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CWP Policy on Proprietary
Printed Material

New printed material that is produced at the Center for Wave Phenomena under Con-
sortium support is presented to Sponsors before it is released to the general public. We delay
general publication by 60 days so that Sponsors may benefit directly from their support of
the Center for Wave Phenomena.

During this delay, Sponsors may make whatever use of the material inside their organi-
zation that they deem proper. However, we expect that all Sponsors will respect the rights
of other Sponsors, and of CWP, by not publishing these results externally and indepen-
dently, in advance of this 60-day delay (even with attribution to CWP). Please refer to your
Consortium Membership Agreement under the paragraph entitled “Sponsor Confidentiality
Obligation.”

Those reports in this book that were produced primarily under consortium support
and have not been previously distributed or submitted for publication, will be available for
general distribution after July 10, 2004. If you have independently generated results that
duplicate or overlap these, and plan to submit them for publication under your own name
before this date, please notify us immediately, so that misunderstandings do not arise.




INTRODUCTION

This, the 20th anniversary edition of the report on the Consortium Project at the Center for Wave
Phenomena, summarizes much of the research conducted within CWP, as it enters its twenty-first year.
As in past years, the papers in this report and those that will be presented orally during the Annual
Project Review Meeting, May 10-13, 2004, only partially overlap. Also, in addition to these papers, a
number of last-minute manuscripts will be distributed during the Meeting and mailed to representatives
of sponsor companies.

Papers in This Report

The 20 papers contained herein span a range of research areas grouped into the following six cat-
egories: velocity analysis, migration and imaging, multicomponent seismology, data processing and
interpretation, scattering, and multiple suppression. These categories show both similarities to and dif-
ferences from those of the past few years, indicative of the continuity with research of the recent past
and the expanding breadth of our research. Readily, many of the papers could have been placed in any
of several of these categories, and the categorization could have been different from that selected.

The two papers on velocity analysis extend beyond historic assessment of hyperbolic moveout, using
the nonhyperbolic behavior at long offset to estimate anisotropy parameters. Where the subsurface is
anisotropic, conventional flattening of events in velocity analysis does not yield the velocity information
necessary for proper conversion from time to depth or for accurate positioning in migration. One of
the papers shows application of an approach to anisotropic migration velocity analysis of P-wave data,
described last year, to field data from West Africa. The second paper is a study of the feasibility of
estimating fracture direction and parameters of an orthorhombic layer from inversion of the azimuthal
variation in nonhyperbolic moveout of P-wave data.

The migration and imaging section includes three papers. Two of them provide theoretical bases for
problems of imaging, multiple suppression, and inversion. The first one develops an amplitude-preserving
approach to modeling and inverse scattering based on downward continuation with the double-square-
root equation that uses the Kirchhoff, rather than Born, approximation, thus overcoming the limitation
to the small-angle approximation for reflection coefficients. Despite the predominance of 3D seismic
today, the principles of 2.5D remain of importance in the imaging of data from 2D surveys conducted in
the direction perpendicular to dominant strike, in particular of widely separated ocean-bottom seismic
lines. The second paper in this category extends the 2.5D principle to treatment of data in anisotropic
elastic media in the presence of caustics. The third paper uses spectral-element modeling in an analysis
of the sensitivity in imaging of fault-plane reflections to errors in stacking and migration.

Five papers are included under the category of multicomponent seismology. A sequence of two
papers exploits the asymmetry of PS-wave moveout for parameter estimation in transversely isotropic
(TI) media with tilted axis of symmetry. The third paper assesses the possibility of using offset data
in common-image gathers of migrated SV-wave data to estimate the parameters of TI media with
vertical symmetry axis, and thus the velocity needed to obtain correct imaged depth. Following on
the methodology for analysis of P-wave data last year, this study finds strikingly different behavior for
imaging of SV-wave data. The fourth paper in this category is a modeling study of radiation patterns
of waves in mdeia that exhibit transverse isotropy in both elastic and inelastic properties, in particular
in media that have TI attenuation. The final paper in this section combines differential semblance in
scattering angle with a co-depthing approach to address the difficult problem of co-registration of PP-
and PS-data for joint P- and S-wave reflection tomography.

The broad category of data processing and interpretation contains three papers of differing charac-
ter. Approximate reconstitution of missing data can be done using any of a variety of interpolation
approaches. In the presence of caustics, numerically-based approaches fail. The first paper shows a
wave-based methodology for continuing data in the presence of caustics, and shows successful applica-
tion for model data with large gaps of missing traces. The second paper addresses the large departure
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constraints on corporate budgets for research and support of university research projects. We thank the
representatives of our sponsor companies for their continued support. A full list of sponsors over the
term of the past year appears on the acknowledgment page at the beginning of this volume.

We benefit from approximately the same level of government support as last year. A list of those
sponsor agencies also appears in the acknowledgment page.

Our industrial and government support for both research and education complement one another;
each gains from, and strengthens, the other. As a net result, for the present annual fee of $45,000, a
company participates in a research project whose total funding level is about $1.5M — giving a slight
increase in the leverage factor to about 35.

In addition, the SEG Foundation has continued to provide support for Seismic Unix (SU) that is
under John Stockwell’s leadership.

Joint Projects with Shell International E&P and Total

Roel Snieder and CWP student, Matt Haney, are continuing their collaboration with Jon Sheiman
at Shell International E&P in Houston on a project to relate physical properties of fault zones to the
seismic response from these structures. Though this research is not strictly part of the Consortium
Project, Shell is willing for CWP to share results with Consortium sponsors, within constraints of
Shell’s research agreement.

Henri Calandra, of Total in Houston, has been working with and providing support for the research
that Alison Malcolm and Martijn de Hoop have been doing in data continuation and modeling and
inversion of internal multiples. Total, also, has agreed that their research results and code be available
to CWP sponsors.

We encourage similar types of directly sponsored research with other companies that could lead to
prospective sharing of results with the Consortium.

Papers at SEG and EAGE

Once again, CWP students and faculty presented a large number of papers at the SEG Annual Meet-
ing. During the 2003 Annual Meeting in Dallas, they presented a total of 27 oral presentations, poster
papers, and workshop presentations. A number of these presentations result from the CSM Department
of Geophysics requirement that Ph.D. students must complete research papers in two different areas
with two separate faculty members. The two goals of this policy are to broaden students’ educational
background in geophysics and to encourage students to embark on research early in their Ph.D. studies.

CWP personnel also presented four papers at the EAGE Meeting in Stavanger, Norway.

Summer School on Uncertainty

Roel Snieder is co-organizer of the summer school “Mathematical Geophysics and Uncertainty in
Earth Models,” which will be held for two weeks, June 14-25, 2004, at Colorado School of Mines.
Instructors and speakers for this school include noted individuals from the mathematics community as
well as geophysicists from the global and exploration communities.

Interaction with Other Research Projects at CSM and Elsewhere

During this past year, as in previous years, faculty and students of CWP have interacted closely with
CSM students and faculty members of other industry-funded research projects in the CSM Department
of Geophysics. These include the Reservoir Characterization Project (RCP), led by Tom Davis; the
Physical Acoustics Laboratory (PAL), led by John Scales and Kasper van Wijk; the Center for Rock
Abuse, led by Mike Batzle; and the Gravity/Magnetics Project (GMP), led by Yaoguo Li. Some CWP
students receive joint support from these other consortia.
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Annual Project Review Meeting

This year’s Annual Project Review Meeting, May 10-13, 2004, will be held for the first time in Estes
Park, Colorado. During the 3.5-day meeting, students and faculty will present more than 20 papers. In
addition, the program will have two guest speakers from industry: Jon Sheiman, of Shell International
E&P, in Houston, and Ben White, of Exxon Corporate Strategic Research, in Annandale, New Jersey.
A tradition of recent years is that, prior to the opening reception for the Meeting, we hold a tutorial
for sponsors on a topic of particular interest within CWP. This year, Ilya Tsvankin will give a tutorial
entitled “Seismic amplitude analysis in anisotropic media.” Four years ago, Ilya and Vladimir Grechka
gave a tutorial overview of CWP developments on anisotropy that expanded into a well-received two-day
SEG short course.

Visitors to CWP

CWP has benefited again this year from visits by a number of scientists and friends from other
universities and industry. We strongly encourage visits from our sponsor representatives, whether it be
for a single day, or for an extended period. Below is a list of those who spent time at CWP:

e Adrianus T. de Hoop, Delft University of Technology; one week in October for collaboration with
Martijn;

e Ivan Vasconcelos, Visiting Scholar from University of San Paulo; July through November, 2003;
now a PhD student in CWP;

Bill Dragoset, WesternGeco, two days of seminars and meetings with Roel and Ken, March, 2004;

Mark Vrijlandt, Visiting Student from Utrecht University working with Roel, July, 2003 through
February, 2004;

David Eckert, Visiting Scholar from Total, France; January 2003 through May 2004;

Guust Nolet, Princeton, University, April 11-13, 2004;

e Jim Gaiser, WesternGeco, Denver, numerous visits as participant in A-team, and speaker.

Travels and Activities of CWP People
Interactions and collaborations with others have taken place away from Golden and across the Net

as well as in Golden. Collaborations and activities elsewhere include the following.

Norm Bleistein —

e two talks at biannual meeting of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, Septem-
ber 14-18, 2003;

e CGS-SEG Meeting in Beijing, China, March 26-April 5, 2004; collaboration with Professor Guan-
quan Zhang, Academica Synica, Beijing;

e PIMS Workshop, Calgary, Canada, July 20-25, 2003;

e Alexander von Humboldt Foundation Senior Fellowship, University of Karlsruhe, Germany, August
1-November 30, 2003;

e lectured Charles University, Prague; Ecole des Mines, Paris; IFP, Paris.
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Ken Larner —

received the Petr L. Kapitsa Gold Medal of the Russian Academy of Natural Sciences during the
Moscow 2003 International Conference and Exhibition of the EAGO, SEG, and EAGE, Moscow,
September 1-4, 2003

Martijn de Hoop -

co-organizer and presenter at opening workshop at IPAM (UCLA), May 18-23, 2003;

invited presentation at 5th Intl. Congress on Industrial and Applied Mathematics, Sydney, Aus-
tralia, July 5-12, 2003;

Co-organizer and speaker at PIMS Workshop, Calgary, Canada, July 20-28, 2003;

invited speaker at Opening Conference: Year on Inverse Problems, Helsinki, Finland, August 25-29,
2003;

invited speaker at symposium honoring Bjorn Ursin, Trondheim, Norway, September 9-13, 2003;
invited Core Participant at IPAM, California, November 9-21, 2003;

Guest Professor at Innsbruck University, Innsbruck, Austria, December 2003;

interaction with Henri Calandra of Total in Houston, January 23, 2004;

invited research and colloquia with G. Makrakis, Crete, Greece, March, 2004;

Plenary Speaker at RPI Opening Conference of Institute for Inverse Problems, Boston, April 4-6,
2004.

Roel Snieder —

UNAVCO Meeting, Feb. 26-27, Boulder, CO;
EAEG Workshop on Faults and Top Seals, September 8-11, Montpellier, France;
AGU Meeting, December 7-10, 2003, San Francisco;

Invited seminar at Mayo Clinic, Rochester, MN, January 16, 2004.

Ilya Tsvankin -

Anisotropy SEG Short Course, October 25 - 31, 2003, Dallas, TX.

Our students traveled considerably as well. Alison Malcolm presented a paper at the PIMS Workshop,
Calgary, Canada, July 28, 2003, and made two trips to Total US E&P Services, Houston, in Spring

2004,

for collaborative research. Pawan Dewangan participated in the Indian Geophysical Conference

in Iderabad, January 12-15, 2004. Alex Gret presented a paper at the AGU Meeting, December 7-15,

2003.

Matt Haney had extended visits for collaborations with Jon Sheiman at Shell Bellaire Research
Centre, Houston, February 15-March 3, 2004, and again March 29-April 7, 2004. He also conducted
computer experiments for the Shell Project in Princeton, NJ, July 13-20, 2003
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CWP-474

Anisotropic migration velocity analysis: Application to
a data set from West Africa

Debashish Sarkar and Ilya Tsvankin

Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines, Golden, CO 80401-1887, USA

ABSTRACT

Although it is widely recognized that anisotropy can have a significant influ-
ence on the focusing and positioning of migrated reflection events, conventional
imaging methods still operate with isotropic velocity fields. Here, we present
an application of a migration velocity analysis (MVA) algorithm designed for
factorized v(z,2) VTI (transversely isotropic with a vertical symmetry axis)
media to an offshore data set from West Africa. By approximating the subsur-
face with factorized VTI blocks, it is possible to decouple the spatial variations
in the vertical velocity from the anisotropic parameters with minimal a priori
information.

Since our method accounts for lateral velocity variation, it produces more ac-
curate estimates of the anisotropic parameters than those previously obtained
with time-domain techniques. The values of the anellipticity parameter 5 found
for the massive shales exceed 0.2, which confirms that ignoring anisotropy in
the study area can lead to substantial imaging distortions, such as misstacking
and mispositioning of dipping events. While some of these distortions can be
removed by using anisotropic time processing, further marked improvement in
image quality is achieved by prestack depth migration with the estimated fac-
torized VTI model. In particular, many fault planes, including antithetic faults
in the shallow part of the section, are better focused by the depth-migration
algorithm and appear more continuous. Anisotropic depth migration also facil-
itates structural interpretation by eliminating false dips at the bottom of the
section and improving the images of a number of gently dipping features.

One of the main difficulties in anisotropic MVA is the need to use a priori
information for constraining the vertical velocity. In this case study, we suc-
cessfully reconstructed the time-depth curve from reflection data by assuming
that the vertical velocity is a continuous function of depth and estimating the
vertical and lateral velocity gradients in each factorized block. If the subsurface
contains strong boundaries with known jumps in velocity, this information can
be incorporated into our MVA algorithm.

Key words: transverse isotropy, factorized media, velocity analysis, prestack
migration, field data, P-waves

1 INTRODUCTION

Since most subsurface formations are both heteroge-
neous and anisotropic, building physically realistic ve-
locity models from reflection data remains a highly chal-
lenging problem. Conventional velocity-analysis meth-

ods, which range from those employing simple analytic
functions (e.g., Faust, 1951, 1953; Gardner et al., 1974)
to sophisticated tomographic schemes (e.g., Stork, 1988,;
Liu, 1997; Meng, 1999; Chauris and Noble, 2001), are
designed to account for smooth spatial velocity varia-
tions but still ignore anisotropy. Their application often
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Figure Al. (a) Comparison of the true (solid line) and esti-
mated (dashed line) vertical velocity Vpg for a VTI medium
with Vpg(z) = 200040.000122 (z is in meters, Vpq is in m/s),
¢ = 0.3, and § = 0.1. The migration velocity analysis was per-
formed for three factorized v(z) layers with the boundaries
marked on the plot. The reflectors are spaced every 500 m,
and the maximum offset is equal to 4000 m. The interval pa-
rameters (subscript “M”) were estimated using the moveout
associated with two reflectors in each factorized layer. (b)
Image gathers obtained after prestack depth migration with
the estimated parameters shown on plot (a).

moveout associated with two reflectors for each fac-
torized v(z) layer, we obtained a piecewise factorized
medium with the function Vpo(z) that closely repro-
duces the true nonlinear vertical-velocity variation (Fig-
ure Ala). The vertical velocity at the top of the model
was fixed at the correct value, while the velocities in the
two deeper layers were found under the assumption that
Vpo is a continuous function of depth. The accuracy of
the estimated three-layer factorized model is confirmed
by the flat image gathers in Figure Alb.

The success of the piecewise-linear velocity approx-
imation, however, depends on whether the available re-
flectors sample the velocity function in sufficient detail.
Consider the same true medium as that in Figure Al,
but now with only two reflectors (located at depths
of 1500 m and 2500 m) available for velocity analysis.
In this case, our MVA algorithm can estimate the pa-
rameters of just one factorized v(z) layer (Figure A2a).
As illustrated by the image gathers in Figure A2b, the
events associated with the reflectors used in the velocity
analysis are flat. Events both above 1500 m and below
2500 m, however, are overcorrected because the NMO
velocities for them are too low. Clearly, no single fac-
torized medium can properly image reflection events for
the whole range of depths.
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Anisotropy velocity analysis 11
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Figure A2. Same as Figure A1, but the MVA was performed
for a single factorized v(z) layer using the moveout associated
with the reflectors at depths 1500 and 2500 m (marked by
the arrows).




CWP-475

Nonhyperbolic moveout inversion of P-waves in
azimuthally anisotropic media: Algorithm and
application to field data

Ivan Vasconcelos & Ilya Tsvankin
Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines

ABSTRACT

The azimuthally varying nonhyperbolic moveout of P-waves in orthorhombic
media can provide valuable information for characterization of fractured reser-
voirs and seismic processing. Here, we present a technique to invert long-spread,
wide-azimuth P-wave data for the orientation of the vertical symmetry planes

and five key moveout parameters — the symmetry-plane NMO velocities Vn%)o

and V&), and the anellipticity parameters n(?), 52, and 7. The inversion al-
gorithm is based on a coherency operator that computes the semblance for the
full range of offsets and azimuths using a generalized version of the Alkhalifah-
Tsvankin nonhyperbolic moveout equation. To make the 3D semblance search
more efficient, the starting model is obtained by estimating the NMO ellipse
from the hyperbolic moveout term and applying 2D inversion of nonhyperbolic
moveout for the parameters (1) and 7(? in the symmetry-plane directions.

The moveout equation provides a close approximation to the reflection travel-
times in layered anisotropic media with a uniform orientation of the vertical
symmetry planes. Numerical tests on noise-contaminated data for a single or-
thorhombic layer show that the inversion yields satisfactory results if the offset-
to-depth ratio reaches at least 2.5. The best-constrained parameters are the

azimuth ¢ of one of the symmetry planes and the velocities V,,(,ln)0 and ‘/,1(31)0,
while the resolution in (1) and 7(® is somewhat compromised by the tradeoff
between the quadratic and quartic moveout terms. The largest uncertainty is
observed in the parameter 53, which influences only long-spread moveout in
off-symmetry directions.

The symmetry-plane orientation ¢ can still be estimated, albeit with a lower ac-
curacy, if an orthorhombic layer is overlain by an azimuthally isotropic medium.
For more complicated stratified models with depth-dependent symmetry-plane
azimuths, the moveout equation has to be modified by allowing the orientation
of the effective NMO ellipse to differ from the principal direction of the effective
quartic moveout.

The inversion algorithm was successfully tested on wide-azimuth P-wave reflec-
tions recorded at Weyburn Field in Canada. Taking azimuthal anisotropy into
account increased the semblance values for most long-offset reflection events in
the overburden, which indicates that fracturing is not limited to the reservoir
level. The estimated symmetry-plane directions are close to the azimuths of the
off-trend fracture sets determined from borehole data and shear-wave splitting
analysis. Estimated values of effective anellipticity parameters reach values as
large as 0.25; a more detailed interpretation of the results, however, requires
layer-stripping of the nonhyperbolic moveout term. The effective moveout pa-
rameters estimated by our algorithm also provide input for P-wave time imaging
and geometrical-spreading correction in layered orthorhombic media.

Key words: azimuthal anisotropy, nonhyperbolic moveout, parameter estima-
tion
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Figure 1. Orthorhombic models are characterized by three
mutually orthogonal planes of mirror symmetry. Effective or-
thorhombic anisotropy may be caused by parallel, vertical,
penny-shaped cracks embedded in a VTI matrix.

bic layer. Al-Dajani et al. (1998) demonstrated that
the Tsvankin-Thomsen equation can be applied in off-
symmetry directions as well by making the moveout co-
efficients Az, A4, and A azimuthally dependent:

Ag(a)z?

T?(z,a) = Ao + Az(a)z® + T A (1)

AO = T02 ] (2)

Aafe) = G| O
1 d dT?

Ag(a) = 2 d—(avT)- m i (4)

Here T is the reflection traveltime, z is the source-
receiver offset, o is the azimuth with respect to the
[z1, 23] symmetry plane, Tp is the zero-offset time, A2 =
1/ViZ,, controls the hyperbolic portion of the moveout
curve, and A4 is the quartic moveout coefficient that ac-
counts for nonhyperbolic moveout at long offsets. The
parameter A was introduced by Tsvankin and Thomsen
(1994) to make T'(z) convergent at £ — oco:

Ay (a) .
Vh_of(a) - Vn:nzo(a) 7
Vhor is the horizontal group velocity.

The quadratic moveout coeflicient A2 depends on
the azimuthally varying NMO velocity described by the
equation of an ellipse (Grechka and Tsvankin, 1998a).
In a single horizontal orthorhombic layer, the axes of
the NMO ellipse are aligned with the vertical symmetry
planes:

Ala) =

()

Az(a) = AV sin? a + AP cos® (6)

1 1
A(l) = ) A(2) = ) (7)
Pwle T we

where V&, and Vi), are the NMO velocities in the
symmetry planes [z2,z3] and [z1, 23], respectively (the
superscript denotes the axis orthogonal to the plane; see
Appendix A for details).

Al-Dajani et al. (1998) showed that the azimuthal
dependence of the quartic moveout coefficient A4 in an
orthorhombic layer has the following form:

Ag(a) = AP sin® a + AP cos® a + AP sin® & cos® .

8
The coefficients Afll) and Aff) control nonhyperbolic
moveout in the symmetry planes, while Aff) is a cross-
term that contributes to long-offset traveltimes in off-
symmetry azimuthal directions. All three coefficients in
equation (8) can be expressed through the symmetry-
plane NMO velocities and the anellipticity parameters
723 defined in Appendix A. Substitution of equa-
tions (8) and (6) into the moveout equation (1) yields
a close approximation for P-wave reflection traveltimes
up to offset-to-depth ratios of about three (Al-Dajani et
al., 1998).
For moveout inversion it is more convenient to use
a simplified form of the general equation (1) based on
the approximate kinematic equivalence between verti-
cal planes of orthorhombic and VTI media (Xu et al.,
2003). As discussed in Tsvankin (1997, 2001), kinematic
signatures and plane-wave polarizations in the vertical
symmetry planes of orthorhombic models can be de-
scribed by the corresponding VTI equations. This anal-
ogy with VTI media is no longer exact for off-symmetry
directions, but it remains valid for P-wave kinematics
in the weak-anisotropy approximation. P-wave phase
velocity and all other 2D kinematic signatures in any
vertical plane of weakly anisotropic orthorhombic me-
dia can be adapted from the VTI equations by using
azimuthally-dependent Thomsen parameters € and §
(Tsvankin, 1997, 2001). Therefore, the widely used non-
hyperbolic moveout equation for VTI media in terms of
Vamo and 7 (Alkhalifah and Tsvankin, 1995; Tsvankin,
2001) can be applied to orthorhombic media by making
both parameters functions of azimuth (Xu et al., 2003):

2
F@ =8+
_ 2n(a)z* . ()
Vimo(@) [t§Viimo (@) + (1 + 2n(a))z?]’
_ sin?(a — )  cos*(a— @)

Vnmzo(a) = [Vn(rln)o]z [Vn(r%l)o]Q ’ (10)

n(@) =1 cos”(a — ¢)
—n® cos®(a — ) sin® (@ — ¢) + nVsin’(@ - ),
(11)
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blance and thus invert for all six parameters using the
full range of offsets and azimuths. Since the search does
not start far from the maximum of the objective func-
tion, the algorithm usually converges in less than 20 iter-
ations. If the model includes layers with depth-varying
azimuths of the symmetry planes, the only change in
the inversion methodology described above is that the
3D semblance search is carried out using equation (12)
for () instead of equation (11). During this semblance
search, we estimate the azimuth ¢;, while holding the
orientation of the NMO ellipse (i.e., the azimuth ¢) con-
stant.

4 TESTS ON SYNTHETIC DATA

The main purposes of the synthetic examples below are
to assess if the inversion is sufficiently robust in the pres-
ence of random noise and can provide an accurate esti-
mate of the medium parameters starting from different
initial solutions in the model space. It is also important
to evaluate the performance of the algorithm for layered
media that do not conform to the model assumptions
that underlie equation (9), derived for a homogeneous
orthorhombic layer.

4.1 Single orthorhombic layer

The first test is performed for a single horizontal or-
thorhombic layer using synthetic data generated by
anisotropic ray tracing (Gajewski and Psencik, 1987).
Following the methodolody described above, we start
by estimating the NMO ellipse using source-receiver
pairs with offset-to-depth ratios less than one, which
gives initial values for the symmetry-plane azimuth
@ = 130° and the velocities Vo = 2345 m/s and
Vide = 2715 m/s (the model parameters are listed
in the caption of Figure 2). The high semblance value
(0.97) and the accurate estimate of ¢ confirm that
the reconstructed NMO ellipse provides a good fit
to conventional-spread data. The deviations of the
symmetry-plane NMO velocities from the actual val-
ues are caused by the small influence of nonhyperbolic
moveout unaccounted for at this stage of the inversion.

Next, we form two azimuthal sectors 10° wide
around the identified symmetry-plane directions and
carry out 2D nonhyperbolic moveout analysis in these
sectors to obtain approximate values of ") and 5‘®.
The results are displayed in Figure 2 as functions of
Vamo and the horizontal velocity Vior = Vamo /1 + 27
related to the corresponding 7 coefficient. The errors in
both 1 parameters are largely caused by the azimuthal
variations in traveltimes within both azimuthal sectors.
Using these initial values, we carry out the 3D nonhy-
perbolic moveout inversion for the whole data set and
obtain the followin% estimates of the model parame-
ters: ¢ = 130°, Vimo = 2277 m/s, Vii&, = 2703 m/s,

7™M =0.19, n® = 0.06, and n® = 0.12; the semblance
for the best-fit model is 0.885.

Although the algorithm in this noise-free test was
able to converge toward the correct model, it is impor-
tant to identify possible tradeoffs among the medium
parameters by studying the shape of the objective func-
tion. To quantify such tradeoffs, we hold four model
parameters at the correct values and compute the ob-
jective function near the actual solution as a function
of the remaining two parameters. Figure 3 shows the
semblance scan over the parameters V&, and 7® com-
puted from equation (9) using the correct values of ¢,
Vn(rln)o, 7™, and ®. Clearly, there exists a family of
models with a relatively wide range of 7® values that
fit the data, whereas the velocity Vi, is constrained
much more tightly.

This tradeoff between V%, and n® has the same
character as the interplay between the NMO velocity
and 7 in VTI media (Grechka and Tsvankin, 1998b;
Tsvankin, 2001). Relatively small percentage errors in
Vi), can be compensated by larger absolute errors in
7® in such a way that the reflection traveltime stays
almost the same. The ambiguity in 7‘® can be substan-
tially reduced by increasing the offset-to-depth ratio z/z
from two to three, as illustrated in Figure 3.

Large offset-to-depth ratios are also necessary to es-
timate the other two anellipticity coefficients, ‘¥ and
7, which contribute only to nonhyperbolic moveout
on long spreads. Still, since the parameter 7® has no
influence on reflection traveltimes near both symmetry
planes, it is not well constrained even for z/z = 3 (Fig-
ure 4a). In contrast, the inversion algorithm yields a
highly accurate estimate of the azimuth ¢ (Figure 4b)
because the orientation of the symmetry planes can be
inferred from both the NMO ellipse and azimuthally
varying nonhyperbolic moveout.

Figure 5 confirms that the inversion results for 7,
as well as for the other parameters (not shown), are
not sensitive to random (Gaussian) noise. The signal-
to-noise ratio (S/N) in this test is defined as the ratio
of the maximum absolute values of the signal and noise
amplitude on each trace. The stability of the parameter
estimation in the presence of random noise is not sur-
prising because our algorithm is based on the semblance
(coherency) operator (13).

4.2 Layered anisotropic media

Although equation (9) is designed for a single or-
thorhombic layer, we expect it to remain adequate for
layered media with a uniform orientation of the verti-
cal symmetry planes. If the medium above the reflector
is multilayered, the moveout coefficients become effec-
tive quantities that incorporate the influence of both
anisotropy and vertical heterogeneity. For example, the
effective NMO ellipse can be found from the Dix-type
averaging of the interval ellipses described by Grechka et
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Figure 3. Semblance scans over V,,(,"I,)o and 7(?) computed from equation (9) for the following offset-to-depth ratios: (a) x/z=2;
(b) x/2=2.5; (c) x/z=3. The model is the same as that in Figure 2; the parameters ¢, Vn(é,)o, 7, and ) are fixed at the

correct values.

5 FIELD-DATA EXAMPLE

We applied the moveout inversion algorithm to wide-
azimuth data acquired at Weyburn Field located in
the Williston basin in Canada. This multicomponent
data set was processed and interpreted by the Reser-
voir Characterization Project at the Colorado School
of Mines with the main goal of dynamic monitoring of
the CO2 flood in the fractured reservoir. Jenner (2001)
identified the presence of laterally varying azimuthal
anisotropy at the reservoir level by computing the in-

terval P-wave NMO ellipses and performing azimuthal
AVO (amplitude variation with offset) analysis. The az-
imuthal dependence of the P-wave signatures in the
overburden was found to be much less pronounced (Jen-
ner, 2001).

The most reliable indicator of azimuthal anisotropy
is shear-wave splitting at near-vertical incidence, which
was studied at Weyburn Field by Cardona (2002). Com-
parison of the S-wave polarization directions with the
orientation of the NMO ellipse allowed him to discrim-
inate between different anisotropic symmetries at the
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Figure 6. Semblance scans for the reflection from the bottom of a model composed of two layers with equal thickness. The
orthorhombic layer from Figure 2 is overlain by (a) VTI layer with Vamo = 2158 m/s and n = 0.196; (b), (c) orthorhombic

layer with a different orientation of the symmetry planes (¢ = 90°) and the parameters Vn(,ln)o = 2156 m/s, Vo

(2)

mo —

2534 m/s,

71 = 0.398, 7 = 0.211 and 7 = 0.193. The parameter estimation was performed using equation (11) for plot (b) and

equation (12) for plot (c).

ner than half the dominant wavelength, which is below
the vertical resolution of any traveltime method. In his
estimation of the interval NMO ellipses, Jenner (2001)
had to combine the reservoir with some underlying beds
into a single coarse layer.

Still, our methodology can be used to improve the
velocity model of the overburden, which consists of the
four main horizons marked in Figure 8. Adam et al.
(2002) carried out anisotropic inversion of 3D walkaway
VSP (vertical seismic profiling) data acquired above the
reservoir and concluded that the results can be largely
explained by a VTT model. The shear-wave splitting ob-

served by Cardona (2002) above the Lower Vanguard,
however, is indicative of azimuthal anisotropy in the up-
per part of the overburden.

The 3D nonhyperbolic moveout inversion [using
equation (11) for n(a)] was applied to P-waves col-
lected into two 9x9 superbins, one of which is centered
at CMP 10103 and the other at CMP 10829. (Figure 8).
Clearly, anisotropy is quite substantial through most of
the overburden, with 7 values reaching 0.25 for the re-
flection from the deepest interface (the Mississippian
unconformity). The semblance scans in Figure 9 demon-
strate that the resolution in ® (and the other anellip-
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Figure 8. Final inversion results for the reflections from (a) the Viking horizon, the maximum offset-to-depth ratio z/z = 2.5;
(b) the Blairmore, z/z = 2.0; (c) the Lower Vanguard, z/z = 1.9; and (d) the Mississippian Unconformity, z/z = 1.8. The
arrows mark the estimated direction of the semi-major axis of the NMO ellipse; the number by each arrow is the azimuth of

the axis with respect to the north.

the Lower Vanguard contributes to the nonhyperbolic
moveout of the Mississippian Unconformity event, but
the symmetry within this interval may be close to VTI,
which agrees with the results of Cardona (2002).

6 DISCUSSION AND CONCLUSIONS

Long-spread moveout of P-waves in orthorhombic me-
dia with a horizontal symmetry plane is governed by the
azimuth ¢ of one of the vertical symmetry planes, the
symmetry-plane NMO velocities V&), and Vn(r%))o, and
the anellipticity parameters V), n® and 7®. Here,
we apply a modified version of the nonhyperbolic move-
out equation of Alkhalifah and Tsvankin (1995) to in-
vert for these six parameters from wide-azimuth, long-
offset data. The inversion algorithm is organized as a
three-step procedure that starts with estimation of the
NMO ellipse on conventional-length spreads using the
method of Grechka and Tsvankin (1999a). After eval-
uating the azimuths of the symmetry planes and the
velocities Vi and ViZ, from the NMO ellipse, we per-
form 2D inversion for the parameters 7*) and 7® in
the symmetry-plane directions. Then the obtained ini-
tial values of the moveout parameters are used in a
global semblance search that operates with data for all
available offsets and azimuths.

Although our moveout equation is based on the
analogy with VTI media, which is not strictly valid
in off-symmetry directions, the inversion provides suf-

ficiently accurate results for a single horizontal layer of
orthorhombic symmetrgr. Since the azimuth ¢ and the
velocities VL), and V.2, define the NMO ellipse, they
are constrained better than are the parameters 17(1),
7™, and n®, which make a significant contribution
to the traveltimes only for large offset-to-depth ratios
(e.g., ¢/z exceeding two). As is the case for VTI media,
estimation of the a.nellipticit(y parameters is hampered
by the tradeoffs between Viado and 7V, and between

2), and 7 (Grechka and Tsvankin, 1998b). These
tradeoffs can cause substantial uncertainties in 7‘*) and
7™ if the data are contaminated by correlated noise
and the maximum ratio z/z is smaller than 2.5. The
least-constrained model parameter is 7® because it in-
fluences only long-spread moveout in off-symmetry di-
rections.

Although the moveout equation used here was orig-
inally designed for homogeneous media, it provides a
close approximation for P-wave nonhyperbolic move-
out in layered azimuthally anisotropic models with a
uniform direction of the vertical symmetry planes. The
accuracy of estimating the symmetry-plane azimuth ¢,
however, is reduced if an orthorhombic layer is overlaid
by a relatively thick azimuthally isotropic (e.g., VTI)
overburden.

If the orientation of the symmetry planes varies
with depth, our moveout equation is less accurate, and
the semblance values become smaller. Still, the time
residuals after the inversion may be relatively small (less
than 1% of the zero-offset time in the example given
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Figure 10. Semblance scans over Vn(,z,,,)o and ¢ at CMP 10103 for the reflections from (a) the Viking horizon; (b) the Blairmore;
(c) the Lower Vanguard; and (d) the Mississipian Uncoformity. The azimuth ¢ is measured counterclockwise from the survey’s

z-axis, which points eastward.

imuths of the off-trend fracture sets in the area.
Also, our conclusion that the magnitude of azimuthal
anisotropy is significant mostly in the shallow part of the
section (above the Lower Vanguard horizon) is in agree-
ment with the shear-wave splitting analysis of Cardona
(2002). A more detailed interpretation of the inversion
results is impossible without layer-stripping the effec-
tive values of the anellipticity parameters obtained from
nonhyperbolic moveout. The interval parameter estima-
tion, which is currently under development, should allow
us to not only remove the influence of vertical hetero-

geneity on nonhyperbolic moveout, but also treat lay-
ered models with depth-varying orientation of the sym-
metry planes.

It should be emphasized that while fracture char-
acterization and lithology discrimination require the in-
terval anellipticity parameters in the horizon of interest,
the effective values of 72® and VL2 are sufficient
for several important applications in seismic processing.
For example, Xu and Tsvankin (2004) develop a correc-
tion for geometrical spreading in layered orthorhombic
media based on equation (9) with the effective move-
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APPENDIX A: NOTATION FOR
ORTHORHOMBIC MEDIA

Seismic inversion and processing for orthorhombic me-
dia (see Figure 1) can be facilitated by combining the
stiffness coefficients in a way that simplifies analytic
description of seismic signatures. The identical form
of the Christoffel equation in the symmetry planes of
orthorhombic and TI media allowed Tsvankin (1997)
to introduce a notation based on the same principle

as Thomsen (1986) parameters for vertical transverse
isotropy. This notation contains two reference velocities
(the vertical velocities of the P-wave and one of the split
S-waves) and seven dimensionless anisotropic parame-
ters defined in the symmetry planes by analogy with
the VTI coefficients ¢, 4, and ~:

e Vpo — the P-wave vertical velocity:

Vo = ‘/9;—3 (p is the density) . (A1)

e Vso — the vertical velocity of the S-wave polarized
in the z;-direction:

Cs5
Vso=,/—. A2
50 ,/ ) (A2)

e ¢ — the VTI parameter € in the [z1, z3] symmetry
plane (the superscript “2” refers to the orthogonal axis
.’l:z):

{0z s (43)

o 6® — the VTI parameter § in the [z1, z3] plane:

@ _ (c13 + cs5)® — (cas — c55)°
o= 2c33 (c3s — cs5) ' (A4)

e ¥ — the VTI parameter v in the [z1, z3] plane :

(2) — C66 — Caa A
T E (A5)

o ¢V — the VTI parameter € in the [z2, 3] symmetry
plane:

(1) — C22 —C33 A6
= (A6)

e 1) — the VTI parameter § in the [z2, z3] plane:

1) — (cas + caa)® — (c3s — cas)? A
o= 2c33 (€33 — caa) ’ (A7)

e ¥ — the VTI parameter v in the [z2, z3] plane:

(1) — C66 — C55 A
vUE (A8)

e 6 — the VTI parameter § in the [z1, 2] plane (z1
plays the role of the symmetry axis):

@ — (az+ ce6)? — (c11 — ces)? A
= 2c11 (c11 — ces) : (A9)

Tsvankin (1997, 2001) shows that this notation pro-
vides a convenient description of phase and NMO veloc-
ities, reflection coefficients, and other signatures both
within and outside the symmetry planes. Also, P-wave
velocities and traveltimes (including reflection moveout)
depend on just six parameters (Vpo, €1, §1), ¢ §*),
and 6®) and the orientation of the symmetry planes,
rather than on nine coefficients in the conventional (c;;)
notation.
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ABSTRACT

In this paper we use methods from microlocal analysis and the theory of Fourier inte-
gral operators, to study the downward continuation approach to seismic inverse scat-
tering in the Kirchhoff approximation. Furthermore, we explain, analyze and connect
different notions and processing procedures that appear in seismic imaging-inversion.
These are ‘downward continuation’ with the ‘double-square-root equation’, ‘controlled
illumination’, ‘common-focus-point technology’, (wave-equation) ‘angle transform’,
and the ‘Bremmer coupling series’.

Key words: seismic inversion, Kirchhoff approximation, downward continuation, mi-

crolocal analysis

1 INTRODUCTION

In reflection seismology one places point sources and point re-
ceivers on the earth’s surface. The source generates acoustic
waves in the subsurface, that are reflected where the medium
properties vary discontinuously. The recorded reflections that
can be observed in the data are used to reconstruct these dis-
continuities. This reconstruction is called seismic imaging-
inversion.

The first key objective of this paper is to explain, analyze
and connect different notions and processing procedures that
occur in seismic imaging-inversion, in the framework of mi-
crolocal analysis. These are ‘downward continuation’ (Clay,
1978; Claerbout, 1985; Popvici, 1996), ‘controlled illumina-
tion’ (Rietveld, Berkhout and Wapenaar, 1992), ‘common-
focus-point technology’ (Thorbecke, 1997), ‘(wave-equation)
angle transform’ (De Bruin et al. 1990; De Haas, 1992; Prucha,
Biondi and Symes, 1999; Fomel and Prucha, 1999), ‘Brem-
mer coupling series’ (Mendel et al. 1981; De Hoop, 1996),
and ‘Kirchhoff approximation’ (Bleistein et al. 2001). From
a mathematical perspective this paper is a follow-up and an
application of the work by Stolk and De Hoop (2001) on the
downward continuation approach to seismic inverse scattering
in the Born approximation.

Seismic data are commonly modeled by a high-frequency
single scattering approximation. In what follows, we distin-
guish the vertical coordinate z € R from the horizontal coor-
dinates € R™~" and write (z, z) € R™. In these coordinates

the scalar acoustic wave equation is given by
a 2 n—1
Pu=f, P =c(z,z)_25t— +) DI, +DI, (1)
j=1

where D, = —iZ, D, = —iZ. The equation is considered
for (z,2) € R™, and t in an open time interval (0, T').

By Duhamel’s principle, a causal solution operator for the
inhomogeneous equation (1) is given by

u(z, z,t) =/0t/

G(z, z,t — to, o, 20) f (0, 20, to) dzodzodto, (2)

where (when the coefficient ¢ is in C°°) G defines a Fourier
integral operator with canonical relation that is essentially a
union of bicharacteristics. The source f is a distribution in
E'(Xo x (0,T)) where Xo is a bounded open subset of R™.
The kernel of the Fourier integral operator can be written as a
sum of contributions

G(z, 2,t, %0, 20) = Z/Nm a9 (z, 2, t,xo, 20, 6)
R

jeJ
explip¥)(, 2, zo, 20,t,60)] 48, (3)

where the ¢/ are non-degenerate phase functions and the a(?)
are suitable symbols, see section 4.2.1 and chapter 5 in Duis-
termaat (1996); J is a finite set. Away from endpoint caustics,
the only phase variable is frequency, § = 7, and the phase
function takes the form ¢™) = 7(T(™)(z, 2, o, 20) — t),
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singularities. The perturbation in G is given by (see e.g. Beylkin (1985))
t
0G(zr, 1 t,25,8) = / 1/ G(zr,7,t — to, 20, T0) 2¢5 > (20, T0)dc(20, To) X OZOG(zo,mo,to,zs, 8) dtodzodzo, (7)
]R+)<R"'

where both 8,7 € R™"!. The Born modeling map F is then defined through (7) as the map from dc to §G evaluated at the
acquisition surface, here z, = z; = z = 0. We assume that the acquisition manifold Y, which contains the set of points (s, r,t)
used in the acquisition, is a bounded open subset of R*®~2 x Ry. Since Y is bounded and the waves propagate with finite speed
we may assume that dc is supported in a bounded open subset X of Ry x R™~!. Furthermore, we assume that X N {z = 0} = 0.

To ensure that §G defines a continuous map from £'(X) to D'(R™ x R™ x (0,T)), and that the restriction of §G to Y is a
Fourier integral, operator we make the following assumption on co

Assumption 1. There are no rays from (0, s) to (0, r) with travel time ¢ such that (s, r,t) € Y. For all ray pairs connecting (0, r")
via some (z,z) € X to (0, s) with total time ¢ such that (s, r,t) € Y, the rays intersect the plane z = 0 transversally at 7 and s.

We also assume that rays from such a point (2, ) € X intersect the surface z = 0 only once, because all reflections must come
from the subsurface z > 0. The first part of the assumption excludes rays that scatter over 7; the second part of the assumption
excludes rays grazing the plane z = 0. Concerning the second part, strictly only caustics grazing the plane 2 = 0 have to be
excluded. We have

Theorem 2.1. (Rakesh, 1988; ten Kroode, 1998) With Assumption 1 the map F is a Fourier integral operator D’ (X) — D'(Y)
with canonical relation

{(ma(ts, 2,2, 8,7), M (be, 2, T, @, T), bs + tr, Mg (Es, 2, 2, B, 7), e (b, 2,2, 0, T), T3 2,2, (, €) |
ts,tr > 0, ns(ts, 2,%, 8,7) = 0: (b, 2,2,0,7) =0, (¢, €) = ~7co(2,2) ™ (@ + B),
(2,7,0,8,7) € subsetof X x (") x R\0} C T*RIy, ) X T*RG, o). (8)
Assumption 1 is microlocal. One can identify the set of points (s, 7,t,a, p,7) € T*Y\0 where this assumption is violated. If

the symbol ¢ = (s, r,t, o, p, ) vanishes on a neighborhood of this set, then the composition ¢ F of the pseudodifferential cutoff
¥ = 9(s,n,t, Ds, D, D;) with F is a Fourier integral operator as in the theorem.

Kirchhoff approximation

We make use of the above insights in the development, here, of the theory for seismic modeling and inverse scattering in the
downward continuation approach (Claerbout, 1985) rather than the reverse time approach, and in the Kirchhoff approximation
(Bleistein et al. 2001) rather than in the Born approximation. We discuss the Kirchhoff approximation in this section and integrate
it in the downward continuation approach to modeling seismic data in the next two sections.

Typically, in the Kirchhoff approximation we assume dc to be a conormal distribution representative of interfaces reflecting
waves off sedimentary layers, faults and so on. Let

ke (z,2) 0 (2(2,2),2'(2,2)) (©)
———— - —
k1(z,2)  K2(z,2)

be a coordinate transformation such that a reflecting interface, ¥ say, is given by the zero level set, 2’ (2, ) = 0; thus (2', ') are
‘interface normal’ coordinates. The acoustic Kirchhoff approximation (Bleistein et al. 2001, E.6.13, E.8.17, 5.1.45-5.1.46), (Stolk
and De Hoop, 2002, Thm. 3.6.1) can be written in the form

t
JG(zr,r,t,za,s)=/ /G(zr,r,t—to,z(z',x'),:c(z',z'))26¢0R(z',x',Dz:,Dto)
0

ro ro B(Z,:L‘)
G(z(2',z'),z(2',z'), to, 2s, ) det—a(z',x') ”B(, ) §(2')d2'dz’ dte.  (10)
07
3(.7) §(Z' (z,z)) dzdz

Here, we assume the presence of a single interface but the extension to multiple interfaces is straightforward. In expression (10), R
is a pseudodifferential operator. Its principal symbol, 7 = r(2’, z’, ¢', 7) say, is given by the product of the reflection coefficient

JE-Er - 5=l
b
T rlEE + g - rle T

1 2

ro(0,2',¢',7) = )
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Changing variables of integration, i.e. to — t5 = to — fo, (14) can be written in the form of an integral operator acting on a
distribution,

50(0,r,t,0,s)=/ / {// / ( G(o,r,t—t;,—t‘o,z,x)xG(z,fz,t'o,o,s)dt'o)
R+ ]R+ RJRn—1 JRn—1 ]R+

x 204, R (2, z, o, Z, T) §(7'(2,x))dz dz dtﬁ}dzdz. (15)

07
0(z,x)

Using the reciprocity relation of the time-convolution type for the Green’s function, we arrive at the integral representation

t—to
JG(O, rt,0, 8) = 26t/ / {/ / /(/ G(O, rt—1to— t_o, Z, ac) X G(O, S, fo, Z,T) dfo)
R4 JR, LRn-1 JRn-1JR \Jo

x Ri(z,z,t0,%,T) 8(2' (z,2))dZ dz dto}didz. (16)

87
9z, )
The associated operator kernel appears to propagate singularities from two different scattering points, (Z, Z) and (2, z) to the surface
atz = 0.

