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INTRODUCTION 

This is the eleventh edition of the Project Review Report on the Consortium 
Project at the Center for Wave Phenomena. Since our last project review, four new 

companies have joined — Intevep (Venezuela), Norsk Hydro (Norway), Union Pacific 
Resources, and PGS Tensor; while two have left — IBM and Advance. 

We are pleased to announce that we were on three successful proposals in the De- 

partment of Energy ACTI Program, the Advanced Computer Technology Initiative. 

At the time of this writing, the level of funding for these projects is still uncertain, 

but we are gratified by our initial success. We are confident that some level of funding 
will be provided and that we will be able to move forward on our cooperative projects 

with researchers from the national laboratories. 

The feedback that we received after our Project Review meeting last year that 

is compiled in our “Sponsor Reviews” booklet, was truly gratifying. The comments 

reinforced our belief that our garrulous interactive style has kept us close to the 

interests of our sponsors while providing us the resources and opportunity to do basic 

and deep research in the problems of interest to us all. 

During this year, John Anderson, Sr. Geophysical Advisor, Mobil Research and 

Development Corporation, completed his two-year visit with CWP. This was a won- 

derful experience for us; we hope to have other industrial visitors in the future. 

Another visitor during the year was Helle Wagner, from the Niels Bohr Institute for 
Astronomy, Physics and Geophysics, Copenhagen, Denmark. Helle learned about 

our approach to inverse problems and related seismic data processing while work- 

ing on a research project with John Scales. Fabien Bosquet, visiting scientist from 

Elf-Acquitaine, joined us in November for a sixteen-month stay. 

We are very proud of our students who completed their Ph.D. degrees this school 
year: Omar Uzcategui, Geophysics; Tong Fei, Geophysics; and Zhenyue Liu, Mathe- 

matical and Computer Sciences. Since our last meeting, we have distributed twelve 

CWP reports and reprints of published articles, eight computer codes, and the SU 

User’s Manual. The reports and software, as well as papers submitted for publishing, 
are listed at the end of this introduction. 

We have begun the process of updating our computer environment. We have 

purchased five Linux-based Pentium 90 PC’s, two tapedrives, and two diskdrives. 
(We have increased our diskspace by 20 gigabytes.) We plan to order more Pentiums 
in the future to replace our current NeXT network. Furthermore, we are planning 
the purchase of at least one Silicon Graphics computer, to be used as a compute 
server. Ultimately, we expect to have 48-64 megabytes on each workstations to make 
them work optimally in a compute server environment. We are also looking into a 
high-speed communications network; our own upgrade will likely be integrated into 
a campus-wide system currently in the design stage and soon to be implemented. 

An examination of the Table of Contents in this book will reveal a healthy mix of 
continuation of last year’s work along with the introduction of new projects into our 
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program. These projects are in anisotropic modeling, DMO, migration and inversion; 
velocity analysis, object-oriented programming and opitimization; full-waveform in- 
version; high-frequency inversion integrated with wavelet processing; and analysis of 
the Berkhout approach to inversion. 

-As always, we look forward to the Project Review Meeting where we first distribute 
this report. It is a time to tell our sponsors what we are doing and to get feedback on 
how we are doing. This year, we have invited some of our ACTI colleagues from the 
national laboratories to the project review, so that they might also be exposed to the 
full scope of our research program and meet our industrial sponsors. This interaction 
is consistent with the objectives of the ACTI program. We hope this new element 
enriches the experience for everyone. 

Norman Bleistein, Director 

Center for Wave Phenomena 

April 1995 
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Anisotropy processing in vertically 

inhomogeneous media 

Tariq Alkhalifah 

ABSTRACT 

Alkhalifah and Tsvankin (1995) show that P-wave normal-moveout (NMO) veloc- 
ity for dipping reflectors in transversely isotropic (TI) media with a vertical symmetry 
axis, specified in terms of ray parameter, depends just on the zero-dip NMO velocity 
[Vamo(0)], and a parameter 7 that is a combination of Thomsen’s (1986) parameters. 
Their inversion procedure makes it possible to obtain 7 and reconstruct the NMO ve- 
locity as a function of ray parameter using moveout velocities for two different dips. 
Moreover, Vamo(0) and 7 determine not only the NMO velocity, but also long-spread 
(nonhyperbolic) P-wave moveout for horizontal reflectors and the time-migration im- 
pulse response. This means that inversion of dip-dependent information allows one 
to perform all time-processing in TI media using only surface P-wave data. Such 
findings have paved the way for constructing a full processing sequence for TI media. 

The first and most important step in processing data in TI v(z) media is parameter 
estimation. Alkhalifah and Tsvankin (1995) generalized the single-layer NMO equa- 
tion to layered TI media with a dipping reflector. This equation provides the basis for 
extending TI velocity analysis to vertically inhomogeneous media. The multi-layered 
NMO equation is based on a root-mean-square (rms) average of modified interval 
velocities corresponding to a single ray parameter, that of the dipping event. There- 
fore, modified interval velocity values can be extracted from the stacking velocities 
using a Dix-type differentiation procedure. In addition, the 7 inversion is performed 
simultaneously with the interval velocity evaluation in each layer. 

Since the moveout for reflections from steep reflectors is small and relatively insen- 
sitive to velocity, stacking-velocity estimates can be improved by applying velocity 
analysis after doing dip moveout correction (DMO), which increases the moveout, 
and therefore increases the moveout sensitivity to velocity. As a result, a modifica- 
tion to the NMO velocity equation is done to accommodate the application of the 
DMO operation, which here is based on the assumption of a homogeneous, isotropic 
medium. 

Time migration, like DMO, depends on two parameters in vertically inhomoge- 
neous media, namely the NMO velocity and 7, both of which can vary with depth. 
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Therefore, the NMO velocity and 7 estimated using the dip dependency of P-wave 
moveout velocity can be used in a TI time migration. 

An application of anisotropic processing to seismic data from offshore Africa 
demonstrates the importance of considering anisotropy, especially as it pertains to 
focusing dipping events. 

INTRODUCTION 

While it is convenient to consider the earth subsurface to be homogeneous, it is 
at a minimum vertically inhomogeneous. Through the combined action of gravity 
and sedimentation, velocity variation with depth represents the most important first- 
order inhomogeneity in the earth. This is one reason why time migration (based 
on lateral homogeneity) works well in so many places. Dip moveout (DMO) and 
migration algorithms that can handle isotropic v(z) media are well established, and 
even velocity estimation in such media is considered trivial. Nevertheless, problems 
remain in focusing images, estimating depths, and preserving dipping events in v(z) 
media. It may be that the problem at this point is the restrictive assumption that 
the medium is isotropic. Because basic processes that developed the earth’s crust 
(i.e., sedimentation, pressure and gravity) have a preferred direction (vertical in most 
cases), seismic wave speed can vary with propagation direction in the vertical plane. 
Otherwise, it is difficult to explain the success of isotropic homogeneous DMO in 
areas with a clear velocity increase with depth (Gonzalez et al., 1992), knowing that 
such an increase in velocity causes the dipping events to stack at a lower velocity than 
the horizontal ones (Artley and Hale, 1994). 

The first and most important step in a successful processing sequence for P-wave 
data is to estimate the medium parameters needed to apply the various processing 
operations. Existing work on anisotropic traveltime inversion of reflection data has 
been done for laterally homogeneous subsurface models (Byun and Corrigan, 1990; 
Sena, 1991; Tsvankin and Thomsen, 1995). These inversions, although providing 
useful information on anisotropy in the subsurface, either use the weak-anisotropy 
approximation or require P-wave data to be supplemented by additional information 
(e.g., the vertical velocity from check shots or well logs). For example, the inversion 
method of Tsvankin and Thomsen (1995) requires acquisition of S-wave, as well as 
P-wave data, for estimation of anisotropy parameters to be feasible. One reason 
for the limitations associated with these algorithms is the number of parameters 
needed to be estimated in transversely isotropic (TI) media. Using Thomsen’s (1986) 
notation, three parameters (Vpp, €, and 5) are needed to characterize the kinematics 
of P-waves in TI media with vertical symmetry axis (VTI). As shown by Tsvankin 
and Thomsen (1995), P-wave moveout from horizontal reflectors is insufficient to 
recover the three Thomsen’s parameters, even if long spreads (twice the reflector 
depth) are used. In fact, it is impossible to recover these three parameters using any 
additional surface P-wave data including moveout from dipping events (Alkhalifah 
and Tsvankin, 1995). The reason for this ambiguity is the trade-off between the 
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vertical velocity and anisotropic coefficients, which cannot be overcome by using any 
P-wave surface seismic information. 

Therefore, there is a redundancy in the three-parameter representation that char- 
acterizes P-wave moveout in VTI media. In fact, Alkhalifah and Tsvankin (1995) 
demonstrated that, for TI media with vertical symmetry axis (VTI media), just two 
parameters are sufficient for performing all time-related processing such as NMO cor- 
rection (including non-hyperbolic moveout correction, if necessary), DMO correction, 
and prestack and poststack time migration. Taking V;, to be the P-wave velocity in 
the horizontal direction, one of these two parameters, 7, is given by 

Vi? e—6 
= 05(F gy Y= 558° (1) 

and the other, the short-spread normal moveout (NMO) velocity for a horizontal 
reflector, is given by 

Vamo(0) = Veo V 1 + 26 ’ (2) 

where Vpo is the P-wave vertical velocity, and € and 6 are Thomsen’s (1986) dimen- 
sionless anisotropy parameters. 

These two parameters can also be characterized directly in terms of the elastic 
coefficients c;; as follows 

= C11 (¢33 _- C44) 

2¢13(c13 + 2c44) + 2c33C44 
  1 

2” 

and 
  

€13(C13 + 2c44) + C33C44 
V, = ,| —— nmo(0) (c33 _ C44) 

The fact that we cannot uniquely determine the elastic coefficients from 7 and Vamo(0) 
does not matter, because time-related processing depends just on Vamo(0) and 7. 

Alkhalifah and Tsvankin (1995) further show that these two parameters, 7 and 
Vamo(0), can be obtained solely from surface seismic P-wave data, using estimates of 
stacking velocity for reflections from interfaces having two distinct dips. 

The inversion technique discussed by Alkhalifah and Tsvankin (1995) is designed 
for a homogeneous medium above the reflector, while realistic subsurface models are, 
at a minimum, vertically inhomogeneous. Therefore, it is appropriate to extend the 
inversion mechanism of Alkhalifah and Tsvankin (1995) to handle vertically inhomo- 
geneous media. 

Alkhalifah (1995b) suggested to invert for 7 and Vamo(0) using the nonhyperbolic 
moveout behavior of P-wave reflections in vertically varying VTI media. Although 
this method does not require dipping events to be present, which makes it more flexible 
than the dip-dependent moveout approach of Alkhalifah and Tsvankin (1995), it is 
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less stable and depends on having reasonably large offsets to obtain realistic estimates 
of parameters at greater depths. 

A key feature of time-related processing is that the final output is still given 
in time. Therefore, a reflection from a horizontal reflector at zero-offset (coincident 
source and receiver) remains in exactly the same position after applying NMO, DMO, 
and time migration. As a result, all transformations done by these processes are with 
respect to this zero-offset reflection rather than its depth position. This eliminates 
the need to specify the depth of the reflection point. In VTI media, such a feature 
is valuable because it eliminates the need for the vertical velocity when time -related 
processing are expressed in terms of Vamo(0) and 7, and therefore, reduces the number 
of required parameters needed to specify these processes. (Vertical velocity, however, 
is required in any attempt to convert seismic data from time to depth.) 

The bulk of the paper concentrates on the v(z) inversion process. Here, I extend 
the inversion technique of Alkhalifah and Tsvankin (1995) to handle layered trans- 
versely isotropic media based on the fact that NMO velocity for dipping reflectors is 
a root-mean-square (rms) average of its interval values. Such an rms relation, derived 
by Alkhalifah and Tsvankin (1995) for transversely isotropic layered media, depends 
also on only Vamo(0) and 7. Next, I study the dependence of both DMO and time 
migration on Vimo(0) and 7 in vertically inhomogeneous media. Then, I apply the 
inversion method, as well as anisotropy processing, to a marine data set from offshore 
Africa. 

NMO VELOCITY FOR DIPPING REFLECTORS IN TI MEDIA 

The analysis here is based on the equation for the normal-moveout (short-spread) 
velocity for dipping reflectors in a homogeneous anisotropic medium derived by Tsvankin 
(1995): 

—) dV 

Vamo($) = VO) Vit Var aor (3) tangdv? cos ¢ 1- 75% 

where V is the phase velocity as a function of the phase angle 0 (9 is measured from 
vertical) and ¢ is the dip of the reflector; the derivatives are evaluated at the dip ¢. 
Unfortunately, reflection data do not carry any explicit information about dip; rather, 
we can count on recovering the ray parameter p(¢) corresponding to the zero-offset 
reflection. Therefore, for inversion purposes, formula (3) must be recast in terms of 
the ray parameter (Alkhalifah and Tsvankin, 1995), 

1 dtg sin @d 
P(*) = 5 aay = V6)’ (4) 

where to(z9) is the two-way traveltime on the zero-offset (or stacked) section, and x9 
is the midpoint position. In this case, the phase angle ¢ and phase velocity V(¢) 
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corresponding to a given value of p can be obtained from the Christoffel equation and 
used in formula (3) (Alkhalifah and Tsvankin, 1995). 

VELOCITY ANALYSIS IN V(Z) MEDIA 

Inversion in layered VTI media can be implemented through a layer-stripping algo- 
rithm where the parameters of a certain layer (or interval) are estimated by removing 
the influence of the overlying layers. The layer-stripping portion of the inversion is 
similar to what Dix (1955) used to estimate interval velocities from stacking velocities 
based on a small-offset approximation. 

NMO velocity equation for dipping reflectors in v(z) media 

For horizontal layers, whether the media are isotropic or VTI, the NMO velocity at 
a certain zero-offset time, to, (equivalent to the migrated time, for horizontal layers) is 
given by an rms relation (Hake et al., 1984; Tsvankin and Thomsen, 1994) as follows 

Vibno(to) = = [ vno(r)dr, (5) 
where Upmo(T) are “interval NMO velocities” given by & 

UVamo(T) = v(r) V 1+ 26(7), 

and u(r) is the interval vertical velocity. 

For dipping reflectors, when expressed in terms of ray parameter p, NMO velocity 
is also given by a similar rms relation (Alkhalifah and Tsvankin, 1995). 

Vinal. (0) = ef wal, ter (6) 

where Upmo[P, tm] is the interval NMO velocity as a function of vertical time (migrated 
time), tm, and to(p) is zero-offset time for a single ray parameter, p. This ray pa- 
rameter corresponds to the reflection from the dipping reflector at time to(p) used 
to measure V,_[p, to(p)], where to(0) = tm corresponds to the two-way traveltime 
to a horizontal reflector; i.e., migrated time. As demonstrated in equation (4), the 
ray parameter can be determined from the slope of the reflection in the zero-offset 
domain. 

The integral in equation (6) can be expressed in terms of migrated time, t,,, aS 
follows 

Vans t0(0) = 5 ff” vega Ps) oar (7) 
This equation reduces to equation (5) for horizontal reflectors (p = 0), where ato (P) — =. 
Further, Unmo(p,7) depends only on the interval values Upmo(0,7) and n(7) in each 
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layer or time sample. Alkhalifah and Tsvankin (1995) show that to(p) is a function 
of the medium parameters vamo(0) and 7, as well as the vertical time, given by 

to(p) = tmf[n, Unmo(0), p]- (8) 

Thus, 

une = f[n, Unmo(0), p}, (9) 

where f is the operator that relates the vertical time to the zero-offset time, which 
can be obtained through ray tracing. As a result, Vamo[p, to(p)] based on equation (7) 
depends on 7 and Upmo(0) in each layer. For isotropic media, n = 0, and 

1 
F[vamo(0), p] = yi — p?22,,,(0) 

Equation (6), when expressed in terms of discrete layers, is given by 

[V2h(p)2 = aa yA! (P) (e,(0)P, (10) 

where At) (p) is the two-way zero-offset traveltime through layer i for ray parameter 
p. 

To obtain the NMO interval velocity in any layer i (including the one immediately 
above the reflector), we apply the Dix formula (Dix, 1955) to the NMO velocities at 
the top [V,G5)] and bottom [V,“] of the layer: nmo 

() yp? — © PIVY()P - 8? (IVE (p)P 
[vnno(P)] ¢) (p) _ tp) ’ (11) 

where t-) (p) and t)(p) are the two-way traveltimes to the top and bottom of the 
layer, respectively, calculated along the ray given by the ray parameter p for normal- 
incidence reflection from the dipping reflector, used in measuring stacking velocity; all 
NMO velocities here correspond to a single ray-parameter value p. Suppose, we wish 
to use equation (11) to obtain the normal moveout velocity [v(),(p)] in the medium 
immediately above the reflector to use as an input value in the inversion algorithm 
discussed above. Clearly, from equation (10), the recovery of vu") (p) requires ob- 
taining the moveout velocities in the overlying medium for the same value of the ray 
parameter. However, as we will see later, such a problem can be solved by using an 
interpolation procedure. 

Inversion in v(z) media 

When interval NMO velocity values, v‘"),(p), are obtained for at least two distinct 
dips, the problem reduces within each layer (or time sample, if the inversion was based 
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on the integral form) to a homogeneous inversion that can be solved in the same way 

described by Alkhalifah and Tsvankin (1995). Therefore, interval values v"),(p) for 
two distinct dips in each layer (or each time sample) are used to estimate (7) and 

Unmo(0, 7). Since estimating v'"),(p) using equation (11) depends on obtaining uv“) (p) 
for previous layers at the same ray parameter, estimating n(7) and Upmo(0,7) must 
be done simultaneously with the layer-stripping process for vu“) (p). 

nmo 

First, I use the values V,“) (p,) and V,“) (p»), which correspond to the first interval, 
to estimate n) and v{!) (0) using the inversion of Alkhalifah and Tsvankin (1995) for 
a homogeneous medium, where p; and py» are ray parameters of the dipping reflectors 

in this first interval (one of these reflectors could be horizontal). Each interval is con- 
sidered homogeneous. Then, I use the estimated 7) and v'!),(0) to obtain V,“) (p3) 
and V,()) (p,), as well as Stolp) and foe in the first interval. Ray parameters p3 

and p,4 correspond to the dipping (or horizontal) reflectors in the second interval. 

Using equation (11), I then obtain the interval values v!2),(p3) and v@),(p4), which 
corresponds to the second interval, from V,“) (p3) and V.“) (p,4), and in turn use them 

namo nmo 

to obtain 7) and v@).(0), and so on. 

Although the method requires NMO velocities measured at two different dips in 
each interval, one can define interval thicknesses depending on the available reflec- 

tors. Specifically, each interval is chosen to include two dips, no matter how large 

that interval gets. A better and more practical approach is to fit a piecewise-linear, 

continuous interval velocity models for each of the ray parameters of the dipping re- 

flections used to measure the stacking velocities. These models satisfy these measured 

stacking velocities based on equation (7). Specifically, the interval velocities are taken 
as continuous at the times of the measured stacking velocities and linear in between. 
Eventually, we must obtain at least two continuous interval velocities corresponding 

to two distinct dips. As a result, the homogeneous inversion is applied at each time 

sample to obtain vpmo(0,7) and (7). A detailed description of the inversion is given 
in Appendix A. 

As with isotropic media, intermediate interval values (i.e., values between mea- 
sured ones) can be estimated using any interpolation technique between measured 
values. The sole requirement is that interval values yield the measured stacking ve- 

locities based on equation (7). For example, we could consider the measured values 
to be constant in each layer. Here, however, the application is based on a linear 
interpolation that keeps the inverted values continuous. This continuity is important 
for various ray tracing applications. 

Errors in the inverted interval values of 7 can arise from the linear interpolation 
of velocities used in the layer-stripping process, and from the inversion in each ho- 

mogeneous interval used to obtain 7. The interpolation errors are similar to those 

encountered in layer-stripping applications for isotropic media. Errors associated with 

the homogeneous inversion, as described in detail by Alkhalifah and Tsvankin (1995), 
depend mainly on the accuracy of the measured quantities, primarily the stacking 
velocities. 
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Stacking-velocity measurements 

As is well known, the stacking velocity for steep reflectors (= “amen in isotropic 
homogeneous media, where @ is the reflector dip) is large; therefore, the moveout is 
small and insensitive to velocity. Specifically, the curvature of reflection moveout, 
dt? /d?X [x 1/V;2,,], where X is the source-receiver offset, decreases with increase in 
velocity. As a result, the resolution of velocity analyses is poor, causing problems in 
picking the appropriate stacking velocities corresponding to dipping reflectors. 

One way to avoid this problem is to pick the stacking velocity after applying 
isotropic homogeneous DMO to the data. The DMO operation reduces the stacking 
velocity of dipping reflectors (approximately equivalent to multiplying by cos 6), and 
therefore, increases the sensitivity of moveout to velocity. As a result, I modify the 
NMO velocity equation in TI media to account for the isotropic homogeneous DMO 
operation. This is accomplished by including the traveltime shifts that correspond to 
the DMO operation in the NMO equation for dipping reflectors. 

2 POX) = 80) + (Gy tPYX* = 8) + a 
where t is the two-way traveltime as a function of offset, X. Therefore, the NMO 
velocity for a dipping reflector after isotropic homogeneous DMO is given by 

Voue(p) = Lame?) (12) 

Equation (12) can, therefore, be used to replace the Vamo(p) function in inverting for 
7 and Vimo(0). 

There is an additional advantage in applying the DMO operation prior to velocity 
analysis in inverting for n. Specifically, we can verify the presence of anisotropy by 
comparing the NMO velocity of the sloping event (after DMO) to that of a horizontal 
event (or any other distinct slope). If the velocity of the sloping event is higher, then, 
in most cases, anisotropy is present, and 7 is positive. If the medium is also vertically 
inhomogeneous, then the anisotropy is even more significant, because inhomogene- 
ity tends to reduce the influence of anisotropy on the isotropic homogeneous DMO 
operation (Alkhalifah, 1995a). If the velocity of the sloping event is lower than that 
of the horizontal event after applying a homogeneous isotropic DMO, then there are 
two possibilities: the first is that the medium is vertically inhomogeneous (Artley 
and Hale, 1994), and the second is that the medium is anisotropic with a negative n, 
which is unlikely (Thomsen, 1986; Alkhalifah and Tsvankin, 1995). 

