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ABSTRACT 

Dip moveout (DMO), alternatively known as transformation to zero offset 
(TZO) and migration to zero offset (MZO), is a process that transforms data 
collected at finite offset between source and receiver to data collected at zero 

offset between source and receiver. The kinematic validity of DMO processing has 

been well established. Furthermore, the dynamical validity for planar reflectors 

has been established in earlier studies, as well. This means that the traveltime 

and geometrical spreading terms of the finite offset data are transformed to their 

counterparts for zero offset data, while the finite offset reflection coefficient is 

preserved. 

The purpose of this study is to extend the dynamical validity to the case of 

curved reflectors in the two-and-one-half dimenionsal limit. That is, we show 

that the amplitude factor attributed to curvature effects in finite offset data is 

transformed by this processing to the corresponding curvature factor for zero 

offset data. We also show how processing a second DMO operator allows for 

the extraction of the cosine of the preserved specular angle, a necessary piece of 

information for AVA analysis.     
  

INTRODUCTION 

Dip moveout (DMO) processing, also know as transformation to zero offset (TZO), 
is a technique for preprocessing traces of data at finite offset to produce a pseudo zero 

offset data set. In this study, we consider DMO/TZO processing for a common (fixed) 
offset data set in a constant background propagation speed acoustic medium. 

Current formalisms adequately map the arrival times of reflection “events” in the 

transformed data set—the kinematics of the data set—but analysis of the effect of 

this processing on amplitude—the dynamics—of the data set is still incomplete. That 

is, given model data at finite offset, earlier work Liner [1990, 1991], Bleistein [1990], 
Black, et al. [1993], Zhang [1988], have provided an adequate analysis for the case 
of analytical model data for a horizontal or dipping planar reflector. However, the 
analysis of the effect of curvature of the reflector on the output of TZO processing 

has not been determined to date. That is what we present here. 

We note that a different approach to this problem is being pursued by Fomel 

[1995a, 1995b], in the context of a more general offset continuation analysis. That 
method is based on a kinematically derived wave equation in offset, midpoint and 
time. Thus, by the nature of its derivation, it properly predicts the transformation 

of traveltime. In fact, this approach predicts the same amplitude result as we ob- 

tain here. That is, Fomel’s offset continuation via a differential equation produces 

the same transformation of curvature effect from finite offset to zero offset as this 

integral formalism produces. However, that should be viewed as fortuitous at this 
point. The derivation based on kinematics alone—essentially, a differential equa- 
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tion for wave propagation predicted from a dispersion relation—is not guaranteed to 
predict a “correct” amplitude. 

Another approach to this problem is provided by Tygel, et al., [1995b]. This work 
is based on the theory presented in an earlier paper, Tygel, et al. [1995a], relating 

the curvature of isochrons to the curvature of reflectors. These results are equivalent 
to ours. 

The processing formula we derive here is the result of cascading an inversion 

formula—to derive an earth model from the common offset data—with a modeling 

formula—to derive a zero offset data set from the derived earth model. Both processes 

are integrals. The former is an integral over the input variables of the data set (time 
and midpoint, or frequency and midpoint, or frequency and midpoint wave number, 

or time and midpoint wave number); the latter process is an integral over the spatial 

coordinates of the model. The result of this cascade is to produce an output in any 

of the types of variables listed previously for the input. Neither the input data nor 

the output data of the cascaded processes depend on the model variables; only the 
cascaded operators depends on those. Thus, the integrations in those spatial variables 
can be carried out asymptotically to deduce a processing formula to map the finite 

offset data to a zero offset data set, solely as an integral over the input variables. 

There are five main constituents to geometrical optics data: 

1. the phase, consisting of the frequency multiplying the two way traveltime from 

source to reflector to receiver on a specular ray path; 

2. the geometrical optics reflection coefficient at the specular incidence angle; 

3. the source signature; 

4. an amplitude factor characterizing geometrical spreading based only on the dip 

of the reflector—a multiplier that is the same for planar or curved reflectors; 

5. a multiplier to account for the geometrical spreading effect due to curvature of 
the reflector. 

Since all previous analyses dealt with planar reflectors, the transformation via 
TZO processing of the finite offset curvature effect has not previously been analyzed 

for these types of integral formalisms. Here, in summary, are the known results for 
the first four effects. 

1. The finite offset traveltime is mapped to the zero offset traveltime. 

2. The finite offset reflection coefficient is preserved and not replaced by the zero 
offset reflection coefficient. More precisely, the zero offset ray shares the specular 
point with one! finite offset source/receiver pair. The reflection coefficient at 

the incidence angle of that specular source/receiver pair is preserved. 
  

1 maybe more than one for a curved reflector
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3. The bandwidth of the source is scaled by the cosine of the incidence angle and 

the source signature in the frequency domain is compressed into that smaller 

bandwidth. We remark that the compression in the frequency domain leads to 

the same resolution on spatial output for the migration/inversion of the finite 

offset data or the mapped zero offset data. 

4. The finite offset geometrical spreading that characterizes the dip of the reflector, 

alone, is mapped to the corresponding zero offset geometrical spreading. 

The new result of this paper deals with the last item of our constituent list. 

We find that the finite offset geometrical spreading effect due to curvature of the 

reflector is mapped to the zero offset geometrical spreading effect. In fact, calling 

this a “spreading effect” is somewhat misleading; it is spreading when the reflector is 

convex up, but it is compressing when the reflector is convex down. 

‘Two-and-one-half dimensional. 

The formulas that we use for inversion and modeling are two-and-one-half dimen- 

sional (2.5D). This is a descriptive term for our approach to coping with a single line 

of data over a three-dimensional earth. We suppose that there are no variations in the 

out-of-plane direction below the vertical plane determined by the line of data. In this 

case, every parallel line of data would be exactly the same. Thus, having gathered 

one line of data, one has actually carried out an areal survey along parallel lines. Of 

course, we do not believe that the subsurface actually has this structure, but it is 

often approximately true and it seems to us that we can do no better with a classical 

single-line survey. 

Conveniently, we have a 3D inversion formula that can process this type of common 

offset data on parallel lines. For the case under consideration, only the operator kernel 
depends on the out-of-plane variable; the data does not. Therefore, the out-of-plane 

integration can be computed in advance, leaving an inversion formalism that requires 

only an integration over the line where the data was gathered. 

This is a specialization of a 3D inversion formula. Hence, it includes 3D prop- 
agation effects in determining a 2D velocity perturbation. It is this hybrid 3D/2D 
character that has led to the designation, 2.5D. 

The Born approximation. 

Both our inversion formula and our modeling formula are based on the Born 
approximation, which is a small perturbation approximation. The bandlimited nature 

of the data and the experiments we do suggests that we should primarily look for the 
reflectors in the earth, as opposed to seeking the slow variations of earth parameters 

by these methods. Because of the use of perturbation theory, one would expect the 
resulting formalism to be valid only for small perturbations in earth parameters. 
However, we have found a way to extend our results beyond the limit of the small 
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perturbation assumption. To do this, we apply our results to geometrical optics data 
or Kirchhoff approximate data. These are high frequency models, not restricted to 
small perturbations in parameters across reflectors. For our inversion formalism, we 
use asymptotic analysis on the application of our integral operators to these high 
frequency data. What we find is that the output is actually linear in the geometrical 
optics reflection coefficient, rather than linear in the perturbation. 