Microlocally, the extension R with kernel R(2', z', to — fo, 2, ') of the reflection operator R with kernel R = R(z', ', to —
to, Z') can be thought of as

R(Z &' to — 10,2, &) ~ (2r)~ ") /r(z',w',g', 7) x expi((z' — 2')¢' + (&' — &'),&') + (to — to)7)]d(¢, €', 7)
=48(2' — Z)R(, 2’ to — F0, F). (17)
This implies that
R(,z',to — 10,2 ,%)6(2') ~ R(0, 2, to — 0, %) 6(2')6(Z'),

where the product of 8’s is to be interpreted as a tensor product. Subject to the assumption that %L # 0 (cf. (9)), we now write the
solution to 2’ (2, ) = 0 as z = z(z). Then

-1
ah}1

3(m1(z,2)) = |5~

8(z — z(x)),

z=z(z)

and similarly for §(k1(Z, )).
Substituting the change of coordinates (9), yields

Ri(z,x,t0 — to, 2,%)6(2' (2, 7))
~ (27‘_)—71 /’I‘(O, Kz(z, x),&', 1-) exp[i((nz(z,:t) - 52(2, (i),fl) + (to - t_O)T)] d(ﬁ’, T)

x (2m) " / expli(—#1(2 2))'] ¢’ (k1 (2, 7))

- @m) / r(0, Ka(2(z), 2), €, 7) % %

x expli((k2(2(2), 2) — K2(2(2), 2),€') + (to — t0)7)]d(€', 7) 6(2 — 2(2))8(2 — 2(2)). (18)
Let us analyze the contribution to the phase function,

(f2(z(x)a 1") - 52(':(1—:)’ Q: £’>y

o(z,3)

-1 -1

z=z(z) z=2(Z)

that has the property that

where

90 _ Ok O 0z 0z __(9m) T Om
dxr  Orr Oz Oxx’ Oxp 0z Oy’
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Thus, (16) reduces to

t—to
8G(0,7,t,0,5) = 26¢/ {/ / /(/ G(0,7,t — to — to,2,7) x G(0, s, %0, 2, T) dfo)
R4 LURn-1JR"—-1JR \JoO

X R(z,z,to —to,%)0(z — 25) dZ dz dto}dz (23)

if the interface is at depth zs > 0; see Figure 1 for an illustration of the kernel action.

Remark 2.4. In the flat interface case, we can invoke the Weyl calculus for symbols defined on T' *R’(*z )~ Letr denote the principal
part of the Weyl symbol associated with reflection operator R in (23); r is homogeneous of degree zero in (£, 7). Upon substituting
§ =Tpinr =r(z,z,€,7), it follows that the dependence on 7 drops out: r = r(z, z, p, 1). The kernel representation attains the
form

R(z,2,t0 — f0,8) = (2m)~" / [r(z # », 1) + l.o.t.] x expli{(z — 2),p) 7] expli(to — fo)7] |7[* " d(p,7), (24)

which can be written as
R = AEr + lLo.t,, 25)

where A is a convolutional operator with symbol |7|*~*, and E is the transform defined by
_ —(n— _ T+
Br)(e2,t,8) = @m) " [ 5t = (@~ a)p) (= T5 5 p11) dp. 26)

In (24) or (26), inside the p-integral, we observe a separation of midpoint, ﬁzﬁ and offset, ¢ — Z, variables. This representation is
closely related to Gel’fand’s plane-wave expansion. In fact, AE maps the Weyl reflection symbol to fictituous reflection data.

3 THE ONE-WAY WAVE EQUATIONS

In this section, we discuss the solution of the wave equation (1) in the background model (¢(z,z) = co(z, )) by evolution in one
of the space variables (wave field extrapolation). This evolution problem is in general not well posed, but the propagation of the
singularities of the solution can be obtained microlocally, when the propagation direction of the corresponding rays stays somewhat
away from horizontal.

Singularities of solutions to the wave equation, that propagate with non-zero vertical velocity are described by a first order
evolution equation in z. This follows from a well known factorization argument, see e.g. Taylor (1975) and is at the basis of the
generalized Bremmer coupling series. In Stolk (in press) the approximation of solutions to the wave equation, by solutions to an
evolution equation in z is discussed, for the acoustic case. Such an equation is called a one-way wave equation. We summarize the
results we need for the upward/downward continuation approach to modeling seismic data.

To determine whether the velocity vector at some point of the ray is close to horizontal we use the angle with the vertical,
defined to be in [0, 7/2] and given by tan(6) = 1’%” Recall that the propagating singularities are microlocally in the characteristic
set given by (4). Given a point (2, z, £, 7) with ||| < c(z,2)"|7], there are two solutions ¢ to (4), given by { = =+b, where
b =b(z,z,€&, 7) is defined by

b(z,2,€,7) = —TV/c(2,2) 7% — 7722 @7

in seismology, b/ is known as the vertical slowness. The sign is chosen such that { = b corresponds to propagation with
:I:%‘- > 0. There is an angle (phase angle) associated with (z, z, £, 7), given by the solution 8 € [0, w/2] of the equation

sin(0) = ¢(z, z)||7 €] (28)

When this angle is strictly smaller than m/2 along a ray segment, then the vertical velocity d—}f does not change sign, and the ray
segment can be parameterized by z rather than time. The maximal z-interval such that arcsin(c(z, z)||7~*¢||) < @ for given 8
along the bicharacteristic (cf. (6)) determined by the initial values (z, z, b, £, 7), with (£b, £) = —7¢(2,z) ' a, will be denoted

by
(2min,+(2,7,€,7,0), Zmax,+ (2, 2,€, T, 6)). (29)
We also define a subset
Ip = {(2,2,t,(,&,7)| arcsin(c(z, z)||T 7 €])) < 6,]77¢| < C} C T"(R* x Ry), (30)
where ¢(z,2) 7! < C.
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[h]

Figure 2. Illustration of 61, @2, the 91 operator, and propagation of singularities.

The solution operator can also be written as a pseudodifferential cutoff, 1 (20, 2), applied prior to Go,— *,
G- (2, 20) = Go,- (2, 20)%1(20, 2)- (45)

We use the notation y(z, zo, o, to, £o, T) for the bicharacteristics of P, parameterized by z. In components, we write

¥(2, 20, Zo,t0,€0,7) = (2,72(2, 20, %0, &0, T), V(2 20,0, €0, 7) + to, —b(2,Yz,7e, T),Ve(2, 20, %0,60,7), 7). (46)
Remark 3.1. The operators By are selfadjoint. It follows that Go, - (2, zo) is unitary. We have that
G-(z,20)"G-(2,20) = ¥1(20, 2) Y1 (20, 2), @7)
and G- (z, z0)* G- (2, z0) is one microlocally where 1)1 (20, 2) is one.

Let the singularities in f be such that 77*¢ > 0 (corresponding to propagation direction a—g'f < 0). Consider u_ defined by
(Duhamel’s principle)

u(z) = / ~ G- (2, 20)(~ 5@ (20)) f (20, ) dzo, 48)

assuming also that f = 0 on a neighborhood of the plane given by z. We have that @* u_ (z,-) = u(z, -), where u is the solution to
(1) with f replaced by Q=41 (20, 2)Q- f. The contribution to the original Green’s function G(z, z,t — to, 20, Zo) from upgoing
propagating singularities thus follows to be (compare (2))

1. .
_EIQ—(zaxyD:caDt)G—Q—(anwOaDwo;Dto)~ (49)

This is precisely the substitution to be made in (16) and (23).

4 MODELING IN THE KIRCHHOFF APPROXIMATION WITH THE DOWNWARD CONTINUATION APPROACH

We show that the Kirchhoff modeling operator can be written, modulo smoothing terms, in terms of solution operators to a one-
way wave equation; in case of horizontal reflectors, this modeling operator can be written, modulo smoothing terms, in terms of
downward/upward data continuation.

8itk

Oz 78"
are in S("H“)(1 p)(R" x R™) for z # zo, where p can be any number sausfymg 5 < p < 1((Stolk, in press; Stolk and De Hoop, 2003a)). For
the theory of such operators, see Taylor (1981) and H ormander (1985a).

*The operator 1 (20, 2) is a (20, 2)-family of pseudodifferential operators with symbol in S, 0 11— (R™ x R™), such that the derivatives
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Lemma 4.1. (Stolk and De Hoop, 2003a) H (2, z¢) is a Fourier integral operator with canonical relation
{(F(Z, 20,8,7T, t) a,p, T); 8T, ta a, p, T) |(S, T, ta a, P, T) € T*]R?:’,:,i) \07 Zmin(z7 S, T:ta a,0, T, 92) < 0} (60)

The operator L is a Fourier integral operator with canonical relation (56). The kernel of H(0, z) admits microlocally an oscillatory
integral representation with phase variables 70 given by

('H (0’ Z))(So,’l 01t0)3a1 at) -
27 (2n—1+11D)/2 A(z U\ 8,7 exp[i(S(z 7 8, T + I d’l] 61
( ) ( yYo0,7MoJ, S, 7t) p[l( ( s Yor,1oJ, S, at) (0J7y0-]))] 0J 5 ( )

such that the principal part a of the amplitude A satisfies

B(UyP’T) i
N o oenn 62
| ( »Y0,7M0J, 8, T,y )l ‘a(y()],'f]OJ) v
with
05
(a(z,yon’lOJ’s’r’ t), p(za yOIaUOJ,S’Tyt)’T(zayOI;ﬂ0J$siri t)) = _W('z’yOI,nOJ, 8T, t) (63)
3Ty

in accordance with (59).

Scattering

We return to scattering problem described by (16) and (66) and Theorem 2.1. We will assume that the tangent vectors to the rays
that connect source and receiver to a scattering point in X stay away some finite distance from horizontal. We make this precise by
using some angle §, 0 < § < w/2, an angle with the vertical, in

Assumption 3. (DSR assumption (Stolk and De Hoop, 2001; Stolk and De Hoop, 2003a)) If (z,z) € X and ,8 € S™7 1,
ts, t: > 0 depending on (z, z, a, 8) are such that n, (¢, 2, z, 8, 7) = 12 (tr, 2, T, @, 7) = 0, then

(2,2 O (1,2,2,8,7) < — cos(9), £ € [0, 8], 69
o(z,2)"" %’f (8,2, 3,0,7) < —cos(8), ¢ € [0,t]. ©5)

The assumption is microlocal (and restricts to a common scattering point (z, ), see Figure 3(left)); given the background
medium, a pseudodifferential cutoff can be applied to the data to remove microlocally the part of the data where Assumption 3 is
violated.

Under Assumption 3 and the assumption that the medium perturbation (a conormal distribution) is supported outside a neigh-
borhood of z = 0, the singular part of the modeled data is unchanged when G in (16) or (23) is replaced by (49).

Modeling operator in terms of the reflection operator kernel
Using (50) and (52) together with (49) in (23) yields the operator Fk defined by
Fx = —10,LR : §(- — zs) & —38:L(RS(- — 2x)). (66)

Modeling operator in terms of the Weyl symbol

Upon substituting (24) or (25) into (66), we obtain the equivalent map
Fx = —30ALEr : 6(- — z5) — — 10, A/L(a(? —((*=9),p)) r<’f, ';’—',p, 1) 5 —22)) dp. (67)

In the later analysis we consider the operator — 3 9; ALE that maps functions of (z, z, p) to functions of (s,r,t).

Remark 4.2. In the Born approximation, essentially, 7 is p-independent, viz.,

CI

r= %
(cf. (22)). Then

AET = EzEl r,
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S RECONSTRUCTION

The inverse problem can be split into an imaging problem and an inverse scattering problem. For example, the depth zx of an
interface could be established by imaging (using, for example,the Born approximation). Once zs is known (and, hence, the modeling
no longer contains an integration over z), the operator H (0, zs)* could be applied to the data, and as a consequence of Remark 3.1,
the kernel of the reflection operator is obtained.

As mentioned below (67) we consider the operator — %&ALE as the point of departure for developing an inverse scattering
formula. The reconstruction of the symbol 7 given the background (co) is essentially done by applying the adjoint of this operator
to the data d. We make use of the results for reconstruction in the Born approximation (Stolk and De Hoop, 2001; Stolk and De
Hoop, 2003b).

Definition 5.1. Let L be as defined in (52), and let R, denote the adjoint of E, given by
R g(snt) s R)Een) = [ oo —bo+ bphx(e o) dh a
Rn—

Here, h — x(z, z, h) is a compactly supported cutoff function the support of which contains & = 0. We define the (wave-equation)
angle transform, denoted by Awg, as the composition of adjoints

Awe =RL". (72)

In the above, R is closely related to what seismologists call beamforming. In (Stolk and De Hoop, 2003b) the properties of
AweE (up to a time derivative) were analyzed; they are summarized in the following theorem. A map similar to Awg was introduced
in (De Bruin et al. 1990) for the purpose of imaging angle dependent reflection coefficients, see also (Prucha, Biondi and Symes,
1999). For each z, (Awed)(z, z, p) is a so-called common-image-point gather.

Theorem 5.2. (Stolk and De Hoop, 2003b) Suppose Assumption 3 holds. Let Co be an upper bound for co. Assume that

”p” < Pmax < %00_1 (73)

Then Awe is a Fourier integral operator. Let C1 be an upper bound for 3—;&—2, C'2 an upper bound for c5 *. If in addition the function
h — x(z,z, h), contained in Rj, is supported in B(0, d), where d depends on 62, Co, C1, C2, then the canonical relation of Awg
corresponds to an invertible map from a subset of TRy, {, to a subset of T*Ry;', ") that has nonempty intersection with the set
¥ = 0 (where 9 denotes the p-covector).

In L, the operator H (0, z) contains an operator 2 (0, z). To account for limited acquisition aperture, we introduced a smooth
cutoff function 1y = 1y (s,7,t) on Y that is zero near the boundary of Y. The key component operator in L* is H (0, z)*.

Remark 5.3. Through the convolution in (50), H(0, z)* represents the so-called

‘double-focusing operator’ (Thorbecke, 1997): It retrofocuses the data in source and receiver arrays. The reference to ‘double’
arises from the following observation: While replacing F' in Theorem 2.1 by an operator (66) or (67) containing H(0, z), we have
‘uncoupled’ (except in time) the source and receiver bicharacteristics in the canonical relation of L (cf. (56)) at the scattering point
(2, ), see also Figure 3.

Remark 5.4. Data are modeled as dG(0, r,t, 0, s). Viewing the data as a function of r and ¢ for fixed s yields what seismologists
call a shot record. Shot records can be ‘synthesized’ to yield what seismologists call an areal shot record: Each shot record is
convolved in time with a single time trace (fixed source location) out of the synthesis distribution, and subsequently the shot
records are stacked (integrated) per common receiver location. The synthesis can be formulated as an operator acting on the data
0G(0,r,t,0, s) and is at the basis of controlled illumination, see Rietveld et al. (1992). (An example of controlled illumination is
beamforming.) A particularly interesting choice of synthesis is obtained by requiring focus point (delta) illumination at the reflector
depth. For a focus point at (2, 5), say this is achieved when the ‘synthesis operator’ is given by G - (0, 2)*Q* ,(0)~"; indeed, the
kernel of the composition G- (0, z)* H(0, z) follows to be

/ (G-(0,2))"(5,t—t,8)(H(0,2))(s,r,t, 80,70, t0) dsdt =
///(G_ (0,2))" (5, — t,8)(G-(0,2))(s,t — to — to, s0) dsdt (G- (0, 2))(r, o, 7o) dio
= /5(5 - So)é(t_— to — t—o)(G_ (0, Z))(T’, t—o, 7‘0) dto = 6(5 — 80) (G_ (O, z))(r,f— to, To), (74)

which should be modified to include the cutoffs 11 (z,0)* 41 (2,0) of Remark 3.1.
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we define

0(a,p,7)
NoJ)

= ’ 3(¢,0,p)
" |9(yor,mos)

at (z,8,7) = (2,2 — $h,z + 3h);

t=(h,p)

ar
W .
Upon changing integration variables, again, o = 3£ — 6, p = %& + 0, the linearized phase attains the form

note that = =

C(E - z) + <€15: —IL') + <0:hl - h) +T((h’aﬁ) - (h’p)) = ((2 - z) + <€:§: _x) + (9 +Tpahl - h) +T(h',f’—P),
T= T(z,:c,h,p, C: %E - 0; %6 + 0) (81)

The leading order contribution to the oscillatory integral of the kernel associated with the map RL*ALE as in (75) then becomes,
microlocally (cf. (76))

(2m)~ @D / 5 expli(C(E — 2) + (€& — ) + (8, K — B+ (', ) — (b, p)))]||"~* dC e dOdhdR’
= (20" / expli(¢(2 — 2) + (6, — )]

x {(27r)-<n-1) / Zexpli((6 + mp, b’ — k) + 7 (', p— p)]|7|"* dh’dodh}dcdg,
T= T(Z,:L’, h1p1 C1 %E - 0, %E + 9) (82)

Upon substituting 7" for 7, omitting the symbol =, and changing the integration variable h’ by h = Y(z,z,h,p,¢, %5 -0, %5 +
6) 1', the integral in between the braces becomes

(27r)—(n~1) /{/expll((r(z’ma hap’ Cv %6 - 0) %6 + 6)_10 +p7ﬁ, - T(z,x,h,p, C1 %E - 0’ %E + 0) h))] dOdh}
x expli(i,p — p)]dR’. (83)

The integral in between braces defines a symbol in (z, z, p,( &, h') The principal part, IT say, of thls symbol can be found by
changmg variables of integration, (h,8) — (h,8) with h= T(z,%,h,p,¢, 3¢ — 0,3€ + 6)h and g = T(z,2,h,p,¢, 36 —
8, 3¢ + 6) 76 for given (2, z,(,£), and applying the method of stationary phase.

The projection of (56), the canonical relatlon of L, on the 7 variable is non-degenerate; we can always choose 7o to be a
component of 7o, while 7 = 79. But then 7 = Bt is t independent. This implies that 7" becomes p independent.

We summarize these results in the following theorem. The canonical relation of Awg defines a map (s,r,t,0,p,7) —
(z,2,p,¢, €,9) (where ¥ is the p-covector); there is also an associated value of h = r — s. By pull back with the inverse of the
mentioned map, we map the symbols 1y, 1p to symbols in the variables (z, z, p, ¢, €, ). By the evaluation of h one obtains by
pull back the cutoff x in these variables also. We define ¥ as the product of these symbols and cutoff.

Theorem 5.5. Let the modified angle transform be given by

Rz tr d(,2,0) = [(57Q0(2) ' Qmr(2) " HO,2)°
QL+(0)71Q% (0 by (=20, )d) (@ — h,m + 3, (p, ) X(@, 2, h) dh;
then
(¥(2,2,p, Dz, Dz, Dp) +Lot.) (rd(%)) = (I "' Ayed)(2, ,p) (84)
if d = Fxé(¥) is the Kirchhoff modeled data in accordance with (67).
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ABSTRACT

In this paper we derive 2.5-D high frequency modelling and imaging-inversion formu-
las of seismic reflection data in the Born approximation in anisotropic elastic media.
The 2.5-D approach encompasses 3-D wave scattering measured in a common azimuth
acquisition geometry subject to 2-D dimensional computations under appropriate as-
sumptions. The lowest possible symmetry of the medium in this approach, in principle,
is monoclinic, while the medium must be translationally invariant in the normal direc-
tion to the associated symmetry plane. In the presence of caustics, artifacts may be
generated by the imaging-inversion procedures. We show that in the 2.5-D approach
the analysis of artifacts in the 2-D symmetry plane implies the corresponding analysis
in 3-D in the framework of the common azimuth acquisition geometry. An interest-
ing aspect of our results is the occurrence of out-of-plane geometrical spreading in
the least-squares removal of the contrast source radiation patterns on the data. We fi-
nally introduce the 2.5-D transform that generates common image-point gathers. This
transform yields an efficient, though in general, approximate tool for migration veloc-
ity analysis in anisotropic media. A real ocean bottom seismic data example from the
North Sea, using the derived formulas, is given.

Key words: Reflection seismology, seismic modelling, inversion, ray theory,
anisotropy.

SYMBOLS AND NOTATION p(x) = pO(x) + pM(x) density as a sum of a
i d
Symbols Description smoothly varying term an
. a perturbation
t time ciin (@)
w angular frequency ikl

z = (z1,z3)(= (x1, T2, T3)) position vector

Gin(z",w, %)

z°,x"
Az, z°)

h = (h1, h2, h3)
T(x, xz®)

K(x, z®)

v(x)

(before redefinition in main text)
Green’s function in the
frequency domain

source and receiver positions
amplitude for a ray at =*
from

polarization vector
traveltime for a ray

between x and x*

KMAH index for a ray
between x and x*

phase velocity

0 1
= () + iy ()

det Qa(x,z*)

)z, z*)
Q7 (z,z°)

(q1,92)
p = (p1,p2,p3)

elastic stiffness tensor as

a sum of smooth
background parameters and
a perturbation

relative geometrical spreading
in local surface coordinates
on the wavefront

in-plane relative
geometrical spreading
out-of-plane relative
geometrical spreading

local wavefront coordinates
slowness vector




migration in transversely isotropic media with a vertical sym-
metry axis.

The imaging-inversion results in this paper are derived
using the inverse generalized Radon transform (GRT) (Miller,
Oristaglio and Beylkin 1987) and using natural coordinates at
each subsurface point to be imaged, namely scattering angle
and migration dip. Sollid and Ursin (2003) derived a 2.5-D
migration formula, using the GRT, in transversely isotropic
media. A review of 2-D and 2.5-D inversion and migration
is found in (Foss and Ursin 2003). Using the aforementioned
choice of coordinates removes the use of a Beylkin determi-
nant (de Hoop, Spencer and Burridge 1999). Additionally,
this choice unravels caustics that may occur in an inhomo-
geneous medium giving rise to multivalued travel time func-
tions. In the presence of caustics, strictly speaking, the GRT
should be developed with Maslov Green'’s functions. However,
de Hoop and Brandsberg-Dahl (2000) carried out an analy-
sis that showed that as long as there are no caustics occur-
ring at the source or receiver positions, through a stationary
phase argument, the Maslov formulation reduces to a GRT
based upon the geometrical ray approximation (GRA) for the
Green’s functions. Following this observation, we employ the
GRA Green’s function in our development. The formulas de-
rived in this paper are applicable in the presence of multi-
pathing and caustics under assumptions that will be clarified.

The high frequency linearized inversion, given a smooth
background medium, yields the most singular part of the un-
known medium contrast and is developed in the framework of
pseudodifferential and Fourier integral operators (FIOs), see
e.g. Duistermaat (1996). This was done in the acoustic case by
Rakesh (1988), Hansen (1991) and in the anisotropic elastic.

In the presence of caustics, in the CA geometry, imag-
ing artifacts may occur; for the acoustic case, see Nolan and
Symes ( 1997). An artifact is defined as a false event in the
image that is not contained in the medium contrast, i.e. an
image reflectorthat is not there. The inversion is artifact-free
under the so-called Bolker condition (Guillemin 1985). When
this condition is violated, the image resulting from the inver-
sion procedure will contain artifacts we have coined artifacts
of type 1. The transformation of seismic data into common-
image point gathers, based upon the GRT, can be viewed as
introducing a restriction to a fix ed scattering angle in the in-
version formula (Brandsberg-Dahl et al. 2003b). This restric-
tion in the presence of caustics will give rise to artifacts of
type 2 (for an exhaustive analysis of these artifacts, see Stolk
(2002)). Brandsberg-Dahl et al (2003b) suppressed such arti-
facts by a procedure called focusing in dip by selecting contri-
butions to the imaging-inversion integral from isochrones by
an isochrone filter .

The outline of the paper is as follows. In section 2, we
introduce the notation and the fundamental assumptions per-
taining to 2.5-D. We also show by an example that, due to
the anisotropy, an additional assumption is required to restrict
the rays to travel in-plane, compared to Bleistein (1986). A
detailed description of all aspects of the 2.5-D Born single
scattering modelling formula is given. The derivation of this
formula can be found in the Appendix A; it is based on ap-
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proximating the out-of-plane integral of the 3-D Born mod-
elling formula by the method of stationary phase (Bleistein
1986) given that there are no out-of-plane caustics. We give
a description of which elastic parameters can be determined
in the 2.5-D framework of CA data. A more detailed descrip-
tion of the parametrization and resolution of the smooth and
perturbed parts of the medium in this context is given by Foss
and Ursin (2003). Additionally, we give the precise assump-
tions subject to which our 2.5-D modelling is well defined and
show how it pertains to the CA acquisition geometry. Section
3 contains the detailed guide through our inversion procedure,
which is an analogue to least squares inversion. The inversion
follows closely that of de Hoop and Brandsberg-Dahl (2000).
We show that the 2-D Bolker condition pertaining to the sym-
metry plane implies the likewise condition in 3-D subject to
the restriction to CA. First, we construct the adjoint (imaging)
operator of the 2.5-D modelling operator. Second, we evaluate
the normal operator and identify its ‘inverse’ up to leading or-
der. Third, we compose this ‘inverse’ with mentioned adjoint
to find the 2.5-D inversion operator. (For ‘inverse’, one should
read parametrix, which is the inverse modulo smoothing op-
erators.) The actual inversion result, for the most singular part
of the medium contrast, is given in subsection 3.2 as an in-
verse by GRT in natural coordinates. In section 4 we present
the 2.5-D transformation of the data to common-image point
gathers. Section 5 shows results using the formulas derived in
this paper applied to real ocean bottom cable (OBC) seismic
data from the North Sea. We conclude with a discussion on
future applications.

2 MODELLING
2.1 Green’s functions in a smoothly varying medium

The geometrical ray approximation (GRA) to the Green’s
functions is a causal, short period approximate solution to the
elastic wave equation, in the frequency domain given by

p(®)w’Gin + 0 (cijr1(€)01Grn) = —dind(x — x°)
4,5,k l,n=1,2,3, (1)

where w is angular frequency and the position vector is de-
noted by @ = (z1,z2,23), p(x) and cijri(x) are density
and the stiffness tensor, respectively. The Kronecker delta, §;r,
gives the source term on the right-hand side in the canonical
directions, operative at the source point, *, through the delta
function §. The summation convention applies here and in the
following. The Green’s function is a sum over the different
wave modes, where each term is of the form

Gi?(m7w, ms) = A(:l:, ms)h?(m)hp(ms)ein(m ® S)a (2)

in which T'(z, *) is the travel time along the ray connecting
x with °. (We do not explicitly indicate the mode of propa-
gation; we treat the modes of propagation separately.) ki and
hp are components of the unit polarization vectors at the end-
points of the ray, where the superscript s indicates that this
polarization vector is associated with the ray originating at x°.
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mT

Figure 3. Triplication of the recorded wave field with travel time functions per branch denoted T, T(2) and T®). Dotted plane indicates a
common shot gather.

smoothly as shown on the right of the figure for three different depths in the model used in the ray tracing on the left. All axes
are given in meters. The group velocity vector, V, is perpendicular to the slowness surface and governs the direction of the ray.
This is indicated with the surface normal to the slowness surface, 71. As suggested in the figure, we may change smoothly the
direction of the energy velocity, sending the rays out of the plane and back again while keeping p2 fix ed (implication of assumption
1 a)). Two rays are shot at a small positive and negative angle with the z3-axis in the out-of-plane direction (pj = p] = 0) from
(1,22, 73) = (0, 0,200). They travel in the (x2, z3)-plane and intersect at the point (0, 0, 2800) with incoming angles following
Snell’s law and satisfying equation (7). We note that the anisotropy in this example allows triplications on the symmetry axis, which
is unusual in a sedimentary sequence setting.
We admit in-plane scattering events only, by imposing:

Assumption 2. (Seismic phase restriction) Only seismic events with at least one ray, or leg, associated with a wave type that
pertains to a convex slowness surface are considered.

If one of the ray legs is associated with a convex slowness surface, the only solution to equation (7) is p3 = p3 = 0. Due to the
symmetry in assumption 1 b) this also means that V' = V5 = 0. This follows because p5 = —p3 # 0 on a convex slowness
surface will induce group velocity vectors pointing out of the plane (the middle slowness surface on the right of Figure 4 illustrates
this). The group vectors send seismic energy away from the plane never to return. In particular, P waves always have a convex
slowness surface (Musgrave 1970); hence, qP-qP and qP-qSV scattering events always satisfy assumption 2.

The medium parameters are represented by a sum of a smooth part, p(® and cg),)e ;» and a singular perturbation, o™ and cf]l ,)e,:

p(a) = pO(@) + p M (@), cijm(®) = cign (@) + i1, (). ®)

Note that both the smooth part and the perturbation are restricted in accordance with assumption 1a) and b) making the reflectors

parts of the cylindrical surfaces (see Figure 1). In the Born approximation, the waves travel in the smooth part of the medium and

are scattered off the perturbation once. In the imaging-inversion problem the smooth medium is assumed to be known. It is the

medium perturbation we will invert for. The multicomponent data collected in a seismic experiment, %r, under the condition of

a smooth background, will be, in this approximation, the asymptotic part of the modelling formula. The subscripts indicate that

Umn is the m-component of the recorded wave field due to a body force in the n-direction. The data (scattered wave field) can
be modelled by an operator L acting on the medium perturbation (see Appendix A for a detailed derivation, where Up,r, is the

time-Fourier transform of the data u,,, )

Umn (€°, 2", t) = Lc(l)(ws, z"t)

i . All e All "
~ Z\/;/x /mhm(w )2 (@) Elwl(:’), w,(:s)w :

iel

i (T _
wl (@ z, ) (@) T @@, z?) Db (2 )dwdz.  (9)
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both V3, p2 tend to zero (in accordance with the 2.5-D approach, where p2 = 0, V2 = 0). Closed form expressions for the integrand
for isotropic, transversely isotropic and orthorhombic media can be found in Ettrich et al. (2002), equations (15), (19) and (22),
respectively. The medium perturbations are collected in the matrix c® () and the radiation patterns equivalently in w(z", x, *).
They will be defined in the next subsection.

Remark 1. We restrict our analysis to the part of phase space where out-of-plane caustics do not occur. Thus we mute events
associated with rays forming out-of-plane caustics (see Remark 4 in the appendix).

2.2.1 Medium perturbations and radiation patterns

Since by assumption 1, the medium is restricted to monoclinic or higher symmetry, there are at most 13 stiffness parameters plus
density as independent unknown distributions. The stiffness tensor is given by (if the (1, z3)-plane is the symmetry plane):

ci111 cie ciizz 0 cins 0
Ci122 C2222  C2233 0 C2213 0
leiju] = C1133 C2233 3333 0 caas3 0 ) (14)
0 0 0 €2323 0 C2312
C1113 C2213  C3313 0 ca3 0
0 0 0 C1223 0 C1212

The medium perturbations are collected in the 14 x 1 matrix for monoclinic anisotropy (Burridge et al. 1998)

(1)
W (g) = {p(l)(w) cijn (@) } , (15)

PO ()’ pO (x)vs(x)vE ()

where v5 and vg are local phase velocities averaged over all phase angles. These are introduced for computational purposes so
that the matrix has components of similar magnitude (Burridge et al. 1998). We restrict the indices of cg;,)c, to the 13 independent
components of the stiffness tensor (cf. (12)). With higher symmetry, such as isotropy, the matrix reduces accordingly (Beylkin and
Burridge 1990). The radiation pattern matrix is defined similarly as the 14 x 1 matrix (Burridge ez al. 1998)

w(a", @, @°) = {ho (@)hin (), (13 (2)p (x)hi (2)pi (2)]vs (2)vs (=) } (16)

where the indices follow those of the stiffness matrix in the ordering defined by the matrix or inner product w (z", x, a:’)c(l) (x)
in the modelling equation (9). Since the out-of-plane slowness will be zero, p5 = p3 = 0, we see from equation (16) that the
contribution vanishes if 5,/ = 2 in cfjl,)c, In view of assumptions 1 and 2, having p3 = pj = 0, the polarizations of qP and
qSV waves satisfy ha = 0. Thus the parameters we can invert for from qP-qP and qP-qSV scattering are the 7 parameters out of
the 14 independent ones in a monoclinic medium, cﬁ)u , c(111§3,0§13)33, c&ll)ls, cg;)ls, c%)m and density p™ (h2 = 0, and hence the
contributions for ¢, k = 2in cf]l,)e , are zero). The kinematic aspects for a monoclinic background medium are governed by the same
partitioning of parameters (Chapman and Pratt 1992; Foss and Ursin 2003).

Remark 2. In imaging, the smooth background medium is given, and hence the relevant amplitudes can be computed in the low-
est possible symmetry admitted by the 2.5-D framework: monoclinic. However, for inversion and reflection tomography, having
observations restricted to the plane under consideration, only parameters associated with this plane can be estimated. Hence the
lowest possible symmetry is transversely isotropic with a symmetry axis in the plane. Due to the rotational symmetry of the medium,
parameters needed in out-of-plane amplitude calculations are found from in-plane propagation (Ettrich et al 2002; equation (19)).

2.3 The modelling operator in common azimuth

The 3-D Born modelling operator has been shown to be a Fourier integral operator (FIO) under the mild conditions that there are no
direct rays between the source and the receiver reaching the medium perturbation (i.e. rays that have scattered off a subsurface point
over an angle 7) and no grazing rays (i.e. rays that reach the acquisition surface tangentially to the surface) (Rakesh 1988; Hansen
1991). The 3-D modelling operator with common azimuth (CA) acquisition geometry (Biondi and Palacharla 1996) is also an FIO
under similar conditions (Nolan and Symes 1997; de Hoop et al 2003). 2.5-D implies CA (but not the other way) aligning our
symmetry plane with the acquisition geometry, i.e. 53 = 5. We conclude that the 2.5-D modelling operator (9) has the properties
of a FIO, and has the following canonical relation (superscript S indicates that this is a canonical relation in two space dimensions
coinciding with the symmetry plane)

Af = {(z* (@, a®),z" (&, "), T(z (x,a’), z, & (x,a”)), k* (¢, &’ ,w), k" (z,a”, w),w;
z, —k(z’(z,a’),z,z" (z,a"),w))|(z,a’,a”) € K,w e R\ 0}. (17)
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Assumption 3. The projection of the canonical relation A% of the 2.5-D modelling operator on the acquisition variables
(x®, " ,t,k*, k" ,w) is one-to-one.

This assumption is consistent with a 2-D Bolker condition (Guillemin 1985), for the acoustic case see Ten Kroode et al. (1998). It
means that (x°, ", ¢, k®, k", w) determine a scattering point & € X and associated wave vector k, uniquely and smoothly. This
condition ensures that the normal operator is an elliptic pseudodifferential operator. Hence the procedure of imaging the modelled
data, equation (20), does not generate reflectorsthat were not there to begin with, i.e. that are not present in ¢ W,

Since N is elliptic and pseudodifferential we can construct its parametrix, denoted by (N~!). The brackets indicate that this
is a pseudo inverse. Following the analogue of least-squares inversion, an estimate of the medium perturbation in equation (15) can

be recovered from the composition
&~ (N"HL*u, 1)

where u is the data. If assumption 3 is violated we generate artifacts (discussed in the introduction). A less restrictive condition and
a discussion of the implied artifacts can be found in de Hoop and Brandsberg-Dahl (2000) and Stolk (2000).

In view of Remark 3, assumption 3 (or the 2-D Bolker condition) in the symmetry plane implies the 3-D CA Bolker con-
dition. This condition encompasses that for any point in AF#, i.e., for an intersecting pair of source and receiver rays, given
(3, 3, x1, 3, t, k3, k5 + k3, kT, w), there is only one (¢, k3) that explains the reflection.

3.1 The adjoint scattering (imaging) and the normal operators

In this subsection, we evaluate the adjoint L* of the modelling operator L and deduce the leading order contribution to the normal
operator N for which we can derive a parametrix. We will write the action of the normal operator as a pseudodifferential operator,
i.e. as integrals over @« and its Fourier dual k, the wave vector. The inverse of the integrand thus obtained (the integrand yields the
so-called symbol of the normal operator) generates the ‘inverse’ of the normal operator up to leading order.

We let the acquisition coordinates be defined on the two acquisition lines in the symmetry plane, .S and 9R for sources and
receivers, respectively. By the reciprocity theorem of the time-correlation type found in de Hoop and de Hoop (2000) the adjoint or
imaging operator L* can be written

1 (All(z*, =) All (&', x"))*
L*u(z') ~ / / / W32 (0 (4! , ,
@) V27 Josxor JR JR>0 P L (zm,x', @)

N L ’ 8
(", @, ) (&5 & Yma (®°, 27, ) hn (2% 2 )e T TEHTHT )" gq440 dx*da”,  (22)

where w' is the frequency and * indicates the adjoint as well as complex conjugation. The polarization vectors associated with
the scattering off the point ' are denoted by hn, (x”; ') and h, (z*; ') to distinguish them from the polarization vectors due to
the scattering off @ as in equation (9). Note that there is a summation over the different indices of the data w,, in the integrand
of the adjoint, following the summation convention. Hence the notation of L* acting on all the data denoted by u. Note also that
w = (wT)*.

Composing the imaging operator with the modelling operator (having used a pseudodifferential cutoff for when it fails to
satisfy assumption 3) gives us the normal operator. The um,, from the modelling equation (9) is inserted into the above expression
to yield

L*yLc(2') =

i 13/2 3/2 (0)/._1y\ (0) (AH(‘BS’“”)A”(‘”’,“’T))* A‘I(wsyw)A”(“’,wr)
27"/as><aR-/x-/1R/1R/1Rzow WP @) =) Li(zr,x',z°)* Li(zr,z',x°)

'eiw(T(wT,:c,:cs)—t)—iw'(T(z",w',a:‘ )=t dtdwdw’ dede da” . 23)

If assumption 3 is satisfied it is indeed an elliptic pseudodifferential operator. The integral over t yields a delta function §(w — «f)
so we can collapse the integral over w’ and set w = w’. Invoking a Taylor expansion about &’ for the two-way travel time
T(x",x,x*) yields, due to the fact that higher order derivatives give smoother contributions to the amplitude (Hormander 1985a)
through expansion of the exponential,

wT(z", z,z’) - T(z", ', z°)] = w[(Vy T)(z",z',z°) - (x — )] +.... (24)
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results in the simplified expression
_ s, T,
Nc(l)(w ) ~ Sexgr / / ° ZJ.((ar x! a3)|)2w(ar’ml,a3)wT(ar’wl’aS)

W (g)elV™ @72 @ -2 45 4pdada”.  (33)

3.1.2 Migration dip, scattering angle and the leading order contribution

We change variables again, from the phase angles to scattering angle 6, which is the angle between a® and ", and the migration
dip »™ (see Figure 5). The scattering angle follows to be

6 =0(a",z’',a®) = arccos (o’ - ). (34)

To be able to integrate over the migration dip, there is assumed to be no scattering over § = m so that V+ T' # 0 and ™ is
defined. We have

(' a’,a") S (2, v™,0). (35)

In 2.5-D this mapping exists both ways; there is no integration over the azimuth (de Hoop and Brandsberg-Dahl 2000). The domains
of integration can now be written as

S* x 8" — E,m x Ej for given z'. (36)

Changing all relevant coordinates under the mapping in equation (35) and collecting the integration over the scattering angle
yields

N |, Lo e

w(a, ™, W (o, v, 6) AE ) g

(1) iov™ (& -z ') —4m
2™, 6) }c (x)e dedowdv™.  (37)

We introduce the square matrix (of the dimensionality of w)
rooomy l/ /"LS(w,)meo) ' om T, ! m a(as’a‘r)
I(z',v™) = 2 /s, —|£l(m’,um,9)|2w(m T 0w (2, v ’0)—6(1/"',0) de
+ ()&, V™), (38)

where the second term is the same as the first but with &/™ replaced by —~™. This enables us to rewrite equation (37) with positive
@ only as

1 iGU™ (@) o
NcW(z') = @ /E /]R . / @%8r? (2, v™)cV(x)e®? @~ pdedodv™. (39)
m

This has now explicitly the form of a pseudodifferential operator with integration over & and its dual k through the identification
k = @v™. We recognize here the leading order symbol, @287 2T'(x’, v™), of N. Note the differences when compared with the 3-D
case found in de Hoop and Brandsberg-Dahl (2000): the out-of-plane geometrical spreading £ naturally appears in the leading
order symbol of the normal operator in equation (38) combined with the radiation patterns. Also the power of (27) has been
modified in accordance with the stationary phase calculation in 2.5-D.

3.2 Least-Squares Inversion

To leading order, the inverse normal operator composed with the normal operator from the last subsection should yield the identity.
The departure from the identitity is due to taking the generalized inverse of and smoother contributions to the normal operator. We
denote the generalized inverse of N by (N ~1). The resolution is controlled by (N ~!)N. General analysis of the resolution is given
by de Hoop et al (1999) and for the 2.5-D case by Foss and Ursin (2003).

Note that

(271r)_2 / / V" @ -2 N54 e = §(z — o). (40)
R>0JS1
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(Equation (47) is in fact a direct manifestation of the composition of a pseudodifferential operator with a FIO (Treves 1980, Section
6.1. Chapter VIII)). The surface coordinates " and *® are changed to the phase directions at the scattering point as in relation (27).
Using equation (29) and (32), the appropriate Jacobian can be expressed as
a(ws’ w'r) _ “Ls(ar, wl’ as)lvwl T(wr, (BI, ws)l‘l
das,ar) — |p©(z)All(xe, z)All(z', )2

Inserting the result in equation (47) yields the estimate of the medium perturbation

(48)

AL I\ 1 EFpR dw'’ r 0 .8 1o omy\—1
é (a:)~—(2 )5/2Re{ /S‘xsrda da /1R>o_( ,i)l/z;u,s(a y,a’ Wz, v™))
|V (T, @', o) Pw(a”, @', & ham (2" & YUmn (2, ", Yhn (x*; ') i/ T@ "2 0 ?) } 49)
pO(z)All(as, ') All(z!, ™) LL (aT, &', a®)* ’

We observe in the denominator the out-of-plane geometrical spreading, which also exists in the expression for I' (equation (38)).
Changing the variables from phase angles to scattering angle  and migration dip »™ as in (35) yields

ey = WRe{ /E deVm% o (wd:’;l/zﬂr,s(:c v™,0)(0(z',v™) "

vm X Eg

|V ' T(x',v™, 0)>w(', ™, 0)him (2" ; &' YUmn(x®, 2", 0" )hn (x°; ) i T@ V™ 0) } (50)
PO (z)All(as, z")All(z!, a”) L (2, v™, 0)* ’

where we have left the phase directions in the argument of the in-plane amplitudes to distinguish them. The Jacobian inside the
integral can be found in (Burridge et al. 1998). The integral over migration dip makes this an inverse by generalized Radon transform
(GRT).

4 TRANSFORMATION INTO ANGLE GATHERS

When constructing angle gathers we fix the scattering angle, 8, and integrate over the migration dip, /™. The restriction can
introduce artifacts in the angle gathers when the medium is inhomogeneous (i.e. in the presence of caustics) due to multipathing
in the recorded wave-field. These artifacts are different from the artifacts due to the failure of assumption 3. These artifacts are not
present in the inversion by equation (50) since they stack destructively (Stolk and de Hoop 2002).

Since the restriction to a fix ed scattering angle means that we no longer stack over all the data, but rather over subsets of the
data that change with image point and scattering angle, we reintroduce * and " as the variables of integration. This requires the
notion of branches of the two-way travel time (see equation (10)). We define 69 as (", ', a®) (cf. (34)-(35)) composed with
the inverse of map (27), associating the scattering angle with the acquisition coordinates «°, x”. We define the ‘angle’ transform
K (the GRT) via a restriction of the imaging operator L* in equation (22) to fix ed angle 69 = ¢, where i € I indexes the travel
time branch. We reintroduce the sum over the different travel time branches suppressed since equation (9). Thus we multiply the
kernel of L* in equation (22) by a delta function, §(8‘) — 8'). The kernel of K, denoted by K.mn, can be written as an oscillatory
integral (after a change of ' to )

Kmn (z,8",2°, 27 ,t) = Z(21r\/i)'l /w'3/2p(°)(w)
il
(Al®, 2)Al (@, 27))*
L ((DT, x, ws)*
Here ¢ is the Fourier dual of the scattering angle @ (Stolk and de Hoop 2002) and

D (z,x", 2%, 1,0, ) = [TV (", z,z°) — t] + [0 — 6P (", z,z°)]. (52)

w(z', x, %) hm(z"; T)hn(x?; w)e“m“(z BB 00 g e, (51)

The artifacts of the restriction can be evaluated by considering the composition KL, a §’'-family of operators each member
of which resembles the normal operator. The artifacts in the angle gathers can be recognized by their ‘move-out’ in angle.
A multi-dimensional filter in the Fourier domain (see equation (51)) can be applied to remove the artifacts associated with
le] > €0 > 0. Brandsberg-Dahl e al. (2003b) suppressed the artifacts by so-called focusing in dip.

By proceeding as suggested above using the appropriate changes of variables leading up to equation (50), the angle depen-
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applying the appropriate out-of-plane ‘annihilator’ as a Tikhonov regularizer to the misfit functional
1 _ _ Ciq 2
sl =3 [{ [ [ 100 - @=(e,6,2)2(,6,00)*] e lmi(w:6,0)|” da

+,\/|a§2c(°’[_n_1](m,z2)’2dw }da:z, (54)

where (cf. equation (38))

prs(z,v™,8) d(a®,a”)
|£4 (2, v, 0)> B(v™, 6)

Z(x,0,z2) = (O, v™)) 'w(z,v™, 0w’ (z,v™,0). (55)
All relevant parameters of equation (55) are calculated for ™ in the wavefront set of &), ¢(O[m](zx, x2) is a vector of the
parameters of the background medium given the current parametrization m. A in equation (54) is a statistical quantity controlling
the trade-off between in-plane and out-of-plane fit (Tenorio 2001) and £ = (z1,3). Js and 9, are the partial derivatives with
respect to the scattering angle and out-of-plane coordinate, respectively. The LS-AVA-compensated inversion result from equation
(53) is denoted &) [m](z; 8, z2) to emphasize that it is generated using the current parametrization of the smooth background
model, m, for the slice at out-of-plane coordinate 2. The minimum of this function indicates a smooth background model such
that the data are in the range of the 2.5-D modelling operator. In this way the 2.5-D framework provides a fast computational tool
for 3-D tomography and an increased ability to monitor the regularization of the search for a fitting model.
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APPENDIX A: THE 2.5-D BORN MODELLING FORMULA

The 3-D Born formula is a high frequency approximation to the field scattered off the medium perturbation at ¢ € R, collected at
the receiver position " generated by a source at °. This field is calculated by substituting the appropriate GRA Green’s functions
(2) in the Born approximation. It gives that, under assumption 1 on the medium, the m-direction of the scattered field at the receiver
position " due to a n-component source at &® written as a Fourier integral operator is

Upn(z", z° W) =
/{/ wzhm(wr)p(o)(a:)A(w“,a:)A(a:,:c')wT(a:',a:,w’)ei"’T(wr’w’ws)hn(ws)da:g}
x Ur
ceM (1, z3)dz1dzs. (A1)

The medium perturbation ¢ and the radiation patterns w are, for the lowest possible symmetry (triclinic), 22 x 1-matrices of the
form as in equations (15) and (16), respectively. The domain of integration of the (z1, z3)-coordinates, X, is defined in subsection
2.2.