If the NMO velocities of the sloping and horizontal reflections are equal after 
applying homogeneous isotropic DMO (which is a goal of applying the DMO) then 
the medium may be isotropic and homogeneous, in concurrence with the type of 
operation used. However, if velocity analysis implies vertical inhomogeneity (which is 
typically the case), then anisotropy is present and has the same size (with an opposite 
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sign) influence as the vertical inhomogeneity on the DMO operation for these two 
dips (Gonzalez et al., 1992; Alkhalifah, 1995a). However, although the homogeneous 

isotropic DMO focussed these two reflections (the sloping and horizontal) at the same 

stacking velocity, it might not focus as well other reflections (with other slopes), 

because the isotropic v(z) DMO impulse response is not identical to the anisotropic 
one (Alkhalifah, 1995a). Here, I have tried to outline the main possibilities. The 

presence of strong lateral inhomogeneity would introduce further complications. 

TIME-RELATED PROCESSING 

The main argument used to show the dependence of time-related processing (e.g., 
DMO and time migration) on only Vamo(0) and 7 in homogeneous VTI media is that 
such time-related processing become independent of the vertical velocity Vpp when 

expressed in terms of Vamo(0) and 7. That is, it does not matter what values of Vpo, 

e, and 6 are used; only Vimo(0) and 7 need to be specified. To prove such an assertion, 
Vpo, € and 6 are varied from one test to another while keeping Vamo(0) and 7 the same, 

and changes in impulse responses (such as migration impulse responses or diffraction 
curves) are then observed. Alkhalifah and Tsvankin (1995) used such an argument 
for homogeneous media. Here I will apply it to vertically inhomogeneous media. 

Veo (M/S) Vamo(0) (mm/s) n 
2000 4000, 2000 4000.0 0.05 0.10 0.15 

    

@ 14 1- 14 
® 

£ 
a 

2- 2- 24               
    

Fic. 1. Parameter variation as a function of vertical time. The parameters here 
correspond to the interval vertical velocity (Vpo), the interval NMO velocity for hor- 
izontal reflectors [enmo(0}], and the anisotropy parameter 7. Different combinations 
of these parameters result in different models. 
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Figure 1 shows parameter variations as a function of vertical time that I use 
below to generate impulse responses. The vertical velocity (Vpo) given by the solid 
black curve is the same as the Upmo(0) curve, and, therefore, 6 for this model equals 
zero. When combined with Upmo(0), the other two Vpp curves correspond to 6 values 
that do not equal zero [see equation (2)]. The dashed curve (vertical velocity is a 
constant, 1500 m/s), when combined with vpmo(0), results in 6 reaching values as large 
as the unrealistic value of 2. Therefore, in terms of Thomsen’s (1986) parameters, 
the difference between the model given by the solid black Vpp curve and the model 
given the dashed curve is large, but the parameters have been chosen such that 7 is 
nevertheless the same. 

Dip-moveout correction 

As mentioned above, Alkhalifah and Tsvankin (1995) showed that the NMO ve- 
locity for dipping reflectors depends on only two medium parameters in homogeneous 
VTI media, namely Vamo(0) and 7. Alkhalifah (1995a) further demonstrates that the 
DMO operation itself, as well as its impulse response, depends solely on these two 
parameters. This result holds as well for n(7), as we see next. 

Figure 2 shows four DMO impulse responses generated using the anisotropic DMO 
algorithm described by Alkhalifah (1995a). The first of these responses (Figure 2a) 
corresponds to the parameters given by the solid black curves in Figure 1 for Vpo, 
Unmo(0) and 7. Note how different the DMO impulse response in \'TI media are from 
the elliptical shape we have grown accustomed to for isotropic media. The responses 
in Figure 2b and 2c correspond to using the gray and the dashed curves of V‘po in 
Figure 1, respectively, while keeping the values of vamo(0) and 7 the same as those 
used in Figure 2a (the solid black curves). The three DMO impulse responses look 
exactly the same; that is, they are independent of the value of \‘po. in support of the 
result that was partially suggested by equation (6), a small-offset approximation of 
the moveout. (Recall that for the response in Figure 2c, 6 reaches values of about 2!) 
On the other hand, if we change n, using the gray curve in Figure 1 instead of the 
black one, the response changes dramatically, implying that it is highly dependent on 
n. 

Time migration 

Alkhalifah (1995b) showed that the nonhyperbolic moveout based on a Taylor’s se- 
ries expansion in vertically inhomogeneous VTI media is dependent on only Unmo(0, 7) 
and 7(7). Again, such a moveout equation represents a small-dip approximation of a 
time-migration diffraction curve. 

Figure 3 shows four time-migration impulse responses generated using an aniso- 
tropic phase-shift time migration (Kitchenside, 1991). The first of these responses 
(Figure 3a) corresponds to the parameters given by the solid black curves in Fig- 
ure 1 for Vpo, Unmo(0) and 7. On the other hand, the responses in Figure 3b and 3c 
correspond to using the gray and the dashed curves of vertical velocity (Vpp) from 
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Fic. 2. DMO impulse responses for an impulse at time 2.1 s and offset 1.5 km using 

(a) the parameters represented by solid black curves in Figure 1, (b) the vertical 
velocity given by the gray curve in Figure 1 while keeping the other parameters the 
same as (a), (c) the vertical velocity given by the dashed curve in Figure 1 while 
keeping the other parameters the same as (a), and (d) the 7 values represented by 
the gray curve in Figure 1 while keeping Vpp and Upmo(0) the same as (a). 
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Fic. 3. Zero-offset time-migration impulse responses for an impulse at time 2.1 s, 
using (a) the parameters in Figure 1 represented by the solid black curves, (b) the 
vertical velocity given by the gray curve in Figure 1 while keeping the other parameters 
the same as (a), (c) the vertical velocity given by the dashed curve in Figure 1 while 
keeping the other parameters the same as (a), and (d) the 7 values represented by 
the gray curve in Figure 1 while keeping Vpp and Upmo(0) the same as (a). 
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Figure 1, respectively, while keeping vamo(0) and 7 the same as those used in Fig- 
ure 3a. The three time migration impulse responses look identical. Given the large 

difference between the Thomsen’s parameters used to generate Figure 3a from those 

used to generate Figure 3c, the similarity of the responses that are based on the exact 

traveltime calculation (within the frame work of ray theory) is remarkable. Therefore, 
time migration in VTI media is also independent of vertical velocity when expressed 

in terms of Vamo(0) and 7. However, if the gray 7 curve in Figure 1 is used, differences 
begin to appear. Specifically, note that, because of the overall lower 7, the response 
in this case is slightly squeezed (see arrows). Although the time migration responses 
appear to have less variation with change in 7 than do the DMO responses, note that 
the scales at which the responses in the case of DMO and time migration are plotted 
are not the same. The conclusion in any event is that migration will be less sensitive 
to ignoring anisotropy than DMO, at least for modest dip. This is consistent with 

the results of Alkhalifah and Larner (1994). 

FIELD-DATA EXAMPLE 

Figure 4 shows a stacked seismic section, from offshore Africa provided by Chevron 

Overseas Petroleum, Inc., that contains reflections from a large number of dipping 

faults. The section was processed using a sequence of conventional NYO and DMO 

without taking anisotropy into account. While horizontal and mildly sloping reflec- 

tions are imaged well, as we will see below, steep fault-plane reflections have been 

weakened because anisotropy was ignored. The predominant velocity variation in the 

section is vertical. In fact, in the area between CMP locations 400 and 800 and up 

to vertical time 3 s, the lateral variation of velocity is small. 

The arrows in Figure 4 point to the sloping reflections used to measure the stack- 
ing velocities. Likewise, Vimo(0) measurements are based on the horizontal events. 
Although the sloping reflections used in the inversion seem to span the whole 5 s of 
data, the actual parameter information stops at about 3.5 s — the vertical (migrated) 

time corresponding to the deepest reflection used in the measurement of stacking ve- 
locity. This difference follows from the relation between the vertical time [t,,] and 
the zero-offset time [tg(p)]. In addition to the picked reflections, 7 at the surface is 
constrained to equal zero since these are marine data and the water layer is isotropic. 

Carrying out the inversion process described in Appendix A, using the measured 
values of stacking velocities and corresponding ray parameters, I obtain the functions 

Unmo(T) and n(7) shown in Figure 5. The inversion assumes no lateral velocity vari- 
ation in the region of the picks; mild lateral velocity variation, however, should not 
be a problem for this DMO-based inversion: most DMO algorithms, while based on 
lateral homogeneity, still produce practical results where lateral velocity variation is 
smooth. The continuous representation shown in Figure 5 is a direct result of fit- 
ting a piecewise linear velocity model, as mentioned in Appendix A, for both the 

mildly dipping reflectors (for simplicity ] refer to them as horizontal reflectors) and 
the faults. In the water layer, Ypmo is equal to 1.5 km/s and n, as mentioned earlier, 

21



Anisotropy processing Alkhalifah 
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Fic. 4. Stacked section from offshore Africa, after applying NMO and isotropic 
homogeneous DMO. The arrows point to the sloping reflections used in the 

inversion. 
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Fic. 5. Interval values vjm_ and 7 as a function of vertical time. 
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is equal to zero. The accuracy of these estimated curves of Uamo and 7 depends on the 
accuracy of the stacking velocity estimates for both dipping and horizontal reflectors 
(Alkhalifah and Tsvankin, 1995). Based on the locations of the measured stacking 
velocities (Figure 4), as well as the extent of the lateral homogeneity, these inverted 
values can be considered representative of the area between CMP location 500 and 
900. 

The interval values of 7 in Figure 5 show more detail than can be reliably trusted 
considering the many uncertainties associated with the few events picked in these 
data and the particular assumption used for interpolating interval NMO velocities. 
However, we can still trust the general trend of the 7 curve, which implies an overall 
increase in the anisotropy with vertical time up to about 3s. The 7 values after time 
equal 3.5 s were constrained to equal zero because no 7 information is present for 
these times using this inversion. The region above 3 s, which exhibits positive values 
of 7, corresponds to a shale formation. Shale is often transversely isotropic and may 
thus be the major source of anisotropy in the data. 

CMP 
200 400 600 800 1000 1200 

  
Fic. 6. Stacked section after v(z) anisotropic DMO using the parameters in Figure 5. 
The NMO correction is based on the velocities obtained from the conventional velocity 
analysis. Compare with Figure 4. 

Next, I apply a DMO algorithm that uses the derived functions Upmo(T) and n(r) in 
Figure 5. Figure 6 shows the result of TI DMO applied to the data, based on the ray- 
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tracing DMO algorithm of Alkhalifah (1995a). Relative to the result of isotropic DMO 
given in Figure 4, this section is much improved. Note, in particular, the reflections 

from the faults. The improvements extend throughout the whole section, and includes 
reflections not used in the inversion. This implies that the lateral variation in n, 
especially prior to 2 s, is small. 

Figure 7 shows representative VTI DMO operators used for these data. The 

shapes are far from the isotropic ellipse or even a stretched version of it. Therefore, 

we should expect the result from the anisotropic DMO to be different from that of 
the isotropic DMO, and so it is. 
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Fic. 7. VTI DMO impulses response for the parameters in Figure 5. The offset is 
1.5 km, and the apex is at (a) 1.8 s, and (b) 2.5 s. 

Figure 8 shows CMP gathers at CMP location 700 after (a) homogeneous isotropic 
DMO, and (b) v(z) VTI DMO using the parameters in Figure 5. The same NMO 
correction, based on the stacking velocities obtained from conventional semblance 
velocity analysis, was used in both DMO examples. The arrows point to reflections 

from some of the dipping faults present in this highly faulted portion of the data. 
Note that the maximum offset is large (up to X/D = 2). Clearly, for the isotropic 
DMO result, the reflections from the dipping faults are not aligned. They have de- 

viations caused by an NMO velocity that is smaller than what is needed for this 
anisotropic medium. Such deviations in reflection traveltimes are proportional to X?. 
Even the reflections from the horizontal events are not aligned. The misalignment 
for the horizontal reflections, however, is caused by the nonhyperbolic moveout asso- 
ciated with VTI media. Therefore, the deviations in this case start at larger offsets 
X/D > 1 (Tsvankin and Thomsen, 1994, Alkhalifah, 1995b), and are proportional 
to the nonhyperbolic term X*. This implies that the horizontal reflectors, as well 

as the dipping event, are less focused in Figure 4 than in Figure 6. Both horizontal 
and dipping events are better aligned after application of the ray-tracing anisotropic 

DMO based on the inverted parameters. Close comparison of Figures 4 and 6 reveals 
improvement in the horizontal features as a result of anisotropic processing. 
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Fic. 8. CMP gathers for CMP location 700 after (a) homogeneous isotropic DMO, 
and (b) v(z) anisotropic DMO. The NMO correction, based on the velocities obtained 
from velocity analysis, is the same for both examples. 
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Figure 9a shows the result of conventional processing: phase-shift, isotropic time 

migration was applied to the zero-offset section obtained by the isotropic homogeneous 

DMO. For comparison, Figure 9b shows the data imaged with phase-shift anisotropic 

time migration (using the inverted parameters of Figure 5) applied to the stack ob- 
tained from the v(z) VTI DMO algorithm. This comparison gives a clear picture of 

the benefit of taking anisotropy into account in DMO prior to doing migration. The 
improvements here are numerous and significant. One example is the fault located 

at CMP location 870, between 2.5 and 3 seconds. An interpreter using the isotropic 
processing result can easily extend the reflections across this fault ignoring it or sug- 

gest a minor subsidence to the left of the fault. However, the imaged result of the 
anisotropic processing (as well as the inverted values of 7) suggests the extension of 
the shales up to 3 seconds under CMP location 800, and probably a larger subsidence 

has occurred. Another example is the region of the nearly horizontal events near 

CMP location 500, at 2.5 s. The improved continuity of the gently dipping events 

likely is a result of non-hyperbolic moveout correction in the anisotropic processing. 

Although most of the reflections here correspond to features within or near the 2-D 

plane that contains the sources and receivers, some events may represent out-of-plane 

reflections, requiring 3-D processing. Ignoring the three-dimensionality can cause 
mispositioning in some areas, especially where the fault reflections cross what seem 
to be continuous horizontal reflections. However, based on examination of parallel 

lines in the same area, most reflections are in the dip plane of the section. 

Lynn et al. (1991) observe that problems of mis-focussing of dipping faults are 

encountered in many data sets from around the world and such problems can not be 

attributed to use of 2-D as opposed to 3-D processing, lateral velocity variations, or 

statics problems. Their assessment is that such problems are caused by the presence 

of anisotropy. They also state that isotropic prestack migration often gives poorer 

results than does isotropic poststack processing applied to DMO-processed data sets. 
Whereas full prestack migration seems to be the ideal way to process data, it is 
intolerant of any shortcomings of the model or the data. 

DISCUSSION AND CONCLUSIONS 

Although the inversion described here cannot resolve the vertical velocity and 
anisotropic coefficients € and 6 individually, it makes it possible to obtain the pa- 
rameters needed to apply time-related processing (including NMO, DMO, and time 
migration) in vertically inhomogeneous media. These parameters are the zero-dip 
NMO velocity Upmo(0,7) and the anisotropy parameter 7(r). 

The inversion algorithm described by Alkhalifah and Tsvankin (1995) was de- 
veloped for a homogeneous, transversely isotropic medium above the reflector. To 
extend the method to vertically inhomogeneous media, the inversion must be applied 

using the NMO equation of Alkhalifah and Tsvankin (1995) for layered anisotropic 
media above a dipping reflector. The influence of a stratified isotropic or anisotropic 
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Fic. 9. Time migrated section using (a) isotropic phase-shift migration of the data 
shown in Figure 4, and (b) anisotropic phase-shift migration of the data shown in 
Figure 6 using the parameters shown in Figure 5. 
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overburden on moveout velocity can be stripped through a Dix-type differentiation 
procedure. 

Using sloping reflections to extract velocity information in v(z) media requires, 

among other things, positioning the reflections at their true (migrated) position. This 

is accomplished by relating the zero-offset time to the vertical (migrated) time, and 
therefore positioning the extracted interval velocities at their true times (relative 
depths). Although this concept is beneficial in isotropic media, it is exceptionally im- 

portant in anisotropic media, where such velocities are compared with those extracted 

from horizontal events, and then used to invert for anisotropy information, specifi- 

cally n. This inversion process is based on the rms assumption of stacking velocities 

for a given ray parameter. Such a relation, for horizontal reflectors, reduces to the 

familiar Dix (1955) expression. The idea underlying the inversion is that the Uamo(T) 
and 7(7) functions obtained from the inversion are those that best focus reflections 
from the dipping fault and the horizontal reflectors at the same stacking (or NMO) 

velocity, for each vertical time at which the velocity measurements are made. 

Analysis of dip moveout and time-migration impulse responses shows that these 

processes depend solely on two parameters Upmo(0) and 7 in vertically inhomogeneous 

media. Therefore, the results of the inversion [values of Upmo(0) and 7] can be used to 
apply NMO, DMO, and time migration. To an extent, time migration can be used to 
evaluate the performance of the inversion in data that include reflectors with known 
positions (i.e., fault traces as delimited by terminations of sedimentary bedding). 

Specifically, the results of the inversion for 7 can be checked by inspecting the quality 
of images generated by poststack migration using the same inverted parameters. If 
the image indicates undermigration, the true 7 overall is higher than the estimated 
values. 

As we saw in the field example, isotropic DMO cannot properly focus dipping 

reflectors where the inversion results indicate that the medium is anisotropic. On the 

other hand, v(z) VTI DMO based on the inverted values of Uamo(7) and (7) did focus 
such reflectors, and, because it also takes non-hyperbolic moveout into account, it can 
even improve the focussing of horizontal reflections, as well. In addition, anisotropic 

time migration based on the inverted parameters [vpmo(T) and 7(T)| placed the steep 
reflections at their true time migrated position, while the isotropic migration, which 

used only the values of Upmo(T), mispositioned the sloping features relative to the 
horizontal ones. 

The cost of anisotropic processing is close to that of its isotropic counterpart. In 

fact, the processing algorithms needed for both types of media run in about the same 

time. For example, although slower than the typical log-stretched DMO techniques, 
the DMO algorithm used here (Alkhalifah, 1995) is as efficient as Artley and Hale’s 
(1994) isotropic v(z) DMO. The difference in computation effort for the isotropic and 
anisotropic algorithms in phase-shift time migration is negligible. The true additional 

cost of the anisotropic processing arises from the time needed to measure stacking 
velocities, as well as ray parameters, for the sloping reflections. 
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Applying a general anisotropic processing sequence, therefore, is appropriate for 
all data. If the medium is isotropic, then the lack of anisotropy will be reflected in 
the small values for the inverted parameter 7 ( ~ 0). However, if 7 departs from 
zero by a substantial amount (i.e., 7 > 0.05), then it is best to take anisotropy into 
account. Practically, typical performance of isotropic DMO suggests anisotropy in 
data. In particular, the fact that an isotropic homogeneous DMO works better than 
isotropic v(z) DMO in a vertically inhomogeneous medium suggests the presence of 
anisotropy because this anisotropy counters the influence of an increase in velocity 
with depth. Nevertheless, the fact that isotropic constant-velocity DMO often works 
better than the v(z) DMO does not imply that the result is optimum. The DMO 
process can further benefit from an added degree of freedom, in our case n, which can 
be calculated and has a physical basis, specifically anisotropy. Because it has this 
physical basis this same parameter provides the added degree of freedom needed in 
migration as well. 
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APPENDIX A: VELOCITY ANALYSIS IN LAYERED MEDIA 

The first step of the inversion process involves estimating stacking velocities as 
a function of zero-offset traveltime from P-wave reflection data. These velocities are 
commonly considered to equal the NMO velocity. Measuring stacking velocities is 
common practice in isotropic processing, but here we must estimate such stacking 
velocities for dipping, as well as horizontal reflections. In addition, we must measure 
the ray parameters (slopes) corresponding to these reflections. 

The inversion method can be applied using any number of dips using a least- 
squares approach. For simplicity, I constrain the description here to the model given 
in Figure A-1, where we have only two distinct dips (horizontal reflectors and a 
dipping fault). The medium is considered to be laterally homogeneous above the 
fault. Note that, because it is dipping, this single fault provides velocity information 
at several zero-offset times that can be used to extract vertical parameter variations 
with depth. 

After obtaining stacking-velocity information as a function of ray parameter and 
zero-offset time, we need to construct an interval-velocity model that satisfies the 
measured stacking velocities based on equation (6). As mentioned in the text, the 
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t(0) ti(Pi.84) 
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/ 
Fic. A-1. Depth model consisting of a fault and a number of horizontal layers. 
The rays drawn correspond to the measured stacking velocities (Vamolp:, ti(p;)] and 
VamolPi+1,ti+1(pi41)]) described in the Appendix. Such rays illustrate the relation 
between the zero-offset time and the vertical time for the dipping fault. 
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velocity model that I use is continuous with linear increases in modified interval 
velocity (a quantity that depends on ray parameter) between the measured values 

of stacking velocities. For the horizontal reflectors (p = 0), construction of such 
a velocity model is straightforward, following the familiar method of Dix (1955). 
However, for the dipping fault, the problem is much more complicated because the 

ray parameter along the fault reflection varies with recording time due to the variation 

of velocity with depth. Therefore, the measured stacking velocities for the dipping 

fault at different vertical times correspond to different ray parameters. 

Suppose we want to fit a linear interval-velocity model between the measured 

stacking velocities Vamo(pi, ti(p;)] and VamolPi+1,ti+1(pi+1)], Where p; and t; are the ray 
parameter and zero-offset time of the fault reflection used in measuring the stacking 

velocities. This linear interval velocity will correspond to a ray parameter p;,; and 

should be continuous with the calculated interval velocities prior to time ¢;(0) at this 

same ray parameter p;41. Here, t;(0) is the two-way vertical traveltime to the reflection 
recorded at time ¢;(p;), as shown in Figure A-1. Therefore, the initial velocity for 
the linear model between Vamo[pi, ti(p;)] and Vamolpiti, ti¢(Pr41)) iS UnmolPi41; ti(0)] 

calculated at vertical time t;(0) using the values of Upmo(0,7) and (7) at 7 = t,(0). 
The interval values in between the two measured stacking velocities are given by 

Unmo(Pi+1)T) = UnmolPi+1, ti(0)] + aiz1[t(piar, 7) — th (pisr)] (A-1) 

where a;4; is the constant velocity gradient between vertical time t;(p;,,) and t;41(pj41), 

and t(pi+1, 7) is the zero-offset two-way traveltime calculated as follows 

t(pi41,7) = [ f[n(71), Uamo(71), Pitildns, (A-2) 

where f, as mentioned in the text, is the operator that relates zero-offset time to 

vertical time. Here, T corresponds to the two-way vertical time, and t;(p;41) is the 

two-way zero-offset traveltime computed, using equation (A-2) by setting 7 = t;(0). 

For i = 0 (corresponding to the earth’s surface), t9(p) = 0, and the interval velocities 

are estimated either by considering the medium to be homogeneous up to time t (0) 

(a; = 0), or by using a value for the velocity at the surface that satisfies a certain 
condition (i.e., for marine data, velocity at the surface is usually set to 1.5 km/s). 
Therefore, the only unknowns in equation (A-1) as we progress from the top to the 

bottom of the seismic section are the velocity gradients a;. 

