the source and
receiver positions are interchanged) because of com-
bined influence of the reflector dip (¢ = 10°) and the tilt
of the symmetry axis (v = 25°). This moveout asymme-
try, however, is handled by our layer-stripping method
that relies only on the symmetry of the reflection ray-
paths of the pure-mode reflections in the overburden.

The layer-stripped interval PS traveltimes and the
corresponding source/receiver coordinates are close to
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Figure 7. CMP gathers of reflected waves for the model in
Figure 2 computed by anisotropic ray tracing. The PS-wave
is converted at the dipping interface, while the PP- and SS-
waves are reflected from the bottom of the overburden.
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Figure 8. Source and receiver coordinates of the PS-wave at
the top of the target layer obtained for the model in Figure 2.
Here and in Figure 9 the triangles are the output of the layer-
stripping algorithm applied to the data in Figure 7; the solid
line marks the results of ray tracing.

the exact values computed by ray tracing (Figures 8
and 9). The minor deviations from the ray-tracing re-
sults are caused by interpolation errors related to the
finite source and receiver sampling. The PS-wave trav-
eltime function for the target layer, supplemented by
the interval PP- and PS-wave moveouts, can serve as
the input to the inversion algorithm of Dewangan and
Tsvankin (2004b) designed to estimate the parameters
of dipping TTI layers.
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Figure 9. Interval PS-wave traveltime in the target layer as a
function of offset for the source/receiver pairs from Figure 8.

4 DISCUSSION AND CONCLUSIONS

The principle of the PP+PS=SS method of Grechka and
Tsvankin (2002b) and Grechka and Dewangan (2003)
can be used to carry out exact layer stripping for dipping
events in anisotropic media. The main assumptions of
the algorithm introduced here are that the overburden
is laterally homogeneous and has a horizontal symmetry
plane (i.e., up-down symmetry) in each layer. The tar-
get layer above the dipping reflector, however, is allowed
to be laterally heterogeneous without up-down symme-
try, although the incidence plane has to coincide with a
vertical symmetry plane for the whole model.

Under these assumptions, simple operations with
reflection traveltimes can be used to identify the over-
burden events that have the same up- and downgoing
legs as the reflection from the dipping interface. This
allows us to perform kinematic downward continuation
of the wavefield and obtain the interval traveltime-offset
function without knowledge of the medium parameters.
Numerical examples for layered transversely isotropic
media with a vertical and tilted symmetry axis confirm
that the algorithm gives exact results for both pure and
converted modes. Although the testing was limited to
PP- and PS-waves, the methodology can be also used
for layer-stripping of SS and SP reflections excited by
shear sources.

In contrast to the existing layer-stripping tech-
niques that employ the generalized Dix equation, our
algorithm is not restricted to the hyperbolic portion of
the moveout curve. Therefore, it can yield exact long-
offset interval traveltimes of both horizontal and dip-
ping events in symmetry planes of anisotropic media.
Note that existing layer-stripping methods for long-
spread data are derived for the quartic moveout coef-



ficient in layer-cake models and cannot handle reflector
dip (Tsvankin, 2001).

The 2D algorithm discussed here can be extended
to wide-azimuth data using the 3D version of the
PP+PS=S8S method outlined by Grechka and Tsvankin
(2002b) and Grechka and Dewangan (2003). It should
be mentioned, however, that our methodology operates
with individual traveltimes, which makes it more com-
plicated and computer-intensive than the Dix-type layer
stripping. Hence, if the velocity model of the overburden
is known and only conventional-spread P-wave data are
available, it is more efficient to apply the generalized
Dix equations of Alkhalifah and Tsvankin (1995) and
Grechka et al. (1999).

An important application of the above results is
in velocity analysis for tilted TI layers using multicom-
ponent (PP and PS) data. Dewangan and Tsvankin
(2004a,b) showed that the asymmetry attributes of PS-
waves, combined with pure-mode moveout signatures,
can provide sufficient information for parameter estima-
tion in a homogeneous TTI medium. The layer-stripping
algorithm introduced here can help to implement their
inversion technique for realistic vertically heterogeneous
models with a stratified overburden above the dipping
target TTI layer.

Our method can also help to overcome the limita-
tions of the generalized Dix equation in the dip-moveout
inversion for the time-processing parameter 1 in VTI
media. Because of the need to compute the interval
NMO velocities in the overburden for non-existent re-
flectors, Dix-type algorithms designed to estimate 7 us-
ing dipping events have to rely on the presence of both
horizontal and dipping interfaces in each layer (Alkhal-
ifah and Tsvankin, 1995; Tsvankin, 2001). This require-
ment, which is often difficult to satisfy in practice, can
be removed by replacing the generalized Dix equation
with our velocity-independent layer-stripping technique.
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Introduction

In a number of case studies, significant converted wave
energy was observed at zero and near-zero offsets (e.g.,
Thomsen, 2002). This phenomenon can be explained by

ABSTRACT

Field records for small source-receiver offsets often contain intensive converted
PS-waves that cannot be generated in laterally homogeneous isotropic models.
Among the most likely physical reasons for this converted energy is the presence
of anisotropy on either side of the reflector. Here, we study the small-angle
reflection coefficients of the split converted PS;- and PS,-waves (Rps, and
Rps,) for a horizontal interface separating two transversely isotropic media
with arbitrary orientations of the symmetry axis.

The normal-incidence reflection coefficients Rps, (0) and Rps,(0) vanish when
both halfspaces have a horizontal symmetry plane, which happens if the symme-
try axis is vertical or horizontal (i.e., if the medium is VTI or HTI). For a tilted
symmetry axis in either medium, however, the magnitude of the reflection coeffi-
cients can reach substantial values close to 0.1, even if the strength of anisotropy
is moderate. To study the influence of the orientation of the symmetry axis and
the anisotropy parameters, we develop concise weak-contrast, weak-anisotropy
approximations for the reflection coefficients and compare them with exact nu-
merical results.

In particular, the analytic solutions show that the contributions of the Thomsen
parameters € and & to the coefficients Rps, (0) and Rps,(0) are governed by
simple functions of the symmetry-axis tilt v, which have the same form for
both halfspaces. If the symmetry-axis orientation and anisotropy parameters
do not change across the interface, the normal-incidence reflection coefficients
are insignificant, regardless of the strength of the velocity and density contrast.
The AVO (amplitude variation with offset) gradients of the PS-waves are mostly
influenced by the anisotropy of the incidence medium that causes shear-wave
splitting and determines the partitioning of energy between the PS; and PSy
modes.

Because of their substantial amplitude, small-angle PS reflections in TI media
contain valuable information for anisotropic AVO inversion of multicomponent
data. Our analytic solutions provide a foundation for linear AVO-inversion algo-
rithms and can be used to guide nonlinear inversion based on the exact reflection
coeflicients.

Key words: converted wave, transverse isotropy, TTI media, reflection coef-
ficient, AVO intercept, AVO gradient, azimuthal AVO

ence of nongeometrical waves (Tsvankin, 1995). How-
ever, neither heterogeneity nor nongeometrical waves
can account for normal-incidence PS-wave reflections
for layer-cake subsurface models and large distances be-
tween the source and the interface.

several factors, including heterogeneity and the pres-

mE——————
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Here, we study the influence of anisotropy on the
amplitude of PS-waves at small source-receiver offsets.
We restrict ourselves to the TTI (transverse isotropy
with a tilted symmetry axis) model and analyze the in-
fluence of the orientation of the symmetry axis and the
anisotropy parameters on the PS-wave reflection coeffi-
cients. The main focus of the paper is on the normal-
incidence PS-wave reflection coefficient that vanishes
only when the reflector coincides with a symmetry plane
in both halfspaces. If the reflector is horizontal, gener-
ation of converted energy at vertical incidence requires
the symmetry axis in at least one of the halfspaces to
deviate from both the vertical and horizontal directions.

We employ exact computation of the reflection coef-
ficients as well as linearized solutions that help to under-
stand the influence of various model parameters on the
PS-wave reflectivity. Approximate reflection and trans-
mission coefficients for isotropic media can be found
in Aki and Richards (2002) and Shuey (1985). Banik
(1987), Thomsen (1993) and Riiger (1996, 1997, 1998)
derived approximate P-wave reflection coefficients for
VTI (TT with a vertical symmetry axis) and HTI (TI
with a horizontal symmetry axis) media. Riiger’s re-
sults can be also applied in the symmetry planes of or-
thorhombic media. Psenéik and Vavryguk (1998) and
Vavryéuk and Psenéik (1998) obtained weak-contrast,
weak-anisotropy P-wave reflection and transmission co-
efficients for arbitrarily anisotropic media.

Closed-form solutions for the reflection coefficients
of PS-waves in isotropic media can be found in Donati
(1998), Larsen et al. (1999), Alvarez et al. (1999) and
Nefedkina and Buzlukov (1999). Riiger (1996) devel-
oped approximate expressions for the PS-wave reflection
coefficients in VTI media and the symmetry planes of
HTI media. However, as mentioned above, the normal-
incidence reflection coefficients of mode conversions go
to zero in both VTI and HTI media. Weak-contrast,
weak-anisotropy approximations for PS-wave reflection
and transmission coefficients in arbitrarily anisotropic
media were presented by Vavrycuk (1999), Jilek (2000)
and Artola et al. (2003). Jilek (2001) also developed
algorithms for the joint inversion of PP- and PS-wave
reflection coefficients in azimuthally anisotropic media.

Jilek (2000) and Vavryguk (1999) pointed out that
the normal-incidence PS-wave reflection coefficients do
not vanish for nonzero stiffnesses c3q4 and/or css on ei-
ther side of the reflector. Artola et al. (2003) demon-
strated the presence of normal-incidence PS-wave en-
ergy in synthetic seismograms computed for azimuthally
anisotropic models. Here, we show that the tilt of the
symmetry axis in TI media can create relatively strong
zero-offset PS reflections from horizontal interfaces. Ap-
plication of the weak-contrast, weak-anisotropy approx-
imations helps to identify the parameter combinations
responsible for both zero-offset reflection coefficients
and AVO gradients of PS-waves.

1 ANALYTIC BACKGROUND

We start by setting up the system of linear equa-
tions that can be used to compute the exact
reflection/transmission coefficients from the bound-
ary conditions. The approximate (linearized) reflec-
tion/transmission coefficients are then obtained by ap-
plying the first-order perturbation theory.

1.1 Exact solution of the
reflection/transmission problem

The reflection/transmission problem for a given incident
wave is solved by satisfying the boundary conditions at
the reflector. For a welded contact of the two halfspaces,
these boundary conditions are the continuity of traction
and displacement, which can be written in the following
compact form:

C.-U=B, (1)

where C corresponds to the displacement-stress ma-
trix for the reflected and transmitted waves, B is the
displacement-stress vector of the incident wave, and U
is the vector of the reflection and transmission coeffi-
cients of the waves P, S, and S,:

2 3 4 5 6
g’ g ¥ g g _g®
(1) (2) (3) (4) _ . (5) (6)
2 g3 92 92 2
(1) (2) g(3) g(4) _ .(5) _ .(6)
C = 3 3 3 3 ’(2)

T
B=-[d o & xO x2, x©]"@

U= Rsi, Rs:, Rp, Tsi, Ts2, Tp ]T- (4)

Here the superscript denotes the reflected/transmitted
modes according to the following convention:
O-incident wave; 1-reflected S;-wave; 2-reflected Ss-
wave; 3-reflected P-wave; 4-transmitted S;-wave; 5-
transmitted Sz-wave; 6-transmitted P-wave. In equa-
tion (2), g(N) and X(N) are the polarization and
amplitude-normalized traction vectors, respectively, ob-
tained by solving the Christoffel equation. Equation (1)
can be solved numerically for U to compute the reflec-
tion/transmission coefficients.

1.2 Weak-contrast, weak-anisotropy
approximation

The main goal of using linearized approximations here
is to gain physical insight into the dependence of the re-
flection coefficients on the medium parameters and in-
cidence angle. Following the approach of Vavryéuk and
Psencéik (1998) and Jilek (2000), we linearize the bound-
ary conditions by assuming a weak contrast in the elas-
tic parameters across the interface and weak anisotropy



in both halfspaces (see Appendix A). A homogeneous
isotropic full space divided by a fictitious planar inter-
face is taken as the background medium. The elastic
parameters aijxl = Cijkt/P (density-normalized stiffness
coefficients) are expressed as small perturbations daijki
from the background values. The exact boundary con-
ditions [equation (1)] are then linearized in terms of the
small perturbations to find approximate PS-wave reflec-
tion coefficients.

Consider an incident P-wave traveling in the neg-
ative z-direction in the [z, z]-plane; the reflector coin-
cides with the plane z = 0. The slowness vectors of the
incident, reflected, and transmitted waves in the back-
ground medium can be written as follows (Figure 1):

p"@ =p°®@ =[p, o -»8],

p"M =p°® =10}, 0o p8°],

p*@ =[5, 0 p"],

p°@ =p°® =%, 0, -p3°]. (5)

The P-wave unit polarization vectors in the
isotropic background are given by

00) _ gO(6) — o p®
o3 = ap®, (6)

g
g

where « is the P-wave velocity in the background.

1.3 Polarization angle

The SV- and SH-components are obtained by project-
ing the S-wave polarization vector in the background
onto the incidence [z, z] plane and the direction orthog-
onal to it, respectively. In anisotropic media, however,
for the perturbation approach to work, the chosen po-
larization vectors in the background isotropic medium
(g°™ and g%®) should be close to the actual polariza-
tions (g and g?) (Jech and Psencik, 1989). So the
SV and SH-wave polarizations (g5 and gy in the
background isotropic medium have to be rotated by an
angle ® called the “polarization angle,” which is defined
uniquely (except for singular directions), as shown by
Jech and Psenéfk (1989). Since the polarization angle is
neither a linear function of the perturbations dai;xi nor
is it necessarily small, the presence of & complicates the
computation of the analytic expressions for the PS-wave
reflection coefficients.

If the polarization angle is known, the polarization
vectors of the S and S3-waves (go(l) and g0(2)) can
be determined by rotating the SV- and SH-wave polar-
ization vectors counter-clockwise by the angle @ in the
plane perpendicular to the background slowness vector
pO(l) (Figure 1). Thus, go(l) and g°(2) are given by

g = [ Bp3°cos®d, sin?, —Bplcos® |,
g™ = [ —_BpYsin®, cos®, PBpisin® | (n

where 3 is the S-wave velocity in the background. Equa-
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Incidence z

halfspace poii= po2)

Reflecting
halfspace

p°(4)= p°(5)

Plane of

0(1)= po(2)
P P rotation

Figure 1. (a) Conventions used in solving the reflec-
tion/transmission problem. The incidence [z, z]-plane con-
tains the interface normal n and the background P-wave
slowness vector p®®. The background S-wave slowness vec-
tors are denoted by p°(t) = p%2) (reflected) and po¥ =
p%) (transmitted); 6 and 05 are the phase angles of the in-
cident P-wave and reflected S-wave. The polarization vector
of the incident P-wave in the background medium is g%@,
while the SV- and SH-wave polarizations vectors are gsv
and gSH  respectively. (b) g°!) and 2%(?) are the chosen
polarization vectors of the reflected S;- and Sg-waves, respec-
tively, in the background medium. These vectors are obtained
by rotating g5V and g5H by the angle ® (polarization an-
gle) in the plane orthogonal to the slowness vector poM . If
the incidence halfspace is isotropic or VTT, & =0 [after Jilek
(2000)].
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tion (7) shows that when the medium is isotropic and
® = 0 (Jech and Psenéik, 1989), S9 reduces to SV and
S3 reduces to SH. Similarly, the polarization vectors of
the transmitted S-waves can be written as

g™ = [ -BpSScos ¥, sin ¥, —BpYcosi¥ |,
g®® = [ Bp3®sin¥, cos¥, Bp? sin ¥ 1, (8)

where ¥ is the corresponding polarization angle. Since
we are concerned with the reflected S-waves only, com-
putation of ¥ is unnecessary because g% and g0®)
are not involved in the linearized reflection coefficients
[equation (A11)].

When the incidence halfspace is anisotropic, ® is
generally nonzero. If the medium is TTI, the polariza-
tion vector of the PS;-wave lies in the plane formed by
the symmetry axis and the PS; slowness vector (i.e., it
is the PSV-wave in the coordinate system in which the
symmetry axis is taken as vertical) while the PS,-wave
would be polarized orthogonal to that plane. (Note that
PS5, is not necessarily the fast PS mode.) Thus, in this
case ® is the angle between the background SV-wave
polarization vector and the plane formed by p°® and
the symmetry axis of the incident TTI halfspace. Us-
ing simple vector algebra and dropping the cubic and
higher-order terms in sin 8, we find

cosd =~ (2g2 cos ¢y sin vy + 2g cos v sin @

1
2g2A
+cos ¢1sinvy sin® @) , 9)
where
€os ¢ sin 2v; sin @
g
+ (cos® vy — sin? vy cos? ¢y ) sin? 9) 1z

'S '

Here v and ¢, are the tilt (i.e., the angle with the ver-
tical) and azimuth, respectively, of the symmetry axis
of the incidence TI halfspace, and g = a/B. Although &
can be computed from equation (9), its presence com-
plicates the approximate PS-wave reflection coefficients.
Although @ is independent of the anisotropic parame-
ters (except for the tilt of the symmetry axis), it de-
pends on the incidence angle in a rather complicated
way. For an incident TTI halfspace, ® # 0 whenever the
incidence plane is different from the vertical symmetry-
axis plane (i.e., from the vertical plane that contains the
symmetry axis) of the incidence halfspace.

In general, ® cannot be linearized in  without as-
suming that sin? v, is sufficiently large, except for the
special case of normal incidence (§ = 0) when & re-
duces to ¢ [equation(9)]. This complication prevents
us from deriving fully linearized oblique-incidence re-
flection coefficients for TI media with arbitrary orien-
tation of symmetry axis. For an incident VTI halfspace
(n = 0°) @ = 0, and for an incident HTI halfspace
(v1 =90°), ® can be linearized in terms of the medium

A= (sin2 vi +

parameters [equation (9)]. The orientation of the sym-
metry axis of the reflecting TI halfspace does not pose
any problems in the linearization of the reflection coef-
ficients because it does not contribute to ®. Because of
the above constraints, linearized PS-wave reflection co-
efficients for oblique incidence angles are given here only
if the incidence halfspace is isotropic, VTI, HTI, or TTI
with the symmetry axis confined to the incidence plane.
For oblique incidence of P-waves in all other models, we
analyze only the exact reflection coefficients.

2 NORMAL-INCIDENCE REFLECTION
COEFFICIENT

The normal-incidence reflection coefficient is also
called the “intercept” in amplitude-variation-with-offset
(AVO) analysis. The general linearized equation for
small-angle PS-wave reflection coefficients can be writ-
ten as (Thomsen, 2002),

Rps = Rps(O) + Gsin@, (10)

where Rps(0) is the normal-incidence reflection coeffi-
cient and G is the AVO gradient. In this section, we
discuss the normal-incidence reflection coefficient; the
AVO gradient is analyzed next.

2.1 Isotropic/TTI interface

Consider the model that includes an incidence isotropic
halfspace overlying a reflecting TTI halfspace. The
normal-incidence PS-wave in this case is polarized in
the symmetry-axis plane of the reflecting halfspace (Fig-
ure 2). In general, the reflected PS-wave can be repre-
sented as the vector sum of the PSV- and PSH-waves.
For normal incidence, however, the incidence plane is
undefined, and it is convenient to study the PS-wave as
a whole.

The linearized PS-wave normal-incidence reflection
coefficient is given by

g° sin 2 [cos 2u3 (62 — €2) + €3] (11)
4(1+g)

Rps(0)

g° 1 dVpa(6)
41+ g) Vro,2 do 0=0

where Vp2 is the P-wave phase velocity in the reflect-
ing halfspace. It is interesting that the normal-incidence
PS-wave reflection coefficient is proportional to the first
derivative of the P-wave phase velocity computed at § =
0. Although this derivative is supposed to be linearized
to make equation (12) equivalent to equation (11), the
accuracy of the weak-contrast, weak-anisotropy approx-
imation can be increased by using the exact value of this
derivative in equation (12) (Figure 3).

The very existence of the normal-incidence PS re-
flection is caused by the tilt of the symmetry axis away

(12)
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Figure 2. For an isotropic incidence halfspace overlying a
TTI reflecting halfspace, the PS-wave at normal incidence
is polarized (vector gP%) in the symmetry-axis plane. For
oblique incidence, we analyze the two components of the PS-
wave (PSV and PSH) separately.
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Figure 8. Accuracy of the weak-contrast, weak-anisotropy
approximation for the normal-incidence PS-wave reflection
coefficient. The solid black line is the exact coefficient for an
isotropic/TTI interface, the dashed black line is computed
using equation (12) with the exact first derivative of the P-
wave phase velocity, and the dash-dotted gray line marks the
fully linearized approximation (11). The parameters of the
incidence isotropic halfspace are Vp,; = 2.9 km/s, Vs =
1.5 km/s, and p1 = 2 gm/cm®. The parameters of the
reflecting TTI halfspace are Vpo,2 = 3.3 km/s,Vso,2 =
1.8 km/s,p2 = 2.2 gm/cm3,e2 = 04,82 = 02,72 = 0.11,
and ¢ = 30°.
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Rps ©)
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Figure 4. The normal-incidence PS-wave reflection coeffi-
cient for an isotropic/TTI interface as a function of tilt v2
of the symmetry axis and the parameter €2. The solid lines
mark the exact Rps(0), the dashed lines represent the lin-
earized approximation (11). The parameters of the incidence
isotropic halfspace are Vp, = 2.9 km/s,Vs,1 = 1.5 km/s,
and p1 = 2 gm/cm3. The parameters of the reflecting TTI
halfspace are Vpg2 = 3.3 km/s,Vso2 = 1.8 km/s,p2 =
2.2 gm/cm3,82 = 0.2,v2 = 0.11, and ¢2 = 30°.

from the vertical and horizontal directions. Therefore,
Rps(0) goes to zero for both VTI (v2 = 0°) and HTI
(v2 = 90°) media; the dependence on vz may have min-
ima and maxima at intermediate tilts. For the model
in Figure 4, Rps(0) attains values as high as 0.1 for
€2 = 0.4; in general, the magnitude of Rps(0) in-
creases with e2. Apart from the anisotropy parameters,
the normal-incidence reflection coefficient also increases
with g = /8.

The linearized Rps(0) is close to the exact value for
models approaching VTI and HTI, but the approxima-
tion deteriorates for higher absolute values of Rps(0)
(Figures 3 and 4). The accuracy of the linearized ex-
pressions also decreases with g, and the approximation
may break down for soft rocks with high Vp/Vs ratios.

The dependence of Rps(0) on the parameters €2, b2
and vo in Figures 4 and 5 can be explained using ap-
proximation (11). The influence of €2 and &3 on Rps(0)
strongly depends on the tilt v2 of the symmetry axis
(Figure 6). If the function of v2 multiplied with €2 and
82 becomes zero, the corresponding anisotropy parame-
ter makes no contribution to Rps(0). For example, ac-
cording to approximation (11), 62 should have no in-
fluence on the Rps(0) at vo = 45°, which is confirmed
by the exact Rps(0) in Figure 5. For small tilts v2, &2
has a greater influence on Rps(0) than does ez, while
for larger v, €2 largely determines the value of Rps(0).
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Figure 5. Exact coefficient Rps(0) for an isotropic/TTI
interface as a function of the tilt vz and the parameter 5.
Except for 82 and €3 = 0.2, the model parameters are the
same as in Figure 4.

1.5 .' )
sin2v,,.(1-cos2v,))

fs:n2v2.;coszv2

20 40 80

60
v, ()

Figure 6. Functions of v multiplied with €2 (black line) and
62 (gray line) in equation (11). These curves help to explain
the influence of €5 and &5 on Rps(0) for different tilts v in
Figures 4 and 5.

This dependence of Rps(0) on € and 6 is explained by
the behavior of the P-wave phase-velocity function in
TI media. At small angles with the symmetry axis, P-
wave velocity is controlled by &, while the contribution
of € increases toward the isotropy plane (e.g., Tsvankin,
2001).

2.2 TTI/TTI interface

Next, we consider the normal-incidence PS reflection for
a model in which the incidence halfspace is also TTL. In
isotropic media, an incident P-wave excites a single con-
verted (PSV) mode because the symmetry prohibits the
generation of PSH conversions. When the incidence half-
space is anisotropic, the PS reflection splits into the PS,
and PS; modes that have different normal-incidence re-
flection coefficients (Rps, (0) and Rps,(0)) and AVO
gradients. To understand the influence of the parame-
ters of both halfspaces, we study the linearized approx-
imations for Rps, (0) and Rps, (0).

2.2.1 Special case of aligned symmetry planes

If the azimuth of the symmetry axis is the same above
and below the reflector (¢1 = ¢2), the vertical plane
that contains both symmetry axes represents a plane
of symmetry for the whole model. In this case, the P-
wave at normal incidence excites only one (PS;) wave
polarized in the symmetry-axis plane:

2

Rps, (0) 4(1g—+g){—sin 2v1 [cos 2v (61 — €1) + €1]
+sin 2 [cos 2v2 (82 — €2) + ) (13)

_ _9g (_ 1 dVp.(6)

41+g) \ Vpox do |y,
1 dVp2(6) )
U , 14

+ Vpoz df |, (14)
Rps,(0) = 0. (15)

The coefficient Rps, (0) is a function of both tilts (1
and v2) and all anisotropy parameters except for v, and
72 — the parameters responsible for SH-wave propaga-
tion in TI media.

Rps,(0) vanishes when each of the halfspaces is ei-
ther VT1 or HTI, and the reflector represents a symme-
try plane for the whole model. The term involving vy, €1,
and d; in equation (13) coincides by absolute value with
that involving vs, €2, and 2. So the conclusions drawn
above for v, €2, and 6, (Figure 6) apply to v1,¢€;, and
81 as well. If both TI halfspaces have the same orien-
tation of the symmetry axes and the same parameters
€ and §, Rps, (0) vanishes, even though there may be
a jump in the other parameters across the interface.
This result, however, is valid only in the weak-contrast,
weak-anisotropy limit.

2.2.2 General TTI/TTI model

Suppose the symmetry axis has an arbitrary orientation
in both halfspaces. Then a P-wave at normal-incidence
excited both PS modes, and the approximate solutions
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Figure 7. For an incidence TI halfspace, g% lies in the
plane formed by the slowness vector and the symmetry axis
(i.e., it would correspond to the SV-wave, if the symmetry
axis were vertical), while g%?) is perpendicular to this plane
(SH-wave).

for Rps, (0) and Rps,(0) are as follows:

2
Rps,(0) = Z(_lg_+?){_ sin 2u; [cos2u (61 — €1) + €1

+cos(dz — ¢1) sin 2z [cos 2v2 (§2 — €2) + e2]} (16)

_ g2 (_ 1 dVp1(8)
41 +g) Vpo,1 do

=0
+ cos(¢2 — ¢1)Vplo,2 d—wﬁ@ 9=0> ) (17)
2
Rps,(0) = Hli-}-_g—){sm(@ — ¢1) sin2vy
[cos2u (62 — €2) +€2]}  (18)
g’ 1 dVra(6)

(19)
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It is clear from the symmetry of the above model
(TTI/TTI), that the normal-incidence reflection coef-
ficients should depend just on the difference ¢2 — P
which is confirmed by equations (16)—(19). Indeed, a si-
multaneous azimuthal rotation of both symmetry axes
can only change the azimuthal direction of the polariza-
tion vectors of the PS-waves. When the vertical symme-
try planes of the two TI halfspaces coincide ($1 = ¢2),
equations (17) and (19) reduce to equations (14) and
(15), respectively. Note that the terms involving the tilt
of the symmetry axis and the anisotropy parameters in
equations (16) and (18) have the same form as the cor-
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responding terms for the simpler isotropic/TTI model
examined above.