Upon scaling, z2 = %2/|w|, we recognize the phase variables (Z2,w). We proceed as in Bleistein (1986) and use the
method of stationary phase to integrate out the out-of-plane variable z2 in (A1). The one-dimensional stationary phase formula
approximates integrals of the type

WT(@) 4o n / 2w iwT(00)+i(r/4)sgn(w)sgn(d2 T(oo)) A2
/f(a)e a |W||63T(Uo)lf(ao)e ) ( )

for sufficiently large |w| and &T'(00) # 0, where oy is the stationary point, such that 8, T(0)|o=c, = 0. In the mentioned integral,
the stationary point is given by

82, T (", &, x°) = p3 + p3 = 0. (A3)

Due to assumptions 1 and 2, the only solution to (A3) is p3 = p5 = 0 which implies that the stationary point is 2 = 0. A
discussion on this is given in the main text. Observe that the sum of the slownesses in equation (A3) also occurs in the common
azimuth case, equation (18). The second derivative of the phase function at the stationary point is

2 1 1
05, T(@,2,2°)|,. o0 o= (Oo2D3 + 009D3) sy pym0 = i)t Ofma) (A4)

where Q3 (x, z°) and Q3 (x, ") are the out-of-plane geometrical spreading factors defined in equation (5) for the rays connecting
the imaging point & with the source &*® and receiver ", respectively.

Remark 4.

In points, in phase space, where either Qy (x, z°) or Q3 (x, ") tends to zero the travel time function is not smooth. We observe
this in equation (A4) where the Hessian of the travel time function will tend towards infinity and will not be defined. This essentially
means that the stationary phase argument does not hold. The integral over 2 in equation (Al) remains. Out-of-plane caustics
are thus not allowed for the stationary phase formula to be applicable. We restrict the analysis in the following to rays with no
out-of-plane caustics.

From this it follows that sgn (82,7 (", T, °)|z,=0) = 1 since the out-of-plane geometrical spreading is positive. The stationary
phase formula (A2) then yields for the z2 integral (in view of Remark 4)

/ [w2/ hm(a:’)p(o)(w)A(a:",:c)A(a:,m’)wT(w’,az,a:s)c(l)(:z:)ei“’T(mr"D’zs)hn(ws)dz‘z} dzidzs
X R
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z2=0,p2=
Using equation (6) this equation reduces to the 2.5-D modelling formula (9) in the main text (here in the frequency domain),
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= \/27riw3/2/Xhm(w’)p(°)(a:) %LE:T) - (:3,):0 )wT(w’,az,ws)c(l)(w)e'“’T(a’ BT (2f)dz.  (A6)
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Spectral element modeling of fault-plane reflections
and their sensitivity to stacking and migration errors
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INTRODUCTION

ABSTRACT

Simulating the 2D elastic wave equation via the spectral element method (SEM)
has advantages over other modeling techniques for studying seismic reflectivity
associated with faults. For instance, irregular geometries can be easily accommo-
dated and slip boundary conditions are naturally implemented. We run through
a complete modeling exercise incorporating both SEM forward modeling of shot
gathers over a realistically-sized numerical model containing a normal fault and
processing of the simulated data to reconstruct post-stack time-migrated im-
ages of the kind that are routinely interpreted. To gain insight into the pitfalls
involved in interpreting, for instance, amplitudes on post-stack time-migrated
data, we develop a simple theory for gauging the amplitude and phase errors
resulting from stacking and migration velocity errors. We utilize our modeling
capabilities to test the theoretical results pertaining to stacking velocity errors.
We find that the character of fault-plane reflections are relatively more robust
to stacking and migration errors than the reflections from flat-lying layers and
conclude that, in order to gauge stacking and migration errors, information on
the acquisition geometry is critical. Though the robust nature of the fault-plane
reflections we model may be a special case for post-stack migration, the claim
that fault-plane reflections are less sensitive to stacking errors should hold more
generally for pre-stack migration.

Key words: weak formulation, stack response, fault reflectivity

teriorate their imaging, we have pursued a complete nu-
merical study of wave interaction with fault models. By

Seismic data acquisition and processing have evolved
to the point that fault-plane reflections are often im-
aged under favorable conditions, such as above-salt in
the Gulf of Mexico (Liner, 1999). Reflections originating
from fault-zones may hold important information about
fluid movement along faults or the capacity of a fault
to act as a seal (Haney et al., 2004a). Faults have long
stumped interpreters by virtue of their split-personality
as effective hydrocarbon traps and pathways for hydro-
carbons to move from deep kitchens into shallower, eco-
nomically producible reservoirs. Any light that seismic
data can shed on the situation would be useful.

To gain a stronger grasp on the factors at play in
causing fault-plane reflectivity and errors that can de-

complete, we mean that we do not simply model the
entire measured (elastic) wavefield with high fidelity,
but process the data back into its time-migrated im-
age, which is at what point many geoscientists in the
oil industry gain access to and begin examining seismic
data. We model the wavefield with an implementation of
the spectral element method (SEM) written by Dimitri
Komatitsch and Jean-Pierre Vilotte at the Institut de
Physique du Globe in Paris, France. Further improve-
ments have been made to original code by the third
author of this paper in the course of his graduate work
(Ampuero, 2002). Processing of the wavefield output by
the SEM code has been accomplished in Seismic Unix
(Stockwell, 1997).







integral over offset. Formally taking the limit of contin-
uous sources/receivers, n — oo and h — 0, and allowing
the discrete variable kh to become the continuous vari-
able z results in

K@:ix

%" x2 2
/ exp |iw T02 + = - T02 + = dz.(7)
-Le Vir Vst

We simplify the evaluation of the integral in equation (7)
by letting the spreadlength go to infinity, Ls; — oco. This
simplification avoids accounting for Cornu’s spiral in the
Fresnel integral (Born & Wolf, 1980). Denoting I(w) =
K (w)Ls as a scaled version of the transfer function gives

I(w) =

e . ., Z2 y , T2
exp |iw | 4T3 +¥— T0+v—2t dz. (8)
— 00 T 8

This type of integral can be approximately evaluated by
the method of stationary phase (Born & Wolf, 1980). In
this limit, I(w) is given by

Somgina [028] 7 it

I(w) = 271'6“- [W] ew Tat ; (9)
Tt

where z,; is the stationary point of the phase function

¢(x) of equation (8) that is given by

2 2
#(z) = w <\/T3+:?—\/T02+ :_“2) (10)

In equation (9), the subscript zs; indicates the quantity
is to be evaluated at the stationary point. To find the
stationary point, we set the z-derivative of the phase
function to zero

% _ vz ! - ! 0. (11)

N O Y O Y
From equation (11), we identify the stationary point
st = 0.

After calculating the second z-derivative of the
phase function and evaluating it at the stationary point,
the scaled transfer function I(w) can be expressed, in
the stationary phase approximation, as

I(w) = 21Ty exp(t sgn(vss — ver)w/4) (12)
wl | (v” —vi®)" 2|

Equation (12) states that, when an event is stacked with
a velocity that is not the true velocity, a phase shift
of +45° results. The phase shift is positive or negative
depending on whether the stacking velocity is higher
or lower than the true velocity. The amplitude of I(w)
scales with /Tp and as a quasi-hyperbola as a func-
tion of stacking velocity, | (v;,> —v,,%)"*/? |~*. The am-
plitude response is also inversely proportional to \/w.
Hence, stacking errors cause the stacked waveform to
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be lower in frequency than it should be - an effect iden-
tical to stacking NMO-stretched waveforms. Note that
the factor of 1/+/w does not apply at vs¢ = v¢r. From our
construction of the series in equation (4), the phase de-
lays Aty are all zero for vy = v and stacking does not
change the frequency content of the waveform. We ven-
ture that, for finite frequencies, the frequency filtering
aspect of mis-stacking vanishes gradually as vss — v¢r.

As a result of the +45° phase shifts introduced
by stacking errors, incorrectly stacked events acquire a
time advance or delay (Gausland, 2004). Such a prop-
erty suggests a complimentary method of performing
velocity analysis. Traditional semblance-based velocity
analysis exploits the fact that the amplitude of the stack
maximizes at the true velocity. This is evident from
equation (12) since the amplitude of I(w) — co when
vst = vtr. Alternately, the time advance/delay caused
by the phase shift vanishes for the correct stacking veloc-
ity. Cross-correlation of waveforms with different stack-
ing velocities could provide the time-lag as a function of
stacking velocity. Instead of picking “bullseyes” on the
semblance contour plot, zero-crossings would be picked
on a time-advance/delay plot.

survey parameter value
offset spacing, h 400 m
fold, 2n +1 5
true NMO velocity, vr 2000 m/s
erroneous stacking velocity, vs¢ 1800 m/s
zero-offset two-way-traveltime, To 09s
dominant frequency 20 Hz

Table II. Parameters for studying stacking errors

NUMERICAL TEST OF MIS-STACKING

We illustrate the impact of stacking velocity errors on
a post-stack migrated image with a numerical example,
using the SEM code. Our example does not satisfy the
approximations we made above to obtain analytic re-
sults for the stack response - there is finite spreadlength,
discrete receivers, and finite frequency. To evaluate the
stack response, we numerically calculate the exact trans-
fer function K(w) - the finite series appearing in equa-
tion (4). Table II summarizes the parameters from our
numerical survey that are necessary to evaluate the ex-
act transfer function. Note that our offset spacing is two
times the shot spacing (see Fig. 1) and that the velocity
of layer 1 serves as the true NMO velocity. We generate
two tests for the stacking velocity - one with the true
NMO velocity (2000 m/s) and another with a -10% er-
ror (1800 m/s). The material properties for the model




0.04

0.02f

amplitude
o

-0.02r

004550 900

1000 1100
depth (m)
Figure 5. An overlap of the correct stacking velocity migra-
tion (solid) and the convolutional model (dashed) along the

white, dashed line of Fig. 4.

relative to the amplitude at the correct stacking velocity
and have acquired a phase shift of ~ 60°. For our survey
parameters, it is evident that we are far from the geo-
metrical optics limit, when the phase shifts away from
the true stacking velocity should be %+ 45°. This demon-
strates that, away from the geometrical optics limit, the
error due to stacking velocity errors are mostly deter-
mined by the survey and acquisition geometry.

To test the array-based f-z domain theory for
stacking errors, we ran through the complete sequence
of SEM and processing with Model B and formed mi-
grated images both with and without stacking velocity
errors. Note that a stacking velocity error implies that
both the NMO and constant-velocity DMO steps had
erroneous (-10%) velocities. The migration velocity for
the following examples is kept as the correct migration
velocity. Two migrated images are displayed in Fig. 4.
In comparing the migration without stacking errors to
the migration with, the degradation of the image with
errors is noticeable.

To quantify the error in the images, we first took
a slice from the migrated image shown by the white
dashed lines in Fig. 4. This slice of the migrated image
is shown as a solid line in Fig. 5. Also plotted in Fig. 5
is the convolutional model obtained from our far-field
wavelet and the known reflectivity series. Good agree-
ment exists between the zero-offset migration and the
convolutional model, as there should be.

In the top panel of Fig. 6, we plot the same convolu-
tional model as in Fig. 5, but now show the slice of the
migration with incorrect stacking velocity in the solid
line. As discussed before, amplitude degradation and
phase shift is evident between the convolutional model
and the migration with erroneous stacking velocity. As
a further check if the array-based theory for stacking er-
rors accurately describes the migrated waveform in the
top panel of Fig. 6, we multiplied the far-field wavelet
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Figure 6. On the top: an overlap of the incorrect stack-
ing velocity migration (solid) and the correct convolutional
model (dashed) along the white, dashed line of Fig. 4. Note
the disparity in the amplitudes and phases of the two plots.
On the bottom: an overlap of the incorrect stacking veloc-
ity migration (solid) and the incorrect convolutional model
(dashed) calculated by dampening and phase shifting the
source wavelet by the factors predicted in Fig. 3.

by 0.6, phase-shifted it by 60°, and recomputed the con-
volutional model. These factors come from the circles at
-10% error in Fig. 3 for the flat reflector. The damped
and shifted version of the convolutional model is plot-
ted in the bottom panel of Fig. 6 together with the mi-
gration with the erroneous stacking velocities. Indeed,
by virtue of the excellent match of the two curves in
the bottom plot of Fig. 6, incorrect stacking velocities
have caused the amplitude and phase response of the
migrated waveform to be as that predicted by the exact
array-based theory (not in the geometrical optics limit).

We now turn our attention to the impact of the
stacking velocity errors on the fault-plane reflections in-
stead of the flat layers. Shown in Fig. 7 are dip-filtered
versions of the migrations both with and without the
errors in stacking velocity. We dip-filter the images in
order to isolate the reflectivity from the fault plane, as
in Haney et al. (2004a). The main difference here is that
the dip-filter is in the f-k domain and not the t-z do-




acquisition geometries (strike-line instead of dip-line),
but once their reflection has been captured, their recon-
structed finite-frequency waveform is relatively robust
in shape and amplitude. Particularly if velocity analy-
sis is performed on the reflections from flat layers (since
there are more of these than fault-plane reflections), the
associated error in the velocity picks is reduced when
considering the reflections from the fault-plane.

THE MIGRATION RESPONSE

We have already touched on the filtering action of mi-
gration in our discussion on the stack response, specif-
ically with equation (12). The connection with the mi-
gration response exists for vi, — 0o. When an event
has a true stacking velocity that is infinite and it is
stacked in the offset domain with a hyperbolic trajec-
tory described by a finite velocity, an analogy exists with
diffraction summation of a flat reflector in the midpoint
domain. To pursue this further, in the case of v¢ — oo,
equation (12) becomes

I(w) = vsq/ 27;T° exp(—im/4). (13)

Two of the three corrections made to simple diffraction
summation for Kirchhoff migration are shown in equa-
tion (13). The factor vstv/Tp in the transfer function
requires multiplying the result of diffraction summa-
tion by 1/vs¢+/To to recover the true waveform. Yilmaz
(1987) calls this the 2D geometrical spreading factor.
Furthermore, to recover the true waveform after diffrac-
tion summation requires multiplying by exp(im/4)\/w
(a half-derivative). This correction is called the wavelet
shaping factor (Yilmaz, 1987). The obliquity factor does
not appear in equation (13) - this is a result of the re-
flector being flat for infinite moveout velocity.

In the rest of this section, we briefly generalize the
above connection with migration for the case of a dip-
ping reflector and recover the obliquity factor, which
was not present for a flat reflector. Moreover, we are
able to confirm the well-known fact that the amplitudes
and phases of post-stack time-migrated waveforms from
planar features are virtually insensitive to migration ve-
locity errors. The same cannot be said for diffractions,
which can contain errors due to incorrect migration ve-
locities just as stacked waveforms contained errors due
to mis-stacking.

We want to study the phase and amplitude distor-
tion of a waveform at zin, tin (in the zero-offset section)
after it is migrated to an output point Zouyt, tout. Since
we are primarily interested in fault-plane reflections, we
assume a single dipping event in the zero-offset section
with a time dip

p = 2 sinf/vq, (14)

where 6 is the dip angle and v¢, is the true migration
velocity. When the zero-offset section is migrated with
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a velocity v,, not necessarily equal to v, the hyperbola
that is tangent to the reflector at zin,tin is described
by

thyp(z) =

\/t?n(l — g ) 4 M Tin LERERIAE, (1)
where the output points are
tout = tin\/1 — p20% /4, (16)
Tout = Tin — PUmtin/4. (17)

The equation describing the dipping reflector in the
zero-offset section is
tres(T) = DT + tin — PTin. (18)

From equations (15) through (18), the diffraction sum-
mation transfer function can be written

1 > iwAt
Y e, (19)

K(w) = 2n+1’c

=-n

where now 2n + 1 is the number of midpoints in the
migration aperture and At are the time shifts given by

Aty = tres(kh) — thyp(kh), (20)

with h representing the spacing between midpoints.

Moving from the finite series to an integral expres-
sion as we did earlier for stacking, the diffraction sum-
mation response is given, for the case of infinite aperture
and continuous midpoints, by

[ <]
10) = [ explia(tres @) - tryn()] da, (21)
—00
where tref(z) and thyp(z) are defined above. We note
that, just as we ignored NMO-stretch for the stack re-
sponse, we neglect the analogous stretch due to mi-
gration. The stretch caused by migration is manifested
through rotation and steepening of a reflector in the mi-
grated image. Its origins are the same as NMO-stretch.
Applying the method of stationary phase to the
integral in equation (21) yields a stationary point at z;n.
The resulting expression for the scaled transfer function
I(w) in the infinite frequency limit is

V2w exp(—im/4) tin ‘
I(w) = T——‘/—G—mvm\/m- (22)
From equation (22), it is evident that the waveform com-
ing out of the diffraction stack must be filtered by the
half-derivative exp(im/4)/w and divided by vm/tin to
give the original waveform. In addition, for a dipping re-
flector, the factor of tin /tout appearing in equation (22)
must be taken into account. This is the obliquity fac-
tor, whose effect is to dampen the amplitude of dip-
ping reflectors, such as fault-plane reflections. Note that
nowhere in equation (22) does the time dip, p, and there-
fore the true migration velocity, v¢» appear. This demon-
strates the insensitivity of the amplitude and phase of
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APPENDIX A: MODELING OF A
LINEAR-SLIP INTERFACE

We chose SEM to simulate fault reflectivity for its abil-
ity to allow a free-form mesh and in order to include
the possibility of slip at interfaces in our numerical
models. As evidence of SEM’s ability to handle chal-
lenging boundary conditions, it has recently been ap-
plied to wave propagation near a fluid-solid interface
(Komatitsch et al., 2000). However, interfacial slip had
not yet, to our knowledge, been implemented in SEM.
In fact, Komatitsch and Tromp (2003) claimed in the
description of their SEM code that “at every internal
boundary, both the displacement and the traction need
to be continuous”, in clear contradiction to slip.

For a normally incident P-wave, the linear-slip
boundary condition can be expressed as (Schoenberg,
1980)

uf —u] =nno.. (A1)
U:—z =0, (Az)

where the superscript (-) refers to the side of the in-
terface on which the wave is incident, (+) the other
side of the interface, u, is the displacement in the di-
rection of propagation, and o, is the normal stress.
The parameter ny is called the normal compliance and
quantifies the degree of slip along the interface. For
nn = 0,the interface is welded, and for nny = oo, it
is a free surface. The boundary condition described by
equations (Al) and (A2) can be obtained in the limit
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of a thin, weak layer in welded contact with its sur-
rounding rock. Linear-slip has been suggested as a good
model for scattering from faults and fractures (Coates
& Schoenberg, 1995). With this in mind, it is impor-
tant not to confuse the slip model in equations (A1)
and (A2) with slip that occurs along a fault during an
earthquake. The linear-slip model entails some slipping
at the interface that is the order of particle displace-
ments during the passage of a seismic wave (~ 107 m).
Active, earthquake-generating faults typically slip on a
length scale 3 to 4 orders of magnitude larger (~ 1072
- 1072 m). Earthquake slip is also hysteretic, whereas
interfaces undergoing linear-slip return to their equilib-
rium state after the seismic wave has moved on.

To implement the linear-slip model in SEM, the
weak form of the equation of motion is needed

//pﬁ¢+//V¢:c:Vu—/‘r¢=0, (A3)

where u is the displacement, p is the density, 7 is the
traction on the boundary of the computational domain,
c is the elastic stiffness tensor, and ¢ is the test func-
tion. The semi-colons in equation (A3) represent ten-
sor multiplication. After discretizing the displacement,
equation (A3) can be written as a matrix equation

Mii = —Ku + Br, (A4)

with M and K the mass and stiffness matrices, respec-
tively. The last term is non-zero only on the part of
the boundary where slip occurs; this is described by the
matrix B. The essence of this implementation is that
two separate meshes on either side of the slip disconti-
nuity (let’s call them mesh 1 and mesh 2) are put into
communication via the last term in equation (A4). To
get linear-slip between the two meshes along a direction
normal to their contact, we substitute equation (A1) for
the traction into equation (A4) for meshes 1 and 2 to
get two matrix equations

My = —Kiui + 1y Bi(uf — uj)
Mziiz = —Kauz — ny' Ba(uf —u3), (A5)

where the asymmetry of the *-signs between the two
last terms is in accordance with Newton’s third law and
the superscript z means the normal component of the
displacement. In the formulation we have outlined here,
the slip law, equation (A1), enters into the equation
of motion by a substitution of the slip for the trac-
tion at the fault. A weak formulation of the first-order
velocity-stress equations, instead of the second-order
wave equation, results in the opposite substitution: the
slip emerges from the equations by applying the weak
form, and substitution for the traction is necessary to
impose the slip (Haney & Snieder, 2003).

The SEM implementation of equation (Ab5) uti-
lizes an explicit Newmark scheme whose algorithm
consists of a predictor, a solver, and a corrector:
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parameter estimation for tilted TI media — Part I:
Horizontal TTI layer
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ABSTRACT

One of the distinctive features of mode-converted waves is their asymmetric
moveout (i.e., PS-wave traveltime may not stay the same if the source and re-
ceiver are interchanged) caused by lateral heterogeneity or elastic anisotropy.
If the medium is anisotropic, the moveout asymmetry contains valuable infor-
mation for parameter estimation that cannot be obtained from pure reflection
modes.

Here, we generalize the so-called “PP+PS=SS” method, which is designed to
replace reflected PS modes in velocity analysis with pure (non-converted) SS-
waves, by supplementing the output SS traces with the moveout asymmetry
attributes of PS-waves. The moveout asymmetry factor At,  is computed in
the slowness domain as the difference between the traveltimes of the PS arrivals
with opposite signs of the ray parameter (horizontal slowness). Another useful
asymmetry attribute is the offset Zmin (a) of the PS-wave moveout minimum on
a common-midpoint (CMP) gather with azimuth a. The computation of both
At,g and Zmi, is integrated in a straightforward way into the processing flow
of the PP+PS=SS method.

The effectiveness of the developed algorithm and the importance of includ-
ing the asymmetry attributes of PS-waves in anisotropic velocity analysis are
demonstrated for transversely isotropic models with a tilted symmetry axis
(TTI media). Simple analytic expressions for the moveout asymmetry of the
PSV-wave in a horizontal TTI layer are derived in the weak-anisotropy approx-
imation and verified by anisotropic ray tracing. The asymmetry attributes reach
their maximum in the vertical plane that contains the symmetry axis and vanish
in the orthogonal direction. The factor At, is proportional to the anellipticity
parameter 1 and rapidly varies with the tilt v of the symmetry axis. The largest
values of At, . are found for the symmetry axis that deviates by 20-30° from
the vertical or horizontal directions.

All relevant parameters of a TTI layer can be estimated by a nonlinear inversion
of the normal-moveout (NMO) velocities and zero-offset traveltimes of PP- and
SS(actually, SVSV)-waves combined with the moveout asymmetry attributes of
the PSV-wave. It should be emphasized that the inversion of pure-mode (PP
and SS) moveout alone is ambiguous, while the addition of the attributes A¢,
and Tmin yields stable parameter estimates for noise-contaminated input data.
Although the algorithm generally requires a wide range of azimuths, the param-
eters of most TTI models (except those with near-horizontal axis orientations)
can be obtained from 2-D data acquired in the vertical symmetry-axis plane.
If the TTI model is formed by obliquely dipping fractures, the estimated ani-
sotropic parameters can be inverted further for the fracture orientation and
compliances.

Key words: converted waves, dipping fracture, moveout asymmetry
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2 MODIFICATION OF THE PP+PS=SS
METHOD

The PP+PS=SS method introduced by Grechka and
Tsvankin (2002a) is designed for seismic surveys in
which shear waves are not excited (e.g., ocean-bottom
cable, or OBC) but may be recorded by multicompo-
nent receivers. In this case, the shear wavefield is formed
by mode-converted PS-waves, with the conversion of-
ten happening at the reflector. Although PS arrivals
carry valuable information about the shear-wave veloc-
ities, inversion and processing of mode conversions is
hindered by their large reflection-point dispersal, po-
larity reversals, and moveout asymmetry. The idea of
the PP+PS=SS method is to recompute the recorded
PP and PS wavefields into the corresponding pure SS
reflections, which are not physically generated in the
survey.

The construction of SS-waves with the correct kine-
matics (but not amplitudes) does not require explicit
information about the velocity field, but it is necessary
to correlate PP and PS arrivals and identify the events
reflected from the same interface. The original version
of the PP+PS=SS method described by Grechka and
Tsvankin (2002a) operates with PP and PS traveltimes
picked on prestack data. As illustrated in Figure 1,
matching the reflection slopes on common-receiver gath-
ers makes it possible to find two PS rays (recorded at
points z® and :1:(4)) with the same reflection point as
the PP reflection () Rz(». Then the traveltime of the
SS-wave is determined from

(3)’ x(4)) = tp, (x(l)’ :1:(3)) ttpg (:L.(Z), m(4)) (1)

- tpp(a:(l),m(z)).

Tss (@

Application of equation (1) produces reflection SS
data with the correct kinematics but generally distorted
amplitudes. Clearly, the SS traveltime 74 (z®,z™®)
will remain the same if we interchange the source (¢(*)
and receiver (z*)). Therefore, the moveout of the con-
structed SS-waves in common-midpoint (CMP) geome-
try is always symmetric, as is the case for any pure re-
flection mode. Conventional-spread SS traveltimes are
described by the NMO velocity (in 2-D) and NMO el-
lipse (in 3-D), which can be obtained using algorithms
developed for PP-wave data. The NMO velocities or el-
lipses of the PP- and SS-waves can then be combined
in velocity analysis using, for example, stacking-velocity
tomography, which proved to be particularly efficient for
anisotropic media (Grechka et al., 2002a).

Still, for many anisotropic models including a hori-
zontal T'TT layer, pure reflection modes are not sufficient
for estimating the vertical velocities and anisotropic co-
efficients (Grechka and Tsvankin, 2000; Grechka et al.,
2002a). In such a case, an important question is whether
or not including some attributes of the recorded PS-
waves in the inversion algorithm can help in recovering

ppp(x(l)‘ x(Z)) =pPS(x(l)' x(3)) ppp(x(z)' x(l)) =Dpg (1(2), x(4))
t t /.
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Figure 1. 2-D ray diagram of the PP+PS=SS method (after
Grechka and Tsvankin, 2002a). The reflected PP ray from
z(1) to z(2) and the PS rays from z(1) to £®) and z(® to
z(%) have the same reflection point R. The rays with the
common reflection point are identified by matching the slopes
on common-receiver gathers (i.e., the ray parameters) of the
PP- and PS-waves.

the medium parameters. It is clear from equation (1)
that the information about the moveout asymmetry of
PS arrivals is not preserved in the computed SS travel-
time, which depends on only the sum of the traveltimes
of the PS-waves converted at point R (Figure 1). Be-
low, we add certain measures of the PS-wave moveout
asymmetry to the traveltimes of the PP-waves and the
reconstructed SS-waves in the inversion for the param-
eters of T'TI media.

A generalized version of the PP4+PS=SS method
based on equation (1) was developed by Grechka and
Dewangan (2003). Instead of operating with prestack
PP and PS traveltimes, they apply a particular convo-
lution of PP and PS traces to produce seismograms of
the corresponding SS-waves. The convolution operator
in the frequency domain is given by

Wss(w,z®,2®) =//[ Wes(w,z®,z®) x
Wep(w,z™, z?) x WPS(UJ,39(2),(L'(4))]dl‘(1)d13(2),(2)

where w is the radial frequency, Wpp are Wpg are the
spectra of PP and PS traces, Wss is the spectrum of
the constructed SS trace for the source and receiver lo-
cated at points £® and ¥, and the star denotes com-
plex conjugate. The integration is performed over the
P-wave source and receiver coordinates z*) and z(®
(Figure 1). The main contribution to the integral comes
from the stationary point that yields the traveltime of
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the measure of asymmetry for & can be defined in the
following way:

Azps = Tpg(py,p;) + Tpg(—p1,—p2)- (12)

The main advantage of treating the asymmetry in
the slowness domain is that, for a laterally homogeneous
medium, both At and Az, can be obtained directly
from the PP4+PS=SS method [see equation (4) and Fig-
ure 1]. Equations (7), (11), (8), and (12) give an exact
representation of the moveout asymmetry of PS-waves
for any horizontal anisotropic layer. Next, we apply this
formulation to study the dependence of At,. on the
parameters of TI media with an arbitrary tilt of the
symmetry axis. The factor Az, is discussed later on,
after the introduction of the offset Zmin of the PS-wave
moveout minimum in CMP geometry.

Since the contributions of the symmetry-axis ori-
entation and anisotropic parameters to the time asym-
metry factor At,g are hidden in the components of
the slowness vector, in Appendix A we linearize equa-
tion (11) with respect to € and é under the assumption
of weak anisotropy (le] < 1 and |§| <« 1). The deriva-
tion is carried out for the PS mode that is polarized in
the plane formed by the slowness vector and the sym-
metry axis. Note that although we will denote this wave
“PSV,” its polarization vector lies in the vertical inci-
dence plane only if that plane contains the symmetry
axis.

The coordinate system is chosen in such a way
that the symmetry axis is confined to the [z1, z3]-plane,
which represents the only vertical symmetry plane of the
model and will be called here the symmetry-azis plane
(Figure A1). The sign of the time difference in equa-
tion (11) is specified by assuming that the symmetry
axis is dipping in the positive z1-direction.

Substituting equations (A5) and (A6) into equa-
tion (11), we obtain a linearized expression for the move-
out asymmetry factor of the PSV-wave:

Atps = —8n2Vpo p, [p2 +(2p2 +pl) cos 2v] sin 2v ,(13)

where ) = (e—6)/(1+2§) = e—4 is the “anellipticity” co-
efficient responsible for time processing of P-wave data
in VTI media (Alkhalifah and Tsvankin, 1995). In the
symmetry-axis plane [z1,z3], the slowness component
p, vanishes that and equation (13) simplifies to

Atps(p, =2 =0) = —87n2Vp p° sindv. (14)

Equations (13) and (14) give a concise description
of the azimuthally-varying factor At, . The main prop-
erties of the PSV-wave moveout asymmetry in the slow-
ness domain can be summarized as follows:

e The asymmetry factor vanishes for VTI (v = 0°)
and HTI (v = 90°) media because these two models
have a horizontal symmetry plane. In the symmetry-
axis plane, the linearized factor At,g [equation (14)]
also goes to zero for v = 45°. In this case, however,

the higher-order terms in ¢ and § do not vanish, which
makes the moveout weakly asymmetric.

e The contributions to the asymmetry factor from
the P-leg [equation (A5)] and S-leg [equation (AG6)] of
the converted wave are identical. Although this result
was proved here in the weak-anisotropy approximation,
numerical tests show that it remains valid for arbitrary
strength of the anisotropy.

e The asymmetry in the slowness domain depends
only on the difference n = ¢ — & and vanishes if the
anisotropy is elliptical (¢ = 4). Since for elliptical media
with any magnitude of € = § there is no SV-wave velo-
city anisotropy, the S-leg of the converted wave does not
produce any moveout asymmetry. This means that the
P-leg cannot cause the asymmetry either (see above).

e The magnitude of the asymmetry factor in the
symmetry-axis plane [equation (14)] reaches its maxi-
mum for the tilts » = 22.5° and v = 67.5°. Therefore,
At is quite sensitive to the deviation of the symmetry
axis from the vertical and horizontal directions.

The azimuthally-varying asymmetry factor At,g
computed for a typical TTI model from the exact equa-
tions (7) and (11) is displayed in Figure 2. There is a
substantial variation of At,  with the slowness com-
ponent p, (e.g., in the zi-direction where p, = 0),
while the influence of p, is much weaker. Therefore,
Figure 2 indicates that most of the 3-D (wide-azimuth)
moveout asymmetry information can be obtained in the
symmetry-axis plane [z1, Z3].

Note that the line p, = 0 in Figure 2 where
At,s; = 0 does not correspond to acquisition in the
[z2, z3]-plane. Since [z2,z3] is not a symmetry plane,
downgoing P rays with p, = 0 deviate from the verti-
cal incidence plane [z2, 3], and the source-receiver di-
rection of the reflected PS-wave is not parallel to the
T2-axis.

Figure 3 shows the function At,.(p,) in the
symmetry-axis plane in more detail. Both the
PP+PS=SS method and parametric equation (11) are
supposed to produce exact values of At ¢, which is con-
firmed by our numerical results. The magnitude of the
asymmetry factor is quite substantial — it exceeds 40%
of the zero-offset time before rapidly decreasing for large
values of p,.

The accuracy of the weak-anisotropy approxima-
tion (14) in Figure 3 is quite satisfactory considering
that it incorporates the contribution of the S-leg of the
converted wave. Typically, the weak-anisotropy approx-
imation is much less accurate for SV-waves than it is
for P-waves because of the large magnitude of the ani-
sotropic parameter o = (VZo/VZ,) (€—6) (Tsvankin and
Thomsen, 1994; Tsvankin, 2001). In our case, however,
the anisotropy-related asymmetry factors for the P- and
S-legs are equal to each other (see above), and the error
of the weak-anisotropy approximation is the same for
both P- and S-waves.
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270

Figure 4. Polar plot of the offset Zmin(c) for the model from
Figure 2. The stars mark values obtained from anisotropic
ray tracing of PS-waves and the solid line is computed from
equation (16) with the exact value of zo.

Azps =Zpg(py,0) +Tps(—py,0). (18)

Linearizing equation (18) in the anisotropic coefficients
using equation (8) yields the projection of the vector
Az, onto the z;-axis in the form

(Azpg),, = 220 + 1202 V5 p} sindv, (19)

where zo is given by equation (17). According to equa-
tion (19), the factor |Az 4| can be approximated by a
hyperbolic function of the slowness p, with the value at
the apex determined by 2 zo. Indeed, when p, = 0, the
PS-rays corresponding to both p, and —p, coincide and
have the same offset zo (Figure 5). If the PS moveout
were symmetric, the offsets for p, and —p, (circles and
diamonds, respectively, in Figure §) would have iden-
tical absolute values but opposite signs, and the zero-
offset PS-ray would have the slowness p, = 0. Figure 5
also confirms that the linearized equation (19) is suffi-
ciently accurate for weak and moderate anisotropy.

Therefore, an alternative way of estimating xo is
to fit a hyperbolic function to the slowness-dependent
factor |Axz ;| and find its intercept for p, = 0. It is
interesting that the coefficient of the quadratic term of
the hyperbola (19) is formed by the same combination
of the medium parameters that governs the traveltime
asymmetry factor (14).

3.3.2  Asymmetry factor in the offset domain

To give an analytic description of the factor At [equa-
tion (15)] in the offset domain, we expanded the trav-
eltime in a double Taylor series around the offset Zmin
(see Appendix C). The result is convenient to represent
in terms of the offset « and the azimuth « of the source-
receiver line. The linearized expression (C13) for At

x (km)

L

0 0.05 0.1 0.15 02
|p1| (s/km)

Figure 5. Slowness-domain factor | AZ , 5| in the symmetry-
axis plane of a TTI layer with the same parameters as those
in Figure 2. The solid line marks exact values of | Az, ¢ | from
equation (18), and the dashed line is the weak-anisotropy
approximation (19). Exact PS-wave offsets for positive slow-
nesses p, are marked by circles, offsets for negative slow-
nesses by diamonds; the offset is considered positive if the
vector &, points in the z;-direction.

contains linear and cubic terms in the offset £ and is
sufficiently accurate for relatively small offsets.

This approximation can be extended to larger off-
sets by adapting the approach of Tsvankin and Thomsen
(1994) who developed a highly accurate nonhyperbolic
moveout equation for P-waves by modifying the ¢*(z?)
Taylor series in such a way that it became convergent
at £ — o0o. For long-offset converted PS-waves, the inci-
dent P-wave travels almost horizontally and accounts for
most of the total reflection traveltime. The contribution
of the S-leg then becomes negligible, and the asymmetry
factor at infinite offset goes to zero. To ensure that At
vanishes for £ — 0o, we add a denominator (1 4+ Cz?)
to the cubic term in equation (C13):

Bz®
At,y = Aw+m; (20)
A=_ 2x0 COS
~ 2(Vpo + Vso)’
4nV3, sin 2v cos 2 .2
B:—m (2cos21/cos a + sin a) )
B
C=—Z-

In the symmetry-axis plane (¢ = 0°) the coeffi-
cients A and B in equation (20) become

2.’1:0
A=—e ——r—— 21
z (Vpo + Vso) (1)
2 .
B = 4nVp, sindv (22)

"~ 22 (Vpo + Vso)®
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ically excited in the survey. If the data have a wide range
of source-receiver azimuths, azimuthal velocity analysis
can be applied to obtain the NMO ellipses of the PP-
and SS-waves (Grechka and Tsvankin, 1998; Grechka et
al., 2002a).

The above methodology, described in detail by
Grechka et al. (2002a), is designed to avoid complica-
tions associated with the processing of mode-converted
waves. For some anisotropic models, the combination of
PP- and SS-waves is sufficient to estimate the medium
parameters without additional information. For TTI
media, however, the inversion of PP- and SS-waves
is feasible only for substantial reflector dips or near-
horizontal orientations of the symmetry axis (Grechka
et al., 2002a).

Here, we supplement the moveouts of the PP-waves
and constructed SS-waves in parameter estimation with
the PS-wave asymmetry attributes obtained from the
PP+PS=SS method. For laterally homogeneous media,
the traveltime asymmetry At (z‘®,z*) produced by
the PP+PS=SS method [equation (4)] coincides the
asymmetry factor defined in the slowness domain [equa-
tion (11)]. Another reason to work with the asymmetry
attributes in the slowness domain is the relative sim-
plicity of the corresponding analytic expressions.

The offset Zmin(a = 0) of the PS-wave traveltime
minimum in the symmetry-axis plane [z, 3] can also
be obtained from the PP+PS=SS method. As shown by
Tsvankin and Grechka (2000) and Tsvankin (2001, Ap-
pendix 5B), the traveltime minimum of any reflected
wave in CMP geometry corresponds to the ray with
equal projections of the slowness vector onto the CMP
line at the source and receiver locations (both legs of
the ray have to be treated as upgoing waves). Applying
this result to the symmetry-axis plane of a horizontal
TTI layer where the slowness vector cannot have out-of-
plane components, we find that the horizontal slowness
at the traveltime minimum has to go to zero. Then, for
both PP-waves and the constructed SS-waves the hori-
zontal slowness has to vanish at zero offset (an obvious
result for pure modes), while for PS-waves it vanishes
at the offset £min(0) = zo. Since the PS- and PP-waves
with the same reflection point have identical absolute
values of the horizontal slowness (Figure 1), the PS ray
at the offset zo is generated by the zero-offset P-wave
that corresponds to the stationary point z; = x».

Another way to estimate zo is to pick the offsets
(along with the traveltimes) of the two PS-waves corre-
sponding to the same reflection point for a range of the
slownesses p, and build the function |Az ¢ (p,)| [equa-
tion (18)]. This function can then be approximated with
a hyperbola whose apex yields the value of zo [equa-
tion (19)]. The main advantage of this approach is in
using multiple data points, which may help to obtain
more stable estimates of zo for noisy data.

4.2 Inversion algorithm

We assume that the azimuth of the symmetry-axis plane
was established, for example, from azimuthally vary-
ing moveout of pure modes. The general expression of
the NMO ellipse has the following form (Grechka and
Tsvankin, 1998):

Vi (@) = Wh1 cos® a+2 Wi sin a cos a+Waz sin® ,(23)

where Wi; = 1o0p; /0z; (¢i,j = 1,2), 7o = to/2 is the
one-way zero-offset traveltime, and p, and p, are the
horizontal slowness components for one-way rays from
the zero-offset reflection point to the surface; all deriva-
tives are evaluated at the CMP location. For a homoge-
neous horizontal layer, the matrix W can be represented
as (Grechka et al., 1999)

W = —q q,22 q,12 (24)
g11q22 — ¢, \ —412 gu )’

where ¢ = ¢q(p,,p,) is the vertical slowness and ¢,;; =
8%q/(0p; 0p;). As mentioned above, the slowness vector
of the zero-offset ray for a horizontal layer is vertical, so
the derivatives are computed for p, = p, = 0.

If the medium has a vertical symmetry plane, one of
the axes of the NMO ellipse is parallel to the symmetry-
plane direction (Grechka and Tsvankin, 1998). For a
TTI layer with the symmetry axis confined to the
[z1, x3]-plane, the terms g,12 and Wiz [equation (24)]
vanish, while W11 and Wa2 define the semiaxes of the
NMO ellipse (23). Therefore, the orientation of the
NMO ellipse of the recorded PP-waves or the con-
structed SS-waves can be used to find the azimuth of
the symmetry-axis plane [z1, z3].

Then, as described above, the processing of 2-D
multicomponent data in the symmetry-axis plane pro-
duces the following data vector d:

d= { Vnmo,P 3 tPO, Vnmo,S 3 tSO, (25)

A"'I-"s (puo)a mmin(a = 00) } .

Although At (p,, 0) denotes multiple measurements of
the asymmetry factor for the available range of the hor-
izontal slownesses p,, equation (14) indicates that the
moveout asymmetry in the [z1, z3]-plane may constrain
only one combination of the layer parameters.

Analytic expressions for At,¢(p,,0) and zo =
Zmin(a@ = 0°) needed to model these quantities in the
inversion algorithm were introduced in the previous sec-
tion. The NMO velocities Vamo,p and Vamo,s in the ;-
direction (@ = 0°) can be computed from equation (24)
with ¢,12 = 0:

1 q
Vamo = =2 26
nmo Wll q,ll ( )

The model vector m includes the following param-
eters of the T'TI layer:
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Figure 8. Inverted parameters (dots) of a horizontal TTI layer obtained from 2-D PP and PS data in the symmetry-axis plane.
The correct model parameters (Vpo = 4 km/s, Vso = 2 km/s, € = 0.25, § = 0.1, v = 70°, z = 1 km) are marked by the crosses.
The dashed line on the [¢, §] plot corresponds to the correct value of the difference (¢ — 8). The input data were contaminated
by Gaussian noise with the standard deviations of 2% for the NMO velocities, 0.5% for the zero-offset traveltimes, and 2% for
the PS-wave asymmetry attributes.
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Figure 9. Same as Figure 8, but the standard deviations of the Gaussian noise are increased to 1% for the zero-offset traveltimes
and 4% for the asymmetry attributes of PS-waves (the standard deviations for the NMO velocities remain unchanged at 2%).

the standard deviations of the noise were fixed at the
values used in Figure 8.

For HTI media (v = 90°) the PS-wave moveout is
symmetric, and the 2-D inversion in the symmetry-axis
plane cannot constrain the medium parameters. How-
ever, as illustrated by Figure 10, even a small (5°) devia-
tion of the symmetry axis from the horizontal plane cre-
ates a measurable moveout asymmetry. For the model
from Figure 10, the offset Tmin is close to 11% of the
depth z, and the factor At,, reaches about 4% of
the zero-offset PS traveltime for z = 2z. Although the
magnitude of the asymmetry attributes is not large, it
proved to be sufficient for stable 2-D parameter estima-
tion. The standard deviations do not exceed 0.02 for €
and 6, 2% for Vpo, Vso, and z, and 1° for v.

4.8.2 Models with intermediate tilt

The moveout asymmetry factor in the slowness domain
is small not only for near-vertical and near-horizontal
orientations of the symmetry axis, but also for tilts v
close to 45° [equation (14)]. The model of a horizontal
TTI layer with 35° < v < 55° can be used to describe
reflections from a horizontal interface beneath dipping
shale layers in fold-and-thrust belts, such as the Cana-
dian Foothills (e.g., Isaac and Lawton, 1999).

Figure 11 helps to assess the feasibility of the in-
version for a tilt of 50°. Although the asymmetry in the
offset domain for intermediate tilts is substantial (zo is
about 34% of z), the inverted parameters are biased and
exhibit significant scatter. Analysis of the inversion re-
sults shows that many estimated models correspond to
local minima of the objective (misfit) function and do
not fit the input data within the noise level.

The problem with local minima was addressed by
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Figure 12. Same as Figure 11, but the inversion algorithm is modified to avoid local minima.
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Figure 13. Inversion results for a model with the same parameters as those in Figure 8 except for the tilt v = 20°.

TTI models from VTI and HTI, for which PS moveout
is symmetric in any domain. As illustrated by Figure 15,
all parameters of an elliptically anisotropic layer except
for the tilt are well constrained, and the standard de-
viations are less than 0.03 for € = § and less than 2%
for Vpo, Vso, and z. The points on the [e, §] plot are
almost perfectly aligned along the € = ¢ line, which in-
dicates that the algorithm is able to identify elliptical
anisotropy. The estimates of v, however, are more scat-
tered (the standard deviation reaches 5°) than those for
anelliptical models with the same tilt, and the average
v is biased by about 2°.

5 DISCUSSION AND CONCLUSIONS

The moveout asymmetry of mode-converted waves
causes complications in seismic processing and can be
removed by applying the PP+PS=SS method intro-
duced by Grechka and Tsvankin (2002a) and Grechka
and Dewangan (2003). This method makes it possible to
compute the reflection traveltimes of SS-waves (if they
are not excited in the survey) from PP and PS data
prior to anisotropic velocity analysis. However, while

the replacement of converted waves with pure-mode SS
reflections is convenient for processing purposes, it re-
sults in the loss of the PS-wave moveout asymmetry
information that can play a critical role in estimating
the anisotropic parameters.

Here, we presented a modification of the
PP+PS=SS method designed to supplement the
computed SS data with such asymmetry attributes of
the converted waves as the difference At,s between
the “reciprocal” traveltimes in the slowness domain
and the offset Tmin of the traveltime minimum in
CMP geometry. The new algorithm was applied to
the inversion of multicomponent data for a horizontal
TTI (transversely isotropic with a tilted symmetry
axis) layer — the model used to describe the effective
anisotropy caused by parallel dipping penny-shaped
cracks, dipping shale beds, or progradational sequences.