Using the expressions of stacking velocities and traveltimes given above, equa- 
tion (6) can be written as follows 

ti(pi41) tita(Pi41) 
VirnolPi+t, ti+1 (Pi+1)]ti41(Pi41) = I Unmo(Pit1s TAT + ti(pias) U2 mo(Pit1, T)AT. 

WP s41 

(A-3) 
The first term on the right hand side can be calculated from the estimated values of 7 
and Unmo(0) prior to t;(0). Let us assume that it equals f,. If we are trying to deter- 

mine a, corresponding to the region between the surface and the first measurement, 
then f; equals zero because to(p;41)=0. 
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Substituting equation (A-1) into the second term of equation (A-3) results in 
a quadratic equation in a;,1. Solving equation (A-3) for a;4; involves solving the 
quadratic equation, and therefore 

Qj41 = 0.5(,/ 
  

  

where tg = ti41(pi41) — ti(pi41). 

Each time a new velocity gradient is obtained, for example 4;41, it is directly used 
to compute the interval velocities using equation (A-1) in the region between t;(0) and 
ti41(0). Then, these interval velocities, which correspond to the dipping fault, along 
with the horizontal interval NMO velocities, are used to invert — one sample at time 
— for Unmo(0,7) and n(r) based on the homogeneous DMO inversion of Alkhalifah 
and Tsvankin (1995). We continue to invert for Usmo(0,7) and n(r) as a function of 
vertical time until we reach the time t;41(0). Then a new velocity gradient, 4:42, for 
the region between t;,(0) and t;42(0) is calculated in the same way. 
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ABSTRACT 

A major feature of the Berkhout approach to migration/inversion is early 

discretization of the forward modeling problem for seismic data surveys. Thus, 
Green’s functions are replaced by propagator matrices and ordinary reflection 

coefficients are replaced by a poorly understood reflectivity matrix. One of the 

advantages of this method is that many special features of the underlying model 

can be characterized by further matrix multiplications. Migration/inversion be- 
comes a matter of determining the reflectivity matrix. In this approach, this 

determination is reduced to a cascade of matrix inversions. On the other hand, 

the reflectivity matrix remains elusive to the exploration geophysics community. 

In my own research, I am developing a continuum analog for the Berkhout for- 
malism. This allows an interpretation of the reflectivity matrix in terms of the 

more well understood geometrical optics reflection coefficient. It also reveals the 
inaccesibility of an exact inverse of the propagator matrices, hence the need for 

using the adjoint as an approximate “well-conditioned” inverse. The analysis also 

reveals that the “W RW” characterization of the underlying model is conceptual, 

rather than exact, unless one makes certain compromises on the meaning of W. 

For anything but the horizontal reflector, W is a dyadic operator. While imaging 
has been confirmed for the planar reflector by this approach, it is at best on- 
lyindicated by the current state of analysis for the curved reflector case. Further, 
extraction of the reflection coefficient from the continuum analog of the reflectiv- 
ity matrix remains undone for the curved reflector case. Berkhout inversion is 
a fixed frequency process, with stacking over frequency effecting image enhance- 
ment. This leads to the possibility of accounting for dispersion by using different 
background velocities for different frequencies. This aspect of Berkhout inversion 
has yet to be exploited.     
  

INTRODUCTION 

This is a report on in-progress research. I presented some preliminary results for 
the previous project review, put the problem aside for a while and then picked it up 
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again. This research actually began with a discussion with Samuel Gray at the time 
of Svenfest, but is also based on an ongoing desire by each of us gain insight into 
the Berkhout approach to migration/inversion. (Berkhout and van Wulfften Palthe, 
1979; Berkhout, 1984, 1985, 1992; Berkhout and Wapenaar, 1989; Fokkema et al., 
1993; Wapenaar and Berkhout, 1985a, 1985b 1989, 1993; Wapenaar and Jaimé, 1990; 
Wapenaar, 1993a, 1993b, 1994) 

A fundamental problem with gaining an understanding of this method is that 
the Berkhout school discretizes the forward scattering problem. In this approach, 
the Green’s function is replaced by a propagator matrix and the geometrical optics 
reflection coefficient is replaced by a reflectivity matrix in the spatial-frequency do- 
main. The spatial transform of this result provides information about the angularly 
dependent reflection coefficient at all incidence angles consistent with the aperture of 
the data. Another subtlety of the method is the introduction of the dipole response 
in the forward model, rather than the more traditional impulse response; hence, the 
use of W for a “propagator” rather than G. Combining these changes into a succinct 
descriptor for the Berkhout approach, I use the terminology, “WRW model” for a 
shorthand descriptor of this form of the forward problem. Here the right-most W is a 
matrix propagator representing downward propagation, R is a matrix characterizing 
scattering, so that RW is the initial state of upward scattering at depth. Finally, 
the left-most W is the upward propagator, making WRW the upward scattered field. 
Thus, determination of the reflectivity matrix, R, amounts to finding (approximate) 
inverses to the W-matrices. 

The matrix approach allows for relatively easy incorporation of features of the 
seismic experiment that are more cumbersome to model in a continuum (Kirchhoff, 
exploding reflector) integral approach. Of course, in the final analysis all approaches 
must have an equivalence, but that does not mean that it has to be equally difficult 
or easy to achieve the same results from different approaches. 

On the other hand, there are features of the continuum theory that are not eas- 
ily accessible to the discrete method. Indeed, any analysis based on applying the 
method of stationary phase to integral operators are not available in the discrete 
case. (Although a recent paper by Keller and Knessl, 1993.) suggests an approach to 
asymptotic evaluation of oscillatory sums.) 

The discrete approach has no analog of the 2.5D theory, which allows for processing 
of a line of data while accounting for out-of-plane spreading. The reason is that 
2.5D processing results from applying the method of stationary phase to the integral 
operator representing 3D migration/inversion under the assumption that there is no 
out-of-plane variation in the medium (and, hence, in the data). 

In the discrete approach, one would have to estimate the out-of-plane operator 
sum under the same conditions—possible with the Keller/Knessl theory, but as yet 
undone. 

The Berkhout formalism assumes infinite aperture in sources and receivers, as 
do all other methods. However, again, the availability of the method of stationary 
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phase provides a mechanism for analyzing finite aperture effects with integral oper- 

ators, not possible for discrete inversion. For example, one can show in Kirchhoff 

migration/inversion that diffraction smiles are characterized by the passage of a sta- 

tionary point through the endpoint of integration; the visible smile occurs when the 

stationary point of the integral over sources and receivers is outside of the interval of 

integration and the dominant term of the asymptotic expansion of the integral arises 

from the endpoint of integration. 

Using the stationary phase principle again, one can estimate all sorts of geomet- 

rical attributes—parameters associated with the specularity of the rays that actually 

dominate the data that images a reflector. Among these attributes are the incidence 
angle, source or receiver coordinate for the specular rays, and travel time along the 

specular ray path, among others. See for example, Geoltrain (1991). 

There is another subtle difference between Berkhout inversion and other ap- 

proaches presently in use. I will explain with the aid of three figures. In Figure 1, we 

depict a data cube with coordinate axes being midpoint, offset and time/frequency. 

In Figure 2, we show a typical slice used for a common offset migration/inversion. 
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Fic. 1. The elementary data cube. 

That is, we take a fixed offset and process over midpoints and time or frequency to 
obtain an image and parameter estimates. In this approach, we would use data in the 

orthogonal (horizontal) direction for velocity analysis and, later, to stack for image 

enhancement. Common shot migration/inversion could be represented by a different 
vertical slice through the data, again with velocity analysis and stacking being carried 
out with the use of parallel vertical slices through the data. 
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Fic. 2. Data slice for a common offset migration /inversion. 
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Fic. 3. Data slice for Berkhout migration /inversion. 
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In contrast, in Figure 3 we show the type of data slice used in Berkhout migra- 

tion/inversion. Note that all sources and receivers are used in the inversion process, 
leaving the orthogonal direction—time or frequency—for velocity analysis and image 

enhancement. 

I think of alternative approaches as constituting a tradeoff of time for depth to 

obtain a preliminary reflector map and parameter estimates; the Berkhout approach 

would seem to be a tradeoff of offset for depth. It seems to me that it would take a 
“lot” of offset to provide significant depth information. Where that is not available, 
this method would seem to be much more dependent on the redundancy of data to 

overcome the artifacts of limited aperture. 

On the other hand, an inversion at fixed frequency has an important feature that 
alternative methods lack, namely, the ability to use different velocities for different 

frequencies. That is, it would seem that this method can accommodate dispersion 

more easily than other methods. I do not believe that this aspect of the Berkhout 

approach has been exploited to date. It also suggests the possiblity of developing a 
velocity analysis scheme in which one examines residual moveout as a function of fre- 

quency, thereby developing a frequency dependent background velocity—essentially, 

deriving a dispersion relationship from residual moveout in frequency. 

Analytically, I determine the properties of an inversion operator by applying the 

operator to Kirchhoff data for a curved reflector. It is this approach that led to an 
interpretation of our original inversion in terms of the geometrical optics reflection 
coefficient. This followed from the analysis of Kirchhoff data, despite the fact that 

the basic inversion formalism was based on the Born approximation—seemingly pre- 

cluding large changes in medium parameters across an interface and precluding wide 

offset, near critical reflection and beyond. See, for example, Bleistein (1987). 

It is this same type of analysis that I am trying to carry out for the Berkhout 

formalism. 

To date, I have been able to derive the results described below. 

1. I have produced a straightforward continuum analog of the WRW model for 
the case of a horizontal reflector in a constant background medium. As part of 
this result, I find a continuum analog for the reflectivity matrix for this model. 

2. This derivation provides a motivation for the idea that inversion amounts to 
finding inverse operators for the two W’s of the theory. However, I argue that 
an exact inverse cannot exist because the forward operator has evanescent modes 
whose rate of exponential decay approaches infinity with k,, the transverse wave 

number. Of course, for finite values of k, > w/c, an approximate inverse leads 
to an ill-conditioned operator, still not satisfactory. (Here, w is frequency and 

c is propagation speed.) 

I then show that the adjoint operator, W*, is a reasonable inverse, in the sense 
that it inverts the propagating modes and attenuates evanescent modes. (Note 
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this means in an amplitude-consistent sense in addition to a kinematic sense.) 

3. I confirm that adjoint processing provides a means of imaging and a means 
of estimating the angularly dependent geometrial optics reflection coefficient. 
This result is achieved by applying an operator based on W* to an exact repre- 
sentation of the upward scattered wave and calculating the resulting integrals 
exactly. 

4. The simple WRW model does not work for the dipping planar reflector or the 
curved reflector in a constant background medium. However, I am able to carry 
through the asymptotic analysis of applying the same adjoint operators to a 
model of data for the dipping plane. Here, it is necessary to introduce the first 
approximations in the analysis. The dipping reflector is assumed to emerge at 
the upper surface “far” from the processing region and I neglect these endpoint 
effects. I consider this to be a not-to-serious problem in the sense that we are 

_ not really interested, in practice, in reflectors that emerge at the upper surface. 

I show again how one obtains an image of the reflector and an estimate of the 
angularly dependent reflection coefficient. However, the latter now requires an 
accurate estimate of the angle of dip of the reflector. Of course, having an image 
of the reflector allows one to estimate the dip angle—easy for a planar reflector, 
harder for a curved reflector. Here, I expect that the stationary phase principal 
applied to integral versions of the Berkhout inversion will provide a means of 
obtaining a numerical estimate of the dip of the reflector. This extension has 
not yet been carried out. 

5. Using a recent thesis by a von Vronhoven, a student of Fokkema’s, (Fokkema 
et al, 1993) as a point of departure, I am able to obtain the form WRW for 
the upward propagating field from a single reflector. The difference between 
my work and van Vroonhoven’s is that her W-operators require knowledge of 
the normal direction all along the reflector. In that case, the W’s are no longer 
propagators; propagators should only depend on the source mechanism and the 
background medium. In order to overcome this shortcoming, I find it necessary 
to introduce 1 x 4 dyadic propagator operators operating on a 4 x 4 dyadic of 
reflectivity matrices. Furthermore, the von Vroonhoven result applies to the 
impulse response and not to the dipole response. I believe that to obtain a 
result for the dipole response will require one to fall back to the asymptotic 
approximation of the upward scattered field and not try to work directly on an 
exact representation. 

6. For the curved reflector, applying the same adjoint operators produces a more 
complicated result from which imaging is apparent, but estimation of the re- 
flection coefficient is not yet completed. 

This is the present status of this research project. In the following sections, the 
results are presented in the same order as in the enumerated list. 
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THE HORIZONTAL REFLECTOR 

In this section, I develop some elementary ideas in the context of the simplest 
reflection problem, namely a point source in two dimensions over a single horizontal 
reflector. We introduce the exact representation of the upward scattered solution and 
confirm an assertion in de Bruin [1992] that for the source and receiver on the reflec- 
tor, this response is just the Fourier transform of the angularly dependent reflection 
coefficient. We then derive a continuum analog of the solution representation form, 
W,RW,, and use this as motivation for derivation of an approximate inversion opera- 
tor, W", for each of the forward modeling operators, W, and W,. Finally, I check the 
application of this approximate inverse operator on our exact solution representation 
and show that it really provides information about the angularly dependent reflection 
coefficient and also provides a means of imaging the reflector. 

The Forward Model 

Let us consider the simple example of a point source over a horizontal interface 
across which only the propagation speed changes. See Figure 4. We are interested in 

  e 
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H 

Co   12 
Fic. 4. Source and receiver over a horizontal! reflector. 

the upward scattered wave. The solution to this problem in two dimensions can be 
found in many books including Bleistein [1984] eq. (8.1.1); 

1 ak 
U(Lq, 2g) Zs,2%s3,W) = — Fai Lf Rebs) exp {io} S 

z,>H, 29> H. 

Here, 

k3(ky,w) — ka(ki,w) 
R(ki,w) = k3(ki,w) + ka(ki,w)’ 

(2) 
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and 

@ = ky [xq - Ls] + k3[2H - (z, + z,)] 

(3) 
= kys+kgn. 

In these equations, as seen in Figure 4, (x,,z,) are the source coordinates, (2g, 2g) 
are the receiver coordinates, H is the normal distance from the source point to the 
reflector, and c; and cz are the propagation speeds above and below the reflector, 
respectively. 

The variables, s and n are shown in Figure 5. They are the projected distances— 
parallel and normal to the reflector—from the image of the source point. Equivalently, 
they are the parallel and normal distances from the source point to the receiver point 
along the specular ray path. As defined, n is a signed quantity that is positive for 
the‘source and the receiver above the reflector. In modeling, this will always be the 
case; in downward continuation of the sources and receivers, this need not be the 
case, since the downward continuation is a mathematical process that is not limited 
by the physical constraints of the problem. 

The functions, ks and k, are given by 

kg = w/c} — kj, kg = yw? /§ — ki, (4) 

with both square roots defined to be positive at k; = 0. Also, the contour C on the 
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Fic. 5. Rays and normal and parallel coordinates. 

  v 
right side of (1) extends from —oo to oo, passing over the branch points of k3 and 
kq in the left half k;—plane and under the branch points in the right half k,—plane, 
This is a classic technique in the method of complex variables for defining the square 
roots so that they are real and positive for w*/c? > k?, and w?/c3 > k?, respectively, 
and they have a positive imaginary part for w?/c? < k?, and w?/c3 < k?, respectively. 
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This solution is the response to an impulsive point source at (x,, z,). In the absence 
of the reflector, the solution is the free space Green’s function, which, in the wave 
number domain, is given by 

1 . . 
G(ki, Z,%5,25,W) = ~ Dike exp {—ik,xr, + iks|z — z,|}. (5) 

We are, instead, interested in the response to a dipole source. In particular, to make 
the constants come out nicely, introduce the solution W to the equation, 

2 

VW + aw = 26'(z — z,)6(x — 25). (6) 

In the k;—plane, the solution to this equation is 

W(k1,2,%s,2.,w) = sign(z ~ z,) exp {—ik,x, + ikg|z — z,|}, (7) 

obtained from the previous result by taking the derivative with respect to z and 
multiplying by —2. The representation of the dipole response in the space-frequency 
domain is obtained by making a corresponding adjustment in (1), namely, multipli- 
cation by —27k3. This function will still be called u, because there will be no further 
need of the former result in the discussion to follow. Thus, 

1 . 
U(Lg, 2g, Ls, 25,W) = sz [ Rk w)dhy exp{i®} (8) 

In this application, the dipole response is evaluated at z > z, so that the sign- function 
in W is positive and can be omitted. 

Reflectivity 

Our point of departure for comparison with the Berkhout approach is a discussion 
in Cees de Bruin’s thesis [102]. He points out that the dipole response with source 
and receiver on the reflecting surface is just the Fourier transform ! of the angularly 
dependent reflection coefficient. Here, we will verify that observation for the exact 
field representation, (8). All we need to do is to take the limit in that equation as z, 
and z, both approach H. See Figure 6. It is necessary to think of this as a limiting 
process from above rather than a direct evaluation because there is a different limit of 
the “scattered field” from below, namely, the transmitted wave. It is the limit from 
above that we define as the field on the reflector for this discussion. The result is 

u(t, H, 25, H,w) = 5 L R(ky, w)dky exp{ikis}. (9) 
  

‘The Fourier transform here is multiplication by exp{—ix (x, —2,)} and integration over 24, or, 
equivalently, multiplication by exp{—ix,s} and integration over s. 
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Fic. 6. Source and receiver on the horizontal reflector. 

Indeed, this result is just the Fourier transform of the reflection coefficient (2) ex- 
pressed as a function of kj and w. For k? < w?/c?, we can introduce the incidence 
angle 7 with respect to the normal by 

k= sin y (10) 
Ci 

and rewrite the reflection coefficient in the form 

cos y/¢e; — /1/c3 — sin? 4/e R((w/ey) siny,w) = AT VALE si 9 (11) 
cos y/c, + V1/4 — sin? y/e? 

or, in terms of the ray parameter q with k, = (w/c;)q, 

vVI=#/a - Vi/G— #74 1 
VI=@/e, + V1/3 - @/e? 

These latter two forms prove useful for integration (summation) over all w for fixed 
incidence direction. 

R(wq/e1,w) = 

Returning to the form (9), we define the function, 

R(%q,2.,wW) = u(Zg,25,w) 

(13) 
1 . 

= 5 [ak R(k1,w) exp {tk,s}. 

In this particular case, R(x,,2,,w) is actually a function of the difference, Ig — Xz 
and is just the dipole response, as predicted. However, in more general examples, 
it should be anticipated that the result will be somewhat more complicated than 
this, but still related to the reflection coefficient. If the coordinates x, and z, are 
discretized through z, = jA€, and x, = iA€, then R becomes a matriz at the depth, 

H, 
Rij = ult, JAE, w). (14) 
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This is very close to Berkhout’s reflectivity matrix, except that this matrix is defined 
_ by an integral in (13), whereas in Berkhout’s derivation, it would be the correspond- 
ing finite discrete sum for discrete values of w. With this caveat in mind, below, the 
function, R(z,,r,,w), in which both depth variables are evaluted at the same depth, 
will be called the reflectivity matrix, even in its continuous form. The term, reflec- 
tivity function, will be reserved for the case in which the two depth-arguments are 
independent. This will be discussed below. 

} 

  

    
-2 -1 1 2 
Fic. 7. Reflection coefficient as a function of q, equation (12). 

Figure 7 is a Mathematica rendition of the absolute value of the reflection coefti- 
cient as a function of q in the range (—2, 2), which includes the range of real incident 
angles and a portion of the range of evanescent modes. Note that this is a complex 
valued even function of g and that its Fourier transform, the reflectivity matrix, even 
at spatial position xz, — x, = 0, is complex valued. For the purpose of imaging, then, 
it makes sense to examine the absolute value of the Fourier transform of R. Figure 8 
is the absolute value of a 128 point Fourier transform of R in the previous figure, as 
a function of ry — r, with the origin at the center position. The 128X128 discretized 
version (13) has this plot as its 65th row. This is a Zoepritz matrix, with each row 
just a shift of this one. In this case, a single row carries all of the information about 
R. Equivalently, in a laterally homogeneous medium, a single shot and double spread 
of receivers contains all information of all translates of this configuration, equivalent 
to the translates of the central row of the reflectivity matrix. These figures should be 
compared with Figure 3.4 in de Bruin [102]. 

These observations suggest an approach to inversion, namely, that one create 
a dipole response at depth from the ensemble of observations of dipole response 
experiments. This is a form of downward continuation of the data. Before we proceed 
to do this, we will examine the structure of the solution (8) with an eye towards the 
matrix form of the Berkhout approach and with an eye towards writing an operator 
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R(nAx) 
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32 64 96 128 

Fic. 8. Fourier transform of the reflection coefficient with zero position as the center 
point of the plot. In a 128X128 matrix representation of the reflectivity matrix for 
this example, this is the 65th row (or column). 

      
form for the observed field that lends itself to the process of creating an operator 
inversion that achieves the intended goal. 

The Form WRW 

It will be shown here that the integral representation (8) has the form of the inverse 
Fourier transform of three functions, namely, two dipole Green’s functions and the 
reflectivity in the kj—domain. To be more specific, let us define the spatial-frequency 
domain dipole response in the absence of the reflector as the (distributional) inverse 
Fourier transform of the result (7), namely, 

sign(z — . . W(2,z,&,¢,w) = Signe ~ 6) [exw {ik,[x — €] + iks|z — ¢]} dky. (15) 

Furthermore, let us define a reflectivity function R of four spatial variables and fre- 
quency, 

R(Eqs Cores Cay) = (Eq, Es, w)5(C, — H)5(C, — H). (16) 
In this particular example, the reflectivity function of four spatial variables is defined 
in such a manner as to restrict it to the only depth where reflection data is nonzero, 
namely, on the reflector at depth H. The reflectivity matrix—the Fourier transform 
of the reflection coefficient—becomes the weighting function of the distributions that 
restrict this particular reflector to the depth H. This is the continuum mechanism 
for creating the reflection data with nonzero values only on the given reflector. 

Now, we consider the integral, 
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ITs |W ap 201 b41 Core) R(Eys Gor bas Gord) 

° Weé,, Gs, Da, 2s, w)dE,dé,d¢,d¢, 

[Wes 29) bo, H, w)R(Eq, H, Es, H, w)W(E,, H, Zs, @s) w)df,d&,. 

(17) 

By using the Fourier representations for W (15) and for R (13), I can be recast 
as 

1 ton I= op J dé sdégak, dkifdky 

- exp {iki [rq — &4] + ikg(k,)[H — z,]} 

(18) 
- R(ky,w) exp {ik [£, — &.]} 

- exp {aki [, — 24] + ikg(k{)[H — z,]}. 