3 AVO GRADIENTS

The AVO gradients of the split PS-waves can be com-
puted numerically by estimating the best-fit initial slope
of the exact reflection coefficient expressed as a function
of sin 8. In the linearized weak-anisotropy, weak-contrast
approximation, the gradient G is obtained explicitly as
the multiplier of sin 8 [equation (10)]. The linearized ap-
proximations for the PS-wave AVO gradients are given
in Appendix B.

3.1 Isotropic/TTI interface

For the isotropic/TTI interface, only the gradient Gps,
contains both isotropic and anisotropic terms, while
Gps, is purely anisotropic [equations (B1) and (B2)].
The expression for Gps, reduces to the familiar gradi-
ent for isotropic media (e.g., Nefedkina and Buzlukov,
1999), if €3 = 52 =92 = 0.

In the linearized approximation, the reflection co-
efficients for isotropic media coincide with the isotropic
terms in the coefficients for the isotropic/TTI inter-
face. Numerical testing shows that the AVO gradient
is not significantly distorted by the anisotropy for com-
mon values of the vertical-velocity ratio g (Figure 8).
The influence of the anisotropy in the reflecting halfs-
pace changes primarily the normal-incidence coefficient
Rps(0) that goes to zero in the isotropic model. Al-
though the AVO gradients of both PS-waves vary with
azimuth, their average values are close to those for
isotropic media, and the magnitude of the azimuthal
variations is relatively small.

Since the dependence of the AVO gradients on the
parameters of the reflecting medium is rather compli-
cated, in particular for the PS;-wave [equation (B1)],
we studied the behavior of the exact gradients using
numerical modeling. As was the case for Rps(0), the
influence of €2 on both Gps, and Gps, increases with
the tilt v2, while that of d2 becomes smaller. The contri-
bution of 2 to both AVO gradients also increases with
V.

The PSz-wave vanishes for a reflecting VTI half-
space when the reflected PS-wave is polarized in the
symmetry-axis plane of the incidence medium. There-
fore, the gradient G ps, increases as the symmetry axis
deviates from the vertical. G ps, also goes to zero when
the symmetry axis is confined to the incidence plane or
is perpendicular to it.

3.2 TTI/TTI interface

The AVO gradients of the PS- and PSs-waves for a
TTI/TTI interface [equations (B3) and (B4)] are de-
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Figure 8. Exact PS-wave reflection coefficients (top row) and AVO gradients (bottom row) for isotropic/isotropic and
isotropic/TTI interfaces. The velocity and density contrasts for both models are the same: Ap = 0.2gm/cm3,5 =

2.1 gm/cm3, A8 = 0.3 km/s,3 = 1.65 km/s, Ao = 0.4 km/s, a

= 3.1km/s, and g = 1.88. The anisotropy parameters of

the reflecting TTI halfspace are €2 =0.3,02 = 0.15,v; = 0.11, and v9 = 60°.

rived in Appendix B for the special case of the inci-
dence plane containing the symmetry axis of the upper
halfspace. We also present numerical results for an arbi-
trary orientation of the symmetry axis of the incidence
medium.

In agreement with the linearized approxima-
tions (B3) and (B4), the anisotropy parameters €; and
d1 influence only Gps, while v; influences only Gps,
(Figures 9 and 10). To explain this result valid for an
arbitrary orientation of the symmetry axis of the inci-
dence halfspace, note that the PS;-wave would be the
PSV mode if the symmetry axis were vertical, and the
PS;-wave would be the PSH (transversely polarized)
mode. The P- and SV-wave propagation in TI media

is governed only by € and §, while the SH-wave velocity
is controlled by -y (Tsvankin, 2001).

As shown earlier, when the incidence medium is
isotropic, the gradient Gps, contains both isotropic
and anisotropic terms, while G Ps, is purely anisotropic.
If the incidence halfspace is T'TI with the symmetry
axis not confined to the incidence plane, then there
are no purely isotropic terms in either gradient, as
demonstrated for the special case of the HTI reflect-
ing medium by equations (B5) and (B6). The influ-
ence of the anisotropy in the upper halfspace leads to
a substantial deviation of the gradients computed for
a TTI/TTI interface from those for the corresponding
isotropic model (compare Figures 11 and 8).
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Figure 9. Exact AVO gradient of the PS;-wave for a TTI/TTI interface as a function of the anisotropy parameters in the
(a) incidence and (b) reflecting halfspaces. The incidence plane makes the angle ¢1 = 60° with the symmetry-axis plane of

the incidence halfspace. The medium parameters of the incidence TTI halfspace are Vpg,1 = 2.9 km/s, Vso,1 = 1.5 km /s, o1
2 gm/cm3, €1 =02,8; =0.1,v; =0.1,and 11 = 60°. The parameters of the reflecting halfspace are Vpg,2 = 3.3 km/s, Vso,2

1.8 km/s, p2 = 2.2 gm/cm3,e2 = 0.3,82 = 0.15, 72 = 0.11, v2 = 30°, and ¢z = 30°.
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Figure 10. Exact AVO gradient of the PSq-wave for a TTI/TTI interface as a function of the anisotropy parameters in the
() incidence and (b) reflecting halfspaces. The model is the same as in Figure 9.

4 DISCUSSION AND CONCLUSIONS

In the absence of lateral heterogeneity, anisotropy is
the most likely reason for significant PS-wave energy at
zero and small offsets observed in many multicomponent
data sets. Here, we analyze the small-angle PS-wave
AVO response for the most common type of anisotropy:
transverse isotropy with a tilted symmetry axis (TTI
medium). If the reflector does not coincide with a sym-
metry plane in either halfspace, a P-wave at normal

incidence always generates reflected PS-waves. To ex-
amine the influence of the anisotropy parameters on
the normal-incidence PS-wave reflection coefficient and
AVO gradient, we employ linearized analytic solutions
(obtained using weak-contrast, weak-anisotropy approx-
imations) supported by numerical modeling of the exact
reflection coefficient.

If the incidence halfspace is isotropic, the reflected
PS-wave is polarized in the symmetry-axis plane of the

—rE————
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Figure 11. Exact AVO gradients of the (a) PS;- and (b) PSa-waves as functions of the azimuth ¢; for a TTI/TTI in-
terface (black solid line) and isotropic/isotropic interface (black dashed line). The parameters of the isotropic model are
Vp1 = 29km/s, Vs = 1.5 km/s,p; = 2 gm/cm3,Vpa = 3.3 km/s, Vs2 = 1.8km/s, and p2 = 2.2 gm/cm3. For the
TTI/TTI interface, the parameters are Vpo,1 = 2.9 km/s, Vg1 = 1.5 km/s, oy = 2 gm/cm3,€; = 0.2,6, = 01,71 =0.1,11 =
60°, Vpg,2 = 3.3 km/s, Vso,2 = 1.8 km/s, ps = 2.2 gm/cm3,e3 = 0.3,6, = 0.15,y2 = 0.11, v = 30°, and ¢ = 30°.

reflecting TTI medium. The normal-incidence reflection
coefficient Rps(0) vanishes when the reflecting TI half-
space is VTI or HTI, because in that case the model
as a whole has a horizontal symmetry plane. The coef-
ficient Rps(0) rapidly increases as the symmetry axis
deviates from both the vertical and horizontal direc-
tions. Closed-form approximations and numerical mod-
eling show that Rps(0) can reach values close to 0.1 for
moderate values of the anisotropy parameters typical
for shale formations. When the tilt v2 of the symmetry
axis is relatively small, the coefficient Rpg (0) is mostly
controlled by &2, with the contribution of e, becoming
dominant for larger values of vs.

When both halfspaces are anisotropic (TTI), a P-
wave at normal incidence excited two split PS-waves
(PS: and PS;) with the polarizations governed by
the orientation of the symmetry axis in the incidence
medium. The reflection coefficients of both PS-waves are
functions of the difference between the azimuths of the
symmetry axes (¢2 — ¢1) and do not depend on either
azimuth individually. The linearized normal-incidence
reflection coefficient goes to zero when the two halfs-
paces have the same orientation of the symmetry axis
and the same parameters ¢ and &, even though there
may be a jump in the velocities and densities across the
interface.

We also discussed the azimuthally varying AVO
gradients of PS-waves responsible for the small-angle re-
flection response. If the symmetry axis of the incidence
halfspace is confined to the vertical incidence plane
{or if the incidence halfspace is isotropic), the AVO

gradient of the PS,(PSV)-wave includes both purely
isotropic and anisotropic terms, while the PSz(PSH)-
wave AVO gradient is entirely anisotropic. For an arbi-
trary symmetry-axis orientation, however, neither AVO
gradient contains purely isotropic terms since the con-
tributions of the velocity and density contrasts are mul-
tiplied with functions of the symmetry-axis azimuth
¢1. The AVO gradients are mostly influenced by the
anisotropy in the incidence medium that causes shear-
wave splitting and pronounced azimuthal variation of
the reflection coefficients of both PS-waves.

The linearized approximations developed here not
only provide physical insight into the behavior of the
PS-wave reflection coefficients, but can be also used
to quickly evaluate the PS-wave amplitudes for a wide
range of TTI models. Potentially, these analytic expres-
sions can help in the AVO inversion of PP and PS data
for TTI media that can be implemented using the ap-
proach suggested by Jilek (2001) for anisotropic models
with a horizontal symmetry plane.
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APPENDIX A: PERTURBATION APPROACH APPLIED TO THE
REFLECTION/TRANSMISSION PROBLEM

The approximate linearized reflection and transmission coefficients are derived by using an isotropic full space as
the reference medium. A horizontal planar interface (reflector) divides the full space into two halfspaces, which are
perturbed to obtain two weakly anisotropic media:

afjl = e + 8all),, (A1)
P ="+ 6p, (A2)
[6al2| << llaull, (A3)
[6pV] << p°. (A4)

In equation (A4), the index I (I = 1,2) stands for the incidence and reflecting halfspaces, respectively, and ag,)c,

and p° are the density-normalized stiffness coefficients and density of the background isotropic medium. Since the
perturbations from the isotropic background in both halfspaces are small, the approximation involves both weak
anisotropy and weak elastic contrast between the halfspaces. Using these approximations, the polarization (p‘™) and
slowness vectors (g(™)) can be linearized as follows:

g™ ~ g 4 g™

p™ % pOM) 4 55 (M) (A5)
where g®™) and p°™) are the polarization and slowness vectors of waves propagating in the background isotropic
medium, and dg‘™ and sp™) are their linear perturbations. Analytic expressions for the perturbations 6g(N ) and

6p™) in terms of Jag.,)d are given in Vavryéuk and P3en¢ik (1998) and Jilek (2000). Substituting these linearized

expressions into equation (1) of the main text yields
(C° +46C)(U° + 6U) = B® + 6B. (A6)

Here, C° is the stiffness matrix of the background medium and §U is the perturbation of the reflection and trans-
mission coefficients in the background isotropic medium (UO). As the background is homogeneous, U? is given by

U’=[0, 0, 0 0 0 1] . (A7)
Expanding equation (A6) and retaining only the leading terms in small quantities results in the following equation:
8U = (C°)"1(6B - 6C - UY), (A8)
where
5, 6gY 59V —6g¥  —6g s
6g;"  8gy” 89 —6glV 64" —5g®
O I R R (R R (9
6X{0 86X 6X(® —sx® _sx® _sx©
6X50 ox( ox{Y —sx(V —sx® _sx©
sxV ox{P sx{ -ox{V —6x{® _sx®
T
6B =[5 4o, ao”, 5x{¥, sx?, sx{ | (A10)
Therefore, the perturbed vector of the reflection/transmission coefficients is obtained as
6U = (C) " [ 66 — 59, 668 — 56, 64 — 56,
6X1% —6X{", ax{¥ - 6x{”, sx{ - sx{ . (A11)

APPENDIX B: APPROXIMATE PS-WAVE AVO GRADIENTS IN TI MEDIA

Here, we present linearized expressions for the PS;- and PS3-wave AVO gradients (Gps, and Gps,) obtained in
the weak-contrast, weak-anisotropy limit. If the incidence halfspace is isotropic, PS; becomes the PSV-wave with an
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in-plane polarization, and PSz becomes the transversely polarized PSH-wave.

208 (2+g9)Ap 2 sin? vz sin? ¢2 12

G = G = — <
PSSV PS, gﬂ 2gp p
-1?({:_) {(3+29)82 + (3 — 2g) cos dvz (62 — €2) — (1 + 2g)e2
+2cos 2u2 [62 + 2(—1 + 2g) cos 2¢2 sin® vz (82 — €2) + 2€2]
+ 4cos 242 sin® va (2g82 — €2 — 2g€2)}, (B1)
.2 .
Gpsy = Ops, = sin® v sin 2¢2 2

g
gsin? o sin 2¢2
4(1+9)
The AVO gradients for a TTI/TTI interface are given here only for the incidence plane containing the symmetry
axis of the incidence TTI halfspace (¢1 = 0°):

288 (2+9)Ap _ 2sin? v, sin® 2 72

{29 + (=1 + 2g) cos2v2)(82 — €2) — €2} . (B2)

Gri = g 29p g
m—){ 4(1 + g)(61 - 61) + 4( 1 + g) COS4I/1 (61 - 61)
—8cos2u1 €1 + 362 — €2 + 29(62 — €2) + 2 cos 2v2 (02 + 2¢2)
+4cos 202 sin® vz {—e€2 + [29 + (=1 + 2g) cos 2v2)(82 — €2)}
+(3 — 2g) cosdvz (82 — €2)}, (B3)
Gps, = sin? vy s;n 2¢2 ¥2
.2 .
2
Fﬂ%"’f%ﬂ{[zg + (=1 + 29) cos 2v2](82 — €2) — €2} - (B4)

If the symmetry axis of the upper halfspace deviates from the incidence plane, fully linearized AVO gradients
can still be derived for the special case of the incidence HTI medium:

_2AB cosér (2+g)Apcosér 2sin? vp sin(ge — ¢1) singdz vz

Cra = 9B 2gp 9
Im—)“ sin® vg cos(2¢2 — ¢1) {[29 + (—1 + 2g) cos 212](J2 — €2) — e}

+cos ¢y [—88; + 1661 + 382 — €2 + 29(02 — €2)

+2c082vz (62 + 2€2) — (=3 + 2g) cos 4 (82 — €2)]}, (B5)
G _ 2A8 sin ¢y (2 +g)Apsing1  2sindim

ree 98 29p g
+ 2sin® va cos(gz — 1) sin P22
g

_16(1 ) {4sin® vz sin(2¢2 — ¢1) {[29 + (=1 + 2g) cos 212](2 — €2) — €2}

— sin ¢1[382 — €2 + 29(82 — €2) + 2cos 2v2 (02 + 2€2)
—(—3+2g) cosdv; (62 — €2)]} . (B6)
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ABSTRACT

Recently, curvelets have been introduced in the field of applied harmonic anal-
ysis and shown to optimally sparsify smooth (Ca, i.e., twice continuously differ-
entiable) functions away from singularities along smooth curves. In addition, it
was shown that the curvelet representation of wave propagators is sparse. Since
the wavefronts in seismic data lie mainly along smooth surfaces (or curves in
two dimensions), and since the imaging operator belongs to the class of op-
erators that is sparsified by curvelets, curvelets are plausible candidates for
simultaneous sparse representation of both the seismic data and the imaging
operator. In this paper, we study the use of curvelets in pre-stack time migra-
tion, and show that simply translating, rotating and dilating curvelets according
to the pre-stack map time-migration equations we developed earlier, combined
with amplitude scaling, provides a reasonably accurate approximation to time-
migration. We demonstrate the principle in two dimensions but emphasize that
extension to three dimensions is possible using 3D equivalents of curvelets. We
treat time-migration in an attempt to learn the basic characteristics of seismic
imaging with curvelets, as a preparation for future imaging in heterogeneous
media with curvelets.

Key words: Pre-stack time-migration, common-offset, curvelets, map migra-

tion, translation, rotation, dilation

Introduction

In the high-frequency approximation, seismic waves
propagate along rays in the subsurface. The local slopes
of reflections in seismic data, measured at the surface,
determine (together with the velocity of the medium
at the surface), the directions in which we need to ‘look
into the earth’ from the surface, to find the location and
orientation of the reflector in the subsurface where the
reflection occured. The determination of a reflector po-
sition and orientation from the location of a reflection in
the data and the local slope, is generally referred to as
map migration (Kleyn, 1977). For an overview of liter-
ature on this topic, and for an explanation of the appli-
cability condition of map migration, we refer to Douma
& de Hoop (2005).

Given the slopes at the source and at the receiver
locations, map migration provides a one-to-one map-
ping from the surface seismic measurements, i.e., loca-
tions, times and slopes, to the reflector position and

orientation in the image (provided the medium does
not allow different reflectors to have identical surface
seismic measurements (location, times and slopes) that
persist in being identical under small perturbations of
the reflectors; see Douma & de Hoop (2005) for an ex-
planation of this condition). This is in sharp contrast
to migration techniques that do not make explicit use
of the slopes in the data, such as Kirchhoff methods,
where the data is summed over diffraction surfaces [see,
e.g., Bleistein et al. (2000)]; such mappings are many-
to-one because all points along the diffraction surface
are mapped to one output location. The benefit of the
explicit use of the local slopes in the data, is exploited
in several seismic applications such as parsimonious mi-
gration (Hua & McMechan, 2001; Hua & McMechan,
2003), controlled directional reception (CDR) (Zaval-
ishin, 1981; Harlan & Burridge, 1983; Sword, 1987;
Riabinkin, 1991), and stereo tomography (Billette &
Lambaré, 1998; Billette et al., 2003). This list is cer-
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tainly not complete and many more applications exist.
In all these methods, the slopes are estimated from the
data using additional processing techniques such as local
slant-stacking, multidimensional prediction-error filters
(Claerbout, 1992, p.186-201) or plane-wave destruction
filters (Fomel, 2002; Claerbout, 1992, p.93-97).

Recently, in the field of harmonic analysis, Candes
and Guo (2002) and Candés and Donoho (2000; 2004b)
introduced a tight frame of curvelets (see appendix B
for an explanation of tight frames), which provide an
essentially optimal representation of objects that are
twice continuously differentiable (C?) away from dis-
continuities along C? edges. Due to the wave charac-
ter of seismic data, the reflections recorded in seismic
data lie mainly along smooth surfaces (or curves in 2D),
Just as geologic interfaces in the subsurface lie primarily
along smooth surfaces. Therefore, it is plausible to as-
sume that seismic data and their images can be sparsely
represented using curvelets. This was earlier also noted
by Herrmann (2003a; 2003b). Of course, at points where
the recorded wavefronts have caustic points or at point-
like discontinuities in the subsurface (e.g. along faults),
the level of sparsity achieved with a curvelet represen-
tation naturally will be somewhat less than the spar-
sity achieved for the smooth parts of the wavefronts or
geologic interfaces. Since curvelets are anisotropic 2D
extensions of wavelets and thus have a direction asso-
ciated with them, using curvelets as building blocks of
seismic data, the slopes in the data are built into the
representation of the data; a simple projection of the
data onto the curvelet frame (combined with an intelli-
gent thresholding scheme to separate signal from noise)
then gives the directions associated with the recorded
wavefronts.

Smith (1998) and later Candeés and Demanet (2002)
have shown that curvelets sparsify a certain class of
Fourier integral operators. Since the seismic imaging
operator can be constructed from Fourier integral op-
erators that belong to this class, and since reflections in
seismic data lie mainly along smooth curves, it seems
that curvelets are plausible candidates for simultane-
ous compression of seismic data and the imaging op-
erator. Curvelets have a multiresolution character just
like wavelets do. This means that curvelets of different
scales have different dominant wavelengths. It is known
that waves with a certain dominant wavelength are sen-
sitive to variations in the medium with certain lengths
scales only; i.e., a wave with a dominant wavelength
of say 100 meters is hardly sensitive to variations in
the medium on the scale of one centimeter. Therefore
curvelets of different scales are sensitive to media with
variations on different scales. This allows the possibil-
ity to filter the background velocity with filters related
to the dominant wavelength of the curvelets (i.e., the
scale of the curvelets), and propagate curvelets of dif-
ferent scales through different media. Smith (1998) has
shown that the propagation of a curvelet through such

a filtered medium is governed by the Hamiltonian flow
associated with the center of the curvelet. Here the cen-
ter of the curvelet is its center in phase-space, meaning
the center location of the curvelet combined with the
center direction. This means that a curvelet is treated
as if it was a particle with an associated momentum
(or direction). For each filtered medium, this observa-
tion reduces to the statement of Candés and Demanet
(2004) that the propagation of a curvelet (through an in-
finitely smooth medium) is “well-approximated by sim-
ply translating the center of the curvelet along the cor-
responding Hamiltonian flow.” In fact, the procedure
Jjust outlined yields a leading order contribution to the
solution of the wave equation (Smith, 1998). Hence this
procedure admits wave-equation-based seismic imaging
with curvelets.

For homogeneous media the above mentioned filter-
ing is unnecessary. For such media, wave-equation based
seismic imaging is really the same as Kirchhoff-style
imaging. In this paper, we study the use of curvelets in
homogeneous media (i.e., in time migration) and verify
the statement that curvelets can be treated as particles
with associated directions (or momenta) in an imaging
context. We focus on the simple case of homogeneous
media in an attempt to learn the basic characteristics
of seismic imaging with curvelets, as a preparation for
imaging in heterogeneous media with curvelets. This
work is a follow-up on earlier work (Douma & de Hoop,
2004) that showed that (at least for time-migration) the
kinematics of seismic imaging with curvelets are gov-
erned by map migration. This paper is a report on
research in progress on pre-stack time imaging with
curvelets.

In this paper we first present an intuitive descrip-
tion of curvelets, with examples of digital curvelets from
the digital curvelet transform (Candés et al., 2005). A
detailed treatment of the construction of real-valued
curvelets is included in appendix A. Subsequently, we
show an example of the use of curvelets as building
blocks of seismic data, and explain the relation between
curvelets and map migration. We proceed to explain our
current understanding of common-offset (CO) pre-stack
time migration with curvelets, and introduce a trans-
formation that consists of translations, rotations and
dilations of curvelets to perform such migration. This
transformation is largely based on map migration. Fi-
nally, we present numerical examples that show the use
of this transformation for time-imaging with curvelets,
and finish with a discussion and conclusion of the re-
sults.

Curvelets

In this section we explain intuitively what curvelets are,
how they are constructed, and their main properties.
Appendix A provides a detailed treatment of their con-
struction in the frequency domain, which closely follows
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spectral domain spatial domain

a) N gl

Figure 1. Tilings of the curvelet frame in the spectral do-
main (a) and the spatial domain (b). In the frequency do-
main a curvelet is supported ‘near’ a wedge on a polar grid
(i.e. the actual support extends slightly further than the in-
dicated wedge), where the width of the wedge is proportional
to 2L9/2] and its length is proportional to 2. On the support
of such a wedge, a local Fourier basis provides a Cartesian
‘tiling’ of the spatial domain (shown schematically in b). The
essential support of a curvelet in the spatial domain is indi-
cated by an ellipse (while again the actual support extends
beyond this ellipse).

the original treatment of the construction of real-valued
curvelets by Candés and Donoho (2004b) but provides
additional explanations and derivations to guide the
non-specialist (i.e., not harmonic analysts). We include
this extensive appendix because most of the literature
on the construction of curvelets is rather dense and thus
aim to make the construction of curvelets more acces-
sible to a broader audience. For a short summary of
(the more general) complex-valued curvelets, we refer
the reader to Candés and Demanet (2004).

In wavelet theory [e.g., Mallat (1998)], a 1D signal is
decomposed into wavelets, where a wavelet is ‘localized’
in both the independent variable and its Fourier dual,
say time and frequency; such localization is of course un-
derstood within the limits imposed by the Heisenberg
uncertainty principle. These wavelets can be translated
along the time axis through a translation index, and
dilated in their frequency content through a scale in-
dex. They are uniquely determined by both indices: the
translation index m determines their location along, say,
the time axis, while the scale index j determines their
location along, say, the frequency axis.

Curvelets are basically 2D enisotropic (see below)
extensions to wavelets, that have a direction associated
with them. Just like wavelets are ‘localized’ in one vari-
able and its Fourier dual, curvelets are ‘localized’ in two
variables and their two Fourier duals. Analogously to
wavelets, curvelets can be translated and dilated. The
dilation is given also by a scale index j, and, since we
are in 2D, the translation is indexed by two indices mi
and mg; we defer from the standard notation k; and k2
to avoid confusion with the wave-vector components. A
main difference between curvelets and wavelets is that
curvelets can be rotated. This rotation is indexed by

an angular index [. The relation between these indices
and the location of the curvelet in the spatial and spec-
tral domains is shown in Figure 1a and b. A curvelet is
uniquely determined by all four indices (3,1, m1, ma).

As explained in appendix A, curvelets satisfy the
anisotropic scaling relation width ~ length? in the spa-
tial domain (where we ignore the dimensional differ-
ence between width and length?). This is generally ref-
ered to as the parabolic scaling. This anisotropic char-
acter of curvelets is the key to the proof from Candés
and Donoho (2004b) that curvelets provide the sparsest
representations of C? (i.e., twice continuously differen-
tiable) functions away from edges along piecewise c?
curves. The search for sparse representations of such
functions in the field of image analysis was the origi-
nal motivation for their construction, as wavelets fail to
sparsely represent such functions (Candés & Donoho,
2004b) due to their isotropic character. The anisotropic
scaling relation is the key difference between wavelets
and curvelets.

Curvelets are constructed through the following se-
quence of operations. First, the spectral domain is band-
pass filtered (i.e. in the radial direction) into dyadic an-
nuli (or subbands); this means that the radial widths
of two neighboring annuli differs by a factor of two, the
outer annulus having twice the radial width as the in-
ner annulus. Each subband is subsequently subdivided
into angular wedges (see Figure la), where the number
of wedges in each subband is determined by the fre-
quency content (or the scale index j) of the subband.
The number of wedges in a subband with scale j is
2l3/2] where the notation |p| denotes the integer part of
p. This means that the number of wedges in a subband
increases only every other scale. This is a consequence
of the dyadic nature of the subband filtering done in
the first step combined with the desired parabolic scal-
ing. Subsequently, each wedge is multiplied by a 2D or-
thonormal Fourier basis for the rectangle that just cov-
ers the support of the wedge. According to the discrete
Fourier transform, this basis has the fewest members if
the area of this rectangle is minimum, since then the
product of both sampling intervals in space is largest.
Therefore, the orientation of this rectangle rotates with
the angular wedge and the spatial tiling associated with
the local Fourier basis is oriented along the direction
associated with the angular wedge (see Figure 1b); that
is, the spatial tiling associated with each angular wedge
depends on the particular orientation of the wedge. The
subband filtering gives curvelets their multiresolution
character (just like with wavelets), whereas the subdi-
vision of these subbands into angular wedges provides
them with orientation. The local Fourier basis over the
support of the angular wedge, allows the curvelets to
be translated in space. Curvelets are in essence a tiling
of phase-space; i.e., a tiling of two variables and its two
Fourier duals. The tiling is non-trivial in that the sam-
pling of phase space is polar in the spectral domain,
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but Cartesian in the spatial domain. As explained in
appendix A, curvelets are essentially ‘Heisenberg cells’
in phase-space.