The weak-anisotropy approximation helped to ob-
tain concise expressions for the azimuthally varying
asymmetry attributes of PSV-waves in terms of the tilt
v of the symmetry axis and the anisotropic coefficients €
and 4. The moveout asymmetry in a TTI layer is caused
by the oblique orientation of the symmetry axis; for VTI
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The inversion algorithm developed here can be
used for characterizing a system of obliquely dipping
penny-shaped cracks embedded in a layer-cake isotropic
medium (Angerer et al., 2002). Grechka and Tsvankin
(2003b) demonstrate that wide-azimuth seismic data
can be inverted for the parameters of the more com-
plicated model that includes penny-shaped cracks in
a VTI background. Their method operates with only
pure-mode reflections but the vertical velocities are as-
sumed to be known. It is possible that the addition of
the asymmetry attributes of PS-waves to the signatures
of pure PP and SS reflections can make a priori infor-
mation for their model unnecessary. Note that accord-
ing to the feasibility study by Grechka and Tsvankin
(2003a), seismic data can constrain the parameters of
up to four dipping systems of penny-shaped cracks em-
bedded in either isotropic or VTI host rock.

Tilted transverse isotropy is also used to describe
dipping shale layers in fold-and-thrust belts (such as
the Canadian Foothills) and the effective anisotropy of
progradational sequences. Joint inversion of PP- and
PS-waves reflected from dipping interfaces overlaid by
TTI media will be the subject of a sequel paper.
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Taking into account that the asymmetry for the S-leg of a given PS-ray has to be computed for the opposite sign of
the horizontal slowness [so p, in equation (A5) has to be replaced with —p,, and p, with —p,], we find

Atg = —4z (e — 8)p, Vo sin 2v [pz + (pr +p§)cos2u] = Atp . (A6)

APPENDIX B: AZIMUTHAL VARIATION OF THE OFFSET XwmiIn

The slope dt/dz of the CMP moveout curve for any pure or converted reflection mode is determined by the difference
between the projections onto the CMP line of the slowness vectors at the source and receiver locations! (Tsvankin and
Grechka, 2000; Tsvankin, 2001, Appendix 5B). This general result, which is valid for any heterogeneous, anisotropic
medium, can be used to find the offset Tmin of the PS-wave traveltime minimum where the moveout slope goes to
zero. For a horizontal, laterally homogeneous layer, the horizontal slowness has the same absolute value for both legs
of the reflected ray, and the slope can vanish only for a ray with the slowness vector orthogonal to the CMP line.

Suppose pq is the projection of the slowness vector onto the CMP line that makes the angle a with the z;-axis,
and p; is the slowness projection onto the orthogonal (a + 90°) direction. The offset £min(a) then corresponds to the
PS ray for which p, = 0. Rotating the slowness vector by the angle o in the horizontal plane yields

P, = Pa COSQ@ — P¢ SinC, (B1)
P, = Pa Sina + p; cOSQ. (B2)

The offset £ can be parametrically represented as [equations (8) and (9)]

=z \/(‘Z,w - ‘1,15)2 + (‘1,2P - ‘125)2 . (B3)

To find Zmin from equation (B3), the derivatives ¢ ; = d¢/0p; (i = 1,2), which are derived for weakly anisotropic
TTI media in Appendix A, have to be evaluated for po = 0.

Substituting g ; from Appendix A into equation (B3) and further linearizing the result in € and § produces = as
a function of p, and p,, which can be replaced by p, and p: using equations (B1) and (B2). The component p, is
then set to zero, while p; can be found from equation (10) for the azimuth a. Linearizing equation (10) and using
equations (B1) and (B2) with p, = 0 allows us to obtain p;:

» Tosin o
f = ——,
Vso — Vpo

where o = Tmin(a = 0°) is the value of Tmin in the symmetry-axis plane.

Since the slowness vectors of reflected rays propagating in the symmetry-axis plane cannot have out-of-plane
components, the offset xo corresponds to the ray with the vertical slowness vector (pa = pt = p;, = p, = 0).
Evaluating z from equation (B3) with p, = p, = 0 gives

(B4)

2
To =2 esin2u—l(e—5) 1+Y%g sin4v| . (B5)
2 Vs
Finally, we substitute po = 0 and p, from equations (B4) and (B5) into equation (B3) to obtain the following
expression for the azimuthally varying offset of the moveout minimum:

Zmin(@) = o cosa. (B6)

APPENDIX C: APPROXIMATE MOVEOUT ASYMMETRY FACTOR IN THE OFFSET
DOMAIN

To describe the moveout asymmetry in the offset domain defined in equation (15), we express the PS traveltime
through the components z; and z2 of the PS-wave offset vector ¢, [equation (8)]. An approximation for the
asymmetry factor in a horizontal TTI layer can be found by expanding the traveltime ¢(z1,x2) in a double Taylor
series in the vicinity of the offset (zo,0) of the moveout minimum [equation (B5)]:

ot 1 0% 1 0% 0%

oz 2T 2 822 20222 32,02,

5 (x1 — z0)* +

t(zi,z2) = t(x0,0)+ %— (z1 — o) + (z1 — m0) T2
Z1

tIn this formulation both legs of the reflected ray are treated as upgoing waves.
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metry factor as
2z1 20 4(e — ) V2, sindv 3 4(e—J) V3, sin2v 2
- - - . C12
z(Vpo + Vso) 22 (Vpo + Vso)? o 22 (Vpo + Vso)3 1t (€12)

Finally, equation (C12) can be rewritten in terms of the offset  and the azimuth a of the source-receiver line
(z1 =z cosa, T2 = zsina):

Atps =

2z o cosa 4e—8) Vi sindv 5 4 4(e —8) V3 sin2v 3 2
A = - — -
tps (T, ) = (Vro & Vso) 2 (Vro + Vao)? " cos"a— —3 Voo Vao)? z°cosa sin” a,

or

4 3 _ P
Atpg(z,@) = 2339 COSx 2" (¢ = 9) Vpo sin2v cosa <2cos 2v cos® a + sin’ a) . (C13)

" 2(Vpo + Vso) 22 (Vpo + Vso)3
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Application of PS-wave moveout asymmetry in
parameter estimation for tilted TI media — Part II:
Dipping TTI layer
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ABSTRACT

Dipping transversely isotropic layers with a tilted symmetry axis (TTI media)
cause serious imaging problems in fold-and-thrust belts and near salt domes.
Here, we apply the modified PP4+PS=SS method introduced in Part I to the
inversion of long-spread PP and PS reflection data for the parameters of a TTI
layer with the symmetry axis orthogonal to the bedding. The inversion algo-
rithm combines the asymmetry attributes of the PSV-wave with the hyperbolic
moveout of the pure PP- and SS-waves in the symmetry-axis plane (i.e., the
vertical plane that contains the symmetry axis).

Analysis of the asymmetry attributes for a dipping layer is complicated by the
fact that the PS-waves with the same conversion point do not have identical ray
parameters (horizontal slownesses). The weak-anisotropy, small-offset approxi-
mations for the time and offset asymmetry factors show that the leading terms
in offset do not contain independent information for the inversion. Therefore,
the parameter-estimation algorithm has to rely on long-offset PS data (with
maximum offset-to-depth ratios of at least two), which makes the results gen-
erally less stable than those for a horizontal TTI layer in Part I.

Still, the contribution of the PS-wave asymmetry factors helps to constrain
the TTI parameters for large tilts v of the symmetry axis (v > 40°). The
least resolved parameter is Thomsen’s coefficient € because it that does not
directly influence the moveout signatures of either pure or converted modes.
The accuracy in € and other parameters for large tilts can be improved by using
wide-azimuth PP and PS reflections. With high-quality PS data, the inversion
remains feasible for moderate tilts (25° < v < 40°), but it breaks down for
models with smaller values of v in which the moveout asymmetry is too weak.
However, the tilt itself and several combinations of the medium parameters (e.g.,
the ratio of the symmetry-direction P-and S-wave velocities and the anisotropic
parameter ) are well-constrained for all symmetry-axis orientations.

The inversion results prove that 2D measurements of the PS-wave asymmetry
attributes can be effectively used in velocity analysis for dipping TTI layers.
In addition to providing an improved velocity model for imaging beneath TTI
beds, our algorithm can yield valuable information for lithology discrimination
and structural interpretation.

Key words: converted waves, dipping shale, moveout asymmetry

1 INTRODUCTION beneath TTI formations and characterization of dip-
ping fracture systems. Mode-converted PS-waves can

Estimation of the parameters of tilted transversely iso- make an important contribution to building TTI ve-

tropic (TTI) media is essential for anisotropic imaging
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We consider a homogeneous TTI layer with the axis
of symmetry orthogonal to the layer’s bottom (reflector)
that may have an arbitrary dip. Hence, the symmetry
axis is confined to the reflector’s dip plane that rep-
resents the only vertical symmetry plane of the model
(we call it the symmetry-axis plane). The z;-axis of the
Cartesian coordinate system points in the updip direc-
tion of the reflector (Figure Al).

According to Snell’s law, the projection of the slow-
ness vector onto the reflector should be the same for all
reflected waves. If we denote the slowness components
in the dip and strike directions of the reflector by p, ..,
and p, ., (both p, ., and p, ., are confined to the re-
flector plane), the difference between the traveltimes of
the two PS-waves with the same conversion point can
be represented as

Atps = tps(PinerrPiniz) = trs (“Piners ~Pinez) (1)
= At, + Atg,

where At, and At are the contributions to At, g from
the P- and S-legs of the PS ray, respectively. Equa-
tion (1) has the same form as the expression for At
in Paper I, where the slowness components have to be
computed for a horizontal interface.

Following Paper I, we also define the measure of
asymmetry in the offset « [equation (A4)] using the
two PS-waves with the opposite signs of the slowness
projection onto the reflector:

Azps = Tpg(Piners Pinea) + Tps (=Piners —Pima) - (2)

To gain insight into the influence of the model param-
eters on the time and offset asymmetry factors, we an-
alyze approximate expressions for At,s and Az, ob-
tained in Appendices A and B under the assumption of
weak anisotropy (Je] < 1 and |6| < 1) and small offset-
to-depth ratio (|pint1 Vro| < 1 and |pint2 Vro| < 1). As
shown in Appendix A, the approximate moveout asym-
metry factor At for the PSV-wave in the symmetry-
axis plane (i.e., for the azimuth a = 0) is given by

—2sinv

At,, = Tso-—xxss 3)

(14 4¢€) Vi sinv cos’v 5

Y Tt 200 Vg E T

where x = (0 — §)/(1 + 20) is the anisotropic param-
eter that can be obtained from the zero-offset travel-
times and NMO velocities of P- and SV-waves in layer-
cake VTI media (Grechka and Dewangan, 2003), and
z4 is the normal distance from the common midpoint
(CMP) to the reflector. As expected, the asymmetry
factor At,¢ vanishes for zero tilt and dip (v = 0) when
the medium becomes VTI. The linear term in offset is
proportional to the anisotropic parameter x that can
be estimated from the moveout of pure PP and SS re-
flections (see below), so it does not carry independent
information for velocity analysis. Note that PS moveout
is asymmetric even in a dipping isotropic layer, where

0.15;

:
!
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Figure 1. Time asymmetry factor At,¢ for the PSV-wave
in the symmetry-axis plane of a dipping TTI layer. The ex-
act asymmetry factor is marked by the solid line, the weak-
anisotropy approximation (3) by the dashed line with stars,
the linear term in equation (3) by the dashed line, and At,¢
in the reference isotropic model by the dash-dotted line.
Aty is normalized by the zero-offset traveltime of the PS-
wave. The medium parameters are Vpg = 4 km/s, Vgo = 2
km/s, € = 0.25, § = 0.1, v = 25°, and 24 = 1 km. The maxi-
mum offset-to-depth ratio of the PP and PS data is close to
two.

the cubic [equation (3)] and higher-order terms in x4
do not go to zero. Figure 1 shows the asymmetry factor
At,s computed for a typical dipping TTI model from
the exact equations (1) and (A1), as well as from ap-
proximation (3). While the initial slope of At is well-
described by the linear term in equation (3), the cubic
and higher-order terms make a significant contribution
at far offsets that correspond to offset-to-depth ratios of
about two for the original PP and PS data. The linear
term provides a good approximation for At,s at near
offsets even for larger absolute values of § and o when
equation (3) as a whole becomes inaccurate.

The weak-anisotropy approximation for the az-
imuthally varying offset asymmetry factor [equation (2)]
is derived in Appendix B. In the symmetry-axis plane
(@ = 0), the approximate Az, takes the following
form:

_sinv [ (1+46) V3, 2
ATps = 2 24 [(1 +40) VZ, 1| @ss - )

Equation (4) indicates that for typical TI models with
o > 4, the influence of anisotropy reduces the offset
asymmetry factor, which is confirmed by the numeri-
cal results in Figure 2. The weak-anisotropy approxi-
mation (4) deteriorates with increasing offset because
the exact solution is influenced by the quartic term in
x4 even for offset-to-depth ratios of the PS-wave close
to two. For the moderately anisotropic model in Fig-
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2d
t = —— 1
S0 Vso 3 ( 0)
sin v
Pso = Vso (11)

The model vector for the TTI layer includes the
following components:

mE{Vpo,Vso,e,5,V=¢,Zd}, (12)

where the tilt v of the symmetry axis is taken to be
equal to the reflector dip ¢. For noise-free data, all six
model parameters can be recovered uniquely using the
NMO velocities, zero-offset traveltimes and zero-offset
slopes of the PP- and SS-waves. Indeed, the tilt v can
be found from the ratio of the NMO velocities of either
wave in the dip and strike directions, which allows us to
obtain the vertical velocities Vpo and Vso from the ray
parameters p,p, and pg,. Finally, the distance z; and
parameters € and § can be inferred from the zero-offset
times and NMO ellipses. However, in the presence of
noise, the estimation of tilt from the ratio of the NMO
velocities is highly unstable for small and moderate tilts.

This instability can be illustrated by computing the
range of possible tilt values for the NMO velocities con-
taminated by Gaussian noise with a standard deviation
of 2% (Figure 3). Although the estimation of tilt is unbi-
ased, with the distribution centered at the correct value
(v = 25°), the standard deviation of v is about 3.5°.
According to the sensitivity plots in Figure 4, such a
scatter in v is sufficient to cause unacceptably large er-
rors in the parameters € and Vpg reaching 0.3 and 15%,
respectively. Thus, a realistic distortion of 1-2% in the
NMO velocities propagates with a significant amplifica-
tion into the other parameters. This conclusion is also
supported by the results of Grechka et al. (2002) who
found the inversion of the PP and SS (SVSV) NMO
ellipses, zero-offset times and reflection slopes in a dip-
ping TTI layer to be nonunique for tilts and dips smaller
than 30-40°.

It is equally important for practical applications to
study the inverse problem for the common case when
only 2D data in the symmetry-axis plane are available.
The data vector in this case has six elements (V4P

nmo,P?
tPo, Ppo) V:I;'L,S, tso, and pg,) but only five of them are
independent because of the constraint,

Pso _ tso (13)

Ppo tpo

Since the model vector (12) includes six parameters, 2D
inversion cannot be carried out without additional in-
formation, such as the asymmetry attributes of the PS-
wave. The results of the previous section, however, indi-
cate that the leading terms in the expressions for asym-
metry attributes depend just on the moveout parame-
ters of the pure (PP and SS) modes. Indeed, rewriting
equations (3), (4), and (5) in terms of NMO velocities,
zero-offset times and reflection slopes of the PP- and
SS-waves, we find [only the linear term in equation (3)
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Figure 3. Probability density function of the tilt » assuming

a 2% error in the NMO velocities. The model parameters are
the same as those in Figure 1.

is included]

Vnzmo,P t%o
Btps = pao (P25 =1) 2o, (14)
nmo,
4 2
pso Vnmo,P tPO 2
A = -1 1
“rs 2ts0 < Viimo,s t5o ) Fas (9
tso
Zmin = 2p30 (ppo _pso) (16)

(Vnzmo,P DPpo + Vn2mo,S pso) .

All NMO velocities in equations (14)-(16) are the
dip components of the NMO ellipses measured in the
symmetry-axis plane.

Clearly, only the deviations of the exact asymmetry
attributes from the approximations (14)—(16) can pro-
vide independent information for the parameter estima-
tion. As illustrated by Figures 1 and 2, such deviations
do become substantial at large offsets x5 for both the
time and offset asymmetry factors.

We propose the following algorithm to invert the
2D multicomponent data in the symmetry-axis plane
for the model vector (12):

e For each value of the tilt v from 0° to 90°, find
the model vector using equations (6)—(11). Restrict the
range of plausible tilts by putting reasonable constraints
on the parameter € (0 < € < 1; see Figure 4 below).

e Taking into account errors in the measured quan-
tities, compute the range of models that fit the data
within the noise level for each plausible tilt.

e For each model found in the previous step, compute
the asymmetry attributes from the exact equations (1)
and (2).

e Calculate the following misfit function for the
asymmetry attributes over the full range of offsets (the
maximum offset-to-depth ratio of the PP and PS data
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the offset asymmetry. The asymmetry information be-
comes useless for the inversion purposes if errors reach
20% in At,g and 40% in Az .

3.3 Numerical examples

To evaluate the stability of the parameter estimation,
we present a series of numerical tests in which the in-
put data were computed from the exact equations for a
representative range of TTI models and contaminated
by Gaussian noise. For each model, the parameter vec-
tor m [equation (12)] is obtained for 200 realizations of
the input data using the inversion algorithm described
above.

In the previous section, we showed that the leading
terms in x5, in the equations for the asymmetry at-
tributes do not provide independent information for the
parameter estimation. Therefore, to assess the accuracy
of the inversion, it is convenient to define the “quality
factor” for the time asymmetry At, g as
|Atlm _ At;x;ct } ’

PS

= (18)
|ALE

Q@ = max {
where At is the exact value and At} is the lin-
ear term in z5, [equation (3)]; @ is computed for the
maximum offset-to-depth ratio of two for the PS-waves.
Since the sensitivity of the offset asymmetry factor to
the model parameters is similar to that for the time
asymmetry (see Figure 5), we do not include Az,¢ in
equation (18). If the quality factor is large (close to or
greater than unity, according to our estimates), we ex-
pect the asymmetry attributes to make a substantial
contribution to the inversion for the tilt » and other
parameters.

First, we consider TTI media with large tilts of
the symmetry axis (v > 40°), which also implies steep
reflector dips. Such models are typical for the Rocky
Mountain Foothills in Western Canada and other fold-
and-thrust belts that contain steeply dipping TI shale
layers (e.g., Isaac and Lawton, 1999). The inversion for
v = 60° produces unbiased results, with the mean of
each model parameter being close to the correct value
(Figure 6). Although the quality factor for the model in
Figure 6 is smaller than unity (Q = 0.6), the moveout
asymmetry is quite pronounced, with the maximum of
At, ¢ reaching 20% of the zero-offset PS traveltime, and
Az, at far offsets reaching 70% of z4. In comparison,
for the reference isotropic medium with ¢ = § = 0, the
quality factor is infinite, the maximum of At is also
20% of the zero-offset time, and Az is up to 110% of
24. Since the magnitude of the asymmetry attributes is
relatively large, it should be possible to estimate both
At,g and Az,g with high accuracy.

If we assume that the error in the asymmetry at-
tributes is 2%, the parameters Vpo, Vso, and z4 are well
constrained (the standard deviation is less than 1%),
and the standard deviation in v is only 1°(Figure 6).

However, in agreement with the relatively small value
of the quality factor, the inverted anisotropic param-
eters € and & exhibit more scatter, with the standard
deviation reaching 0.06 and 0.04, respectively. Also, the
estimates of € and § degrade rapidly as the error in the
asymmetry attributes increases, while the deviations in
Vpo, Vso, and z4 remain small. It is clear from Figure 6
that the best-constrained parameter combinations are
x = (0 —3)/(1 + 20), sinv/zq4, and Vpo/Vso. In princi-
ple, € and § for large tilts can be obtained with sufficient
accuracy from wide-azimuth PP and SS data, as demon-
strated by Grechka et. al. (2002).

If the tilt for the model from Figure 6 is reduced
from 60° to 25° (Figure 7), the quality factor ) increases
to 1.1, which indicates that for the same errors in the
input data the inversion should become more stable (i.e.,
the model parameters should be better resolved). The
magnitude of At,  for v = 25°, however, decreases to
just 8% of zero-offset time (the corresponding value for
the reference isotropic medium is 14%). Therefore, it is
reasonable to assume that the uncertainty in the Atp
and Az, becomes larger for mild tilts.

If the error in the asymmetry attributes is set to 6%,
the standard deviation of the tilt v is almost the same
(1°) as that in Figure 6. Despite the high resolution in
v, Figure 7 shows that the standard deviations in Vpo,
Vso, and 24 increase to about 4%; the deviations in €
and § are also substantial (0.08 and 0.05, respectively).
Although the accuracy in all model parameters becomes
acceptable if the error in the asymmetry attributes is
limited to 2%, the small magnitude of At and Az,
makes such low error levels unrealistic.

An interesting special case is that of an elliptically
anisotropic medium (¢ = §). For the same tilt v = 25°
as that in Figure 7, but with ¢ = § = 0.2, the qualify
factor @ = 2.1, which indicates significant higher-order
terms in offset in the equations for At,; and Az ..
The magnitude of the time asymmetry factor is also
substantial (about 20% of zero-offset time), so the in-
version is expected to be stable. It turns out, however,
that the parameter estimation is feasible only if the el-
liptical condition is assumed in advance (i.e., the inver-
sion is performed with € = §). If the inversion is carried
out without any assumption about ¢ and 4, then the
inversion for several model parameters is unstable, even
though the tilt is well-constrained.

To understand the influence of the asymmetry error
on the inverted parameters, we repeated the inversion
for a wide range of the standard deviations in At ; and
Az, (Figures 8 and 9). Figure 8 shows that for the
same errors in the input data, the velocity Vpo becomes
better constrained for models with larger tilt, whereas
for v the opposite is true. The results for Vpo are ex-
plained by the much lower sensitivity of this parameter
to distortions in the tilt for models with large values of v
(Figure 4b). The standard deviations in the shear-wave
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Figure 8. Error (the standard deviation) in the velocity Vpo
(a) and the tilt v (b) as a function of the standard devia-
tion in the asymmetry attributes. The tilts are 10° (the line
with stars), 25° (triangles), 40° (circles), and 60° (squares).
The parameters Vpg, Vso, €, d, and 24 and the standard de-
viations in the NMO velocities, zero-offset times, and time
slopes are the same as those in Figure 6.
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Figure 9. Same as Figure 8, but for the parameters ¢ (a)
and ¢ (b).

tions (A26) and (B8) for small tilts v shows, how-
ever, that the azimuthal variation of the asymmetry
attributes can be predicted from their dip components
(a=0):

Atps(a) = Atps(0) cosa, (19)
Az,g(a) = Az, (0) cosa. (20)

Also, the magnitude of the asymmetry attributes de-
creases away from the dip direction and goes to zero in
the [z2,z3]-plane. The relatively weak moveout asym-
metry for intermediate azimuths means that including
the azimuthal variation of At,; and Az, may not in-
crease the signal-to-noise ratio. A better option for en-
hancing the signal may be to stack the dip components
of the asymmetry attributes for adjacent CMP locations
under the assumption of weak lateral heterogeneity. As
discussed above [see Figure 3], the pure-mode attributes
for small and moderate tilts are too sensitive to noise to
help in constraining the model parameters.

For large tilts (v > 40°), the azimuthal variation
of the moveout attributes becomes more complicated
and cannot be described by equations (19) and (20).
Numerical examples (not shown here) indicate that if
v > 40°, the factors At, (o) and Az, ¢ (a) measured in

wide-azimuth surveys provide useful constraints on the
model parameters. The asymmetry attributes, however,
are redundant for large tilts because the inversion can
be carried out using wide-azimuth PP and SS data alone
(Grechka et al., 2002).

4 DISCUSSION AND CONCLUSIONS

The modified PP+PS=SS method introduced in Part I
(Dewangan and Tsvankin, 2003) is applied here to the
inversion of multicomponent (PP and PS) data acquired
over a dipping T'TI layer with the symmetry axis ortho-
gonal to the layer’s bottom. As was the case in Part I,
the moveout asymmetry attributes of the PSV-wave
play a crucial role in the parameter-estimation proce-
dure.

To analyze the moveout asymmetry in the vertical
plane that contains the symmetry axis (the symmetry-
axis plane), we developed the weak-anisotropy, small-
offset approximation for the time (At,;) and offset
(Az,g) asymmetry factors. Although the anisotropy
has a strong influence on both At,; and Az, even at
small offsets, the leading terms in offset depend just on
the moveout parameters of the pure (PP and SS) reflec-
tion modes. Therefore, independent information for the
inversion procedure is contained only in the higher-order
terms that become significant when the offset-to-depth
ratio for the PS-waves approaches two.

It should be emphasized that 2D moveout inversion
of pure-mode (PP and SS) data in the symmetry-axis
plane is nonunique, and even 3D inversion breaks down
for small and moderate tilts v of the symmetry axis. The
addition of the PS-wave asymmetry attributes to the
NMO velocities, zero-offset traveltimes, and reflection
slopes of the recorded PP-waves and the constructed
SS-waves can help to invert 2D data in the symmetry-
axis plane without a prior: information. The inversion
algorithm is designed as a two-stage procedure, with the
factors At,g and Az, computed only for the family
of plausible models which fit the pure-mode data.

To predict the stability of the inversion for a given
TTI model, we introduce the “quality factor” (Q) that
quantifies the contribution of the cubic and higher-order
terms in offset for the time asymmetry At, ;. Relatively
small values of Q (Q < 1), which may be caused by a
limited offset range of the acquired PP and PS data, typ-
ically indicate that the estimated parameters are highly
sensitive to noise.

Application of the algorithm to noise-contaminated
input data shows that the tilt v of the symmetry axis
is well resolved even when the model approaches VTI
(v = 0°). The accuracy in the symmetry-direction ve-
locities Vpo and Vso and the distance zq from the CMP
to the reflector is sufficient only if the symmetry axis
deviates by at least 40° from the vertical. For mod-
erate tilts 25° < v < 40°, however, the inversion for
Vpo, Vso, and z4 is possible only if the errors in the
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APPENDIX A: APPROXIMATE TIME ASYMMETRY FACTOR FOR THE PSV-WAVE

To derive explicit expressions for the time and offset asymmetry factors in a TTI layer, we use the exact parametric
representation of converted-wave moveout developed in Tsvankin (2001, Chapter 5) and Tsvankin and Grechka (2002).
The PS-wave reflection traveltime in a homogeneous layer above a plane dipping reflector can be found in the following
form:

tps =tp +ts = 2r (gp —DPipQ1p —Pap92p tds — P15 15 — Pas Q,zs)a (A1)

where t, and tg are the traveltimes along the P- and S-legs, respectively, z, is the depth of the conversion point at
the reflector, p, and p, are the horizontal components of the slowness vector (the subscripts “P” and “S” indicate
the wave type), ¢ = p, is the vertical slowness, and ¢ ; = 0q/0p; (i = 1,2). According to the convention in Grechka
and Tsvankin (2000) and Paper I, the zs-axis points down, and both legs of the PS ray represent upgoing waves
(i.e., the slownesses are computed for group-velocity vectors that point toward the earth’s surface). The depth of the
conversion point can be represented in terms of the vertical distance zgy,, from the common midpoint (CMP) to the
reflector:

_  _*cowmp
L e (A2)
tan
Az = T¢ [(Q,lp +415)1 4+ (920 + 9025 )C2] ’ )

Here {(1, (2} is a horizontal unit vector in the updip direction and ¢ is the reflector dip.
The source-receiver offset z,¢ of the PS-wave and the azimuth « of the source-receiver line with respect to the
z1-axis can be written as

Tps = |Tps| = v/ z} + a3, (A4)

a = tan! (ﬂ) (A5)
1

where z1 and 2 are the components of the source-receiver vector «:

1 =2 (€1p — Qus)» (A6)

T2 =2r (€2p — Qos)- (AT)

A detailed derivation of equations (A1)—(A7) can be found in Tsvankin (2001, Appendix 5E).

For a weakly anisotropic TTI layer (Je] < 1 and |§] < 1), the asymmetry factor At,g obtained from the
PP+PS=SS method [equations (1) and (2)] can be linearized in the anisotropic coefficients € and § under the additional
assumption of small offset = ¢. Here, we consider a T'TI layer with the tilt of the symmetry axis equal to the reflector
dip (Figure Al). Since the PP+PS=SS method operates with the PP and PS arrivals that have the same reflection
point, the projection of the slowness vector onto the reflector is identical (by absolute value) for all reflected waves
according to Snell’s law.

Using simple trigonometric relationships, the slowness components for the incident and reflected P-waves can be
written as

Pu = PuacCosv+q’ siny, (A8)
Dy = —Dygcosv+q’ lsinv, (A9)
Pi2 =  Pinta = “Pros (A10)

where p, ,, and p,,,, are the slowness components of the incident and reflected waves along the interface in the dip
and strike directions, respectively, ¢V is the slowness component in the symmetry-axis direction, p;, and p,, are the
horizontal slownesses the incidence and the reflected waves in the symmetry-axis (dip) plane (Figure A1), and p,, and
p,, are the slowness components of the incidence and reflected waves in the strike direction. The above relationships
between the slownesses remain valid for the S-wave with the same reflection point.

In the weak-anisotropy approximation, ¢¥*! can be expressed for P-waves in terms of p, ., and p,,,, using the
VTI equations (Tsvankin and Grechka, 2000):

2 2
c .+ i
QT = dpo {1 _ (Pinea _ Pinca) [0+ (e — &) +pi"~’m2)vgo]} , (A11)

intl
PO

1
dpo = V—go - (p?ntl +pi2nt2) : (A12)
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It is convenient to expand At, in a Taylor series in z,, around zero offset:

OAt, 13%At, 3

At, = -
tp . Tep g a3, Top + (A19)

Equation (A19) contains only odd powers of offset because the terms even in &, do not contribute to the moveout
asymmetry. Evaluating the partial derivatives in equation (A19) using the chain rule applied to equations (A17) and
(A18), we arrive at

__ sinv cosa (1 —26) sinv cos® a tan’a) 3
Aty = Voo orr Yt 8Vpo 22,0 1t oty ) er (420)

The linearized contribution of the S-leg to the time asymmetry factor can be found from the P-wave equa-
tion (A20) using the general transformation rule valid in the limit of weak anisotropy (Tsvankin, 2001, p. 26):

Veo = Vso, €30, 6§ = 0;
Vo
= - (e—9).
7=vg
The above substitutions give the following expression for the corresponding S-wave asymmetry component At:

Aty =

. _ : 3 2
sinv cos (1 —20) sinv cos® a (1+tan a) 3 (A21)

T .
Vso s 8Vs022,p cos?y | 7SS

Although the common midpoints for the PP- and SS-waves processed by the PP+PS=SS method are not exactly
the same, the difference between the values of zgyp for At, and Atg can be ignored if the offsets are sufficiently
small. Because of the typically large velocity ratios Vpo/Vso, the offsets of the constructed SS-wave seldom exceed
the reflector depth, so the term x:; ¢ in equation (A21) can be neglected.

The total time asymmetry factor of the PS-wave can be found by substituting equations (A20) and (A21) into
equation (A1) and taking into account that the contributions of the P-and S-legs should have opposite signs (Paper I):

. Tpp T (1 —26)sinvcos®a tan®a\ 3
Aty = (— - ﬁ) 1 . A22
tpg =sinv cosa Voo~ Veo +3 Vro 2ongp t woszy | Trr (A22)

Since the offsets z,, and x4 are related to each other, equation (A22) can be further simplified by expressing
z,p through . Applying the transformation P-to-S rule to equation (A18) yields the offset x5 as a function of
Dine: and azimuth a:

tan’
Tgg = Puer V50 Zomp SECQ [2 +40 + (1 —40)p2,, Vo (1 + m—Z:)] . (A23)
Expanding z,, in a Taylor series in z,, around zero offset leads to
182 3
Tpp = Ozpp Ozpp x?ss + 1 O°Tpp 3 (A24)

Tz = .
SSs 2 3 SSs
Oz 2 Oz%g 6 Oz

The derivatives in equation (A24) can be determined from equations (A18) and (A23), which gives the following
expression for the PP-wave offset:

Vo (1 + 26) (1 — 46 + 8¢) V3, cos’a tan’a\ 3
= . A2
TP = Vg (1+20) Tss 8(1+20)3 V3, 22,p t osty ) Fss (A25)

Substituting equation (A25) into equation (A22), we obtain the final expression for the time asymmetry factor in
terms of the offset xg4:

At = —2 (0 — d) sinv cosa
Ps (1+20) Vso

(A26)

(1 + 4e) V3, sinv cos® ( tanza) 3
Tgs +

4(1+20)32 V3, 22 e cos?v ) s

APPENDIX B: APPROXIMATE OFFSET ASYMMETRY FACTOR

Here, we use the approach described in Appendix A to obtain an approximation for the offset asymmetry factor of
the PSV-wave in a TTI layer. Using equations (2) and (A6) , the exact parametric equation for the projection of the
offset asymmetry vector Az,  onto the z;-axis can be written as
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ABSTRACT

One of the main problems in the velocity analysis of P-wave data for VTI
(transversely isotropic with a vertical symmetry axis) media is the need for a
priori information in building a model for depth imaging. Including SV-wave
moveout in the parameter-estimation procedure, either alone or in combination
with P-waves, can help in positioning the reflectors at the correct depth using
only reflection traveltimes. Here, in order to develop a foundation for shear-
wave migration velocity analysis (MVA) in VTI media, we study SV-wave image
gathers obtained after prestack depth migration. The numerical implementation
is based on the modeling and migration algorithms of Alkhalifah and Liu for
P-waves, which we modified to handle SV data.

For purposes of the moveout inversion of SV-waves, it is convenient to parame-
terize the model in terms of the NMO velocity Viyme of horizontal SV events, the
anisotropic parameter o, which largely controls SV-wave velocity, and Thom-
sen parameters € and d. The moveout of horizontal events on image gathers is
close to hyperbolic and depends just on Vyme out to large offset-to-depth ratios
of about 1.7. Because Vo differs from the vertical S-wave velocity, flattening
moderate-spread gathers of SV-waves does not ensure the correct depth of the
migrated events.

The influence of the parameter ¢ on the migrated depth of horizontal events
rapidly increases as the offset-to-depth ratio approaches two. Estimation of o,
however, is hampered by the dependence of long-spread SV-wave moveout on
another anisotropic parameter, € (the contribution of § to SV-wave kinematics
is small). Therefore, although Vyme and o are sufficient to constrain the vertical
S-wave velocity Vso and reflector depth, the tradeoff between o and € on long-
spread gathers introduces non-negligible errors in Vsg.

The parameters Vime, 0, and € also control the moveout of dipping SV events,
but in the presence of dip both o and e influence migrated depths even at
small offsets. For factorized v(z) VTI media with a constant SV-wave vertical-
velocity gradient k,, flattening of two or more horizontal events requires the
correct NMO velocity at the surface, the gradient k,s and, for large offsets, the
parameters o and €. On the whole, the ambiguity in the estimation of o and
reflector depth from SV-wave moveout highlights the need to combine P- and
SV-wave data in migration velocity analysis for VTI media.

Key words: SV-waves, anisotropy, VTI, velocity analysis, MVA

1 INTRODUCTION tion followed by velocity analysis and model updating.
Most existing migration velocity analysis algorithms are
designed for P-waves in heterogeneous isotropic media

Velocity model-building for seismic imaging is usually (e Al-Yahya, 1987; Liu, 1997). The improved qual-

implemented as an iterative process that includes migra-
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Figure 1. Phase velocity of P- and SV-waves as a function
of the phase angle from the vertical in Taylor sandstone. The
model parameters are Vpg = 2.420km/s, Vgo = 1.325km/s,
€ =0.11, and § = —0.035.

the SV-wave curve stays hyperbolic out to large offsets
(z/z = 1.7) and then sharply diverges from the hyper-
bola.

As discussed in Tsvankin and Thomsen (1994) and
Tsvankin (2001), P-wave moveout becomes nonhyper-
bolic at smaller offsets because the magnitude of the
quartic moveout coefficient is usually much larger for
P-waves than for SV-waves (if ¢ > 0). The abrupt de-
parture of the SV-wave moveout from the hyperbola at
z/z > 1.7 is caused by the rapid velocity variation near
the velocity maximum (notice the high density of points
for 1.7 < z/z > 2). Such a behavior of SV-wave move-
out, which is not well-described by the quartic Taylor
series or the Tsvankin-Thomsen (1994) nonhyperbolic
equation, has serious implications for migration veloc-
ity analysis on long-spread image gathers (see below).
While deviation from hyperbolic moveout for both P-
and SV-waves is related to the anellipticity of the model
(i-e., to the difference e—¢), the parameter combinations
that control the magnitude of nonhyperbolic moveout
are different: n for P-waves and o for SV-waves.

3 ANALYSIS OF SV-WAVE IMAGE
GATHERS

3.1 Modeling and migration algorithms

The image gathers used for the numerical analysis be-
low were computed by migrating 2-D synthetic data
generated for homogeneous and vertically heteroge-
neous [factorized v(z)] VTI media. The traveltime table
needed to build the migration operator was produced
by anisotropic ray tracing.

For computing synthetic seismograms and perform-
ing ray tracing, we adapted for SV-waves the Seismic
Unix (SU) codes susynlvfti and rayt2dan originally writ-

P-wa\greZstlgﬁity (km/s)
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Figure 2. Squared traveltime (dots) as a function of the
squared offset-to-depth ratio for P- and SV-waves in Taylor
sandstone (computed at equal phase-angle increments). The
solid lines mark the hyperbolic moveout curves parameter-
ized by the NMO velocity.
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Figure 3. True and migrated positions of a horizontal re-
flector.

ten by Alkhalifah (1995a,b) for P-waves in factorized
VTI media. Prestack migration was performed using the
Kirchhoff SU code sukdmig2d developed by Liu (1997)
for isotropic media; the only change required to migrate
SV data in VTT media was in using the appropriate trav-
eltime table. Note that the work of Sarkar and Tsvankin
(2003, 2004) on P-wave data was based on the same
three SU codes employed here.

3.2 Homogeneous VTI medium

SV-wave propagation in VTI media is controlled by four
Thomsen parameters: Vpo, Vso, €, and §. For purposes of
SV-wave moveout analysis, however, it is convenient to
replace the two vertical velocities by the SV-wave NMO
velocity Vamo for horizontal interfaces [equation (2)] and
the parameter o [equation (1)]. Therefore, the parame-
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Figure 5. Geometry of the model used in the numerical
modeling. Two parallel plane reflectors are embedded in a
VTI medium, with the dip varying for different models be-
tween 0° and 40°. The common-image gathers (CIG) in all
subsequent tests are displayed at the location where the
depths of the two reflectors are 1km and 2km; the maxi-
mum offset is 3 km.
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Figure 6. Common-image gathers of SV events in a homo-
geneous VTI medium after prestack depth migration. The
reflectors are horizontal in section (a) and dipping at 40° in
section (b). Migration was performed with the correct model
parameters: Vpor = 2.420km/s, Vgo,r = 1.875km/s, €, =
0.1, and 6, = —0.1 (Vamo,T = 2.421km/s, o, = 0.333).
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is imaged at the correct depth (1km and 2km) because
r in equation (3) is not equal to unity.

These results are similar to those obtained by
Sarkar and Tsvankin (2003) for P-wave image gathers
migrated using erroneous Vamo or 7, but differ in two
important ways. First, for migration with erroneous o
but the correct NMO velocity (Figure 7a), horizontal
SV events stay flat out to a large offset, z/z ~ 1.7.
The second difference is the abrupt change and rapid
increase in the residual moveout of the SV events be-
yond this offset. Compare Figure 7a with Figure 2a in
Sarkar and Tsvankin (2003), where the residual move-
out caused by an error in 7) increases gradually starting
at an offset-to-depth ratio of about one.

The test in Figure 4 above indicates that the pa-
rameter € (and possibly &) may contribute to the mi-
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Figure 7. Influence of errors in Vamo and o on common-
image gathers of horizontal SV events. In section (a), Vamo
is correct but o is erroneous (o,, = 0.5); in section (b), o
is correct but Vamo is erroneous (Vomo,mr = 1.936 m/s). The
correct parameters are Vamo,T = 2.42km/s and ¢, = 0.333.
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grated depth at large offsets. The influence of ¢ and
§ on the residual moveout of horizontal SV events is
illustrated further by Figures 8 and 9. Although the
residual moveout at z/z > 1.7 increases almost linearly
with errors in both € and 4§, the sensitivity of SV-wave
image gathers to ¢ is comparatively weaker (Figure 8).
Erroneous values of €, however, lead to non-negligible
residual moveout (Figure 9), which may complicate the
estimation of o from long-spread SV data; this issue is
discussed in more detail below.

Figures 8 and 9 also illustrate one of the key dif-
ferences between P- and SV-wave image gathers in VTI
media: when both the correct Vamo and o (but maybe
erroneous € and §) are used in the migration, the hor-
izontal SV events are placed at the true depth. For P-
waves, using the correct values of Vamo and 7 does not
ensure that the vertical velocity and, therefore, reflector
depth are correct.

Hence, the long-spread moveout of horizontal SV
events in image gathers depends not just on Vimoe and
o, but also on €. Although the influence of e implies
that this parameter potentially may be constrained by
SV-wave traveltimes, it is much more important to esti-
mate the parameter o. Since Vamo can be obtained with
high accuracy from conventional-spread SV data, reli-
able evaluation of & would make it possible to determine
the vertical velocity Vso and reflector depth [see equa-
tion (2)]. Therefore, we next examine more closely the
variation of SV-wave residual moveout with both o and
€.

Suppose our goal is to estimate o by flattening long-
spread SV-wave moveout in image gathers. Unless we
have a priori information, the value of € used in the mi-
gration would be erroneous. Suppose, as in Figure 10,
€, Is erroneous: €,, — e, = 0.2. Note the substantial
residual moveout on the panel with the correct o = 0.6;
consequently, the processor would likely try changing o
to flatten the event. In Figure 10, the smallest residual
moveout is observed for distorted values of o between
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Figure 10. Tradeoff between the parameters ¢ and e for
long-spread horizontal events. The image gathers are com-
puted for a range of o values (6, = 0.6) with erroneous
€y = 0.36 (¢4 = 0.16). The NMO velocity was fixed at the
correct value, Vamo,T = 2.420km/s; §,, = 0.26 (0, = 0.1).
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Figure 11. Exact long-spread SV-wave moveout from dip-
ping reflectors for the model of Dog Creek shale (Vpo =
1.875km/s, Vgo = 0.826km/s, ¢ = 0.225, § = 0.1; 0 =
0.644). The curves are computed in the dip plane of the re-
flector for the dips marked on the plot and shifted vertically
to avoid crossings. The offset z is normalized by the distance
z from the CMP to the reflector.

series, and the series as a whole essentially breaks down.
For horizontal reflectors, when o = —0.5 [equation (2)],
Vamo(¢ = 0) goes to zero and the SV-wave moveout
curve has a shape similar to that for ¢ = 40° (compare
Figure 11 with Figure 4.11 in Tsvankin, 2001).

This dip dependence of the SV-wave moveout is
completely different from that for P-waves. As shown by
Tsvankin (2001) and Pech et al. (2003), the magnitude
of the P-wave nonhyperbolic moveout initially decreases
with dip and goes to zero for a dip close to 30°. The
weak-anisotropy approximation for the quartic move-
out coefficient A4 derived by Pech et al. (2003) [their
equation (19)] , which can be adapted for SV-waves by
replacing 7 with (—o), predicts the same variation with
dip for the moveout of SV-waves. These analytic results,
however, do not apply to SV-waves for dips between 25°
and 50° because the Taylor series for traveltime becomes
inaccurate, and nonhyperbolic moveout is no longer de-
scribed by the approximate coefficient Aj.

The increase in the magnitude of nonhyperbolic
moveout for a wide range dips indicates that flattening
dipping SV events may require more than one param-
eter (the dip-dependent NMO velocity) even for mod-
erate offset-to-depth ratios. Since the NMO velocity of
dipping events depends not only on the zero-dip value
(Vamo) but also on the anisotropic parameters, errors
in ¢ lead to residual moveout even at small offsets (Fig-
ure 13). As was the case for horizontal events, the veloc-
ity Vamo influences the moveout from dipping reflectors
for the entire offset range (Figure 14).

It is noteworthy that the residual moveout of dip-
ping events gradually increases with offset [sections (b-
¢) in Figures 13 and 14], while for horizontal events this
increase is abrupt [section (a)]. Figures 13 and 14 also
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ABSTRACT

Directionally-dependent attenuation coefficient in transversely isotropic (TI)
formations can have a significant influence on the amplitudes of reflected waves
and distort the results of AVO (amplitude variation with offset) analysis. Here,
we develop a consistent analytic treatment of plane-wave properties and point-
source radiation for TI media with attenuation anisotropy.

The anisotropic quality factor can be described by matrix elements Q;; defined
as the ratios of the real and the imaginary parts of the corresponding stiffness
coefficients. For the special “isotropic” case of Q;; = const the attenuation co-
efficient is independent of angle, even if the symmetry of the velocity anisotropy
is lower than TI. To characterize TI attenuation, we follow the idea of Thomsen
notation for velocity anisotropy and replace the components @Q;; by two refer-
ence isotropic quantities and three dimensionless anisotropic parameters €, d,
and 7y, . The parameters ¢, and v, quantify the difference between the hori-
zontal and vertical attenuation coefficients of P- and SH-waves (respectively),
while d,, is defined through the second derivative of the P-wave attenuation co-
efficient in the symmetry direction. Although the definitions of €, d,, and v,
are similar to those for the corresponding Thomsen parameters, the expression
for J, reflects the coupling between the attenuation and velocity anisotropy.
Assuming weak attenuation as well as weak velocity and attenuation anisotropy
allows us to obtain simple linearized attenuation coefficients expressed through
the Thomsen-style parameters. The attenuation coefficients for both P- and
SV-waves have the same form as the corresponding approximate phase-velocity
functions, but the effective attenuation-anisotropy parameter for SV-waves de-
pends on the velocity parameter o in addition to €, and é,. The linearized
approximations not only provide analytic insight into the behavior of the atten-
uation coefficients, they also remain accurate for the practically important range
of small and moderate anisotropic coefficients, in particular for near-vertical and
near-horizontal propagation directions.