This interpretation in terms of Kirchhoff approximate data dramatically extends 
the range of validity of our inversion formalism. The reflection coefficient is not 
restricted to small changes in earth parameters across the reflector. Thus, if we 

adequately describe the medium above the reflector, the inversion not only locates 

the reflector accurately, but it also provides a good estimate of the reflection coefficient 

at some distinguished incidence angle with respect to the normal. Further, we can 

extend the method to estimate that incidence angle, as well as other parameters of 
the geometry of the source/receiver ray trajectories to the reflection point. 

The “distinguished angle” is the one for which some ray pair from source and 

receiver to reflection point are specular at the reflection point. An important feature of 

this processing is that we can determine this distinguished angle without determining 

the distinguished source and receiver positions. 

We repeat this type of analysis here. That is, we apply our TZO formalism to 

Kirchhoff approximate data for a single curved reflector. Furthermore, the same 

“trick” as we use in inversion to identify the specular angle will be used here to deter- 

mine the preserved incidence angle of the reflection coefficient after TZO processing. 

We explain our results in more detail with the aid of Figure 1. In this figure, the 

zero Offset point rp and the finite offset source/receiver pair, y = h, share the same 

specular point, (x(s),2z(s)). For a single specular point where the reflector is convex 

up? as shown in the figure, the finite offset reflection data is given asymptotically by 

F(w)R(cos 4s) po Cos? Ag . 
= _)/c}. 1 (yo ag Pints +r-)/e. (1) 

In this equation, F(w) is the source signature and R(cos@s) is the geometrical optics 
reflection coefficient at incidence angle 65. In the context of our list above, (r,+7r_)/c 
is the traveltime from source to reflector to receiver at propagation speed c; the factor, 

1/(r++r_) is the planar geometrical spreading depending on the dip of the reflector, 
only, while the factor, 

Po Cos? Os 

To + py cos? Os’ 

is the spreading effect due to curvature. Finally, po is the radius of curvature at the 
specular point of the cross sectional curve that defines the reflecting surface. 

  

  

2This restriction is removed in the text. Here, this case is discussed for ease of exposition.
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(x(S),z(s)) 
Fic. 1. Specular geometry for TZO processing. 

The corresponding zero offset data is 

F(w)Rn —Po__ exp{2iwro/c}. (2) ,W,0) = 
u(ro, 0) 8179 To + Po 

Here, we use the notation R, = R(cos0) = R(1) for the zero offset (normal incidence) 
reflection coefficient. The two-way traveltime is now 2ro/c and the geometrical dip 

spreading effect is now 2r9. Note that the effect of curvature at finite offset is expressed 

in terms of ro, the zero offset distance to the reflector, and that it differs from the 

zero offset curvature effect only in that the effective radius of curvature is pp cos? 05 

in the finite offset case. 

We find that the output of our TZO processing is 

F (wo sec 0s). R(cos As) Po 

8779 To + Po 
  ug(x9, Wo) = exp{2iwrg/c}. (3) 

A comparison of equations (1), (2) and (3) will confirm the list of features of the 
TZO processing outlined above. For planar reflectors, one need only take the limit 

aS po — 00 in all three equations above to obtain the corresponding results; that is, 

replace the geometrical curvature factor by unity in each formula. The traveltime 

transformation, the geometrical spreading dependence on dip, and the preservation 

of the angularly dependent reflection coefficient by TZO are as expressed in equations 

(1) and (3). Thus, the earlier results are subsumed under the more general results 
presented in this paper. 
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We noted above that there are choices of input variables and output variables 

to be made in developing a TZO formula. For theoretical purposes, it is easiest 

to analyze the transformation from space/frequency input data to space/frequency 

output data. That is because the asymptotic modeling data that we use is expressed 

in these variables. Thus, the TZO formula derived here is 

toth h? . 
Ug(Xo,Wo) = =; [du [do vexp {io o/c} 

(4) 

In this equation, 

fo = —2p, p= (to—y)? + (2 — Ih, 

P= Vh? — (zo —y), v = w/wy. 

The apparent singularity here at y = z9 + h is discussed below. 

(5) 

In the next section, we derive the TZO formula. The derivation leads to a mapping 

of common offset data in the spatial/frequency domain to zero offset data in the 

spatial frequency domain. The rescaling of frequency is a natural outcome of that 

derivation. We also present in that section our counterpart to Hale’s DMO, mapping 

wave number/temporal data to spatial/frequency data. 

For Hale DMO, we need to express uo(rp, Wo) in terms of the observed data in the 

(k, t)-domain. To derive that result from (4), we first set 

u(y,w,h) = = / dkdtU (k, t, h) exp{i(ka + wt)}. (6) 

This result is substituted into (4). Now the data does not depend on w or y and those 
two integrals can be carried out by the method of stationary phase. The result is 

  

1 f¢ dkdt, 2k7h? . 
uo(Zo, Wo) = — | 7A [ + oe U(k, t, h) exp{iuw 9}. (7) 

Qn wet? 

In this equation, 

ta = 2 —(2h/c)?, A= V1 (kh/wotn)?, O = kro +uotnA (8) 

The result (7) differs from Hale’s through the factor in square braces under the integral 
sign. The differences in alternative forms of Hale-type processing have been discussed 

in other papers, such as Black, etal. [1993] and Fomel [1995b]. This integrand has 
a singularity at t = 2h/c. In fact, this corresponds to the singularity at y = 49 +h, 
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above. However, for reasons discussed below, we can be assured that the data, U, 

itself, is zero near there and, hence, the total integrand is not singular in this limit. 

In the section following the derivation, we introduce Kirchhoff approximate data 

for a single reflector and derive the geometrical optics data, explaining along the way 

some special issues with which one must be concerned. 

In the fourth section, we describe the application of our formalism to Kirchhoff 

data from a single curved reflector and derive the result presented above. We do 

this for the space/frequency to space/frequency mapping. However, the asymptotic 

equivalence of all the forms of TZO assures us that the same result is true for any of 
the mappings. 

As an outgrowth of this last discussion, we are able to show how, at little additional 

CPU cost, one can simultaneously obtain an estimate of the cosine of the specular 

angle of the preserved reflection coefficient. One needs only to keep two running sums 
whose summands differ in one factor. The ratio of the two outputs then gives the 
unknown cosine. 

TRUE AMPLITUDE DMO/TZO: DERIVATION 

We describe here the derivation of a true amplitude mapping of finite offset data 
to zero offset data. The formalism starts from an inversion formula to map common 

offest data to a model and then a modeling formula to map the model to zero offset 

data. Thus, we begin with a brief outline of our inversion formalism. 