The integrals over &, and €, yield delta functions in the wavenumber variables, which 
allow us to carry out those integrals, as well, leaving only the integral in ky. In 
particular, we use the result 

1 se . , ' = [. dEy exp {i[ky — ky ]€,} = 6(k1 — h}), 

with a similar result in £, and kj. Consequently, the function J in (17) becomes just 
the wavefield u as given by (8): 

I = u(@q, 29, Ls, Z5,W). (19) 

If we think of the operations of multiplication by the functions W(z,, zg, 4, H,w) 

and W(,, H, 5, 2,,w) and integration over &, and £, as operators, W, and W,, then 
(17) and (19) can be rewritten as the operator equation 

U(Lg,2g,T5,25,W) = W,RW,,. (20) 

Of course, in operator form, this result can be thought of as the integrations that were 

used here, or, in discrete form, as matrix multiplications, which is the Berkhout,et al 

representation. 

This representation describes the response only from the reflector at depth H. In 
the discrete approach, one must then sum over all depths. Berkhout, et al would 
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tie the depth variable ¢, to the depth variable ¢, and then carry out one summation. 
Here, I prefer to leave those two variables separate as in (16) and think of a double sum 
or double integral representing separate propagation in sources and receivers. Using 
the notation W, and W, to include the integrations over depth in (17), I introduce 
the integral operator notation, 

U(Zy, 2g, Ls, 23,W) = WzRW,, (21) 

as an operator form of this result in terms of all of the integrations that appear in 
(17). 

Of Inverses and Adjoints 

For the purpose of migration or inversion, we seek a method of propagating the 
data from the source/receiver surface to the reflecting surface, in such a manner 
that we obtain (or reasonably approximate) the reflectivity matrix on that surface. 
Thus, it is our objective to transform the data as described by (8) to data at points 
(é5, OF (&, Gy); with Cs > z, and Co > 2g. 

In terms of our operators, W, and W,, (or W, and W,, we seek inverse opera- 
tors, say, [W.]~! and [W,]-!. That is, we seek something that will operate on these 
operators and produce a delta function at depth. 

First, let me describe something that does not achieve this end. One might think 
to multiply the observed data by functions W> and W, —siven by (15) with the 
exponent replaced by its negative—and then integrate over 1, and Xg, essentially 
carrying out a convolution over sources and receivers. Unfortunately, the integral 
representations for these two new functions do not converge because the integrand 
in each is exponentially growing for imaginary ks. Disregarding this for the mo- 
ment, the formal integrations over all sources and receivers produce delta functions 
in the k,—variables, just as in the analysis of the integral (18), which, in turn al- 
low for “easy” calculation of the k—domain integrals to obtain the spatial domain 
reflectivity, R(&,¢,,&,¢s,w). Indeed, these functions W, and W, are an attempt to 
downward propagate the propagating modes and to simultaneously compensate for 
the attenuation of the evanescent modes. However, they are not valid. 

What is happening here is that the attenuation rate approaches infinity as |k,| 
does. Thus, an inversion operator that compensates for attenuation would have to 
have an exponential growth rate that becomes infinite with k,. One cannot create 
such an inverse operator. 

What does seem to work, is to base the operator inversion on the incoming Green’s 
function. Indeed, if one tried to represent u at some point between the reflecting 
surface and the source receiver surface in terms of Green’s functions, one would find 
that the Green’s function of choice is the incoming delta function response. The 
reason is that we have to form the integral of u£G* — G* Lu over a domain bounded 
by the observation surface and some lower surface below the output point where 
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u is to be evaluated and above the reflector. Here £ is the wave operator. Using 
Green’s theorem transforms this integral into a surface integral over the bounding 
surfaces with integrand, u0G*/On — G*Ou/On. On the upper surface, the value of u 
is the observed field and its normal derivative is easily determined in the k, domain 
under the assumption that it is an upward propagating wave. On the lower surface, 

we do not know the fields. Thus, we need to choose G* so that this integral is 

zero. Since u is upward propagating on this lower surface, this can be guaranteed 

by choosing a Green’s function with that property. The Green’s function of choice is 

the inward propagating Green’s function. Here, “inward” means towards the point 
at depth where wu is to be evaluated. On the upper surface, that Green’s function is 

also inward propagating or now downward propagating, while u, itself, is still upward 

propagating. Hence the integral over the upper surface is nonzero, in general. 

The inward propagating Green’s function is given by 

k Ce n60 = a5 | pegye {thule 8) — Ghyle CD. (22) 
In this equation, k3(k,) is the complex conjugate of the function 43(k,). Thus, on 
the path of integration, this function agrees with k3 when they are both real but is 
the negative of kz when they are imaginary. This assures that in the latter domain, 
—1tk3(k,) has a negative real part and the integral converges. It is an exercise in 
asymptotics to show that G* = O(exp {—iwr/c,} //wr/c,), with r being radial dis- 
tance between source and receiver. For the temporal Fourier transform that I use, 
this is the incoming Green’s function. 

  

The incoming dipole response, W*, corresponding to this Green’s function is 

si nz — “pes W*(z,2z,€,0) = —® ¢ 8) f ay exp {—ihi 2 — €)—ik3(k:)|z Cl}, (2) 

Now consider the integral, | 

T= [ drW(2, 2,24, 2.,0)W"(E, 6,25 2050); (24) 
with both z and ¢ greater than z,. We use the Fourier representations (15) and (23) 
to rewrite this integral as 

I= op — | dz,dk, dk’ 

- exp {iki [x — x,] + ikg(k1)[z — z,]} (25) 

- exp {—ik\[é — 24] — ik5(K)[C — z]} 
As above, the integral over x, is a delta function, which allow us to calculate the 

integral over ki as well. The result is 

I = aay | a exp {iki [x — €] + ikg(ki)(z — 2.) — ik3(ki)(¢ — zs)} 
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- = [ syanen Hei exD Cail — + ikele — C} (26) 

1 

Qn Loacs dk, exp {tky[x — €] + tka(ky)[z + ¢ — 22,]}. 

We are more interested in the Fourier transform here than in the function, J, itself. 

_ | exptiks(ki)[z—C]}, w*/ct > kf 
I= (27) 

exp {ik3(k)[z + ¢ — 2z,)]},  w?/c? < k?. 

In particular, when the two depths agree, z = ¢, 

. 1, w/c? > k? 
I= (28) 

exp {ik3(k;)[2z — (z, + 2g)]}, w/c? < k?. 

That is, for z = ¢, I is equal to unity in the propagating range and attenuates to zero 
outside that range, with the rate of attenuation i increasing with depth and increasing 
with |k,|. If I were identically equal to unity at z = ¢, then J would be a delta 
function, 6(z, — x,). Thus, we can think of J as an approximate delta function that 
at least behaves “right” in the range of propagating wave numbers. 

Note that if we were to discretize the operator J as defined by (24) then the 
indicated product would become a matrix multiplication of W with the transpose of 
W*. Since W* is the complex conjugate of W, this is a multiplication of W with its 
adjoint. In that sense, I view the operation of multiplication by W* and integration 
as being the continuous analog of matrix multiplication with the adjoint of the matrix 
W. Thus, I view the operator that I propose here as being the continuous analog 
of the Berkhout school’s multiplication with the adjoint matrices associated with the 
downward propagator matrices. 

Of course, this is just the simplest constant background case and we have yet to 
see what the effect of this operator is on more complicated reflectors, such as dipping 
planes and arbitrary curved reflectors. However, I believe this is a good start. 
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Downward Continuation 

We are now prepared to test our adjoint operators as approximate inverse oper- 

ators by applying one in source variables and one in receiver variables to our repre- 

sentation (9) of the observed field. Thus, we consider the integral 

I= J dzgdeegW™ (29, 2955, Cys 2) (9, 295 24y 2458) W" (Ess Coy Bay 2502): (29) 

Physically, the integral over 1, downward propagates all the responses for a fixed 
source to the position (€,,¢,). Correspondingly, by reciprocity, the role of sources 
and receivers can be interchanged. Viewing all source points as receiver locations for 

a fixed geophone position now viewed as the source, we can perform exactly the same 

downward propagation of sources. This is the integral over z,. 

As previously, the integrations here will be carried out by using the Fourier repre- 

sentations of the three functions under the integral sign, with each W™ given by (23) 
and the observed field given by (9). Thus, the previous equation is replaced by 

I = si / dx,dz,dki dk!'dk, 

- exp {—th;[2q — £4] — tk3(k1) [Cy — 29]} 

(30) 
. R(k,, w) exp {ik; [ry _- Zs] + ik3(k,)[2H =_ (2, + 2s)}} 

- exp {—7ki[€, — a4] — tk3 (kz) [Cs — 2s]} - 

We calculate these integrals as above. Namely, the integrals in x, and zy are delta 

functions that allows us to determine the integrals in ki and k/, yielding the result, 

I = Pa jf dks Rk.) 

(31) 
- exp {iki [E, — £4] + tks (k1)[2H — (2g + 24)] — tk3 (ki) [Cy + Cs — (2 + 25)]} 

or 

ret [ ayeaag ht Fe(Ri,w) exp {iki [& — G6] + tha kx [2H — (Cy + GD} 
27 2 

1 
= [ races RU) (32) 

- exp {tky[€, — &] + tks(ki)[2H + Cy + ¢, — 2(z, + 2,)]}. 
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This equation can be equivalently written as 

1 
I= oa Lojane dk; R(k;, w) exp {ikys + ik3(k,)n} 

1 
+ [ sacs Rh) (33) 

- exp {ik,s + ikg(k1)[n + 2d]} . 

Here, s and n are as in Figure 5, except that now they are measured from the 
downward continued source and receiver positions, (€.,¢,) and (€,¢,). The distance, 
d is the sum of the normal distances from the original source and receiver positions to 
the propagated source and receiver positions, respectively; that is, d = ¢,—z, +, —2y. 

We evaluate the result (32) at ¢, = ¢, = H to obtain 

. 1 . 

I= = [ sjeazag Tei R (kw) exp {iki ly — &]} (34) 

1 =f 2jegcag Toth) exp {iki [fy — &] + 2ika(ks)[2H ~ (2 + 2,)]}- 

The Fourier transform of this result is 

_ T Rlki,w), w/e > k? 
i= (35) 

R(ky,w) exp {2ik3(k,)[2H — (zy + 2,)]}, w/c? < k?. 

We see that this result produces the reflection coefficient for w?/c? > k?. Furthermore, 
for kj > w?/ci, it produces the reflection coefficient multiplied by a factor that decays 
exponentially with increasing k? and with increasing depth H. In fact, as noted above, 
the multiplier of tks in the second case is twice the sum of the normal distances from 
the source and the receiver to the reflector. It will be seen below that this is the form 
that the decay rate takes in the case of the dipping reflector, as well. 

Figure 9 shows the function J in (35) for the case 2u(2H — 2g — 2s)/c, = 87. 
This latter evaluation effects the decay rate in the second line in (35). The choice 
of constant made here occurs for f[H — (z, + 25)/2]/c: = 1, with f being frequency 
in Hz. For example, this corresponds to a reflector at 500m depth, with source and 
receiver at depth zero, at a frequency of 10Hz and a propagation speed of 5Km/s. 
If we were to decrease the propagation speed or increase the frequency to values 
more realistic for this depth, then the decay rate would be even greater. Similarly, if 
we were to increase the depth to something more consistent with this frequency and 
propagation speed, the same thing would happen. The point here is that for relatively 
conservative choices of parameters the exponential decay in the evanescent range of 
k, acts effectively like a bandpass filter eliminating all evanescent information from 
the output. 

54



Bleistein Berkhout inversion 

    

  

Fic. 9. Plot of the function in equation (26). 

I(nAx) 

  

  

n   

32 96 128 
Fic. 10. Fourier transform of the function of Figure 3. 
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Figure 10 shows the transform of this result, as a function of a counting index n. 
This result is scaled by w/c,. As with the exact reflection coefficient, this result peaks 
at zero argument, which is the center position of the 128 point transform, with peak 
value that is actually higher, ~ 2.6, than for the exact reflectivity function in Figure 
8, = 2.2. 

Imaging 

In order for the integral J in (33) to be an effective integral for imaging the 
reflector, we would want this integral to peak in the z—direction, as well. It is clear 
that the integral will peak if both s and n are zero. If we are interested in peaking 
only in the z—direction, then we must set s = 0. The way to do this is to make 
the source and receiver coincident. We propose this as the method of imaging for 
this approach to migration and inversion. In the next section, we show that this 
provides an image for the case of the dipping reflector, as well. Indeed, for s = 0, the 
representation (33) assures us that the output will peak only for n = 0. 

Thus, we consider the evaluation of J for &, = €,, but for ¢, = ¢, # H. The 
result is predominantly given by the first line in (33) with &, = €. In Figure 11, 

I(nAz) 

0.25} 

0.2} 

0.15; 

0.1 

0.05; 

  

    
32 64 96 128" 

Fic. 11. I in (24) for coincident source receiver but variable depth. 

we show this output. The units represent approximately 32m. Again we see a sharp 
peak. That is, the operations represented by (29), which I can symbollically write as 
WjuW;, provides an output that peaks at the reflector depth for coincident source 
and receiver. This is what we would want an imaging operator to do. However, 
in addition to that, the Fourier transform of the downward continued data is the 
reflection coefficent as a function of k, and w. Of course, the lateral invariance of this 
problem assures us that all vertical lines will look alike, as long as we process the data 
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for coincident source and receiver. Note that this also makes the output a function of 

two spatial variables which is necessary for an image of a reflector in two dimensions. 

In three dimensions, the three coordinates of the source and receiver point would 

be equal in pairs, making the output a function of three spatial variables as it should 
be for that case. 

Below, when we consider the dipping reflector, we will display a two-dimensional 

imaging output for this operator inversion. Here, there is no point in showing more 

than Figure 11 because all vertical lines will be identical. 

Asymptotic Analysis 

It is worthwhile to examine J, as defined by (33), asymptotically in order to 

gain some idea about whether or not processing for J will reveal the presence of the 
reflector, that is, whether this function peaks when ¢, = ¢, = H. In carrying out this 

analysis, a change of variable of integration from k; to 7 through k, = (w/c)) sin7, 
or to q through k,; = (w/c;)gq. In either case, an overall multiplier of w/c; will appear 
in the representation of J and will appear in our discussion of the asymptotic results, 

below. Indeed, this factor also carries the dimension of J, namely, inverse length or 

wave number. 

The two summands of J as represented in (33) behave quite differently. In the 
second term, k3 is purely imaginary and has a length scale multiplier in depth, 2H + 

¢, + Cs — 2(2,+2,), that is never zero. Furthermore, kg is singular at the endpoints of 

integration with an infinite derivative there. These are the dominant critical points 

in the asymptotic analysis of these integrals. In fact, this second line can be shown 
to be 

w 

One, O [WI2H + G +6 — 2(z5 + 24)]/er)7] , 
which is less than the order of the first term in (33), to be derived below. 

As might be expected, the analysis of this first term is sensitive to the value of 
the relative depth, 2H — (¢, +(¢,). It should be noted that when this variable is zero, 
as in (34), the phase is linear in k,; that is, there are no stationary points in this 
integral. When this variable is nonzero, the integrand has a stationary point. In this 

case, one can show that this first line and, hence, J can be estimated by 

I= ora O [(wr/er)-¥? [2H — (6 + )I/r] . (36) 

Here, 
  

r= Vig — 6 + 2H = (G+G)P. (37) 
This result is not valid when 2H — (¢, + ¢,) = 0 because the second derivative of 

the phase becomes infinite there. That is the case where the phase is linear, as noted 
above. Thus, this should be viewed as a qualitative estimate only for this quantity 
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bounded away from zero. When 2H — (¢, +¢,) = 0, J is given by (33). In particular, 
when, in addition, &, — é, = 0, 

Ww 
I= —— , 

27Cy O(1) 

clearly larger than the result at other depths and for non-conincident source and 
receiver at depth H. 

It seems to me that the operations indicated in (29) provide a reasonable approx- 
imation to the reflectivity function we seek, since they at least provide an estimate of 
the reflection coefficient in the k;—domain in the propagating range, —w/c; < k; < 
w/c,. Therefore, with acknowledgement of the error of the approximation demon- 
strated here, I define 

R(&,, Cas £5, Cs, w) = J dzedzgW" (ty, 29s &gs Cg, w)ulEy, Cy, Zs, 2,,w)W*(E,, Cs, 2s, 25, W). 

. (38) 

Recapitulation 

In summary, we have started with the model of a dipole source over a horizontal 
reflector and verified a basic premise for this example that the response is the Fourier 
transform of the reflection coefficient when the source and receiver are moved down to 
the reflector. We have also verified the structure WRW for the field representation 
and used that as a motivation for a mechanism of inverting data to produce an 
image of the reflecting interface and an estimate of the reflection coefficient. We 
showed that an exact inverse of the forward propagators is not available because the 
attenuation rate of the forward propagators approaches infinity with ky, requiring 
that the exponential growth rate of the inverter would have to do the same. 

We then introduced the adjoint operator as an approximate inverse operator and 
showed that it acted as an inverse operator for the propagating range of ky, w?/c? > k?, 
and w?/c3 > k?. When these operators in source and geophone coordinates were 
applied to the data, the result was, indeed, an approximate inverse of the data. 
Imaging was achieved by plotting the output of this inversion for coincident source 
and receiver coordinates. Examination of the output at the depth where peaking 
occurred, yielded the spatial Fourier transform of the reflection coefficient restricted to 
the propagating range of k, with some error in the evanescent range. However, Fourier 
inversion of that spatial output yields the reflection coefficient for the propagating 
modes or, equivalently, for all real angles of incidence on the reflector. 

Contrast with Conventional Migration/Inversion 

I do not use the word “conventional” for alternatve approaches to imply some- 
thing perjorative about the method being discussed here, but only as a reference for 
discussion and comparison. 
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Note that in this method, the frequency has been held fixed throughout the dis- 
cussion; imaging and parameter estimation were achieved for fixed frequencies by 
using data from all sources and receivers simultaneously. Subsequently, one could use 
summation over frequency for image enhancement through stacking, or summing over 

fixed ratio, ck, /w for stacking at varying incidence angle. Crudely speaking, one uses 

all sources and receivers for imaging, then frequency for stacking. 

Conventional migration approaches the problem by migrating data from one fixed 
offset or one fixed source and all frequencies and then sums over offsets (first case) or 
source locations (second case) for stacking purposes. 

It is my view that the method considered here reverses the role of summing over 
frequency and stacking over sources or midpoints when compared to other migra- 
tion/inversion methods such as wave equation migration, Fourier migration /inversion, 
or Kirchhoff migration /inversion. 

It is this reversal of roles that allows for the possibility of processing with a 
frequency dependent velocity, essentially by changing the velocity for each separate 
inversion. Thus, dispersion could be built into this approach to inversion more easily 
than in the conventional approaches. 

THE DIPPING REFLECTOR 

Here, we extend the discussion to the case of a dipole source over a dipping 

Cy Xea;2 Ss) Ss 

  
Fic. 12. Point source over a dipping reflector 
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reflector as shown in Figure 12. The objective of this discussion is to extend the 
ideas of the previous section to this case in order to examine the effect of reflector dip 
on the results of the previous discussion. In summary, the results are not so clean. 
The modeling formula does not lead to as clean a result as (8), nor is the function 
R(Es, Cs, &, Cg, w) as clean. On the other hand the inversion operations WruW; does 
produce as simple a result as in the previous case. We can achieve i imaging and we 
can achieve parameter estimation. It is all just a little more difficult than in the case 
of the horizontal reflector. 

The Forward Model 

We begin be presenting the solution for the reflection from the dipping reflector 
in Figure 12. This solution can be derived from the previous one by first solving for 
the impulse response in a rotated coordinate system in which the x/—axis is parallel 
to the reflector. In this new system, the impulse response is given by (1). Then, a 
change of variables back to the original coordinates yields the solution to the present 
problem. By taking —20/0z of this solution, we obtain the dipole response solution. 

The rotation of coordinates is given by 

z’ = («—2,)cos¢ + (z— z,) sind, 

z' = —(r—Z,)sing + (z — z,) cos¢, 

H' = (2, —29)sing — z,cos¢. (39) 

In the last equation, rp is the point where the dipping reflector emerges at the upper 
surface, z = 0 and H’ is the normal distance from the source point to the reflector. In 
fact, by setting H’ = 0 in this last equation, we obtain the equation of the reflector, 

(x — ro) sing — zcos¢ = 0. (40) 

The dipole response solution for the dipping reflector is given by 

U( Lg, 2,25, 2%,W) = =f R(ki,w ae a ak, exp{i®}, 

(41) 
2s < (x, — Xo) tan ¢, 2 < (tg — Zo) tan @. 

In this equation, R(k,,w) is again given by (2); *% = (—sin¢,cos¢) is the down- 
ward pointing unit normal to the reflector and 

k(ki) = (ki, k3(ki)), &(—ki) = (ki, ka(ki)), (42) 

with the second equation arising from the symmetry of ks. 
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Finally, 

@ = k,[(rg— 25) cos¢ + (zg — z,) sin g] 

+k3(ky) ((z. + 2 — 2x9) sin d — (zg + 25) cos d] 

(43) 
= kys(zq, 29: Us; Zs) + k3(k)[n(zs, zs) + n(Xq, zg); 

5(Zg,29,%5,2s3) = (gy ~ 2.) cosd + (zy — z,) sing, 

n(z,z) = (x —29)sin¢) — zcos¢. 

The functions, k3(k,) and k4(k1) are given by (4). We will have need of functions 
k3 and k, of other arguments here; hence, the introduction of their explicit argument 
in this discussion. 

Although the phase is much more complicated here, its representation in terms of 
s and 7 is just as it was in (3) for the flat reflector case. 2 A new feature here is the 
ratio k(—k;) - %1/k3(ki). This factor is equal to unity when the reflector is flat; hence, 
it was not present in the discussion of the previous section. 

We take the point of view that zo is far to the left of the domain of interest, so that 
the reflector is actually more than a “few wavelengths” deep. In fact, one can obtain 
the previous solution from the present one by allowing ¢ — 0 while ro — 00 in such 
a manner that —zpsin¢ + H. This assumption that zo is “far away” is essentially 
a high frequency assumption. Below, it will be necessary to make approximations 
based on this. 

One can see from the solution representation, (41), (43), that the dipole response 
can no longer be the Fourier transform of the reflection coefficient, itself. What we 
can say here is that for the source and the receiver both on the reflector, the dipole 
response is the Fourier transform of the reflection coefficient multiplied by this new 
factor, k(—k,) - 2/k3(k1); that is, 

k(—ky)-” 
dk; exp{ikis ; k3(k1) 1exp{ik, } u(Zq, (2y ~ XQ) tan Q, La, (x, _ Zo) tan g, w) = L R(ky,w) 

(44) 

w
 Il (rq — £5) sec d. 