We also employ the stationary-phase method to derive the far-field Green’s func-
tion for arbitrarily anisotropic media with TI attenuation. The influence of the
attenuation on the radiation patterns is absorbed by an exponential term that
depends on the “group” attenuation coefficient along the raypath. The relation-
ship between the group and phase (plane-wave) attenuation coefficients involves
just the group and phase angles and can be used to estimate the Thomsen-style
parameters from wide-angle attenuation measurements.

Key words: attenuation, attenuation anisotropy, transverse isotropy, radiation
pattern, point source, seismic amplitude
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where c;; and c{j are the real and the imaginary parts,
respectively, of the stiffness coefficient ¢;; = ci; + ic{j.
Note that there is no summation over 7 and j in equa-
tion (1).

The analysis below is restricted to transversely
isotropic media with either isotropic or TI attenua-
tion. The symmetry axis is assumed to be vertical, but
since all results are derived for a homogeneous medium,
they can be readily adapted to TI models with any
symmetry-axis orientation.

Since @ is expressed as the ratio of the real and
imaginary parts of the complex stiffness coefficients, the
matrix formed by the ) components inherits the struc-
ture of the stiffness matrix. For the case of VTI media
with VTI attenuation, the Q matrix has the form

Quu Q2 Qiz 0 0
Q2 Qu Quz 0 0
Q= Qiz Qs Qi3 0 0
0 0 0 Qs5 0
0 0 0 0 Qss
0 0 0 0 0 Qes

c11 — 2ces
where = .
@2 = Qu c11 — 2ce6 Q11/ Qo6
When both the velocity and attenuation are
isotropic, the Q matrix includes only two independent
parameters, Q33 and @ss:

Q33 Qi3 @z 0

Quz Q33 Quz 0

Q= Quz Quz Q33 0
0 0 0 Qs5

0 0 0 0 Qss 0
0 0 0 0 0 @Qss

The component Q33 controls the P-wave attenuation,
while Q55 is responsible for the SV-wave attenuation
(see below). The component Q13 = Q12 can be obtained
from Q33 and Qss5 as

Q13 = Q33

oo ooo

0
0
0
0

oo oo

®3)

¢33 — 2Cs5 4)
c33 — 2c55 Q33/Qss

According to the attenuation measurements in
sandstones by Gautam et al. (2003), the Q-factor for
P-waves may be either larger or smaller than that for
SV-waves, depending on the mobility of fluids in the
rock. The “crossover” frequency, for which Q33 = Qss,
corresponds to the special case when all components of
the Q matrix are identical:

Qi =Q. (5)

As discussed below, if Q is described by equation (5),
the attenuation for both P- and S-waves is isotropic (in-
dependent of direction), even for arbitrarily anisotropic
media.

The Q matrix can be obtained by calculating the
so-called eigenstiffnesses from the stiffness matrix and
applying relaxation functions to the eigenstiffnesses in
order to characterize the anisotropic attenuation (Hel-

big, 1994; Carcione, 2001). The complex stiffness coef-
ficients ¢;; and the matrix Q are then obtained from
the eigenstiffnesses. For TI media, these operations are
described in detail by Carcione (2001, Chapter 4).

The discussion here is based on the assumption of
a frequency-independent @, which is often valid in the
seismic frequency band. In a more rigorous description
of attenuation, the complex stiffness components and
the factor Q vary with frequency, as does the velocity.
Treatment of velocity dispersion, however, is outside the
scope of this paper.

2.2 Christoffel equation for attenuative media

The displacement of a harmonic plane wave can be writ-
ten as

a="Uexp [i(wt - ﬁx)] , (6)

where U denotes the polarization vector, ¢ is the time,
and w is the angular frequency. The vector k denotes the
complex wave vector, k = k — ik’; the imaginary part,
k', can be called the attenuation vector. By substituting
the plane wave (6) into the wave equation, we obtain the
Christoffel equation for attenuative media:

[éik - p‘725ik] Up=0. (7

Here, Gix = &jin;n is the Christoffel matrix that de-
pends on the complex stiffnesses é;;x; and the unit vec-
tor n in the phase direction, p is the density, d;x is Kro-
necker’s symbolic §, and V = Y s the complex phase

velocity. The real part V of the phase velocity is given
by (Carcione, 2001)

e 3

2.3 SH-wave attenuation for media with
isotropic @

For waves propagating in the [z1, z3]-plane of VTI me-
dia, the Christoffel equation (7) splits into an equation
for the SH-wave polarized in the zs-direction and two
coupled equations for the in-plane polarized P- and SV-
waves. The equation for the wave vector of the SH-wave
has the same form as that in non-attenuative media:

566’}3 -+ 555’273 - pw2 =0. 9)

As shown in Appendix A2, for a medium with isotropic

Q (Q = @s5 = Qes), the imaginary part of equation (9)

reduces to

k2 _ (k1)2
Q

where k and k' are the real and imaginary parts (re-
spectively) of the wave vector. Note that the assump-
tion of isotropic @ for SH-waves does not involve the

Ko = —2kk" =0, (10)
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3 TI MEDIA WITH TI ATTENUATION

Since the real and imaginary parts of the wave vector
are coupled in the Christoffel equation, the directional
dependence of the attenuation is influenced by the ve-
locity anisotropy of the material. The physical reasons
for the attenuation and velocity anisotropy in TI media
may also be similar. For example, preferential orienta-
tion of clay platelets in shales may be responsible not
just for the intrinsic velocity anisotropy (Sayers, 1994),
but also for the velocity anisotropy. Therefore, it is rea-
sonable to assume that the symmetry of the attenuation
in TI media is the same as that of phase velocity. Fur-
thermore, in the discussion below the symmetry axes
of the attenuation coefficient and velocity function are
taken to be parallel to each other.

3.1 SH-wave attenuation for media with TI Q

For the general TI form of the matrix Q in equation (2),
the Christoffel equation yields the following relation-
ship between the real and imaginary wavenumbers (Ap-
pendix Al):

K — (k') — 2Qssakk’ =0, (24)
where

(14 27)sin® 8 + cos® 8
(1+29) gﬁ sin® 8 + cos® 0 ’

ot (25)

where v is Thomsen’s velocity-anisotropy parameter for
SH-waves. Solving equation (A5) for k', we find the SH-
wave attenuation coefficient:

- ,/1+(Q55a)2 —Qss50. (26)

In the weak-attenuation limit, equation (26) reduces to
1
2Qss

Equation (27) shows that @ss is multiplied with
the parameter o to form the effective quality factor

(27)

for the SH-wave, Qggf.f = @ss a. At vertical incidence
(0 =0°), @ =1and A = —~—. In the horizontal di-
2Qss

: 0 Qes
tion (6 = 90°), a = =—
rection ( ), @ Oss an 2Q66

mediate propagation directions, a reflects the coupling
between the SH-wave velocity-anisotropy parameter vy
and the ratio of Qss and Qes. The contribution of the
ratio Qss5/Qes to equation (25) is used below to define
an attenuation-anisotropy parameter analogous to 7.

For inter-

3.2 P-SV wave attenuation for media with TI

Q

Because of the coupling between P- and SV-waves, the
equations governing their velocity and attenuation are

more complicated than those for SH-waves. While the
complex wavenumbers for P- and SV-waves can be eval-
uated numerically from equations (B3)—(B4), the imag-
inary wavenumber k' is difficult to obtain in closed
form. Therefore, here we employ approximate solutions
to study the dependence of the attenuation coefficients
of P- and SV-waves on the medium parameters.

If both the attenuation anisotropy and the attenu-
ation itself are weak, the coefficient A for both P- and
SV-waves is given by (see Appendix C1)

A= Q ——(1+H)), (28)
where H = %,
Qs3 —Qu Qu 2Q33 st)
Hu= H
* (cnn T Qu Qss
(cssmi + caani — pV'?)
+cssni Q33Q5 ss (cuni + cssn3 — pV'?)
9 (013 Q33Q_13Q13 + s stQ—ssts) (c13 + css)nlnl,

(29)
and
Ha=pV>[(css + cu1)ni + (cas + css)ns — 2pV2] . (30)

V is the phase velocity of either the P- or SV-wave,

depending on which attenuation coefficient is desired.
The parameter # is responsible for the contribu-

tion of the attenuation anisotropy. For the P-wave,

H = 0 results in Ap = , and the P-wave atten-

1
. Qs .
uation becomes isotropic. For the SV-wave, isotropic
Q33 —

o 58 which yields
55

attenuation implies that H =

1
ASV = m
Note that for P-waves at vertical incidence (8 =
0°), H = 0, and Ap = . In the horizontal di-

2Q
rection (8 = 90°), H = "'Q”QHQH and Ap = 2511'

Hence, H M

between the P-wawlel attenuation coefficients in the hor-
izontal and the vertical directions and can be used to
characterize the P-wave attenuation anisotropy (see the
next section).

33 — Qs

For SV-waves the value H = Q ® is the same

55
for both the vertical and the horizontal directions, and

gives the fractional difference

the coefficient Asy = at both directions.
2Q55

The high accuracy of the approximate solutions for
A is confirmed by the example in Figure 2. The model is
elliptical for the velocity anisotropy since ¢ = 4§, but the
shape of the attenuation coefficients is strongly nonel-
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a) b)

20 40 60
Phase angle (deg)

20 a0 60
Phase angle (deg)

Figure 4. Factor o (a) and the attenuation coefficient Agg
(b) for the SH-wave in a TI medium with v = 0.1, @55 = 10,
and v, varying from -0.4 to 0.4. The exact Agy is com-
puted from equation (26), and the approximate Agy from
equation (34).

ter a yields

o (14 2v)sin® 8 + cos? §
(14 27)(1 +,)sin® 6 +cos?§

(32)

When both « and vy, are small (|y| < 1, |’yQ| <1, a
can be linearized in these parameters:

a=1-17, sin” 4. (33)

The attenuation coefficient from equation (27) then be-
comes

1 .
Asu = 2Q_55(1 +7q sin” 6). (34)

Equation (34) has the same form as the SH-wave phase
velocity linearized in the parameter v (Thomsen, 1986).

It is clear from equation (34) that v, determines
the rate and sign of the variation of Agy(6) away from
the vertical (symmetry) direction. When v, > 0, the
factor o decreases with the phase angle 8, which causes
an increase in the attenuation coefficient (Figure 4).
In contrast, for negative vy, the coefficient Asy(6) de-
creases with angle. If the magnitude of the velocity
anisotropy is small (i.e., |y| < 1), approximation (34)
gives an accurate estimate of the attenuation coefficient
even for relatively large absolute values of vy, reaching
0.4 (Figure 4b).

4.2 P-SV wave parameters ¢, and §,

The attenuation-anisotropy parameter ¢, can be de-
fined by analogy with the Thomsen parameter e:

_1/Qu —1/Qs _ Qs —Qu

€ =
e 1/Qs3s3 Qu '’
€q is equal to the fractional difference between the P-
wave attenuation coefficients in the horizontal and ver-

tical directions.
To complete the description of TI attenuation, we

(35)

need to introduce a parameter similar to the Thom-
sen’s § that involves the quality-factor component Q3.
It seems that we can simply adapt the definition of § by
replacing the stiffnesses ¢;; with 1/Q;;:

5= /Qus+ 1/Qs5)* — (1/Qss — 1/Qss)?
e 2/Q13(1/Qs3 — 1/Qs5) '

The parameter 30 from equation (36), however, is not
physically meaningful. For example, when the attenua-
tion is isotropic and Q33 = Qs5 (Gautam et al., 2003),
the anisotropic parameters are supposed to vanish. In-
stead, 30 for isotropic @ goes to infinity.

As discussed by Tsvankin [2001, see equa-
tion (1.49)], the parameter § proved to be extremely
useful in describing the signatures of reflected P-waves
in VTI media because it determines the second deriva-
tive of the P-wave phase-velocity function in the vertical
(symmetry) direction (the first derivative goes to zero).
Therefore, although the expression for J in terms of the
stiffness coefficients cannot be directly adapted to at-
tenuative media, a physically meaningful definition of
d, can be obtained from the second derivative of the
P-wave attenuation coefficient Ap at § = 0:

d?Ap
e |,

(36)

= 2ApP|lg_g 9q - 37)
=0
In other words, the parameter J, controls the curvature
of the coefficient Ap in the vertical direction.
Assuming that both the attenuation and the atten-
uation anisotropy are weak, we find the following ex-
plicit expression for §, (Appendix C):

do =

Q33 — Qss ess (c13 + c33)? + 2Q33 — Qs
Qss (cas — cs5) Q13

c33(c3sz — cs5)

c1s(cis + ¢s5)

(38)

The role of §, in describing the P-wave attenuation
anisotropy is similar to that of § in the P-wave phase-
velocity equation (Thomsen, 1986; Tsvankin, 2001).
Since the first derivative of Ap for § = 0 is equal to
zero, d, is responsible for the angular variation of the
P-wave attenuation coefficient near the vertical direc-
tion.

In the special case of a purely isotropic (i.e., angle-
independent) velocity function, d, reduces to a weighted
summation of the fractional differences (Qs3 —Qss)/Qss

and (Qa3 — Q13)/Q13:

Q33— Qss  4p Q33 — Q132X
6, = s 39
@ Qss  A+2u + Qs A+2p (39)

where A and p are the Lame parameters.

Unless attenuation is uncommonly strong, the
phase velocities of P-and SV-waves are close to those
in the purely elastic medium and do not depend on the
attenuation parameters €, and J,. Equation (38) for
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where g is defined in equation (40),
_ Qss

9o = Oss’ (46)
and
V]go €e—46
=—(e—90) = 47
yae= 9= (47)
If |o| < 1, equation (45) can be further simplified
to
Asv = % (1+ 0, sin’ 6 cos®9) , (48)
55
where
1—g-— -6 1- -4
0o = ( g 90)(5 )+ ( g)(eo Q) ’ (49)

99¢

0, determines the curvature of the SV-wave attenuation
coefficient Agy in the symmetry direction. According
to equation (48), the attenuation for SV-waves becomes
isotropic when

a0 = (l—y

Note that the assumption |o| < 1 may not be valid for
many TI formations because o typically has a substan-
tial magnitude even when |e — §| is small.

- 1) (e—9). (50)

5.3 Numerical examples

The accuracy of the approximate solutions (43) and
(48) is illustrated by numerical tests in Figures 6-8. The
P-wave attenuation coefficient in Figure 6 has an ex-
tremum (a maximum) near 43° because e¢g and dg have
different signs. Otherwise, Ap varies monotonically be-
tween the vertical and horizontal directions. Approxi-
mation (48) predicts a minimum of the SV-wave atten-
uation coefficient at § = 45°. The curve of Agy has
a concave shape because o, in equation (48) is nega-
tive and large by absolute value. The extrema of the
exact attenuation coefficients in Figure 6 (solid lines)
are shifted toward the vertical axis with respect to their
approximate positions.

The approximations for both attenuation coeffi-
cients give satisfactory results for near-vertical propa-
gation directions with angles 6 up to about 30°. The
error becomes noticeable for intermediate angles 30° <
6 < 75° and then decreases again near the horizon-
tal plane. Note that both the velocity and attenuation
anisotropy for the model from Figure 6 is not weak (see
Figure 7), and the values of o = 0.75 and o, = —2.13
are particularly large.

Figure 8 displays the attenuation coeflicients for a
TI medium with ¢, = d, = 0. In agreement with equa-
tion (43), the P-wave attenuation is almost isotropic,
and Ap traces out a curve close to a circle. The at-
tenuation coefficient of SV-waves, however, deviates

SV-wave

P-wave

Figure 6. Attenuation coefficients of P-waves (left) and SV-
waves (right) as functions of the phase angle. The solid curves
are the exact values of A4 obtained by jointly solving equa-
tions (B3) and (B4); the dashed curves are the approximate
coefficients from equations (43) and (48). The model param-
eters are Vpp=2.42 km/s, Vgo=1.4 km/s, ¢ = 0.4, § = 0.15,
Q33 = 35, Q55 = 30, ¢, = —0.125, and 6, = 0.94.

Figure 7. Slownesses of P- and SV-waves for the model from
Figure 6.

from a circle because of the contribution of the veloc-
ity anisotropy in equation (48). Hence, isotropic @ in
anisotropic media results in angle-dependent attenua-
tion except for the special case of Q;; = Q.

If ¢, and 4, satisfy condition (50), the attenua-
tion coefficient of SV-waves is independent of direction
(Figure 9). The curve of the P-wave coefficient Ap looks
almost elliptical, but “elliptical attenuation anisotropy”
for P-waves requires that e, = 4.

6 RADIATION PATTERNS IN
ATTENUATIVE TI MEDIA

Here, we discuss the influence of attenuation on the ra-
diation patterns of body waves excited by a point force
in a homogeneous anisotropic medium. To obtain the
Green’s function, we apply the stationary-phase method
to the Weyl-type integral for point-source radiation fol-
lowing the analytic results of Tsvankin and Chesnokov
(1990).
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APPENDIX A: PLANE SH-WAVES IN
ATTENUATIVE TI MEDIA

The Christoffel equation for a plane SH-wave propagat-
ing in an attenuative VTI medium yields

Eeelz'f + 555;!% — pw2 =0, (A1)

where &; = cij + ici; are the complex stiffness co-
efficients. The complex wavenumber is represented as

ki = ki — ik!, where k! = \/kI> + kI? + kI? is the at-
tenuation coefficient. Hereafter, we limit the discussion
to homogeneous wave propagation by assuming k || k'.

Al VTIQ

For the general VTI form of the matrix Q, equation (A1)
becomes

[(ces + icge)ni + (cs5 + icgs)n3](k — ik')* —pw® =0, (A2)
which can be divided into the real part

(cosn + cssm3)[k* — (K')®] + (coeni + cism3)2kk"
_pw2 =0 ) (A3)
and the imaginary part

(ctoni + cssmd)[k” — (K')?] — (coond + cssn3)2kk’

where n; =sin 8 and n3 = cosé.

By expressing the complex stiffnesses through the
Qi;j components and introducing ces = cs5(1+27), equa-
tion (A4) can be rewritten as

E® — (k") — 2Qssakk’ =0, (A5)
where
(14 2y)n? +nl

1+ 27)%71} + ng

a= (A6)
66

The only physically meaningful solution k' of equa-
tion (A5) is

k' = k(y/1+4 (@s50)? — Qss0) . (AT)

The real part, equation (A3), then reduces to

2kk!
(cesn? + cssn3) |k — (k') + @] —pw? =0, (A8)

which gives the following expression for the phase ve-
locity of the SH-wave:

Ven = VERst ¢, ; (A9)
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where £, is given in equation (A14), and V{e;l,ass‘t,} is P-

or SV-wave phase velocity in the reference purely-elastic
VTI medium:

Velast

1
(P,SV} = % {(cra + ess)ni + (cas + css)nj+

1

\/[(Cn —cs5)n? — (ca3 — cs5)n3)? + 4(cis + Css)"’nfng} 2.

(B13)

APPENDIX C: APPROXIMATE
SOLUTIONS FOR WEAK ATTENUATION
AND WEAK ATTENUATION ANISOTROPY

C1 Attenuation coefficient for P- and
SV-waves

Here, we simplify the attenuation coefficient derived in
Appendix Bl under the assumption of weak attenua-
tion and weak attenuation anisotropy. If the attenua-
tion is weak (k' < k), the term (k')? in the difference
k% — (k1)? can be ignored. If the attenuatlon anisotropy

is weak, then |Q33Q in <1, |Q33 | « 1, and
11

Q33 — Qi3 A% g A 7

== _*| K 1. The t —2kk’, —2kk", and

| Q13 | S Qs " Qs3 an

c

0 2kk’ in equations (B5) are of the second-order com-
33

pared to k2, and K¢ =~ K¢ ~ K$ ~ K. It can be further
shown that for weak attenuation K; & k2, which allows
us to represent equations (B10) as
A = (cuni + cs5n3)[(cssni + caan3)k® — pw?],

= (05571.% + Caa’ng)[(Cll "f + Cst‘ﬂ'lg)k2 - p“’z] ,  (C1)
C =2(c1zs+ 055)2nfn§k2 .

In the limit of weak attenuation, equation (B9)

takes the form
AA® + BA® — CA°

2 I\2 I_ 2
B~ ()~ 2Quikk! =~ 28I Z O (o)
and
kI

A=?= 1+Q§3+7{—Q33, (C3)
where

_AA°+ BA® — CA°
"= A+B-C ’ (C4)
Further linearization of equation (C3) yields
A= ——(1 +H). (Cs)
C2 Parameter §,
The attenuation-anisotropy parameter d, is defined

through the second derivative of Ap with respect to

the phase angle 6 at vertical incidence:
d*Ap

do?
Substitution of A from equation (C5) leads to the fol-
lowing expression for §,:

_1d%H
T 2 do?
for the case of weak attenuation. By evaluating
d’H

=2 Aply—y JQ . (Ce)
6=0

5 (cn

6=0

and taking into account that for P-waves

a9 |,_,
Hipo = 0 and —~ oH =0, we obtain
06 |,
0o =
p— 2 _
Q33 — Qss . (C1s + c33) + 93 Qs cis(c13 + cs5)

55
Qss (cas — cs5) Q13

ca3(cas — cs5)

(C8)

APPENDIX D: POINT-SOURCE
RADIATION IN ANISOTROPIC
ATTENUATIVE MEDIA

The derivation in this section follows the methodol-
ogy discussed by Tsvankin and Chesnokov (1990) and
Tsvankin (1995) for purely elastic media. The wavefield
from a point force (i.e., the Green’s function) is decom-
posed into plane waves by applying Fourier transforms
to the wave equation and then performing integration
over one of the wavenumbers. The zero-order approxi-
mation of the stationary phase method (SPM) is used to
evaluate the resulting integral and obtain the displace-
ment in the far field.

D1 Models with Q;; = Q

The wave equation for a point force embedded in an ar-
bitrarily anisotropic, attenuative, homogeneous medium
can be written as

i
e c””‘a a

where p is the density, u(t, x) is the displacement vector,
hi(t) is the source signal, and §(x) is the 3D ¢ function
that indicates that the source is located at the origin of
the Cartesian coordinate system. ¢;;x; is the fourth-rank
tensor of the complex stiffnesses, ¢;jxi = cijri + zc,] ki
By representing the displacement vector through
a 3D Fourier integral, Tsvankin and Chesnokov (1990)
obtained a decomposition of point-source radiation into
plane waves that can be adapted for attenuative me-
dia. We consider an arbitrarily anisotropic medium with
c# = Q for any ¢,j = 1 ~ 6 and assume homogeneous

cij

= hi(t)8(x), (D1)
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Q, approximate expression for A” are given in equa-
tion (43) for P-waves and (45) for SV-waves. The phase
term of S;(w,x) from equation (D8) has the form

@:—%(rsin0+zsin0). (D13)

d
Applying the stationary-phase condition Z—o =0, we
arrive at the following equation for the stationary-phase
point 6:

tan 8 = I+ !
z zcosf

V”%%—(rsine + zcosb). (D14)

Substitution of the stationary-phase angle 6

from equation (D14) into the attenuation term

wA”

Vu

tenuation in the source-receiver direction:
w ,,rsinf + zcosf

exp |—i (rsin@ + zcos 0)] yields the “group” at-

I - - e —
o=yt T e (b15)
and
ké =k  cos(y) — 9), (D16)

where 1 is the group angle.
The far-field spectrum S;(w, x) then becomes

8 (w,x) = (1 — iA") exp [_w(rsine + zcos f) A"]

Vu
xS8Y elast (w,x). (D17)
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ABSTRACT

The velocity-depth ambiguity in depth migration is a well known problem stemming
from several factors, such as limited aperture, band-limitation of the source and the
interplay between parameters of the background medium contributing to the non-
uniqueness of the problem. In addition, the isotropic assumption can cause severe
depth errors in the presence of anisotropy. These are severe issues when consider-
ing PP and PS images from depth migration where geologically equivalent horizons
should be mapped to the same depths. The present method is based upon the differ-
ential semblance misfit function in angle to find fitting background models. This re-
quires amplitude-compensated angle-domain common image-point gathers to be uni-
form. Depth consistency between the PP and PS depth image is enforced through a
regularization approach penalizing mistie between key imaged reflectors in addition to
the differential semblance misfit function. By migration/map demigration, time infor-
mation is obtained on the key reflectors of the PP and PS image. This time information,
which is independent of the velocity model, can be map-migrated to reconstruct the re-
flectors in depth for a given background model giving an automatic way to quantify
the depth discrepancy in the tomographic approach. An approximative simplification
uses the normal-incidence point rays in the map migration. The method is presented in
a general 3-D framework allowing for the use of true depth information such as well
markers and the inclusion of anisotropy. A strategy is presented to retrieve all parame-
ters of a transversly isotropic medium with a known symmetry axis depending on the
available information. This is employed on an ocean bottom seismic field data set from
the North Sea.

Key words: Reflection tomography, generalized Radon transform, differential sem-
blance in angle, anisotropy, converted waves.

1 INTRODUCTION

Here, we demonstrate the use of annihilator-based migration
velocity analysis (MVA), related to the differential semblance
(Symes and Carazzone, 1991) approach, on joint PP and PS re-
flectiondata. The misfit function associated with this approach
is unique in that it depends smoothly on the velocity model. As
is common in MVA we model the reflectiondata in the single
scattering approximation, yielding a forward scattering opera-
tor that, given a velocity model, maps reflectorsto reflections.

By a gradient-based search of the model space, the range of
the forward scattering operator is adapted to contain the data.
Data are in the range if they can be predicted by the operator.
Annihilators detect whether the data are in the range of
the forward scattering operator (Stolk and de Hoop, 2002).
They have their counterpart in the image domain: The data
are in the range if the common image-point gathers (CIGs)
obtained from the data — parametrized by scattering angle and
azimuth — are uniform, i.e., flatand show angle-independent
amplitude; annihilators emerge as derivatives with angle.
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to time. Using map migration (Kleyn, 1977; Gjoystdal and
Ursin, 1981) of the time horizons for every suggested velocity
model we are able to quantify the depth mismatch in an auto-
matic way. Notice that the time horizons need only be picked
once. Map (de)migration can be used in complex media; see
Douma and de Hoop (2003) for details and references. For the
converted-wave events the ability to perform PS map migra-
tion is highly dependent on how close we are to the true model
initially; hence we have opted for applying the ‘PP+PS=SS’
approach of Grechka and Tsvankin (2002b) to convert PS to
SS for this purpose. In this paper we use a zero-offset restric-
tion by map demigrating normal incidence point (NIP) rays
(Hubral and Krey, 1980) as suggested by Whitcombe (1994)
. For the mode converted waves we employ a simplified ver-
sion of the ‘PP+PS=SS’ approach using NIP rays to compute
approximate zero-offset SS traveltime data.

The outline of the paper is as follows. In following sec-
tion, we introduce notation and show how to transform data
to CIGs in scattering angle and azimuth for the purpose of
velocity analysis. The formulation here is in 3-D and follows
the presentation of Ursin (2003); the 2.5-D formulation and
its subleties are presented in Foss et al. (2003a). Then we
give a brief review of PP angle tomography (Brandsberg-Dahl
al., 2003b) and its extension to mode-converted waves. In the
next section, we introduce our co-depthing methodology in the
framework of the differential semblance in angle optimization
by adding a penalizing term to the misfit function. Then we
present a step-wise strategy using the aforementioned tomog-
raphy tools to obtain values of a transversely isotropic (TI)
medium with a known symmetry axis. Although the strategy
is presented for a 3-D medium, we disregard the presence
of azimuthal anisotropy. Such a medium is equivalent to a
TI medium with a vertical symmetry axis through the Bond
transformations (Carcione, 2001). It can be parameterized by
vpo, Vso, €, and . which are the vertical P- and S-wave ve-
locities and the Thomsen (1986) parameters, respectively. The
optimization strategy is split into the following steps:

(i) isotropic P-wave velocity analysis on PP CIGs using dif-
ferential semblance in angle;

(ii) isotropic S-wave velocity analysis on PS CIGs using
differential semblance in angle, making use of the P-wave ve-
locity model obtained in (i);

(iii) seismic interpretation of the PP and PS images for key
reflectors; map demigration of these reflectors yielding time
horizons;

(iv) co-depthing of PP and PS images of key reflectorsto
obtain an optimal isotropic S-wave velocity model, using the
differential semblance in angle of the PP and PS CIGs as reg-
ularizer;

(v) differential semblance in angle and semblance opti-
mization of PP and PS CIGs jointly allowing the model to
become anisotropic, enforcing the depth consistency.

Several authors have discussed the point that, in order to
obtain information on the § parameter, one either needs infor-
mation of the true depth of a reflectorthrough well logs or trav-
eltimes from rays that have traveled at an oblique angle, e.g.,

from strongly dipping reflectorsor from large-offset data (Au-
debert et al., 2001; Iversen et al., 2000). In the absence of such
information, several approaches have been suggested (Alkhali-
fah and Tsvankin, 1995; Grechka and Tsvankin, 2002b). Here,
we make the convenient choice of setting § equal to zero con-
sidering a quasi-TIV medium. The remaining € parameter is
not the true anisotropy parameter, but an effective one.

Finally, we employ the above methodology on a North
Sea ocean bottom seismic (OBS) field data set to obtain first
a quasi-TIV velocity model and then all parameters of a TIV
velocity model.

2 MIGRATION TO ‘UNIFORM’ ANGLE COMMON
IMAGE-POINT GATHERS

Dip, scattering angle, and azimuth. We consider migration
of seismic data in a 3-D heterogeneous anisotropic elastic
medium. The geometry is shown in Figure 1 where the im-
age point is denoted by y = (y1, ¥z, ¥3). Source positions in
the acquisition manifold are denoted by x° and receiver po-
sitions by x" (bold fonts indicate vectors). The superscripts s
and r indicate association with a ray from a source and a re-
ceiver, respectively. The covector p°(y) is the slowness vec-
tor of the ray connecting the source point x° with the image
point y evaluated at the latter point; p® (x*) indicates the slow-
ness along this ray evaluated at the source. It is the projection
7°(x°) of p*(x®) on the acquisition manifold that is detected
(via slope estimates) in the data. We furthermore introduce the
phase direction a® = p®/|p®| and the phase velocity v® ac-
cording to [p®| = 1/v°. A similar notation is employed for
the slowness vector related quantities along the ray connect-
ing the receiver with the image point, namely p”(y), p” (x"),
and 7" (x"), as well as &” and v". The polarization vector,
h, is defined in the same manner as that for the slowness vec-
tor at the source, receiver and image point. The migration dip,
v™(y), is the direction ™ (y) = p™ (y)/|p™ (y)| of the mi-
gration slowness vector, p™ (y) = p*(y) + p" (¥)-

The scattering angle, 6, between incoming and scattered
rays, is defined by

cosf=a’-a’ ay; 0=0(x",y,x°) (1)

for a particular diffraction branch away from caustics at x” or
x°. The scattering azimuth, v, is the angular displacement of
the vector /|| with

P =1(x,y,x°). ()

The two-way traveltime for a particular diffraction branch as-
sociated with a ray path connecting x” with x° via y is de-
notedby T = T'(x",y, x°).

Map (de)migration. Map migration describes how the
geometry of a reflectionis mapped on the geometry of a re-
flector

Pp=(a’xa")xv™ aty;

Z : (xs1xr3t)7r877rT)H(y7pm) att:T(xr’yYXS) (3)

such that the normal to the reflectoris given by » ™. For a
given value of (6, 1) this process can be reversed to yield map
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AVA compensation. The relative contrast in the medium parameters is formally defined by the ‘vector’

W P (y) i (9) '
cHy) = {p(o) )’ p(o)(y)vg(y)ug(y)} : a1

Its dimension depends on the symmetry of the elastic medium. For the PP and PS reflectionproblem in a TIV medium, which will
be treated in the field data example, it is of dimension 5. We have assumed that ¢ (y) = € (y, #(y)) with (€)' (y, ¢(¥)) =
C(y) d(¢(y)), where’ denotes the derivative with respect to the second argument, and C denotes the local magnitude of the jump
across the zero level set of ¢. Then (de Hoop and Bleistein, 1997, (38))

SW(x?;6,9) = r(x" (x*,v,0,9), %, % (x*, 4,6, )) C(x*), (12
where r denotes the ‘vector’ of radiation patterns
r(x",y,x°) = {hin (¥)hin (¥), [B ()05 ()i (9)F (30)]0S ()0 ()} - (13)

Here, v$ and v} are the phase velocities at y averaged over phase angles. We refer to S (1) as linearized scattering coefficients; S
is a filtered realization of S, where the filter is determined by the illumination.

For the estimation of the smoothly varying parameters of the background medium (velocity model) we use a slight modification
of transform (6), with

L(y; 6,9) = / Oy, (14)

Ot r s
tu(x Y, X )lr(x«,-,y’x,)l

|r(x",y,x®)| is the Euclidean norm of the ‘vector’ of radiation patterns. At specular reflectionpoints, S () in (12) gets replaced by
r(xr(X¢a Vg, 0) ¢),x¢, xs(X¢1 Vg, 9, d))) .
|r(x’(x¢, Vg, 0, ’l/)),X¢, xs(xq&, Vg, 0’ 'll)))l

We anticipate that e is only weakly dependent on (6, 1); hence, Ursin (2003) refers to (14) as amplitude-compensated migration.
For interpretation and comparisons, we also use the structural image,

I(y) = f / I(y;6, ) dody. (15)

Subscripts are used to indicate whether a current common image-point gather (14) or structural image (15) is computed from PP or
PS reflections:Z pp and Zpsg, respectively.

In the presence of caustics, Z(y; 8, 1) as defined in (14) commonly generates artifacts. A remedy for this is the use of the
downward continuation approach from which an angle transform can be extracted that generates CIGs in angle without artifacts
(Stolk and de Hoop, 2004). In the field case study in this paper, we believe that the formation of caustics plays a minor role; the
complexity here arises from the elasticity.

e(x%;8,9)7C(x?) with e(x?;6,9)=

3 ANGLE REFLECTION TOMOGRAPHY BY OPTIMIZATION

Tomography is performed to estimate the parameters describing the smooth part of the medium in equation (5) by kinematic
and dynamic ray tracing, to compute the different quantities and factors in (7). The parameters are the density at the sources
and receivers and the elastic stiffness tensor in the subsurface. For an isotropic background medium, only the P-wave velocity is
required for a P-wave mode and only the S-wave velocity for an S-wave mode. Each parameter is given a representation with a
finite number of coefficients, defining a finite-dimensional subspace of velocity models. If we assume that n coefficients, denoted by
m = (mi, ..., my), are sufficient to describe the background medium, the CIGs generated by (14) are denoted by Z(y, m; 6, 9).

The differential semblance in angle misfit function Symes and Carazzone, 1991; Brandsberg-Dahl et al., 2003b) for PP reflec-
tions is given by

Jpp(m) = %// |86,y Zpp(y, m;8,4)|* dddydy. (16)

A minimum of this function is found for uniform gathers; uniform gathers guarantee optimal focusing of the structural image. The
misfit function can be minimized by a gradient-based search of the model space such as a quasi-Newton method (Gill ez al., 1981).

In setting up the optimization, one has to decide which quantities are kept fix ed under perturbation of the velocity model in
between the reflectorand the acquisition manifold: (y,p ™, 8,%) or (x°,x",t,7*, 7w"). We will keep the first set of variables fix ed
in the present approach. A component of the gradient of the misfit function (16) is then given by (Brandsberg-Dahl al., 2003b)

ijp(‘m) - /// (Oo,yZpp(y, m;6,%)) 689,¢ng£r)l", m;6,4) dfdiydy. an

om
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emerging points at the acquisition surface: Zero scattering an-
gle does not necessarily imply zero offset.

In an unacceptable velocity model, let us assume that we
have successfully identified an interface on both a PP image
and a PS image that is geologically the same but is imaged at
different depths. This situation is sketched in Figure 6, where
both the PP and PS images of the key reflectorare indicated.
The dotted lines indicate the S-wave rays while the solid lines
indicate the P-wave rays. In the unacceptable model, the PS
event is imaged at y’, while the PP event is imaged at y, as-
suming the same x position for the NIP-P ray through map
demigration; the PS event tied to the PS image has two-way
traveltime Tps(x,x”) (x' # x” as the model is unaccept-
able). The zero-scattering-angle PP and PS two-way travel-
times are data obtained from map demigration, and are con-
sidered to be correct. If we assume that x”" &~ x’, we can use
(20) to compute 7s5(x"'),

1ss(x") = 27ps(x,x") — TPp(X). 1)

We have obtained pure S-wave NIP two-way traveltimes that
we will exploit as data from now on. The techniques of the
previous subsection apply to these data; see Figure 5.

Misfit functional for co-depthing

The initial interpretations in (19) yield (x, 5 p(x), 75, (x))
and (x,7%5(x),mwg2(x)) by map demigration and the
‘PP+PS=SS’ approximation (21). We are then able to compute
the imaged depth of the key reflectors,

(Y1, 92, z;-"P(yla Y2; T;’Pv “ali";i"’ m)),
(yl, y2! z:’gs('yly y2, Tgs, "as:'é, m)); (22)

in an automatic way through map migration based on the
medium parameters, m, governing the P-wave and the S-wave
propagation in a discriminate fashion. For example, we can de-
fine a misfit functional for co-depthing, penalizing the mistie
between the picked PP reflectorin depth (19) and the map-
migrated SS reflectorbased on the medium parameters gov-
erning the S-wave propagation, viz.,

1 . ) g
o) =3 3 [[ [t vairhs, w3 my)
J

. 2
— 2pp(y1,y2)| dyrdy2. (23)

The reason to use the depths of interfaces picked on PP images
as a reference is that they are usually much better determined
in view of the PP versus PS ray coverage. Poorer ray cover-
age implies an increased ambiguity in reflectordepth (Bube,
1995). The misfit functional can also be formulated to penalize
the mistie between PP and SS interfaces and well log markers
(y1,y2, 23, (y1,y2)) at discrete (y1, y2) points.

A misfit functional like (23) allows for a gradient-based
search in model space for an optimum model choice. The gra-
dient of (23) involves the derivative of the depth of the reflec-
tors with respect to the medium,

om; om;

0 071 C g
7o (m) = Z// s (11,23 T35, W5%, m))
i

(ng('yl, Y2; Tg‘sw “as;;gw m) — zi’P(yls y2))dyrdyz.  (24)

This derivative is defined in the framework of ray perturba-
tion theory and coincides with a tangent to the velocity ray
(Iversen, 2001).

We arrive at a joint angle tomography and co-depthing
misfit functional,

J(m) = \1Jpp(m) + A2Jps(m) + pJp(m), (25)

where A1, A2 and p are regularization parameters governing
the trade-off between uniform CIGs and depth consistency.
By setting 4 = 0 the search aims at matching the range of
the PP and PS forward scattering operators to the relevant
data constituents. The co-depthing is accomplished by setting
§ > A1, A2 > 0 and aims at a search in model space without
changing the range of the forward scattering operators.

5 STRATEGY FOR DEPTH-CONSISTENT PP AND
PS ANGLE TOMOGRAPHY IN A TI MEDIUM

We consider a transversely isotropic (TI) medium with a
known global direction of the symmetry axis in 3-D. The
medium is equivalent to a TI medium with a vertical symmetry
axis (TIV) through the Bond transformation (Carcione, 2001).
Thus the medium is described by 4 parameters, for example
the vertical P- and S-wave velocities vpg, vso and Thomsen’s
(1986) é and . We approach the problem of estimating a ve-
locity model in the framework of TI media by performing the
model updates in a bootstrapping manner, using the following
steps reflectinga hierarchy of model complexity; the misfit
functional is given in (25):

(i) We first carry out isotropic P-wave velocity analysis on
PP CIGs using differential semblance in angle (A; =1, A2 =
0, p=0).

(ii) Keeping the P-wave velocity model obtained in (i)
fix ed, we carry out isotropic S-wave velocity analysis on PS
CIGs using differential semblance in angle (A\; = 0, A2 =1,
p=0).

(iii) We carry out seismic interpretation of the PP and PS
images for key reflectors,and pick them (including the dips).
The reflectorpicked on the PP image will yield the ‘reference’
in the misfit functional Jp. We map demigrate the results,
making use of the P- and S-wave velocity models obtained
in (i) and (ii) — we derive SS time horizons and slopes, which
play the role of data.

(iv) We carry out co-depthing keeping the P-wave veloc-
ity model from (i) fix ed, making use of map migration of the
data obtained in (iii). The differential semblance in angle con-
tribution to misfit plays the role of regularization (A = 0,
n> A > 0).

(v) Finally, we carry out differential semblance in angle and
semblance optimization of PP and PS CIGs jointly, allowing
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of dips (Grechka et al., 2002), or other information concerning
depths of reflectors,as discussed by Audebert et al. (2001). If
well-log information is present, the true depth of the reflectors
can be obtained where the wells penetrate them. The true depth
of a reflector— in the absence of too strong lateral heterogene-
ity — is governed by the vpo parameter, the vertical P-wave
velocity, which can be obtained by matching the PP reflectors
to well markers by map migration, similar to (23).

We assume weak anisotropy. We denote the estimate for
the P-wave velocity function obtained in (i) by 9p. In the ab-
sence of too strong lateral heterogeneity, the P-wave velocity
obtained in (i) is approximately an interval NMO velocity,

Op = vPNMO- (34)

The § parameter is the parameter that causes the tradeoff
between vpnmo and vpo through equation (32). Based on
(Grechka and Tsvankin, 2002a, (4)), the S-wave velocity ob-
tained in (ii), denoted by ¥s, will approximately be an interval
NMO velocity also,

¥s X vsNMO. (35)

However, after co-depthing (step (iv)), the estimate, denoted
by ¥s again, may differ from vsnamo-

To maintain the depth consistency obtained after (iv),
while allowing anisotropy, the ratio of the vertical interval
P- and S-wave velocities needs to be kept fix ed. On the one
hand, having assumed isotropy up to this stage, our estimate
for this ratio would be #p /s, which implies in the search for
anisotropic parameters that

vro _ dp _ vpoV1+ 20

— = — = ————— = constant. 36)
vso vs vs
In the presence of anisotropy, however, the ratio of interval
NMO velocities and the ratio of vertical velocities can be very
different. In the absence of too strong lateral heterogeneity, in
the framework of a Dix-type formula, the vpo /vso ratio can be
estimated from the ratio of vertical PP and SS times obtained
from NMO analysis for PP and PS reflections,and kept fix ed.
PS angle tomography is now carried out to estimate €
(cf. (30)). In the absence of information needed to resolve the
& parameter, we simply set § = 0, thus allowing only a spe-
cial case of a TIV medium for the velocity model. We then use
the ratio in (36) to fix the interval vertical velocity uso. The
outcome of the optimization provides an effective (a ‘work-
ing’) anisotropy parameter, not a true estimate of the local pa-
rameter ¢ itself. The effective parameter yields focused, depth-
consistent PP and PS images yet with an uncertainty in abolute
depth (due to § = 0).

6 FIELD DATA EXAMPLE

We tested our procedure on an ocean-bottom seismic (OBS)
line from data over the Norwegian sector of the North Sea. Out
of necessesity, we use a 2.5-D formalism developed by Foss et
al. (2003a) and Foss and Ursin (2003), considering 3-D wave
propagation in a 2-D model where all calculations are done
in a properly chosen plane. The data have been subjected to

standard processing such as static corrections, designature, p-z
summation (multiple removal), and 7-p deconvolution Yilmaz,
1987).

(i) For isotropic PP angle tomography we use the P-wave
parametrization in (26), but in 2-D. Thus the B-spline is 2-D
and x = (z1, z3) in the following. The 2-D B-spline nodes are
sampled every 250 m in the horizontal direction and every 100
m in depth. The image resulting from a simple 1-D optimiza-
tion is used to identify the layering of the velocity model. In
this initial optimization, a relatively dense sampling in depth
was deemed necessary because of the observed rapid veloc-
ity increases. The time horizons of the interface geometry in
(26) are found from map demigration as described in previ-
ous sections. These time horizons, a total of 14, are used in
the subsequent velocity-estimation steps to control the inter-
face geometry in (26). The starting values of constant velocity
and velocity gradient within the layers are taken from well in-
formation from close to the 2-D slice in the medium under
consideration here. The initial model and the corresponding
PP image are given in Figures 7 (top left) and 9.

To construct a well-behaved misfit function (17) and
guarantee a numerically stable computation of the gradient
(17), we bandpass filter the data between 3 and 15 Hz. The
derivatives in angle inside the misfit function are tapered at
small and large angles to remove truncation effects. We nor-
malize the misfit function (17) following Chauris and Noble
(2001) to reduce the influenceof erroneous amplitude calcula-
tions and noise in the data (this could have been circumvented
by making the GRT of the data to CIGs unitary). The gradient
contributions are tapered as we approach the boundaries of the
model or in places with low ray coverage. Before calculating
both the gradient and the misfit function, we smooth the CIGS
by a simple {1/4,1/2,1/4} convolution filter in angle and
depth; in addition, we apply a 2-D Fourier ‘dip’ filter (in depth
and angle) to suppress imaging artifacts and noise. The filter is
applied adaptively, allowing for events with smaller moveout
as we approach uniform gathers. This is done in a conservative
manner so as to avoid destroying the moveout behavior of the
primary events. These considerations are taken into account in
all subsequent calculations.

The 14 CIGs are sampled every 250 m from 1250 m on-
wards. Each CIG is sampled every 0.5 degrees up to 45 de-
grees in incoming P-wave reflectionangle. Figure 8 shows the
a) starting, b) after 4 iterations and c) after 7 iterations (final)
collection of CIGS in the optimization. The resulting velocity
model and corresponding PP image are given in Figures 7 (top
right) and 10, respectively. The optimization for the B-spline
coefficients was carried out in the final couple of iterations,
but this showed little improvement in the misfit function. No-
tice in particular the movement of the interface geometry in
the final velocity model Figure 7 (top right) as compared with
the initial one (top left).

(ii) The initial S-wave velocity model is chosen naively
by a fixed us /vp ratio for the entire model based on the fi-
nal P-wave velocity, and is given in Figure 11 (left). The cor-
responding PS image is given in Figure 13. The P-wave ve-
locity model is considered reliable up to 45 degrees incom-
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semblance-based misfit,

1 1
oot =1-2 (2 [
2 \ Ny N

J1fS Tihs(y, m; 6, 4)d6dy|” dys J
JIS |Ths(y, m;8,9)| dodydys

1
v |
No,z/;Nm,yz

IS Zos(y, m; 0, 9)dody|* dys | )
_ 2 14y2 | ,
IIS |Z5s(y, m; 8, 9)|" dodspdys

where Né’: v and Nz;tmz

are defined as in (37) for the positive
CIGS and N, » and Ny, 4, for the negative CIGS.