The fundamental idea is to start with a common offset data set and write down 

an inversion formula for the perturbation in velocity. So, we start from the velocity 

representation, 
1 a= Sil +a]. (9) 

In this analysis, the unknown velocity, v, and hence, the perturbation, a, as well, 

are functions of two spatial variables called £,, £3, below. The reference speed, c, is 

assumed to be a constant. The data set is gathered on a source/receiver array at 
common offset, 2h, around a variable midpoint, y. 

A symbolic representation of the formalism. 

The basic idea behind our approach to the analysis is to use a cascade of two dif- 

ferent formulas. The first of these is the inversion formula for determining a from the 
common offset, constant background, data set. The second is a modeling formula for 
determining zero offset data from an “earth model” —values of a and c. Symbolically, 

then, given a data set, u(y,w,h), we invert to find a(£,,&3) by applying an inversion 
operator, 

a(é:,&3) = I, [u(y,w, h)]. (10) 
In our formalism, this is an integral operator, integrating over y and w, with a kernel 

that is a function of y, w, h, €, &3. In the present study, we only consider mapping from 
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a fixed offset h to zero offset and hence suppress the h—dependence of the inversion 

operator, henceforth writing Z instead of Zp. 

Given a solution a(€,,&3), we know how to do modeling to zero offset (or any 
other offset). Symbolically, 

Ug(Zo, Wo) = M [a(&:, &3)] - (11) 

This is also an integral operator, integrating in the variables £), €3, with a kernel that 
is a function of £1, €, Zo, wo. 

The cascade of these two operators produces an operator that maps u(y,w,h) to 

Uo (x 05 wo): 

uo(a1,w) = M Iz [u(y,w, a] |. (12) 

Note that on the right, the combined kernel of the two operators is a function 

of y,w,h, &, 3, 2o,Wo with integrations over y,w,€,,&3, while the data only depends 

on the variables, y,w,h. Thus, it is possible to simplify the operator by exploiting 

stationary phase to carry out the integrals in £,, £3, thereby greatly simplifying the 

resulting operation by reducing it to just integration over the variables, y,w, that 

appear in the data. 

The formulas that we use here for inversion and modeling are two-and-one-half 
dimensional (2.5D) formulas that are derived via perturbation theory, often called 

the Born approximation in the literature. 

The formulas for modeling and inversion. 

Here, we present the formulas for inversion and for forward modeling. We begin 

with the inversion formula for taking data expressed in midpoint/offset coordinates, 

(y,h) and producing an inversion for a(€,, &3). 

8 3 +99 alts) = See | dorset 
31g 

  

  | ia exp {—iu[r, + r]/e— ix sgn(ww)/4} u(y,w,h), (13) 

%e = V(éi-—yth)?+&, rg= V(&i-—y—h)P? +; 

See Sullivan and Cohen [1987]. Some modification of their inversion result is necessary, 

since they provide a formula for the reflectivity, 3(€1,&), rather than for a(£;, &). 

Next is the formula for the forward modeling of zero offset data in 2.5D using the 

Born approximation.
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3/2 
u(zo,wWo) = 3 5 | [a0 (1, 6) en 

(14) 
ro = [Er — 20]? + G. 

To carry out the analysis outlined above, we cascade these two formulas to produce 

a formula that maps the data u(y,w,h) to the data u(z9, wo): 

  

  

3/2pix/48gN(wo) a 472 

(15) 
dw . . 

f er h) exp {iwp®/c — im sgn(w)/4}. 

In this equation, 

® = 2ro—v[r. +74], 

= 2W(é-ao?+8-v|Va—v+ he + 8+ Vla—v—hP +], 
(16) 

vy = w/w. 

Asymptotic analysis. 

In our approach, the next step is to carry out the integrations in £; and &3 in (15) 
asymptotically. When that is done, the result will be an integral operator on the 

data u(y,w,h) involving integration only over y and w to produce an expression for 
u(zxo, wo). 

The condition of stationarity is that 

0 = Ve@ = 27 — fF, + Fy]. (17) 

In this equation, 7p is a unit vector from zo to the interior point, (&, 3), and similarly 

for the other vectors. 

The solution of equation (17) is facilitated by interpreting this equation geomet- 

rically. The vectors, 7p, are normal to a circle centered at ro. The vectors, v[7, + 79], 

are normal to an ellipse with foci, yh. Both of these normals face downward. Thus, 

no stationary point can exist unless 

vy>0, sgn(w) = sgn(w). (18) 
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yh Xo yth 

    
2p 2cos0 

Fic. 2. A stationary point in (€1,€3) for given values of the variables, zo, y + h, w, 
and wo. The last two variables do not appear in the figure, but determine 6 through 
the equation, cos @ = wo/w. The ellipses have foci yh and the circles are centered at 
xo. The smaller ellipse/circle pair satisfies the stationary phase condition on opening 
angle, while the larger pair does not, nor do any other ellipse/circle pair with the 
same foci and center. 

Consequently, the w-domain of integration will be restricted below to the half line 

on which w has the same sign as wo. For the complementary domain, the integral is 

asympotically of lower order in wo and, presumably, smaller. 

Returning to the geometry, a known fact about the normal to the ellipse is that 

its extension across the axis of the ellipse passes between the foci. (To confirm this, 

simply draw the rays from the foci to the ellipse and realize that the normal passes 

between them.) Equation (17) states that the two normals must be colinear. Thus, 

the normal to the circle centered at x9 must also pass through the axis between the 

two foci.? Therefore, no stationary point exists unless 

y—-h<a2y<yt h, 

or, equivalently, 
Igo -~h<y<a4ayth. 

In this latter form, this condition becomes a constraint on the domain of integration in 

y. When there is no stationary point, the asymptotic expansion of (15) will be of lower 

order in w and, again, presumably, smaller. Thus, we neglect the complementary part 

of the domain of the y-integration, below. 

Now, we can confirm these geometrical results analytically. First, take the dot 

product in (17) with #, and then with 7, to conclude that 

To° Ts =T0°Tqs 

  

3Note that the reflector that “produced” the data arising from this point shares its tangent with 

the circle as well as with the ellipse. For zero offset, this “normal” ray is the specular ray, as well. 

10
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that is, 7) makes equal angles with 7, and 7,. Call that angle 0. Since, the sum, 

T, + fg, lies along the normal, note that the opening angle between the rays is just 

20. By equating magnitudes in (17), one finds that 

2 = 2I\o| = v|[7, + 7,]| = 2vcos 4. (19) 

From the first and the last of these, and from (16) we find that 

Lo _ cos 6. (20) 
vow 

So, to find stationary points as functions of y, h, x9, w, wo, proceed as follows. Fix 

w to be on the half line where sgn(w) = sgn(wo). Draw the confocal ellipses and 
circles. On each ellipse, pick out the points where cos? = wo/w and check if the 

normal points back to xo. When it does, that is a stationary value of (&1, &3). 

Remark 

Suppose that there is nonzero data at y + h at the time, t = (r, + r,)/c. 
In the geometrical optics limit, that data could only have arisen from a 

reflector sharing its tangent with some point on the ellipse, r, + ry = ct 

Thus, the ellipse is the envelope of all of the candidate specular points at 
the travel time t. 