On the other hand, we should expect that the reflectivity matrix will be just (41) 
evaluated at equal depth values, z, = z,, as a function of the two variables, Zq and 
  

Note, however, that we have redefiined the variable n here to write the total normal distance as 
the sum of the two distances from source to reflector and receiver to reflector. 
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z,. That is for each depth, z, 

1 Kh) -® oat, Rij(2w) = = [ Rhu) Ed exp {i}; 

@ = k,(zqg —2x,) cos p + k3(ky) [(2. + Lg — 2x9) sing — 2z cos g}, 

continuous; (45) 

= ki [(é—j)Axcos 4] + kg(ky) [{(¢ + j)Ax — 2x9} sin 6 — 2z cos], 

discrete. 

As a check on this result, let us consider its Fourier transform with respect to Zy, 
defined by 

Rij(2,w) = [ Rij(2,w)dry exp {—ini[z, — 2]} (46) 
Integration with respect to x, yields a Dirac delta function, namely, 6[f(k1,«1)], with 

f (ki, 1) = ky cos d + k3(k,) sin d — Ky. (47) 

Thus, the integral in k, can now be carried out, by determining the zero of this 
equation. We need the results, 

ky(k1) = 4K, cosd — ka(x) sing, 

  

k3(ky («1)) = Ky sin d + k3(K1) cos dg, (48) 

Of(ki,®i) _ k(ki)-% 
Ok, ka(ki) © 

By using these results in (46), we find that 

Ryle) = FE R(ba(m)su) exp (2iks(bi(m))n(2s, 2) 
(49) 

1 8in 29 + Fat) 60820 Pp, (1), 00) exp {2ika(ka(«1))n(2t5,2)} 
k3(x1) 

Thus, we see that after Fourier transform, we obtain the reflection coefficient at a 
wave number that would seem to be “rotated” through the negative of the dip angle, 
multiplied by a factor which also is tied to the dip. However, note that when n = 0, 
that is, when the source point is moved to the reflector at the depth z, R(ki(«1),w) 
is the Fourier transform of the reflection coefficient, but at a wavenumber that is 
“corrected” for dip. 

62



Bleistein Berkhout inversion 

Downward Continuation 

Let us go directly now to applying the operators W; and W; to the solution 
representation (41). That is, we repeat the operator analysis, (29), with u replaced by 
the solution (41). Our objective is to see how close the result is to claimed reflectivity 
matrix, (45). 

In place of (30), we now obtain 

1 P= 3 [ sepoey dTottg dk dk dy 

- exp {—ikj [2g — &] — ik3(k})[¢, — z4]} 

(50) 

Rb w) exp {ik,s + ik3(k1)[n(x., 2.) + n(£q, 29)]} 

* exp {—ik7 [és - Zs] _ tks (k7)(¢ _ 2.}} : 

Here, s and n are given in (43). 

If the integrations over z, and x, ranged from —oo to oo, then the results of 
those integrations would be 276(k{ — k, cos @+ k3(k1) sin ¢) and 276(—ki + ky coso+ 
k3(k,) sin@), respectively. Here is where we make our approximation based on the 

assumption that x9 is “very far” from the domain of interest. As a practical matter, 

for dipping and curved reflectors in the earth’s subsurface, we rarely have to be 

concerned with their emergence at the upper surface. This is a technicality of this 
particularly simple problem. Thus, we proceed on the assumption that we can neglect 

the effects of the endpoint, ro, in these two integrals. 

We now carry out the integrals in k} and k{ by in these variables at the zeroes of 
the arguments of the delta functions; that is for 

ki = ki cos¢ ~— kg(ki)sing and ki, = ky cosd + kg(k) sing. (51) 

Associated with these values, we find that 

k3(ki) = ki sing + kg(ki)cos@ and k3(k,) = —k, sind + k3(ky) cos 4, (52) 

The result of conve out these integrations and evaluations is 

I= = [ Rls) Ee dk, exp{i®}, 

(53) 
@ = ki [(& —&)cosd + (CG — ¢.) sing] 

+k3(k1) [(& + & — 2x9) sin d — (zy + 2,) cos ¢] 

—k3(ki) [Cy — 2 + ¢3 + 25] cos d. 
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The evaluation of & becomes more meaningful if we write the result in separate forms 
for the propagating values of k, and the evanescent values of k,. We find that 

3 ky: s(&, Coy Es, Cs) + k3(k1) . [n(,, Cy) + n(&., ¢s)]), k? < w/c, 

ki + 8(E5 Cys &s Ce) + ka (ki) - [n(Eq,Cq) + r(E5,C5) + 2d], kP > w?/c?. 
In this equation, d plays the same role as it did in the horizontal reflector case; it is 
the sum of the normal distances from the actual source and receiver positions to the 
downward continued source and receiver positions: 

(54) 

d= [(, — 2, + ¢, — 2] cos ¢. 

Since n(£,¢,) +n(é,,¢,) + 2d is always positive, and Sky is positive in the evanescent 
region, tk3[n + 2d] provides exponential decay for the evanescent values of k, and 

1 k(—k1) I= = [ raves Rhye) EG 

-exp {tkys + ikg(k1)[n(é,,¢,) + n(&.,G)]} 

(55) 

1 k(—ki)-7” 
+ 2a i dk, R(ky,w) k3(k1) 

-exp {tks + 2ikg(k)[n(&Q,¢,) + n(E,¢.) + 2d]}. 

When we compare this result with the predicted reflectivity matrix, (45), we 
see that they agree for the propagating range of values of k, and disagree for the 
evanescent range of values of k,. This is exactly as it was in the case of the horizontal 
reflector. 

We have shown here that the reflectivity matrix is approximated by our adjoint 
operators in exactly the same was as it was for the case of the horizontal reflector. 
Now we must turn the questions of imaging and inversion using this reflectivity that 
we have created. 

Imaging 

Previously, we proposed that imaging is achieved with this method by evaluating 
the inversion output, (55), for coincident source and receiver. As in the previous 
section, in this limit, s = 0, and J is a function of n and d. That is, for the purpose 
of imaging, we should evaluate 

_ 1 k(—ki) +n 
T= L, jeasg Tete R) Fe — exp { 2ika(ki)10(€465)} 
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(56) 

1 k(—ki) +” 
+ on lorece dk R(ki,w) Egy xP {4ik3(k1)[n(E,, Cs) + d]} . 

Figure 13 is a Mathematica rendition of the output of (56) for the case of a plane at 

* & 

gu 

  

COINCIDENT SOURCE & RECEIVER 

Fic. 13. Imaging for a dipping reflector 

30° dip. The reflector is clearly visible here. Again, I used a frequency of 20Hz and 
propagation speed of 5000m/sec. The integration was truncated at the evanescent 

boundary, justified by our experience with the horizontal reflector. 

Inversion 

Here we will show how to extract the reflection coefficient from the result (55). 
First, note that J is initially a function of four spatial variables, £,,¢,,&,¢, as well 

as frequency. In the Berkhout approach, the downward continuation is carried out 
with the two depth variables being the same; that is, ¢, = ¢,, thus, making I a 
function of three spatial variables and frequency. Now let us consider the Fourier 

transform of this function with respect to €, with the phase shift suggested when we 
first introduced this type of Fourier transform above equation (9): 

f= [ Texp{—ire(&, - &)}déy. (57) 

Actually, we have already carried out a similar integration in determining Ri; in 
(46). The main difference here is that the phase in (55) is different for the propagating 
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and evanescent ranges of the variable k,. However, this does not change the support 
of the delta function or its evaluation. Consequently, we find that 

K1 sin 2¢ + k3(k ) cos 2¢ 

k3(k1) 

  T= R(ky(«1),w) exp iW, (58) 

where, just as in the analysis of (46), 

YW = 2[-K, sin ¢ + k3(K1) cos] [(€, — zo) sin ¢ — ¢, cos g} 

(59) 
= 2k3(ki(«1)) - n(Es,¢,). 

Here, kj(«1) and k3(k;(«1)) are defined by (48). 

As a result of our previous imaging, we know how to choose €, and ¢, to make 
n = 0; it is a matter of placing the output point on the reflector. In that case, we 
find 

kK, sin 2¢ + k3(k1) cos 2¢ 

kg («1) 

  i= R(ki(«:),w), n=0. (60) 

That is, by evaluating the Fourier transform of the downward continued field, 
WjuW;, on the reflector, we obtain the exactly the result predicted in (49). If we 
introduce the incidence angle ¥ as in (10), but now for «j, 

Ky = 7 sin, (61) 

then from (48), 
WwW, 

ky («4) = only — @), (62) 

and 

cos(‘y — ¢)/e, — 1/c3 — sin?(7 — ¢)/c? 
cos(y — $)/e, + 1/c3 — sin?(y — 4)/c? 

At the moment, we have no way of determining ¢ except from the graphical 
output, such as Figure 13. However, given an analytical formula, we should anticipate 
a modified asymptotic downward continuation operator whose output will differ from 
the one here by cos¢, similar to the Kirchhoff inversion results in the Bleistein, 
(1987), et al, approach Also, the range of the angle 7 for which we actually have 
reliable output will be a function of the completeness of the angular aperture of the 
original experiment; here, we have assumed that we have sources and receivers from 
Lo to oo, which is clearly not the case, in practice. Here, again, asymptotic analysis, 
most likely by the method of stationary phase, will reveal the extent of the aperture. 
(I expect results similar to the ones obtained in the analysis of Kirchhoff inversion.) 

R((w/c) sin(y — ¢),w) = 
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Summary 

We have examined an exact foward model of the upward propagating wave from a 

dipping planar reflector. We have applied the inversion formalism that was motivated 

by the previous study of the horizontal reflector. Imaging was achieved for a fixed 

frequency, suggesting that dispersion could be accommodated by processing data at 

different frequencies with different background velocities. Estimation of the reflection 
coefficient is a little more obscure, here, because it is masked by a factor that depends 

on the dip angle. Furthmore, the transverse wave number at which the reflection 
coefficient is to be evaluated is also a function of the dip angle. However, we believe 
that the basic objective of exhibiting a continuum analog of Berkhout inversion for 
the case of a dipping planar reflector has been accomplished. 

EXTENSION OF WRW BEYOND THE PLANAR REFLECTOR 

This section is based on a thesis by von Vroonhoven (1993), in which a derivation 
is given of the extension of the form WRW to curved reflectors. The result here 

differs from von Vroonhoven’s: her W-functions depend on the normal to the reflector 

and therefore are not pure propagators, while the ones given here do not depend on 
properties of the reflector. However, the price we pay for this is a slightly more 

complicated, still fairly simple, representation. 

The derivation starts from a Kirchhoff integral representation of the upward scat- 
tered field from a single reflector. Von Vroonhoven gives a detailed derivation, but it 
can also be found elsewhere, including Bleistein (1984). The most interesting deriva- 
tion is probably in Baker and Copson (1939). 

The upward scattered field can be represented in terms of its values on a reflecting 
surface by 

u(e,2,) = | fg [ue 2,) Slee) Gla! 2) E29) dA(z'). (64) 

In this equation, G is the free space Green’s function; u is the upward scattered field 
and S is the reflecting surface. 

By reciprocity, ? we can interchange x and &,. In fact, we could interchange these 

variables under the integral sign, only, leaving them unchanged on the left side of the 
equation. That is, 

u(z,2,) = bh ue 2) SEs) — c(a', 2) MEA) dA(a’). (65) 

  

3When the acoustic wave equation is written in non-self-adjoint form, minor adjustments must 
be made to account for non-symmetric reciprocity. In fact, von Vroonhoven starts from self-adjoint 
coupled equations for pressure and particle velocity, so that this derviation applies to her equations. 
This is only appropriate, since this derivation follows hers. 
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The point of doing this is that the scattered field under the integral sign no longer 
depends on the upper surface source point, 2,, while the Green’s function (propaga- 
tor) now does. The function, u(x’, 2) is the field at 2’ due to a fictitious source at 
x of the same type as the true source at x,. The field at x’ is to be interpreted as 
the limit of the upward propagating field for an observation point above the reflector 
moved down onto the reflector. 

The point, x is not to be our ultimate observation point. That will be z,. The 
representation (64), used again, allows to write 

Ou(zx, @,) ulap2.) =f. ue, 2,) CE n®) _ Ge, 2) Me dA(z). (66) 

Now, for u and 0u/dn, use (65). That means we move the source point in u(z2’, x) 
onto the reflecting surface, as well. The result is 

u(2y,2%_) = L. [og { {ue 2) SE2) _ G(a', 2) dG(zx,, z) 
On! On 

(67) 

— G(a,, nye ue", 2) CE 2) — G(z', 2 ae) } dA(x)dA(z’). 

We expand the second line and rewrite this result as 

u(%,,2,) = b b. dA(z)dA(a"') {w(a! 2) 212») 9G. 2) 

0? u(x’, 2) / 
+G(2',2,)G(z,, 2) on'On 

(68) 
_9G (24,2) - r Ou(z', 2) 

On (2, 2.) On! 

OG(z2',xz,) Ou(x’, x) 

- (ey 2) ee | 
It only remains to write this result in terms of propagators and a reflection opera- 

tor. To do so, it is necessary to separate the normal derivatives (surface effects) from 
the Greens’ functions (propagators). Thus, we introduce the horizontal 4-tuple, 

G(xq,x) = (G(x,, x2), VG(x,,2)) (69) 

and the 4 x 4 reflectivity dyad 
Qa t 

(ac! “Ride oa R(2!, 2) = 
; (70) 

— SE Data) ula'2)ATa)a(a) On 
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In this equation, T denotes transpose, so that the first line here connotes a scalar 
followed by a three component horizontal vector and the second line connotes a three 
component vertical vector followed by a 3 x 3 dyadic. 

By using these representations in (68) we find that we can rewrite that integral as 

~ / , , T u(x,, 2,5) = I . [ 1g HAl@)AA(@')G (wy, 2!) R(2', 2) G" (w, 2,). (71) 

This result clearly has the form 

u(2g,2,) = W,RW,, (72) 

where the operators W, and W, are propagators from the reflector to the geophone 
and from the source to the reflector, respectively, and R is a reflectivity operator which 
carries the surface information through the reflectivity dyad in (70). The operations 
performed are integrations over the reflector. RW, creates the upward scattered field 
at the reflector through integration over the variable z and W, operating on this 
result propagates this surface field back to the geophone zx, through integration over 
the variable a’. 

For the case of the dipping planar reflector in two dimensions, through calculations 
much like the ones that were carried out earlier with the Fourier representations of 
all of these functions, one finds that each of the terms in (68) is identical and equal 
to one fourth of the exact solution presented earlier for this problem. The calculation 
of one of these terms will be carried out here. The others follow in a quite similar 
matter. (For completeness of this short note, I will include equations that were stated 
in the earlier notes on the Berkhout approach to inversion.) 

The previously derived result for the upward propagating wave from a dipping 
planar reflector is (eqs 41, 42) 

,, 1 kon 
u(@,@',w) = = [, Rlbsedg ey atks expti®}, 

(73) 
z' < (z' — x9) tan ¢, z< (x —29) tan¢. 

In this equation, nm = (—sin¢,cos¢) is the downward pointing unit normal to the 
reflector; the vector, k is given by k = (ki, k3(k,)); and 

__ k3(ki,w) — kaki, w) 
R(h1,w) ~ k3(ki, w) + ka(ky,w) , 

(74) 

Finally, 

@ = k,[(2’ —2x)cos¢ + (z’ — z)sing] 

+k3(k1) [(2" + x — 229) sin ¢ — (z’ + z) cos g] 
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(75) 
= k,s(x', x) + k3(k;)[n(2’) + n(x)], 

s(a’,2) = (2'—2x)cosd+(z' —2z)sin¢g, 

n(z) = (x —29)sind) — zcos¢. 

For the Green’s functions we have the results, 

— 1 dk} pt ! C(t —, 2) = — Fe | Gey PE CMe — 2) + halK)2—2)},2 > 29) (76)   

and 

1 dky ° Went in saa expt {ky (x! — x5) + kg(k{)(z — 25)} , 2 > 2p. (77) . / =, 

Oe 6) = — Fa Rat) 

In (68), let us consider the first integral, 

OG(a,, 2’) OG(ag, x) ? / 9) 

A= bs 2S dsds'u(z', 2) On! On (78) 

Here, ds and ds’ are differential arclengths along the reflector and 

Z = 2&9+scos¢?, z=ssind, 

Ce) 
zr’ = 29+8s'cos¢, z=s'sind. 

Substitution of the above three representations for the functions appearing in this 
equation yields the equation 

oi 

1 ken. kon koa 
— ? 

~ 32x38 Ka(kx) ak 
I 

, k3(ki) 7 kg (ki!) 
  dky R(k,,w) exp{i¥}. (80) 

In this equation, 
~ 

k = (—ky, k3(k1)), (81) 
and 

W=ky(s'—s) + ky(tg — 29 — 8’ cos) + kg(ki)(s’ sind — z,) 

(82) 
+ k/(x, — x9 — s" cos ¢) + k3(k{)(s sind — z,) 

The integrations in s and s’ now yield a pair of delta functions 5(k, — ki. cos¢ + 
k3(k,) sing) and 6(k, — k{ cos¢ + k3(k/) sing) which allow us to carry out those 
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integrations. The derivatives of these delta function arguments with respect ki and k/, 

respectively, are exactly the functions, ie - - tt /k3(k}) and ke’ - 1/k3(k7). In evaluating 
the delta functions, it is necessary to divide by these derivatives. The solutions for 
ki, and k/ are given in equations (51) and (52) of the earlier notes, namely, 

ki = k,cos¢+k3(k,) sing, 

k3(k,) = —k, sind + k3(k;) cos ¢, 

(83) 
ki = k,cos¢—kg(k,) sin ¢, 

k3(k{) = k, sing + k3(k,) cos ¢. 

When these results are used in (80) we obtain 

1 ken ; 
U(2_,2,,wW) = in [ Rh, w) Fay ae exp{i®}, 

(84) 

where, now, in the definition of ® in (43) above, x is replaced by x, and 2’ is replaced 
by x,. This is one fourth of the previously derived upward scattered field for this 
problem, as stated earlier. In each of the other integrals in (68), the derivatives of 
the delta functions produce exactly the right factor to “cancel” the corresponding 
multiplier in k, just as occurred here. 

Having the form (71) is not apparently of any particular use, except that it makes 
literal the conceptual structure WRW for downward propagation, reflection, and up- 
ward propagation. As was demonstrated earlier, the application of the scalar adjoints. 
W*uW™, produces an approximate inverse for both the horizontal and the dipping 
planar reflector. It remains to analyze the curved reflector. 

INVERSION OF DATA FOR A CURVED REFLECTOR 

We now consider processing of reflecton data for an arbitrary curved reflector. 
Clearly, in this case, we cannot write down an exact solution, so we must content 
ourselves with an asymptotic solution, namely, a Kirchhoff-approximate solution. We 
will apply the same inversion operator, W*, as given by equation (23) and show that 
we can image the reflector by calculating WSuW7? for coincident downward propagated 
source and receiver. This analysis will be carried out in two dimensions, as were the 

earlier discussions of inversion. However, the asymptotic analysis of the amplitude 

for extraction of the reflectivity by this method has not been accomplished yet. 

Application of the Kirchhhoff approximation requires certain constraints on the 
curvature of the reflector, namely, that it satisfy the inequality, 
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A=2rfL/e>>1. 

Here, f is the frequency in Hz, L is the radius of curvature of the reflector at the 
point(s) where the Kirchhoff approximation is to be applied and c is the propagation 
speed, as in previous sections. 

Thus, we are abandoning analysis of the exact solution for this discussion. How- 
ever, it should be pointed out that the very concept of a reflection coefficient is an 
asymptotic—geometrical optics—attribute of the scattering process for curved reflec- 
tors. Hence, we see no inconsistency here in using an asymptotic approximation. 
Quite the contrary, if we seek reflectivity, it would be questionable to use anything 
more than asymptotic analysis for a curved reflector. 

For this discussion, we introduce the notation, u;(x,2,,w) for the downward 
propagating dipole response, (15). We assume that this field gives rise to an upward 
propagating wave ur(z,2,,w) at a reflecting curve, C. Starting from (65) and using 
the Sommerfeld radiation condition, one can derive the following representation for 
Ur in terms of uz: 

walenani) = ~f [uala(o), su) PE 2) 
(85) 

-~G(x», v(o)) MHL) Su) do. 

See Baker and Copson (1939), Bleistein (1984) In this equation, o is arclength on the 
reflector, C, G is the free-space Green’s function, and 0/0n is the downward directed 
normal derivative on the reflector. 

The Kirchhoff approximation amounts to replacing the upward reflected field, up, 
and its normal derivative on C by their geometrical optics approximations, namely, 

up(z(c),2,,w) = R(x(c), x,)u;(2(c), @,,w), 

(86) 
dur(z(a), 5, W) _ Ouj(2(o), 25,0) On = —R(a2(c), 2,4) On 

Here, R is the geometrical optics reflection coefficient, calculated for the incidence 
angle between the geometrical optics ray from # to a() and the upward normal n(c) 
on the reflector. We prefer not to write down R in this spatial form, because we will 
immediately modify this result by using a wavenumber representation for both u; and 
R, below. 

To this end, we return to the representation of the dipole response, (15), which we 

use for uy and write down a corresponding representation for its normal derviative, 
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as well: 

u(w@,2,,w) = 5 [exp {6B (h1, 2, 2,)} dh, 

(87) 
Ou;(z,z,),w) 1s. . . 

On = 3 piety) -texp {1®(k,, x, 2,)} dk. 

Here, k3(k;) is given by the first expression in (4), and 

t= (z, 2), =, = (Zs, 2s), k(k,) = (k1, k3(k1)), 

(88) 
O(ki,2,2,) = k,[x(o) — x4] + k3(ki)(z(o) — zs), z > 2p. 

We introduce corresponding representations for G and its normal derivative: 

1 1 . 
G(ag,2,w) = — Fai Le ray OP P(E 20)} a, 

OG(a@q,2,W 1 k(—k})-n . PClFn Bi) --~/ ACT® exp (50(K,2,2,)} a, (89) 

k(—k) = (—kj,ks(k)) Bq = (Lg, 2%), 2 > 2y. 

As a new feature, here, we will introduce a representation for the reflection coef- 
ficient under the integral sign in (87). Since the representation in the Fourier domain 
is just a plane wave decomposition, we need only use the plane wave representation 
of the reflection coefficient for a wave incident on a reflector with normal direction, 
n, namely, 

  

fk — sign[wn - k] fw? /ck. — w/c? + (a - k)? 

n-k+sign[wn - k] w/c — w/c? + (n- k)? 
  R(k,,w,o) = ,k=k(k,). (90) 

Remark: R is really a function of k,/w and o. To see this, one needs 
only to divide the numerator and the denominator here by w and to realize 
that 

k3(k1) 3 wl ~ (ki /w)?, 

because for real values of k3, sign(k3) = sign(w); see (4). 