Figure 20 illustrates the shapes of the misfit for the five
different layers in a layer-stripping approach as function of
€ and 4. In the layer stripping approach, we use the optimal
(g, ) values obtained in the layers above the layer in which
the parameters are under investigation. Shown, by column, are
the semblance misfits for PS, PP (equations (??) and (37)),
their normalized sum, and our joint PP, PS differential sem-
blance in angle misfit (A = A2 = 1, g = 0). The PP and
PS semblance functions are plotted on the same scale. In the
PS semblance plot, the apparent valley at a 45 degree angle
is governed by (¢ — 4) as in equation (33). This indicates the
feasibility of detecting anisotropy in the PS CIGS, without dis-
criminating between the two parameters. In the PP semblance
plot we are unable to observe significant change in the value of
the misfit function with changing anisotropy. This is expected
as the data offsets are not sufficiently large for the shallow part
of the model because of the aforementioned mute.

In the joint PP, PS semblance and joint PP, PS differential
semblance in angle misfit plots, the lines § = 0 and

e—é=6-4, (38)

are drawn, where & and § are optimal values for € and § in

each layer, and can be found in Table 1. In the first three layers
the values are chosen using the PS semblance plot only, with

& = 0, since there is not enough resolution in 4. In layers 4

and 5 we use the joint PP, PS semblance plots. In these layers

values for € and § can be resolved by locating the semblance

misfit minimum after analyzing the joint PP, PS differential
semblance in angle misfit function first. In the deepest layer, a
threshold on the differential semblance in angle misfit function
limits the region where the semblance misfit minimum is to be
found, and thus enables us to discriminate between the two

apparent minima in the semblance misfit function.

In the calculations we use a fix ed depth window of the
CIGs. This implies, for example, that if § becomes too nega-
tive, an event can move out of this depth window and hence no
longer contributes to the misfit.

The final PP and PS CIGs for the & andé values in Ta-
ble 1 are shown in Figure 21. The corresponding images are
given in Figures 22 and 23 in depth and in two-way PP time
(obtained by depth-to-time conversion using the P-wave ve-
locities from (i)) in Figures 24 and 25. The images in the latter

layer € )

1 0.035 0.0
2 0.0 0.0
3 0.02 0.0
4 0.09 -0.04
5 -0.02  -0.02

Table 1. Anisotropic parameter values resulting from layer stripping.

two figures correlate very well. For comparison, the initial PP
image obtained in (i) is also converted to two-way PP time in
Figure 26.

7 DISCUSSION AND CONCLUSION

We have presented a reflection tomographic or MVA ap-
proach to obtain depth-consistent PP and PS images by mak-
ing use of a differential semblance in angle measures and map
(de)migration, enabling automatic measurement of any mistie
in depth. This involves an extension of differential semblance
in angle to converted waves, as well as the development of
a co-depthing measure. The co-depthing procedure is derived
from the zero scattering angle case of Grechka and Tsvankin’s
‘PP+PS=SS’ concept. When the velocity model is far from the
true model, or when there is a significant inconsistency be-
tween the models governing the P-wave leg and the S-wave
leg of the PS scattering event, the approximation we make in
the ‘PP+PS=SS’ concept deteriorates. Also, the current co-
depthing procedure, based on zero scattering angle, fails to
apply in the presence of caustics. Then the co-depthing proce-
dure can be refined by using the aforementioned ‘PP+PS=SS’
approach to compute prestack SS traveltimes and slopes, and
making use of finite-of fset map (de)migration.

Perhaps one would expect that by first estimating a P-
wave velocity model from PP reflectionsand then an S-wave
velocity model from PS reflections would guarantee consis-
tency in depth between PP and PS images, since the mode-
converted wave is tied to the P wave. The field data example
illustrates that this is not the case: The difference in depths can
be several hundred meters even if the differential semblance in
angle measure, through uniform CIGS, indicate a model fitting
both the PP and PS scattering events.

The tying of the PP and PS events forces us to take
anisotropy into account; this has been observed by several
authors, see for example Artola et al. (2003). We developed
an approach derived from joint PP and PS angle tomography,
consisting of fi ve steps, for carrying out MVA. We estimated
a compressional- and shear-wave velocity model based on a
quasi-TIV medium (Thomsen’s § = 0) assumption. We also
succeeded in estimating & separately from £, with a degree of
uncertainty, in part of the model; in this estimation we made
additional use of a semblance measure applied to the PP and
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Data continuation in the presence of caustics: A

synthetic data example

Alison E. Malcolm and Maarten V. de Hoop

Center for Wave Phenomena, Colorado School of Mines

ABSTRACT

In data continuation, the information present in the collected data is used to
estimate data at new positions. We investigate two examples of data continua-
tion: data healing and dip moveout. By composing a modeling operator with an
imaging operator an operator to perform each of the tasks can be constructed.
We review the theory and present an algorithm for data continuation specifi-
cally directed at these two examples. This algorithm is able to continue data in
the presence of caustics. To demonstrate the performance of this algorithm, we
use a synthetic example in which there are caustics.

Key words: data healing, DMO, data mapping, offset continuation, artifacts

1 INTRODUCTION

Often data collected in the field are not sufficient for
processing. For example, it is not possible to collect
zero-offset data but these data are important in attenu-
ating surface-related multiples. Also, the data collected
are sometimes incomplete; certain offsets may be miss-
ing, for example. Such gaps in the data can cause prob-
lems in imaging. Errors introduced in the computation
of missing data will propagate into other procedures in
which these data are used; thus, an accurate data con-
tinuation algorithm is important. A fundamental limi-
tation to this type of data continuation is that it is not
possible to compute missing data that scattered from a
subsurface point not sampled in the available data.

To get around problems introduced by missing
data, we propose a method of data continuation that al-
lows missing data to be filled in from the available data
(data healing) and the computation of different geome-
tries than those collected originally, as in dip moveout
(DMO) for example. The theory to do this involves the
composition of an imaging/migration operator and a
modeling/demigration operator to form a single opera-
tor that maps the initial data set to a second, computed,
data set. This theory is discussed in detail in Malcolm et
al. (2003). We are particularly interested in situations in
which caustics occur. This puts our theory in a frame-
work similar to that of depth migration, which goes be-

yond the time migration framework of Fomel (2003),
Bleistein et al. (2000), and Stolt (2002).

We have developed an algorithm to test this theory
and illustrate its capabilities using synthetic data. To
accurately fill in missing data in the presence of caus-
tics, knowledge of the smooth velocity model is required.
Our algorithm relies on this knowledge and in turn, the
missing data it fills in assists in the migration and veloc-
ity analysis portions of data processing. Thus, we see the
three processes of data continuation, velocity analysis,
and migration as interdependent steps in the imaging
process.

2 THEORY AND ALGORITHM

As stated in the introduction, we construct an opera-
tor to calculate missing data from the available data by
composing a modeling operator with an imaging opera-
tor. It is the exact form of the modeling operator used in
the composition that determines the form of the output
data. In this paper we discuss two forms of this operator:
data healing, for which the output data are a more com-
plete version of the input data set, and DMO, for which
the output data are exploding-reflector-data computed
from non-zero-offset-data. For data healing, the model-
ing operator is fairly general. It simply models data with
source and receiver positions in the range missing in
the original data set. For DMO, however, the modeling







cost strongly dependent on the complexity of the veloc-
ity model. Because of this dependence and because of
the varied applications for which this technique may
be useful, evaluation of the cost-effectiveness of the
method must be made on a case-by-case basis. Although
the work presented here is in 2D, the theory remains
valid in 3D although the implementation is somewhat
more difficult. In addition, the extension to anisotropy is
straightforward, provided the anisotropic velocity model
is known.

ACKNOWLEDGMENTS

We acknowledge the contributions to the development
of the underlying theory made by J. H. Le Rousseau,
and the assistance with the algorithm from H. Calan-
dra, S.-K. Foss and S. Brandsberg-Dahl. This work was
supported by the sponsors of the Consortium Project
on Seismic Inverse Methods for Complex Structures at
the Center for Wave Phenomena and by Total.

REFERENCES

Bleistein, N., Cohen, J. K., & Stockwell, J. W. 2000. Mathe-
matics of Multidimensional Seismic Imaging, Migration
and Inversion. New York: Springer-Verlag.

Brandsberg-Dahl, S., de Hoop, M. V., & Ursin, B. 2003.
Focusing in dip and AVA compensation on scattering-
angle/azimuth gathers. Geophysics, 68, 232-254.

Fomel, S. 2003. Theory of differential offset continuation.
Geophysics, 68, 718-732.

Malcolm, A. E., de Hoop, M. V., & Le Rousseau, J. H. 2003.
The applicability of DMO/AMO in the presence of caus-
tics. submitted to Geophysics. CWP-436P, 2003 project
review book.

Stolt, R. H. 2002. Seismic data mapping and reconstruction.
Geophysics, 67, 890-908.

Data continuation examples

169




CWP-481

Geometrical-spreading correction for P-waves in
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Introduction

Seismic signatures measured in wide-azimuth reflec-
tion surveys may be strongly influenced by azimuthal
anisotropy associated with natural fracture systems or

ABSTRACT

Compensation for the geometrical spreading along the raypath is an essential
step in AVO (amplitude variation with offset) analysis, in particular for wide-
azimuth surveys. Here, we propose an efficient methodology to correct long-
spread reflection data for the geometrical spreading in stratified azimuthally
anisotropic media. The geometrical-spreading factor is expressed through the
reflection traveltime described by the nonhyperbolic moveout equation that has
the same form as that in VTI (transversely isotropic with a vertical symmetry
axis) media.

For P-waves, the adapted VTT equation is parameterized by the normal-moveout
(NMO) ellipse and the azimuthally varying anellipticity parameter 7. If the ver-
tical symmetry planes have uniform orientation in all layers, a close approxima-
tion to the exact traveltime can be obtained by using the expression for n(a)
originally derived for a single orthorhombic layer. For models with misaligned
symmetry planes, the azimuthal variation of 7 is described by an additional an-
gle that controls the rotation of the “principal” axes of the function n(a) with
respect to the NMO ellipse.

The moveout parameters are estimated from the 3D nonhyperbolic semblance
algorithm of Vasconcelos and Tsvankin that operates simultaneously with traces
at all offsets and azimuths. Numerical tests for models composed of orthorhom-
bic layers with strong, depth-varying velocity anisotropy confirm the high ac-
curacy of our travetime-fitting procedure and, therefore, of the geometrical-
spreading correction. In the presence of azimuthal anisotropy above the reflec-
tor, the azimuthal variation of the geometrical-spreading factor is often compa-
rable to that of the reflection coefficient.

The algorithm was applied to 3D data collected at Weyburn field (Canada)
to evaluate the geometrical spreading for wide-azimuth P-wave reflections. The
geometrical-spreading factor for the reflection from the top of the fractured
reservoir is clearly influenced by the azimuthal anisotropy in the overburden,
which should cause distortions in the azimuthal AVO attributes. Since our
geometrical-spreading correction is entirely based on the kinematics of reflected
arrivals, it can be readily incorporated into the processing flow of azimuthal
AVO analysis.

Key words: geometrical-spreading correction, azimuthal anisotropy, wide-
azimuth AVO

dipping transversely isotropic layers (e.g., shales). The
inversion of azimuthally varying moveout velocities, po-
larization vectors, and amplitudes of reflected waves
gives valuable information for characterization of frac-




Here, Vi&) and Vi{Z), are the semi-minor and semi-major
axes of the NMO ellipse, respectively, and ¢ is the az-
imuth of the semi-major axis with respect to the ac-
quisition frame. Explicit expressions for the coefficients
A4(a) and A(a) for an orthorhombic layer are given in
Al-Dajani et al. (1998) and Paper I.

The nonhyperbolic (z*) term in equation (2) can be
simplified by using an approximate equivalence between
the P-wave kinematics in the vertical symmetry planes
of orthorhombic and VTI (transversely isotropic with
a vertical symmetry axis) media. As shown in Paper I,
the VTI moveout equation of Alkhalifah and Tsvankin
(1995) can be adapted for an orthorhombic layer by
introducing an azimuthally varying anellipticity coeffi-
cient 7(a) (Pech and Tsvankin, 2003):

2

Tz(z,a) = To2 + ﬁ(a)
_ 2n(a) z* (4)
Vo (@) [T§ Vino(a) + (1 + 29(a)) 2%’
n(@) = nWsin*(@—9¢) + 1 cos’(a - ¢)
7® sin®(a — ¢) cos®(a — ¢). (5)

The anellipticity parameters *, 7™ and 7® are
defined in the symmetry planes by analogy with
the Alkhalifah-Tsvankin parameter 7 for VTI media
(Grechka and Tsvankin, 1999b).

Numerical testing in Paper I proves that equa-
tion (4) provides a close approximation for P-wave
moveout in a homogeneous orthorhombic layer. Below
we apply equation (4) to more complicated, multilay-
ered azimuthally anisotropic models.

Traveltime fitting for layered orthorhombic
media

Models with uniform symmetry-plane
orientation

Suppose the medium above the reflector is composed of
horizontal layers with anisotropic symmetries no lower
than orthorhombic, and the vertical symmetry planes in
each layer have the same orientation. Note that in az-
imuthally isotropic (i.e., VTI or purely isotropic) layers
any vertical plane is a plane of mirror symmetry. The
uniform orientation of the symmetry planes in all layers
implies that the model as a whole has two orthogonal
vertical symmetry planes.

Because of the kinematic equivalence between the
symmetry planes of orthorhombic and VTI media, P-
wave nonhyperbolic moveout in the symmetry-plane di-
rections is described by equation (4) with the effec-
tive parameter 7 computed from the VTI averaging
equations (Tsvankin, 1997; 2001, Appendix 4B). Al-
though for off-symmetry azimuthal directions the kine-
matic analogy with VTI media is valid only for weak
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anisotropy, the results of Paper I indicate that equa-
tion (4) parameterized by the best-fit values of Vimo
and 7 should still be sufficiently accurate. Therefore,
the main issue in applying equation (4) to layered me-
dia with aligned symmetry planes is whether or not the
azimuthal variation of the effective parameter n(a) can
be described by the single-layer equation (5).

To estimate the effective moveout parameters in
equation (4), we employ the 3D nonhyperbolic sem-
blance algorithm of Vasconcelos and Tsvankin (2004).
Wide-azimuth synthetic data are generated using AN-
RAY, the 3D anisotropic ray-tracing code developed by
Gajewski and P3encik (1987). Vasconcelos and Tsvankin
(2004) developed a three-step inversion procedure de-
signed to make the multiparameter semblance search
more efficient. First, conventional-spread data are used
to reconstruct the NMO ellipse and evaluate the az-
imuth ¢ and the NMO velocities Viao and Viieb. Sec-
ond, the anellipticity parameters 7V and 5®, which
are defined in the vertical symmetry planes, are esti-
mated from the VTI nonhyperbolic semblance analysis
in narrow sectors centered at the symmetry-plane di-
rections. Third, the initial values of the parameters ¢,
V,&)o, n(x?x)o, 7™, and n® are used to specify the start-
ing model for nonhyperbolic semblance search based on
equations (4), (3), and (5).

Application of the algorithm to the four-layer model
with the parameters listed in Table 1 confirms that
equation (4) accurately describes long-spread moveout
for the full range of azimuths. The model includes two
orthorhombic layers with substantial magnitude of po-
lar and azimuthal anisotropy sandwiched between two
isotropic layers. As illustrated by Figure 1, the trav-
eltimes computed from equation (4) with the inverted
moveout parameters provide an excellent fit to the ex-
act ray-traced traveltimes. The error of equation (4)
does not exceed 0.3% of the zero-offset traveltime; sim-
ilar results were obtained for a wide range of plausible
orthorhombic models. The high accuracy of the travel-
time fitting method, however, does not imply that the
estimated parameters are close to the analytic values
of the NMO velocities and the coefficient 7 because
of the tradeoffs between various moveout coefficients
(see Vasconcelos and Tsvankin, 2004). Nevertheless, as
long as equation (4) is close to the exact traveltime,
the moveout coefficients provide accurate input for the
geometrical-spreading correction.

Models with misaligned symmetry planes

For media without throughgoing vertical symmetry
planes, the azimuthal variation of the quartic move-
out coefficient A4 becomes more complicated and is de-
scribed by five different trigonometric functions of the
azimuth « (Al-Dajani et al., 1998). This implies that
equation (5) for the azimuthally varying parameter 7
may no longer be accurate. However, extensive testing
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where Vio(a) and 7 (a) are the interval parameters
in layer i. Although equation (7) may become inaccurate
for models with strong azimuthal anisotropy, it usually
reproduces the shape of the azimuthal variation of the
effective n (Al-Dajani et al., 1998).

Figure 3 shows a comparison between the parame-
ter 77 computed from equation (7) (solid curve) and esti-
mated by the moveout-inversion algorithm (dashed) for
a two-layer orthorhombic model with misaligned sym-
metry planes. The shape of the two curves is quite sim-
ilar, which explains the relatively low magnitude of the
time residuals produced by equation (4). The misalign-
ment of the symmetry planes, however, causes a rota-
tion of the estimated 7-curve with respect to the one
calculated from equation (7).

The moveout-inversion algorithm cannot accommo-
date this rotation because the “principal axes” of the
azimuthal variation of 7(c) in equation (5) are parallel
to the axes of the NMO ellipse [equation (3)]. Therefore,
the traveltime fitting at far offsets can be improved by
decoupling the nonhyperbolic moveout term from the
NMO ellipse and introducing an additional angle ¢; re-
sponsible for the azimuthal orientation of the effective
parameter 7:

@) = nWsin’(a—¢1) + 1 cos’(a — ¢1)
— ®sin*(a — ¢1) cos®(a — ¢1). (7)

The first two steps of the modified moveout-
inversion algorithm remain the same as those described
above, but at last step we fix the orientation of the NMO
ellipse (angle ¢) and search for the angle ¢; and the
other parameters using the full range of offsets and az-
imuths. Application of this algorithm to the model in
Figure 2 results in a greatly improved time fitting (Fig-
ure 4) and a 15% increase in the semblance value for the
best-fit model.

Azimuth-dependent geometrical-spreading
correction

The traveltime derivatives in the geometrical spreading
equation (1) can be computed from the best-fit move-
out parameters in equation (4). Explicit expressions for
these derivatives are given in Paper I for the original
form of the moveout equation with a single azimuthal
angle ¢. If the modified moveout equation provides a
better fit to the traveltimes (e.g., a higher semblance
value), the time derivatives can be easily rewritten us-
ing equation (7) for the parameter n(a).

The geometrical-spreading factor also depends on
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180

270

Figure 3. Comparison of the effective parameter 7(a) com-
puted from equation (7) (solid curve) and estimated by the
inversion algorithm (dashed). The model is composed of two
orthorhombic layers; for the top layer, ¢ = 15°, Vpg = 2.5,
€D = 0.2, €@ =0.15, 61 = —0.1, 6() = 0.15, and §®) =
0.15; for the bottom layer, ¢ = 0°, Vpg = 3.0, (1) = 0.15,
e = 0.2, 6 =0.15, 6 = —0.1, 6®) = —0.15.

270

Figure 4. Same as Figure 2, but the traveltime fitting was
performed using the modified inversion algorithm that al-
lows for an independent orientation of the n(a)-curve. The
estimated parameters are ¢ = 81°, V,f.ln)o = 2.586 km/s,
Vi), = 3.00 km/s, n!) = 0.594, n(» = 0.339, n® = 0.161,
and ¢1 = 89°.

the group angles at the source (¢°) and receiver (¢")
locations, which are equal to each other for models with
a horizontal symmetry plane. In most cases, the sub-
surface layer containing the source can be treated as
isotropic and has a known P-wave velocity V. Then
the angle ¢° can be computed using the ray parame-
ter p estimated from the traveltime derivative dT'/dx:
sin¢® = pV (Ursin and Hokstad, 2003).
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Figure 8. Accuracy of our method for the reflection from
layer 3 in model 1; the azimuths are & = 0° and 90°. The
factor L is computed from dynamic ray tracing (dashed line)
and our algorithm (solid).

Tsvankin (2004) are in good agreement with the analy-
sis of shear-wave splitting by Cardona (2002) and of the
azimuthal AVO response by Jenner (2001).

In particular, Jenner (2001) found that the P-wave
AVO attributes at the reservoir level vary with az-
imuth. His amplitude processing, however, included only
the conventional geometrical-spreading correction for
isotropic media. To evaluate possible distortions of the
AVO response caused by the influence of anisotropy on
the geometrical spreading, we applied our algorithm to
the reflection from the top of the reservoir (Figure 9).
The moveout parameters were obtained by Vasconce-
los and Tsvankin (2004) using the original equation (4)
with a single azimuthal angle ¢.

A plan view of the normalized geometrical-
spreading factor in the overburden is displayed in Fig-
ure 9. The influence of anisotropy causes a dramatic
50% distortion in the geometrical spreading for offset-
to-depth ratios close to two. The magnitude of the az-
imuthal variation of the factor L at far offsets reaches
10% (Figure 10). Such a difference between the geomet-
rical spreading in the east-west and north-south direc-
tions is sufficiently large to cause distortions in the az-
imuthal variation of the AVO gradient studied by Jenner
(2001).

Discussion and conclusions

The formalism suggested in Paper I (Xu et al., 2003) for
describing the geometrical spreading of reflected waves
is used here to develop a practical methodology for the
P-wave geometrical-spreading correction in layered az-
imuthally anisotropic media. The correction, which in-
volves the spatial derivatives of the reflection traveltime
and the group-velocity vector at the source location,
does not require knowledge of the velocity model. If
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Figure 9. Plan view of the normalized geometrical spread-
ing for the P-wave reflection from the Mississippian for-
mation (the top of the reservoir) at Weyburn field com-
puted for CMP 10829. The factor L is normalized by its
value in the reference isotropic homogeneous medium with
Vamo = (Vn(,}n)o V,S?n)o)/z. The moveout parameters are
taken from Vasconcelos and Tsvankin (2004): ¢ = 99°,
v, = 2.371 km/s, V{Z, = 2.464 km/s, n(1) = 0.255,
7(® = 0.186, and 7 = —0.062. The depth of the reflec-
tor is 1.4 km (the maximum offset-to-depth ratio is 2.5).
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Figure 10. Normalized geometrical spreading for the reflec-

tion from the Mississippian formation computed in the east-
west and north-south directions for CMP 10829.

the layer containing the source is isotropic, the group
angle can be estimated in a straightforward way from
the slope of the traveltime curve. Hence, the main is-
sue in computing the geometrical-spreading factor from
surface data is to find a sufficiently accurate, smooth
approximation for wide-azimuth, long-offset reflection
moveout in the presence of azimuthal anisotropy.
Numerical testing shows that even for models com-
posed of strongly anisotropic orthorhombic layers, long-
spread P-wave reflection traveltime can be accurately
described by a nonhyperbolic moveout equation that
has the same form as the widely used Alkhalifah-
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ABSTRACT

We report on what is, to our knowledge, the first image of a fluid pulse inside a
fault-zone that, based on geochemical evidence, is ascending the fault with time.
The fluid pulse is confined to a growth fault (the B-fault) at the South Eugene
Island 330 field, offshore Louisiana. Though the thickness of the fault-zone may
only be tens of meters, or a fraction of a seismic wavelength, at the location of
the fluid pulse, it is detectable because the fluid pulse is of high fluid pressure
and, hence, low P-wave velocity. We extract the amplitude of the fault-plane
reflection from the B-fault by applying a dip-filter to migrated 3D seismic data
gathered by Shell in 1992. The reflectivity at the location of the fluid pulse is
roughly three times greater than at an unremarkable part of the B-fault where
a sonic log passed through the fault in 1993. We modify the sonic log by placing
a 30 m low velocity zone at the fault-plane, representing a model of the fluid
pulse. After generating synthetic seismograms from both the sonic log and the
modified sonic log, we find that the low velocity zone produces high reflectivity
similar to that observed at the fluid pulse. The ability to detect such a spatially-
limited, high fluid pressure anomaly has implications for the understanding of
hydrocarbon migration mechanisms and the time scale of reservoir-recharge in
the Gulf of Mexico.

Key words: episodic fluid flow, faults, hydrocarbon migration

Introduction

Faults have long been characterized as zones of highly
focused deformation and fluid flow in the subsurface;
the exact mechanism of fluid flow and rate of flow along
faults are, however, not well understood. For instance,
Revil and Cathles (2002) claim that fluids may propa-
gate as solitary waves along faults at the rate of kilome-
ters per year. Since faults deform, or slip, in an episodic
manner, it has been postulated that flow along faults
should also be episodic and linked to the slip events (Sib-
son, 1990). Episodic flow along faults may be common
in sedimentary basins worldwide. In the Gulf of Mex-
ico, growth faults cutting through young, poorly con-
solidated sediments provide a means for hydrocarbons
generated in deep source rocks to migrate into shallower,
economically producible reservoirs.

We have previously established from 3D seismic

data collected at the South Eugene Island field, off-
shore Louisiana, that fault-plane reflections from the
main basin-bounding growth fault (the A-fault) indicate
the portions over which the fault acts as a lateral seal
(Haney et al., 2004). In this brief paper, we extend our
interpretation of the seismic data to examine the possi-
bility that the faults at South Eugene Island also act as
vertical conduits for fluid migration. Such behavior has
been observed during the Global Basins Research Net-
work (GBRN) drilling project at South Eugene Island
(Anderson et al., 1995) and highlights the dual nature
of faults as both effective lateral seals and vertical fluid
migration pathways.

We find that at one location, the intersection of the
A10ST well with a fault synthetic to the A-fault, known
as the B-fault, high fault-plane reflectivity occurs where
a fluid pulse has been documented from drilling records
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fault, we have demonstrated that a low velocity zone
at the fault-plane qualitatively agrees with the relative
strength of reflected amplitudes in seismic data. The
ability of reflected seismic waves to detect a fluid pulse
could lead to a better understanding of hydrocarbon mi-
gration or an entirely new play concept based on drilling
hydrocarbons in a fault zone. Future work will attempt
to observe the fluid pulse move in different vintages of
seismic data taken over a period of ten years. Other
possible causes of the amplitude anomaly at A10ST, in
addition to stacking errors and AVO effects, will also be
explored.
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ABSTRACT

The coda of a waveform consists of that part of the signal after the directly
arriving phases. In a finite medium, or in one that is strongly heterogeneous,
the late time coda is dominated by waves which have repeatedly sampled the
medium. Small changes in a medium which might have no detectable influence
on the first arrivals may be amplified by this repeated sampling and thus made
visible in the coda. We refer to this use of multiple-sampling coda waveforms as
Coda Wave Interferometry. We have exploited ultrasonic coda waves to monitor
time-varying rock-properties in a laboratory environment. We have also studied
the dependence of velocity on uni-axial stress in Berea sandstone, the non-linear
temperature dependence of velocity in granite and the change in velocity due
to an increase of water saturation in sandstone. There are many other possible
applications of Coda Wave Interferometry in geophysics, including dam and
volcano monitoring, time-lapse reservoir characterization, and rock physics.

Key words: velocity estimation, coda wave, multiple scattering, time-lapse,
rock physics, acoustic emissions, fluid saturation

Introduction

Geophysicists investigate the structure of the subsurface
by making indirect measurements on the surface and
relating them to those predicted by theoretical Earth
models. The Earth, however, is a highly complex sys-
tem, and we almost always have to simplify our models
in order to make them tractable. In many applications,
this simplification means treating unmodeled physics as
noise, with the result that information contained in the
data is discarded. For seismic data, this typically means
ignoring the coda waves that make up the tail of a seis-
mogram. (In music the coda is the concluding passage
of a movement or composition (Latin cauda, tail).) Geo-
physical applications based on use of the coda waves in-
clude earthquake prediction (Aki, 1985; Sato, 1988), vol-
cano monitoring (Aki, 2000; Fehler et al., 1998) or mon-
itoring of temporal changes in the subsurface (Chouet,
1979; Revenaugh, 1995)(see also (Aki & Chouet, 1975).)

Consider the following examples: in monitoring a
nuclear waste disposal site, one is not primarily inter-
ested in imaging the site. However, it is critical to moni-

tor temporal changes in the site. In recent years, applied
geophysicists have spent much effort on time-lapse seis-
mology to monitor hydrocarbon reservoirs during re-
covery operations. Hydrocarbons move in the subsur-
face, reservoir rocks are artificially fractured, water-oil
horizons move and steam propagates through the reser-
voir (Lumley, 1995; Wang, 1997). The high sensitivity
of coda waves to small perturbations of the medium,
makes them a powerful tool to monitor these kinds of
changes.

We present four laboratory experiments in which
we monitor the change in seismic velocity resulting from
a change in uni-axial stress in a sample of Berea sand-
stone, from a temperature change in a sample of Elber-
ton granite, a sample of aluminum and from a change
in water saturation in a sample of Berea sandstone. We
excite and record ultrasonic waves and extract the ve-
locity change from the coda waves.
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Figure 1. Experimental setup. The cuboid represents the
Berea sandstone with orientation defined in the lower left
corner of the figure. Sonic waves are transmitted in the z-
direction and a uni-axial load is applied in the y-direction.
A P-wave transceiver (triangle) and a P-wave receiver (rect-
angle) are used throughout the experiment. The cuboid has
a size of 12,5 cm by 40 cm by 40 cm.

" n (9)
In the following experiments we only consider the
relative velocity change estimated from the coda of the
ultrasonic measurements. However, other types of per-
turbations leave a different signature on the time shifted
correlation coefficient (Snieder et al., 2002) and could be
used to monitor rock-properties not discussed here.

The laboratory experiments discussed in this paper
are a combination of both, multiply scattering (from
the cristals or grains in the rocks) and the repetitive
sampling of the same area by reflections of the bound-
aries (bouncing ball and/or surface wave). However, the
above formulation using the Feynman path summation
includes both cases and we can use the same theory for
all our measurements.

All the laboratory experiments discussed in this pa-
per involve essentially the same measurement of ultra-
sonic waves, we measure the inpulse response of a rock
sample with compressional ultrasonic transducers. The
difference lays in the physics of the change introduced
and the geometry of the rock sample.

v _ —tmaz

Monitoring uni-axial stress in Berea sandstone

Time-varying stress fields are important in a number
of areas of geophysics. Changes on plate boundaries are
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Figure 2. a) Two waveforms recorded at an applied uni-
axial load level of 6 MPa (thick line) and 8 MPa (thin line)
are shown in the same figure. b) The same two waveforms
as Figure 3a, but only a small time window of the signal is
shown; the time interval is marked by the two dashed lines in
Figure 3a. The two coda waves are strongly correlated even.
The sonic wave (in this time interval) has traveled through
about 2.5 m of rock and bounced back and forth about 20
times.
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Figure 3. Velocity change estimates for 20 windows with
different center times. The mean velocity change is 1.02 %
and the standard deviation is 0.16 %

important in order to understand plate tectonics (Bokel-
mann & Silver, 2002). In earthquake prediction, the de-
formation field is important for understanding fault be-
havior and its relation to earthquake occurrence (Stein,
1999; Freed & Lin, 2001; Niu et al., 2003). In hydrocar-
bon reservoirs, the stress field is changed by recovery
operations. It is important to understand the tempo-
ral change for time-lapse reservoir monitoring (Teanby
et al., 2004). Or consider the "Room and Pillar” is a
method of underground coal mining, in which approx-
imately half of the coal is left in place to support the
roof of the active mining area. Large pillars are left while
rooms of coal are extracted. Monitoring the stress field
in the pillars and roof is crucial in a safe mining proce-
dure (Nikitin, 2003).

Wryllie et al. (1958) et al. measured ultrasonic P-
wave velocity as a function of effective stress in water
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Figure 5. Wave-forms recorded in the berea sandstone sam-
ple for two different levels of water saturation (water infil-
trated 2cm of the rock (thick line) and 3cm (thin line)). The
insets show details of the wave-forms around the first arrival
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Figure 6. As the water rises in the rock sample the waves
slow down accordingly. Eight waveforms are shown, each
measured at a different hight of the water front. The fastest
(thickest line) is measured on the dry sandstone and the slow-
est (thinest line) is measured at a water front hight of 7cm. It
is important to note that the waveforms of the first arriving
phases are identical for a water rise of lcm.

with an approximate hight of 20 cm and an approxi-
mate diameter of 5 cm. The sample is equipped with
a compressional source on one side and an identical re-
ceiver on the other (Figure 4). The room-dry sample is
placed in a container holding 5mm of water. While the
water is sucked into the pores of the sandstone by cap-
illary pressure, the water-level in the container is kept
constant at 5 mm. While the water-front is rising from
5mm to 10 cm, the ultrasonic impulse-response mea-
surement is repeated for every lcm increase in water-
level. Again, for a 20 cm sample and a water-front rise
of 1 cm there is no significant travel-time difference for
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Figure 7. Absolute values of dv/v in berea sandstone, for
approximately lcm water level intervals from room-dry to
9cm into the sample. Error bars are one standard deviation,
calculated from multiple windows over the coda of the ultra-
sonic measurement

the first arriving waves (see top inset of Figure 5). In
a late time window (bottom inset of Figure5), however,
we see a distinct time shift of the wave-forms. Figure
6 shows the consistent slowing of the sonic waves with
increasing water-level.

For each change of lcm in water-level the relative
change in velocity is estimated, with 12 different 0.1 ms
time windows of the coda waves. The relative velocity
change is of the order of 0.3% for a water-level rise of
lcm with an error of 0.05% (Figure 7). It is important to
note that in many laboratory experiments, the change in
the seismic velocity is measured for saturation changes
of about 5% on small samples. With Coda Wave In-
terferometry we can monitor fluid saturation about 10
times more precisely.

Thus by using the coda waveforms, small changes
in fluid saturation or migration, which have no effect on
the first arriving phases of the data, can be readily seen
in the coda. We believe that this technique can be used
to monitor groundwater, DNAPL contamination sites
and hydrocarbon reservoirs during enhanced recovery
operations.

Monitoring Thermally Induced Velocity
Changes in Aluminum

The dependence of ultrasonic velocity on temperature
in metals and alloys is an important characteristic in
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itored by two thermocouples glued to the side of the
sample and in the borehole (Figure 8).

While increasing the temperature from 25°C to
90°C, the ultrasonic measurement is repeated for ev-
ery 5°C increase in temperature. Then the aluminum
sample is cooled to room-temperature and the exper-
iment is repeated again for every 5°C in temperature
decrease. In addition, acoustic emissions are counted for
every temperature interval.

In some published laboratory experiments, the
change in the seismic velocity is measured for a temper-
ature change of about 100°C (Kern et al., 2001; Timur,
1977; Peselnick & Stewart, 1975; Hughes & Maurette,
1956). For a 11 cm small sample and a temperature dif-
ference of only 5°C, there is no significant travel-time
difference for the first arriving waves (see top inset of
Figure 9). Therefore, first arriving waves do not provide
any information about velocity changes. In a late time
window (bottom inset of Figure 9), we see a distinct
time shift of the wave-forms. This information can be
used to infer the change of sonic velocity with temper-
ature.

For each change of 5°C in temperature the relative
change in velocity is estimated with 20 different 0.1ms
time windows of the coda waves 10. The relative veloc-
ity change is of the order of 0.15% for a temperature
change of 5°C with an error of 0.025% (Figure 11). It is
important to note that the relative velocity change with
temperature does not depend on whether the sample is
in the heating or the cooling phase. Furthermore, there
is no measurable velocity difference at room tempera-
ture before and after the sample has gone through the
heating cycle.

This laboratory experiment is important to test
the presence of temperature effects on the measurement
equipment, like piezoelectric transducer, cables, trans-
ducer couplant or mounting devices. Since we measure
a linear velocity change with temperature in aluminum
(Weaver & Lobkis, 2000), we conclude that these effects
can be neglected.

Monitoring Thermally Induced Velocity
Change and Acoustic Emissions in Granite

With the same technique and same experimental setup
described above, we measured the thermally induced
velocity change in a granite sample. During the heat-
ing phase the velocity decrease is constant for each 5°C
increase in temperatures, below 70°C, however for ev-
ery 5°C increase above that temperature, the veloc-
ity change is non-linear (Figure 12). A temperature of
70°C corresponds to the critical fracture temperature
for granite (Johnson et al., 1978; Fredrich & Wong,
1986). Thermal cracking results from the internal stress
concentration induced by thermal expansion anisotropy
or thermal expansion mismatch between minerals or
grains. Such micro-cracking is a similar effect as the
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Figure 12. Absolute values of §v/v in Elberton granite, for
5°C temperature intervals from 25°C to 90°C. Circles cor-
respond to the heating phase and rectangles to the cooling
phase. The histograms show the count of acoustic emissions
for a given temperature interval.
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Figure 13. Absolute velocity versus temperature in Elber-
ton granite, for two heating cycles. Filled circles represent
the first heating cycle and rectangles the second. Note that
on the second heating cycle the temperature dependent ve-
locities during the heating and cooling phase are almost not
distinguishable.

thermal stresses induced by thermal gradients in homo-
geneous solids; for a high temperature gradient, crack-
ing may occur even in a perfectly homogeneous solid
(Boley & Weiner, 1960). Fredrich & Wong (1986) show
that thermal cracking in rocks occurs principally along
mineral or grain boundaries. The thermally induced
cracks can influence significantly both the mechanical
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ABSTRACT

We present a technique based on the single scattering approximation that re-
lates temporal changes in the acoustic velocity to changes in the traveltime
of singly-scattered waves. We describe wave propagation in a random medium
with homogeneous statistical properties as a single scattering process where
the fluctuations of the velocity with respect to the background velocity are as-
sumed to be weak. This corresponds to one of two end-member regimes of wave
propagation in a random medium, the first being single scattering, and the sec-
ond multiple scattering. We present a formulation that relates the change in the
phase of the scattered wavefield to a localized slowness perturbation in a weakly
scattering medium by means of the Born approximation for the scattered wave-
field. We validate the methodology with synthetic seismograms calculated with

finite-differences for 2D acoustic waves.

Key words: scattering, Born approximation, random media

1 INTRODUCTION

In the search for technically simple and computation-
ally inexpensive methods for monitoring the time vary-
ing behavior of the subsurface, such as changes associ-
ated with a producing hydrocarbon reservoir, we con-
sider coda wave methods to be promising because of
their great sensitivity to small changes in the medium.
Here we explore the time-lapse behavior of singly scat-
tered acoustic waves under changes in the background
velocity of the medium.

Coda waves are the result of the interaction of an
incident wave with the heterogeneities of the medium
that gives rise to scattered waves. Many studies have
described these scattered waves as multiply scattered
waves, and the diffusion approximation has been em-
ployed to characterize the energy transport in strongly
scattering media (Aki & Chouet, 1975; Turner &
Weaver, 1994; Page et al., 1995; Schriemer et al., 1997).
In particular, multiply scattered waves have been used
to monitor temporal changes in the medium due to
high sensitivity of these waves to small changes in the
medium (Weitz & Pine, 1993; Yodh, 1995; Snieder et al.,
2002; Jian et al., 2003). Recently, Pacheco and Snieder
(2003) used the diffusion approximation to model the

traveltime change of multiply scattered waves due to a
localized velocity perturbation.

There are many important practical applications
where scattering is not sufficiently strong for the dif-
fusion approximation to be used to model the energy
propagation in the scattering medium. Seismic imaging
techniques, as used in oil exploration (Claerbout, 1985),
rely on the single scattering approximation to obtain an
image of the subsurface.

In the single scattering model all scattered waves
are assumed to have been scattered once on their way
from the source to the receiver, this is usually called
the first Born approximation. The application of this
approximation to coda waves is valid for weakly scat-
tering media; this means that the mean free path of the
waves between the scatterers is greater than the path
length. The Born approximation has been used in the-
oretical studies of the apparent attenuation of a scat-
tering medium (Chernov, 1960; Wu, 1982) and in the
analysis of the decay of the coda envelope for micro-
earthquakes (Aki & Chouet, 1975; Sato, 1977). Kop-
nichev (1977) calculated the time dependence of the en-
ergy of the seismogram’s coda by applying the Born
approximation to scattering theory.

Here we consider the time-lapse variation of the
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Figure 2. Left: Velocity field with random velocity fluctuations. Right: Autocorrelation of the velocity fluctuations.

unperturbed and perturbed paths that arrive at the re-
ceiver at time ¢.

When we introduce a small perturbation of the
propagation slowness, the effect of this perturbation on
the geometrical spreading and the scattering strength
can be ignored, and the dominant effect on the wave-
form arises from the change in the traveltime of the wave
that travels along each path:

up(t) =Y Ap(t—p), @)

where 7p is the traveltime perturbation for the prop-
agation along trajectory P due to the slowness per-
turbation. Snieder (2002) characterized the change in
the wavefield using the time-windowed cross-correlation
function, defined as
t+tw
ol e = [ w4, 0
t—tw
where t denotes the center of a time window of length
2tw, and t, the lag time for the correlation. When Egs.
(1) and (2) are inserted into Eq. (3), double sums ) _ ., ,,
appear. We assume that in these double sums, the cross
terms related to different paths (P # P') are incoher-
ent and average out to zero when the mean of the source
signal vanishes. The contribution of the cross-terms is
estimated by Snieder (2004). A dimensionless measure
of the change of the wavefield is given by the time-
windowed correlation coefficient, which is given by
ttty

R(t’tw)(tS) = Lt 1/2
( Hrtw oz @de [T u%(t')dt')

e (t )up(t' + ts)dt’

. (4)
t—tw t—tw

For time shifts ¢, much smaller than the dominant
period T of the wave, a second order Taylor expansion
of the Ap(t' +t, — 7p) in 7p gives (Snieder, 2002)

1

RO () =1 - 20%((r = t)) (b t), )

where @ is the dominant frequency of the wave. In this

expression {...)(t, tw) denotes the average over all trajec-
tories that arrive in the time window (¢ —tw, t+%w) with
a weight factor that is given by the mean intensity of the
waves on the time window (Snieder, 2002). Thus, aver-
ages are taken with a weight factor that is given by the
intensity of each singly-scattered wave. This means that
in this work, the average traveltime change (7(f,tv)) is
given by an average of the traveltime change of individ-
ual waves with different paths P arriving on the time
window (¢ — ty,t + tw), i.e.

Yo p wp(t,tw)Te(t, tw)
ZP wP(t) t’w) ’

where the weighting factor wp(t,tw) is given by the
mean intensity for the singly scattered waves arriving
on the time window (¢ — ty,t + ty). Our task is to find
an expression for intensity of each path P in the single
scattering regime and substitute that into Eq. (6), and
to relate 7p to the time-lapse change in the slowness of
the medium.

(r(t,tw)) = (6)

3 SINGLY-SCATTERED WAVES

A seismic wave propagating in a spatially heterogeneous
medium is treated as a source pulse which remains unal-
tered in wave shape despite interactions with the hetero-
geneities plus scattered waves generated by the source
pulse as it encounters heterogeneities in the medium.
This is the basis of the single scattering model.

In our numerical implementation of this single scat-
tering model we assume that the velocity field is a statis-
tically homogeneous quasi-random medium where small
scale velocity fluctuations with Gaussian autocorrela-
tion function are added to a constant background ve-
locity as pictured on Figure 2. The scale of the velocity
fluctuations is given by the correlation length a of the
velocity fluctuations. The relative magnitude of the ve-
locity fluctuations with respect to the mean is given by
the standard deviation o of the fluctuations with re-




Time-lapse traveltime change of singly-scattered acoustic waves 201

1.06, T T T T T T T

> 1H--}44------ -

0.961

. L X (m)
0 500 1000 1500 2000 2500 3000 3500 4000

0.94

Figure 4. Plot of the relative fluctuations of the velocity field n(z) along direction x.

4.1 Single Scattering Intensity

Sato (1977) derived the space-time dependence of the energy density of scattered waves in 3D assuming single
isotropic scattering due to uniformly distributed scatterers. His model explains how scattered energy is homogeneously
distributed as lapse time increases. In this approach, the scattered field is assumed to be linearly proportional to the
perturbation in the constitutive parameters (in our case, the acoustic velocity). We use in this study this approach
to describe the time-space evolution of the intensity of the scattered waves.

We derive the expression for the time-space dependent intensity for an isotropic source in a statistically homoge-
neous random medium in the single scattering regime. This gives the intensity Ip(t) of single scattering waves with
traveltime ¢ and path P. The assumption here is that waves with different paths P (different scatterer location on the
single-scattering ellipse) and the same traveltime may have different intensity Ir(£). The derivation for scalar waves
is shown in two dimensions (2D). Suppose that the wave velocity v(x) can be represented as a perturbation from a
constant background velocity vo (see Figure 4) such that

v(x) = vo (1 + n(x)) . (8)

For the present discussion, n(x) is assumed to be small (n(x) < 1) so that
o1
v2(x) ~ wo?

In the last equation we have retained only the first order term of an expansion about powers of n(x), this is consistent
with the Born approximation. The Helmholtz equation is given by

(1 - 2n(x)). 9)

Viu+ w_2[1 —2n(x)ju=0 (10)
vo? ’

The solution of the Helmholtz equation in the Born approximation is, in the frequency domain, given by (Bleistein
et al., 2001)

2
(g, Xe,0) = (g, Xe,) + 22 ] () o, Xe,0) Golxg, %) dA(X), a1
0" Ja

where wuo(Xg, Xs) is the incident or unperturbed wavefield generated at source location x, . The term Go(xg,x)
represents the free space Green’s function that satisfies the Helmholtz equation for the homogeneous medium with
velocity vo:

2, W
[V + v—o-z-] Go(xg, x,w) = §(xg — x). (12)

The free space Green’s function in two dimension Go(xg,x,w) is
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slowness perturbation

|

Figure 5. Geometry of a single scattering path P and a localized slowness perturbation ds(x): ls is the path from the source
to the edge of the ellipse and I, is the path from the edge of the ellipse to the receiver.