Stationary values. 

We need more detail about the stationary values of the variables in order to 

evaluate the integral (15) asymptotically. Figure 3 will be useful in explaining the 

h-(y-xq) h+t(y-X9) 
  

  

Fic. 3. Triangles relating lengths when the stationary phase conditions are satisfied. 

determination of the variables we need. Note first the three laws of cosines associated 

with these triangles at stationarity: 

11 
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4h? = p24 re ~ 2r,r, cos 20 

(A+ (y— r0))” = r + re — 2rgro cos, 

(h—-(y—29))®? = 1241732 — 2r,rqcosd. 

Also, note that from the law of sines applied to the two smaller triangles, 

Ts _ Tg 

—(y—20) h+(y—20) 

Here we have used the fact that the angles opposite the sides of length r, and ry are 

supplementary and, hence, have the same sine. 

  

By using this result in the first law of cosines above, we can obtain a single equation 

for r, or rz and solve. In doing so, we use the relationship, (20). We find that 

vhlh — (y — 20)] vh[h + (y — 20)] 
rT, = -— ‘re _——— 21 : : (21) 

In this equation, p is given by (5). We can then use the second or third law of cosines 

above to find ro: 4 , , > 

ry = Dy te) LP (22) 
Pp Pp 

with P defined by (5). Now, we can evaluate ® in (16). We denote this stationary 

value by ®o. The result is 

% = —2p, 5) 

as stated in (5). 

We need to compute the Hessian of the phase, as well; that Hessian is just the 

Jacobian of the derivatives in (17). A nonzero Hessian implies the validity of the 

2D stationary phase approximation and it also guarantees that if a solution to (17) 

exists, it is (locally) unique, as well. That is good enough for us! 

Direct calculation of those derivatives at the stationary point yields 

OG Lr rb gS 

    

  

Po 2(£1 — 20) &-yth &-y-h 

5606 ~ -| 3 -¥ at 43 }} 74) 
Pb — A—m)?  f(i-yt+h? Gi -y— me 
0g 7 r3 r3 r3 , 

  

4 Actually, we used both equations to eliminate the term linear in ro and solved a single linear 

equation for r2. 
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By direct calulation, we find that the determinant of the matrix of second derivatives 
is given by 

  

2 pet | re | _ we 
a608;| ~ Taran” r3r3r9 

(25) 
b = QWwh rg — (ao —y—h)?rd — (xo — y + h)?r?. 

There is no need to evaluate the multiplier of % any further, since its square root 

(which appears in the stationary phase formula) will cancel a corresponding factor 

in the amplitude of (15). A simplification of w, itself, follows directly from the 

determinations of r, and rg in (21) and ro in (22). The result is 

y = —2vh? P* |p. (26) 

We note here that 7 is negative; hence, the determinant of the matrix of second 

derivatives is negative. This means that the eigenvalues of this matrix are of opposite 

sign and the signature of the matrix is equal to zero; we need this fact for evaluation 

of (15) by the method of stationary phase. When we carry out that evaluation, we 
obtain (4). 

The singularity of the integrand in DMO/TZO. 

The endpoint singularity of the integrand in (4) at y = ro +h is only apparent. In 

these limits, the frequency domain integral is zero, as well, to sufficiently high order 

to make the integral convergent. This is difficult to show directly; however, we offer 

the following plausibility argument. 

In the limits in question, the phase, 2u9@o/c % —2wovh/c = —2wh/c, and the 
frequency domain integral is approximately a Fourier transform of filtered data® at 

the time 2h/c. This is the minimum direct arrival time between source and receiver. 
As part of the underlying high frequency assumption, it is necessary that the reflectors 
of interest be “many” (at least three) wavelengths away from the source receiver line. 
Hence, the data is zero for time near 2h/c, the arrival time of the direct wave from 

source to receiver. That is, the w-integral is zero when evaluated at this time and 

there is no contribution from the region near the endpoints in the y-integration. 

Hale DMO. 

For Hale DMO, we need to express uo(x, wo) in terms of the observed data in the 

(k,t)-domain. To derive that result from (4), we first set 

u(y,w, h) = =| dkdtU (k, t, h) exp{i(ky + wt)}. (27) 
  

5We note in passing that the filter here, Jw] = [(—iw)(isgn(w)] represents the causal Hilbert 
transform of the first derivative of the data. 
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This result is substituted into (4). Now the data does not depend on w or y and those 
two integrals can be carried out by the method of stationary phase. The result is 

  

1 + dkdt,, 2k?h? . 
uo (Zo, Wo) Es = | A f + | U(k,t, h) exp{iwp9}. (28) 

In this equation, 

th = ft? —(2h/c)?, A= V1+(kh/uota)?, O = kro +wotrA (29) 

In this form, with the data described in the (k,t)-domain, note that t, = 0 

corresponds tot = 2h/c. Thus, both the term in square brackets and the denominator, 

A, have singularities in this limit with the net singularity being a simple zero in the 

denominator. However, the data is stated explicitly in terms of t here and, as noted 

above, it is zero over an interval of time extending beyond 2h/c. Hence, we need not 

concern ourselves about the singularity of the amplitude. 

Note, however, that the data in (7) is not expressed in terms of the same time 

variable as the integration is. To remedy this, we rewrite 

U(k,t, h) = U(k, ta, h) (30) 

and then rewrite (7) as 

  

1 f dkdt,, 2k?h?] — ; 
uo(Zo, wo) = = | A f + ar U(k, tn, h) exp{iwo9}. (31) 

This transformation of the data amounts to NMO processing, that is, transformation 

to a time that recognizes hyperbolic moveout or time delay for a constant background 

trace over a horizontal reflector. 

MODELING 

In this section, we describe the modeling data that we intend to use to demonstrate 

the validity of the DMO processing formula (4). We start with Kirchhoff modeling 

data for finite offset between source and receiver in a constant background medium. 

This representation of the upward scattered field may be found in a number of sources, 

including Bleistein [1986] and Sullivan and Cohen [1987]. Adapted to the present 

example and notation, this result is 

3xiSEN(w)/4 . r|w| e | R(cos 6;) exp{2iwL/c} fi-[P, + ]ds. (32) 
us(y,w,h) = {J — JigfVE 

c 16x? 