An angular wedge in the frequency domain has
length proportional to 27 (i.e., in the radial direction)
and width proportional to 2\9/2] (see appendix A for
the derivation). This means that in the spatial domain
the curvelet is oscillatory in the direction of the main
k-vector (i.e., the k-vector pointing to the middle of
the angular wedge in the frequency domain), while it
is smooth in the orthogonal direction. In some of the
papers on curvelets, they are therefore referred to as
(Candés & Demanet, 2004) “little needle(s) whose en-
velope is a specified ‘ridge’ ... which displays an oscilla-
tory behavior across the main ridge”. Intuitively, we can
roughly think of curvelets as small pieces of bandlimited
plane waves. The difference between this rough descrip-
tion and the actual interpretation lies, of course, in the
fact that a bandlimited plane wave has associated with
it one k direction only, whereas a curvelet is associated
with a small range of k vectors. A better description is
the term ‘coherent wave packet’ which was around even
before the first ever construction of curvelets [e.g. Smith
(1997; 1998)], and dates back to the work of Cérdoba
and Fefferman (Cérdoba & Fefferman, 1978). The fre-
quency domain tiling of the curvelet frame is the same
as the dyadic parabolic decomposition or second dyadic
decomposition (Gunther Uhlmann, personal communi-
cation) used in the study of Fourier Integral Operators
[see e.g. Stein (1993)], that was around long before the
construction of the curvelet frame (Fefferman, 1973).

Curvelets form a tight frame for functions in
L? (R?) (see appendix B for a quick introduction to
tight frames, and appendix A for the derivation of this
tight frame). This means that, much like in the case of
an orthonormal basis, we have a reconstruction formula,

=3 Gedan, (e = [ f@e@d, o

reM

where ¢, denotes a curvelet with multi-index p =
(4,1, m1,m2), the superscript * denotes taking the com-
plex conjugate, M is an index-set, and f(z1,z2) €
L? (RZ). Thus, we can express an arbitrary function
in L? (R?) as a superposition of curvelets. The term
(fycu) is the coefficient of curvelet ¢, given by the pro-
Jection of the function f on curvelet ¢, with multi-index
# = (4,1, m1,my). Of course, (-,-) given in equation (1)
is the familiar inner product on L? (Rz).

Digital curvelets versus continuous curvelets

In the construction of continuous curvelets, the sam-
pling of the spectral domain is done in polar coordi-
nates, while the sampling of the spatial domain is Carte-
sian (see Figure la and b). From a computational point
of view, this combination is not straightforward to im-
plement. Combining Cartesian coordinates in both do-
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Figure 2. Tilings for digital curvelets in the spectral domain
(a) and the spatial domain (b). For digital curvelets, the
concentric dyadic circles in the spectral domain are replaced
with concentric dyadic squares, and the Cartesian spatial
grid is sheared.

mains is straightforward and is standard in data pro-
cessing. Therefore, for the purpose of digital curvelet
transforms, the polar coordinates in the spectral do-
main are replaced with Cartesian coordinates. Also, in
the field of image analysis [where the digital curvelet
transform was developed (Candés & Donoho, 2004a;
Candeés et al., 2005)], images usually have Cartesian spa-
tial coordinates to begin with, hence it is natural to have
Cartesian coordinates in the spectral domain also, since
this allows straightforward application of Fast Fourier
Transform algorithms. Of course, this holds for seismic
data too.

To go from polar coordinates to Cartesian coor-
dinates in the spectral domain, the concentric circles
in Figure la are replaced with concentric squares (see
Figure 2a); hence the rotational symmetry is replaced
with a sheared symmetry. As a consequence, the Carte-
sian sampling in the spatial domain is no longer a ro-
tated Cartesian grid, but is a sheared Cartesian grid (cf.
Figure 1b and Figure 2b)*. This construction allows a,
rapidly computable digital curvelet transform. Whether
this digital analog of the continuous curvelets introduces
artefacts due to the loss of the rotational symmetry in
the spectral domain (this is most severe near the corners
of the concentric squares) is currently unclear to us. For
more details on the implementation of digital curvelet
transforms, we refer to Candés and Donoho (2004a) and
Candes et al. (2005).

Examples of digital curvelets

Figure 3 shows examples of digital curvelets. The left
column shows curvelets in the spatial domain, while the
right column shows their associated spectra. Superim-
posed on the spectra, the spectral tiling of the digital
curvelet transform is shown. The middle column shows

*Here the centers of the cells are the actual possible locations
of the centers of the curvelets in space.
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Figure 3. First column: curvelets in the spatial domain. Second column: associated spatial lattices, and spatial cells colored
according to the value of the coefficient. Third column: amplitude spectra and frequency-domain tilings. First row: a curvelet.
Seccond row: curvelet from Figure (a) with different translation indices. Third row: curvelet from Figure (a) with a different
angular index. Fourth row: curvelet from Figure (a) with a different (higher) scale index (here the translation indices and the
angular index are in fact also different, since they depend on the scale index).

the associated spatial lattice for each of the curvelets, shows a translated version of the curvelet in Figure 3a;
where the centers of the cells are the actual possible the spectral tile is the same, but the spatial tile has
locations of the centers of the curvelets in space. Here changed, i.e., indices j and ! are held constant, but the
the spatial cells on the spatial lattice are colored ac- translation indices m; and mq are different. Figure 3c
cording to the coefficient of the curvelet (here always shows a rotated version of the curvelet in Figure 3a;

one); black equals one and white equals zero. Figure 3b now the spatial location is the same, but the spectral
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Figure 4. Top row: a curvelet with a dominant frequency of about 30 Hz
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(right). The Kirchhoff migration of a curvelet determines only part of the isochron,
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Figure 5. Synthetic common-shot gather with cusped wavefront: original (a), reconstructed using only the 0.25 % largest
curvelet coefficients (b), and the difference (c). The reconstruction with 0.25 % of the curvelets is almost identical to the

original common-shot gather. In this example, using only 0.25 %

input samples in the gather.

curvelet that is close in the spatial domain and has ori-
entation close to the orientation of the curvelet that is
propagated along the central ray.

For homogeneous media, filtering is unnecessary,
and the above observation applies to the same medium
for curvelets of all scales. To illustrate this, Figure 4
shows the result of CO Kirchhoff migration of a curvelet
[taken from Douma and de Hoop (2004)]. The top row
shows the input curvelet in space (the vertical axis was
converted to depth using z = vt, /2 for convenience),
and its associated amplitude spectrum. Again the coef-
ficient of the curvelet is shown in the middle panel, just
as in Figure 3. The left-most panel of the bottom row
shows the CO Kirchhoff migrated curvelet. Notice how
the migrated curvelet is clearly localized in space and
determines only part of the isochron, in sharp contrast
to the whole isochron if a single sample (or a ‘spike’)
would be used as input to the migration. This confirms
that curvelets are indeed a more appropriate choice for
building blocks of seismic data than are ‘spikes’ (that
are currently used to represent seismic data). The spec-
trum of the migrated curvelet (bottom right) is clearly
localized after the migration, and overlies four wedges
in the curvelet tiling of the spectrum, indicating some
leakage into neighboring curvelets in the spectral do-
main. The middle panel shows the coefficients for the
spatial area in the lower left quadrant of the leftmost
figure (outlined by the dotted lines), for the wedges la-
beled ‘1’ through ‘4’. Indeed there is also some leakage
to neighboring curvelets in space, but again this can be
considered small. This confirms that curvelets remain
localized in both the spatial and spectral domain (i.e.,

of the curvelets results in about 30 times fewer curvelets than

they remain ‘curvelet-like’) after pre-stack time migra-
tion.

Curvelets as building blocks of seismic data

Seismic reflections in seismic data lie primarily along
smooth surfaces (or curves in two dimensions). Even
diffractions from discontinuities in the earth’s subsur-
face, such as edges of geologic interfaces caused by fault-
ing, lie along smooth surfaces. This is a direct conse-
quence of the wave-character of seismic data. As men-
tioned in the introduction, it is intuitive that curvelets
can be used to sparsely represent seismic data, since
curvelets provide the sparsest representations of smooth
(C?) functions away from edges along piecewise c?
curves (Candés & Donoho, 2004b). Throughout this
work, we simply adopt this intuition and illustrate this
with a simple synthetic example below.

Figure 5a shows part of a synthetic common-shot
gather, where the wavefront has a cusp. This data re-
lates to a model with a syncline shaped reflector. Figure
5b shows the reconstructed gather where only the 0.25 %
largest curvelet coefficients were used. For the particu-
lar example shown, this relates to a compression ratio of
about 30; i.e., we used 30 times less curvelets than there
are sample values in the original gather, to reconstruct
the data. From Figure 5c it is clear that the difference
between the original and reconstructed data is close to
zero. This exemplifies that, using curvelets as building
blocks of seismic data, the data can be sparsely repre-
sented with curvelets, with much fewer curvelets than
the data has samples, and with essentially no residual,
even in areas where the wavefront has cusps.
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Figure 6. Common offset (h = 1000 m) data (a) and migrated data (b) from a syncline shaped reflector embedded in a
constant velocity (v = 2000 m/s) medium, and demigrated and migrated line elements superposed on the data and migrated
data, respectively. The excellent agreement between the demigrated line elements and the seismic data (a), and the migrated line
elements and the migrated data (b), indicate the validity of the common-offset map time-demigration and migration equations,

respectively.

In our example, we have applied a hard thresh-
olding to the data; we simply did not use 99.75 % of
the curvelets. At first sight one might think that there-
fore the compression ratio should be 400. However, the
curvelet transform is redundant, meaning that if all
curvelets are used to reconstruct the data, there are
more curvelets than sample points in the data. Dif-
ferent digital implementations of the curvelet trans-
form have different redundancies (Candés et al., 2005).
(In this particular example, the apparent compression
ratio (400) and the associated implied redundancy of
400/30 = 13 is so large only because a lot of zero-
padding was necessary to make the number of samples
in the gather both horizontally and vertically equal to
an equal power of 2; the actual redundancy of the used
transform is about 3.) The hard thresholding that we
used in our example, will in practice certainly not be
ideal to determine the threshold level, especially in a
practical situation where we have noise. Here, we re-
frain from any denoising issues, and focus on the imag-
ing with curvelets. Hence, we assume that an intelligent
thresholding of the data has already determined the sig-
nificant curvelet coefficients in the data.

We emphasize that by using curvelets as building
blocks of seismic data, the local slopes (or ‘directions’)
in the data are built into the data representation. Other
than a straightforward projection of the data onto the
curvelet frame (combined with an intelligent threshold-
ing procedure), no additional processing steps are re-

quired to extract the local slopes from the data, such as
local slant stacking in CDR (Zavalishin, 1981; Harlan &
Burridge, 1983; Sword, 1987; Riabinkin, 1991), stereoto-
mography (Billette & Lambaré, 1998; Billette et al.,
2003), and parsimonious migration (Hua & McMechan,
2001; Hua & McMechan, 2003), or multidimensional
prediction-error filters (Claerbout, 1992, p.186-201) and
plane-wave destruction filters (Fomel, 2002; Claerbout,
1992, p.93-97). Therefore, curvelets provide an appro-
priate reparameterization of seismic data, that have the
wave-character of the data built into them.

2D Common-offset map time migration

Douma & de Hoop (2005) present explicit expressions
for common-offset map time migration (i.e., migration
in a medium with constant velocity), that use only
the slope in a common-offset gather (and the velocity),
rather than the slope in a common-offset gather and the
slope in a common-midpoint gather (and the velocity),
such as the equations presented by Sword (1987, p.22).
The expressions in three dimensions from Douma & de
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Hoop (2005) simplify in two dimensions to
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In these expressions ., tu, and py = %Btu/axu are

the midpoint location, two-way (unmigrated) travel-
time, and the (unmigrated) slope in a CO section, re-
spectively, while z,, tm and pm = %615,,, /Bzm are their
migrated counterparts. Also, h denotes the half-offset
and v is the medium velocity. Equations (2)-(4) are ex-
plicit expressions that determine the migrated reflector
coordinates (Tm, tm,pm) from the specular reflection co-
ordinates (Zu,tu,Pu), given h and v. Equations (2)-(4)
do not use the offset horizontal slowness p, = 3t./dh,
such that in practice, only p. needs to be estimated, and
the slope in a common-midpoint gather can be ignored.
It is possible to derive map migration equations that
use the offset horizontal slowness p instead of the ve-
locity (Sergey Fomel, personal communication). In this
way, map time-migration can be done without knowl-
edge of the medium velocity. This idea dates back to the
work of Ottolini (1983). In the context of pre-stack time-
migration with curvelets, this would require 3D equiva-
lents of curvelets for 2D imaging since both p. and pn
would need to be known.

Figure 6a shows a common-offset gather (h = 1000
m) from synthetic data generated from a syncline model
with constant velocity above the reflector. On top of the
reflections, line elements are drawn tangent to the re-
flections. Each of these line elements determines a local
slope, pu, while the center of the line determines the two-
way traveltime ¢, and the common-midpoint location
z... Using equations (2)-(4) and the velocity v = 2000
m/s, the migrated location (zm, 2m), with z2m = vim /2,
and the local dip angle tan ¢ = vpm can be determined
(¢ is the angle with the horizontal measured clockwise

x

Figure 7. The width of the curvelet in the direction perpen-
dicular to its ‘main ridge’ determines wavelength Ac, while
the vertical width of the curvelet determines the wavelength
X relevant to seismic migration. It follows that Ac = Acosfu
and hence w = wecosBy,.

positive). Figure 6b shows the migrated common-offset
equivalent of the data shown in Figure 6a, with the mi-
grated line elements, determined using Tm, tm, and pm,
drawn on top of the image. The migrated line elements
accurately follow the directions in the image, indicating
that equations (2)-(4) accurately capture the kinematics
of CO time migration in a high-frequency approximate
sense. Note that the line elements from diffractions of
the edges of the syncline in Figure 6a, are all mapped to
the same location but with different orientations. This
is identical to building a (band-limited) delta-function
with plane waves from all directions; i.e., the Fourier
transform of a delta function has all directions.
Knowing that each curvelet has a (few) direction(s)
associated with it, we aim to replace the line elements
in Figure 6 with curvelets, and see to what extent mov-
ing curvelets around according to the map migration
equations (2)-(4), gives us a good time migrated im-
age. We are thus aiming to lift the applicability of map
migration beyond velocity model building, and show its
use for pre-stack (here CO) time imaging with curvelets.
This was also mentioned by Douma and de Hoop (2004).

2.5-D Common-offset time migration with
curvelets

As mentioned in the previous section, the CO map time-
migration equations (2)-(4) use the slope in the CO do-
main only. This implies that the flow from a curvelet
in the data domain to the image domain is determined
by one slope only. Therefore, the following scheme for
time-imaging with curvelets emerges. Using curvelets as
building blocks of seismic data, the directions (or local
slopes) in the data follow from a straightforward projec-

—————
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Figure 8. CO Kirchhoff migration of the curvelet shown in Figure 4 (a), TRD transformation of this curvelet (b), and the
difference (c). The bottom row shows the real part of the spectrum for the CO Kirchhoff migrated curvelet (d), the TRD
transform (e), and the difference (f). The TRD transform gives a good approximation to the Kirchhoff migrated curvelet.

tion of the data onto the curvelet frame. Thresholding of
the curvelet coefficients then gives the curvelets associ-
ated with the main wavefronts in the data, and thus the
directions associated with these wavefronts also. Subse-
quently, these directions can be used in our map migra-
tion equations (2)-(4) (together with an estimate of the
velocity), to determine the migrated location and orien-
tation of the curvelet. Hence, these equations determine
a translation and a rotation of the curvelet.

It is known (e.g., Bleistein et al. (2000), p.223 and
p.235) that after pre-stack migration, the length of the
k-vector changes according to

k| = WV, (y, s, ) = —2

v(y)
where w is the angular frequency, z, . are the source
and receiver locations, y is the output location in the
image, &(y, xs, ) is the two-way traveltime from the
source location &, to the reflector at y to the receiver
position ., v(y) is the velocity at output location Y,
and O(y,xs,x,) is the half opening-angle between the
ray from the source to the scattering point, and the

cosb(y, x5, z-) ()

ray from the receiver to the scattering point. The term
cosf(y, s, x,) is usually referred to as the obliquity
factor. In 2D, for a constant background velocity and
a CO acquisition geometry, equation (7) simplifies to
k| = d €08 0(Tm, tm, Tu, h), where h is the half offset,
Ty thevcommon midpoint location along the 2D acqui-
sition profile, and the angle 8(zm,tm, Tu, h) is given by

u h— m
e(zm,tmyxu) h) = % {tan_l ("2($+m——)) -

tan-1 <2(:Eu—h—zm))} (8)

vim

A curvelet has dominant wavelength A in the direc-
tion orthogonal to the curvelet (see Figure 7). However,
the dominant wavelength X in the vertical direction de-
termines the frequency relevant to migration. It follows
that Ac = Acos@,, which gives

W = wccos b, , (9)

where 8, is the phase-angle (measured clockwise posi-
tive with the vertical) of the curvelet in the data domain.
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Figure 9. Superposition of 8 curvelets (a), the associated amplitude spectrum (b), the CO Kirchhoff migrated result (c), and the
result from the amplitude corrected TRD transform (d). The amplitude corrected TRD transform gives a decent approximation
to the Kirchhoff migrated result, and the interference between different curvelets results in a reasonably smooth isochron. Since
we used only curvelets with k-vectors pointig to the left, only the left part of the isochron is constructed.

Combining equations (7) and (9) it follows that, after
migration, the length of the k-vector can be written as

We

Ikl = v(y)

where we used cos8, = y/1— (v(y)pu)®. This means
that the curvelet needs to be dilated (or stretched) in
the image domain with dilation factor D, given by

D= ! . (11)

€08 8(Tm,tm, Tu, h)y/1 — (vpu)?

€08 0(Tmy tm, Tu, )/ 1 — (v(y)pu)?,  (10)

where we specialized to the constant background veloc-
ity case. Therefore, CO pre-stack time migration with
curvelets can be done by translating and rotating the
curvelets in the data domain according to the map
migration equations (2)-(4), and dilating the curvelets
with a stretch factor given by equation (11). In these
equations, the parameters 2., t., and p, are the position
(z and t) and direction of the center of the curvelet re-
spectively. Throughout this paper, we refer to the trans-
lation, rotation and dilation of a curvelet as the TRD
transformation of a curvelet.

The TRD transformation of a curvelet provides the
kinematics of imaging with curvelets, but ignores the

dynamics, often referred to as the ‘true amplitude’ part
of seismic imaging. For constant background velocities
and a CO acquisition geometry, Bleistein et al. (2000)
show that the equation for 2.5-D Kirchhoff inversion
for reflectivity is given by [their equation (6.3.25); note
the missing division with the velocity v in the phase
function]

1 —iw([rg+rg|/v
Bly) = ﬁ//A(y,mu,w;h)e (rotral/v o

us (Tg, Ts,w) drudw, (12)
with
Aya\/rs F 74 (T2 + 75
Ay, Tu,w; h) ysyTe ¥ 7a 7 +75) X ..t

(v rsrg)a/z

cosO(y, Tu, k) V/w]e' T8, (13)

where y = (y1,¥3) is the output location in the image
domain, z, is the midpoint location along the 2D ac-
quisition profile, 7 are the distance from the output
location ¥ to the source and receiver at s = (zu—h,0)
and z, = (2. + h,0), respectively, and us is the (singly)
scattered data. To find the amplitude correction for the
migration of a curvelet, we would therefore need to
use a curvelet as scattered data us, and evaluate the
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Figure 10. A shallow dipping curvelet (a) and a steep dipping curvelet (d), their CO Kirchhoff migrated counterparts [(b)
and (e), respectively], and the TRD transformed counterparts [(c) and (f), respectively]. The steeper dipping curvelet is more
strongly bended towards the isochron than is the shallower dipping curvelet.

integrals in equation (12). A natural way to evaluate
the oscillatory integral in equation (12), is to use the
method of stationary phase [e.g. Bleistein (1984, p.77-
81) and Bleistein et al. (2000, p.127-135)]. Such an anal-
ysis should reveal the amplitude correction for the mi-
grated curvelet. At the moment of writing this report,
we have not done such an analysis. Therefore, for the
purpose of generating the results in this report, we sim-
ply scale the curvelet with A(y, z.,w;h) knowing that
ultimately we want to do the stationary phase analysis.

Numerical examples

Figure 8a shows the 2.5-D CO Kirchhoff migrated
curvelet from Figure 4 in more detail, while Figure 8d
shows the real part of the associated spectrum. We plot
the real part of the spectrum instead of the amplitude
spectrum, to see the phase information and amplitude
information combined in one plot. Figure 8b shows the
result of the TRD transformation of the same curvelet,
where the translation and rotation is determined by the
map migration equations (2)-(4), and the dilation is de-
termined by the stretch factor given in equation (11).
Figure 8c shows the difference between the Kirchhoff mi-
grated curvelet and the TRD transformed curvelet. Be-
fore subtraction, both images were normalized to have
maximum amplitude one, such that the difference only
shows relative amplitude differences between both im-
ages. Figures 8e and f show the real part of the am-
plitude spectra of the images shown in Figures 8b and
c.

It is clear that for this particular curvelet, the TRD
transformation of the curvelet gives a reasonable ap-
proximation to the Kirchhoff result. The maximum am-
plitude of the difference between both methods is about
20% of the maximum amplitude in the Kirchhoff im-
age. From the lines of equal phase in the spectra, we
see that the curvelet is slightly bent due to the migra-
tion, whereas the TRD transformation does not take
this bending into account (cf. Figures 8d and e). The
main difference in the spectrum occurs on the edges of
the support of the curvelet in the frequency domain,
where this bending is strongest. Overall, for this partic-
ular curvelet, the TRD transformation gives a satisfac-
tory approximate image when compared to the Kirch-
hoff result.

Even though Figure 8 shows good results for one
(particular) curvelet, this does not show the interfer-
ence between different curvelets. Figure 9a shows a su-
perposition of 8 curvelets, with the same central loca-
tion in space, and the same scale index, but different
directions (or angular indices). The vertical axis is here
again converted from two-way traveltime to depth. Fig-
ure 9b shows the amplitude spectrum of all 8 curvelets
combined, and it is clear that we used curvelets that
have leftward pointing k-vectors only. Figure 9¢ shows
the 2.5-D CO Kirchhoff migrated result, while Figure 9d
shows the result of our TRD transformation combined
with an amplitude scaling given by equation (13). As
expected, the Kirchhoff result gives the left part of the
isochron only. Comparing Figures 9c and d, the TRD
transformation combined with the amplitude correction
of equation (13) gives a reasonable approximation to the
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t isochron

Figure 11. The observed bending of curvelets, mostly for
the steeper dips in the data, could possibly be corrected for
by bending the curvelet towards the isochron as depicted.

Kirchhoff migrated result. The interference of the differ-
ent curvelets (of the same scale) is good, and compares
favorably to the Kirchhoff result, although the compar-
ison seems better for the shallower dipping part of the
isochron. At the steeper parts of the isochron, the de-
structive interference between different curvelets away
from the isochron, is somewhat less effective and leaves
the tails of the curvelets somewhat visible.

In order to see the differences between the results
for the steeper dipping curvelets and the shallower ones,
Figure 10 shows the comparison between the Kirchhoff
result and our TRD transformation for both a shallow
and a steep dipping curvelet. Here we did zero-offset
migration, to avoid the curvature of the isochron being
different at different locations on the isochron; i.e., a
semi-circle has constant curvature everywhere. Figure
10 shows that the steeper dipping curvelet is signifi-
cantly ‘bent’ towards the isochron, while the shallower
dipping curvelet is hardly bent at all. As a result, the
TRD transform does better for the shallower dipping
curvelets than for the steeper dipping ones, as it does
not include any such bending.

It remains to be seen how severe the error is if we ig-
nore this bending, and use our TRD transform on a syn-
thetic data-set with many curvelets. In this case, there
would be interaction between curvelets from several dif-
ferent scales, i.e., with different frequency content. We
have not performed such a test yet, since this requires
the proper frequency weighting for curvelets of different
scales. As we mentioned earlier, this frequency weight-
ing should follow from a stationary phase evaluation of
equation (12) with a curvelet as scattered data us. At
the moment of writing this report we have not done such
a calculation. In case future tests using a combination of
the amplitude correction, obtained in this manner, and
the TRD transform would show that an omitted bend-
ing correction in the TRD transform causes large differ-
ences with the Kirchhoff result, we could introduce an
extra bending correction to bend the curvelets towards
the isochron as depicted in Figure 11.

Discussion

In this paper, the TRD transform is calculated us-
ing a brute-force approach in the spatial domain. For

the significant curvelet coefficients, we apply an inverse
curvelet transform, and transform the resulting curvelet
in the spatial domain according to our TRD transform.
This approach allows us to show the proof of concept
of imaging with curvelets using our TRD transform,
but does not provide an efficient way of such imaging
with curvelets. Ultimately one would want to calculate
the TRD transform in the curvelet frame, although an
approach that makes use of the finite support of the
curvelets in the spectral domain seems also worth in-
vestigating.

Even though the curvelets used in this paper are
2D, they can be extended to higher dimensions. Fig-
ure 12 shows an example of a 3D curvelet in both the
spatial domain (a) and the spectral domain (b). In the
spatial domain, 3D equivalents of curvelets look like cir-
cular disks that are smooth along the disk and oscilla-
tory orthogonal to the disk. Roughly speaking they are
smoothed circular pieces of a bandlimited plane wave in
3D!. Therefore, replacing the 2D map migration equa-
tions with their 3D equivalents, the TRD transform can
be extended to 3D, hence allowing 3D CO pre-stack
time-imaging with curvelets. Decomposing a 3D CO vol-
ume of data into 3D curvelets, the same procedure as
outlined in this paper can be used to image 3D seismic
data with 3D equivalents of curvelets. Of course, the
proper 3D amplitude correction should be used in this
case.

Even though in this paper we show results from
migration only, modeling or demigration with curvelets
works in the same way. In this case the TRD transform
is defined according to the map demigration equations
(Douma & de Hoop, 2005).

Conclusion

3

We have presented first examples of the use of curvelets
in CO pre-stack time migration. A simple numerical ex-
ample confirmed that curvelets can be used as building
blocks for seismic data that allow for a sparse repre-
sentation of such data. Since curvelets are roughly like
pieces of bandlimited plane waves, the wave-character
of the seismic data, i.e., that it is bandlimited and that
the recorded wavefronts have directions associated with
them, can be built into the representation of the data.
Therefore, in essence, curvelets are an appropriate repa-
rameterization of seismic data, that allow the wave-
character of the data to be built into the representa-
tion of the data. Knowing that the local directions (or
slopes) in the data (for a fixed scattering angle and az-
imuth, or offset and azimuth in homogeneous media)
can be mapped one-to-one from the data to the image

TThis rough description of course ignores that each curvelet
has a small range of k-vectors associated with it, rather than
only a single k direction, as has a plane wave.