(n(x1) n(x2)) = (n*)é(x1 — x2). (26)
Inserting this into Eq. (25) we obtain
_ 1 [ (%) Ts +7g
(I(x,,xg,t)) = 4uo? . TeTg wWit- Yo dA(x), (27)
where
W(t_rs+'l‘g)=[52 (t_rs+rg)+SH2(t_rg+rg)]’ (28)
Vo Vo Vo

and where C is a constant. In the high frequency approximation (point source) we approximate this function as

W(t_m)ﬂ(t_m), (20)
) Vo

and the mean intensity becomes

TsTg

(I(xe,xg )y = C [ {72 6<t - "““—0’"9) dA(x). (30)
A Vi

where C is a constant. Eq. (30) represents the total average intensity at receiver xs due to an impulse generated at
the source location xs and transmitted through the scattering medium. Let us look just at the contribution to the
total intensity of an area element at location x. The contribution to the total intensity of the wavefield will be

2
(Al (x4, xg, 1)) = ¢S 6<t _ et ’"9) dA(x). (31)
TsTyq Vo
Eq. (31) is the contribution to the total intensity from an area element dA located at point x. But this can
also be interpreted as the intensity of the singly-scattered waves with paths P visiting location x. In other words,
(dI(xs,%g,t)) represents the weight factor or intensity of the paths wp(x,t) that enters Eq. (7). Since the constant
C cancels out in Eq. (7), we have that the weight factor for the ensemble averaging over scattering paths is

w(x,t) = (n:# J(t - M—“’) (32)

Vo

4.2 Integral Representation for the Mean Traveltime Change in the Single Scattering regime

We now turn our attention to the change that a wave with path P undergoes when we introduce a small change
in the propagation velocity. Suppose that the background slowness in a certain region is perturbed by an amount
ds(x) small enough that the ray is essentially unchanged (see Figure 5). The traveltime of the scattered wave with
trajectory P is given by

tp=/ ldl+/ Ly_retrs (33)
Is Vo lg Vo Vo
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Figure 7. Logarithm of K as function of location for A = 2000m and ¢ = 1s.

where h is the half-distance between source and receiver and we have made use of the geometrical variables specified
in Figure A4, explained in Appendix A. Eq. (38) accounts for the average change in the traveltime of singly-scattered
waves due to a localized slowness perturbation ds(x). This expression gives the linearized relationship between the
mean traveltime change and the localized slowness perturbation ds(x), i.e.

(r(t)) = /AK(x, t) ds(x) dA(x), (39)

where K (x,t) is the integration kernel that relates the mean traveltime change at traveltime ¢ with a localized slowness
perturbation at x for a given source and receiver configuration, and is given by

K t)= ——2  |Ta Tof (40)
omhy /(L) 17 7
wh/ (55) -

The kernel K(x,t) is the sensitivity function of the mean traveltime change for the slowness perturbation. It has
dimensions of 1/distance. Figure 7 shows a plot of the logarithm of K as a function of location for half source-receiver
distance h = 2000m and propagation time ¢t = 1s. The distribution is peaked at the source and receiver location, and
decreases rapidly from both locations until it vanishes outside the single scattering ellipse described by the traveltime
t. In the next section we use Eq. (38) to calculate numerically the mean traveltime change for a localized perturbation
for different source and receiver geometries.
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Figure 11. Theoretical versus measured mean traveltime
change for receiver R1 located 500 m from the source. The
window length in the cross-correlation is 500 ms (approxi-
mately 12 periods).
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Figure 13. Theoretical versus measured mean traveltime
change for receiver R3 located 4500 m away from the source.
The window length in the cross-correlation is 500 ms (ap-
proximately 12 periods).
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Figure 12. Theoretical versus measured mean traveltime
change for receiver R2 located 5500 m away from the source.
The window length in the cross-correlation is 500 ms (ap-
proximately 12 periods).

comparison is shown in Figures 11, 12, 13 and 14. The
theoretical mean traveltime change (7(t)) was calcu-
lated using Eq.(38) for a range of traveltimes t. The
mean traveltime of the synthetic seismograms was ob-
tained using the time-windowed cross-correlation tech-
nique using a window length of 500 ms (approximately
12 periods at the dominant frequency).

Figure 11 shows the mean traveltime change for
receiver R1 located 500 m away from the source and
ahead of the localized slowness perturbation. Notice
that the mean traveltime change starts increasing and
then reaches a maximum. For receiver R2 the mean
traveltime change decreases from a maximum at ¢t =
1.0s. We also show the mean traveltime change for re-
ceivers R3 and R4 in Figures 13 and 14, respectively.

theory
e _synthetics |

1 L 1

1 1.5 2 25

3 1(9)

Figure 14. Theoretical versus measured mean traveltime
change for receiver R4 located 4500 m away from the source.
The window length in the cross-correlation is 500 ms (ap-
proximately 12 periods).

Despite fluctuations about the predicted mean travel-
time change (because of the randomness of the model),
there is a good agreement between the theoretical and
the measured mean traveltime change (7(t)) for all cases
shown here.

For different source and receiver pairs we obtain dif-
ferent values of the mean traveltime change as a func-
tion of time. The difference in the traveltime change
for different source and receiver pairs can be exploited
in a tomographic scheme to invert the mean traveltime
change information to estimate the location and magni-
tude of the slowness perturbation in a linearized inverse
formulation using Eq. (39).

We compare the mean traveltime change calculated
for the single scattering regime with the mean traveltime
change calculated for the multiple scattering regime for
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the forward problem and show some examples. Future
work will involve obtaining the shape and magnitude of
the slowness perturbation from the measured traveltime
changes for different source-receiver pairs.

We obtained the expression for the mean travel-
time change for 2D acoustic waves. The extension to
3D acoustic waves (not shown here) is left as future
work. For-3D we will have to consider ellipsoid surfaces
with the foci at the source and receiver location. Elas-
tic waves present a more complicated problem, since we
have to take into account conversions between different
modes.

In developing the expression of the mean traveltime
change (7(t)) as an average over different paths we as-
sume that the paths before and after the perturbation
are the same. Should this not be the case, the weight
of each scattering path losses significance. This imposes
some constraints on the magnitude of the slowness per-
turbations that we can solve using our approximation,
since the perturbations have to be small enough in or-
der that the paths are preserved after the perturbation.
A perturbation that is too weak, tough, will make the
traveltime changes to fall under the limit of detectabil-
ity. Future work needs to specify the ranges in the values
of the magnitude of the slowness or velocity perturba-
tion for our theory to be valid and/or useful.

The most important result of this work is that
we are able to predict the traveltime change of singly-
scattered waves in a statistical way without any knowl-
edge of the scattering properties of the medium (no dif-
fusion constant, mean free path or standard deviation
of the velocity fluctuations o value is required for the
calculation). As long as we can describe the wavefield by
means of the single scattering approximation, the per-
turbation of the traveltime of the scattered waves de-
pends linearly on the localized slowness perturbation.
This technique has the potential of imaging time-lapse
changes of the scattering medium. This technique can
be used to detect temporal variations in the slowness
of the medium for a random medium characterized by
homogeneously distributed weak scatterers.
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Since the integrand does not depend on 6 we obtain
x [® 1 vot

= [ de——==$ (e - i) :

h 1 Ve -1 2h

Using the sifting property of the delta function, and since &€ = vot/2h lies within the interval of integration, we obtain

(A8)

s 1

Ip = ET, (A9)
(3) -

and we can write Eq. (A1) as follows

1 [ teo e 1 vot 1 vot
(r®) = 7 /0 6 /1 757——-1[ /l . -6 (e— —29h—) Ss(x) di(x) + /lg(x) 56 (e— %) 8s(x) dl(x)]. (A10)

For convenience, we can write the expression of the mean traveltime change as the sum of the mean traveltime
change from the source location xs to the edge of the ellipse plus the mean traveltime change from the edge of the
ellipse to the receiver location xg. Thus,

(r(t)) = L + I, (A11)
where I, and I, are
1 [ to e 1 vot
L=— [ a8 g —5( ——) ds(x) di(x), A12
=1 /0 /1 =1 )y, 0 20 &= o5 ) 95(x) dix) (A12)
1 [ to e 1 vot
I=— | d8 g% —6( - —) 8s(x) di(x), A13
=1 /0 /1 =1 )i, 2 €= o) Is(x) di(x) (A13)

Let us first analyze the contribution to the mean traveltime change of the paths that start at the source and
finish at the edge of the ellipse. Substituting the value of Ip on Eq. (A12) and using again the shifting property of
the delta function, we obtain

1 27
I =~ /0 de /l " ds(x) di(x). (A14)

Eq. (A14) states that the mean traveltime change of paths starting at the source and ending at the edge of the
ellipse is an average of the traveltime change of the different paths I, for each value of 6. This looks simple enough,
but it is not yet useful, as we would like the expression for the mean traveltime change to take the form of an area
integral over the Cartesian coordinates x and y. The key is to realize that the combination of the f-integral and the
dl-integral sweeps over the whole interior of the single-scattering ellipse. Thus, we want to obtain the value of dfdl
as a function of dzdy. The question is, then, what is the scaling factor if rewrite Eq. (A14) as an integral over the
Cartesian coordinates = and y.

Let dl be an increment in length along the path I, from the source location to the edge of the ellipse and de be
an increment in length along the edge of the ellipse for an increment in angle df. Then,

dA = 2(dl x de) = = dl de sin(¢), e
Ts Ts

where ¢ is the angle between the unit vector n pointing along the direction of the path !, and and the vector e
parallel to the edge of the ellipse on the point of intersection, as described in Figure A2. The term s/r; corrects for
the fact that the surface area shrinks as we approach the source.

Let us compute the length element de along the edge of the ellipse. We get this by differentiating x and y in
elliptical coordinates with respect to angle 0, i.e.

de = \/dz? + dy?, (A16)

where

dz = —h ¢ sin(6) db, (A17)
and

dy = h \/€2 — 1 cos(6) db). (A18)
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Figure A4. Geometry used in the derivation of Eq. 38. Distances are shown in dashed lines: s is the distance from xs to x;
s is the distance from x5 to the scatterer on the single-scattering ellipse; g is the distance from xg to x and 7,4 is the distance
from xg to the other scatterer on the ellipse.

so that,

_ 1 —esin(0)
€= €2 — cos?(f) ( Ve? —1cos(6) ) (A23)

We now calculate the term sin(¢) from the magnitude of the cross-product between n and e. Thus,

e2—1

sin(¢) =nx e| = —— - A24
| | oo () (A24)
Using & = vot/2h we get
2t)2 _ 4
sin(¢) = ( 2: ) . (A25)
A/ (%’hi) — cos?(6)
Insert this with Eq. (A22) into Eq. (A18) and we obtain
—dedy = hE4 [ (P) -
dA = dody = h=- (2h) 1dld6. (A26)
From Eq. (A26) we can obtain dldf as a function of dA. Therefore,
dag="e—_ 94 (A27)
* /() -1

and we can substitute the integral over dl and df in Eq. (Al4) with an integral over area, where the area to be
integrated is the interior of the single-scattering ellipse at time ¢, i.e.

el
=——
2rhy/ (2)* — 174

By symmetry, the second integral I, that accounts for the mean traveltime changes of the paths going from the
edge of the ellipse to the receiver location x gives a similar contribution.

Taking the integral I, into account and using the symmetry of source and receiver location, we get, using the
notation of pictured in Fig. A4 the expression for the mean traveltime change for waves in the single-scattering regime
with traveltime ¢

() = — / [% + ng] (x) 85(x) dA(x). (A29)
A

2mhy/ (320,%)2 -1

’f(x) 8s(x) dA(x). (A28)
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ABSTRACT

The Green’s function of waves that propagate between two receivers can be
found by cross-correlating multiply-scattered waves recorded at these receivers.
This technique obviates the need for a source at one of these locations, and is
therefore called passive imaging. This principle has been explained by assuming
that the normal modes of the system are uncorrelated and that all carry the
same amount of energy (equipartitioning). Here I present an alternative deriva-
tion of passive imaging of the ballistic wave that is not based on normal modes.
The derivation is valid for scalar waves in three dimensions, and for elastic sur-
face waves. Passive imaging of the ballistic wave is based on the destructive
interference of waves radiated from scatterers away from the receiver line, and
the constructive interference of waves radiated from secondary sources near the
receiver line. The derivation presented here shows that the global requirement
of the equipartitioning of normal modes can be relaxed to the local requirement
that the scattered waves propagate on average isotropically near the receivers.

Key words: passive imaging, daylight imaging, correlation

1 INTRODUCTION

Passive imaging is a technique wherein waves recorded
at two receiver locations are correlated to give the
Green’s function that describes the direct wave prop-
agation between these receivers. The tail of multiply
scattered waves is called the coda, after the Latin word
for tail. Coda waves are effective for monitoring tempo-
ral changes in media (Snieder et al., 2002; Cowan et al.,
2002). Using coda waves to determine the Green’s func-
tion is useful because it provides information on wave
propagation between two points in space without the
need for a source at either of these two points. The
Green’s function thus obtained can be used to form an
image of the medium. Passive imaging has been used
in seismic exploration (Louie, 2001; Wapenaar et al.,
2002), helioseismology (Rickett and Claerbout, 2000),
and ultrasonics with either an active source (Lobkis
and Weaver, 2001; Derode et al., 2003a; Malcolm et al.,
2003) or thermal noise that excites the coda (Weaver
and Lobkis, 2001; Weaver and Lobkis, 2003). Numeri-

cal experiments have shown that passive imaging can
be used both in closed and in open systems (Roux and
Fink, 2003; Derode et al., 2003b).

Campillo and Paul (2003) recently used passive
imaging in crustal seismology by retrieving the surface
wave Green’s function between seismological stations
within Mexico using coda waves generated by earth-
quakes along the west coast of Mexico. The theoreti-
cal explanation offered in their work is based on the
assumption of equipartitioning of the Earth’s modes
(Lobkis and Weaver, 2001). These modes can either be
the normal modes of the Earth, or the surface wave
modes that describe the guided waves that propagate
along the Earth’s surface.

Suppose one invokes the Earth’s normal modes. In
the study of Campillo and Paul (2003), records of the
ground motion with a duration of about 600 sec were
used. It takes about 1100 sec for a P-wave to propagate
to the other side of the earth (Stein and Wysession,
2003); for an S-wave it takes even longer, so, in their
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Marion, 1991), and time reversed imaging (Derode et
al., 1999).

The double sum ), _, in expression (3) can be split
into a sum over diagonal terms }°,_, andasum 3 __
over cross terms. I show in the appendix that for a ran-
dom medium, the ensemble average of the cross-terms
vanishes provided the DC-component of the S,(t) is
equal to zero. In a single realization of the medium,
however, the cross-terms are nonzero. I also show in the
appendix that for a single source event (e.g. an earth-
quake) the ratio of the cross terms to the diagonal terms
is smaller than 1/2A/T. When an average over Ng,c
source events is carried out, this ratio is bounded by
v/2A/Ng.T. This means that by averaging over time,
and possibly over different source events, the sum of
the cross-terms can be made arbitrarily small by in-
creasing the time interval T' and the number of source
events Nyrc. In the following I refer to this type of av-
eraging as time/event averaging. Note that in several
studies of passive imaging, time/event averaging as de-
scribed here is the only type of averaging that is applied
(Rickett and Claerbout, 2000; Lobkis and Weaver, 2001;
Derode et al., 2003a; Weaver and Lobkis, 2001; Weaver
and Lobkis, 2003; Campillo and Paul, 2003).

In the following I assume that sufficient time/event
averaging is carried out so that the cross terms in the
sum (3) can be ignored. With the definition (4) this
reduces expression (3) to

C(r) = Zc,, (r+ )/r“’ P 6)

Since the Fourier transform of the cross correlation is
equal to the power spectrum , Eq. (5) is given in the
frequency domain by

s) _

iw(rs® — i) /e
0w = YIS @)’ - ull e ) o

The power spectrum |S;(w)|® does not depend on the
phase fluctuations of the scattered waves, but is does
depend on fluctuations in the amplitude. When the vari-
ations in the power spectrum are uncorrelated with the

phase exp (iw(rga) — /c), then

- exp (w(r{® —r{*) /e
Cw) = IS@FY ( o ), (1)

with
IS@P = &SIl ®)

where N is the number of scatterers.

When there are many scatterers per wavelength,
the summation over scatterers ) (---) can be replaced
by a volume integration [(---)ndV that is weighted by
the scatterer density n that is deﬁned as the number of

r

receiver 1 receiver 2
at (0,0,0) at (R,0,0)

Figure 2. Definition of the geometric variables for the waves
that travel from a scatterer at location r to two receivers. The
region of constructive interference is indicated by the shaded
regions.

scatterers per unit volume. In this approximation equa-
tion (7) is given by

C(w) = |SW)I / ex"(“"(” “)/c)ndzdydz, )

with the distances r; and r2 deﬁned in Fig. 2.

The integration over the transverse coordinates x
and y can be evaluated with the stationary phase ap-
proximation (Bender and Orszag, 1978; Bleistein, 1984).
This technique leaves only the contribution of the points
near the receiver line y = z = 0, for which the integrand
is not oscillatory. In this approximation

0o 1"*=(|R—~"¢|--|='=|)
—nd:c. 10
o/ B e 0

For scatterers to the left of the receivers (z < 0)
the integrand is given by exp(ikR)/R, for scatterers
to the right of the receivers (z > R) the integrand
is equal to exp(—ikR)/R, and for scatterers between
the receivers (0 < < R) the integrand is given by
exp(ik (R — 2z))/ |R — 2z|. Because the latter integrand
is oscillatory, the region 0 < z < R gives a sub-dominant
contribution to the integral of Eq. (10). Ignoring this
contribution gives

Cw)= 8n?SW)I* (%)

cikR e—ikR oo
( o oz — S [ ndz) .
(11)

The term —exp(ikR)/4mR is the Green’s func-
tion that accounts for the waves that propagate be-
tween the receivers; this term comes from the integra-
tion over z < 0. The second term —exp(—ikR)/4nR,
which comes from the integration over ¢ > R, is the ad-
vanced Green’s function. The retarded Green’s function
comes from the waves that propagate from receiver 1 to
receiver 2 and correlate for a positive lag time 7 > 0,
as shown in the top panel of Fig. 3. The presence of the
advanced Green’s function is due to the waves that prop-
agate from receiver 2 to receiver 1; these waves correlate
for a negative lag time 7 < 0, as shown in the bottom

C(w) = 2mIS (W) ——
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Figure 5. Definition of the unit vectors A and @ that define
the radial and transverse polarizations, respectively.

give:
Clw)= 8r°|S(w)|? (2L

w

47R 4rR

x( ¢ikRo—R/2L  ,—ikR,—R/2L

(12)
The z-integrals contribute a factor L to the correla-
tion. The last two terms give the retarded and advanced
Green’s functions for the ballistic wave that propagates
between the receivers.

The issue of the medium of propagation is also of
relevance for the derivation of passive imaging based on
normal modes (Lobkis and Weaver, 2001). That deriva-
tion has an open question: the normal modes of which
system should be used? The normal modes of the true
system, which includes the scatterers, are by definition
uncoupled; equipartitioning among these modes there-
fore will not occur. The normal modes of a homoge-
neous system are coupled by the scatterers, which may
result in equipartitioning of energy among the modes of
the homogeneous model. However, this raises the ques-
tion which homogeneous system to use? It is not clear
from the derivation of Lobkis and Weaver (2001) from
which system one obtains the Green’s function. If this
would be the Green’s function of a medium that takes
the scattering losses of the ballistic wave into account,
then that medium is attenuating. In such a medium
the normal modes are not orthogonal and the theory of
Lobkis and Weaver (2001) must be generalized by using
adjoint modes (Park and Gilbert, 1986).

4 SURFACE WAVES IN AN ELASTIC
MEDIUM

Campillo and Paul (2003) obtained the full surface wave
Green’s tensor by correlating the direct product of the
three components of the two receivers. In this section,
I show that the treatment of the previous sections can
be generalized to surface waves propagating in a lay-
ered elastic 3D medium with embedded scatterers. The
surface-wave Green’s tensor of a layered medium whose

properties depend on the depth z only can be written
in the frequency domain as

Gij (r’ ro) = Z GZ’L(ra ro) . (13)

The total surface wave Green’s tensor is expressed as
a sum over surface-wave modes m that include both
Rayleigh waves and Love waves. The surface wave
Green’s tensor of mode m in the far field is given by
Snieder (1986a), and Snieder (2002)

gilkm R+ /4)

GZ‘ (l‘, 1‘0) = p:n(z’ So)p;'n*(zﬂa 80) 7‘_—- )
A / Eka

where R = 1/(z — 0)2 + (y — yo)? is the distance be-
tween the points measured in the horizontal plane, and
km is the horizontal wave-number of mode m. The po-
larization vectors p™(z,¢) depend on the depth z and
the azimuth ¢ of the path between points ro and r. The
orientation of the polarization vectors can be expressed
into the unit vectors A and @ that point in the radial
and transverse direction, respectively, as defined in Fig.
5. For Love waves the polarization vector is related to
the Love wave eigenfunction I7*(z) (Snieder, 1986a; Aki
and Richards, 2002) by

(14)

P"(2,0) =" (2)p, (15)
while for Rayleigh waves
P"(2,9) = " (2)A +irf' ()2, (16)

with r{"(2) and r3'(z) the radial- and vertical-
component modal functions of the Rayleigh waves
(Snieder, 1986a; Aki and Richards, 2002). Following
ref. Snieder (1986a), the surface-wave modes are as-
sumed to be normalized according to the following con-
vention

demUnm [ p (1) dz =
(17)
=demUn [5°p (7)) + (7)) dz =1,

with ¢, and Uy, are the phase velocity and group veloc-
ity of mode m, respectively, and p(z) the mass density.

When the two receivers record the three compo-
nents of the ground motion, one can form the correlation
tensor of all combinations of components:

Cii(r) = / wai(t + Tyuy; (H)dt | (18)

where ug;, for example, is the i-component of the dis-
placement recorded at receiver 2. The recorded displace-
ment can be written as a sum over the surface waves
radiated by the different scatterers s. By analogy with
Eq. (1) the displacement of the two receivers in the fre-
quency domain is given by a double sum over scatterers
s and surface wave modes m
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where the dagger denotes the Hermitian conjugate. This
expression contains infinite integrals. Incorporating the
attenuative properties of the ballistic surface wave, as
shown in section 3, gives

Cij(w) = wz |S™ (w)|2ncmLm

{Gf?(f‘%“) + (Gg(?"’z))f} . (25)

w w

where L,, is attenuation length of surface wave
mode m, and where the Green’s function of each
mode is understood to contain an attenuation term
exp(—R/2Lm).

This expression is similar to the corresponding re-
sult (12) for scalar waves in three dimensions. The cor-
relation gives the superposition of the Green’s function
of the ballistic wave that propagates from receiver 1 to
receiver 2 (the first term), and the ballistic wave Green’s
function that propagates in the opposite direction (the
last term). Passive imaging with surface waves thus pro-
vides the superposition of the retarded and advanced
surface wave Green’s functions of the ballistic wave.

5 CONCLUSION

As shown in Egs. (11) and (25), the ballistic wave
Green’s function can be obtained by a cross-correlation
of the waveforms at two receivers. Two steps must be
taken to extract this Green’s function from the correla-
tion. First, the correlation in the frequency domain must
be multiplied by iw/|S(w)|?. The multiplication with iw
corresponds in the time domain to a differentiation that
undoes the integration used in the cross-correlation.
The division by the power spectrum |S(w)|? corrects
for frequency-dependent factors in the scattering coeffi-
cients, the source spectrum, and the receiver response.
For the case of Eq. (11) for scalar waves in 3D, the power
spectrum can be obtained from the waves recorded at
the receivers. For the corresponding expression (25) for
surface waves in an elastic medium, each mode must
be corrected for the power spectrum of that mode. The
scattering coefficients for surface wave modes strongly
depend on the depth of the scatterers (Snieder, 1986a),
and on topography (Snieder, 1986b). For this reason
the average power spectrum |S™(w)|? of the scattered
surface wave mode may depend strongly on the mode
number m. It is not clear how |S™(w)|? can be extracted
from the recorded waves. In applications in crustal seis-
mology, the fundamental mode Love and Rayleigh waves
usually dominate. The average power in the fundamen-
tal Rayleigh wave can be estimated from the vertical
component. The power of the horizontal components
can then be used to infer the power in the fundamental
Love wave. Without correcting for the power spectrum,
the cross-correlation may not give the correct frequency
dependence of the Green’s function.

-, image of receiver 1

reflecting surface

\ receiver 2

receiver 1

Figure 6. The wave path of a reflected wave. The receivers
are shown by solid circles. The dark gray areas indicate the
location of scatterers that give a stationary contribution to
the integration over scatterers for the reflected wave. The
open circle denotes the image of receiver 1 upon reflection in
the free surface, and the light gray area is the image of the
scatterers that contribute to the stationary phase solution
for the reflected wave.

The second step that must be taken is due to the
fact that the cross-correlation of the waves recorded at
two receivers gives the superposition of the retarded and
the advanced ballistic wave Green’s functions. These
two contributions can be unraveled in the time domain
by restricting the signal to positive and negative time
windows respectively (Lobkis and Weaver, 2001).

Physically, the derivation shown here implies that
in general the scattered waves recorded at the two re-
ceivers are uncorrelated, except for the waves radiated
from scatterers that are located near the receiver line.
Passive imaging of the ballistic wave thus is based on
constructive interference solely of those scattered waves
that propagate along the receiver line.

Ultrasound experiments with a finite aluminum
sample show that the ballistic wave as well as waves
that are reflected from boundaries are reconstructed
from passive imaging (Lobkis and Weaver, 2001; Weaver
and Lobkis, 2001; Weaver and Lobkis, 2003). The the-
ory presented here does not account for these reflected
waves. When a wave reflects off a plane boundary, as
shown in Fig. 6, the scattering paths from scatterers lo-
cated in the dark gray areas interfere constructively. The
theory presented here can be applied to this problem by
invoking an image receiver and image scatterers as in-
dicated by the open circle and light-gray area in Fig. 6.
For a non-planar boundary or an inhomogeneous refer-
ence medium one needs to determine other stationary
phase contributions to the integral over the scatterers.
These contributions depend on the geometry of scat-
tering path, and are not accounted for by the theory
presented here.

The equilibration of normal modes (Lobkis and
Weaver, 2001) provides a sufficient condition for con-
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the autocorrelation Cs(t) is indicated by A. Each of the t'-integrals in (A8) then gives a contribution that is smaller
than C2,,,A. The remaining t-integral gives a contribution T. This implies that

(CE(7)) < 2N*Cha.TA . (A9)

In order to assess the importance of the cross terms, I compare this with the mean of the diagonal term. This
mean is given by

o) =3 / “(s2wya=Y" / " cuoydt. (A10)
5 Jo 5 Jo
Using the same estimates that led to (A9) then gives
(Cp(0)) =) Cs(0)T = NCrmasT , (A11)

because the autocorrelation attains its maximum for a zero time lag. With the estimate (A9) this gives the following
ratio of the standard deviation of the cross terms to the diagonal terms:

(C2()'”” _ 28
__(CD(O)) < T - (A12)

Note that this ratio does not depend on the number of scatterers. When in addition to an averaging over time, Ngrc
source events are used, and when the signals emitted by the scatterers for different source events are uncorrelated,
the standard deviation of the cross terms increases with a factor v/ Ny, while the diagonal terms are proportional to
Nsre, S0 that

(CE@)'” _ [2a

(Cp(0)) = V NgpeT * (A13)
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ABSTRACT

Multiply scattered waves are a new tool for monitoring changes in the earth’s
subsurface. In this study we use the air pressure and displacement recorded at
the Arenal Volcano for passive monitoring. The pressure pulses emitted by the
volcano are associated with a complex displacement signal of overlapping coda
waves. By deconvolving the ground motion with the air pressure for different
time intervals we obtain a highly repeatable displacement signal that has the
character of diffusive wave propagation. This deconvolved displacement signal
slowly changes with the time interval analyzed in the employed data. This
change can be explained by a shift in the point of excitation of the elastic waves
over a distance of about 15 meters.

Key words: volcano monitoring, natural hazards, deconvolution

1 INTRODUCTION

The interior of volcanoes is highly heterogenous, lead-
ing to strong scattering of seismic waves. Wegler and
Liihr (2001) showed that seismic waves generated by an
airgun at Merapi are strongly scattered; the recorded
coda waves have the signature of diffuse waves whose
propagation is more like Brownian motion than ballis-
tic propagation along rays. They inferred that the mean
free path of the S-waves is only 100 m, much less than
the size of the volcano.

Multiply scattered waves are sensitive to small
changes in a medium since their propagation path is
long in a limited region of space. This property forms
the basis of Coda Wave Interferometry (Snieder, Grét,
Douma and Scales, 2002; Snieder, 2002). In this time-
lapse technique, the change in multiply scattered waves
for a given source-receiver pair is used to make infer-
ences about the change in the medium or in the source
position. The change in the coda waves is measured by
computing the time-shifted cross-correlation before and
after the change.

Coda wave interferometry requires a repeatable
source. In active source experiments, such as the study
of Wegler, Liihr and Ratdomopurbo (1999), who used an
airgun in a water basin, this condition is satisfied. When
passive sources are used, one needs to establish indepen-

dently to what extent the source changes with time.
Earthquake multiplets have been used for time-lapse
measurements of the Earth’s structure (Ratdomopurbo
and Poupinet, 1995; Baisch and Bokelmann, 2001; Vi-
dale and Li, 2003; Niu, Silver, Nadeau and McEvilly,
2003). In this work we study the feasibility of using
the air pressure and displacement (Hagerty, Schwartz,
Garcés and Protti, 2000) recorded on Arenal Volcano,
Costa Rica, in order to monitor temporal changes in the
structure of the volcano or the excitation mechanism of
these waves.

2 THE EMPLOYED DATA

Arenal Volcano is a young (approximately 3,000 years
old) stratovolcano located in northern Costa Rica. It
was considered extinct prior to a violent Plinian erup-
tion in 1968, and, since 1984 it has primarily exhibited
strombolian activity characterized by small but frequent
summit explosions. A broadband seismic and geodetic
network was installed around the flanks of Arenal in
1995, and in 1997 a five-element linear array of seis-
mometers and microphones was temporarily deployed
on the western flank to record the seismic-acoustic wave-
field (Hagerty, Schwartz, Garcés and Protti, 2000). In
this paper we examine an approximately 16-min period
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Figure 3. Enlargement of the deconvolved waveforms com-
puted for ages 1 and 2.

For ¢ < —5 s these deconvolved waveforms consist
of uncorrelated random noise with a noise level that is
significant compared to the coherent part of the wave
field around ¢ = 0 s. This is not surprising; the pressure
signal in the top trace of figure 1 has a significant noise
contamination between the pressure pulses. That noise
contamination may be aggravated by any noise that is
hidden on the displacement signal in the bottom trace
of figure 1.

For times between —4 s and around 6 s the decon-
volved waveforms are highly correlated. The only ex-
ception is the deconvolved signal for age 6, perhaps be-
cause of the lower signal level at that age. Because the
deconvolved waves computed for the different ages are
coherent after about —4 s, we judge that the impulse
response in the deconvolved waves starts around that
time. This does not mean, however, that the response
of Arenal is acausal. The time difference between the
arrival time of the pressure signal and the displacement
is about 5 s. This agrees with the observed emergence of
the signal in the deconvolved waveforms around ¢t = —4
S.

The deconvolved waveforms have the character of
diffusive waves; the coda slowly builds to a maximum
at around ¢ = 0 s, and then decays again. Superposed
on these coda waves are distinct arrivals around t = —3
s and t = 0 s. The wave at ¢ = 0 s may be due to the
coupling of the air wave either to the ground motion
or directly to the seismometer. Since the microphone
and the seismometer are at the same location this wave
arrives at t = 0 s. The waves arriving between —4 s and 6
s have a general character similar to the diffusive waves
that have been reported for other volcanoes (Wegler and
Lihr, 2001; Ratdomopurbo and Poupinet, 1995).

The deconvolved waveforms are most similar for ad-
jacent ages. The early part of the deconvolved wave-
forms for the ages 1 and 2, shown in figure 3, exhibit
large similarity of these waveforms. As can be seen in

figure 2, this similarity decreases when the deconvolved
wave from age 1 is compared with the deconvolved waves
from progressively later ages.

4 THE CORRELATION OF THE
DECONVOLVED SIGNALS

In this section we outline the theory of coda wave in-
terferometry (Snieder, Grét, Douma and Scales, 2002;
Snieder, 2002). In this technique the time-shifted corre-
lation coefficient of two signals u1(t) and us2(t) is used
to quantify the degree of similarity of the signals. This
coefficient is defined as
t+Tu us(t + 7)dt’
R(r) = 1(t)usz( ) Y
VI W@ [T ()

The integration is over a time interval with duration 2T
and center time t. By computing this correlation coeffi-
cient for windows with a different center time ¢ one can
infer the velocity change of the medium between the
recording of the waveforms u;(t) and u2(t). Coda wave
interferometry is based on path summation, wherein
the signal is decomposed into a sum over all scatter-
ing paths, and all possible mode conversions (Snieder,
1999; Snieder, 2002). When the medium changes, the
travel time of the wave along each path changes. The
cross-correlation reaches its maximum at a time that is
given by the mean travel time change over all paths.
This mean is weighted by the energy of each arrival in
the path summation. In the absence of noise, the value
Rmax of the correlation coefficient at its maximum is
re2la,ted to the variance of the travel time perturbation,
Ot by

Rpyax =1— %‘*70'? ) (3)

where the variance is computed with the energy of each
arrival as weight for each arrival. The frequency w? is
given by
—_ H'T o W (t)dt .
w ft+T 2(t’)dt’ : 4)

We computed the time-shifted cross-correlation be-
tween the deconvolved waves in figure 1 for different
pairs of ages. The location of the maximum of the time-
shifted cross-correlation does not depart significantly
from the unshifted position 7 = 0. This is the case for
both the early part (—4 < t < 0 s) as well as for the
later part (0 < ¢ < 4 s) of the coda. This means that the
velocity of wave propagation did not change with age.

Visual inspection of figure 2 shows that the decon-
volved waveforms themselves do change with age. The
zero-lag cross-correlation computed for the time inter-
val —2.5 <t < 7.5 s of the deconvolved wave from age 1
with the deconvolved waves from the other ages is shown
in table 1. The cross-correlation generally decreases with




of table 1. The change in the source location, which is
of the order of 15 m between age 1 and the later ages,
should be taken with a grain of salt. The model of an
isotropic source is fairly arbitrary, and the value of the
P-velocity is not based on any measurement. A change
in the location of the source of the pressure pulses over
a distance of about 15 m over 1000 s is not unrealisti-
cally large when compared to the size of the conduits
and magma chambers in a volcano. This means that the
decorrelation of the deconvolved waveforms can readily
be explained by a change in the source location.

The averaged pressure pulses in figure 4 show a sec-
ondary phase (indicated by arrows) that moves to later
times with age. It is not clear how this secondary phase
is generated. It may be generated by a reflected wave or
by a resonance in the fluids or gasses that generate the
pressure pulses. A change in the position of the source
of the pressure pulses could change the excitation of the
resonating modes, which could result in a change of the
secondary phase in the source signal.

6 CONCLUSIONS

The deconvolution of the displacement with the pressure
for the employed six ages leads to highly reproducible
deconvolved waveforms. The deconvolution used here is
a simple process that can be carried out automatically in
real-time. This opens the possibility to conduct volcano
monitoring based on coda wave interferometry without
using an active source.

The deconvolved waveforms slowly change with
age. Assuming that this change is caused by a change
in the source position, and assuming that the source is
an isotropic point source, the changed waveforms can
be explained by a displacement in the source position
of about 15 m. Although his number is not particularly
accurate, its order of magnitude is small compared
to the size of the interior structure of the volcano. If
the employed interpretation is correct, then coda wave
interferometry can be used to infer small changes in
the location of the pressure pulses that are generated
at active volcanoes.
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ABSTRACT

Multiply scattered waves dominate the late part of the seismic coda. Small
changes in a medium, which would have no detectable influence on the first
arrivals, are amplified by the multiple scattering and may be seen readily in the
coda. We exploit this idea using Coda Wave Interferometry to monitor temporal
changes in the subsurface of the Mt. Erebus Volcano, Antarctica. Mt. Erebus is
one of the few volcanoes known to have a convecting lava lake. The convection
provides a repeating seismic source producing seismic energy that propagates
through the strongly scattering geology in the volcano. Over a time period of
two month, the first arrivals of the seismic waves are highly reproducible. Up
to one month this is also the case for the coda. After that however, the seismic
coda decorrelates rapidly. This indicates a rapid change in the subsurface of
the volcano, a change that could not be detected by means of single scattered
seismic waves.

Key words: velocity estimation, coda wave, multiple scattering, time-lapse,
volcano monitoring

Introduction

The coda of a waveform comnsists of that part of the
signal after the directly arriving phases (Aki, 1969;
Aki & Chouet, 1975). At late times the coda is dom-
inated by multiply scattered waves. Geophysical appli-
cations based on coda waves include earthquake pre-
diction (Aki, 1985; Sato, 1986), earthquake-magnitude
estimation (Lee et al., 1972), volcano monitoring (Aki
& Ferrazzini, 2000; Fehler et al., 1998) and monitoring
of temporal changes in the subsurface (Robinson, 1987;
Chouet, 1979; Revenaugh, 1995; Poupinet et al., 1984).
Laboratory applications include Diffusive Wave Spec-
troscopy (Cowan et al., 2002), reversed time imaging
(Fink, 1997), and medical imaging (Li et al., 1997).
Small changes in a medium, which would have no
detectable influence on the first arrivals, are amplified
by the multiple scattering and may be seen readily in
the coda. We have previously exploited ultrasonic coda
waves to study non-linear temperature dependence of
velocity in granite (Snieder et al., 2002). This non-
linearity is related to acoustic emissions during thermal

cracking (Fredrich & Wong, 1986). In contrast to other
methods which use multiply scattered energy, the phase
information of the coda is a central part of our analysis.
There are many other possible applications of this Coda
Wave Interferometry in geophysics, including dam mon-
itoring, time-lapse reservoir characterization, and rock
physics.

The subsurface in the regions of volcanoes is highly
inhomogeneous. Such highly scattering media are at-
tractive for the study of multiply scattering of seismic
waves (Wegler & Luehr, 2001). In this paper we show
the application of Coda Wave Interferometry for moni-
toring changes in the subsurface of Mt. Erebus, Antarc-
tica.

Mount Erebus, it’s Eruptions and the Seismic
Network

Mt. Erebus, Ross Island, Antarctica, is currently the
most active volcano in Antarctica. The summit of
Mt. Erebus contains a persistent convecting lava lake
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Figure 3. Five different events recorded at the broadband
seismometer station E1S. Event one occurred on Dec. 12th,
event two on Dec. 13th, event three on Dec. 14th and events
four and five on Dec. 15th. Note how well the waveforms are
reproducible over a time frame of days.
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Figure 4. The top of the figure shows the early part of event
one (red line) and event two (blue line), plotted on top of each
other. The bottom of the figure shows the later part of the
same events.

small to have an effect on the early part of the wave-
forms. In order to quantify the difference in waveforms,
we compute maximum of the cross-correlation function
for the early parts and the late parts respectively (Fig-
ure 6). In the top part of figure 6, the correlations for
the early parts (source signature) stay high (around 0.9)
over the whole two month period. For the later part of
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Figure 5. A plot similar to the previous one but the two
events here occurred two weeks apart. The early parts still
correlate extremely well but there is a larger difference in the
late parts of the waveforms. We use this difference to monitor
a change in the volcano. That change is too small to have an
effect on the early part of the waveforms. In order to quan-
tify the difference in waveforms, we compute the correlation
coefficients for the early parts and the late parts respectively.
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Figure 6. In the top of the figure the correlation coefficients
for the early parts stay high (around 0.9) over the whole two
month period. For the later part of the waveforms, however,
the correlation coefficients have a sudden drop around the
8th of January 2000. This means, that around January 8
something has changed in the volcano that can’t be seen in
the early part of the waveforms.
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Inverse multiple scattering in the downward
continuation approach: Preface

Alison E. Malcolm and Maarten V. De Hoop

Moses (1956) constructed a series to repre-
sent the quantum scattering potential in terms of
measured reflection coefficents. Razavy (1975) ex-
tended this work to scalar wave scattering. These
two papers show that it is formally possible to rep-
resent both the data as a series in the medium con-
trast (forward series) and the medium contrast as a
series in the data (inverse series). In seismology the
second series has been exploited by several authors
to represent the medium contrast, or reflectors, as
a series in the data. Taking only the first term of
this series leads to the Born approximation. The
analysis of the forward and inverse series in truly
incomplete. For example, in general the series are
not identifiable as Neumann series. Only for very
simple obstacle scattering problems have properties
of the forward series been proven. (There is a much
better developed theory for the Schrédinger equa-
tion.) As a starting point for our approach we use
the generalized Bremmer series as a forward series.
De Hoop (1996) proved that this series is identifi-
able as a Neumann series. The first term of the gen-
eralized Bremmer series models seismic reflection
data in the downward-continuation approach [with
the double-square-root (DSR) equation]. Here, we
develop a theory for inverse multiple scattering us-
ing the third term of a hybrid series derived from
the generalized Bremmer series and the Lippmann-
Schwinger series.

Fokkema and Van den Berg (1993) developed
a rigorous theory for the suppression of surface-
related-multiples. Their approach admits a series
expansion in terms of the reflection data that is
close to the inverse scattering series approach of
Weglein (1997). Weglein (1997; 2003) has also used
these ideas in an attempt to attenuate internal mul-
tiples in 1D along with a restricted class of 2D
velocity models. Ten Kroode (2002) describes in
more detail the theory underlying Weglein’s ap-
proach and highlights some its fundamental limita-
tions. One of the goals in our approach is to remove
some of the limitations explained by Ten Kroode.
For the sake of simplicity, we also focus on con-
tributions from singly and triply scattered waves,

though the extension to higher order is straightfor-
ward.

Weglein and ten Kroode use the Lippmann-
Schwinger series to model triply scattered data. In
that approach, ten Kroode makes the assumption
that each scattering results in a change in direc-
tion between the incoming and outgoing waves.
In other words, he enforces that the first scat-
ter is strictly below the second scatter which is
strictly above the third scatter. To encorporate
this assumption naturally in the formulation of the
problem, we construct a hybrid series between the
Lippmann-Schwinger series and the Bremmer se-
ries. The Bremmer series has the advantage that it
directly splits the wavefield into its up- and down-
going constituents. In addition, the convergence
properties on the Bremmer series (de Hoop, 1996)
justify the truncation of the series after only a few
terms. The Lippmann-Schwinger series alone is not
even assymptotic (though for surface-related mul-
tiples it can be identified as a convergent series).

In his work, ten Kroode (2002) has to make two
essential simplifying assumptions. The first is that
there are no caustics in the wavefield. In our for-
mulation we find it necessary to exclude only turn-
ing rays; this is necessary because the downward-
continuation approach removes horizontally travel-
ing waves. The second assumption is his so-called
traveltime monotonicity assumption. This assump-
tion requires, essentially, that the traveltime in-
crease monotonically with depth. In other words,
if primary energy arrives later in the data it must
have come from a deeper reflector. As ten Kroode
points out in his paper it is not difficult to violate
this assumption.

In the absence of caustics and if the travel-
time monotonicity assumption is valid, the work
presented in the following paper reduces easily to
the results of ten Kroode and thus Weglein. Our im-
plementation is truly different, however, as we use
the DSR equation explicitly. An advantage of using
the DSR approach is that there are no artifacts in
the image domain (de Hoop et al., 2003b). When
there are caustics and the traveltime monotonicity




CWP-486

Inverse multiple scattering in the downward
continuation approach

Alison E. Malcolm and Maarten V. De Hoop

Center for Wave Phenomena, Colorado School of Mines

ABSTRACT

Imaging with seismic data is typically done in the single-scattering
approximation. We move beyond this assumption to allow for triply
scattered waves in the imaging process. We develop a scattering se-
ries that is a hybrid of the Lippmann-Schwinger scattering series and
the Bremmer coupling series. From the third term of this hybrid series
an approximation of data scattered three times is constructed. From
the inverse hybrid series it is also evident that subtracting an image
constructed from triply scattered data from an image constructed as-
suming singly scattered data results in an image that is third-order in
the data. This is in contrast to the standard first-order approximation.
We discuss both a standard inverse scattering operator and the wave
equation angle transform as possible imaging techniques.

Key words: internal multiples, Bremmer series, Lippmann-Schwinger

series

1 INTRODUCTION

In a seismic experiment, the source generates both
compressional and shear waves that travel through
the subsurface reflecting at discontinuities in the
medium properties. These waves are then recorded
at the surface. A collection of such experiments,
recorded as a function of source position, receiver
position, and time make up seismic data. It is gen-
erally assumed in seismic imaging that the recorded
signals have reflected only once between the source
and receiver. The goal of this paper is to move
beyond this assumption to allow for waves which
have scattered three times to be included in seis-
mic imaging. Here, we consider only compressional
waves and back scattering; i.e., sources and re-
ceivers are on the same surface. Although we dis-
cuss only the case of triple scattering, the exten-
sion to any finite odd-order scattering is straight-
forward. Constructing even-order scattered waves
is fundamentally different, for a reflection experi-
ment, because transmission in addition to reflection
must be considered.

We use a series derived from the Lippmann-

Schwinger-Dyson equation; this framework gives us
both a forward and an inverse series representa-
tion. We also make use of the generalized Bremmer
series (de Hoop, 1996), which is a forward series
that splits the wavefield into its up- and down-
going constituents. From these two series, we de-
velop a hybrid between the Lippmann-Schwinger
and Bremmer series. The hybrid series uses the
directional decomposition of the Bremmer series
along with the Lippmann-Schwinger medium de-
composition into a known, smooth reference and
unknown, singular perturbation. This allows us
to trace waves through their up and down scat-
ters while still preserving the contrast source for-
mulation of the Lippmann-Schwinger construction.
From the third term of the forward series, we model
the triply scattered data. The third term of the in-
verse series describes the third-order (in the data)
contribution to the image. We use the volume scat-
tering framework as in Bremmer rather than the
surface scattering model of Lippmann-Schwinger.
We make this choice because de Hoop (2004) has
shown that the downward continuation approach




tended their work on surface-related multiples to
suppress internal multiples generated at a single
layer in the subsurface, given the medium parame-
ters above the particular layer. Weglein and oth-
ers (Weglein et al, 1997; Weglein et al., 2003)
have used the Lippmann-Schwinger series to model
and process seismic data, including the suppres-
sion of both surface-related and internal multiples.
In ten Kroode (2002) the theory behind this ap-
proach is given in both one and two dimensions.
He extends the work of Weglein et al. to a two-
dimensional subsurface model satisfying two con-
ditions: ten Kroode’s traveltime monotonicity as-
sumption, and the condition that the wavefield does
not contain caustics. The work of Berkhout and
Verschuur (1997) extends, via layer stripping, from
the surface-related multiple case to that of internal
multiples. Jakubowicz (1998) proposes a method
for modeling internal multiples by correlating one
primary reflection with the convolution of two other
primary reflections. When the two assumptions of
ten Kroode are satisfied, our method can be re-
duced to this construction with the addition of a
time-windowing procedure; this is discussed fur-
ther in remark 7.1. Kelamis et al. (2002) use an
approach similar to Jakubowicz, in which the mul-
tiples are constructed from a combination of differ-
ent data sets, both at the surface and in the sub-
surface. Van Borselen (2002), provides another ex-
tension of the surface-related multiple-attenuation
algorithm proposed by Fokkema and van den Berg
(1993) to the case of internal multiples. His method
removes internal multiples by identifying either the
shallowest layer involved in the multiple generation
or a pseudo-boundary through which the multiples
are assumed to have passed. The surface-related
multiple attenuation method is then applied at the
identified layer. In any method that predicts the
internal multiples and subtracts them, an adap-
tive subtraction technique such as that suggested
by Guitton (2004) must be used to compensate for
illumination effects in the predicted multiples.