We substitute the results (86) - (89) in (85) to obtain the result, 

_ 1 ,k(ki)-2+k(—k)-% 
UR(L_,2,,wW) = dOnyp b-4 | deat, ks(K) R(k,,w, 0) 

(91) 
"exp {i@(k, x, 25) + 1O(K’, g, x)} . 
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This equation should be compared to (41), which is the result for the dipping plane. 
We see here two additional integrations for this solution. However, if we specialize 
to the case of a dipping plane, this leading order asympotitic solution actually yields 
the exact result, (41). This is a somewhat trick calculation to carry out and I will 
only outline it here. 

First, note that for a linear reflector, the phase is linear in o and R is 
actually independent of o. Thus, the o-integration yields a Dirac delta 
function with argument, 

(ky - ki) cos @d + (k3(k1) + k3(ky) sin d, 

with ¢ being the dip angle as in the earlier sections. 

We use this delta function to evaluate the kj-integral when this argument 
is zero, or when 

k, cos @ + (k3(ki) sind = A = ki cos¢ — ky(k}) sino. 

Here, we show the “auxiliary” variable, \, because the representation (91) 
reduces to the result, (41) when the remaining k,-integral is rewritten as 
an integral in i. 

We propose to apply the inversion operators, W*, in source and receiver, fashioned 
from the basic definition (23) as follows. Set 

W" (556) = SBM 29) Fae, exp {—i6(hn.€,.2,)}. (92) 
and . 

W*(ay,€,) = Steno) f ay exp {-ib(-k}.€,,25)} (93) 

We do not need to be concerned with complex conjugates in this discussion. In 
considering only the leading order asymptotic solution, we are neglecting evanescent 
waves—imaginary k3 values. It is our point of view that the evidence of the analysis 
of the previous sections is overwhelming that the evanescent energy contributes little 
to the inversion process in this method. Thus, we do not consider this approximation 
as a serious loss of accuracy in our analysis. 

We now multiply the upward propagating wave representation (91) by these two 
functions and integrate over x, and z, in order to carry out the approximate inversion, 
W*uW*, as in (29). This equation takes the form, 

1 / dz,dtgdk,dk! dx,dx,do 

(ky) «+ k(—K) 
k3(ki) 

“exp {iU (ky, kj, 1,41, 2, @,,2q)} ; 

R(k1,w, 0) (94) 
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where, 

(ki, kj, W1, 61,2, 25,0) = O(k,,2,2,) + &(—k, 2,24) 

~ #(K1,€,, 2) a ®(—K),€,, 2g) 

or, (95) 

(ki, ki, K1, 4,2, 2s, Ly) = ky (xz ~ Zs) + k3(ky)(z ~ Zs) 

—ki(x — 2g) + ka(ki)(z — 29) 

—Ki(€; - Zs) _- k3(k1)(¢s - Zs) 

+44 (E — tg) — ka(m1) (Cg — 29). 

As in previous discussions of this process, the integrals in z, and ZX, produce Dirac 
delta functions with arguments, ki — K, and ki — «/, respectively. Hence, we can then 
carry out those two integrations, as well, yielding the result for (94), 

1 [ dxsdzydk, dk, do 

(ki) +k(—k) 
ka(t) R(k1,w, 0) 

(96) 
exp {i(h, w,€,) + i@(ki, 2, €,)+} ’ 

g, = (€4,¢s), §, = (&; Gy). 

At first glance, it is not clear that such an integral could provide an image of 
the reflector and information about the reflection coefficient. In fact, this integral 
will peak on the reflector. To make this more plausible, we propose to introduce 
alternative integration variables in place of k, and k/. For each point on the reflector— 
that is, for each o—we use the dip angle of the tangent to define this new pair of 
wave number variables, as follows: 

A, = ky cos$ + k3(k1) sing, A, = —k} cosd + k3(k}) sind. (97) 

This makes the new wave numbers functions of o as well as functions of the old wave 
number variables. For these variables, one can verify the auxiliary relationships, 

k3(A1) = —k sing + k3(ky) sing, and k3(A,) = ki sing + k3(k,) sing. (98) 
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In terms of these new variables, the representation (96) becomes 

  

* a __ 1 / WW" = - fe f anax, 

R3(A1) + Xj sin 26 + k3(Aj, cos 2¢ A; sin ¢ + k3(A1) cos ¢ (99) 

k3(A4) k3(A1) 

R(k1,w, a) exp {10(A1, 54,.) + 10(Aj, 8g, Ny)}. 

In this equation, 

O(A1, 52,%s) = Ars, +k3(A1)ns, 

(100) 

O(Aj, 59, My) = Xi Sq + k3(Aj) nr, 

with the signed distances as shown in Figure 14 and given by 

(E5265) (Sg»Sg) 

  

  

(x(0),2(0)) 
Fic. 14. Curved reflector coordinates. 

8, = (x — £,) cos + (z — ¢,) sind, n, = —(z— €,) sind + (z —¢,) cos¢, 

(101) 
Sq = (x — &,) cosp + (z — G,) sing, Ng = —(x — €,) sing + (z — G) cos¢. 

Remark: For the planar reflector, integration in o now yields the delta 
function, 6(A;+}). Evaluation of the 4, integral again leads to the result, 
(41). 
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Imaging 

This is as far as the analysis has progressed on this problem at this time. However, 
there is enough information here to predict imaging. To see why this is so, consider 

the final formulas for inversion, (96 or (99). Note that to obtain an image of the 
reflector in earlier sections, we proposed that the data be processed for coincident 

source and receiver, that is for 

&,=€, =6. 

Let us consider that case now and, further, let us suppose that 27 is on the reflector, 

C. In this case, there is one choice of o, say 0 = 00, for which s, = s, =n, = ng = 0 

and the oscillatory exponential no longer appears in the integrand. In this case, we 

expect that the result of the 4; and 4{ integrals would be much larger than for any 

other choice of o. That is, the pair of integrals in 4, and A, behave something like a 
delta function, delta(a — a9). This is mathematical imaging! 

To go further with this type of argument, suppose that € is “near” C and we 

choose for oo the value that identifies the point on C closest to €. We expect this 

value to be a critical value of the asymptotic analysis of the o-integral. In this case, 
let us consider linearizing the exponent around o = go and evaluating the amplitude 

at o = 09 as a first order approximation of the integral. 

We already know the result of this linearized analysis: C is replaced by a dipping 

plane with dip angle, ¢ = ¢(09)! In this case, we showed in this section, that the 
double integral in o and /lambda', effectively reduce to the processing for a dipping 
linear reflector of an earlier section, just as the forward Kirchhoff model reduces 

exactly to the model of a plane when C was specialized to this case. Analysis of the 

processing formalism for the dipping plane was carried out earlier and, indeed, we 
saw that the output of the formalism was an image of the reflector. 

Thus, out intuition tells us that the result we seek is contained in the formulas 

(96) or (99); it only remains to be carried out in detail. 

In summary, what we have done here is model propagating part of the energy 
from a reflector as by the Kirchhoff approximation and apply the W*uW* formalism 

to that representation. We have proceeded far enough with the analysis to see that it 

is at least very likely that this output will produce an image of the curved reflector. 

The details of this latter analysis are a subject for further study. 

CONCLUSIONS 

The objective of this paper was to expose research in progress on the development 

of a continuum analog of the Berkhout inversion formalism. Beyond the desire for 
a basic understanding, it is hoped that this study will lead to methods of adapt- 
ing results based on stationary phase for integral inversion operators to the discrete 

Berkhout inversion. We have in mind here the development a 2.5D Berkhout for- 
malism as well as methods of processing for geometrical attributes, such as incidence 
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angle, travel time, etc.—with this discrete formalism. Furthermore, it is hoped that 
by asymptotic analysis of the continuum analog, the artefacts of limited aperture for 
this method can be better understood. 

An important new idea that has been exposed here is that for full aperture data 
from a reflector, each fixed frequency leads to an image of the reflector. This suggests 
the possibility of processing with different velocities for different frequencies, thereby 
accounting for dispersion. It also suggests the possiblity of developing a velocity 
analysis scheme in which one examines residual moveout as a function of frequency, 
thereby developing a frequency dependent background velocity—essentially, deriving 
a dispersion relationship from residual moveout in frequency. 
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ABSTRACT 

A data compression system generally has three building blocks: the transfor- 
mation, quantization and coding. 

In this paper, I use the discrete wavelet packet transform (DWPT) as an ex- 
ample to introduce these building blocks. Specifically, I discuss issues as to why 
DWPT can be particularly helpful in compressing seismic data, how quantiza- 
tion and coding compresses data, and how to perform quantization and coding 
optimally, in the sense that might be appropriate for seismic data.     
  

INTRODUCTION 

Seismic data volumes, these days, are huge and growing. With the emergence of 
3D technology, the data volume is particularly large (> 10!” bytes are common in 3D 
surveys). Simply archiving these data will require a vast amount of storage. Moreover, 
as more data are processed and interpreted on workstations, more data transfer among 
the workstations through local area networks is required. It is therefore desirable to 
compress the data, in order to reduce the costs of storage and transmission. 

There are two categories of data compression techniques: lossless and lossy. Loss- 
less compression means no information is lost during the cycle of compression and 
decompression, and the original signal can be perfectly reconstructed from the com- 
pressed one. Lossy compression, on the other hand, means some information is lost 
during compression. Cost aside, lossless compression is what every customer would 
like since it provides a flawless reproduction of the original. Unfortunately, because 
seismic data are generally represented by floating point numbers throughout process- 
ing, true lossless compression of seismic data is inefficient for that compact represen- 
tation. On the other hand, when data are sampled and recorded, some amount of 
error is already introduced. So, instead of trying to perfectly reproduce the original 
signal, it is realistic to make compromises that yield reproductions that are satisfac- 

tory for our purposes. Therefore, I focus the discussion here on lossy compression 

and specifically on transform-based lossy compression. 

A transform-based, lossy compression technique consists of three building blocks: 
transformation, quantization and coding. First, some transform is applied to the 
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signal. After an appropriate transform, the energy of the signal can be concentrated 
into a relatively smaller region in the transformed domain than in the original data 
domain. Then the transformed coefficients (real numbers) are converted into a finite 
set of integer numbers through quantization. After quantization, fewer bits are used 
to approximate the coefficients, though at the expense of introducing some errors. 
Finally, the integer numbers are encoded to further reduce the number of bits required 
to represent the data. 

Much of the original work in lossy compression can be found in the area of speech 
and image processing (e.g. Bellamy, 1991; Wallace, 1991; Gall, 1991). For seismic 
data, Wood (1974) discussed compression by truncating the Walsh transform of each 
trace. Bordley (1983), on the other hand, used linear predictive coding (LPC) to 
compress marine seismic data. Spanias et al. (1991) compared LPC with some of 
the transform-based compression techniques, such as the Karhunen-Loeve transform 
(KLT), the Walsh-Hadamard transform (WHT) and the discrete cosine transform 
(DCT). More recently, Luo and Schuster (1992) applied the wavelet packet trans- 
form to the compression of seismic data by discarding the small coefficients of the 
transform. Bosman and Reiter (1993) studied how the errors in the wavelet transform- 
based compression propagate through some processing modules. Reiter and Heller 
(1994) compared the compression errors for NMO-corrected CDP gathers and stacked 
sections and found that stacking can actually reduce the compression errors. 

Different from the previous publications, in this paper I focus on gaining an under- 
standing of data compression, particularly as it relates to the peculiarities of typical 
reflection seismic data. I will use the discrete wavelet packet transform (DWPT) as 
an example to discuss the issues as to why DWPT can be particularly helpful in 
compressing seismic data, how quantization and coding compresses data, and how to 
perform quantization and coding optimally, in the sense that might be appropriate 
for seismic data. 

DISCRETE WAVELET PACKET TRANSFORM 

Wavelet packets, introduced by Coifman and Wickerhauser (1992) to compress 
speech signals, are closely related to the theory of wavelet transformation (Daubechies, 
1992). Here, instead of giving rigorous mathematical definitions, I describe discrete 
transforms from a signal processing point of view. 

Both the discrete wavelet transform and discrete wavelet packet transform involve 
two important filters: a high-pass filter D and a low-pass filter A. In the discrete 
wavelet transform, a signal x(n) is first decomposed by applying the two filters, and 
then the filtered data are subsampled — retaining only one sample in two so that 
the total number of samples remains unchanged. For notation purpose, I call the 
operation of high-pass filtering followed by subsampling G and the corresponding one 
for low-pass filtering H. After the first-stage decomposition, the output from H is 
further decomposed, and the process goes on until only one sample is left for the H 
operator, as illustrated by Figure 1. In the discrete wavelet packet transform, both 
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Fic. 1. The diagram for the discrete wavelet transform. The G and H operators 
correspond to first filtering by high-pass (for G) and low-pass (for H) filters and then 
subsampling the output by a factor of two. 
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the outputs from H and G are further decomposed, as shown in Figure 2. Consider 
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FIG. 2. The diagram for the discrete wavelet packet transform. The G and H 
operators correspond to first filtering by high-pass (for G) and low-pass (for H) filters 
and then subsampling the output by a factor of two. 

the structure in this figure as a tree. For each node in the tree, there exists the choice 
of decomposing further or not. Therefore, there results a huge collection of possible 
valid decompositions, with the discrete wavelet transform being one of them. Here, 
for simplicity, I just decompose all the components to some fixed level. 

Since the discrete wavelet packet transform (DWPT) involves iteratively applying 
the low- and high-pass filters, it achieves frequency partitioning as a result of the 
decomposition. Moreover, it is an unitary transform so that the root-mean-square 

(RMS) amplitude remains the same before and after the transform. Also, the process 
can be reversed to obtain the reconstruction or inverse transform using the same 
filters D and A (called conjugate quadrature filters in signal processing literature). 

It is not difficult to extend DWPT to higher dimensions. A straightforward way 
to generate a 2D DWPT is to apply two 1D transforms separately along the two 
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dimensions, i.e., to cascade two 1D DWPTs. As can be imagined, 2D DWPT parti- 
tions the data into different frequency bands, along both dimensions. Figure 3 shows 
a stacked section, and Figure 4 shows the section after 2D DWPT. Here, I did three 
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) 

200:   
Fic. 3. A stacked section. 

levels of decomposition along both the time and space dimensions. The filters D 
and A used here correspond to a specific type of wavelets called fourth-order coiflets 
(Daubechies, 1992). As shown in the figure, the transformed section consists of small 
blocks. Each block represents one frequency-wavenumber partition. From the figure, 
the DWPT concentrates the energy of the data in Figure 3 in the lower-right corner, 
which corresponds to the partition of low frequency and small wavenumber. This is 
not surprising, because the original data contain mainly horizontal events resulting 
in the strong small-wavenumber components. 

After DWPT, therefore, the coefficients are concentrated in a region of the new 
(frequency-wavenumber) domain. But how this action of DWPT help in compressing 
seismic data? 

Figures 5 and 6 may help give understanding of this. Figure 5 shows a histogram 
obtained from the stacked section shown in Figure 3. Since the data are represented 
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Fic. 4. The stacked section after 2D DWPT. It is obtained by three levels of decom- 
position along both space and time dimensions using the filters corresponding to the 
fourth-order coiflet. Each block represents a frequency-wavenumber partition. 

as floating point numbers, they are first converted into integers based on a chosen 
quantization, thus incurring some error. In generating this figure, I fixed the RMS 
amplitude of this error to be 1% of the RMS amplitude of the signal. After the 
conversion, the occurrence of each integer is then counted and normalized to generate 
the histogram. Figure 6 shows the histogram of the section after DWPT, as shown 
in Figure 4. Here again, 1% relative RMS error is allowed. Since the RMS amplitude 
of the data remains the same before and after DWPT, the absolute errors are the 
same in both cases as well. However, the number of integer levels for the data before 
and after the transform might differ. Here, for plotting purpose, the integer levels are 
truncated to the range of —128 to 127. Clearly from the figures, the data after the 
transform have a much narrower distribution than do those before the transform. As 
I define later, the information entropy is lower for narrower distributions. Entropy is 

a quantity that determines the average bits per sample needed to represent a signal. 

Therefore, the lower the entropy, the fewer bits needed to represent the signal, and 
the more compression that can be obtained. It turns out that the entropy of the 

signal in Figure 3 is 6.7 bits while that of the signal in Figure 4 is 5.8 bits. 
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FIG. 5. Histogram for the stacked section, shown in Figure 3. 

QUANTIZATION 

We will find that such reduction in the entropy of a signal is sufficient to yield 
cost-effective compression of seismic data. But no compression has occurred so far, 
because the number of coefficients is the same as the number of samples in the original 
signal. To achieve compression, we need to approximate the transform coefficients 
using fewer bits. In their approach, Luo and Schuster (1992) applied an approximation 
by discarding the small coefficients. In order to reconstruct the data, however, they 
also had to store the locations of the remaining coefficients. An alternative, more 
practical approach, however, is to approximate the coefficients by a set of integers; 
this is called quantization. 

Since quantization is the only step where approximations are made in representing 
the signal, how one designs a quantizer — an algorithm performing the quantization 
— will determine how the error is distributed in the approximation. This, in turn, 
will have direct influence on how the approximated signal looks, how the waveform 
in the approximation differs from that in the original, and how the approximation 
error propagates through different processing modules. Therefore, a good quantizer 
is one that is tuned for a specific type of signal and processes that will be applied to 
it. For example, the quantizers used in speech signal compression are different from 
those used in image compression. Applying the quantizers (and the compression 
techniques using those quantizers) designed for one type of signal to another type is 
thus generally inappropriate. 

In order to design quantizers that might be appropriate for seismic signals, it is 
necessary to understand the theory of quantization, a subject that is more complicated 
than it appears. In their book, Gersho and Gray (1992) discussed many different 
quantizers and therefore provided many options. However, after some transformation, 
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Fic. 6. Histogram for the stacked section after DWPT, shown in Figure 4. 

scalar quantizers — where each sample is quantized independently — are often used 
for simplicity. 

A scalar quantizer is an operator Q that maps real numbers z within a range (a, b) 
into a finite set of output levels y;, yo, ...,. yn. After quantization, a real number zx can 
be uniquely approximated by the nearest output level y; and therefore represented 
by the integer 7. Depending on how the y;’s are distributed, scalar quantizers are 
further categorized as uniform — where the y;’s are uniformly distributed, as shown 
in Figure 7 — and nonuniform, otherwise (Figure 8). The distance A; = |y; — y;-1| is 

    

    

    

  

  

    

Output 
A 

y; 

Yj. 

I a } 1 1 => 

Xi Xj b Input 

    
Fic. 7. A uniform quantizer where the output levels y; are uniformly distributed. 

called the stepsize. Therefore, the mazimum error of a quantizer is just max; 4, The 
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mean-squared-error (MSE, which is the square of RMS) between the original signal 
z and the approximation Q(z) is also called the L?-average distortion (I will simply 
call it average distortion throughout the rest of the paper.), which is given by 

D= [|z-Q(2)Pfx(a)de, (1) 

where fx (zx) is the probability density function of z. 

Given these definitions, following are some results important in designing a quan- 
tizer. The proofs for most of the observations can be found in Gersho and Gray 
(1992). 

1. For a given number of output levels N, the uniform quantizer minimizes the 
maximum error. 

2. The average distortion of the uniform quantizer is 

A2 

provided that fx (x) is smooth and the stepsize A (all the stepsizes are the same 
for the uniform quantizer) is small. 

3. For a given number of output levels N, a nonuniform quantizer that matches 
the input probability density function fx (x) minimizes the average distortion. 

The next two observations are related to entropy. The entropy of a discrete- 
alphabet random variable f (i.e., random variable that can take on a discrete 
number of values) is defined as 

N 
Hg = — >> P(i) log, P(i), (3) 

i=1 

where P() is the probability mass function of f; less rigorously, P(i) is the 
frequency of occurrence of the symbol i. There is a continuous-alphabet analog 
of Hg called the Shannon’s differential entropy h(X) of the random variable X. 

4. For a fixed entropy, the uniform quantizer minimizes the average distortion. 
Equivalently, for a fixed average distortion, the uniform quantizer achieves the 
minimum entropy. 

9. The minimum entropy for a fixed average distortion is given approximately by 

Ho h(X) — 5 log, 12D. (4) 

90



Chen Data compression 

From these observations, there are different optimal quantizers for different pur- 
poses. For example, in digital telephone communication, it is desirable to have a 

fixed number of output levels N (fired rate codes). From Observation 3, a nonuni- 
form quantizer is therefore required that matches the amplitude distribution of speech 

signals. Although the shape might be different, most of the natural (as opposite to 
synthetic) signals have an amplitude distribution similar to the one shown in Figure 
5; 1.e., there are more small-amplitude samples than large-amplitude samples. Intu- 

itively, to have as small an average distortion as possible, the nonuniform quantizer 
will allocate smaller errors for the small amplitude values than for the large amplitude 
values (Figure 8), because there are more of them. A nonuniform quantizer such as 
this is what is used in the current North American standard for digital telephony 

(CCITT G.711, e.g. Bellamy, 1991). It happens that, besides minimizing the average 

Output 
A 

  

b Input 

  

    
Fic. 8. Nonuniform quantizer. The output levels y; are nonuniformly distributed 
so that the stepsizes for smaller input values are smaller than those for larger input 
values. 

distortion, the nonuniform quantizer fits the purpose of telephony as well. This is 
because the human auditory system is not very sensitive to the volume of the sound. 
For a range of large-amplitude events, the content is already known, and the volume 
does not make too much difference (it might make some difference in expressing emo- 
tions though). In contrast, for the small-amplitude events (the whispers) only small 
errors can be tolerated in order that the content be understandable. 

This nonuniform quantizer, however, might not be appropriate for seismic signals. 
When a nonuniform quantizer is used, more error is allocated to large-amplitude 

events, because they occur less frequently, as shown in Figure 5. However, in seismic 

data large-amplitude events (the stand-outs) are what we are often most interested in. 
Those are the events from which we estimate various earth parameters. Keeping those 
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events in position and their amplitudes as accurate as possible, intuitively, will help 
alleviate the possible exaggeration of the quantization errors in further processing. On 
the other hand, the small-amplitude events have a good chance of being random noise. 
The nonuniform quantizer therefore might expend too much effort in approximating 
possible random noise. 