==
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Figure 12. A 3D curvelet in space (a) and its associated amplitude spectrum (b). In the spatial domain, 3D equivalents of
curvelets look like circular disks that are smooth along the disk and oscillatory orthogonal to the disk.
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APPENDIX A: CURVELETS

In this appendix, we explain curvelets and their con-
struction. This treatment closely follows the construc-
tion of real-valued curvelets from Candés and Donoho
(2004b), except from some added derivations and expla-
nations to clarify the construction of curvelets for the
non-specialist. We deviate in some places from the orig-
inal treatment to clarify certain details. For example,
we immediately use the ‘splitting at every other scale’
(that will become clear later).

Before treating the construction of curvelets, we
mention that we want to be able to reconstruct a signal
in a function space X with zero error; i.e., we want the
curvelets to satisfy the reconstruction formula

f= Z (f) C,,,) Cu (Al)

HeM

where ¢, denotes a curvelet with multi-index p (and M
some index-set), and f € X It is known [e.g., Herndndez
and Weiss (1996, pp.334-336) and appendix B in this
paper| that if X is a Hilbert space, this is equivalent to
requiring

171% = S Ife)® s VieX. (A2)

nEM

to hold. The latter expression implies that the energy
of the signal f is conserved through the decomposition
(A1); in other words, the curvelets c, should be a ‘parti-
tion of unit energy’. Condition (A2) is the definition of a
(normalized) tight frame (see appendix B for a thorough
explanation of tight frames). Hence, for the curvelets to
satisfy the reconstruction formula (A1), we want them
to constitute a partition of unit energy.

Curvelets can be thought of as 2D (anisotropic) ex-
tensions to wavelets. Just like wavelets are ‘localized’ in
one variable and its Fourier dual, curvelets are ‘local-
ized’ in two variables and their two Fourier duals. Such
localization is of course understood within the limits im-
posed by the Heisenberg uncertainty principle. Choosing
the variables to be z and z, such localization is obtained
through tiling of the spatial domain (z, z) and the spec-
tral domain (kz, k). We treat the spectral localization
first, followed by the spatial one.

Let x;,:(k) be a window (or tile) in the spectral do-
main, with j an index related to the radial (i.e., scale)
direction, and ! an index related to the angular direc-
tion; i.e. the localization in the spectrum is dealt with in
polar coordinates r and 8. In order for the curvelets to
constitute a tight frame (see appendix B), the windows
x;,t (k) must satisfy

YD k)l =1, Ge el (A3)

such that x;.(k) indeed is a partition of unit energy.
The window x;,:(k) is constructed through multiplica-
tion of an angular window v(6) and a radial window
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ing
Ujm (kz, kz) =

—35/4 ) .
2-%/ i TOmIH1/2)2 7 ke /8y imak, 27 13/2 15,
2#\/(51(52 ’

Using this definition, and denoting by Rg;, the rota-
tion by angle 8, ,, the curvelet is then in the frequency
domain defined as

eu(k) = 2mxia(R)usm (B3, k), = (lym),  (A9)

where ¢, denotes the Fourier transform of the
curvelet ¢, € L?*(R?). These are the ‘fine’ scale
curvelets. The coarse scale curvelets are then de-
fined as éu,(k) = 2mxo(k)um(k), with um(k) =
(2m8o) ~Let(mika/do+mak:/d0) Here, &p is again some ap-
propriate constant determining the sampling rate (or
translations steps) in the spatial domain. Note that
here &y determines the sampling rate in both the = and
z direction, since the coarse scale curvelets (or better
wavelets) are isotropic.

Using the definition of curvelets given in equation
(A9), it can be shown that curvelets form a (normalized)
tight frame. From equation (A9) it is clear that in L2
we have

> |(4a)

m),mg

"= e [ el a,

where we used that (uj,m (R;. :k)) is, by con-
F mez2
struction, an orthonormal basis for L? over the sup-
2
port of x;:(k), ie., |ujm (R(}’j ,k)‘ = 1. Using that

the x;,1(k) constitute a partition of unity by equation
(A8), it then follows that

2li/zi-1

Z]ZO Zl:o Zml»m2

(fs é(j,l,ml ,mg))
(@) Cya0 S0 T]700 bisath)P b

_ (27r)2f oli/2]-1

f(k)‘2 [ZJ'ZO 2i-0 |Xj-'(k)|2] dk
= @n” |t dk = n ]

This tells us that (€u)pers (With g = (5,1, m1,m2) a
multi-index) is a tight frame for L?(R?). Here, M is
a multi-index set that has the appropriate ranges for
7, I, m1 and mg. Finally, using the Parseval formula

and the Plancherel formula for L%(R?), i.e., (f, é#) =
112

(27)? (f,¢,) and “f”2 = (2n)? | £1IZ, respectively, it fol-

lows that for f € L%(R?)

D el =113 - (A10)

neM

2

This shows that (c,) wep 1S @ normalized tight frame for
L?*(R?), giving us the reconstruction formula (Al1).

APPENDIX B: TIGHT FRAMES IN
HILBERT SPACES

Let H be a Hilbert space, and let (-,-) denote the inner
product on H. A collection of elements {e;} jeq InH,
with J an index set, is called a frame, if there exist
constants A and B, 0 < A < B < o0, such that

Allfll < D_I(fen)” < BIfIG, VfeH, (B1)
jed

where A and B are called frame bounds, and where

ll-ll;, denotes the norm on M induced by the inner

product. If the frame bounds are equal (A = B), the

frame is called tight. E.g., the four vectors ¢; = (0,1),

V2 V2 V2 V2
¢2 = (110)) ¢3 = (77 _2_)1 and ¢4 = (—'-2—, T)l
form a tight frame for R? with frame bounds A = B = 2,
since it follows that Y_i_, |(f,#:)|> = 2||f]|>. Here the
frame bounds measure the ‘redundancy’ of the frame in
R?, i.e., four vectors in two dimensions have a redun-
dancy of two.

It is known that the linear span of frame elements
is dense in H [e.g., Herndndez and Weiss (1996, p.399)].
This means, that any element f € H can essentially be
written as a linear combination of the frame elements,
and that the difference between this linear combination
and f has a measure zero. If the frame elements were
also linearly independent, they would form a basis for
H. It is clear that the frame elements e; are not a basis,
since adding the zero vector to {e;};ecs does not alter
the inequalities in (B1). Of course, adding any vector
to a basis, would destroy the linear independence of the
basis, meaning it no longer would be a basis. When both
frame bounds equal one (A = B = 1), the frame is called
a normalized tight frame. Each orthonormal basis is
obviously a normalized tight frame, but the converse is
not generally true, since the frame elements need not be
linearly independent.

Even though the frame elements do not need to be
normal, it follows that they must satisfy |le;|| < VB,
Vj € J. To see this, let f = e, for some k € J, and use
frame condition (B1) to see that |ex]|* = |(ex,ex)|® <
2ies l(ex,€;)|* < Blex|®. Therefore we have ||ex| <
VB, Yk € J. If the frame is a normalized tight frame
(i.e., A = B = 1), we must have |jex|] < 1. Hence, for
a normalized tight frame, the linear independence of a
basis is traded for the condition |lex|| < 1, Vk € J.

If a normalized tight frame has |lex| = 1, Vk €
J, it follows that {e;}jcs is an orthonormal basis
for H. To see this, observe that for fixed £ € J,

2 2

1= Jlel* = I(exser)® < Tyeslen,e)f < 1.

Therefore, we have ZJ‘EJ|(6k,e,~)|2 = |(ex,ex)]® +
2 2 2

Zj;ék,je.]l(eklej)l = lel +Ej;ék,je.}|(ekyej)| =

1, and thus ZJ.#,C‘J.EJI(ek,ej)|2 = 0. This implies
(ex,ej) = 0, Vk € J and k # j. Since k is arbitrary,
and since |lex|| = 1, it follows that {e;};cs is an or-
thonormal basis for H.
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It is known [e.g., Herndndez and Weiss (1996,
pp.334-336)] that for a Hilbert space H and a family
of elements {e;};cs in H, the condition

IF13 =D I(fres)l® VfeH, (B2)
JjedJ
is necessary and sufficient for
f:Z(fvej)ej ) (B3)
j€J

to hold*; in other words, statements (B2) and (B3) are
equivalent. This tells us that for a tight frame with
frame bound A, we have reconstruction formula (B3),
for if we have 3. ;[(/, e;)|*> = A||fll3, simply defin-
ing e} = e;/VA, gives Ej€J|(f,e;-)|2 = ||f||3_t From
the equivalence of statements (B2) and (B3), we then

have f = 3., (f.€) e = %;(f,ej)ej; i.e., for a
tight frame we have reconstruction formula (B3). For
a normalized tight frame (A = 1), we simply have
f = cs(fiej)e;, and thus also the reconstruction
formula (B3). Note that this reconstruction formula is
identical to the reconstruction formula for an orthonor-
mal basis, but that here the frame elements are not or-
thogonal; i.e., you can have reconstruction formula (B3)
with linearly dependent elements of H, provided (B2)
holds.

Even though we showed that the reconstruction for-
mula (B3) holds for (normalized) tight frames, it should
be mentioned that a similar reconstruction formula can
be found if the frame is not tight. We refer the reader
to (Mallat, 1998, chapter 5), (Herndndez & Weiss, 1996,
Chapter 8), or (Strang & Nguyen, 1997, Section 2.5) for
treatments of non-tight frames.

{Here the equality means that the sum on the right-hand
side of equation (B3) converges to an element f € H.
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ABSTRACT

Time reversed imaging is a technique in which we propagate a pulse through
a medium, record the signal and then back-propagate the time-reversed sig-
nal through the same medium to refocus the energy at the original source
location. The refocusing is independent of the medium, provided that the
medium remains the same during back-propagation. When the velocity for back-
propagation is different from that for the forward propagation, the waves refo-
cus at a different location. Based on the shift in the location of the refocused
pulse, we can estimate the velocity perturbation. For a single source and sin-
gle receiver, the shift is proportional to the distance between the source and
the receiver and the velocity perturbation. When we consider a larger aper-
ture, however, the shift in the refocused energy depends on a geometric factor
related to the receiver array as well. For a given source-receiver distance and

velocity perturbation,

the shift in the location of the refocused pulse increases

with increasing aperture angle. If we look at the problem using ray theory, the
increase in the aperture angle should result in decrease in the shift of the refo-

cused pulse; this is where
the increase in the shift o

ray theory tends to misguide us. The explanation for
f the refocused pulse location with increased aperture

angle is simple when we look at the problem from a wave-front point of view.
For an unperturbed medium, presence of a random heterogeneity in the model
enhances the quality of focusing.

Key words: Effective aperture, Wave propagation in random medium, Focus-

ing, Migration.

1 TIME REVERSED IMAGING

Time reversed imaging is a technique in which we prop-
agate a pulse through a medium, record the signal, and
then back-propagate the time-reversed signal through
the same medium to refocus the energy at the original
source location. The refocusing takes place in time and
space and occurs in homogeneous as well as heteroge-
neous media. The refocused pulse in a medium is inde-
pendent of the characteristics of the medium, provided
that we use the same medium for the forward and for
the back-propagation (Haider et al., 2004). A striking
observation is that for a heterogeneous medium, inho-
mogeneities in the medium enhance the degree of refo-
cusing (Fink et al., 2001). Parvulescu (1995) applied the
technique called matched-signal processing, based on the
same principle, to ocean acoustics.

Time reversed imaging has found applications in
several fields of science and engineering, for instance,
in medical imaging. It can be used for non-invasive de-
struction of kidney stones, the detection of defects in
metals, and mine detection in the ocean (Fink, 1997).
Conventional methods for detection and destruction of
the kidney stones use x-rays and ultrasound, respec-
tively. The time reversed imaging technique can be used
as a non-invasive destruction method to refocus energy
on the kidney stone by using a group of time-reversal
mirrors. The kidney stone receives a signal sent by a
source and scatters it in all directions. The mirror ar-
ray picks up the scattered signal, amplifies it, and sends
the signal back to refocus the energy at the source of
the scattered waves, i.e., the kidney stone. Other medi-
cal application of time reversed imaging include acousti-
cally induced hyperthermia for tumor treatment (Porter




186 K. Mehta, R. Snieder €4 K. Larner

et al., 1999). Apart from medical applications, time re-
versed imaging is also used for secure communication
(Parvulescu, 1995 ; Edelmann et al., 2001 ; Song et al.,
2002 ; Kim et al., 2001).

The back-propagation of a signal is mathemati-
cally the same as the process of migration in geophysics
(Borcea et al., 2003). In time reversed imaging, the sig-
nal recorded at the receiver array is back-propagated
through the same medium to refocus energy at the
original source location. In migration, in contrast, the
reflected waves are back-propagated numerically using
an estimate of the velocity of the subsurface. Migrat-
ing with a wrong velocity model images the waves at
wrong locations. This is exactly what would happen if
we would not use the same velocity model during back-
propagation in time reversed imaging. In migration, for
such cases, a process called migration velocity analysis
(MVA) (Zhu et al., 1998) is carried out to aid in esti-
mating velocity, aimed at improved imaging.

In time reversed imaging, when we use the same
medium for both forward and backward propagation,
we get the refocusing of energy at the location of the
original source. However, just as in migration, when we
back-propagate using a velocity different from the for-
ward propagation velocity, the waves refocus at other
locations. The difference in the forward and backward
velocities can be estimated from the shift of the refo-
cused pulse compared to the original source location
and, hence, can be used for applications including ve-
locity analysis and time-lapse monitoring of velocity
changes.

Coda wave interferometry is another technique
used for monitoring time-lapse changes (Snieder, 2004).
In coda wave interferometry, we use a single source
and a receiver to study the velocity changes. The
changes are monitored by the correlation of the coda
waves recorded in the unperturbed and perturbed
medium, respectively. This technique is based on the
high sensitivity of multiply scattered waves to small
changes in a medium and can be used for monitoring
changes in volcanic interiors (Snieder et al., 2004).
For a single receiver, time reversed imaging at the
source location is the same as convolution with the
time-reversed signal, which is the same as correlation
with the originally recorded signal. The shift in the
location of the refocused pulse for a perturbed medium
is related to the deviation of the correlation peak from
the origin, which gives the measure of the velocity
perturbation. Hence for a single source and receiver,
time reversed imaging is identical to coda wave inter-
ferometry. If, instead, we have an array of receivers
forming an aperture, the shift in the location of the
refocused pulse depends on the aperture angle along
with the distance between source and receiver and the
velocity perturbation. The next section derives the
shift in the location of the refocused pulse, followed by
a simulation test to validate the expression obtained. A

physical interpretation explains why rays misguide us in
understanding how this shift varies with aperture angle.

2 EXPRESSION FOR THE LOCATION OF
THE REFOCUSED PULSE

We start with a simple model to study the effect of
a velocity perturbation on the location of the refo-
cused pulse. The model is acoustic, two-dimensional,
and homogeneous. We allow a source pulse to propagate
through the homogeneous medium using the 2-D wave
equation and record the field at a distance R with an ar-
ray of receivers. This wave-field recorded at the receivers
is then time-reversed and back-propagated through the
same medium to refocus the energy at the source loca-
tion.

Let the source be a symmetric pulse such as a
Ricker wavelet S(t), given by

» 2,2

S@t) = 2 [exp (—a t /2)] . (1)
We propagate this pulse over a distance R and record
the wave-field on a circular array of receivers. The re-
ceivers are placed along a circle with a source at the
center and radius R that extends up to a fixed aperture
angle +® as shown in Fig. 1. The wave-field in the far
field can be represented using the 2-D asymptotic be-
havior of the Hankel function (Snieder, 2nd. ed. ; Arfken
et al., 4th. ed.):

expli(kR — w/4)] S(w), @)
V8mkR

where k is the wavenumber. When this wave-field is re-

versed in time, it acts as our new source signal.
Reversing in time in the time domain is equiva-

lent to complex conjugation in the frequency domain.

If S(t) is the wave-field in time domain, then it can be

represented in the frequency domain using the Fourier

u(R)

transform,
Sw) = / S(t)e™dt
& 8(t) = (i) ” S(w)e“tduw
To\orm o '

Time reversing the wave-field is equivalent to changing
t to —t. Hence, the time-reversed wave-field is

STR(t) = §(—t) = (%) /_ : S(w)et*“ dw

= (—21"—) /_: S(~w)e *tdw.

For a real signal, S(—w) equals the complex conjugate
5% (w),

o0

STR(p) = (%) [ S e,
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Figure 1. Model showing the source and an array of receivers
placed at a distance R for a limited aperture angle ®.

This shows that the time-reversed signal in the time
domain is equivalent to complex conjugation in the fre-
quency domain. Hence, the wave-field recorded by the
array of receivers shown in Fig. 1, when reversed in time,
is equivalent to complex conjugation of Eq. (2):
W (R) = e"p[':}’iR_:”/ g+ (). 3)
8rkR

If we back-propagate this wave-field with the same
velocity as the forward propagating velocity, we refocus
the waves at the original source location. When we back-
propagate with a different velocity, the energy will refo-
cus at a location other than the original source location.
Let us see what information this shift in the location
of the refocused pulse gives us about the velocity per-
turbation. The back-propagated wave-field radiated by
each of the receivers is obtained by convolving this time-
reversed signal and the Green’s function. To compute
the total back-propagated wave-field, we need to sum
over all receivers that have recorded the forward propa-
gating wave. For the receivers that are densely sampled
over the receiver array, we approximate the summation
over all the receivers by integration over the aperture an-
gle @ in order to simplify further calculations. Hence, in
the frequency domain, the back-propagated wave-field
at location r corresponds to

®
P(r,w) = /Q)G(r, r:(¢))u’ (R)do

_ 5'w) /“’ expli(k|r —rel — kR |
8 J_ s \/k’|r—r.-|\/m '

(4)

where ¢ goes from -® to &, r, is the receiver location and
k and k' are the wavenumbers associated while forward
and back-propagation, respectively.

We are interested in the refocusing point close to
the original source location. This requires that R > 7
and hence the term |r — r¢| in the expression can be
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approximated up to second-order accuracy in (r/R) as

r

Ir-r|=R [1 - (}—2) cos(@ — @)+

1 {2 .
Ve P R

where 0 is the angle defined in Fig. 1. This term is
present in both the denominator and the numerator of
Eq. (4). In the denominator, we ignore the dependence
of |r — r¢| on (r/R) and approximate it to be equal to
R. This approximation results in an error of the order
(r/R), which can be ignored as R >> r. In the numera-
tor, the term |r — r¢| is multiplied with the wavenumber
k in the argument of an exponent. Ignoring the (r/R)
and (r/R)? terms in the numerator of Eq. (4) would re-
sult in errors of the order of (r/A) and (r%/AR) respec-
tively, which may be significant. (X is the wavelength of
the pulse.) We, therefore, express the term |r—r;] in the
exponent using Eq. (5). With this simplification, the de-
nominator becomes a constant scaling factor except for
|w|. Leaving out this scaling factor, the back-propagated
wave-field becomes the following integral over all the re-
ceivers.

. ®
P(r,w) = S—|a(%)- /_@ exp [—i {k'r cos(8 — ¢)—

! (Eﬁi) sin’(0 — ¢) — R(K' — k)}] dg.  (6)

By replacing the wavenumbers k = w/c and k' = w/c,
we can also rewrite the back-propagated wave-field as

P(r,w) = E%U(TT—) /_d; exp [—iw { (3) cos(§ — ¢)—

.;. (%) sin?(0— ¢) — R (% - -i—) }] dg,

where c is the velocity for the forward propagation and
¢ is the velocity for back-propagation. To represent the
refocused energy in the time domain we integrate over
all frequencies (Snieder, 2004). The wave-field can be
represented in the time domain in terms of a function f
as

P(r,t)=/:f[t+ (%)cos(O—qS)—R(%_%)_

> (é;) sin”(6 - ¢)] as, (1)

where f is defined as

fe) = /w 5 W) ot gy,

IO

The function f is a function of time and space
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that can be expressed in terms of z and z as follows:
T 1 7‘2 .2
f [t + (E) cos(f ~ ¢) — 3 (R—c’) sin“(6 — ¢)—
1 1
R(z-3)]
z T\ . 1
=7+ (3) cosot (3) sne - (z7)
(xcos¢ — zsinqS)2 - R (—_Jc)] ,

cc’
where
= rcoséb,
z = rsind,
de = ' —e

This function f can be approximated using a Taylor’s
series expansion up to second order in &, where

6= (3) o (D) ono (gt}

(xcosd)—zsinq&)z—R(_—dc). (8)
cc

When we insert this representation into Eq. (7) and in-
tegrate over ¢, we obtain an expression for the back-
propagated wave-field at an arbitrary location (z,2)
close to the source location. We are interested in the
location of the refocused pulse which we define as given
by the maximum value of this wave-field at time t=0.
Since the medium is homogeneous and the acquisition
geometry is symmetric with respect to x = 0, the peak is
located on the X-axis; hence we set z = 0 in the wave-
field representation. This reduces the resultant wave-
field representation to an expression involving terms in
z and t only. We are interested in examining the shift
in the location of the refocused pulse in the z-direction.
This shift can be computed in two steps. The first step
involves evaluating the wave-field at time ¢ = 0, This
wave-field is then solved for its maximum as a function
of z. As a result, we get the shift in the location of the
refocused pulse,

“2(%52) R(%)
(=)

A stepwise derivation of this result is shown in Appendix
A.

This expression for the shift in the location of the
refocused pulse holds for any source pulse that is sym-
metric at ¢ = 0. When the forward and backward prop-
agating velocities are the same (6c = 0), the location
of the refocused pulse is the same as that of the source
pulse (6z = 0), as supported in Eq. (9). For a small
aperture angle, (sin®)/® and (sin2®)/2® — 1; hence
in the limit of ® — 0, the shift of the refocused pulse
is a function of just the distance R and the velocity
perturbation de.

0z = (9)

Figure 2. Initial conditions of the simulation test model
showing a source pulse at the origin with an array of receivers
forming an aperture @ at a distance R.

limdéz = -R (‘s—c). (10)
-0 c

Let us consider this case of small ®, or equiva-
lently just a single receiver (Fig. 8). Suppose we ex-
cite the source pulse and record the signal at a dis-
tance R using a single receiver. If this recorded signal
is back-propagated with same velocity, then the back-
propagated wave-field refocuses at the original source
location. If, instead, the back-propagation velocity is
different from the forward-propagation velocity (¢’ # ¢
, 6c # 0), the back-propagated waves travel over a dis-
tance,

Rback = clt
(c+ dc)t
= ct+tdc

- (-n(%)) =

Hence, the relative shift in the location of the refocused
pulse is —R(dc/c), which agrees with Eq. (10).

3 ILLUSTRATION USING NUMERICAL
SIMULATION

Eq. (9) gives the expression for the location of the refo-
cused pulse. Let us compare the results obtained from
this expression with a numerical simulation. The simu-
lation uses a simple finite-difference scheme for the 2-
D wave equation with absorbing boundary conditions
(Clayton et al., 1997). The geometry of the simulation



Figure 3. Energy refocusing at the source location (along
with some low amplitude noise caused by imperfect absorbing
boundary conditions) obtained after the wave-field recorded
by the receivers is back-propagated using the correct back-
propagating velocity.

is shown in Fig. 2. As the medium is homogeneous, we
specify a constant velocity for forward propagation. The
source radiation pattern is isotropic, as illustrated by
the arrows. The receiver array, located at a distance R
— 20\ where ) is the wavelength of the pulse, records
the wave-field. The aperture angle & for this test is
35°. When this wave-field is time-reversed and back-
propagated using the same velocity as for forward prop-
agation, the waves refocus at the original source location
as shown in Fig. 3. We also see some low amplitude nu-
merical noise near the sides, which is caused by reflec-
tion from the imperfectly absorbing boundaries. Even
though its location is preserved, the shape of the refo-
cused pulse differs from that of the original pulse in Fig.
9. There are two reasons for this distortion. First, the
receiver array has a finite aperture ® = 35°. During for-
ward propagation, the source propagates in all the pos-
sible directions, while in back-propagation the energy
propagates only from a certain slice of directions. Sec-
ond, according to Eq. (6), for a given source spectrum
S(w), the refocused pulse is proportional to § *(w)/|wl-
This distortion is even clearer in Fig. 4 which is a de-
tailed view of Fig. 3.

Let us see what happens when we back-propagate
with a different velocity. Suppose the back-propagating
velocity ¢’ is low compared to the velocity c for the for-
ward propagation. When the back-propagating velocity
is lower than the forward propagating velocity, the re-
focusing occurs at a location closer to the receiver array
compared to the original source location, which is indi-
cated by a circle as shown in Fig. 5. If we imagine the
model space as a human face, the shape of the refocused
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x/A

Figure 4. Detailed view of the refocused pulse obtained by
back-propagating the wave-field using the correct velocity.
This shows the distortion in the shape of the refocused pulse.

z/\

x/A

Figure 5. Refocused pulse obtained when the recorded
wave-field is back-propagated using a lower velocity than that
for forward-propagation.

pulse is similar to a frown; hence, in seismic migration,
this shape is commonly referred to as a frown (Zhu et
al., 1998). Fig. 6 shows the refocused pulse when the
back-propagating velocity is higher than velocity for the
forward propagation. The refocusing in this case occurs
at a location farther from the receiver array, and the
shape of the refocused pulse resembles a smile (Zhu et
al., 1998).

Table 1 shows the agreement of the shift in the lo-
cation of the refocused pulse obtained from Eq. (9) and
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x/A

Figure 6. Refocused Pulse obtained when the recorded
wave-field is back-propagated using a higher velocity than
that for forward-propagation.

dc/c  —éz/R(theoretical) —62/R(numerical)

-0.04 -0.042 -0.044
-0.02 -0.021 -0.021
0.00 0 Y

0.02 0.021 0.021
0.04 0.042 0.044

Table 1. Comparison of theoretical and numerical results
showing relative shift in the location of the refocused pulse for
different relative velocity perturbations. The aperture angle
is 35°,

the simulation test results for different velocity pertur-
bations at a specific aperture angle (35°). This result
holds true for any aperture angle ranging from as small
as 5°, which mimics the case of a single receiver, up to
90°. Apart from the distortion in the shape of the refo-
cused pulse, the shift in its location obtained from the
simulation test agrees with Eq. (9).

The change in the location of the refocused pulse
with a change in the velocity for two extreme cases (5°
and 90°) is demonstrated graphically in Fig. 7. The solid
line shows the shift in the location of the refocused pulse
as given in Eq. (9) whereas the points show the shift
obtained from the numerical simulations. The shift ob-
tained from the simulation test for 5° aperture angle
is shown in circles, whereas for 90° it is shown as dia-
monds. The simulation test results agree with Eq. (9)
for small velocity perturbations up to an accuracy of

0.05 .
i 90 degrees *
~-32/R
5 degrees
0 ...................................................................
!
-0.05L_¢
-0.05 0 Scjc 0-05

Figure 7. Relative shift in the location of the refocused pulse
as a function of relative perturbation in the back-propagating
velocity. The relative shift obtained from numerical simula-
tion are denoted by diamonds for 90° aperture angle and by
circles for 5°

|0.044 — 0.042
[0.042]

For larger aperture angles, as we increase the velocity
perturbation, the theoretical expression loses accuracy
and hence starts deviating from the simulation test re-
sults. This is because as we increase the velocity pertur-
bation, the second order approximation in ¢ (Eq. (8))
used in the Taylor’s expansion of the function f and the
expansion of |[r — r¢| in Eq. (5) is inaccurate.