Here, F(w) is the source signature. The other relevant variables in this equation are 

shown in Figure 4; they are defined as follows. 
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(x(S),2(s)) 
Fia. 4. Reflection geometry for the curved reflector. 

e s is arclength along the curve defining the reflector in-plane. 

e nis the upward unit normal on the reflector. 

e ry are distances between the receiver and source points, y-+h, respectively, and 

the scattering point on the reflector, 2(s): 

rz = y[x(s) — (y +h)? + [2(s)? (33) 
  

and 

L = [ry +r_]/2. (34) 

e The unit vectors, #7, point from the surface points to the point on the reflector 

(downward). 

e The angle, @; is the incidence angle of the ray from the source to the reflector, 
measured with respect to the normal to the reflector. Note that this is not yet 

the specular angle; that is, the angle with the reflected ray is not yet equal to 
0,. That only occurs for the stationary value of s, as will be seen below. 

e Finally, R is the geometrical optics reflection coefficient, 

  

cos 6;/¢— 1/4 — 1/c? + cos? 6,/c? 

cos 6; /c + V1/ch. — 1/c? + cos? 6;/c? 
  R(cos 6;) = (35) 
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with 
cos0; = —tt- #4, > 0. (36) 

For future reference, here is the result, (32), specialized to the case of zero offset: 

alw e8*iSEN(w)/4 R(cos@ 24 _ . 

Uo(Zo, Wo) = ae a — Fe) / Meester . Fods. (37) 

0 

In this equation, the variables are as follows. 

© Zo is the zero offset surface coordinate; it is y of (32) for the case, h = 0. 

© ro is the distance between the source/receiver point (19,0) and the scattering 

point on the reflector, (x(s), y(s)) 

ro = y[z(s) — 20]? + [2(s)]?. (38) 

e The unit vector #9 points from the surface point to the point on the reflector 

(downward). 

e Rand 6, are as above in (35) and (36). Here, the requirement of a distinction 

between 6; and the specular angle is more apparent, the specular angle for this 

case will be zero. 

The WKBJ Model. 

We now show how to derive ray-theoretic data from the Kirchhoff approximate 

model data, (32) through (36). The point of doing this is that it will allow us to 

compare the zero offset ray theoretic data with the output of our processing formula 

applied to Kirchhoff data. We derive these modeling results by applying the method 

of stationary phase to the integral in (32). The phase in question is 

6(s) =2L=ry+r_, (39) 

with first derivative, 
$= (7, 4+7_)-e. (40) 

In this equation we use an over-dot to denote differentiation with respect to the 

arclength, s. The unit vectors, #,, point from the surface points y + h, respectively, 

to the point 2(s) on the reflector. See Figure 6. 

The phase is stationary when ® is zero. This condition requires that #4 + #_ 

be orthogonal to the tangent to the curve at the choice of s that makes the phase 

stationary. Since these are unit vectors, it is necessary that they make equal angles 

with the normal vector, %v. We denote by 05 this stationary value or specular value of 

16
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(x(S),2(S)) 
Fic. 5. Geometry relating ry to the zero offset distance, ro. 

  

  
     (x(S),2(S)) 

   
Fic. 6. The dip angle ¢. 
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6,;. Recall that this vector was an upward-pointing normal, while *#; point downward. 

Thus, this opening angle is just 7 — @5 and 

f, +7 = —2ncosGg. (41) 

See Figure 5. 

Define ¢ as the dip angle of the tangent to the reflector. (See Figure 6.) Then, 
use the law of sines to conclude that 

Ta To 

sin(a/2 ¥ ¢) ~ sin[x/2 — (05 + ¢)]’ (42) 

from which it follows that 

1 cos(s+¢) 1 + 1 _ 2cos@s 

T+ rocos@ 7° ry rh r0 
  , (43) 

These identities allow us to relate the travel distance (or travel time) for any nonzero 
offset specular pair of rays to the travel distance (or travel time) of the corresponding 

zero offset ray through use of the specular incidence angle and the dip of the reflector. 

Let us now consider the second derivative of which we can calculate from (40): 

& = (F,4+%_)- 24 (PF, 4+7_)- a. (44) 

In this equation, # is just the curvature vector, K. This vector is normal to the 

reflector curve and points towards the convex side of the curve. By using the result 

(41), we find that 

(#4 +%_)-# = —2R- KcosOs = 2nc089s/ po. (45) 

In this last equation, 

1/po=|Kl, p= sgn(—n-k). (46) 

Now consider the second term in (44). We calculate the derivative as follows. 

  

a Tr a x T-eQ, path | oe BPH Bes 
r T+ rh 

. 1 (#42)? 
T+: = —_—--—_ TT 

T+ Tt 

= = (1 — cos’(a/2 4s) 

cos? 05 

  

T+ 
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Fic. 7. Tangent vector at the stationary point. 

Here, we have used the fact that #, make angles 745 with the normal and therefore 

make angles 1/2 ¥ 05 with the tangent, x. See Figure 7. 

We are now prepared to use these results to calculate the second derivative, (44): 

@ = 2 tcos Os + cos? Os |= + +] 
Po rT, TH 

2 
2cos Og E + cow's] (47) 

Po ro 

2 9 = 21c0s0s [ret nonce 

1 [te tre 1 

VratiVry Fr ~ \ Tyre ry tr 

ji+2 1 
ry + rT ry +7 

___|2cos@s 1 

~ \ rT Ter 

We now have all of the constituents of the integral representation of the upward 

scattered wave, equation (32). After some algebra, we find that 

We also calculate 

    

      

. F (w) R(cos 0s) |tPo cos? Os| 
  — _e!7 : . 4 u(y,w, h) e Sa iro + spo cos? 85] exp{2iwL/c} (48) 

In this equation, 

3 . 
L=(re+r-)/2, = sen(u) [= + Zsen(6)] (49) 

19   

  

   



Bleistein & Cohen DMO/TZO 

all quantities must be evaluated at the stationary point where the unit vectors, 7+, 
make equal angles 65 with %. If there is more than one such point, then the wave 
field is the sum of all such contributions. On the other hand, this result is invalid 
when = 0 at the stationary point. For ys > 0, which occurs when the reflector is 
convex downward or anticlinal at the stationary point, one can verify from the second 
line in (47) that sgn(®) = +1 and — exp{—iy} = 41. 

In the phase of this result, 2L/c = (r4 + r_)/c is just the travel time on the ray 
path connecting the source and receiver with the specular point on the reflector. In 
the amplitude, the factor, 1/[8rL] = 1/[4a(r, + 1r_)] should be recognized as the 
geometrical spreading effect for a planar reflector with the same dip angle as the 
curved reflector at the specular point. The factor, /|~upq cos” 95|/(|ro + 49 cos” As|), 
is a geometrical spreading effect specifically due to the curvature of the reflector. 
Note that as the specular point moves towards a point where the reflector is planar, 
Po —> 00, and this second factor approaches unity. In this manner, the geometrical 
spreading for the curved reflector reduces to that of the planar reflector in this limit. 
The equation of a reflector dipping at angle ¢, is given by 

(x — 2.) sing — zcos¢ = 0, (50) 

where z, is the emergence point of the dipping plane, and, consistent with our 
“righthanded” (z, z)-coordinate system, ¢ is measured positively in a clockwise rota- 
tion from the positive —axis. (Thus, in particular, ¢ > 0 in Figure 6). For this case 
t- is assumed to be far enough to the left so that the specular point is “many” (at least 
three!) wavelengths below the observation point y, and y —h is many wavelengths to 
the right of 2,. 