Until a better quantizer is found, the uniform quantizer might be a safe choice. 
From Observation 1, the uniform quantizer minimizes the maximum error for a given 
number of output levels N. Therefore, the uniform quantizer is robust in that good 
performance can be maintained for a wide variety of input signals. With the error 
allocated uniformly, the targeting features (large-amplitude events) are approximated 
accurately, while the small-amplitude events are treated with some care as well. The 
above reasoning remains valid for the transformed domain in a transform-based com- 
pression technique, as well as in the original data domain. 

The uniform quantizer might be a safe choice for allocating the error. But will 
it provide enough compression for a given amount of average distortion? From Ob- 
servation 4, the uniform quantizer minimizes the entropy. Therefore, if the uniform 
quantizer is followed by an entropy coder, it will provide the most compression for a 
given average distortion. The entropy coder will be discussed in the next section, but 
before going to that, let me show an example. 

The approach of discarding the small coefficients discussed in some of the literature 
can be considered as a special form of quantizer. In this quantizer, small amplitudes 
are set to zero while the large amplitudes are kept intact. Therefore, large-amplitude 
events are treated with extreme care (with no approximation at all) while small- 
amplitude events are totally ignored. Though it might be difficult to argue the possible 
disadvantages of this error allocation approach in terms of further processing, the 
compression ratios can be evaluated. For the stacked section shown in Figure 3, I 
tried the compression technique of quantization with coding, as well as the method of 
discarding small coefficients. The transformations used are identical for both cases, 
with five levels along the time direction and four levels along the space dimension 
of wavelet packets decomposition using the fourth-order coiflet. Under 1% relative 
RMS error (RMS amplitude of the error is 1% of the RMS amplitude of the signal), 
the quantization (with a uniform quantizer) and coding technique gives about 5.75:1 
compression. To achieve this same amount of compression, the method of discarding 
small coefficients would have to throw away more than 80% of the smallest coefficients 
and also store the indices of the remaining coefficients. This however gives an RMS 
error as large as 20% even though the coefficients discarded are smaller than 2% of the 
largest coefficient. This result gives support to Observation 4: the uniform quantizer 
minimizes the entropy for a given average distortion. 

CODING 

As suggested in the previous section, entropy coders are needed after using a 
uniform quantizer, in order to achieve good compression. Entropy coding is a lossless 
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compression step. It attempts to compress the data so that the average number of bits 
per symbol is close to the entropy of a sequence of symbols, defined by equation (3). 
The literature contains extensive study on entropy coding, and detailed accounts may 
be found in many books and papers, e.g., Gersho and Gray (1992). 

Example of the many forms of entropy coders include Huffman coders (Huffman, 
1952), arithmetic coders (Witten et al., 1987) and dictionary-based coders (Welch, 
1984). Here, I use a simple example to show how Huffman coders compress data. 

  

  

  

  

  

  

  

  

    

t P(t) Natural Code Huffman Code 
0 1/2 _ 000 0 
i 1/4 001 10 
2 1/8 010 110 
3 1/16 011 1110 
4 1/32 100 11110 
5 1/64 101 111110 

6 1/128 110 1111110 

7 1/128 111 1111111           

Suppose there is a sequence of symbols. Each symbol belongs to the set of 
{0,1,2,...,7}. Their corresponding binary (natural) codes are shown in the above 
table. The binary code requires 3 bits per symbol, no matter what the distribution of 
the symbols in a sequence. Now suppose each symbol i has a frequency of occurrence 
or probability P(i) shown in the table. In Huffman coding, each symbol i is assigned 
a code according to its probability P(i). The Huffman code length for symbol 7 ap- 
proaches — log, P(i). Therefore, symbols occurring frequently will have shorter code 
length, as shown by their Huffman codes in the above table. Huffman code therefore 
requires 1x 5+2x}4+3x1l44x wt5hxet+6xd+7x b+7x ig © 1.98 
bits per sample on average. Therefore, for this example Huffman coding compresses 
the sequence by a factor of more than 3: 2 relative to binary coding. 

After entropy coding, the average number of bits per sample will approach the 
entropy. Therefore, the lower the entropy of the data, the fewer bits required per 
sample of the representation and the more compression will be achievable. From the 
definition [equation (3)], it is not difficult to show that the more evenly distributed 
is P(z), the higher the entropy. If in the previous example, all the symbols i have the 
same probability P(i), the entropy will be 3 bits, and no compression can be achieved. 
For the stacked section in Figure 3, we saw that DWPT helped reduce the entropy 
(from 6.7 to 5.8 bits). Therefore, applying DWPT in this case will result in more 
compression (for a given level of accuracy) than that achievable for the original data. 
(We can always compress data with quantization and coding, no matter whether a 
transform is applied or not.) 

Quantization error is another factor that can change the entropy, as shown in 
Observation 5 in the previous section. From equation (4), it is easy to understand 
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the trade-off between the quantization error, or the average distortion D, and the 
compression ratio r, which is defined as the ratio of the average number of bits per 
sample before and after compression. For some given data, the number of bits per 
sample is a fixed quantity b before compression, while it can ideally be the entropy 
Hg after compression. Therefore, the compression ratio 

= =i 

Since Hg is related to the average distortion D according to equation (4), the com- 
pression ratio is therefore a function of D, as 

b b 

r(D) = Hg W(X) — Flog, 12D" 

Generally, it is difficult to estimate h(X) and absolute D from the data. On the other 
hand, r(D) can be measured for some given initial value of Do (Dp is related to the 
stepsize in the quantization according to equation (2).) to obtain rg = r(Dp). Since 

b 

ro 0) = Y= Flog 12D, 
r(D) can be represented using ro = r(Do), as 

b 
r(D) = . 

= — 5 logs Be 
Defining the relative error e as the MSE (which is just the average distortion D) 
divided by the mean squared amplitude of the data E, 

D 
e= FE’ 

the compression ratio can then be represented as a function of e 

b 
re) = 3s (5) 

where rp = r(e€9). 

Figure 9 shows how the compression ratio r(e) changes with the relative error e for 
two hypothetical data sets, one with ro = 6 and the other with rp = 4, when ey = .01% 
and b = 32 assumed for both cases. It looks similar to the one shown in Reiter and 
Heller (1994), where they compared how the compression ratios change with the 
relative error for an NMO-corrected common-midpoint (CMP) gather and a stacked 
section. By comparison, they concluded that the error increases with compression 
ratio more rapidly for CMP gathers than for stacked sections. Figure 9 gives a possible 
explanation for this phenomenon. Compared to CMP gathers, stacked sections often 
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Fic. 9. Compression ratios changing with compression error. 

have higher signal-to-noise ratios and therefore more coherency. After the transform, 
they will have less entropy. Since 

b 

~ h(X) = + loga(12Dp)’ 
To 

the gathers with less entropy will have a larger compression ratio rp. From equa- 
tion (5), then, the error will increase more slowly for stacked sections, as illustrated 
by the example shown in Figure 9. 

CONCLUSION 

Using DWPT based compression technique, I show that DWPT helps compress- 
ing seismic data because it reduces the entropy of the data. I reason that uniform 
quantizers might be more appropriate for seismic data, and they can achieve the 
same amount of compression with less error than simply throwing away the small 
transform coefficients. I also give a possible explanation for the phenomenon that the 
compression error grows more rapidly with compression ratio for CMP gathers than 
for stacked sections. 
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ABSTRACT 

Leon Thomsen introduced a set of parameters that allow specialization to 

weakly transverse isotropic (TI) media without losing the capability of treating 

the general TI medium. For this reason, many studies of transverse isotropic 

media involve the conversion of expressions in the conventional notations to the 

corresponding expression in terms of Thomsen’s parameters 7, 6, and e. These 

conversions are awkward because one of the transformation equations is nonlinear 

in 6. For example, in the Voight tensor notation, 

  

Cis = —pch + py (cb — 3)? + 2ch(ch — c8)6. 
By introducing a modified parameter, 6, this relation can be made linear. Indeed, 
the entire transformation from Voight notation to Thomsen notation becomes 
linear. The same is true for the conversion from the other conventional notations. 

If an expression in the pure Thomsen parameters is desired, one can replace 4 

by its definition in terms of 6 as the last step in the calculation. In the limit of 

weak transverse isotropy, the parameter 6 reduces to Thomsen’s 6. Thus, in this 
important special case, the conversion to pure Thomsen notation amounts to just 

replacing 6 by 6. The Mathematica package, Thomsen.m, containing functions to 

automate conversions between the various TI notations accompanies this article. 
  

INTRODUCTION 

Leon Thomsen (1986) introduced a set of parameters that allow specialization 
to weakly transverse isotropic (TI) media without losing the capability of treating 

the general TI medium. For this reason, many studies of transverse isotropic media 
involve the conversion of expressions in the Love, Voight or Hookean tensor notations 

to the corresponding expression in terms of Thomsen’s parameters 7, 6, and e. These 
conversions are awkward because one of the transformation equations is nonlinear in 

6. For example, in the Voight notation, 

  

Cig = —pcy + py (ch c§)” + 2cp(cp — ¢§)6, (1) 
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where p is the density and cp, cs are the compressional and shear speeds. By intro- 
ducing a modified parameter, 6, this relation can be made linear. Indeed, the entire 
transformation from Voight notation to Thomsen notation becomes linear. It also 
turns out that many expressions are simpler in terms of a parameter f introduced by 
Ilya Tsvankin (1994) The five parameters cp, f, 7, €, and 6 form a convenient canon- 
ical set of parameters. Once expressions have been cast in terms of these parameters, 
one can make subsequent substitutions that eliminate f in favor of cg and/or 6 in 
favor of 6. 

In this report, I describe a Mathematica package to convert between the various 
notations for the TI parameters. In particular, the user has the choice of using cg or 
f and the choice of using 6 or 6. 

THE PARAMETERS 6 AND f 

First, simplify equation (1) by introducing Tsvankin’s f: 

Ch — 
P 

C13 = —pce + pcpy f? +2f6. (3) 

Next, eliminate the square root by introducing 6 as 

f? +2f6 = (f +), (4) 

  

yielding 

obtaining the linear expression 

Cis = —pe§ + pep(f + 6). (5) 
Equation (4) allows us to express 6 in terms of 6 or vice versa: 

s=a(i+ 2). 
An application of the binomial theorem to equation (6) shows that in the limit of weak 
transverse isotropy, the parameter 6 reduces to Thomsen’s 6. Thus, in this important 
special case, the conversion to the Thomsen parameter amounts to just replacing 6 
by 6. 

The quantity 6 introduced in this section also plays a role in the basic TI wave 
equations. In a companion report (Thomsen Operators and Thomsen Matrices: this 
volume), I show that the TI wave equation operator has the ezact form, 

L=LO 4 460 4 66 + LO, (8) 

and 
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Here, the operator £© is the isotropic wave equation operator, while the “Thom- 
sen operators,” £, £4), and L, characterize the anisotropic contributions. The 

isotropic operator and the three Thomsen operators are independent of the Thomsen 

parameters y, 6, and €, so that the TI operator is linear in y, €, and the modified 
Thomsen parameter 6. 

NOTATIONS FOR THE TI ELASTIC PARAMETERS 

Using f and 6 as introduced above, the Voight parameters are expressed in terms 

of the Thomsen parameters, 7, 6, ¢, and the material parameters by the equations 
(Thomsen, 1986): 

Ci = pcer(1 + 2e) 

C33 = pep . 

Cig = —pcs + pcb(f +4) (9) 

Cy = pcs 

Cea = pez(1 + 27) 

Note that here, “3” is used as the index corresponding to the axis of symmetry-many 
authors use “1” as the distinguished direction. 

The Love parameters are simply aliases for the Voight parameters (Musgrave, 
1970): 

I S 

(10) 

S
e
w
m
w
Q
e
 

no
u 

29
 

by: 

Cin = C33 

Cro22 = C3333 = Cu 

Co233 = C3322 = Chi — 2Ce6 

Ciu33 = C3311 = Cii22 = Coa = Cig (11) 

Cine = Coin = Core = Choa = Cag 

Cisis = C3131 = C3113 = Ci331 = Cag 

C2323 = C3232 = C3223 = C332 = Cee 

Finally, mention a lesser used notation appearing in Kuprazde (1976): 

Cr = Cy 
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Co = Ci — Cee 

C3 = Cig (12) 
Cy = C33 

Cy = Cry 

THE MATHEMATICA IMPLEMENTATION 

The Mathematica implementation reserves the following variables for their mean- 
ing as notations for the elastic parameters: 

rho, cp, cs, gamma, delta, deltaTilde, epsilon, eta, f, 
Ci1, C33, C13, C44, C66, 

A, Cc, F, L, N, 

Ci, C2, C3, C4, CS, C6, 

C1111, C2222, C3333, C2233, C3322, C1133, C3311, 
C1122, C2211, C1212, C2121, C2112, C1221, 
C1313, C3131, C3113, C1331, C2323, C3232, C3223, C2332 

Note well that users of this package cannot use these variables for any other purpose! 

The conversion rules are implemented by the user functions: 

ConvertCij converts an expression in the Voight parameters to an expression in the 
canonical variables cp, f, y, €, and 6. 

Convert Weak assumes the weak TI limit and converts an expression in the Voight 
and/or Thomsen parameters to an expression in the variables cp. f, 7, €, and 6. 

EliminateF replaces f by its definition in terms of cp and cs. 

EliminateCs is a partial inverse of EliminateF; it replaces cs in favor of cp and f. 

EliminateDeltaTilde replaces 6 by its definition in terms of 6 and f. 

EliminateDelta is a partial inverse of EliminateDeltaTilde; it replaces 6 in favor 
of 6 and f. 

EliminateEta replaces 7 by its definition in terms of 6 and e. 

EliminateEpsilon is a partial inverse of EliminateEta; it replaces 7 in favor of 6 
and €. 

EliminateLove replaces the Love parameters by the Voight parameters. 

EliminateKuprazde replaces the Kuprazde parameters by the Voight parameters. 

EliminateHooke replaces the Hooke parameters by the Voight parameters. 
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ConvertThomsen converts an expression from Thomsen notation to Voight nota- 

tion. Any of the variants, 6, 6, 7, cg, and f may appear in the expression. 

SineForm writes a trigonometric expression using powers of sine. 

CosineForm writes a trigonometric expression using powers of cosine. 

The user functions are implemented with the aid of “private” or “hidden” rules 
such as: 

CsToFRule = 

cs“n_Integer?Positive -> 

(cp*2(1 - £))°Quotient[n,2] cs*Mod[n,2] 

DeltaRule = deltaTilde -> f(Sqrt[1+2delta/f] - 1) 

CijRules = 

C11 -> rho cp°2 (1 + 2 epsilon), 
C33 -> rho cp2, 

C13 -> -rho cs“2 + rho cp°2 (f + deltaTilde), 
C44 -> rho cs“2, 

C66 -> rho cs*2 (1 + 2 gamma) 

These rules cannot be directly accessed by the user—the “public” functions described 
above provide the user interface. For example, the private DeltaRule rule is accessed 
by the public function EliminateDeltaTilde: 

EliminateDeltaTilde{expression_] := expression /. DeltaRule//Simplify 

The main conversion engines are the functions ConvertCij and ConvertWeak. The 
first merely provides public access to the appropriate private rules: 

ConvertCij[expression_] := expression/. CijRules/. CsToFRule//Simplify 

The implementation of ConvertWeak is a bit harder. While Mathematica has a fa- 

cility for expanding functions in multiple power series, there is no built-in way to 
impose that terms like €? and ¢6 are equally to be neglected. A simple way to impose 
such conditions is to introduce a scaling parameter, here x, and expand in this single 
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parameter (this is analogous to the methodology used in the Calculus of Variations 
and other applications where functional derivatives are needed). Despite the pro- 
gramming maxim of having modules do a single job, for user convenience I decided 
to embed a call to ConvertCij within this code: 

ConvertWeak[expression_] := 
Module[{x, tmp}, 

tmp = ConvertCij [expression]; 

tmp = tmp /. EpsilonRule /. DeltaTildeRule /. 
{ 

epsilon -> epsilon x, 

deltaTilde -> delta x, 

gamma -> gamma x 

}; 
Normal@Series[tmp, {x,0,1}] /. x->1 /. CsToFRule// 
Simplify//PowerExpand 
] 

USAGE EXAMPLES 

Voight to Thomsen Examples 

The cracks expression defined below is used as an example to illustrate use of 
the functions in the Thomsen.m package. The corresponding equation, 

C11C33 — Cf, = 2Ce6(Ci3 + C33), (13) 

represents the relation between C;;’s for TI media formed by a system of thin parallel 
horizontal cracks in a purely isotropic matrix. It comes from the fact that in this 
case there are only four independent parameters instead of five for general TI media. 
See the more detailed discussion in the paper by Schoenberg and Sayers (1995) (the 
only difference is that their cracks are vertical). First, convert the expression to the 
canonical parameters and store the result in the variable generalCracks: 

cracks = Cil C33 - C13°2 - 2 C66 (C13 + C33); 
generalCracks = ConvertCij [cracks] 

4 2 

cp (-deltaTilde + 2 epsilon - 2 deltaTilde f - 

4 deltaTilde gamma - 8 f gamma + 

2 2 

4 deltaTilde f gamma + 8 f gamma) rho 

Next, eliminate f in favor of the speed cg: 
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EliminateF (%] 
2 

4 2cs deltaTilde 2 

cp (-2 deltaTilde + ---------------- - deltaTilde + 

2 

cp 

2 4 

8 cs gamma 8 cs gamma 

2 epsilon - + - 

2 4 

cp cp 

2 

4 cs deltaTilde gamma 2 

) rho 
2 

cp 

Just as an illustration, switch back to the canonical representation by eliminating cg 
in favor of f: 

EliminateCs[%] 
4 2 

cp (-deltaTilde + 2 epsilon - 2 deltaTilde f - 

4 deltaTilde gamma - 8 f gamma + 

2 2 

4 deltaTilde f gamma + 8 f gamma) rho 

Voight to Weak TI Thomsen Examples 

Do the canonical conversion in the limit of weak TI. Recall that in this limit, 6 
and 6 are equal. 

weakCracks = ConvertWeak[cracks] 

4 2 

2 cp (epsilon - delta f - 4 f gamma + 4 f gamma) 

2 

rho 

Use Mathematica to solve for 6: 
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delta /. Flatten@Solve[weakCracks == 0, delta]//Simplify 

epsilon 

woecenn - 4 gamma + 4 f gamma 

f 

Use a typical value cp/cs = 2 which is equivalent to the value f = 3/4 to get a feel 
for this result: 

%4/. £ -> 3/4 

4 epsilon 

eres r tree - gamma 

3 

Introduce cg in favor of f: 

EliminateF [weakCracks] 

4 2 2 4 
2 (-(cp delta) + cp cs delta + cp epsilon - 

2 2 4 2 

4 cp cs gamma + 4 cs gamma) rho 

Solve for 6 in the new variables: 

delta /. Flatten@Solve[%, == 0, delta] //Simplify 
4 2 2 4 

cp epsilon - 4 cp cs gamma + 4 cs gamma 
-( ) 

4 2 2 

“cp + cp cs 

  

Use a standard Mathematica function to again get the result in our typical case: 

Limit[%, cp -> 2 cs]//Simplify 

4 epsilon 

woccon-- - gamma 
3 

ConvertWeak can also handle expressions involving the standard Thomsen parame- 
ters, as well as f and 6: 
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ConvertWeak[C33(1 + 2 epsilon)“3 - C44(1 + deltaTilde + delta)~3] 
2 

cp (-6 delta + 6 epsilon + f + 6 delta f) rho 

Collect([%, {cp, rho, delta}] 

2 

cp (6 epsilon + f + delta (-6 + 6 f)) rho 

Eliminating 6 

When 6 is eliminated, the underlying square root becomes explicit (unless we make 
the weak TI assumption): 

EliminateDeltaTilde[generalCracks] 

4 2 

2 cp (epsilon - delta f - 2 f gamma + 2 f gamma - 

2 delta + f 

2 f Sqrt[----------- ] gamma + 
f 

2 2 delta + f 2 

2f Sqrt[----------- ] gamma) rho 
f 

And if we want to use the pure Thomsen parameters, continue by eliminating f: 

EliminateF [%] 

4 2 2 4 

2 (-(cp delta) + cp cs delta + cp epsilon - 

2 2 4 

2cp cs gamma +2 cs gamma - 

  

  

2 2 2 

2 2 cp - cs +2 cp delta 

2 cp cs Sart[ ] gamma + 

2 2 

cp - cs 

2 2 2 

4 cp - cs + 2cp delta 2 

2 cs Sqrt[ ] gamma) rho 
2 2 

cp - cs 
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Now go the weak TI limit and recover our typical case for the third time: 

ConvertWeak[%] 
4 2 

2 cp (epsilon - delta f - 4 f gamma + 4 f gamma) 

2 

rho 

4/. £-> 3/4 
4 -3 delta 3 gamma 2 

2 cp (-------- + epsilon - ------- ) rho 

4 4 

Solve[% == 0, delta]//Flatten 
; 4 epsilon - 3 gamma 

{delta -> -~--------~----~---. } 

Using the n Parameter 

Alkhalifah and Tsvankin (1994) introduced the parameter 

e—6 

1+ 26 
  n= 

to facilitate time processing in transversely isotropic media. In the package, we offer 
routines to trade ¢ for 7 and vice versa: 

EliminateEpsilon [epsilon] 

delta + eta + 2 delta eta 

EliminateEta[%] 
epsilon 

EliminateEpsilon[(epsilon-delta)/(1 + 2 delta)] 
eta 

Love Notation Example 

You can convert Love notation expressions to Voight notation and then proceed 
as above: 

EliminateLove[F + L] 

C13 + C44 

108



Cohen Thomsen notation 

ConvertCij(%] 
2 

cp (deltaTilde + f) rho 

EliminateDeltaTilde[%] 

  

2 2 delta + f 

cp f Sqrt[----------- ] rho 

ft 

EliminateF [%] 

2 2 2 

2 2 cp -cs +2 cp delta 

(cp - cs ) Sqrt[ ] rho 

2 2 

cp - cs 

Kuprazde Notation Example 

Again, you can convert Kuprazde notation expressions to Cij notation and then 
proceed as above: 

EliminateKuprazde [C2] 
C11 - C66 

ConvertCij [%] 
2 

cp (2 epsilon + f - 2 gamma + 2 f gamma) rho 

EliminateF [4%] 

2 2 2 2 

(cp - cs +2 cp epsilon - 2 cs gamma) rho 

Collect[%, {cp, cs, rho}] 
2 2 

cp (1 + 2 epsilon) rho + cs (-1 ~ 2 gamma) rho 

Hooke Notation Example 

EliminateHooke [C3322 + 2 C3223] 

cil 
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Converting from Thomsen to Love or Voight Notation 

Problem: Verify that the expression 

(1 + F)(-1 + F + 2 L)/(2 - 2 L) 

is equal to Thomsen’s 6 when the Love parameter C = 1: 

ConvertThomsen[delta] /. C -> 1 

(1 + F) (-1 + F + 2 L) 
  