= 5%. (12)

4 WHY DO RAYS MISGUIDE US?

The numerical simulation shows that Eq. (9) gives the
shift in the location of the refocused pulse with an ac-
curacy of up to 5%. In high-quality migration velocity
analysis, this is a typical accuracy which gets worse as
we deal with more complex media. This result is, how-
ever, accurate under certain conditions which include
a bound on the relative velocity perturbation of about
+5%. It also depends on the normalized distance (R/X)
between the source and the receivers and, more impor-
tant, the aperture angle ®. The angle & is a crucial
parameter in estimating the shift in the location of the
refocused pulse. -

Let us start by analyzing the influence of the aper-
ture angle on the refocused pulse in terms of ray the-
ory. Consider first a very small aperture or, equivalently
a single receiver. Eq. (10) shows that for a very small
aperture angle ®, the velocity perturbation while back-
propagation results in a relative shift of R(éc/c) in the
location of the refocused pulse. Fig. 8 gives a pictorial
representation of this case. The forward propagation is



R(6c/c)
Single
| Source Receiver
R 3 —e
Refocused | R |
Pulse e '

Figure 8. Shift in the location of the refocused pulse when
the wave-field is recorded by a single receiver and back-
propagated using higher velocity (based on rays)

Array of
Receivers

Source

R(8c/c)

Figure 9. Shift in the location of the refocused pulse when
the wave-field is recorded by an array of receivers and back-
propagated using higher velocity (based on rays)

carried out with a velocity c. When we back-propagate
with velocity ¢’ > c, the shift in the location of the refo-
cused pulse depends on the product of distance R and
the velocity difference 8c as shown in the derivation for
Eq. (11).

A more complicated case involves an array of re-
ceivers forming a finite aperture angle instead of using
a single receiver, as shown in Fig. 9. We have already
seen that if we have only receiver B, then the shift in the
location of the refocused pulse is R(6c/c) indicated by
B’. Let us start by examining the contribution of the re-
ceivers A and C placed at the two ends of the receiver ar-
ray. The rays coming from A and C also travel a distance
of R(éc/c), indicated by A’ and C’, respectively. The
detailed view shows the source S and the shift in the lo-
cation of the refocused pulse for data from just receivers
A, B, and C. This is shown by three rays in thick arrows
each having the same length R(dc/c). Even though all
the three rays have the same length, the component of
the rays S-A’ and S-C’ in the direction of S-B’ extends
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only up to a distance R’ = R(dc/c) cos(®) < R(dc/c).
This suggests that in the presence of only two receivers
placed at the two ends of the receiver array, the shift
in the location of the refocused pulse is smaller than in
that of a single receiver.

With finite aperture angle, however, a number of
receivers are placed between A and C along the circular
boundary. Rays coming from all the receivers travel a
distance of R(8c/c), but the contribution to the shift
in the direction of S-B’ from each of these receivers
is R(8c/c)cos(¢), where ¢ is the angle depending on
the receiver location. This distance is always less than
R(8¢/c). Hence, ray theory suggests that as we increase
the aperture angle formed by the array of receivers, the
shift in the location of the refocused pulse decreases.

Let us see if our results agree with this explanation.
The slope of the two straight lines in Fig. 7 represents
the ratio (—62)/ (R (8¢c/c)). If we follow the explana-
tion based on the ray theory, then as we increase the
aperture angle, the shift in the location of the refocused
pulse reduces; hence, the slope of the line should reduce.
Instead, what we see in Fig. 7 is that the slope increases
with increasing aperture angles (90°).

Let us take one step back and consider the expres-
sion for the position of the refocused pulse, Eq. (9),
which can also be rewritten as

e 2(2)
G(®) = = : . (13)
@ = RE T

Fig.10 shows that G(®) is unity for ® = 0, which is
the same as a slope of unity for smaller angles in Fig. 7,
and then increases, indicating that as the aperture angle
increases, the distance of the refocused pulse from the
original pulse increases. This observation is supported
in Fig. 7 which also shows an increase in the slope with
increase in the aperture angle. This is, however, contra-
dicted by the reasoning based on the ray theory.

Let us now view the picture in terms of wave-front
propagation. For the single receiver, as shown in Fig.
11, the explanation remains the same as in ray the-
ory and hence the shift in the location of the refocused
pulse is R(dc/c). The scenario is different when we con-
sider more receivers forming a larger aperture as shown
in Fig. 12. Similar to what we did for the explanation
using ray theory, consider just two receivers A and C
placed at the two ends. The detailed view in Fig. 12
shows the wavefronts coming from receivers A, B and
C. The source is indicated by S and the dotted wave-
fronts indicate no velocity perturbation. The solid wave-
fronts A’-A”, B-B” and C’-C” are the three wavefronts
from A, B and C, respectively. All three wavefronts
are displaced by a distance of R(dc/c) in their respec-
tive directions of propagation. It is the interference of
the three wave-fronts that contributes to the refocused
pulse. The wavefront propagating from the receiver A
(A’-A”) has displacement in the direction of B’-B” given
by R” = [R(d¢c/c) [cos(®)] > R(sc/c). A similar expla-
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Figure 10. Relative shift in the location of the refocused
pulse normalized by relative velocity perturbation as a func-
tion of angle ®
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Figure 11. Shift in the location of the refocused pulse when
the wave-field is recorded by a single receiver and back-
propagated using higher velocity (based on wave fronts)

nation can be given for the wave-front C’-C”; hence we
have a constructive interference at a distance R” from
the source, yielding the refocusing. This distance R”
can be referred to as apparent displacement. Hence, for
a larger aperture, the refocused pulse is shifted by a
distance greater than R(éc/c). This explanation is con-
sistent with Eqs. (9) and (10) and supports the results
shown in Figs. 7 and 10. This, however, is just an ex-
treme case where we consider only two receivers placed
at the two ends. When we consider the whole receiver
array, the wave-fronts coming from all the receivers will
be displaced by a distance of R(d¢/c) in their direction
of propagation resulting in constructive interference at
an effective distance [R(dc/c)/ cos(®)] with the angle ®
varying with the aperture of the receiver array. This dis-

Armray of
Receivers

Figure 12. Shift in the location of the refocused pulse when
the wave-field is recorded by an array of receivers and back-
propagated using higher velocity (based on wave fronts)

tance may be less than or equal to R”, but will definitely
be greater than R(éc/c). Thus, if we consider all the
wave-fronts coming from the whole receiver array, the
shift in the location of the refocused pulse will increase
with increase in the aperture angle. So, the results ob-
tained from the theory and numerical simulation agree
with the explanation based on wave-front propagation.

5 RELATION TO MIGRATION

Time-reversed imaging is mathematically the same as
migration in the field of geophysics (Borcea et al., 2003).
The numerical simulation shows that if the recorded
wave-field is back-propagated (migrated) using the cor-
rect velocity, then the waves are imaged at the correct
position. This is demonstrated in Fig. 3 which shows
the refocused pulse for a homogeneous medium with a
considerably large aperture.

The refocusing for a homogeneous medium is gov-
erned by the aperture of the receiver array. Changing
the shape of the aperture from circular (as in the simu-
lations) to linear (as in migration) does not fundamen-
tally alter the refocusing. Reducing the aperture size,
however, leads to smearing of the refocused pulse, even
though it focuses at the correct position. This becomes
clear by comparing Fig. 13, showing refocusing with a
smaller aperture, with Fig. 3. When a strong hetero-
geneity, characterized by velocity variations, is present
in the model, then even with the small aperture size, the
quality of refocusing improves as compared to that for a
homogeneous medium. Fig. 14 illustrates the improved
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Figure 13. Refocused pulse gets smeared because of reduc-
tion in the aperture size formed by the array of receivers.
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Figure 14. Improved refocusing is obtained due to the pres-
ence of a random heterogeneity both while forward- and
back-propagation. This improvement is because of the scat-
tering in the random medium.

focusing for a heterogeneous medium. The heteroge-
neous block, here, is random and characterized by Gaus-
sian correlated velocity variations. The improved focus-
ing is due to the scattering inside the random medium
giving rise to the coda waves. For both forward- and
back-propagation, scattering allows energy, in the form
of coda waves, to arrive at and depart from a larger
range of directions which would be absent for propaga-
tion in in homogeneous media. Hence, randomness in
the medium, in effect enlarges the aperture angle.
After forward propagation, the wave-field recorded
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by the receivers can be written in the frequency domain
as u = SG where S is the source spectrum and G is the
Green's function of the medium. The time window for
recording the wave-field is long enough to capture both
the direct arrival and the coda waves. Decomposing the
Green’s function into the direct wave and the coda, this
can also be written as

U= S(Go + Gcoda)-

With +20% velocity variations in our random medium
and a correlation length of the order of a tenth of the
wavelength of the source pulse, the amplitude of the
direct arrival is around twice that of the coda waves.
When the recorded wave-field is time-reversed and back-
propagated through the same medium, the resulting
wave-field can be written as,

’U,‘G = S* (G; + G:oda)(Go + Gcoda)
S* (G;Go + G:odaGcoda + G:odaGO
+G;GCOdG)) (14)

where u* is the time-reversed wave-field (asterisk de-
notes the complex conjugate) and G is the Green's func-
tion of the same medium. The third term is the cross-
correlation of coda waves during forward-propagation
and the direct arrival during back-propagation. Simi-
larly, the fourth term is the cross-correlation of direct
arrival during forward-propagation and the coda waves
during back-propagation. Since the phase information
encoded in Go and Geode is unrelated, these terms do
not contribute to the refocusing and we will refer to it as
focusing-noise. Hence, if the entire recorded wave-field
is back-propagated, the refocused wave-field is described
by the four terms in Eq. (14) out of which only the first
two terms represents refocusing.

Fig. 15 shows the refocused pulse when only the
coda waves are back-propagated. Even in the absence
of the direct arrival, the waves refocus in the pres-
ence of the random medium. A comparison of Figs. 14
and 15 show that refocusing is actually better when
we back-propagate only the coda waves as opposed
to back-propagating the entire wave-field. When only
the coda waves are back-propagated, Eq. (14) reduces
to u*G = S*(GlogaGeoda + GiodaGo)- Hence, the re-
focused coda waves do not contain noise represented
by the fourth term in Eq. (14) when only the coda
waves are back-propagated. This explains the improve-
ment in focusing by muting the direct wave. If only
the direct arrival is back-propagated, Eq. (14) becomes
w'G = S*(GLGo+G5Geoda). The first term in the equa-
tion indicates that waves refocus at the correct location
with some noise described by the second term. However,
focusing deteriorates because it is the back-propagation
of the coda waves (represented by the second term in
Eq. (14)) that improves the focusing when we back-
propagate through the same medium.

In migration, the velocity model is characterized
by the best velocity estimates without knowledge of the
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Figure 15. In the presence of heterogeneity both while
forward- and back-propagation, back-propagation of only the
coda waves also gives better refocusing.
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Figure 16. When the direct wave is back-propagated
through a homogeneous medium, the waves refocus at the
correct location, although they are smeared.

precise velocity variations associated with heterogeneity
in the subsurface. Data acquisition from a subsurface
is equivalent to forward propagation where the reflec-
tors, which we are trying to image, act as secondary
sources. When these data are migrated, the velocities
used are only an estimate and thus do not account
for the precise velocity variations. Since migration de-
pends on the smooth background velocity only (Taran-
tola, 1986), back-propagation of the direct arrival in
the absence of the random medium most closely resem-
bles migration. For this situation, Eq. (14)) becomes

z/ A

i 3 30

—5l :
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Figure 17. Energy is scattered all around when only the
coda waves are back-propagated through a homogeneous
medium.

u'G = 5*(G;G,) which indicates that the waves refo-
cus at the correct depth although they are smeared due
to limited aperture. This is shown in Fig. 16.

We next check if the use of coda waves in migra-
tion improves focusing. When the coda waves are back-
propagated through a homogeneous medium, Eq. (14)
reduces to u*G = §*(G},4,Go) which is one of the terms
representing focusing-noise. This is shown in Fig. 17
where the energy is scattered all around, with no trace
of the original source location. Thus, improved refocus-
ing is possible only when the medium is the same both
while forward and back-propagation. In migration, it is
unlikely to know the precise details about variations of
velocity in the heterogeneity. Hence, use of coda waves
in migration does not help improve, and can harm, re-
focusing. The direct arrival images features acceptably
with only a coarse estimate of the velocity model.

The principle of time-reversed imaging is used in
virtual source imaging (Bakulin et al., 2004) that is
to image the deeper earth independent of the near-
surface complex overburden. Bakulin and Calvert sug-
gested that the near-surface complex overburden, which
is difficult to quantify in terms of velocity, does help im-
prove the quality of the virtual source. The numerical
simulations in this paper have shown that the presence
of a random heterogeneity improves the refocusing even
with a small aperture provided that the model remains
the same during forward- and back-propagation. The
near-surface complexity plays the same role in virtual
source experiment as the random medium in the simu-
lations, and the number of sources on the surface for the
virtual source experiment is equivalent to the aperture
size in the simulations. This supports the fact that in-



creased overburden complexity does enhance the quality
of the virtual source with less sources on the surface.

6 CONCLUSION

The principle idea of time reversed imaging is the
refocusing of the energy at the same location as
the source when the forward and back-propagating
media are the same. Based on the same idea, we have
formulated an expression for the shift in the location
of the refocused pulse caused by velocity perturbation
during back-propagation. The shift mainly depends on
the distance between source and receivers, the aperture
angle formed by the receiver array and the velocity
perturbation. For a single source-receiver pair, the shift
is directly proportional to the velocity perturbation and
the source-receiver separation only. For more receivers,
however, the aperture angle plays an important role
in estimating the shift in the location of the refocused
pulse. For the same source-receiver distance and veloc-
ity perturbation, as we increase the aperture angle, the
shift in the location of the refocused pulse increases.
An explanation based on the ray theory yields an
underestimate of the shift. In contrast, the variation in
the shift of the refocused pulse with change in aperture
angle is explained well in terms of the constructive
interference of wavefronts. For an unperturbed medium,
heterogeneity in the model enhances the quality of
focusing provided the same velocity model is used
during forward- and back-propagation. However, this
improvement cannot be used in migration because
in that application the details of the heterogeneity is
not known. In virtual source imaging, however, the
near-surface heterogeneity helps to better focus the
waves onto the virtual source position.

7 ACKNOWLEDGMENTS

We thank the support provided by the sponsors of the
Consortium Project on Seismic Inverse Methods for
Complex Structures at the Center for Wave Phenom-
ena. We also appreciate the comments and discussions
with Matt Haney.

REFERENCES

Arfken, G. B, and Weber, H. J., Mathematical Methods for
Physicists (Academic Press, San Diego, CA, 1995), 4th.
ed.

Bakulin, A., and Calvert, R., “Virtual source: new method
for imaging and 4D below complex overburden”, Ex-
panded abstracts of the 2004 SEG-meeting, 2477-2480
(2004).

Time reversed imaging 195

Borcea, L., Papanicolaou, G., and Tsogka C., “Theory and
Applications of Time Reversal and Interferometric Imag-
ing”, Inverse Problems 19, S139-5164 (2003).

Clayton, R., and Engquist, B., “Absorbing Boundary Condi-
tions for Acoustic and Elastic wave equations”, Bulletin
of the Seismological Society of America 67, 1529-1540
(1997).

Edelmann, G. F., Hodgkiss, W. 8., Kim S, Kuperman, W,
A., Song, C., and Akal, T., “Underwater Acoustic Com-
munication Using Time Reversal”, Oceans 2001, Hawaii
(2001).

Fink, M., “Time Reversed Acoustics”, Physics Today 50,
34-40 (1997).

Fink, M., and Prada, C., “Acoustic time-reversal mirrors”,
Inverse Problems 17, R1-R38 (2001).

Haider, M. A., Mehta, K. J., and Fouque, J. P., “Time-
Reversal Simulations for Detection in Randomly Layered
Media”, Waves in Random Media 14, 185-198 (2004).

Kim, S., Kuperman, W. A., Hodgkiss, W. 8., Song, H. C,,
Edelmann, G.F., Akal, T., Millane, R. P., and Di Iorio,
D., “A Method for Robust Time-Reversal Focusing in a
Fluctuating Ocean”, Oceans 2001, Hawaii (2001).

Parvulescu, A., “Matched-signal(“MESS”) processing by the
ocean”, J. Acoust. Soc. Am. 98, 943-960 (1995).

Porter, M., Roux, P., Song, H., and Kuperman, W., “Tu-
mor Treatment by Time Reversal Acoustics”, IEEE Proc.
ICASSP-99 VI-2107, Phoenix, Arizona (1999).

Snieder, R., “Coda Wave Interferometry”, McGraw-Hill
Yearbook of Science and Technology 2004, 54-56 (2004).

Snieder R., “Extracting the Green’s function from the cor-
relation of coda waves: A derivation based on stationary
phase”, Physical Review 69, 046610 (2004).

Snieder, R., and Hagerty, M., “Monitoring change in volcanic
interiors using coda wave interferometry: Application to
Arenal Volcano, Costa Rica”, Geophysical Research Let-
ters 31, L09608 (2004).

Snieder, R. K., A Guided Tour of Mathematical Methods
for the Physical Sciences (Cambridge University Press,
Cambridge, United Kingdom, 2004), 2nd. ed.

Song, H. C., Kuperman, W. A,, Hodgkiss, W. S., Akal, T,
Kim, S., and Edelmann G. F., “Recent Results from
Ocean Acoustic Time Reversal Experiments”, 6th Eu-
ropean Conference on Underwater Acoustics, Gdanski,
Poland (2002).

Tarantola, A.,“A Strategy for Nonlinear Inversion of Seismic
Reflection Data”, Geophysics 51, 1893-1903 (1986).
Zhu, J., Lines, L. R., and Gray, S. H., “Smiles and Frowns in
migration/velocity analysis”, Geophysics 63, 1200-1209

(1998).

APPENDIX A:

The wave-field in the time domain is given by Eq. (7).
When the function f is represented with a second-order
Taylor series in (r/R) and integrated over all the re-
ceivers, we get the following expression for the back-
propagated wave-field.

P(rt) = 200+ [N+ 3F O, (A1)
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where I; and I, are functions of space. As a result, the
wave-field is the sum of three terms. We need to calcu-
late this wave-field at time ¢ = 0. Also, we know that
because of the symmetry of the receiver positions with
respect to x = 0, the peak location will occur at z = 0.
Hence, we can set = 0 in the expression for the wave-
field. In the second and third terms of the wave-field,
the integrals I) and I are given by

h:/_i [(g)cow—( sz) sin ¢+R(5C)]d¢
<2Rc’ ) Sm22q)) ] ’

/:[ cosd)( )sm¢+R )]2d¢
- (3) (o () - (&) o~ (=)

de 2 [ e
+4R(cc’)( )sm<1> 20R (c’)

In the integral I, we are considering only the terms up
to second order in z. When we insert these values of I;
and I in Eq. (A1) and set t = 0, we get the wave-field
as a quadratic function of z as follows:

= (i;z) sin® + 2R<I>

P(z,t) = A+ Bz + D22, (A2)
where

4 = @[2f<0)+2Rf’<0)(§)—R2f<0)(f—§)2],
B = (332) [fo+for(£)],

b= f(o){mc [1—(%)]}+f(0)[(2,2)1{1]
and

sin 2@ dc sin 2®
k= 1+[ 20 ]_(?)[1_ 23 ]

As the source pulse is symmetric with respect to
the origin, its first derivative vanishes at time t = 0;
hence f(0) = 0. The maximum value of the wave-field
P(z,t) at time ¢ = 0 can be found by equating its first
z-derivative to zero. When solved for z, this gives the
shift in the location of the refocused pulse. Hence, this
shift is §z = —B/2D where the values of B and D at
time £ = 0 are given by,

2sin ® de
B = J0 =R (),
D = Jo [( )1(1]
Given the values of B and D, we can compute §z as
follows:
dz = (

SIR(E)

(1+S"‘“’)—( ?) (1-=53%)

The term f(0) drops in the expression for 8z, which
indicates that the shift in the location of the refocused
pulse is independent of frequency. For small values of
velocity perturbation (6c/c), we can ignore the second
term in the denominator; and hence,

-2(252) R (%)

R (e

(A3)
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1 INTRODUCTION

ABSTRACT

Previous studies of the sensitivity of depth migration to smoothing of the
migration-velocity model have treated smoothing of an initially correct model.
Aside from the relatively small amount of smoothing that is needed for imaging
with Kirchhoff migration and that does no harm to imaging with finite-difference
migration, smoothing of the model changes the model from the true one, so
those studies have shown the less smoothing the better. Because we never know
the subsurface velocity function with perfect accuracy, imaging is always com-
promised to some extent by error in the migration-velocity model. Given that
reality, perhaps some amount of smoothing of the inevitably erroneous velocity
model could improve quality of the migrated image.

We have performed a number of tests of imaging with erroneous velocity mod-
els for a simple synthetic 2D model of reflectors beneath salt. The salt layer
has a chirp-shape boundary so that we could assess imaging quality as a func-
tion of lateral wavelength of velocity variation in the overburden. Errors that
we introduce into the velocity model include lateral and vertical shifting of
the chirp-shape (usually top-of-salt) boundary, and erroneous amplitude of the
chirp, including random errors in the chirp shape. Primarily with poststack
migration of modeled exploding-reflector, we assess sub-salt image quality for
migrations with many different smoothings of erroneous velocity models. We
find that, depending on the type and size of error in the shape of the top-of-salt
boundary, as well as the lateral wavelength of the chirp, smoothing of the er-
roneous velocity model before migration can benefit image quality, sometimes
substantially. The form of error that can most benefit from smoothing is error
in the shape, as opposed to position, of the salt boundary. This observation,
based on numerous tests with exploding-reflector data, is supported by a small
number of tests with smoothing of the erroneous velocity model in prestack
migration.

Key words: velocity smoothing, depth migration

Because information about the spatial variation
of subsurface velocity can never be known in detail,

No factor is of larger importance to imaging quality in
depth migration than accuracy of the velocity model
used for the migration. Velocity information, however, is
inevitably erroneous to some extent. Finding sufficiently
accurate velocity for migration is an especially difficult
task in complex regions such as beneath salt in the Gulf
of Mexico, an impediment to efficient exploration and
development there (Paffenholz, 2001).

in practice estimated velocities are routinely smoothed
over space prior to using them for migration. More-
over, because Kirchhoff-type migration algorithms ob-
tain their traveltime information from some form of ray
tracing, the velocities used must be spatially smoothed
to insure stability in the ray computations.

Any smoothing changes the subsurface velocity
model and hence the migration result, so too much

T
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smoothing will certainly lead to distortion in migrated
images. Of importance, then, is to know how much
smoothing of the migration velocity field becomes too
much.

Various studies, notably those of Versteeg (1993),
Gray (2000), and Paffenholz et al. (2001), have aimed
at providing guidance on the appropriate amount of
spatial smoothing of velocity for depth migration. A
common conclusion of those studies, all of which in-
volved smoothing of known velocities in complex two-
dimensional (2D) synthetic datasets such as the Mar-
mousi, Sigsbee2, and SEG-EAGE salt models, is that
the appropriate amount of smoothing is both model-
and depth-dependent. The study of Gray (2000), which
focused on Kirchhoff migration, found that, although
some smoothing is necessary for that approach, “too lit-
tle smoothing produced a better image than too much
smoothing” because too much smoothing will change
the velocity model substantially, perhaps to the extent
of removing geologic plausibility.

Because Versteeg (1993) did his migrations with a
wavefield-migration approach, which had no dependence
on ray tracing, smoothing of the velocity was not essen-
tial to overcome a deficiency of the migration method.
Paralleling a conclusion of Jannane et el. (1989), Ver-
steeg argued that the velocity model need not include
spatial wavelengths smaller than an amount governed
by the wavelengths for frequencies in the data, with
further dependence on the complexity of the velocity
model. His tests showed that smoothing of the known
velocity model up to a certain amount (about 200 m
for realistic frequencies in the Marmousi data set) was
quite acceptable.

In their migration tests with the Sigsbee2 model,
Paffenholz et al. (2001) demonstrated the clear supe-
riority of wavefield migration (e.g., finite-difference mi-
gration) over Kirchhoff migration when the migration
velocity model is known perfectly, but “the advantage
of wavefield migration disappears if the (salt) velocity
contains errors.” They also showed degradation in sub-
salt imaging when the migration-velocity model used is
erroneous, either because of error in the shape of the
salt or because smoothing of the correct model is too
large to some extent.

In all of the studies mentioned above, the tests
with smoothing for migration involved smoothing of the
known, true velocity model. Recall, however, that one
of the reasons for smoothing is that we cannot know
the true velocity structure in detail — and sometimes we
have rather poor information about the velocity struc-
ture. It therefore is appropriate to conduct studies in
which the smoothing is applied not to the known, cor-
rect velocity model but to models that are erroneous.
Then, depending on complexity of the velocity model,
amount of error in that model, depth of target beneath
the erroneous overburden, and frequency content in the
data, some degree of smoothing is likely optimal in the

sense of yielding a better image of the target than is use
of either less or more smoothing.

In the study here, we perform migrations with
smoothed versions of erroneous velocity models and
make a start at answering the question “does smoothing
of the erroneous velocity field help or hurt the quality
of the migrated result?”

As in the references mentioned above, our tests
make use of synthetic data. Most of our models, how-
ever, are much more simple than those in the published
studies, with little attempt to mimic realistic subsurface
structure. We introduce errors in the shape of the mod-
eled salt and migrate the data when different degrees of
spatial smoothing are applied to the erroneous velocity
models.

In order to perform enough tests to draw general
conclusions here, most of tests entail 2D modeling and
migration. Moreover, for reasons discussed below, most
involve poststack migrations of data generated under
the exploding-reflector assumption.

2 GENERIC MODEL

The simple (we might say simplistic) model, on which
we focus most of the tests is exemplified by any of the
six models shown in Figure 1. This model, which we call
the generic model, looks like no salt structure and sub-
salt configuration in the real subsurface. It consists of
a sub-horizontal, high-velocity ‘salt layer’, with a chirp-
shape for either the top or bottom of salt, beneath a
homogeneous layer and above a half-space. That half-
space is also homogeneous, except for four sets of em-
bedded reflecting segments, the targets we wish to im-
age. Each set consists of five plane-dipping reflecting
segments, with dips ranging from 0 to 40 degrees, in
10-degree increments. One of the upper two sets has re-
flector dip increasing from left to right, and the other
has dip increasing from right to left. This pattern of
target reflector dip allows us to assess the relationship
between wavelength of lateral velocity variation in the
overburden and sub-salt image quality, as well as illumi-
nation issues, as they relate to reflector dip. The lower
two sets of reflectors have the same form as the upper
ones; they are included so that we can observe changes
in the quality of imaging with target depth beneath the
salt. Use of a chirp shape for the top or bottom of the
salt allows systematic analysis of sub-salt image quality
as a function of lateral wavelength of salt shape.

Use of such a simple model has its advantages and
disadvantages. The model avoids many of the complex-
ities of data from a Marmousi or even Sigsbee2 model,
not to mention those in true salt areas. Moreover, use of
the chirp shape allows somewhat systematic assessment
of modeled sub-salt imaging. The primary disadvantage
of the generic model is that it cannot come close to mod-
eling realistic salt shape, let alone the many issues that
confound sub-salt imaging.
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Figure 1. Velocity models M1-M6 used to generate the synthetic data. Lateral position is denoted by z, and depth by z.