The limiting form of (48) for the dipping planar reflector is 

R(cos 45) exp{2iwL/c} 

  

= ol 

with 

L= Vv (y — te)? sin? ¢ + h? cos? ¢. (52) 

Also, one can show that, in this limit, the specular angle 05 is determined by 

cosd, = Y= te) sing (53) 
L 

We can further find the limit for a horizontal plane by allowing ¢ ~ 0+ and 
Xe — Foo in such a manner that 

—z,.sing > H, 

where H is the depth of the horizontal planar reflector. In that case u is again given 

by (51), except that now, 

L=VH?+h?, cosés =h/L. (54) 
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The zero offset limit of the result, (48), is also worth noting. Here, the incidence 

angle is zero; the zero offset ray lies along the normal to the reflector and (48) becomes 

ty F (w) Rn Po] 
u(y,w,0) = —e exp{2iwro/c}. 90 

(y ) 8779 ro + upol p{ o/ } ( ) 

In this equation, we have introduced R, for the normal incidence reflection coefficient, 

Cy — OC 

Cy +c , 
mm 
  (56) 

Furthermore, the effect of curvature /|upol/(|ro + “pol), lends itself to an easy in- 

terpretation. The distance along the normal from the specular point to the center of 

curvature of the reflector-curve is given by pp. This is the numerator of the fraction 

here. The denominator is the distance from the center of curvature to the observation 

point. This ratio measures the change in the arclength of a differential circular arc 

centered at the center of curvature, with the numerator being the arclength at the 

specular point and the denominator being the arclength at the observation point. 

Also, it is easier here to interpret the condition that & = 0. This can only occur 

for » = —1, and, as noted above, the reflector curve must be convex-upward or 

synclinal at the specular point. Furthermore, it is necessary that ro = po; that is, 

the observation point must be right at the center of curvature. This is the situation 

when the “buried focus” is right at the observation surface. 

To complete the story of ray theoretical or geometrical optics model data, we 

specialize the zero offset results to the planar dipping reflector as 

F 
u(y,w,0) = FW)Rn op {2iwro/c}. (57) 

8279 

Here, 

m= L=(y- Te) sin g, (58) 

from (52) and R, is given by (56). Finally, for the horizontal reflector, ro = L = H 

and 

u(y,w,0) = Fle) Re exp(2ivHl/¢}. (59) 

Returning to the nonzero offset case (48), once more, we see that the effect of 

curvature is still expressed in terms of the distance to the zero offset point (ro) except 

that now the effective radius of curvature in this factor is py cos? Os. 

Thus, we see the analysis of a “true amplitude DMO/TZO” amounts to determin- 

ing the extent to which the nonzero offset wavefield, (48), is transformed into the zero 

offset wavefield (55). As noted in the Introduction, it is known from earlier results 

that the proposed processing formulas preserve the finite offset reflection coefficient 

while the planar finite offset geometrical spreading effect and travel time are trans- 

formed to the zero offset counterparts. The new result to be shown here is that the 

finite offset curvature effect is mapped to its zero offset counterpart. 
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A PRELIMINARY RESULT 

Below, we will apply the processing formula (4) to the Kirchhoff approximate 
model data for a curved reflector, (32). However, we will first apply the processing 
formula to the dipping planar data, (51-53), because it provides us with some results 
that we will need for the more difficult case of the curved reflector. 

In both cases, we will proceed by applying the method of stationary phase to the 
double integral in y and w appearing in (4). Examination of the model data in (32) 
and (51) reveals that the dependence of the phase in both is simply linear in w. The 
details of the differences in these two modeling formulas only arise when we carry out 
the y-integration. Thus, it is worthwhile to carry out the stationary phase analysis 
in w for both cases as a canonical integral. That integral is 

(n) = [ | WI"YF (w)dw exp {2inro b/c}, (60) 

with the phase here being the sum of phases in the model data, 2wL/c and in the 
DMO/TZO processing operator (4), 2wop; that is, 

W=vlL-—p, v=w/up. (61) 

Below, we will need this result for 7 = 0 in the application of our formalism to geo- 
metrical optics data and for 7 = 1/2 in the application of our formalism to Kirchhoff 
approximate data. 

The purpose of this section is to derive the asymptotic expansion of the integral 
I(n) for high frequency, that is, for the “large” parameter®, 2wo/c. Thus, we first 
write down the two derivatives, 

ov vh? Ou A? PP oF yp — = —— 62 Ow wo E p |? Ow? wep > 0, (62) 

for nonzero offset h and for y bounded away from the endpoints x9 + h. In this 
equation, P is defined by (5). 

Setting the first derivative equal to zero yields the following solution for v, with 
a corresponding solution, w = wov: 

_LP 
hQ’ 

®Technically, we should identify a dimensionless large parameter which would be this wave number 
multiplied by a “typical” length scale of the problem. The most natural length scale of the problem 
for this purpose is the range to the reflector. Thus, 2wor9/c would serve as an appropriate large 
dimensionless parameter. However, we know that if we carry out our analysis formally in dimensional 
variables, the final result will be the same as if we were to transform the problem entirely to 
dimensionless variables, do asymptotics, and then return to the dimensional variables of the original 
problem. Thus, we do not bother with this intermediary transformation and simply proceed formally 
in dimensional variables. 

y (63) 
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with 
Q = VL? —h?. (64) 

By using this value of v in (5), we find that 

hP 
=— 65 P="G (65) 

and then from (61) and (62) we find that 

ou Q3 

We use the results above and the standard stationary phase formula for a simple 

stationary point to find that to leading order 

3/2 n 
T(n) = ee en Fa exp{2iwpPQ/h + imsgn(wo)/4}. (67) 

Thus, for the case, 7 = 0, this result becomes 

c|wo| LP3/? 
(0) = Qe exp{2iwpPQ/h + imsgn(wo)/4}, (68) 

and for the case 7 = 1/2, 

3/9 p2 
T(1/2) = Veco eS exp{2iwpPQ/h + imsgn(wo)/4}. (69) 

As noted above, in the following sections, these integrals will arise in the asymp- 

totic analysis of the application of the DMO/TZO processing formula (4) to model 

data for the dipping plane and the curved reflector. 

APPLICATION OF DMO/TZO TO DATA FOR A DIPPING PLANE 

We consider now the case of a dipping reflector at dip angle ¢ as shown in Figure 

8. This result has been presented earlier [Bleistein, 1990]. However, the results of this 

analysis will prove key to the stationary phase analysis of the processing for model 

data for the curved reflector in the next section. 

The model data for this case is given by (51 — 53). When this representation is 

substituted into (4), the resulting integral representation for up becomes 

h? toth 

Uo(Z0, Wo) = Bre ne) dy EB ~ | ~ Lp? (70) 
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Fic. 8. Reflection geometry for the dipping reflector. 

Here, Z(0) is defined by (60) and its asymptotic expansion is given by (68), with P 
defined by (5) and Q defined by (64), except that for this geometry, Q can be further 
simplified to 

Q = sin dy (y — €)? — h?. (71) 
By using this asymptotic expansion in (70) above, we find that 

|wo| ei SEN (wo) /4 

Uo(z0,W0) = ach On 

(72) 
R(cos 8s) Fi f ta (bP /Q) Gere) pe} exp iol /e}, 

with W given in (66) and v given in (63). 