Many signal-processing methods are also avail-
able for suppressing multiples. The work of Buttkus
(1979), which uses the different apparent stacking
velocities for multiples and primaries, is an exam-
ple of such filtering in the data domain. Sava and
Guitton (2004) show how such techniques can be
applied in the image domain. Symes (1999) pro-
vides a method of velocity analysis that also sup-
presses multiples through a data perturbation ap-
plied to remove events in the data that do not
fit the assumptions used in generating a velocity
model. Another approach, described by Essenre-
iter et al. (2001), uses computer learning to predict
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which events in the data are multiples given an ini-
tial set of identified primary and multiple events.

Although we are primarily concerned with the
inverse problem, we discuss also the forward prob-
lem of modeling multiples. Since we are concerned
here with the propagation of singularities, we con-
struct only the most singular part of each term in
the hybrid Lippmann-Schwinger-Bremmer series.
From the third term of this series, we specifically
construct distributions to model triply scattered
data. These modeled data are used in the formu-
lation of the inverse problem. The modeled data
are needed in our approach since we construct the
inverse problem through the prediction and sub-
traction of the triply scattered data in the image
domain. The theory presented here does not ac-
count for multiple scattering from large numbers
of fine layers. Instead, we assume a finite collection
of scatterers with a separation large compared to
the wavelength.

The work presented here is motivated by that
of Razavy (1975) and Aminzadeh (1981). Razavy
developed a method to estimate the wave veloc-
ity from reflection coefficients, with a series ap-
proach to the inverse problem. Aminzadeh used
a Bremmer series approach to suppress surface-
related multiples. In our hybrid series, we use
the techniques from the generalized Bremmer se-
ries (de Hoop, 1996), although we remain in the
framework of the Lippmann-Schwinger series as
discussed by ten Kroode (2002). In this method-
ology we allow for lateral variation of the back-
ground velocity, as well as the presence of caus-
tics. We require knowledge of the velocity model to
the depth of the shallowest reflector involved in the
triple scattering, and our approach to the suppres-
sion of multiples is applied in the image domain
rather than the data domain. This is preferred as
it allows for compensation of variations in illumi-
nation, which is different for triply scattered waves
than for singly scattered waves. A by-product of
the construction developed here is the prediction
of internal multiples from subsets of the data.

In the next section we describe the techniques
of the directional decomposition used in the Brem-
mer series. In the third section, we describe some of
the details of the construction of one-way Green’s
functions. Following this we describe the contrast-
source method used for the Lippmann-Schwinger
series. In the fifth section, we construct the hy-
brid series. In the sixth section we use the hybrid
series to model data, giving the first of our two
main results in (89). Following this, we describe
the methodology for the inverse series arriving at
our second result, (113). In the final section we il-
lustrate through isochrons how the propagation of




integral form this is

i = [ G )il dao (11)
u. = /0o G"_(2,20)f-(z0) dzo .

3 THE GREEN FUNCTION

In the previous section, we diagonalized the wave
equation into two first-order equations. To do this,
we implicitly assumed that the diagonal system is
equivalent to the original equation. This is nearly
the case, but the choice of a preferential direction
alters the ability of the system to propagate singu-
larities in directions orthogonal to the preferred di-
rection. Here, we have chosen the vertical direction
as the preferential direction and are thus unable to
propagate singularities horizontally. To ensure that
the diagonal system does not propagate singulari-
ties incorrectly, we need to attenuate the horizon-
tally propagating singularities. The details of the
method are given by Stolk and de Hoop (2004a);
we give only a brief description here.

In order to identify horizontal propagation, we
define the phase angle § = arcsin(c(z, z)||7~*¢||),
where (¢, £) is the cotangent vector associated with
(2,z) and ¢(z, z) is the velocity. Note that if the an-
gle 6, is less than /2 on a ray segment, the vertical
velocity g—’: does not change sign, allowing the pa-
rameterization of the ray segment by z. Thus, for
any ray segment and any given angle 6 < /2, we
can define a maximal interval,

(zmin,:i:(za z,€,7,0), Zmax,+(2,2,¢,7,0)), (12)

for which the propagation away from a particular
point (z,z,&,7) can be parameterized by z. In Fig-
ure 1, the interval (Zmin,—, Zmax,— ) is illustrated; it
is the maximal interval containing the point (z, )
such that the angle of the ray with the vertical,
8, does not exceed a given value; in this case that
value is 6;.

The angle 6 can be given physical meaning by
looking at the ray picture, as is done in Figure 1.
The wave equation is solved in all of phase space,
however, which means that any restrictions we put
on the wave operator must be done in all of phase
space. To this end we introduce the set

IO = {(zy z, t1 C1 &yT) I
arcsin(c(z, z)|I7*¢l) < 6,[¢| < Clr|},
(13)

illustrated in Figure 2, where C is some constant
everywhere larger than c(z,z)~!. Finally, we con-
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Figure 1. Removing horizontal propagations. The sym-
bol of the cut-off operator v is one up to an angle of 6;
and then tapers smoothly to zero at the angle 6. This
removes all propagation at angles larger than .

¢
C S w— e — e — - — . .
-~ T ~
/ /_& \
! — ¢
Temax(2z, )~
/
\ —
_C— ....... —_— . — -

TCmin(z,2) ™!

Figure 2. Illustration of Iy. The shaded region repre-
sents the ray directions in the set. The minimum veloc-
ity in the region is ¢m;n and the maximum is cmaz.

struct the sets

J-(20,0) ={(z,2,t,¢,€,7) € Iy|77*¢ < 0 and
Zmax,— (2, 2,&,7,0) > 20}, (14)
and
J+(20,80) ={(z,%,t,(,&,7) € Ig|77'¢ > 0 and
Zmax,+(2,2,§,7,0) > 20},  (15)

which exclude all parts of phase space in which
singularities propagate horizontally. Figure 1 illus-
trates the set J_(zo,62), considering the shaded
region as excluded from the set. The condition
Zmax,-(2,%,&,7,0) > 2z, along with the implicit
requirement that zmin,— < 0 ensure that the two
points between which one propagates the wave-
field are within the allowed propagation interval
(zmin,~y Zmax,— )'

The sets J+ describe the portions of phase
space that must be excluded to remove horizon-
tally propagating singularities. To actually remove
singularities from these regions, we define a pseu-
dodifferential cutoff ¢_ 1 = ¥_ (2, 20,2, Dy, D¢)




In contrast, Sy— and S_4 are interpreted as re-
flection operators because they govern scatterings
that result in a change of direction; from up-going
to down-going and down-going to up-going respec-
tively. (The the off-diagonal entries in the V opera-
tor matrix are true adjoints of one another whereas
the diagonal entries are adjoints only to principal

parts.)

To simplify the notation, we define
Py =0 + Bo, (32)
its forward parametrix?,
Lo = (%* GO_) (33)
recalling
V =Q(2) 6A Q7' (2). (34)
In this notation, (29) reduces to
Py U =-VU, (35)
or
08U = —Lo(VU). (36)

The V operator is a multiplication along with
a time derivative, whereas Lo is the forward
parametrix of a partial differential operator. There-
fore the composition VU is a Volterra product.
Writing U = Up + 0U gives

dU = —Lo(VUo) — Lo(V4U), (37)
or equivalently,
(I +Lo V) 86U = —Lo(VUo). (38)

In analogy with (24), we introduce V, the matrix
of S1+ coefficients, viz,

V(z,z,D:) = V(z,:c)Df, (39)
which gives
(I + D?Lo V) 6U = —D?Lo(VUp), (40)

where V6U and VU, are products of distribu-
tions. This is the resolvent equation in our hybrid
Lippmann-Schwinger-Bremmer formulation. (See
(Yoshida, 1995) for details on resolvent equations.)

5 SCATTERING SERIES
5.1 Forward series

Having recognized (40) as a resolvent equation, we
set up the recursion

U= (-1)"Un(V), (41)

meN

tThe parametrix of an operator is an asymptotic ap-
proximation to its inverse.
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where

SUL(V) =

D2Lo(VUs), and 6Um (V) = DLo(VoUm-1(V)).
(42)

This recursion is motivated by the Neumann series.
The expressions in (41) and (42) are not quite in
the form of observables however; data are acquired
only at the Earth’s surface, but the Lo operator
models data arriving at all depth levels. We there-
fore define a restriction operator, R, which restricts
the operator Lo to the acquisition surface, z = 0.
To avoid difficulties with the free boundary at the
surface we will assume that the medium contrast,
contained in V, has its support away from z = 0. In
addition, (42) is in the diagonal system; to return
to the ‘true’ coordinate system in which we make
observations we must also apply the Q! operator
to the expression for §U. We thus rewrite (41)

RQ'U = 3 (-1)™RQ ™ 6Un (V)

meN
where RQ 16Uy = DIMo(VUo), and

RQ™'6U = —D;Mo(V(Uo+ Y _ (1) 8Um(V)),
e (43)

upon introducing the operator Mo = RQ7!Lo. The
composition RLg is transversal provided there are
no grazing rays (Stolk & de Hoop, 2000), which
are already excluded by the 9 cut-off. The com-
position with Q! also does not change the proper-
ties of the composite operator provided we satisfy
the assumption in the generalized Bremmer series
(de Hoop, 1996). Note that the recursion in (43)
gives an expression for the data at the surface in
terms of the unrestricted data from the previous
term; the restriction is applied after the recursion
is constructed.

For the leading-order, single scattering term
we introduce the shorthand notation

di = —RQ™1U(V) = F(V) = —D}Mo(VUy).
(44)

Note that di describes only the singly scattered
part of the data. The operator F' is the usual Born
modeling operator. We can construct a left inverse
to F, by N"'F* where N = F*F is the normal
operator, which is elliptic pseudodifferential under
the DSR assumption of Stolk and de Hoop (2004a),
and F* is the adjoint of the modeling operator,
i.e., the imaging/migration operator. This gives the
estimate

Vi = N'F*(dy), (45)




resentation is suggested for quantum mechanical
problems by Moses (1956), where the analogue of
(48) is his equation (3.12). It is also suggested by
Razavy (1975) for wave problems, in which the ana-
logue of (48) is his equation (33).
Substituting (48) into (41) yields a recursion
for Vi, in terms of U
U = —D2Lo(Vils) (49)
= —D}iLo(VaUs) + DfLo(ViLo(Vilh)) (50)
= —D}Lo(VaUo) + D{Lo(VaLo(V1U0))
+D¢Lo(ViLo(V2(Uo)))
—DfLo(ViLo(Vilo(Vilho))) , (51)
etc.

Substituting (48) into (43) yields a recursion for
Vi in terms of the true data d

d = —DMo(Vilh) (52)
0 = —D?Mo(Valo) + DfMo(ViLo(ViUo)X53)
0 = —D;Mo(VslUs) + DiMo(VaLo(V1U0))
+DiMo(ViLo(Va(Us)))
—D?Mo(f}x Lo(f}l Lo("}on))) ) (54)
etc.

Equation (54) can be simplified using (50), since
D?Mo(ValUo) and DfMo(ViLo(Vilh)) are identical
distributions and D?MoV; is a linear operator, to
read

DiMo(VaUs) = DiMo(VaLo(V1Us)) . (55)

Solving these recursions for v gives a solution for
the medium contrast. The first term in the series,
given in (52), models singly scattered data. The
third term, in (54), models first-order internal mul-
tiples as well as other primary events. (The second
term, given in (53), models, among other things,
primary events.) We have the following relation be-
tween the 171 = Vj(d)

DiMo(Vallo) = DiMo(ViLo(ViUh))

= —DIMy(ViéU), (56)
DiMo(VsUo) = DiMo(VaLo(V1Us))

= —D!Mo(Vh6U) (57)
D{Mo(V;Uo) = —DiMo(V;-16U). (58)

The general term in the recursion (58) follows be-
cause higher order terms are built from lower-order
terms through the application of additional opera-
tors of the form MoV; to the (j — i)*'-order terms
to form terms of order j. Thus the sum of terms of
order j will contain sub-series of the form

D?Mo Vi (sum of terms of order j — 1 from (49-51)),
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D?Mo Vs (sum of terms of order j — 2 from (49-51)),

etc. For j > 2 the sub-series in brackets sum to
zero because of the zero on the left-hand side of
(50). Thus, the only terms of order j remaining in
the series are of the form

D?Mof/;Uo
and
DfMof/\}'—l LoVi,

from which the general term (58) follows. Note
the similar structure between (58) and (42); (58)
constructs the medium contrast in terms of the
data, while (42) constructs the data in terms of
the medium contrast.

From these relations, we deduce that the only
inverse operator we need is N~'F*. Using this we
can write the V-series as

V=N'F'd-N'F (Z MO(V,,.JU)> . (59)
meN
We identify the series in the second term as a
correction to the first term, which is the single
scattering inverse. Additionally, N~!F* can be re-
placed with Awg, the wave equation angle trans-
form (Stolk & de Hoop, 2004b), which computes an
image \1117(2, x,p), where p = 77 '¢ is the horizontal
slowness. An accurate reconstruction of \Ill7(z, z,p)
will be independent of p; this property can be ex-
ploited to improve the knowledge of the smooth
background medium. The pseudodifferential oper-
ator ¥ corrects for illumination effects in the re-
construction of V; we cannot reconstruct a portion
of the image, V (20, zo, po), for example, if the data
do not scatter from the point (2o, zo) with slowness
Po. ~
Solving (56) for V> gives

Va = N"UF*(DiMo(ViLo(Vils))) = DViLoVh .
(60)

This allows us to simplify (55) to

D}Mo(V3Us) = D§Mo(Vilo(ViLo(Vilh))).  (61)

In the above we have nowhere assumed the absence
of caustics in the wavefield. In fact, thus far we have
made only the DSR assumption (Stolk & de Hoop,
2004a) excluding horizontal propagation.

6 MODELING

6.1 Single scattering to double
square-root

The first term in the forward scattering series given
in (41) can be used to construct data in the
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Figure 5. Notation and conventions.

To write (67) in terms of the Green function for the double-square-root equation, there must be integrations
in (z1,t1) for each of the Green functions. To introduce these integrations we introduce two extension
operators

By :u(z,x) = 6(r — s)u(z, 1), (68)
E, : u(z,r,s) = d(t)u(z,r,s). (69)
These operators map the medium contrast, a, into data. They also apply the adjoint imaging condition,
namely assuring that the two rays meet at the scattering point at time 0. The d-functions allow the splitting
of the single integration joining the two G_ operators into two integrals. This allows the two Green functions

to both act on these data as we expect intuitively; each Green function continues the data from the subsurface
to the surface. This condition is illustrated in Figure 5. With these operators, we re-write (67)

(FV)(So,’I'o,tro tsO) = Dtro /dz1 /d81 /d'r1 dto dtlQ:,,,.o (0)G- (0, To,trg —t1 — to,zl,rl)Q_,n (Zl)
Q~ 5,(0)G-(0, 80,t1 - tso;zla 81,0)Q— s, (21)(E1E2a)(21, 81,71, t0) . (70)

We note that the two one-way Green’s functions are connected through time convolution. To make this
explicit we change integration variables from t; to t' = t; — £, (the underlined expression in (70)), giving

(FV)(So,’r‘o,trO —ts0) = —Dt /dZ1 /dsl /drl/ dto dt QL (0)G- (0,70, tro — —t5o—t' —to, 21,71)Qr, (21)

—,so(O)G— (0,50,t, 21,51)Q— s, (0)(E1E2a) (21, 81,71, t0) . (71)
To write (71) in terms of the Green function for the double square-root operator, we first re-arrange terms
giving

(FV)('sOerytro tso) = DQQ ,rO(O 730(0)/(121 /d31 /d”‘l dto

{ dt'G_ (0,70, try —tso —t' — to, 21,71)G-(0, 5o,t',21,31)}

Ry
Q- r1(21)Q— s, (21)(E1E20a) (21, 81,71, 0) . (72)

We then introduce the operator H(zo, 21), for z1 > zo, as

(H(ZO,Zl))(So,To,t—to,sw‘l)=/ (G-(20,21))(ro,t —t' —t0,71)(G-(2,20))(50,t',s1)dt". (73)
R4
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Following the diagram in Figure 6, we see that the first scattering of the internal multiple, from s
through s2,r2 to m, is nearly identical to the single scattering case. We cannot use the H operator however,
since the second leg (from r2 to m,) does not reach the surface. Thus, we define

Ju_,l(zl,m,ta,O, so,tso) = %Dfa/ds}o dtsO/d22 /d82 /drz dto dt G- (z1,'rn ta — —t — to, 22,T2)
R+

G_(0, 30, t', 22, 82)Q - ro(22) Q= 55 (22) (E1E2a)(22, 82,72, to)Q:,go (0)£(0, 30, 530,0, S0,ts0), (75)

where t' = t; — £,, and t, is the total time traveled along the ray (see Figure 7). In (75), we have applied
the R operator to restrict the source to zo = 0, but have not returned to observables as the second leg,
G_(z1,m,tq —tsy —t —to, 22,72), does not reach the surface. The field, du; acts as the source of waves for
propagation from m, to s3, through the contrast source formulation used in the single-scattering case. This
gives,

duy 2(2z3,23,t3,0,80,85,) = Dt3/dzl /d'rn dta

G4 (23, x3,t3 — tq, 21, m)Q+,m(z1)a(z1)Q*_,m(z1)Ju_,l (21, m,ta,0,50,ts,), (76)

which acts as a contrast source for the final ray, connecting r3 with r,

d3(so,r0,ta —tsy) = ——%DiQ:,TO(O)/ dzs /dxs dts
0 R,

G-(0,70,ta — t3, 23, 23)Q— 25(23)a(23) Q% 25 (23)0u 2 (23, T3, 3,0, S0, ts5) , (77)

where we have returned to observables through the operator RQ™', introduced in (43). For the above
construction to be valid, it is necessary that the three scattering positions are sufficiently far apart. This
ensures that the wavefront sets of the G+ distribution kernels do not align, making their product well-defined
(Friedlander & Joshi, 1998 proposition 11.2.3).

We can now apply reciprocity to the G+ of (76). We do this by substituting the expression for du+ 2 in
(76) into (77), which allows us to use the Q4 operators from both expressions. This gives

d3(30,'ro,t4—-t30) = Dt4/ dzs /d83 /dT3 dt3 dzl /dms /dmr dta

QL 1, (0)G-(0,70,ts — t3,23,73)Q— r5(23) |Q-,m,(21)G—(zl,ma,u, zs,sa)Q—,sa(za) |
(Ela)(z3’ 83, 7'3)Q*—,mr (zl)(Ela)(zla ms, m")‘su—,l(zly m"ytaa Oa S0, tso) ) (78)

we have also introduced the extension operator E1, to split each of the m and z3 integrations into two. The
portion of the expression that has changed through reciprocity is in the box.

The insertion of the relation G(za,Za,t, 25, %) = Q- z,(2a)G-(2a,a,t, 26, Ts)Q -z, (25) into (78),
where G is the Green’s function for the double square-root equation, shows the correspondence of (78)
with expression (8) in (ten Kroode, 2002).

Noting that ¢3 is independent of ¢,, we can interchange their order of integration, which allows us to
change integration variables from t3 to t3 = t3 —t, and introduce the E> operator at the third scatter. This
results in

d3(50,7‘0,t4-—t30) = ——Dt /dZ3 /d33 /d'l"s dtso dta d21 /dms /dm, dt3

Q*—,ro (O)G— (0, ro,ta —tg — t3 — 130, 23, r3)Q“,7‘3 (23)Q7,m.g (ZI)G— (zl’ msg, t37 23, 33)Q—,83 (23)
Q% i, (21)(E1E2a)(z3, 83,73, t30) (E1a) (21, ms, my )6u— 1 (21, Mr, ta,0, S0,ts), (79)

which is a modeling operator for triply scattered waves. We have not yet introduced the E» operator at
the m,, m, scattering point as it is not clear in which G the time ¢,,0 should be placed. It will become
necessary in what follows. In ten Kroode (2002), equation (8) is the Lippmann-Schwinger equivalent of (79);
ten Kroode’s equation is valid for wave propagation in a medium of up to 2 dimensions without caustics.
Thus far, we have constructed an operator (79) that is tri-linear in the medium contrast a. From a
practical viewpoint, however, it is advantageous to construct an operator that acts on the data, as this
is known, rather than the medium contrast. To this end, we reformulate (79) so that all the G operators
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interchanging the t3 and t,, integrations giving

ds(so,To,ts — tso)———Dt /dza /dss /dr3 dtso dzl /dms /dmr dta dm, dtm dey

—,ro (O)G— (ZI, msytm’,y Ov ms)G— (0; 70, t4—'ta—t3 +tm’, —t301 23, r3)Q—,’"3 (z3)Q—,m. (zl)G— (Ov m;a tgv 23, 33)
Q—,Ss (z3)Q:,mr (zl)(E1E2a)(z3a 83,73, t30)(E1a)(z1 y Ms, m")‘su—,l(zla my,tq, 07 80, tso) . (83)

We now substitute the H operator for the two G_ operators, interchanging the order of integration to obtain

d3(s0,70,ta — ts) = —31Dp,Q ,TO(O)/dza/dzl /dms /dmr/ dt, [dm dtm;
Q% i (21)Q 1, (21) G (21, ms, 0,0, M5, tyny ) N
/ds:;/drs dtaoH(O My, 10,4 — ta + tm: — t30,23,53,73)Q— 55 (23)Q—,r5 (23)
(E1a)(21, ms, my)(E1E2a)(23, 83,73, t30)0u—,1 (21, Mr, ta — t50,0,50) .  (84)

In (84), the G~ term in du_,; does not depend on any of the variables in the operators preceding it. Thus,
we may interchange operators to combine the two G- terms. We do this, as well as changing the order of
integration to move the ¢, integral inside the t,,; one and also introduce Ej, giving

d3(30,1‘o,t4—t30) = %D?Q‘_,TO(O) /dgo/ dfso/dz:; d21/dz2
1]

/dms /dmr / dtm, /dms dm,, dtm: dtm:r (E1E2a) (21, ms, My, tmg)

QL m,(21)Q% m, (21)GZ (21, ms, by, — tmg,0,m;)G™ (21, M, tme , 0, m..) {/ dt,
R4
/dsa /drs dtsoH(O My, 70,84 — ta + by, — 30, 23, 33, 73)Q - 65 (23) @~ r5 (23)

(E1E2a) 23, 33,1‘3,t30) /d82 /drz dtoH(O so,m,,ta +tml — tso to,Zz,Sz,‘r‘z)

Q- r2(22)Q- 55 (22)(E1E20) (22, 52,72, t0) }Qi,so(O)f(O, 80, Ta0,0, 50, ta) - (85)

In (85), the expression in braces is a convolution in time. Because of this, we may shift time variables
between the two H operators. To do this we change time variables from ¢, to ty = to + tm: — ts,. We then
introduce the distribution w,

w(so,mr,t ms,’l‘o,22,23) di‘b /dra/d33 dtaoH(O ms,’l‘o,t tb—tao,Z3,33,1‘3)

Q- ,53(23)Q—,r3(23)(E1E2a)(23, 83,73, t30) /d82/dr2 dtoH (0, 50, m, ts — to, 22, S2,72)

Q- r5(22)Q— 55 (22) (E1 E20) (22, 52,72, t0), (86)

where we may allow the lower bound on the ¢, integral to extend to 0, rather than t,,; because tp > t,
by definition. To overlay the operator w with the expression in braces in (85) we need only make the
identification t = t4 + tpr +tp — tso- By changing the lower bound of the 23 integral in (85) to z1 and the
upper bound of the z; integral to oo we may define

[e.o] {o ]
~ ! ! -~ ! !
W (21580, My, t, mg,10) = /d23/d22 w(80, My, t, Mg, T0; 22, 23) . (87)
21 z1

In the definition of w, we now see the emergence of a new time variable ¢,,; = t,,/ +1,,, in the expression
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Figure 9. Illustration of the four operators used to construct the final modeling operator. Notice that R and H act
at different surface points.

The operator ®(z,z,D,, D,), which is also a pseudodifferential operator, corrects for illumination effects.
Its symbol is 1 where there is illumination and zero elsewhere. In fact, the analysis requires that we replace
the data, d1, with ¥y d1, where ¥y is a cut-off function which is zero near the boundary of the acquisition
surface, Y. Further details of these cut-off operators can be found in (Stolk & de Hoop, 2004b).

In the single scattering approximation, the data in (74) are used as an approximation of the data d, in
(52). To reconstruct Vi we must apply the above inverse to these model data. This gives an estimate for the
a distribution,

(0/1)(2,17) = Q(z’ z, DZ,D«’B)a) (95)

which is, as expected, simply an amplitude change, or ‘non-stationary’ filter applied to the original medium
contrast. We use the (-) notation to indicate that this is an estimate of a rather than its true value, the
subscript 1 indicates that this estimate is obtained through the single scattering approximation. From this
estimate of a, we obtain an estimate of the matrix V; using (31).

7.2 triple scattering

In the framework of the series expansion in (59), we require only the single scattering inverse to estimate
the third order contribution to V: we write the first and third terms of (59) as

(a1) + {as) = N"1F*d — N~ F*(D{Mo(ViLo(V16U))) . (96)

We will use the operator, J, on the right hand side in (94) in place of N~'F* to estimate this inverse. The
inverse series, (59) is a sum of terms of different order in the data, with the first term being first-order in
the data and the third term third-order in the data. In the modeling formula, (89), the data are written as a
trilinear operator on the medium contrast, a, as in the forward series (43). To estimate az we need to write
D;‘Mo(ﬁl Lo(f/\'lJU)), for which an expression was constructed in section 6.2, as a trilinear operator acting
on the data. We then apply the single scattering inverse to this expression to estimate as, from which we
can compute V.

To write d3 in terms of the data, we insert the instantaneous point source into (89) as in the single
scattering case. This gives

d3(s0,T0,ts — tsy) = %DfQ"_,TO(O)QiYSO(O)/dzl /dms /dmr dtmo(ElEza)(zl,ms,mr,tmo)/dm's/dm',
0 R,

At Q% 1, (21) Q% o, (21) H (21, Mg, M bt — timo, 0, mly, my )W (21 80, My b4 + ot — teg, My, 0) . (97)
Ry
There are three equivalent ways in which one could proceed to write (89) in terms of the data only. First,
one could replace each of the a terms with J applied to the data, giving a trilinear operator acting on the
data. Second, one can re-arrange terms to introduce d directly in place of the a term at both z2 and 23, and
use J to write the a term at z; in terms of the data. Third, one can rearrange terms to write all three a
directly in terms of d. We will go through the second method in detail.
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use of this fact and the notion of adjoint to rewrite (102) as

(d3)(s0,T0,ts — tsg) =/dm'3/dmi dtmz/dzl /dms /dmr dtmoH 0, My, Mot — tmo, 21, Ms, My ) B2
Q—‘m,(21)Q-,mr(z1)Q—,m,(zl)'lQ—,mr(zl)_l{ 1Ry /dms /dmr s

H” (21, ms, My, tmo— 0 ma, m)Q~ 10(0) ' Q7 1o (0) ™ d(m, m7, tn0) }

Qo (071 Q" (0 /R dty dz;mh, 70, b + bt — th — tao)d(z1; 50, mly t8),  (103)
which simplifies to '
(ds)(s0, To, ta—tsq) =/dm;/dm:. dtm//dzl ‘/dméa /dmr dtmoH(O MYy, My, bt —tmo, 21, Msy M) E2Z 7 Ry
/dms /dm, dtmoH (21, M5, My, t 0 — ,0,ms,m,)Q*_,mQ(0)'1Q*_’m9(0)_1d(mg,mg,tmo)

Qi,mr‘ (0)_1Q:,m£‘ (0)——1 A dty d(z1;my, ro,ta + by — ty — tso)d(21; so, ma,tp).  (104)
+

We define

d'l(zl,s,r,t)=DfQi,s(0)Qi,,(0)/dsl dr: [ ato

Ry
H(Oa S, T,t - t07 21, SI,TI)Q—,sl (zl)Q—,"‘l (zl)(E1E2a)(z1’ 81, Tl,to) H (105)

we use the notation d' because it is close to the derivative with respect to z1 of d. The quantity d’ is not one
that can be measured, because one cannot tell directly from which depth the data come. To compute d’,
the expression in (94) must be substituted for a to write it in terms of what can be measured, d. Because
of this, we can write (102) in terms of this d' ‘data’ set

o0
d3(s0,70,ta — tsy) = /d21 dmy [dmy | At Qs (0)71Q s (0) ™ di (21, ml, My, b))
0 Ry
QL m (0)71QL 1y (0)™1 [ dty di(z1;my, o, ta + tos — ty — tsg)da(21; S0, My, 1) . (106)
Ry

We have nearly succeeded in writing DZ’MO(VE Lo(1716U)) in terms of the data d. We find, however that we
cannot write (106) in terms of the actual data because of the z; dependence of each of the three ‘data’ sets.

Remark 7.1. If we ignore the z; dependence of d in (104), the composition

/dzl /dms /dmr dtmoH(O ms, m,, tm' — tmo, 21, Mg, mr)Ez._, RzH*(zh Mg, My, 0,0, mg, m‘,’) s
gives microlocally,
s(mly — m)d(mi, — m2)8(tpr — t0) -
Then, (104) can be written as
(ds) (50, 7oy ta — tey) ~ /dm; /dm', At Q" g (0)2Q" s (0) (1 )
R4
Q:,m’, (0)_1Q*—,mﬁ. (0)_1 dis d(mfs;TO)t‘l it —t — tSO)d('gOym;‘,tb) ) (107)

Ry

with the approximation d = d;.
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scattering is assumed (see Figure 10). The application of J to (ds) gives
(as)(z4,24) = —R1Q- 5, (24) "' Q= ry(24) 'ET H™(0, 80,70, t4 — to, 24, 84, 74)
80 To t4'tso

Q% 55(0) Q% 1, (0) ' Dy *(ds) (¥, ™, ). (108)

As can be expected, this expression is not close to the true medium contrast at (24, z4) since J is the single
scattering inverse and thus will not correctly treat multiply scattered waves. Returning to (96) we see that
the term 173 has the opposite sign to . Equation (108) is meant to remove the erroneous contribution to
(a) made by imaging all the data as though they had scattered only once as is done in the construction of

(a1).

7.3 Inverse series in angle gathers

The J operator discussed above computes an image of the subsurface given seismic data at the surface. There
is more information available in seismic data than it exploits, however. For example, studying amplitude
variations with scattering angle (the angle between the incoming and outgoing rays at the scattering point)
an image, which is averaged over angle, is not sufficient. In addition, the imaging operator depends on the
background velocity model, which is not in general known. One way of estimating this model is to look at
the data as a function of angle at the scattering point, called an angle gather. With the correct velocity
model, these angle gathers are independent of angle.

To construct these angle gathers, we use the wave-equation angle transform, Awe, as described by Stolk
and de Hoop (2004b). Here, in place of Awg we use the notation Awg, where

(Awed)(z,2,p) = 77 'RsE7'Q- 5 (2) ' Q- - (2) T H(0,2)* Q% 4, (0)"'Q~ ,,(0) ' D; *d, (109)

with p the slowness vector. We define ), as the pseudodifferential operator compensating for amplitude
effects. Its symbol is derived in Proposition 3.2 of (Stolk & de Hoop, 2004b). We also introduce R3, through

R3 : g(za S, ’I",t) = (R3g)(z’z1p) = /R" 1g(z’£ - %7“’ + %:ph)X(z’z:h) dh’ (110)
where h = £5% and x is a pseudodifferential cutoff with compact support containing the point A = 0. Note
that Rz is a restriction operator, its properties are described by Stolk and de Hoop (2004b); it takes the
place of R; and Ry used previously. Applying the Awg operator to data results in a family of images,
parameterized by p. In this construction, the data (Awed)(z, z, p) are independent of the parameter p under
a number of assumptions. One of these assumptions is that the data consist of only primary events. First-
order internal multiples will violate these assumptions and thus will give contributions to (Awed)(z, z,p)
that do depend on the parameter p.

In the series solution for V', we can use the angle transform to construct a series of solution families,
dependent on the parameter p. From the singly scattered term (74), we get the reconstruction for a;

«0,1»(2, J:,p) = (AWE d)(zaz>p)a (111)

where we use the notation {(-)) to denote an estimate obtained through the angle transform. We know that
this can be written as

Ywe(z, z,p, Dz, Ds,0)(a) = Awed, (112)

(Stolk & de Hoop, 2004b) where ¥wg is the composition of all of the pseudodifferential operators in (94),
transformed via pullback into the angle coordinates.

The third-order contribution comes from (ds). Applying the wave-equation angle transform in place of
the inverse from (94), we arrive at the following analogue of (108)

{as)(z, z,p) = (Awe (d3))(2, =, p) (113)

Again, {(a3))(z, z,p) should not be interpreted as a true medium contrast, but rather as a correction term
to {a1)). Recalling from (48) that Vi and V3 have opposite sign, our best estimate of a comes from

(@) = (a1} — (as))- (114)

Although it is possible to subtract the two angle gathers, {a1)) and {{as)), (114) does not necessarily give
a good estimate of a. This is because, although (112) assures us that {(a1)) is a pseudodifferential operator
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Figure 11. Two different situations contributing to the third-order term are shown in (a) and (b). The three solid
curves are isochrons corresponding to the three singly scattered data points contributing to a third-order scattering
event. The dashed curve is the corresponding single-scattering isochron (i.e. the same source and receiver positions
and travel time as the triply scattered event assuming single scattering). The solid ray is the true travel path and the
dashed rays illustrate the additional travel used to write the triply scattered data in terms of three single scatters.
In (c) we show a triple scattering contribution difficult to distinguish from a singly scattered event (dash-dot ray),
in data space, since the surface positions and initial slopes are the same. In (d), a contribution that violates our
assumptions is shown; this is a doubly scattered event that would be recorded at the surface.

analogous contributions (Hron, 1972) will not pose a problem; the subtraction, {(as)) — {(a1)) will result in
an amplitude correction. The event shown in (d), is not accounted for by our theory. The event shown is a
doubly scattered event, and thus will contribute to a2, which is not estimated here. Events like this make an
important contribution to seismic data, especially near salt. However, the contribution from the majority of
doubly scattered events is lost to the interior of the Earth. Such contributions are therefore more important
for transmission experiments than reflection experiments like those studied here.

In Figure 12, the triple scattering isochron is shown. This isochron represents all points in the subsurface
which could contribute to a particular point in the triply scattered data. In (a), points from the first scattering
point at (22, s2,72) are shown; the points in (b) are from the third scatter at (z3, s3,73). These two plots are
mirror images of one another as expected from reciprocity. The points shown in (c), mark the position of the
central scattering event at (z1, ms, m,). In (c), the points do not cluster on lines like those in (a) and (b).
This scattered distribution of points fills the interior of the corresponding single scattering isochron (dashed
line). Thus we observe that while singly scattered data at a single source, receiver, and time sample the
subsurface along an ellipse, triply scattered data at the same source, receiver, and time sample the entire
interior of the same ellipse.

The algorithm described above requires knowledge of the velocity model to the depth z; of the up-
to-down scatter. This knowledge is necessary to compute d, when the traveltime monotonicity assumption
is not valid. In addition, an adaptive subtraction technique is required to compensate for differences in
illumintation between the singly and triply scattered data. In other words, a technique must be developed
to subtract {{as)) from ((a1)) in a way that is robust to differences in the subsurface sampling between the
singly and triply scattered waves.
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symbol in or near meaning
C (19) dissipative term
L,G+,P (19) same as above with dissipatitive term
excluding horizontal propagation
0 operator in the background medium
4- difference between operator in true and background media
a=2cy 36c (24) medium contrast
v (34) contrast source
S+,+ (34) reflection/transmission operators; elements of the V matrix
% (38) V without the D?
R (43) restriction operator
Mo = RQ~ 1L, (43) parametrix of one-way equation restricted to acquisition
surface and returned to the original second order system
dy (44) single-scattered data
F (44) single scattering modeling operator
Vim (V =46P) (48) contrast operator of order m in the data
N (45) normal operator
d (48) data
duy,j (62) wavefield after j scatters going in the + direction
tso (62) source time
g (62) variables of integration over source parameters
2j (62) 40 datum (see Figure 6)
$j, T (62) §*0 source/receiver (see Figure 6)
T (62) lateral position at j*® datum, generally z; = s; = r;
ct (64) components of contrast source
tro (65) total single scattering traveltime
t1 (65) start time of single-scattering receiver ray
Ei, E; (69) wave coupling operators
to (70) zero time at contrast for single scattering, at z2 in triple scattering
t (71) convolution variable
H (73) Green’s function convolution operator
ta (75) Figure 7 time from so through s2,72 to m,
Mg, My (76) lateral position of upward scatter (see Figure 6)
t3 (76) Figure 7  to plus time from m,,ms to s3,73
t4 (77) Figure 7  total time on triple-scattered ray
23 (79) convolutional variable, equal to time from ms,m, to s3,73
t3o (79) zero time at contrast at z3
tmo (79),(88) zero time at contrast at z1
o, (80) Figure 7  time from m/ to m,
tmt, (82) Figure 7 time from m} to m,
ty (83) convolutional variable, time from m/ to s3,r3
tp =ta +tm: (85) Figure 7  time from so through s2,r2 to m/
w (86) convolution of two ‘data’ sets
w (87) integral of w with respect to 22 and z3
bt =t + b, (88) Figure 7 time from m} through ms, m, to m.
K (90) downward continuation forward modelling operator
Ry (91) restriction operator, inverse of E; 2
=, ¥y and ®(z,x,D,, D;) (94) pseudodifferntial operators to correct for
amplitude affects
() (95) estimate of quantity, for a using traditional inverse
di(z1;s,7,1) (99) single-scattered data with scatters only
below the z; level
(D{a))(z1,s,7,t) (99) data with scatters only above the 21 level
Ry (102) R2 operator acting in the ' variable
m3, m (102) surface points for imaging at z;
t,,0 (102) time from mQ through ms, m, to m2
d} (104) single scattered data without integration over z;
AwE (109) wave equation angle transform
J (110) jacobian
R3 (110) operator to map (z,s,r,t) to (z,z,p)
h (110) half-offset
X (110) pseudodifferential cutoff about h = 0
(©) (111) estimate of medium contrast using angle transform
YwE (112) composition of pseudodifferential operators
P (112) slowness vector
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ABSTRACT

Diffracted multiples can be a problem in marine surveys since these waves
appear in seismic data as a curtain of noise that obscures primaries. In this
work I present a theory to suppress diffracted multiples that is based on a
two-step process. The first step consists of the estimation of the scatterers near
the sea-bottom. In the second step the reflections from the free surface are
removed. There are reasons to believe that theoretical advances in the field of
multiple suppression, as presented here, are of limited value unless limitations
in the data acquisition can be overcome.

Key words: volcano monitoring, natural hazards, deconvolution

1 INTRODUCTION

Diffracted multiples are a major problem in areas with
a rough sea-bottom, such as the Orme-Lange field, be-
cause the diffracted multiples obscure primaries that are
the main target of the survey. The travel time curves
of the diffracted multiples are steeper that those of
the diffracted primaries, often to the extent that the
diffracted multiples are aliased and show up in seismic
data as a curtain of noise. Standard multiple elimination
techniques cannot cope with these incoherent multiple
diffractions, especially when the multiple elimination is
carried out in the wavenumber domain, e.g. Verschuur
et al. (1992).

In this paper the theory for the suppression of
diffracted multiples is formulated as a two-step process.
In the first step the scatterers near the sea-bottom are
estimated, in the second step the reflections from the
free water surface is removed (Noah’s deconvolution (Ri-
ley & Claerbout, 1976)). The first step is based on a
data-fitting procedure of the diffraction integral using a
time window of the data that primarily contains the pri-
mary water-bottom diffractions. The removal of the free
surface is formulated using the technique of Wapenaar
et al. (1996).

It is questionable, though, if theoretical advances
are sufficient to achieve a satisfactory suppression of
multiple diffractions. These waves are likely to have
bounce points at the free surface that may be far re-
moved from the employed recorders, and the data that

State C State C’ State D
no free surface no free surface free surface

C(x,xc)] 1Sc5(x—xc) C’Q(,xC)I 1SC8(x—Xc) D(x,xp) ir"gg';‘z;

Figure 1. Definition of the corrected state C (without free
surface and without scatterers), the intermediate state C’
(without free surface but with scatterers), and the data state
D (with a free surface and with scatterers). The scatterers
are indicated by black circles.

are needed to solve the integral equation for the multiple
suppression may not have been recorded.

2 COMPARING THREE DIFFERENT
WAVE STATES

The basis for the suppression of diffracted and spec-
ular multiples forms the comparison of three different
wavefields as shown in Figure 1. In this paper I follow
Wapenaar et al. (1996), and decompose the wavefield in
upcoming and downgoing waves. The pressure field in
the water can be written as

»=(37) 8

where p; denotes the downgoing waves and p_ the up-
coming waves.




developed for this problem (Kennett, 1979; Riley &
Claerbout, 1976; Verschuur et al., 1992; Weglein et al.,
1998; Wapenaar et al., 2002). In this section I reformu-
late the theory of Wapenaar et al. (Wapenaar & Grim-
bergen, 1996; Wapenaar et al., 2002) adapted to the
wave states shown in Figure 1. The subsurface medium
is the same in the D-state and the C’-state. Following
equation (31) of ref. Wapenaar et al. (1996), these states
are related by the following representation theorem:

/ pg, NPDnzdsz = / (pg/ NSp + Sgl NpD) av s
v \4 (6)

where the vector S contains the upgoing and downgoing
wave components of the source, and where the super-
script T' denotes the transpose. The matrix N is given

by
N=(_°1 (1)) )

The bounds 9V of the volume V in expression (6) are
horizontal. For this reason, only the z-component of the
outward pointing unit vector appears in the left hand
side (6).

In the following I take the upper boundary of the
surface just below the sources that excite the wave-
field. At that boundary n, = —1. Since the boundary
is placed just below the sources, the sources are out-
side the volume and the right-hand side of (6) vanishes.
The lower boundary is placed at infinite depth, so that
it does not contribute. Inserting definition (7) and us-
ing the representations (2) for the state C’'and (3) for
the state D gives (after division by the source spectrum
Sc),

D(XC,XD) —SDCI(XD,Xc)

—rSp [ C'(x,xc)D(x,xp)d’x = 0.
(8)
By reciprocity, C'(x1,x2) = C’(x2, x1). Only the source
spectrum Sp appears in this expression, the subscript
D in the source spectrum is suppressed in the following.
Using this gives, with equation (4),

D(xc,xp) — S{C(xc,xp) + H(xc,xp)}

—rS [{C(xc,x) + H(xc,x)} D(x,xp)d’x = 0.
(9)
Before analyzing how this expression can be used to
suppress diffracted multiples, let us first interpret this
expression in terms of scattering diagrams. In a short-
hand notation, the previous expression can be written
as

D=S(C+H)+rS(C+H)D. (10)

The products in this expression should be interpreted
according to the notation of equation (9); hence the
products entail an integration over the free surface. It-

Suppression of multiple diffractions 271

C H rCC
Figure 2. All first- and second-order scattering events in the
expansion (11). The scatterers are indicated by black circles.

rCH rHC rHH

erating equation (10) gives the following expansion:
D =S8(C+H)+rS*(C+H)(C+H)

+r’S*(C+H)(C+H)(C+H)+---

(11)
= 8C+ SH +rS°CC

+rS?CH +rS*HC +rS*HH + - -+

The different terms in the last line are depicted in
the scattering diagrams of Figure 2. Each free-surface
reflection is associated with a factor r. Each diffraction
H is depicted by the scattering by a black circle. The
reflections from the subsurface and the specular reflec-
tions of the sea bottom that are accounted for by the
response C are denoted by a scattering event without
a black circle. It follows from Figure 2 that all multiple
scattering events where waves are reflected upward by
the scatterers are accounted for. Multiple diffractions as
well as peg-leg multiple reflections are contained in the
series (11). This means that the integral equation (9)
accounts for these multiple scattering paths as well.

3 SUPPRESSING THE DIFFRACTED
MULTIPLES

In the integral equation (9), the data D have been mea-
sured and are thus given, whereas, the source spectrum
S and the diffracted waves H are unknown. The goal of
the procedure is to obtain the cleaned wavefield C. A pa-
rameter count shows that it is impossible to determine
S, H, and C from this single equation. By using dif-
ferent time windows, however, these different unknowns
can be unraveled.

The estimation of the source spectrum S is exactly
the same as in existing procedures for multiple elimina-
tion (Verschuur et al., 1992; Ikelle et al., 1998). These
references show how the source spectrum can be es-
timated and how this estimate can be iteratively im-
proved while eliminating successive orders of multiples.

The estimation of C and H can be unraveled by
applying a time window to the data that starts after
the first water-bottom reflection and ends before the
first water-bottom multiple, as shown in Figure 3. In
the figure the window is indicated by dashed straight




moval of diffracted multiples than for the removal of
multiples from near-horizontal reflectors. In the latter
case, and for small reflector dips, the wave paths of mul-
tiples don’t move far from the vertical recording plane.
This means that the surface bounce point of the mul-
tiples often lies within, or close to, the streamer array.
If needed, an interpolation between the streamers can
then be used to carry out the surface integration needed
in the multiple elimination. For diffracted multiples the
multiples are likely often associated with wave propa-
gation some distance away from the recording plane,
and an acquisition geometry based on streamers fails
to collect the data necessary to carry out the surface
integral needed for the elimination of diffracted multi-
ples. Thus, the elimination of diffracted multiples can-
not be achieved with theoretical advancements alone,
but rather requires changes in the acquisition geometry
in marine surveys.
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