Simple as it is, the generic model nevertheless is
characterized by enough parameters that comprehensive
study of imaging would require a large number of tests
of models with many different combinations of values
for those parameters. Parameters of the generic model
include

e average depth of the top and bottom of the salt
o velocities of the salt and of the layers above and

below
o parameters of the chirp-shape top or bottom of salt,
specifically

— amplitude of the chirp
— range of spatial wavelengths of the chirp

o target depths

Our study can only spottily cover the large combi-

o
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Figure 2. Range of spatial wavelengths for the two chirps
used in our study. The solid line shows wavelength A as a
function of lateral position for models M1, M2, and M5; the
dashed line shows wavelength for models M3, M4, and M.

nation of pertinent values for these many parameters.
Moreover, none of the six models in Figure 1 exhibits
the large structural size of the salt in, for example, the
Sigsbee2 model. So, the study is a mere start.

When we consider the different forms of error in
the velocity models and differing amounts of smoothing
of those erroneous models, the number of tests to per-
form could further multiply greatly. Errors could arise
in all of the parameters (except for the sub-salt reflector
description) listed above. For example, the chirp-shape
top of salt used for the migration-velocity model could
be shifted laterally or vertically from the true position,
or have erroneous amplitude.

Our tests with the generic model all involve the
six models in Figure 1. All six have velocities of 2000
m/s, 4500 m/s, and 3500 m/s for the top layer, salt
layer, and half-space, respectively. For all six models, the
average depth of the top and bottom of the salt is 1000
m and 1900 m, respectively. Models M1, M2, and M5
have the same range of spatial wavelength for the chirp,
and Models M3, M4, and M6 have a higher range of
spatial wavelength. The variation of spatial wavelength
with horizontal location is shown in Figure 2. Other
differences among the six models are in the amplitude
of the chirp shape. Table 1 summarizes the parameter
values for the chirp in each model.

Another important parameter for the tests would
be the range of frequencies contained in the seismic
wavelet used in the wavefield modeling. All of our tests
involve just one choice of input wavelet — a Ricker
wavelet, with dominant frequency of 15 Hz.

model  Ajaz (M)  Amin (m) h(m) top bottom
M1 2500 500 50 X
M2 2500 500 100 X
M3 4500 1000 100 X
M4 4500 1000 200 X
M5 2500 500 50 X
M6 2500 500 100 X

Table 1. Chirp parameters for the generic velocity model
used in the study. The parameter h is the ampliitude of the
chirp, i.e., the peak departure of salt-boundary depth from
its average value.

3 ZERO-OFFSET VERSUS
EXPLODING-REFLECTOR DATA

Ultimately one might prefer that a study of the sensitiv-
ity of sub-salt imaging to errors in the velocity model
be done with 3D prestack depth migration applied to
modeled 3D data. The cost of such a study is clearly
prohibitive, certainly in this decade. Among the many
other complexities of such a study would be the issue of
how to define a useful 3D extension of the chirp model.

Our study therefore is strictly limited to 2D. Even
2D prestack depth migration imposes too large a com-
putational cost for other than a small number of to-
ken comparison tests with the generic model. In order
to do enough comparisons, we limited the study pri-
marily to imaging with poststack migration. The sim-
plification doesn’t stop here, however. We can envision
three different forms of input to poststack migration:
(1) modeled data from many source-to-receiver offsets
that have been stacked, (2) zero-offset (ZO) data ex-
tracted from normal-moveout-corrected and unstacked
modeled data, and (3) exploding-reflector (ER) modeled
data. We did tests with all three forms, but the largest
number with exploding-reflector data.

The choice of exploding-reflector data may seem
puzzling. One reason for this choice is that generation of
ER data is least computationally costly. We use a finite-
difference code, second-order in time, fourth-order in
space, for the modeling; the cost of modeling zero-offset
data would be essentially the same as that of modeling
a full prestack data set. But there is another reason for
choosing exploding-reflector data over extracted zero-
offset data.

Seismic data that result from ER modeling are
largely equivalent to, but differ in important respects
from, either ZO or common-midpoint (CMP) stacked
data, particularly in the presence of strong lateral veloc-
ity variation (Kjartasson & Rocca, 1979) and (Spetzler
& Snieder, 2001). Moreover, the pattern of multiples and
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the relative amplitudes of the primaries and multiples
differ among the three forms of data.

So, why do we consider a study using ER data to
be useful? Because poststack migration is based on the
exploding-reflector assumption, such migration of zero-
offset data would be erroneous even if the migration ve-
locity were correct. In contrast, because poststack (i.e.,
zero-offset) migration and exploding-reflector modeling
of primaries are essentially exact inverses of one another,
we can count on accurate migration of ER primaries
when we use the correct migration velocities. Therefore,
sensitivity of imaging to errors in velocity, including
smoothing of erroneous velocity, is best isolated when
we apply poststack migration to ER data.

That ER and ZO data differ from one another, as
do the results of poststack migration applied to these
two forms of data, is exhibited in Figures 3 and 4. The
differences between the ER and ZO sections for models
M1, M2, and M4, in Figure 3, are striking. Particularly
for models with larger chirp amplitude and in regions
of the model with smaller chirp wavelength, sub-salt
reflections show more numerous triplications character-
istic of caustics and multi-pathing in the overburden.
The exploding-reflector sections exhibit less loss of am-
plitude with time and more complete expression of the
diffractions than do the zero-offset sections. Since mi-
gration aims to collapse diffractions, the distorted and
incomplete diffractions in the ZO data will be poorly
collapsed in poststack-migrated results. The stronger
amplitudes at late time in the ER data result from the
weaker geometric spreading from sources that are, in ef-
fect, placed on the exploding reflectors than the spread-
ing from the surface line sources for the ZO data. Fi-
nally, as expected, the timing and amplitudes of multi-
ples in the exploding-reflector sections differ from those
in the counterpart zero-offset sections. The multiples
in these data are internal ones. Surface multiples are
largely absent because absorbing boundary conditions
(Clayton & Engquist, 1977) were used for all bound-
aries.

The results of poststack (i.e., zero-offset) depth mi-
gration of the exploding-reflector and zero-offset sec-
tions using the true velocity for the migration are shown
in Figure 4, again for models M1, M2, and M4. We
used an f-x domain, finite-difference depth-migration al-
gorithm (Claerbout, 1985) for both migrations. For all
models, depth migration of the exploding-reflector data
yields high-quality imaging of the primaries, with arti-
facts related to migration of the multiples. In contrast,
depth migration of the zero-offset sections results in de-
graded imaging of the sub-salt reflectors, especially in
regions of the model where the chirp has smaller wave-
length. Since these migrations were performed using the
correct velocity model, the compromised migrated ZO
data offer a poor starting point for study of sub-salt
imaging when smoothed, erroneous velocity models are
used for the migration.

Using equation (12) of Spetzler and Snieder (2004),
we calculated approximate focal depths (depths at
which caustics and triplications start to appear) for the
six velocity models used in the study. Although only
roughly approximate because that equation assumes
1D lateral slowness variations and point sources, these
computed focal depths give a measure of the relative
complexity of the various models and of wavefields in
them. For our generic models, this complexity, which
depends on the depth and lateral variation of the veloc-
ity anomaly, is controlled mainly by the geometry of the
chirp. Figure 5 shows the focal depths below the surface
as a function of lateral position z for the six chirp mod-
els. Model M2, for example, has caustics that appear
at the shallowest depth, whereas caustics arise deeper
for the models with milder chirp shape, and for chirp
shape at the base rather than the top of the salt. The
relatively poor image, in Figure 4, of the migrated zero-
offset data for Model 2, as compared with the migrated
images for models M1 and M4, suggests dependence of
image quality on model complexity. (Again, the imaging
problem arises because zero-offset migration is based on
the exploding-reflector idea.) Also, as seen in Figure 5,
the levels of complexity of models M1 and M4 are equiv-
alent. Consistent with this observation, the image qual-
ity of the depth-migrated zero-offset sections for these
models is comparable.

When errors are present in the velocity model, t
he degradation of migrated ER data will differ from
that in (1) poststack-migrated ZO data, (2) prestack-
migrated ZO data, and (3) prestack-migrated full-offset
data. Even with the correct velocity model the quality of
imaging can be compromised in each of these treatments
of data. We've already seen in Figure 4 that, because
poststack migration is founded on the ER assumption,
poststack-migrated ZO data is erroneous even when the
correct velocity model is used for migration. Prestack-
migrated ZO data do not suffer from that shortcoming,
but can exhibit image distortion and artifacts arising
from insufficient pre-migration muting of wide-angle re-
flections and refractions prior to the migration, limited
aperture for the (shot-record) migration, and variations
in wavefield illumination beneath the salt. Prestack-
migrated, full-offset data can also be distorted because
of variable illumination, insufficient muting, and limited
migration aperture. These data, however, have the ad-
vantage that the worst of these problems are mitigated
to some extent by destructive interference of offset-
dependent distortions and artifacts after stacking the
migrated data for all offsets.

4 LENGTH SCALES FOR VELOCITY
SMOOTHING

For finite-difference migration, if we knew the velocity
model perfectly we would have no need to smooth the
velocities. Smoothing could only alter the model from
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Figure 3. Exploding-reflector sections (left) and zero-offset sections (right) for models M1, M2, and M4.

the true one, resulting in erroneous migration — the
more smoothing the poorer the image. Versteeg (1993),
however, showed that there is little harm done with an
amount of spatial smoothing that is small in relation to
the wavelengths in the signal and fineness of detail in
the velocity model. Even for Kirchhoff migration, Gray
(2000) pointed out that smoothing too little is better
than smoothing too much.

Before addressing smoothing of erroneous velocity
models, let us see how much smoothing of our correct
generic models is acceptable for the depth migration.
Given the range of complexities suggested for the models
in Figure 5, we expect that the appropriate amount of
smoothing will differ from one model to another.

We smooth the velocity functions using a two-
dimensional Gaussian-shaped operator similar to the
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Figure 4. Finite-difference, zero-offset depth migrations of exploding-reflector data

M2, and M4 using the correct velocity model.

one described in Vertsteeg (1993). We first convert the
velocities to slownesses and then convolve the slow-
nesses with a two-dimensional Gaussian filter of the
form exp(—(z? + 2%)/(a/2)?]. With this definition, a is
the diameter at which the amplitude of the Gaussian
operator has decreased to e~ ! of its peak value.
Although we did tests with all six models shown in

depth (m)

M2

depth (m}

M4

depth (m)

203

(left) and zero-offset data for models M1,

Figure 1, here we focus attention primarily on models
M2 and M4, the ones with the largest amplitude chirp
shape for the top of salt. The conclusions drawn from
tests for these two models have general counterparts
from those for the other models. Figures 6 and 7 show
depth-migrated exploding-reflector sections for models
M2 and M4 after applying different amounts of smooth-
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Figure 5. Focal depths zcqus for the velocity models in Fig-
ure 1. We associate shallower focal depth with larger model
complexity.

ing to the correct velocity model. Not surprising, as the
degree of smoothing increases, the quality of the im-
aged sub-salt reflectors worsens; for any given amount
of smoothing, the degradation is model-dependent. The
more complex the overburden model (i.e., the shallower
the computed focal depth shown in Figure 5), the faster
the image degrades with increased smoothing. Thus, for
a given amount of smoothing, the degradation for model
M2 is more severe than that for model M4. For both,
the degradation is worse beneath the shorter-wavelength
portion of the chirp. For these two models, the maxi-
mum smoothing diameter that yields acceptable imag-
ing is about 160 m. For the remaining models, a smooth-
ing diameter of 200 m, and even larger, yields acceptable
imaging of the target reflections.

The models in which the bottom rather than the
top of the salt has the chirp shape can be smoothed
as much as 400 m without introducing significant dis-
tortion of the imaged sub-salt reflections. One reason
for this is the closer proximity of the chirp boundary to
the targets. Another is that the impedance contrast, and
consequently the lateral velocity variation, is smaller for
the models with chirp-shape bottom rather than top of
the salt.

We note that our observations and impressions of
image quality are subjective, based on assessment of
four characteristics of imaged reflectors: their locations,
sharpness of imaged events, distortion in imaged reflec-
tor shape, and contaminating artifacts.

As seen especially in Figure 7, the deeper targets
suffer somewhat larger distortion than do the shallower
ones. The farther waves have propagated through the
velocity model the more complicated they become. Keep
in mind that it is not the complexity of the velocity
model directly above a reflector that influences the qual-
ity of imaging, but rather the complexity along the dom-
inant ray directions. Thus the steep reflectors on the
right side of the figures are better imaged than are the

horizontal ones. Conversely, the horizontal reflectors at
the left are better imaged than are the dipping ones
there.

Another aspect of smoothing, seen in Figure 8, are
gaps in the imaged bottom of the salt for model M2
migrated using velocities smoothed with a=160 m. The
smoothed velocity model does not have the detail nec-
essary to honor all the ray bending and multi-pathing
that occurs at the chirp interface. As a result, migrating
with the smoothed velocity model creates illumination
gaps in the bottom-of-salt reflection.

To summarize, for migration with finite-differences,
smoothing of the true velocity model can only degrade
the imaging quality; it cannot improve it. For the generic
velocity models with chirp-shape top of salt, the maxi-
mum amount of smoothing that produces an acceptably
depth-migrated image is that with a ~ 200 m. This
maximum acceptable smoothing, however, depends on
the complexity of the model. In agreement with the re-
sults of Versteeg (1993) and Gray (2000), the less com-
plex the model, the more smoothing that is acceptable.
Again, however, in practice we cannot know the veloc-
ity model in detail. Next we investigate what happens
when we smooth erroneous velocity models.

5 SMOOTHING OF ERRONEOUS
VELOCITY MODELS:
EXPLODING-REFLECTOR DATA

Here, we again consider poststack depth migration of
exploding-reflector data generated for the generic veloc-
ity models. We first migrate using the erroneous velocity
model and then repeat the migration after applying dif-
ferent amounts of smoothing to the erroneous velocity
model. We introduced errors of the following kind to the
generic velocity models:

e lateral and vertical shifts of the chirp-shape top or
bottom salt boundary,

e erroneous amplitude of the chirp-shape boundary,

¢ random perturbations added to the chirp,

e erroneous velocity of the salt layer.

As simple as is our generic velocity model, the list
of model parameters shown in Section 3, plus all the
scale lengths (Fresnel zone, chirp wavelength, smooth-
ing diameter, scale length of the velocity error, depth
of the targets) involved in the problem make systematic
analysis of depth migration for different smoothings of
erroneous migration velocities a large task. We show
only a few selected examples that illustrate main obser-
vations of the study.

The benefit or harm done by velocity smoothing
depends on the type of error. For migration of field data,
in practice, velocity models will have a combination of
all the forms of error that we introduce individually in
this study.
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Figure 6. Depth-migrated exploding-reflector sections for model M2 using the correct velocity model and after different amounts
of smoothing have been applied to that correct model. The diameter of the two-dimensional Gaussian smoothing operator is

denoted by a.

Some types error in the velocity model have rela-
tively small influence on the migrated image. For ex-
ample, vertical shifts of the salt boundary and constant
error in the velocity of the sediments surrounding the
salt body have relatively little influence on sub-salt im-
age quality. These two types of error primarily cause
error in reflector depth without severely distorting or

defocusing the image. Pon and Lines (2004) and Paf-
fenholz et al. (2001) obtained similar results with their
modeled data sets. Smoothing of these erroneous veloc-
ity models has much the same influence on the quality of
imaging as does smoothing of the correct velocity mod-
els. Increasing the degree of smoothing in this case only
further degrades image quality.
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Figure 7. Same as Figure 6, but for model M4.

In contrast, consistent with the results of Paffenholz
et al., we find that lateral shift of the chirp model can
cause significant degradation of sub-salt imaging, as do
errors in the geometry of the chirp boundary. In general,
a given amount of lateral shift of the boundary causes
larger degradation of the sub-salt image than does a
comparable vertical shift.

As we shall see, where error in the velocity model
causes substantial degradation of the migrated image.
smoothing the erroneous velocity model can improve
the quality of the migrated image. Where it causes too
severe degradation, once again no smoothing can help.
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Figure 8. Close view of the top and bottom of salt in the migrated image of model M2 for velocity smoothing with a=160 m.
Note the gaps in the image of the base of salt, in part the result of mistreatment of variable illumination at the salt base.

5.1 Lateral shift of the chirp

A constant lateral shift of the entire salt boundary is an
unrealistic error in practice. Applied to our chirp-shape
top-of-salt boundary, however, a constant shift allows us
to study the influence of such an error systematically as
a function of lateral velocity variation in the overburden.

Figure 9 shows the depth-migrated sections for
model M4 using the correct velocity model and that
model laterally shifted by different amounts, from 20 to
100 m. Note that even a shift of only 40 m (trace spacing
in the exploding-reflector section is 20 m) introduces dis-
tortions in the depth-migrated image. As expected, im-
age degradation is larger beneath the small-wavelength
region of the chirp and deeper in the section. Increas-
ing the amount of lateral shift leads to worsened image
quality beneath the longer-wavelength portions of the
chirp. We next smooth the shifted velocity models and
assess the quality of sub-salt imaging in the resulting
migrations. Figure 10 shows migrations with smoothed
versions of the model that was erroneously shifted later-
ally by 40 m. Smoothing with  of 160 to 240 m improves
the image quality for many of the sub-salt targets, but
smoothing by larger amounts results in reduced qual-
ity of the migrated section. Smoothing of velocity mod-
els with larger lateral shifts (not shown here) produced
similar results although the improvement introduced by
smoothing becomes harder to recognize for larger shifts.
The data quality is so much compromised for large lat-
eral shift that smoothing can have little influence. The

image quality is already so poor that it would take a
large amount of smoothing to make it much worse.

5.2 Exaggerated chirp amplitude

The type of velocity error we consider next is that
caused by incorrect amplitude of the chirp-shape top
of salt. Figures 11 and 12 show depth-migrated images
of exploding-reflector data for models M2 and M4, each
with the amplitude of the chirp-shape top of salt too
large by 50 m, and with various amounts of smoothing.
The images for the erroneous models are significantly
degraded from those generated with the correct migra-
tion velocity, more so for model M2 (with short spa-
tial wavelength of chirp) than for model M4. Smooth-
ing of the erroneous velocities for model M2 results in
improved image quality for smoothing diameter up to
about 320 m, but degrades the quality for larger smooth-
ing. The degree of improvement varies across the model.
For model M4, improvement in imaging for some targets
is best with a as large as 640 m. Note also that the re-
gion of largest improvement generally progresses toward
the left (i.e., toward longer spatial wavelength of chirp)
as the amount of smoothing increases.

For this 50-m error in chirp amplitude, we per-
formed migrations of models M1 through M4 (the four
models with chirp-shape top of salt) and smoothing
ranging from @ = 80 m to 1240 m in increments of 40
m. From subjective visual impressions of migrated sec-
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Figure 9. Depth-migrated exploding-reflector sections for model M4 using the correct velocity and different amounts of lateral

shift of that model.

tions for the different amounts of smoothing, we made
rough estimates of smoothing diameter that yields the
best imaging of the different target reflectors across the
model. Figure 13 shows the estimated optimum smooth-
ing diameters for the four models, as a function of lateral
position z. Comparison of the curves (linearly interpo-
lated between the subjectively inferred values) in this
figure with the curves in F igure 5 shows some degree of

correlation between the focal depths in Figure 5 (a mea-
sure of model complexity) and the optimum smooth-
ing diameters in Figure 13 for this particular form of
velocity error: generally the shallower the focal depth
(i.e., the greater the model complexity), the smaller the
smoothing diameter that is best.

Versteeg (1993) showed that the lower the complex-
ity of the velocity field, the larger the amount of smooth-
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Figure 10. Depth-migrated exploding-reflector sections for model M4 using the correct velocity model, for that model laterally
shifted by 40 m, and for various degrees of smoothing applied to the laterally shifted model.

ing of the velocity model that is acceptable for imaging.
Here, we find a counterpart result: the lower the com-
plexity of the velocity field, the larger the amount of
smoothing that yields the best imaging when the ini-
tial model is in error. In tests with larger error in chirp
amplitude (100-m too large), we found a similar corre-

lation between model complexity and optimum amount
of smoothing.

5.3 Random perturbation of the chirp

The final type of error in the migration-velocity model
that we show is a random perturbation of the chirp-
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Figure 11. Depth-migrated exploding-reflector sections for model M2 with true velocity, for an erroneous velocity model caused
by chirp amplitude exaggerated by 50 m (a 50 percent exaggeration), and for smoothed versions of the erroneous velocity model.

shape top of the salt. We distorted the shape by adding a
laterally bandlimited, Gaussian-distributed depth error
to the chirp. For the test results shown in Figures 14, 15,
and 16, the correlation length { = 100 m, where [ is the
lag at which the autocorrelation of the random depth
variation decreases by a factor e ! of its peak value. The
correlation length is a measure of lateral scale length of

velocity error. For these tests, the standard deviation of
the random depths prior to bandlimiting is & = 50 m.
Figures 14 and 15 show migrated sections using
the true velocity model, a model with random error
added to the depth of the chirp, and variously smoothed
versions of the erroneous velocity function for models
M2 and M4. For both models, migration with the erro-
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Figure 12. Same as Figure 11 but for model M4. The 50-m increase in chirp amplitude represents a 25 percent exaggeration

of the amplitude for this model.

neous velocity function yields severely distorted imaging
of the sub-salt reflections. For model M2 (Figure 14),
which has the shorter-wavelength chirp-shape top of
salt, smoothing of the erroneous velocity model yields,
at best, marginal improvement, with optimal smoothing
varying from a = 160 m to at least 640 m for reflectors
from right to left. The improvement brought about by
smoothing the erroneous model is more evident in the

results for model M4, shown in Figure 15. As smooth-
ing increases from a = 160 m to 640 m, targets that
are best imaged again are those beneath progressively
longer-wavelength portions of the chirp.

Model M3 has chirp shape spanning the same range
of wavelengths as those in model M4, but with smaller-
amplitude chirp. Compared to results for similarly con-
sidered models M2 and M4, migration for data from
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Figure 13. Optimum smoothing diameters for migration-velocity error caused by chirp amplitude that is 50-m too large, for

models M1-M4.

model M3 (Figure 16) exhibits more distortion of sub-
salt events when the randomly erroneous velocity model
is used. Migration with variously smoothed versions of
the erroneous model, however, yields substantial im-
provement in sub-salt images. The pattern of improved
quality of imaging for various smoothings of the erro-
neous velocity model is similar to that seen in Figures 14
and 15, but the improvement here is dramatic. In par-
ticular, much of the sub-salt region is best imaged with
smoothing using a = 320 and 640 m, with ¢ = 640 m
yielding the best result for lateral positions < 10 km.
Even broader smoothing might have resulted in a better
image yet. We found similar behavior for other choices of
correlation distance and amplitude of the random per-
turbations. Smoothing of the migration-velocity model
can help in imaging.

6 SMOOTHING OF AN ERRONEOUS
VELOCITY MODEL: PRESTACK
MIGRATION

In all of the above tests, we have used poststack-
migrated exploding-reflector data to assess the influ-
ence of smoothing of erroneous velocity models on sub-
salt image quality. Such data and migration require so
relatively little computation that we could perform a
large number of tests. Despite being useful for our study,

exploding-reflector data cannot be acquired in the field
nor can they be obtained from field data. They are a fic-
tion. Next we show results for one example of a similar
study of the influence of smoothing, but with prestack
migration performed on synthetic multi-offset data.

Using finite-difference code, we modeled shot
records for a simulated 2D survey across the top of
model M4, each shot having 500 channels, with 10-m
group interval, and 80-m shot spacing. Migration was
performed with a shot-record f-z domain algorithm
(Claerbout, 1985). We then sorted the migrated data
into common-image gathers and stacked the gathers.
Figure 17 shows the prestack-migrated image for model
M4 using the correct velocity model. The quality of
imaging for the target reflectors is excellent, superior
to that obtained in poststack migration of exploding-
reflector data for model M4 (Figure 4), primarily be-
cause imaged multiples are much weaker in the prestack
result.

For this test, we generated the erroneous velocity
model by exaggerating the amplitude of the top-of-salt
chirp in model M4 by 100 m, a 50 percent increase from
the true chirp amplitude. Prestack migration with this
erroneous velocity model is shown in the upper left of
Figure 18. With this level of velocity error, the shape
of the horizontal bottom of the salt is greatly distorted
toward the left of the section, and toward the right the
bottom of the salt is virtually not imaged. Similar obser-
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Figure 14. Depth-migrated exploding-reflector sections for model M2 with the true velocity, for an erroneous velocity model
with random error (! = 100 m, ¢ = 50 m), and for variously smoothed versions of the erroneous velocity model.

vations hold for the sub-salt reflectors. The remainder
of the figure shows the results of prestack migration us-
ing the erroneous velocity model smoothed with what
we might consider to be large amounts of smoothing:
a = 240, 480, and 720 m. Velocity smoothing clearly im-
proves the quality of the migrated images, with a = 480
m yielding the best imaging of the right portion of the

subs-salt section (beneath the shorter-wavelength por-
tion of the chirp), and @ = 720 m yielding the best imag-
ing beneath the longer-wavelength portion. The best
images show distortion of the shapes of the target re-
flectors, but these reflectors nevertheless are far better
imaged than when no smoothing is applied to the erro-
neous velocity model.
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Figure 15. Same as Figure 14 but for model M4,

Prestack migration with the erroneous velocity
model resulted in more severe degradation of image
quality than did poststack migration of the exploding-
reflector data. This could be due in part to mistacking
that arises when the incorrect velocity model is used.
In any case, the data are far better imaged with use of
smoothed migration velocities in the migration.

7 DISCUSSION AND CONCLUSIONS

Despite the limited nature of this study — 2D, primar-
ily poststack migration of exploding-reflector data, just
one choice of wavelet, simple chirp-shape top or bottom
of salt with limited range and choice of spatial wave-
length, small number of and forms for perturbations
from the true velocity model, and simple model of sub-
surface structure — results for tests with the generic
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Figure 16. Same as Figure 14 but for model M3.

model give clear indication that, for some types of ve-
locity error, smoothing of velocities for migration veloc-
ity model can improve image quality, sometimes signif-
icantly. The amount of smoothing that is optimum in
the sense that it gives imaging superior to that when
either less or more smoothing is used depends on the
size and type of error in the migration-velocity model

as well as on the lateral wavelength of the true velocity
structure in the overburden.

The optimal choice for smoothing to address imag-
ing degradation caused by use of an erroneous veloc-
ity model can be considerably larger than either (1)
that needed to overcome shortcomings of ray tracing
for Kirchhoff migration or (2) the amount of smoothing
that would be acceptable for any migration algorithm

—————
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Figure 17. Prestack migrated image for model M4 using the correct velocity model. Compare with Figure 4.

when the initial migration-velocity model was perfectly
accurate. Because the velocity function for migration is
never fully accurate in practice, some degree of smooth-
ing is always appropriate. Moreover, although it will be
difficult in practice to pin down an optimal spatial ex-
tent of smoothing, that amount can well be larger than
is often used in practice — even considerably larger than
the spatial size of the errors in the migration-velocity
model.

Use of the generic chirp-shape salt boundary al-
lowed us to do simple tests, e.g., velocity error mod-
eled as lateral shift of the boundary, in a systematic
effort to gain an idea of the relationship between op-
timum amount of smoothing and scale of the velocity
variations. For even this simple model, we have seen
dramatic differences between zero-offset data modeled
based on the exploding-reflector assumption and those
modeled with wavefields generated by individuals shots.
A significant manifestation of the difference arises from
variations in the spatial distribution of subsurface illu-
mination. These differences in the two forms of modeled
data in turn give rise to marked difference in image qual-
ity when the data are depth-migrated with a poststack
algorithm (which is based on the exploding-reflector)
using a migration-velocity function that is known per-
fectly.