We can now proceed to carry out the method of stationary phase in the variable 
y. The derivatives of the phase, Y, (66), are given by 
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ov 1 |e me + P(y — €)sin? ‘| 

h 
’ 

  

ay P Q 
(73) 

ayo [aut _ Pint _ plasty sine) 
ayy sh | PB Q3 PQ 

Setting the first derivative of Y equal to zero and solving for y yields the following 

set of results 
(xo — [yl + 4h? /(x9 — €)? + 1] 

y- gE = 9 ’ 

(zo — €)[V1 + 4h?/(xo — €)? — 1] 
2 ’ ¥y— to = 

(74) 

(y—8? = (to -Oly-H +h, (y— 20)? = —(to0 — Ey — 20) +h’, 

P? = (xo —£)(y—20), Q? =(to—-)(y—é)sin’¢, PQ = (zo — g)hsing, 

ro = (xo — €) sing. 

With these results, we are able to determine that 

PU ((vo- 8)? +40?) sind — 9 
Oy? PQ 

Furthermore, one can verify that, 

W = zosin¢, (75) 

vy =secOs, (76) 

with 0¢ being the specular value associated with the output zero offset point x9: 

[ro —E + (20 — €)? + 4h?] sin? d (77) 

J (ao — 8)? + 4h? — (29 — €) c08 26" 
cos’ Og = 

see Figure 9. 

With these values substituted into (70), we obtain the following result: 

R(cos Og) F (wo sec Os) exp{2iworo/c} 

8179 ‘ 

  

uo(Zo, 0) = (78) 

This result fits our prediction in the Introduction. Finite offset and geometri- 

cal spreading have been replaced by their zero offset counterparts. The reflection 

coefficient at the finite offset specular angle associated with 29 is preserved in the 

amplitude and the bandwidth of the source signature is again scaled by cos @s5. Note 

that 05 varies with ro. However, we propose determining the specular value of cos 05 

by the same method as is used for determining cos @g in our inversion formalism: 
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G yh Xpy — yth    
Fic. 9. Dip geometry with xq and y coupled by the stationary phase condition. 

Given the DMO/TZO formalism, (4), we can simultaneously process a 
second TZO operator, differing from the first by the factor, 1/v. The 
stationary value of this new inversion operator will be the previous result, 
(78), multiplied by cos@s. Then, the ratio of the two outputs yields an 
estimate of the value of cos@s. This ratio is most easily extracted when 
the data is transformed back to the time domain. There, reflection events 
are seen as peaks along the trace and one need only take the ratio of peak 

values to obtain the desired result. This method will not work at points 
on the trace where there are crossing events. 

When we have tested this method on synthetic inversion data, we found that such 
a ratio of outputs tends to be an order of magnitude more accurate than either output 
alone. We believe that the reason for this is that when there is a systematic error in 
the computation, it tends to be similar in the two integrals and hence cancels out in 
the quotient. 

THE CURVED REFLECTOR: PROOF OF CONCEPT 

In this section we describe the results of applying the DMO/TZO processing 
formula, (4), to the Kirchhoff model data for a curved reflector, (32). It is here 
that we verify the new result that the geometrical spreading factor in the reflected 
wave for finite offset data is replaced by the corresponding factor for zero offset data 
under the transformation that we propose. We use (32) rather than (48) because in 
the latter result, the specular variables are only defined implicitly in terms of y and 

the parametric curve representing the reflector. We find it easier to work with this 
representation in which all variables are given explicitly. 

26



Bleistein & Cohen DMO/TZO 

When the data, (32), is substituted into (4), the resulting integral representation 

for ug(zo, Wo) is 

h? 2 pzoth [2h? 1 
Uo(Xo, Wo) = (4x)? 7 [La EB _ | Pe 

(cos0;) #- (#4 + F_) , / dsZ(1/2) = VE 

Here, Z(1/2) is defined by (5) and its asymptotic expansion with respect to wo is 

given by (69). 

When (69) is substituted into (79) above, the result is 

(79) 

uo(20,W0) = ~ah [rw / ds F (wyL P/hQ) 

(80) 
; 2h? 1 LE R(cos6;) a: (74 + F-) rime /e 

P2 Q fer ‘ 

In this equation, L is defined by (33) and (34); P is defined by (5); Q is defined by 

(64); finally, 

= PQ/h = fh? — (y — 29)2VL? — h?/h. (81) 

We now proceed to stationary phase in the variable y. The first derivative of the 

phase, W, (81), is given by 

OF a7 {aso Fe fy ha a), ehh. (82) 
Oy oh P 2Q T+ Tr 

We need to find the value of y that makes this derivative equal to zero for given 

values of x9 and s. The key to doing this is to use the dipping plane case as a model. 

There, we were able to find a solution in terms of the dip angle of the plane. Here, 

we artificially introduce an appropriate plane’ and then use the same solution. The 

trick is in introducing the “right” plane. To do so, proceed as follows. Draw the line 

connecting the points, (zo,0) and (x(s),z(s)) and draw the plane perpendicular to 

this line through the latter point. See Figure 10. 
  

7Note that we speak of “plane” here, even though our computation is two dimensional, rather 

than three dimensional. Recall that this is 2.5D processing, in which we have assumed no out-of- 

plane variations. Thus, we have reduced the 3D problem to a 2D computation, totally within the 

(z,z)—plane. Therefore, we speak of a planar reflector, but carry out all of our analysis with respect 

to lines in the vertical plane in which the out-of-plane coordinate is evaluated at zero. (Indeed, we 

have used y for the in-plane midpoint coordinate of the common offset data set.) 
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(x(S),2(S)) 
Fic. 10. Artifical plane used to find the stationary value of y. 

The dip angle ¢ for this plane is just the inclination with respect to the vertical 
of the drawn line: 

sing = to — 2(s) cos ¢ = 28) 
To To 

(83) 
To = (Zo — 2(s))? + 2°(s). 

This plane intersects the upper surface at the point 

z?(s) m6 — . -f=-— . 4 g (8) + Ty a} Xo gE Io — 2(s) (8 ) 

We can now read off our solution and constituent variables from the results in (74). 
Thus, we find that 

y-f= =~ e [vi + 4h? / (x9 — €)2 + 1 (85) 

y— 1 = zo—$ . vi + 4h? /(a — 6)? — . (86) 
In addition, one can derive the following results: 

yt = ee [Vib + Aisin? 6 + ro] 

yom = [a raRRS— nl. 
P= (y— 6)? sin? 4 +h? cos? = "2 | rg + ab? sin? } + ro] + 2°, 

Q? = nt, Pra SEO ey aang — ra) 

28 

  

and 

  

  

  

(87)
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Note that ¢ has been defined to be positive for zo to the right of r(s) and ¢ is negative 
for xo to the left of r(s). Thus, the sign of y— € and y— zo is determined by the sign 

of ¢ in the first two equations here. 

From these results, one can check that 

(y — t9)Q? = roh’ sind (88) 

by direct substitution. To verify that the derivative in (82) is zero, we must compare 

this result with the expression 

P?L fy+h—x(s) wohl) 
+ . 

2 ry re 
  (89) 

To calculate this expression in terms of the same variables, rp, ¢ and h, we start 

§ y-h X9 ___yth 
() To 

Li, 

  

Fic. 11. The dipping plane, with rz, 79, and ¢ shown. Note that 22 =r, +r_ and 
the diagonals parallel to the line of length rp have lengths 2(y + h — €) sing. 

first with the following identity that arises from the appropriate triangles in Figure 

11 being similar: 

L _ (yth-#sing 
T+ To 

(90) 

73 + 4h? sin? 6 + — i VT + ahi sin’? +70 — 1 sing . 
To 2 

Now, one needs only to carry out the computations indicated in (89) using (87) 

to confirm that the right side of (88) is obtained for that expression, as well. With 
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those two expressions being equal, we have confirmed that the solution, (85), makes 
OV /Oy zero. 

One can now to confirm that 

  

v= To- (91) 

From (90) and (87), one can verify that 

roL? 
rr = O , (92) 

Other useful identities follow from these results. For example, one can use (53) and 
(87) to find that 

V76 + 4h? sin? 6 +17 
V7 + Ahi sin’? +70 (93) 

2L 
Note that 0; in this case, is the specular angle for the synthetically created dipping 
planar reflector here. We reserve the notation, 0s, for the final specular angle of the 
curved reflector. Since the planar reflector, pointwise, is not yet the tangent plane to 
the reflector, these two angles are not equal. 

cos 6; = 

It is easy to check now that 

v = sec 6, (94) 

by substituting into (63). Furthermore, referring to the amplitude in (80), we now 
compute 

2h? 73 + 4h? sin? ¢ + 1, 
hn VT + 4ht sin’? +70 (95) 
Pp? To 

Furthermore, 

n- (74 +7_) =2cosdn-7y. (96) 

Let us now turn to the analysis of the second derivative of the phase, (81). Dif- 
ferentiation of (82) yields the result, 

  

  

  

Py 1 QH 4 Yaro)k [yth=a, 4 ¥ohnes, 
dy? sis | PB PQ Ty r_ 

Ph? [y+h—az, . y-h—-a, , 
403 | ry + 7 (97) 

PL2 [1 1 
_ aztal?- 

2Q [ry re 

Here, we have used the results 

P PI Pr, ., Ph? 

a a le =-& (98)
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to simplify the expression for the second derivative. The last equality arises from the 

definition of Q in (64). 

The evaluation of the second derivative at stationarity was carried out with the 

aid of Mathematica. For the reader who wishes to check the result below, we provide 

some of the intermediary results. 

2 
SF = =. [2 RE + 4h? sin? d + ro + h? sin? @| 

0 

  
  

(y — 29) L peaae pots 2hsin? d 

  
  

PQ Ty Tr TO 

Ph? [y+h—z, pwchas, > Wsin? ¢ 
4Q3 ry r rg L? 

  

  

PL2 {1 1 hcos? ¢ re + 4h? sin? 4h> og, wo -30 Fara S| rg + 4h? sin b+ re] ~ FL? dsin® ¢. 

Mathematica also effectively combines these terms to yield the final result, 

2 
aw [r3 + 4h? sin? ¢] lv rz + 4h? sin? 6 + ro 

Oy Dh2ryL? 
  (99) 

We now have all of the pieces necessary to evaluate uo in (80). The result is 

rw] 74/4860) 
Uo(Zo, wo) = a | Fo sec 0,) 

R 0 2iwrno /ec 

Rest ea -#ods. (100) 
T9 

This result should be compared to the zero offset result (37), which is the Kirchhoff 

representation for the zero offset data. We see that the two results are the same except 

for the replacement, 
F(w) —> F(wo sec 97), (101) 

and the meaning of 6;. In (37), this is the incident angle that the ray from (z9,0) to 

x(s) makes with the normal at the latter point. Here, 6; is the angle between the ray 

from (y—h,0) and x(s) and the ray from (x9, 0) to 2(s), which is the incidence angle 

of the offset ray with respect to the normal to the artificially constructing reflecting 

plane at 2(s). 

We can now further simplify this result by carrying out the same stationary phase 

analysis as was done in the discussion starting with (39). However, there is no need to 

redo the calculations; we need only understand the implications of the replacements 

we have just noted. At specular, the ray (20,0) to 2(s) is normal to the surface, in 

which case the 6; appearing in this formula is the incidence angle that the specular 
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offset source/receiver pair makes with the reflector. The choice of y for each 2p is 
given by (87), where we must interpret rp as the normal distance from Zo to the 
reflector and ¢ as the dip angle of the tangent at that normal incidence point. Of 
course, if there is more than one normal from 29 to the reflector—that is, more than 
one stationary point in s— up is a sum of contributions from all of the stationary 
points. This was true in (87), as well. 

Recall that the question at issue here was whether or not the finite offset curvature 
effect was mapped to the zero offset curvature effect by the DMO/TZO operator. 
We can now answer that question in the affirmative. From this point forward, the 
stationary phase analysis proceeds as it would for zero-offset Kirchhoff modeling, with 
the curvature effect in the integral in (100) arising solely from the evaluation of the 
second derivative of ro with respect to s. Since this analysis is exactly the same as 
for the true Kirchhoff modeling, (44-47), we can immediately read off the result of 
applying stationary phase in s to (100) from the result (55). The result is 

i F (wo sec 65) R(cos Os) lHpol a; wy) = —e7 iwro/e, 102 

In this equation, 95 is given by (93) subject to the additional constraint that #) must 
be normal to the reflector. 

  

We characterize this result as follows. 

1. The angularly dependent reflection coefficient of the finite offset specular source /- 
receiver pair associated with the zero offset point, zg is preserved. 

2. The bandwidth of the source signature is scaled by cos 6 and the source signature 

itself is compressed into this smaller range through the scaling of argument by 
sec 0, 

3. The finite offset geometrical spreading effect, 1/(r; +r_), has been replaced by 
the zero offset geometrical spreading effect, 1/2rp. 

4. The finite offset curvature effect of the input signal has been replaced by the zero 
offset curvature effect. 

It is this last feature that required this asymptotic analysis and was the motivation 
for this study. 

CONCLUSIONS 

We have now provided a derivation of the claims of the Introduction. It has been 

shown that the DMO/TZO processing proposed here in (4) transforms the amplitude 
and phase of the finite offset data to zero offset data, except for the reflection coef- 

ficient, whose finite offset specular value has been retained. The new result here is 
true even for the curvature effect in the geometrical optics solution. 
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We have also proposed a method for determining this specular angle. One need 

only carry two running sums in the processing, differing by a factor of v, whose 

asymptotic value is sec @5. Thus, the quotient of the two outputs at specular provides 

an estimate of this factor or, equivalently, of cos 4s. 
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