Although we did only a few tests of smoothing er-

roneous velocity models for use in prestack migration,
use of smoothed velocities generally helped to improve
the quality of images — greatly so for the one test with
prestack migration shown here. This is consistent with
what we found (although to a lesser extent) for post-
stack migration of exploding-reflector data. The con-
sistency is comforting given that most of our tests were
with exploding-reflector data, which cannot be obtained
from field data. Supporting the results from the post-
stack migrations of exploding-reflector data, the amount
of smoothing that is best can be considerably larger
than might have been suspected from the spatial size of
errors and detail in the velocity model.

A general ranking of the influence of the different
types of velocity error on image quality is as follows.
Constant vertical shift of the top of salt or constant er-
ror in velocity of the overburden causes relatively little
degradation. Smoothing of the velocity model will not
improve imaging for these types of error any more than
it would if the velocity model were perfectly accurate.
Lateral shift of the top of salt causes image distortion
that can be not only large, but such that imaging is not
amenable to improvement by velocity smoothing. Error
in amplitude of the chirp-shape top of salt, including
random perturbation of the salt shape, can also cause
large distortions in the sub-salt image, but the imaging
can be substantially improved through use of smoothed
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Figure 18. Prestack-migrated image for model M4 using the erroneous velocity model with chirp amplitude exaggerated by
100 m, and for the erroneous velocity model smoothed with operator diameter a=240, 480, and 720 m.

velocities, even broadly smoothed. Of course these gen-
eral comments about the influences of the different types
of error and the benefits of smoothing for these types of
error are all dependent on the magnitude of the velocity
error of any given type.

Any smoothing of a derived migration-velocity
model yields velocities that are erroneous. That’s clearly
true if the derived velocities somehow happened to be
perfectly accurate. A conclusion from the tests here is
that, since the migration-velocity model is necessarily
inaccurate, it is better that detail in the initial velocity
model be smoothed prior to migration — thus yielding
a smoothly erroneous model — than to trust in use of
the detailed model. Moreover, the amount of smoothing
needed to help the imaging is likely greater than that
inferred from previous studies involving smoothing of
perfectly accurate velocities. The observation of Gray
(2000) nevertheless still holds that too much smoothing
will alter the velocity model from the ‘true’ one to the
extent that image quality will be harmed. The optimal
amount of smoothing to use remains as difficult model-
and data-dependent choice.
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A fault caught in the act of burping
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ABSTRACT

We report on the first direct observation of a migrating fluid pulse inside a fault
zone that, based on previous evidence, is suspected to be a conduit for fluids
ascending from depth. We find that areas of high fault-plane reflectivity from a
fault at the South Eugene Island Block 330 field, offshore Louisiana, systemat-
ically moved up the fault 1 km between 1985 and 1992. The updip movement
can be explained by the presence of a high pressure fluid pulse ascending a verti-
cally permeable fault zone. These fault burps play a central role in hydrocarbon

migration.

Key words: hydrocarbon migration, fault zones, seismic reflectivity

INTRODUCTION

Faults display a split-personality as both impediments
to fluid flow and, at times, preferential pathways for
flow. Both behaviors are invoked in the petroleum indus-
try to explain how hydrocarbons move (Hooper, 1991)
from the location at which they are generated (e.g., by
flowing along faults) into fault-bounded reservoirs (Hol-
land et al., 1990) where they are trapped (e.g., by a
lack of flow across faults). In the Gulf of Mexico, growth
faults cutting through low permeability sediments pro-
vide a means for hydrocarbons generated in deep, pres-
surized source rocks to migrate into shallow reservoirs.

Despite the fact that fault-hosted fluid flow is still
poorly understood, several studies, both theoretical and
observational, have put our understanding of the inter-
action of fluids and faults on firmer footing. One pop-
ular model, introduced by Rice (1992) and discussed
by Revil and Cathles (2002), maintains that fluids may
intermittently propagate as shock waves along faults at
geologically fast rates (from m/yr to km/yr). The shock
waves are excited in the subsurface when the rock per-
meability is a strongly nonlinear function of fluid pres-
sure - a characteristic of highly fractured zones, such
as fault zones. Nur and Walder (1992) refer to inter-
mittent times of intense fault-hosted fluid flow as “fault
burps”, a descriptive term that we adopt for this pa-
per. As with Nur and Walder (1992), Finkbeiner et al.
(2001) choose to view these episodic flow events in terms

of pore pressure buildup followed by release when the
Coulomb failure criterion is exceeded. Such behavior is
reminiscent of the fault-valve model of Sibson (1990),
in which fluid flow along faults is episodic and initiated
by an increase in fault zone permeability in response
to fault slip. Recently, Miller et al. (2004) have shown
how a combination of Rice’s shock wave model and Sib-
son’s fault-valve model explains the upward movement
of aftershock epicenters along a fault in the deep crust
beneath Italy.

Several lines of evidence taken at the South Eugene
Island Block 330 field, offshore Louisiana, indicate that
faults there have hosted significant vertical fluid flow
over the last 250,000 years, continuing to the present
day. The evidence includes (a) oil seeps from the fault
scarps along the ocean floor (Anderson et al., 1995),
(b) thermal anomalies associated with the spatial pat-
terns of the fault scarps (Anderson et al., 1991), (c)
reports from drilling of anomalously high pore pressure
confined to one of the fault planes (Losh et al., 1999),
(d) a year-to-year variation in the fluid chemistry of
hydrocarbons produced from the same reservoir (Whe-
lan et al., 2001), and (e) geochemical anomalies seen in
core samples taken from fault zones (Losh et al., 1999).
We present an additional set of data - seismic reflection
images - that indicate fast (> 100 m/yr) fluid move-
ment along growth faults. Previously, we have demon-
strated that reflections from the fault-planes that ap-
pear in seismic data from South Eugene Island Block
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Figure 1. (A) Map of the two-way reflection time (TWT) to the B-fault plane. Using the approximation 100 m depth ~ 0.1 s
TWT (Losh et al., 1999), this map shows the structure of the B-fault, most notably the down-to-the-SW dip. (B) Overlay of
the dip-filtered seismic reflection image (black & white wiggle plot) on top of the original image (red & blue variable density
plot) along the dashed line in (A). The dip-filtering highlights the fault-plane reflections from the B-fault and a nearby fault
known as the A-fault. The H-sand is shown to indicate throw. (C) Map of the B-fault, as in (A), but with reflectivity from the
fault-plane in 1985 plotted instead of TWT. The area of highest reflectivity is circled in gold. (D) Map of the B-fault reflectivity,
as in (C), but from 1992. The data extend over a slightly larger area than in (C); however, the spatial perspective is identical.
The area of highest reflectivity, circled in gold, is shifted roughly 1 km NE in the updip direction relative to its location in 1985,
as is expected for a fluid pulse ascending the B-fault. This movement is depicted by the arrow in (A). Also shown is the location
of the A10ST well intersection, where exceptionally high fluid pressures were encountered while drilling into the B-fault zone

in 1993 (Losh et al., 1999).

330 contain information about the distribution of fluid
pressures across faults (Haney et al., 2004).

FLUID MIGRATION AS SEEN IN TIME
LAPSE SEISMIC DATA

The South Eugene Island field is an ideal location for
this study. Multiple vintages of seismic reflection sur-
veys can be interpreted in the context of abundant
fluid pressure, geochemical, and other data. Much of the

available data is due to a multifaceted drilling project
conducted by the Global Basins Research Network
(GBRN) in the 1990s (Anderson et al., 1995). During
late 1993, GBRN intentionally drilled into and success-
fully cored some of the growth faults at South Eugene
Island. Normal faults that transect the field separate up-
thrown sediments saturated by highly-pressurized fluids
from normally-pressurized dowthrown sediments; the
faults are typically at the same pressure as the upthrown
sediments (Losh et al, 1999). However, exceptionally
pressurized fluid was encountered in one penetration of



a growth fault, the B-fault, in the A10ST well (Anderson
et al., 1995; Losh et al., 1999). Losh et al. (1999) stated
that “the isolated pocket of anomalously high fluid pres-
sure in the A10ST well may represent a spatially limited
pulse of anomalously pressured fluid.”

To test the hypothesis of a moving fluid pulse, or
fault burp, we isolate the fault-plane reflections from the
B-fault in images derived from seismic surveys taken in
1985 and 1992 and look for indications of movement.
First, we pick the fault plane in the 3D seismic re-
flection images (Figure 1A). We then proceed by dip-
filtering the seismic reflection images in the direction of
the B-fault (Figure 1B). This dip-filtering step serves to
accentuate the fault-plane reflections while simultane-
ously attenuating the reflections from the sedimentary
layers. The final step is to extract the amplitude of the
fault-plane reflection along the B-fault in a small time-
window around the picked fault-plane. In Figures 1C
and 1D, we show reflectivity as a function of position
on the fault-plane for both datasets. Patches of high re-
flectivity, or “bright spots”, are known to be associated
with the presence of fluids (Dobrin, 1976).

The most striking pattern in the fault reflectivity
maps of Figures 1C and 1D is the northeast movement
of the highest reflectivity areas between 1985 and 1992.
This movement, in the up-dip direction, is to be ex-
pected for a fluid pulse ascending the B-fault. From
the reflectivity maps at the B-fault, we estimate the
movement of the fluid pulse to be on the order of 1 km
between 1985 and 1992, for an average velocity of ~
140 m/yr. In the next section, we describe how we es-
timated this velocity for the pulse. Such fast fluid flow
up a growth fault at South Eugene Island is in line with
the study by Finkbeiner et al. (2001). In their study,
Finkbeiner et al. (2001) analyzed in situ stress data
and pressure measurements and showed that overpres-
sure in some of the deep reservoirs abutting the B-fault
could induce frictional failure on the fault plane. The
fast movement of fluids up a permeable fault also agrees
with a nonlinear permeability model first discussed by
Rice (Rice, 1992). In this model, the fluid pulse is a
shock wave that moves with velocity v given by

ko(1 — ¢o)g(pg — pr)sina
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where k, is the permeability at zero effective stress, ¢,
is the porosity at zero effective stress, g is gravitational
acceleration, p, is the density of the rock grain, py is the
density of the fluid, « is the dip of the fault, 75 is the dy-
namic viscosity of the fluid, 3 is a parameter describing
the linear dependence of porosity on effective stress (El-
liott, 1999), o; is the initial effective stress state ahead
of the pulse, o is the final effective stress state behind
the pulse, and ¢* is a parameter describing the exponen-
tial dependence of permeability on effective stress (Rice,
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Figure 2. Spatial cross correlation of the 1985 and 1992 B-
fault amplitude maps shown in Figures 1C and 1D. There is
a maximum in the cross correlation when the spatial lag is 1
km to the NE (the up-dip direction of the A-fault). At the
maximum, the correlation coefficient is 0.78, which is close to
the value 0.80 for a horizontal reflector known as the O-sand
at zero spatial lag (see Figure 3). The correlation shown here
can be seen visually in Figures 1C and 1D.

1992; Revil & Cathles, 2002). We note that models by
Finkbeiner et al. (2001) and Rice (1992) are not the
only ones of relevance to the behavior we observe along
the B-fault at South Eugene Island. Currently, a “vug-
wave” model is being developed (Losh et al., 2005) that
describes a fluid pulse which is mechanically coupled
with the shear strain in the fault. This model has the
potential to bridge the link between what we have ob-
served at South Eugene Island and the phenomenon of
“slow” or “silent” earthquakes that show sudden aseis-
mic slip (Cervelli et al., 2002).

QUANTIFYING THE PULSE MOVEMENT

In Figure 2, we plot the spatial cross correlation of the
amplitude maps from the B-fault. There is a local max-
imum at 1 km spatial lag in the NE direction. This
corresponds to what is seen visually in Figures 1C and
1D. The value of the correlation at the maximum is
0.78, which is close to the correlation value of 0.80 com-
puted for a horizontal reflector known as the O-sand at
zero-lag (see Figure 3). The zero-lag correlation for the
B-fault amplitude maps, as shown in Figure 2, is 0.45.
The fact that the correlation is as high as 0.80 for the
O-sand in its zero-lag position supports the similarity
of the two surveys and their processing schemes. In an-
other study (Haney et al., 2005), we tested how the pres-
ence of noise, a lack of DMO processing, and application
of AGC degraded migrated amplitudes. The application
of AGC most severely altered the relative amplitudes.
Though an AGC appears to have been applied to the
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Figure 3. A comparison of the O-sand amplitude in the
1985 and 1992 surveys. The O-sand is a gently dipping sed-
imentary layer boundary at ~ 2.3 s TWT. Hence, the O-
sand abuts the B-fault in the lower part of the B-fault plane
displayed in Figure 1A. The consistency of the amplitudes
in these two images, compared to the changing amplitudes
along the B-fault shown in Figures 1C and 1D, supports the
interpretation of relative amplitude changes in the two sur-
veys. Though we only show the O-sand here, this consistency
holds for the other sedimentary layer boundaries as well.

1985 data, it obviously did not damage the amplitudes
from the O-sand enough to bring its correlation below
0.80. We have also checked the K-sand and found good
amplitude agreement in its zero-lag position. Both the
O- and K-sands are in the same depth interval as the
B-fault plane.

The similarity of the amplitudes in the 1985 and
1992 surveys at the O-sand support the hypothesis that
the 1 km of movement seen at the B-fault is an actual
change in reflectivity; however, we need to show that
the 1 km of movement in the seismic image is not the
result of over- or under-migration, given typical errors
in migration velocities. Note that the 1 km of movement
up the B-fault, which dips at 45°, is equivalent to 700
m of lateral movement. To explore the issue of over- or
under-migration, we first make the approximation that
the shooting lines in the 1985 and 1992 seismic sur-
veys were in the dip direction. This means the action
of 3D migration on the reflection from the B-fault is
purely a vertical and lateral movement in a single ver-
tical plane. We then use the expression for the lateral
movement applied to a time sample in a stacked sec-
tion by a constant-velocity 2D migration, denoted Az
(Yilnaz, 1987)

Ptinvi,

In equation (2), tin is the two-way time of the input
point, v, is the migration velocity, and p is the time

dip of the fault-plane reflection. The time dip is given
by

2sind

= 2 ! (3)

where 6 is the dip of the fault-plane and v is the true

subsurface velocity, not necessarily equal to the migra-

tion velocity v;m. Given the true subsurface velocity,

the amount of lateral movement applied by migration
should be

tin 2
Az = ”—4—”. (4)

The difference in the amount of lateral movement ap-
plied by migration, Az, and the amount of lateral
movement that should be applied, Az, is the error in
the lateral placement of the input point Az, due to an
incorrect migration velocity

(2 .2
Aze = Az — Az = M’Z—v) (5)

Denoting the depth of the time sample in the stacked

section as z, t;, is given by
2z

L 6

vcosf (6)

Therefore, using equation (3) and (6), equation (5) may

be written as

Az, = ztand [(v—;"—)z — 1} . (7

in =

To estimate the amount of error in lateral positioning
due to over- or under-migration at the B-fault, we use
the approximate depth z and dip @ of the fault given
by 2 km and 45°, respectively. From equation (7), a
£5% error in migration velocity results in a lateral po-
sitioning error of ~200 m, less than the 700 m of lat-
eral movement we observe at the B-fault in the 1985
and 1992 seismic surveys. Given that the geology above
the B-fault is essentially a vertically-varying, compact-
ing stack of sediments and that a considerable number
of wells with wireline data passed through this section,
we feel that a £5% error in migration velocity is a con-
servative estimate of the error. In fact, a 700 m error in
lateral positioning requires a +17.5% error in migration
velocity, much too large for a target in a 1D geologic
setting above salt. Furthermore, the movement of the
pulse observed in the 1985 and 1992 data, if an artifact
of incorrect migration velocities, would require that the
errors in the two data sets be negatively correlated. For
example, if the 1985 data had a —5% error in migra-
tion velocity (under-migration) and the 1992 data had
a +5% error in migration velocity (over-migration), the
residual mis-positioning between the two surveys would
still only be 400 m. If both surveys had a +5% error in
migration velocity, there would be no apparent lateral
movement. We therefore conclude that 1 km of move-
ment up the B-fault is significant enough to stand out
in the presence of typical positioning errors due to in-
correct migration velocities.



CONCLUSION

At a location on the B-fault plane at the South Eugene
Island Block 330 field, where anomalously high pore
pressures have been reported in the fault zone (Ander-
son et al., 1995; Losh et al., 1999), areas of high reflec-
tivity appear to move up the fault-plane, as would be ex-
pected for an ascending, pressure-driven fluid pulse. The
seismic waves are able to sense these different pressure
domains due to the effective stress controlling the elastic
properties of the soft Plio-Pleistocene sediments (Haney
et al., 2005). This observation gives additional credence
to the dynamic fluid injection hypothesis (Whelan et al.,
2001) and points to natural flow processes in sedimen-
tary basins that occur on production time scales.

The movement seen in the 1985 and 1992 seis-
mic data warrants more extensive study of the faults
at South Eugene Island. One possibility in the future
is to go to the fault scarps on the ocean floor with a
small submersible and take samples of the fluids com-
ing directly out of the fault scarps, since Anderson et
al. (1994) report oil seeps that correlate with their loca-
tion. The shallow water depth at South Eugene Island
(< 100 m) makes such an investigation using a sub-
mersible possible. Submersibles have proven to be useful
in sub-sea geological studies, as shown by Chaytor et al.
(2004) in the Pacific ocean and Roberts (2001) in the
Gulf of Mexico. Other data sets to incorporate into fu-
ture fault studies are prestack data, especially for doing
AVO analysis on a fault-plane reflection, and microseis-
micity data. Without question, future studies on faults
should incorporate time-lapse measurements to capture
the essence of faults as dynamic and quickly-changing
zones.
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ABSTRACT

In order to better understand the origin of fault-plane reflections in compacting
sedimentary basins, we have numerically modeled the elastic wavefield via the
spectral element method (SEM) for several different fault models. Using well
log data from the South Eugene Island field, offshore Louisiana, we derive
empirical relationships between the elastic parameters (e.g., P-wave velocity,
density) and effective stress along both normal compaction and unloading
paths. These empirical relationships guide the numerical modeling and allow
us to investigate the effect of fluid pressure. We chose to simulate the elastic
wave equation via SEM since irregular model geometries can be accommodated
and slip boundary conditions at an interface, such as a fault or fracture, are
implemented naturally. The method of including a slip interface retains the
desirable qualities of SEM in that it is explicit in time and does not require the
inversion of a large matrix.

We perform a complete numerical study by forward modeling shot gathers over
a realistically-sized Earth model using SEM and then processing the simulated
data to reconstruct post-stack time-migrated images of the kind that are rou-
tinely interpreted in the petroleum industry. We dip filter the seismic images
to highlight the fault-plane reflections prior to making amplitude maps on the
fault plane. With these amplitude maps, we compare the reflectivity from the
different fault models to diagnose which contributes most to the observed fault
reflectivity. To lend physical meaning to the value of compliance for a slip-
ping fault, we propose an equivalent-layer model under the assumption of weak
scattering. This allows us to use the empirical relationships between density, ve-
locity, and effective stress from the South Eugene Island field to relate a slipping
interface to an amount of pore pressure in a fault zone.

Key words: fault zones, fluid pressures, spectral element method

INTRODUCTION

Seismic data acquisition and processing have evolved
to the point that fault-plane reflections are often im-
aged under favorable conditions, such as above salt in
the Gulf of Mexico (Liner, 1999). Reflections originating
from fault zones hold important information about fluid
movement along faults or the capacity of a fault to act
as a seal (Haney et al., 2004). For prospect evaluation,

faults are associated with uncertainty in petroleum sys-
tems by virtue of their split personality as both hydro-
carbon traps and pathways for hydrocarbons to move
from deep kitchens into shallower, economically pro-
ducible reservoirs. Any light that seismic data can shed
on the situation would be useful.

To gain a stronger grasp on the factors at play in
causing fault-plane reflectivity, we have pursued a com-
plete numerical study of seismic wave interaction with
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fault models. By complete, we do not simply model the
entire elastic wavefield with high fidelity, but addition-
ally process the data back into its time-migrated image,
which is the point at which many geoscientists in the
petroleum industry gain access to and begin examining
seismic data. We model the wavefield with an implemen-
tation of the spectral element method (SEM) written by
Dimitri Komatitsch and Jean-Pierre Vilotte at the In-
stitut de Physique du Globe in Paris, France. Further
improvements have been made to the original code by
the third author in the course of his graduate work (Am-
puero, 2002). Processing of the elastic wavefield output
by the SEM code has been accomplished with Seismic
Un*x (Stockwell, 1997).

We sketch the theory behind SEM and, after dis-
cussing the dip-filtering step we employ to highlight the
fault-plane reflections, present results for different fault
models. These models represent examples and combina-
tions of three types of heterogeneity expected at faults.
These three types are:

(1) juxtaposition (sand/shale or shale/sand) contacts
(ii) pressure contrast AP across the fault
(iii) a slipping fault

We expect from the outset that these various types of
heterogeneity show up differently in dip-filtered seismic
images. For instance, since the juxtaposition contacts
exist over the length scale of a typical bed thickness and
have positive (sand/shale) or negative (shale/sand) re-
flection coefficients, the smoothing of the dip-filter (Op-
penheim & Schafer, 1975) should act to suppress their
contribution to the fault-plane reflectivity. In fact, the
specular contribution to the average reflected intensity
from a fault-plane between two vertically shifted lay-
ered media with a random reflection coefficient series is
zero. In practice, away from this idealized model, reflec-
tivity from juxtaposition contacts should be relatively
suppressed compared to the other two models. This is
desirable since the juxtaposition contacts do not carry
information on the intrinsic properties of the fault zone.
The other two types of heterogeneity, pressure contrasts
and slip at the fault plane, which are related to pore
pressure distributions at the fault, are not attacked by
the dip filter in the same way as are the juxtaposition
contacts.

In the first section of this paper, we discuss empiri-
cal relationships between pore pressure and three basic
rock properties - porosity, density, and sonic velocity.
The data for this analysis come from wells drilled at the
South Eugene Island field, offshore Louisiana. These re-
lationships form the basis for the models used in the sub-
sequent SEM simulations. The fact that pore pressure
largely controls rock matrix properties in compacting
sedimentary basins allows methods for imaging seismic
reflections to indirectly measure spatially varying pore
pressure distributions. The variation of the three rock
properties with effective stress reveals a hysteretic be-

havior that occurs during the compaction of sediments.
Evidence for both plastic (irreversible) and elastic (re-
versible) deformation exists in the available well data
and pressure tests. These two regimes point to different
underlying causes of overpressure (Hart et al., 1995).
For these dual deformation mechanisms, we construct
two empirical relationships between each rock property
and pore pressure - one valid for each regime.

Vertical effective stress

Pore pressures that exceed the hydrostatic pressure, or
overpressures, lead to a lowering of density and seismic
velocity and may contribute to the reflectivity associ-
ated with fault zones. Pennebaker (1968) was among the
first geoscientists to demonstrate the ability of seismic
stacking velocities to detect fluid pressures in the sub-
surface. Terzaghi (1943), however, had previously dis-
cussed the basic principle, that of an effective stress act-
ing on the rock frame. According to Terzaghi’s principle,
the effective stress determines rock properties (e.g., P-
wave velocity). Terzaghi defined the effective stress to
be the difference between the confining stress, o,, and
the pore pressure p:

04 =0y — P. (1)

The subscript v stands for vertical since, in extensional
regimes, the maximum stress is in the vertical direction
(the weight of the overburden). The quantity o4 is also
called the differential stress. Equation (1) states that
rocks of similar composition but at different confining
stress and pore pressure have the same velocity so long
as the difference between the confining stress and pore
pressure is the same. Hence, high pore pressure, which
lowers effective stress, leads to lower seismic velocities.
Following the work of Terzaghi, rock physicists be-
gan to question whether the effective stress governing
rock properties is not simply the difference between the
confining stress and the pore pressure (Wang, 2000).
Today, the most general effective-stress law is instead

Oc =0y — 1P, (2)

where the parameter n is called the effective stress coef-
ficient. Carcione et al. (2001) state that the value of n
can differ for each physical quantity (e.g., permeability,
compressibility, or shear modulus), and that it depends
linearly on the differential stress of equation (1). Cur-
rently, the effective-stress coefficient is a controversial
topic that is still being sorted out by the rock physics
community. For the remainder of this paper, we do not
distinguish between differential stress, o4, and effective
stress, o; that is, we take n = 1 in equation (2).
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Figure 1. Regional map (top), from Anderson et al. (1995),
and cartoon depth section (bottom) of the subsurface at
South Eugene Island. The four main faults discussed in this
thesis are shown in the bottom panel as the A, B, F, and Z
faults. Throw across the faults is depicted by the layer run-
ning from left to right. Most of the wells at South Eugene
Island were drilled into the shallow, hydrostatic section; the
A20ST well was unusual in that it was continued through
the A-fault system and into the deep overpressured compart-
ment.

1 POROSITY VERSUS DEPTH

As suggested by its name, compaction acts to reduce the
porosity of sediments as they are buried; however, this
process can continue only as long as fluids in the dimin-
ishing pore space are allowed to be expelled. Such would
be the case in normally pressured, hydrostatic sediments
in which the fluids are in communication up to the
seafloor. Once the movement of the fluids out of the pore
space is opposed, as in a compartment sealed-off by low
permeability or high capillary-entry-pressure shales or
fault gouge, the porosity remains constant with burial
depth if the fluid is more or less incompressible. This
situation is called undercompaction (Huffman, 2002).
Undercompaction means the sediments are “frozen” in
time and are simply buried in their unchanging earlier
compaction state (Bowers, 1995). To compound the sit-
uation, if Auid from outside the undercompacted sedi-
ments is pumped into the pore space, or if hydrocar-
bons are generated from within the undercompacted
sediments, a process called unloading occurs (Huffman,
2002). Whereas undercompaction can only cease the re-
duction of porosity (Bowers, 1995), unloading can actu-
ally reverse the trend and increase porosity. Although
unloading can reverse the trend, it cannot reclaim all
of the previously lost porosity. This is because the com-
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Figure 2. Porosity versus depth at South Eugene Island.
The thick, solid line is the best-fit normal compaction trend
using Athy’s Law (Athy, 1930). The faint solid lines are
density-derived porosity values from 11 wells at South Eu-
gene Island. To obtain the porosity, we assume that the solid
grains have a density of 2650 kg/ m3 and the fluid has a den-
sity of 1000 kg/m?, as in Revil and Cathles (2002). There
is a clear break from the shallow, exponentially decreasing
porosity trend at a depth of 1800 m, at which point the
porosity remains constant with increasing depth, as shown
by the flat dashed line. The two circles are density-derived
porosities from the upthrown block to the north of the mini-
basin at South Eugene Island. The dashed lines connecting
the circles to the main compaction trend are the interpreted
porosity histories of the samples. They show a period of un-
dercompaction, depicted as a horizontal line deviating from
the normal compaction trend, followed by a vertical unload-
ing path due to a late-stage pore-pressure increase.

paction process has a large irreversible component. In
contrast, unloading and loading of sediments by pump-
ing fluid into and then depressurizing the pore space is
a reversible process, insofar as the fluid does not cause
hydrofracturing.

We have examined wireline data taken in wells at
the South Eugene Island field, offshore Louisiana, for
indicators of overpressure, such as constant porosity as
a function of depth. Previous work by Hart et al. (1995)
shows the crossover from hydrostatic to overpressured
conditions in porosities derived from sonic velocities. We
take a slightly different, perhaps more straightforward
approach based on the density log. The South Eugene
Island field is a Plio-Pleistocene minibasin formed by
salt withdrawal and has yielded more than 300 million
barrels of oil in its lifetime. A cartoon depiction of the
subsurface at South Eugene Island is displayed in Fig-
ure 1, in addition to a regional map. The main part
of the field is a vertical stack of interbedded sand and
mostly shale layers bounded by two large growth faults
to the north and south.

Figure 2 shows porosity derived from density logs
taken in the following wells at South Eugene Island:
A13, A20ST, A140H, Al5, A23, A6, B10, B1, B2, B7,
and B8. Because the geology in the minibasin is es-
sentially horizontally layered, we ignore the fact that




228 M. Haney, R. Snieder & J-P. Ampuero

some wells may be miles away from each other and sim-
ply look at the depth variation of their porosity. In all
the well logs shown in this paper, we have done some
smoothing with depth (over ~ 100 m) to remove any
short-range lithologic influences (e.g., sand versus shale)
on the density and velocity. To obtain the porosity from
the density log, we take the solid grains to have a den-
sity of 2650 kg/m® and the fluid to have a density of
1000 kg/m?®, as in Revil and Cathles (2002). There is a
clear break from the shallow, decreasing porosity trend
at a depth of 1800 m. Based on the work of Stump et al.
(1998), we assume that this is the onset of overpressures
in the sedimentary section, beneath a shale bed located
above a layer called the JD-sand. We fit an exponential
trend to the porosity values above 1800 m, known as
Athy’s Law (Athy, 1930), to get the normal compaction
trend in the hydrostatically pressured sediments

¢C(Z) = 0.47 6—0.00046 z, (3)

where, in this equation, the depth 2z is in meters. The
superscript ¢ in equation (3) refers to the fact that
this functional relationship characterizes normal com-
paction. In the porosity-versus-depth plot of Figure 2,
this relationship holds for any movement towards the
right on the normal compaction curve and any purely
right-going horizontal deviations from the normal com-
paction curve. For purely right-going horizontal devi-
ations, the depth z used in equation (3) is equal to
the depth at which the horizontal deviation started.
The two circles in Figure 2, represent samples taken in
the A20ST well and are connected to the normal com-
paction curve by both horizontal and vertical lines. The
vertical lines show the departure of the samples from
the normal compaction trend. We return to these in the
next section.

The sediments deeper than 1800 m in F igure 2
maintain a nearly constant porosity of around 0.2 dur-
ing subsequent burial (a horizontal deviation from the
compaction trend). Though the depth of the sediments
increases with burial, the effective stress experienced by
the sediments does not seem to change. Hence, the ad-
ditional weight of the overburden with increasing depth
is borne by the fluids trapped in the pore space. As
a result, the pore pressure increases with the vertical
gradient of the overburden stress and is said to have a
lithostatic gradient. This point is illustrated graphically
in Figure 3. In this plot, we make the crude approx-
imation that the lithostatic gradient (or total weight
density), pg, is twice as large as the hydrostatic gradi-
ent (or fluid weight density), psg, with g the accelera-
tion of gravity. Since pg = 2p,g, the effective stress is
equal to the hydrostatic stress down to 1800 m. At that
point, the effective stress stays constant with depth due
to undercompaction; therefore, the pore pressure must
increase at the rate of the lithostatic stress in order to
satisfy Terzaghi’s law, equation (1). In doing so, over-

pressure
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Figure 3. A depth section of the pressure regime for pure
undercompaction. The symbols are as follows: o is the effec-
tive stress, P, is the hydrostatic pressure, P is the pore pres-
sure, and o, is the overburden, or lithostatic, stress. Note
that, before 1800 m, the effective stress stays constant, as
seen from the porosity versus-depth-plot in Figure 2, and
the pore pressure increases at a rate equal to that of the
overburden stress.

pressure, or pore pressure in excess of hydrostatic, is
created below 1800 m.

2 DENSITY VERSUS VERTICAL
EFFECTIVE STRESS

Since density is a parameter widely used in the field
of seismic wave propagation, we study the variability
of the bulk density in this section. By looking at bulk
density, we also avoid the assumption concerning the
solid and fluid densities needed to obtain the poros-
ity. In contrast to the preceding section, we want to
see how density changes with effective stress, instead of
depth. To accomplish this, we take only the measure-
ments that are shallower than 1800 m, where the pore
pressure is, by all indications, hydrostatic. Therefore we
know the pore pressure and can calculate the effective
stress. In overpressured compartments, since the pore
pressure is unknown, direct measurements by Repeat
Formation Tests (RFTs) are necessary to calculate the
effective stress.

We rewrite equation (3) in terms of density and
effective stress using the relationships

p=ps(1—9¢)+ dpy, (4)
and
o4 = psgz, (5)

where p is the bulk density and p,; and ps are the den-
sities of the solid and fluid components. Note that the
relationship for o4 holds only under hydrostatic con-
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Figure 4. Density versus effective stress at South Eugene
Island. The thick solid line is the same normal compaction
trend shown in Figure 2, except transformed into density and
effective stress. The faint solid lines are also the same as in
Figure 2, except that they are now limited to the hydrostatic
depths down to 1800 m. The circles represent two pressure
measurements, labeled 1 and 2, which were made in the over-
pressured upthrown block where a density log also existed.
For each pressure measurement, we plot the data point twice
- one where it should lie on the normal compaction curve were
it to have been normally pressured, and the other where it
actually does plot because of severe overpressure. Note that
sample 1 is from a greater depth than sample 2.

ditions. From these relationships and equation (3), we
obtain the normal compaction curve for density

p°(oa) = ps — 0.47 (ps — py) ¢0-000304 ©)

where p, and py are the densities of the solid and fluid
components, taken as 2650 kg/m® and 1000 kg/m® re-
spectively, and o4 is in psi. We plot this normal com-
paction curve in Figure 4 together with the density mea-
surements. Also, in Figure 4, we show as circles two
data points obtained from RFT pressure measurements
and density log measurements in the overpressured up-
thrown block. We show the circles in two locations -
one on the normal compaction trend where they would
plot if the measurements were at hydrostatically pres-
sured locations, and the other where they actually plot
because of severe overpressures being present in the up-
thrown block.

At this point, we don’t know exactly how the sam-
ples taken in the upthrown block came to be off the
normal compaction trend. Using a laboratory measure-
ment of the unloading coefficient by Elliot (1999) on a
core sample taken near the locations of samples 1 and 2,
the path that these samples took to their present loca-
tions can be estimated. Elliot (1999) characterized the
unloading, or elastic swelling, for the porosity of the core
samples to be

¢*(0a) = do (1 — Poa), (M

where ¢ and 3 characterize the deviation of the unload-
ing path from the normal compaction trend. Note the
superscript u, in contrast to equation (3), indicating the
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unloading path instead of the normal compaction trend.
Elliot (1999) found that ¢o = 0.37 and 3 = 0.98 x 10~°
Pa~! for the unloading path. Though these parameters
describe the porosity, we use them to find the slope of
the unloading path for density using the relationships
between porosity and density described earlier. After
finding this slope, we can construct the unloading path
for the density from equation (6) and the slope

p“(ad) = 0.04 (O'd - Umaz:) + Ps
—0.47 (ps _ Pf) e—0.00030ma,. (8)

This expression contains an extra parameter Omasz that
refers to the value of the effective stress when the sample
began to be unloaded. We do not know o'ma= for samples
1 and 2, but we do know that Omar must lie on the
main compaction trend. Hence, we can construct linear
unloading paths for the density, as shown by the dashed
lines in Figure 4. With these unloading paths, we can
then find the value for the maximum past effective stress
Omaz. It is worth mentioning that the maximum past
effective stress for sample 1 comes out to be ~ 1500 psi
by our approach of using Elliott’s experimental results.
In an independent measurement, Stump et al. (2002)
performed uniaxial strain tests on a core sample taken
from the same location as sample 1 to find the maximum
past effective stress. Stump et al. (2002) report a value
of 1248 psi for this sample, close to our estimate of ~
1500 psi; visually, the discrepancy lies within the error
bars of the normal compaction curve’s fit to the density
log data.

With the estimate of the maximum past effective
stress, we can also return to Figure 2 and find the depth
at which samples 1 and 2 left the normal compaction
trend, since in the hydrostatic zone the depth is a lin-
early scaled version of the effective stress. These depths
correspond to a slightly lower porosity than that of sam-
ples 1 and 2. We interpret this as being the result of a
late stage porosity increase and represent it as a vertical
unloading path for samples 1 and 2 in Figure 2.

3 SONIC VELOCITY VERSUS VERTICAL
EFFECTIVE STRESS

For the purposes of modeling faults and to make infer-
ences about the distribution of pore pressure from seis-
mic interval velocity inversions, accurate pore-pressure-
versus-velocity relationships are critical (Dutta, 1997).
In general, sonic velocity has a normal compaction curve
and unloading paths as a function of effective stress that
are similar to those we just described for the density well
log data. To obtain these relationships, we proceed as
for the density logs: 1) We take 12 shallow wells to make
up a data set of sonic velocity versus effective stress. 2)
We select the depth range with hydrostatic pressures
and plot the sonic velocity versus effective stress. 3) We
fit this with a power law relation for the normal com-

|
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Figure 5. Sonic velocity versus effective stress at South Eu-
gene Island. The thick solid line represents the normal com-
paction curve fitted to the shallow well data, shown in the
faint solid lines. We also plot samples 1 and 2 both where
they should fall on the normal compaction trend, were they
to be normally pressured, and where they actually plot due
to the severe overpressure where they were obtained. Using
the estimate for past maximum effective stress from the den-
sity plot and the Bowers-type relation (Bowers, 1995) shown
in equation (10), we are able to construct the velocity un-
loading curves, shown as dashed lines.

paction trend. 4) We then look at where the two samples
from the overpressured upthrown block lie and construct
unloading curves using the estimate for the maximum
past effective stress that we obtained in the previous
section on density. The wells we use for characterizing
the sonic velocity come from A20ST, A140H, A23, A6,
B10, B1, B2, B7, B8, Al, B14, and B20.

In Figure 5, we plot the normal compaction trend
for sonic velocity as a thick solid line described by the
power law equation (Bowers, 1995)

v(oa) = 1500 + 2.3 0377, 9)

where v, is in m/s and g4 is in psi. Note again the
superscript ¢ for the normal compaction relation. We
also construct the unloading curve for v, following the
relationship first suggested by Bowers (1995)

- 1/6.279-77
vi(0q) = 1500 + 2.3 [am”( d ) ] , (10

Omaxzx

where 04 and 0uma. are in psi and v, is again in m/s.

To model elastic waves, one other parameter is
needed in addition to p and Vp; for instance, a seismol-
ogist would naturally want the shear velocity. In the
absence of information on the shear wave velocity v,
and pressure in the shallow, hydrostatic sediments, we
assume that

vs(oa) = vp(oq) —~ 1500, (11)

where this relationship holds on both the normal com-
paction curve and the unloading path. The data pre-
sented by Zimmer et al. (2002) for unconsolidated sands
supports this assumption, in that the dependence they

found for v, on effective stress is essentially a down-
shifted version of the v, curve. An additional piece of
supporting evidence comes from the only v, data avail-
able at South Eugene Island, a shear log from the A20ST
well, where samples 1 and 2 were taken. There, the ra-
tio of v, /v, from the sonic and shear logs falls between
3 to 3.5 in the overpressured upthrown block. Inserting
the values for v, at samples 1 and 2 into equation (11)
to get v, and finding the corresponding ratio of vp/vs,
we get v, /v, = 3.48 at sample 1 and v, /v, = 2.96 at
sample 2, within the range of the ratios observed in the
sonic and shear logs.

To summarize, we have established two empirical
relationships between each of three basic rock proper-
ties and pore pressure at the South Eugene Island field.
Most important for subsequent numerical modeling of
wave propagation, we have found relationships for the
density p and the sonic velocity v, on both the nor-
mal compaction and unloading paths. Without shallow
information on the shear velocity v.,, we must make
the assumption that it is a down-shifted version of the
vp(04q) relationship. From looking at the density-derived
porosity-versus-depth-relationship, we are able to con-
clude that the deep, overpressured sediments below the
JD-sand are predominately overpressured because of
compaction disequilibrium, since their porosity did not
change appreciably with depth. In contrast, both com-
paction disequilibrium and unloading have contributed
to the current overpressured state of the sediments on
the upthrown side. The latter conclusion is in agreement
with a previous study by Hart et al. (1995) on porosity
and pressure at South Eugene Island. We use the em-
pirical relationships between the elastic parameters and
fluid pressure to simulate fault-plane reflections from
different pressure distributions in the subsurface.

4 THE SPECTRAL ELEMENT METHOD

Numerical modeling of wave propagation in the Earth
can be based on either the weak (Zienkiewicz & Tay-
lor, 2000) or strong (Boore, 1970) forms of the elasto-
dynamic equations of motion. By weak and strong, we
mean the integrated or differential forms of the equa-
tions of motion. The spectral element method (SEM),
though based on the weak form, combines favorable
aspects of both strong and weak formulations. For
instance, SEM naturally handles general geometries
and exotic boundary conditions. In the finite-difference
method (based on the strong form), it is notoriously
difficult to implement a linear-slip boundary condition
(Coates & Schoenberg, 1995) or any general boundary
condition for that matter (Boore, 1970; Kelly et al.,
1976). On the other hand, SEM does not require the
inversion of a large matrix, a property usually identified
with finite-difference methods. Formally, this last prop-
erty of SEM means that its mass matrix is diagonal
and its computational cost is relatively small. Note that
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Figure 6. The entire numerical model with a zoom-in of the
normal fault. The zoom area is shown on the entire numerical
model with a dashed rectangle. The lengths of the source
and receiver arrays are shown by extended arrows. Eleven
sources evenly spaced over 2000 m (200-m shot interval) and
241 receivers over 3000 m (12.5-m receiver interval). In the
zoom, the layers are labeled with numbers 1-12 corresponding
to the material properties for models listed in subsequent
tables. For models with a slipping fault, the portion of the
fault plane that slips is shown by a thicker line in the zoom.

SEM does this in a way similar to mass-lumping (Karni-
adakis & Sherwin, 1999), which has been used to diag-
onalize finite-element schemes. SEM has the additional
property of spectral convergence, meaning that, as the
polynomial order of the basis functions is increased, the
numerical error goes down exponentially (Karniadakis
& Sherwin, 1999).

The term “spectral element” indicates that SEM is
a mixture of finite-element and spectral methods (Ko-
matitsch & Vilotte, 1998). As a result, there are two
parameters relevant to the mesh in SEM: the size of
the elements and polynomial degree (n — 1, where n is
the number of zero crossings of the basis functions used
within each element). Komatitsch and Tromp (2003) re-
fer to these parameters when they speak of the global
mesh and the local mesh. Concerning the local mesh,
there is a known trade-off between accuracy and numer-
ical cost (Seriani & Priolo, 1994), which suggests that
polynomial degrees no higher than 10 should be used
within the elements. For the numerical examples in this
paper, we use a polynomial degree of eight.

5 MODELING OF A FAULT

As an example of the ability of SEM to model seis-
mic scale structures, we discuss a complete modeling
and processing sequence for a simple fault model. The
SEM forward modeling has been run in serial (one
node for each shot) on a 32-processor pentium 1V Xeon
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(3.0-GHz) cluster. All of the processing has been per-
formed on a workstation using the Seismic Un*x pack-
age (Stockwell, 1997). Figure 6 depicts the geometry of
the model. The normal fault we model has a vertical
throw of 20 m, a value characteristic of a small fault.
The model shown in Figure 6 has been previously stud-
ied by Townsend et al. (1998) in order to assess changes
in seismic attributes caused by faults disrupting the lat-
eral continuity of events.

We mesh the interior of the computational grid
shown in Figure 6 using a freely available mesh pro-
gram developed by INRIA, called EMC2. The program
can be downloaded at:

http://www-
rocq.inria.fr/gamma/cdrom/www/emc2/eng.htm.

For the examples in this paper, we use a semi-structured
mesh since the fault geometries modeled are not overly
complex. A semi-structured mesh is desirable when pos-
sible since the accuracy of SEM depends on the Jacobian
of the transformation between a generally shaped ele-
ment and a standard rectangular element over which the
integration is performed. Though the mesh has struc-
ture, it honors the slanted boundaries of the fault. Af-
ter initial construction of the mesh, the quadrangle el-
ements are regularized so that their shapes mimic rect-
angles as closely as possible. At the fault, the possibil-
ity exists for the fault to experience linear-slip (Schoen-
berg, 1980). With SEM, we can incorporate this aspect
by using a split-node (Andrews, 1999). In Appendix A,
we show how to incorporate a linear-slip interface into a
finite-element algorithm with a split-node. We also show
that the presence of a linear-slip interface modifies the
numerical stability criterion, a fact that is also true for
SEM.

Since the SEM code is elastic, both primary and
converted waves show up on the vertical component
of the displacement seismograms. We mute the con-
verted waves in order to proceed with conventional P-
wave time-processing. We subtract off the direct waves
by running a homogeneous subsurface simulation with
the elastic properties of layer 1 of Figure 6. After this
step, we perform a geometrical-spreading correction,
NMO, DMO, and stack to simulate zero-offset data.
With the simulated zero-offset section, we proceed with
a constant-velocity migration using the velocity of the
overburden (layer 1). Hence, a source of error in this
simulation originates from the slight undermigration of
the deepest reflectors and the fault-plane reflection. We
chose to migrate with constant velocity since we have
interpreted time-migrated seismic sections in the Gulf
of Mexico (Haney et al., 2004) and wanted the SEM
modeling to mimmick the data as closely as possible.
With this full suite of forward modeling and process-
ing capabilities, we apply SEM to study various normal
fault models. Before going into the details of the mod-
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Figure 7. Dipping event with true dip direction given by
the slanted solid line. The event is summed along a direction
given by the dashed line, and the result is placed at the
intersection of the two lines at the center trace. When there
is a difference in the two dips, the true dip p and the stacking
dip pse, a time shift At is induced that varies linearly with
midpoint z. In this example, the seismic data exist at equally-
spaced, discrete midpoint locations.

 (two-way lime)

eling, though, we present the type of dip-filter we use to
isolate the migrated fault-plane reflections.

6 DIP FILTERING

Using an array-based approach, we show in this section
the form of the dip filter that we apply to migrated im-
ages to accentuate the fault-plane reflections. Figure 7
shows a dipping event in a post-stack seismic image. The
function of the dip filter is to stack along the dashed line
and place the stack result at the intersection of the solid
and dashed lines; where the coordinate system is cho-
sen such that the midpoint is equal to 0. Note that, in
Figure 7, the dip filter emphasizes a direction different
from the dip of the event. This difference induces a time
shift at the m-th input trace (shown as a vertical arrow).
Suppose that the true dip, the dip of the event, is p (di-
mension s m~') and the dip of the stacking curve is psq.
The time shift at the m-th input trace is thus

Atm - (P - psl) mh, (12)

where £ is the midpoint spacing and m is the discrete
variable running over midpoint location. Assuming that
the dipping event has a constant waveform f(t), the
result of the summation, g(t), over the stacking curve
can be written as

g(t) = 2n1+1[f(t—At_n)+---+f(t——At_1)+

f@)+ f(t=At) +--- + f(t - Atn)], (13)

where 2n41 is the length of the dip filter in terms of the
number of traces. In the example shown in Figure 7, n =
2. When we again take the Fourier transform over time
and move to the w-z domain, equation (13) becomes

G(w) = F(w)K (), (14)
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Figure 8. Representative amplitude spectrum for the dip
filter. The parameters used for this plot were n = 4 and
At = 0.1. Note that the first aliased frequency for this choice
of At is at f = 10 Hz.

with the Fourier transforms of f(t) and g(¢) shown as
F(w) and G(w) and the transfer function, K, given by

2n1+ - Z iw(P—pst)mh (15)

m=—-—n

Kw) =

Since the time shifts in equation (15) are linear in m,
the series can be evaluated exactly.

Using the geometric series, equation (15) can be
written as

1 1 — W+ (p—pst)h
K(w) = on+1 [ 1 — eiw(p—pst)h +
_ e~ iw(nt+1)(p—pst)h
1-e ~1]. (16)

1 — e—iw(p—pst)h

Putting the first two terms in the brackets of equa-
tion (16) under a common denominator and simplify-
ing further yields a filter similar to that obtained for
convolution with a boxcar, or rectangular window (Op-
penheim & Schafer, 1975)

1 sinfw(n + 1)(p — pse)h /2]
2 - X
2n 41 sinfw(p — pst)h/2]

cos[wn(p — pse)h/2] — 1]. (17)
This filter is real because of the symmetric summation
about its output point and can be better understood by
making the substitution At = (p—pa:)h in equation (17)

_ 1 sinfw(n + 1)At/2]

K@) = [2 sinfwAt/7]

Kw)y =

2n+1
coslwnAt/2] —1]. (18)

The amplitude spectrum of the dip filter is shown in
Figure 8 for certain values of n and At.

A dip filter in terms of w and k is needed to enhance
fault-plane reflections on a migrated time section. The
filter in equation (17) is only in terms of w. To get the k
dependence, we exploit the fact that p = —k/w (Hatton
et al., 1986). This means that linear features with a
dip p in the t-z domain get mapped into linear features
with the negative dip in the w-k domain. Substituting



p = —k/w into equation (17) gives

1 [2sin[(n + 1)(wpse + k)h/2]
2n+1 sin[(wpst + k)h/2]
cos[n(wpse + k)h/2] —1]. (19)

K(w, k) =

This is the form of a dip filter that corresponds to stack-
ing 2n + 1 traces centered about the output point along
a dip ps:.

7 SEM MODELING OF REFLECTED
WAVES

The dip filter operation discussed in the previous sec-
tion has been applied to simulated seismic images in
the w-k domain. An alternative procedure would be a
combination of interpolation and slant stacking in the
t-z domain; however, the w-k dip filter is sufficiently ac-
curate, as we show here. Figure 9 shows a plot of the
simulated reflection images for the two of the models
presented in this chapter next to their dip-filtered ver-
sions that highlight the fault-plane reflection. The dip
filter applied to these plots has a length of 21 traces
and the adata and filter have a trace-to-trace spacing of
6.25 m (the midpoint spacing); this sampling avoids any
aliasing problems and attacks all events not having the
dip (slope) of the fault-plane reflection. In particular, it
attacks the horizontal reflections.

The upper panels of Figure 9 are for a model of
a pressure difference across the fault, which acts like a
traditional seismic interface. The lower panels of Fig-
ure 9 are for a model of a linear-slip interface, which,
in contrast to the pressure difference model, reflects the
derivative of the incident wave (see Appendix B for de-
tails). A slice cut out of the dip-filtered images in the
direction perpendicular to the fault-plane (shown as a
white arrow in the right-hand panels of Figure 9) helps
in assessing the accuracy of the numerically simulated
fault-plane reflections. In Figure 10, we plot the reflected
waveforms together with either the incident wave or the
derivative of the incident wave, depending on whether
the model contains the pressure difference or slip at the
fault. The agreement seen between the waveforms in
Figure 10 demonstrates that the SEM modeling, pro-
cessing, and dip-filtering together produce an accurate
reflected waveform from the fault plane.

In the following three sections, we examine reflec-
tivity from the fault plane for a juxtaposition-contrast
model, three pore-pressure contrast models, and four
slipping-fault models embedded in one of the pore-
pressure-contrast models. The purpose of this modeling
exercise is to get a feeling for which type of reflectivity
should dominate at a general fault. We also perform the
processing of the SEM modeled data contaminated with
certain errors to see how maps of the amplitude along
the fault are affected.
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Figure 9. Migrated seismic images from Model 2 (top pan-
els) and Slip-Model A embedded in Model 1 (bottom panels).
Their dip-filtered versions, used to highlight the fault-plane
reflections, are shown in the right-hand panels. Slip-Model
A is for a slipping fault (see Table 5), which is embedded in
Model 1 (see Table 1). Model 2 is for a pore-pressure con-
trast across the fault (see Table 2). The traces in Figure 10
are sliced from these images in a direction normal to the
fault-plane, as shown by an arrow in the dip-filtered images.
The horizontal events in the upper panels appear to be not
as well suppressed as the lower panels simply because the
fault-plane reflection is stronger in the bottom panel and, as
a result, the amplitude clip for the display is higher.

8 AMPLITUDE OF WAVES REFLECTED
FROM A JUXTAPOSITION CONTACT

Table 1 shows the parameters of a juxtaposition model
for the subsurface geometry shown in Figure 6. There
are two rock types in this example, an acoustically hard
shale (p = 2280 kg/m®, v, = 2750 m/s, and v, = 1250
m/s) and an acoustically soft sand (p = 2240 kg/m3, v,
= 2600 m/s, and v, = 1100 m/s). The values for the
sand are taken from a well log that intersected a sand
layer at the South Eugene Island field known as the JD-
sand. The shale values come from the lower bounding
shale beneath the JD-sand. In Figure 11, we plot these
well logs at the depth of this lithologic contact. These
two layers are at hydrostatic conditions, which at this
depth is nominally 2800 psi.

In Figure 12, we plot the reflected amplitude from
the juxtaposition model within a small window (100 ms)
of the fault-plane for four different processing scenarios.
The first scenario, shown in the upper-left panel of Fig-
ure 12, compares the extracted amplitude on the fault
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Figure 10. The reflected waves from Model 2 (top), a pore
pressure contrast, and Slip-Model A embedded in Model 1
(bottom), a slipping fault, are shown in dashed lines. The re-
flected waveforms for these two models are different in shape.
The reflected waveform for Model 2 should be the wavelet,
which is plotted in the top panel as a solid line for compari-
son with the numerical result. The waveform for Slip-Model
A embedded in Model 1 should be the the derivative of the
wavelet, which is plotted in the bottom panel as a solid line
for comparison. The agreement between the numerical re-
sults for the fault-plane reflections and the expected wave-
forms validates the sequence of modeling, processing, and
dip-filtering used here.

Layer  Thickness (m) p (kg/m®) v, (m/s) v, (m/s)

1 900 . 2240 2600 1100
2 50 2280 2750 1250
3 30 2240 2600 1100
4 50 2280 2750 1250
5 30 2240 2600 1100
6 90 2280 2750 1250
7 50 2280 2750 1250
8 30 2240 2600 1100
9 50 2280 2750 1250
10 30 2240 2600 1100
11 90 2280 2750 1250
12 850 2240 2600 1100

Table 1. Model 1 for the SEM modeling. The throw between
the upthrown (layers 2 through 6) and downthrown (layers 7
through 11) sediments is 20 m. The sediments on both sides
of the fault are at hydrostatic pore pressure. The geometry
of the model is given in Figure 6. The values are taken from
the JD-sand and its lower bounding shale at a depth of 2 km.
The pore pressure is ~ 2800 psi at that location.
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Figure 11. Velocity and density logs in the A20ST well at
the South Eugene Island field showing the interface between
the JD-sand and its lower bounding shale at 1975 m sub-sea
true vertical depth (SSTVD). The log information <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>