2 (1 - L) 

If we want the result in terms of the C;;: 

EliminateLove [%] 

(1 + C13) (-1 + C13 + 2 C44) 
  

2- 2 C44 

A Final Realistic Example 

Cohen 

Despite the general utility of Mathematica, and the specific utility of the package 
introduced here, real examples often require the skillful intervention of the scientist. 
Consider the expression in equation (6) of Tsvankin (1994): 

expr = ((C11+C44) Sin[theta]“2 + (C33 + C44) Cos[theta]~2 + 
Sqrt(((C11 - C44) Sin[theta]-2 - 

(C33 - C44)Cos[theta]~2)*2 + 

4(C13 + C44)°2 Sin[theta]~2 Cos[theta]~2 

J)/(2 €33); 

Converting to Thomsen parameters gives: 

exprThom = EliminateDeltaTilde@ConvertCij [expr] 

2 2 

(cp (2 - £) rho Cos[theta] + 

2 2 

cp (2 + 2 epsilon - f) rho Sin[theta] + 

4 2 

Sqrt({cp rho (epsilon - epsilon Cos[2 theta] - 
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2 

f Cos[2 theta]) + 

4 2. 2 2 

4 cp f (2 delta + f) rho Cos[theta] Sin[theta] ] 

2 

) / (2 cp rho) 

We can see the common factor of pce even if Mathematica cannot. Rather than 
wasting time trying to get Mathematica to recognize this factor, it is better to force 
it out directly. Here is one way: 

ratiosq = Limit[exprThom, rho -> 1/cp*2] 

2 2 

((2 - £) Cos(theta] + (2 + 2 epsilon - f) Sin[theta] + 

Sqrt[(epsilon - epsilon Cos[{2 theta] - 

2 

f Cos[2 theta]) + 

2 2 

4 £ (2 delta + f) Cos[theta] Sin[theta] ]) / 2 

The routines in the Thomsen package call on Mathematica's Simplify routine; this 
routine has a canonical form for the trigonometric functions that does not always 
give what you may want. Thus, the package contains the functions SineForm and 
CosineForm to respectively emphasize powers of sine and powers of cosine. Sometimes 
none of the three forms will give exactly what you want, but often you will be able 
to“optimize” yourself after viewing the three possibilities. 

ratiosqi = SineForm[ratiosq] 

f 2 

1 - - + epsilon Sin[theta] + 

2 

2 2 

Sqrt(f + 8 delta f Sin[theta] - 

2 2 4 

4 epsilon f Sin[theta] + 4 epsilon Sin[theta] - 

4 4 

8 delta f Sin[theta] + 8 epsilon f Sin[theta] ] / 2 

To simplify further, one has to isolate the square root term: 
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a=1- f/2 + Sin{theta]“2 epsilon; 
b = (ratiosql - a)°2//Simplify 

2 2 2 
(f + 8 delta f Sin[theta] - 4 epsilon f Sin[theta] + 

2 4 4 

4 epsilon Sin{theta] - 8 delta f Sin[theta] + 

4 

8 epsilon f Sin[theta] ) / 4 

bi = Collect(b, {epsilon, delta, £}] 
2 

f 2 4 

-- + epsilon Sin[theta] + 
4 

2 4 

delta f (2 Sin[theta] - 2 Sin[theta] ) + 

2 4 

epsilon f (-Sin[theta] + 2 Sin[theta] ) 

Finally, look at the weak limit: 

weakratiosq = ConvertWeak[ratiosq1]//SineForm 
2 4 

1 + 2 delta Sin[theta] - 2 delta Sin[theta] + 

4 

2 epsilon Sin[theta] 

Collect [weakratiosq, {epsilon, delta}] 

4 

1 + 2 epsilon Sin[theta] + 

2 4 

delta (2 Sin[theta] - 2 Sin[theta] ) 

4//Simplify 
2 

4 delta Sin[2 theta] 

1 + 2 epsilon Sin[theta] + -------~------------ 

2 
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ABSTRACT 

Leon Thomsen introduced a set of parameters that allow specialization to 
weakly transverse isotropic (TI) media without losing the capability of treating 
the general TI medium. The Thomsen parameters have proven useful in a variety 
of transverse isotropic media studies—it turns out that they also lead to an elegant 
formulation of the TI wave equations. Indeed, the TI wave equation operator 
takes the form, 

L= co + ye + 6c + LO. 

The operator £® is the isotropic wave equation operator, while the “Thom- 
sen operators,” £™, £), and C, characterize the anisotropic contributions. 
The isotropic operator and the three Thomsen operators are independent of the 
Thomsen parameters 7, 6, and e, so that the TI operator is lénear in 7, €, and 
the modified Thomsen parameter 6. The parameter 6 reduces to Thomsen’s 6 in 
the limit of weak transverse anisotropy. The three Thomsen operators are spatial 
differential operators and the “Thomsen matrices,” M™, M®), and M) are their 
respective spatial Fourier transforms. The matrices mo and NG ) have rank one, 
while the matrix M® is of rank two. 

Two simple applications are presented to illustrate the utility of the formulat- 
ing the TI wave equations in terms of the Thomsen operators/matrices. The first 
is a direct derivation of the phase speeds in the limit of weak TI by application of 
the standard matrix perturbation theory for the eigenvalue-eigenvector problem. 
The second application is a derivation of the exact TI Green’s tensor in the special 
case 6=e=0. 
  

THE TI WAVE EQUATIONS IN THOMSEN NOTATION 

Leon Thomsen (1986) introduced a set of parameters that allow specialization 
to weakly transverse isotropic (TI) media without losing the capability of treating 
the general TI medium. The Thomsen parameters have proven useful in a variety 

of transversely isotropic media studies—the following considerations show that their 
use also leads to an elegant formulation of the TI wave equations. 
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The Love parameters are expressed in terms of the Thomsen parameters, 7, 6, €, 
and the material parameters by the equations: 

A = pci(1 + 2¢) 

C = pc, 

F = —pc% + pepy f(f +25) = —pc2 + pch fy/1 + 26/f (1) 
L = pe 

N = peg(1 +27) 

Here, the quantity f is 

fa 25S (2) ob 
as introduced by Ilya Tsvankin (1994) In TI calculations, the following consequences 
of this definition are used repeatedly: 

  

B-&=fe, and 1- f=. (3) 

The material parameters are denoted by p for the density, and cp and cs for the 
speeds. These speeds represent the phase velocities along the distinguished axis (here 
the vertical or “3” axis)—alternately, they can be construed as the speeds that would 
prevail if the medium were isotropic. With this convention, the TI wave operators in 
Love notation are: 

Liu = (Ad? + NO} + LO3)u, + (A — N)O, Aue + (F + L)O,03ug — pd?uy 
Lou = (NOj + Ad} + LO})ua + (A — N)O,Au; + (F + L)O,03ug3 — pO?uy (4) 
Luu = (LO? + Ld? + Ca2)u3 + (F + L)83(8,u; + Qgu2) — pd? ug 

Observe that 6 enters the wave equations only through F, and, in turn, F’ enters 
the wave equations only in the combination F + L. Write this combination as 

F+L = pepfy1+26/f = pcb(f +8), (5) 
where we have introduced the modified Thomsen parameter, 

6 = f(¥1426/f —1). (6) 

Notice that for small 6, 6 = 6 to first order. Thus, 6 and é are equally valid parameters 
for passing to the weak TI limit. The advantage of 6 in the present study is that the 
TI wave equations are linear in this variable. Indeed, since the TI wave equations 
are already linear in and €, we may write the TI operators in the form, 

L=LO + 76 + 664 4 LO, (7) 
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where the matrix operators, £®, £, £), and L, are independent of the Thomsen 
parameters. Notice that this decomposition of the TI wave operator is valid for strong 
as well as for weak transverse anisotropy. Observe that a decomposition for weak TI 
using Thomsen’s 6 only requires expanding the scalar quantity 6 to the desired order 
in 6—in the usual first order case, this amounts to merely replacing 6 by 6. 
Remark: For other purposes, 6 is less useful that Thomsen’s 6 or other combinations 
of the Thomsen parameters, so I am not proposing a replacement of 6 by 6 in general 
TI studies. 

Explicitly, we have for the components of £: 

LOu = (pcpat + pcz02 + pc%O2)u, + pcr fO,Oqu2 + pcp fO,03u3 — po?u 

Lu = (pch0? + pc2.03 + pc2.d2)uy + pc2 fO,A2u, + pcp fard3u3 — pO?u. (8) 
Lu = (pc2d? + pc202 + pc2.d2)ug + pcb fO3(O,u; + Ogu) — pO?ug 

After writing the speeds in terms of the Lamé parameters as 

  

2 LU 
Cc = -, 9 5 D (9) 

ce = A = (10) 

it is straightforward to show that these equations are just the ordinary isotropic elastic 
wave equations for a homogeneous medium. 

The new operators, which characterize the anisotropic contributions, have the 
components, 

LMu = 2pc%02 (Agu, — 0,2) 

Lu = 23d, (O,u2 — Aus) (11) 
LMu = 0, 

Le?) uz pcpa, 03u3 

LY) ut pc 0203 U3 ( 1 2) 

Lu = pcpds(dyu + Iou2), 

and, 

Lu = 2pcbd, (du + deur) 

Lu = 2pc%02 (Ou; + Oyue) (13) 

Lou = 0. 
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The explicit matrix form of the “Thomsen operators” introduced in equation (7) 

  

are: 

a A 0 
LY = 2c, | —-d,0, A? 0}. (14) 

0 0 oO 

0 OO &a 
£9 =| 0 0 a} (15) 

03; O20; 0 
and, 

a ad. 0 
L) = 2pc?, [a a3 | (16) 

0 oO 0 

The Thomsen operators can also be written in terms of dyadic differential opera- 

tors. Indeed, £ is the rank one operator: 

—d, 
LY = 2pc2 | A | (—a d, 0). (17) 

0 

Thus 
~d, 

LY = 29c2.D+ D+, where Di =| Q, |. (18) 
0 

Similarly, the rank one representation of L© is 

a, 
LY =2pc,DD, where D=| |, (19) 

0 

and a rank two representation of L“) is 

0 

L® = pek(DD3+D3D), where D3;=| 0 |. (20) 
Os 

THE THOMSEN MATRICES 

Now study the Thomsen form of the TI wave equations in Fourier domain. Apply 
the four-fold Fourier transform, 

U(k,t) = [ow dt ef t-ET) a(p, 4), (21) 

and define M, M®, MM, M®), and M as the negatives of the transforms of the cor- 
responding differential operators in equation (7). From equations (14), (15), and (16), 
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the negatives of the transformed Thomsen operators can be written down at once in 
matrix form as 

kB —kiky 0 
MM = 2c? | k? | ; (22) 

0 0 oO 

0 OO kykg 
MO = a | 0 0 bs | (23) 

kiks kek3 0 
and, 

k? kiky 0 
M = 2Qpc?, | kiko 3 | (24) 

0 oO 0 

Similarly, the transforms of equations (18), (19), and, (20) yield the dyadic rep- 
resentations of the Thomsen matrices as 

ke 
MY = 2nckntnt where kt=]|] k, |, (25) 

0 

ky 
M® =2Q9c2znn, where «=| ko], (26) 

0 

and, 

0 
M® = pe?(«k3+k3x), where kj=] 0 |. (27) 

kg 

The vector system «, «+, and sz is closely related to the ordinary cylindrical unit 
vector basis, here denoted by &, d, and ks. Indeed, 

cos } 
K = KR, k= (sas , (28) 

0 

. ; —sing 

ki=Kd, = ( cos ¢ ) (29) 
0 

and, 

; ; 0 

k3 = k3k3, k3 = (°) . (30) 

1 

In cylindrical notation, the Thomsen matrices are 

M) = 2ocgn od, (31) 
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M® = 2pc2,.nRk, (32) 

and, . . 

M®) = pc%.ckg(Kk3 + k3h). (33) 

To get the Thomsen matrices in terms of the spherical coordinate unit vectors, 
here denoted by k, 8, and the aforementioned d, observe the relations, 

. cos dsin 6 . 

k=] singsin#d | =sindk& + cos0 kg 
cos 6 

(34) 
. cos ¢cos 8 . 

@= | singcosé | = cosék& — sind k3, 

— sind 

or, 

& = sin0k+cos06 

(35) 
k3 = cos6 k — sind 6. 

In terms of spherical coordinates, the Thomsen matrices are 

M” = 2pc2.k? sin? 6b, (36) 

M = 2pc2,k? sin? @ (kk sin? 6 + (k6O + Ok) sin @ cos6 + 66 cos” ) , (37) 

and, 

M) = pc?,k? sin 8 cos 6 (kk sin 20 + (kO + @k) cos 26 — 68 sin 26) . (38) 

For the application given in the next section, it is convenient to also have explicit 
representations for the isotropic matrix, M®: 

M® = p(ckk? —w?)I + p(ch — c3)kk (39) 
= Asi+ (Ap - As)kk 

As(I - kk) + Apkk (40) 

Here II denotes the identity matrix. 

Remark: The representation of M® in terms of the Lamé parameters is 

MO = (uk? — pw?) + (A + p)kk. (41) 

Before proceeding, review the theory of the “spectral representation” for a real 
symmetric matrix A (say 3 by 3, for simplicity). The eigenvectors of such a matrix 
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can be taken as an orthonormal basis of R%, say e), e2, and e3. Denoting the 
corresponding eigenvalues by \,, Ao, and 43, the spectral representation of A is 

A = d1e1€; + Age2€2 + Az€3€3. (42) 

Then, for any function f(z) defined on the \;, we have 

F(A) = f(Ar)ere1 + f(Az)eres + f(As)ese3. (43) 

The form of the matrix M® in equation (40) is its spectral representation with 
the eigenvalues being As (double eigenvalue) and Ap. The rank two tensor I — kk 
may be replaced by a sum of dyadics based on any pair of orthonormal vectors that 
are orthogonal to k, but we have no immediate need to introduce a specific pair, so 
we allow this mild generalization of the spectral representation and write the matrix 
functions of M® as 

f(M) = f(As)(I — kk) + f(Ap) Rb. (44) 

A principal application of the spectral form of M® is in finding the isotropic 
Green’s tensor G) satisfying the differential system 

Lg — —16(r)éd(t). (45) 

In transform domain, this is 

M®.GO = 1. (46) 

Thus, G is just the matrix inverse of M® and we can apply the spectral theory 
with f(z) = 1/z to obtain 

le oes. 1 (0:) _ qe GO = >-(1— bk) + 5 —kk. (47) 
P 

APPLICATION: PHASE SPEEDS IN THE WEAK TI LIMIT 

As an application of the Thomsen matrices, seek the plane wave solutions in the 

weak TI limit. These are the solutions u of the homogeneous equation, 

Lu=o, (48) 

that have the form 
u= vei (wth) (49) 

where v is a constant amplitude vector. Insert this plane wave ansatz into the TI 
wave equation to obtain 

M-v=0. (50) 
Here, to first order in the Thomsen parameters, M is given by 

M = M© + ym + 6M + em, (51) 
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Again, M®) is the transform of the isotropic elastic wave operator and the remaining 
matrices on the right are the Thomsen matrices defined earlier. From equation (39), 
write 

MO) = p(ch — cB) bk + pe8h — pu 62) 
Thus, the plane wave problem is related to the eigenvalue-eigenvector problem by 
equating pw” to the eigenvalue \ in the zero order matrix. Indeed, we consider both 
the unperturbed eigen-problem, 

NO) = My, NO = p(c2, — c2)kk + pc kT, (53) 

and the perturbed problem with perturbation specified by the Thomsen matrices, 

Nu =v, N= NO + MM + 6M + em, (54) 

Then, we obtain the plane wave solutions by using the eigenvectors as the amplitudes 
of the plane waves with dispersion relations obtained by setting the eigenvalues equal 
to pw”. Notice that N© and N are respectively the same as M®) and M except for 
the omitted pw*I term. 

The results cited below for the perturbed eigen-problem rely on the theory ex- 
pounded in the classic Courant-Hilbert text (Courant & Hilbert, 1953). Computing 
the perturbation corrections in the present application has two complications over 
the simplest case: 

1. The eigenvalues in the unperturbed (isotropic) case are degenerate. 

2. There are three small parameters instead of just one. 

The second problem isn’t serious: the corrections corresponding to each Thomsen 
parameter can be computed separately and the total correction is just the sum of the 
individual ones. We overcome the associated notational problem by first stating the 
results for a generic small parameter # and then applying the generic result for each 
of the perturbations +, 6, and e. In particular, denote the expansions to first order of 
the generic eigenvalue and eigenvector by 

A= AO 4 BVO), (55) 

and 

v =v + By), (56) 

For the unperturbed eigen-problem in equation (53), the eigenvectors and associ- 
ated eigenvalues are: 

k pepk? 
=F end+erdsi , AV =4 pedk?. (57) 

C218 + Coo = mM pcgk? 
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As expected, the second eigenvalue is repeated. Putting the eigenvalues equal to 

pw”, obtain the plane wave dispersion relations w? = ck? and w? = c3k? with the 
associated phase speeds w/k being cp and cg, also as expected. 

As far as the unperturbed problem is concerned, the matrix C = (c;;) can be any 
orthogonal matrix. It is perhaps surprising that a consistent perturbation theory for 

the degenerate case puts the following constraint on C: 

Theorem 1 C must be chosen such that 

i-M® . sn =D, (58) 

where D is a diagonal matriz, 

dy, 
59 

p= (% dn (59) 

Observe that equations (36-38) imply that this condition is satisfied simultaneously 
for all three Thomsen matrices with the choices 1 = 6 and m = >. Thus, we can 
dispense with the matrix C and simplify the result for the unperturbed eigen-problem 
to: 

i: \o) pc2,k? 

v= 26, AO= xo = ¢ pezk? . (60) 
d xo pcgk? 

The theory dictates expanding the first order perturbation in the eigenvectors in 
terms of the zeroth order eigenvectors (chosen consistent with Theorem 1). In generic 
notation, specialized to the case of perturbations from our unperturbed results in 
equation (60): 

Theorem 2 The perturbations in the eigenvalues are 

® = &.M®.é 

M) = 6.M®.6 (61) 
1 = o.M.g 

Moreover, the perturbations in the eigenvectors have the anti-symmetric form 

i - 16 +106 
6? = ; +09) o (62) 

o” = -Ok- 096 
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with 

10 . BM? -6 
eo Ng 

a8). @) _ &-MY’.@ 

(8) (k-M® . 6) (6-M® . 6) of8 . 
(Ag? — 9) (Ae — Ax) 

Apply this generic form of the result to each of the Thomsen perturbations given 
in equations (36-38) to obtain for the + corrections: 

on =0, A = 0, Ne = 2pczk? sin? 6, (64) 

and 

=o, =o, WY =o, (65) 
for the 6 corrections: 

xo = 2pc?,k? sin? 6 cos? 8, ve = —2pc2,k* sin? 6 cos? 6, My ) 0, (66) 

and 

o = 7 sin # cos (1 —2sin?6), of) =0, bf) = 0, (67) 

and for the € corrections: 

AO = 2pc2k?sin*@, AS = 2pc2,k? sin? 6 cos? 0, AY =0, (68) 

and 

O93 = 7 sin* 8 c0s8, KS =0, of) =0. (69) 

In these equations, f is the quantity defined in equation (2). 

Adding these results gives the following first order solution to the eigen-problem: 

Ae pcpk? (1+ 2sin® 6 [6 + (€ — 6) sin? 4]) (70) 
oy © k+ g@ (71) 

No & pk? (<3 + 2c?, sin? 6 cos? 6 (e — )) (72) 

ve = O-—gk (73) 

Ag © pcsk?(1 + 2ysin? 6) (74) 
Vg & . 

(75) 
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Here, the shorthand notation 

q= a (5 + 2(€ — 5) sin? 6| (76) 

has been introduced. 

Equating the eigenvalues to pw yields the phase velocities: 

Vi =Vop © cp {1+ [6+ (e—6)sin? 9] sin? o} (77) 

Vea=Vos ® cg {1 + Ch — 6) sin? cos? (78) 
Ss 

Vs=Vsp ® cs {1+7sin?6}. (79) 

Remark: These results could also be obtained by power series expansion of the 
eigenvalues of the full TI wave equation (Thomsen, 1986). 

APPLICATION: THE GREEN’S TENSOR FOR é=e=0 

As another example of using the Thomsen matrices, derive the Green’s tensor in 
the special case when 6=e=0. Note that this case is distinctly easier than the general 
case; the calculations here should be regarded as only a “warm-up” to obtaining 
fuller results. There is a substantial literature on the TI Green’s function, however, 
most of it assumes the far field (or high frequency or ray) approximation. Some 
excellent papers on this topic are (Ben-Menahem & Sena, 1990; Ben-Menahem et al., 
1991; Buchwald, 1959; Kazi-Aoual et al., 1988; Tverdokhlebov & Rose, 1988). Here. 
although only a special case of the Thomsen parameters is treated, the near field or 
low frequency terms are included. 

Begin with the defining equation for the Green’s tensor g, 

Lg = -18(r)6(t), (80) 
where II denotes the three by three identity matrix. After the Fourier transform 
defined in equation (21), this becomes 

M-G=TI. (81) 

Here the matrix M is given by 

M = M° + Mm + 6M® + em), (82) 

where M®) is the transform of the isotropic elastic wave operator and the remaining 
matrices on the right are the Thomsen matrices defined earlier. 

Observe that 

MO .GO = 1, (83) 
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where G) represents the isotropic Green’s tensor in transform domain—given explic- 
itly in equation (47). 

Equation (83) implies that M® and G are inverses, thus equation (81) can be 
written as 

(1+ GO . (ym + 6M® + eM)).G = 6, (84) 
Hence, 

G=c!.gO, (85) 
where . 

C=14+6. (yM™ + 6M® + em), (86) 

At this point, make the simplifying assumption that 6 and € vanish. From equa- 
tions (47) and (25), and the relation k- «+ = 0, conclude 

GO .Mo = PPS ey (87) 
$ 

Thus, in our special case, 

  

1+vk2 —vkkp 0 
C=I+ PIPES et = | —vkjkp 1+ vk | ; (88) 

$ 0 0 1 

where one? 

py = “Rs (89) 
As 

Using the block structure of C, obtain 

bivkt va ke 0 

Cl= | vy lb og], (90) 
A a 
0 0 1 

where 

A = (1+ vk3)(1 + vk?) — v?kek? = 1 4+ ve. (91) 

On using this result in equation (85), after some calculations, find that the formula 
for G can be written 

G = GO 4G), (92) 
where the exact “correction” for anisotropy in the special case 6 = € = 0 is given by 

@) Yt yt G 7X AK Ke: (93) 

The factor i;a expands to 

y 27c% 
  

Asa (w? — w)(w? — w?)’ (94) 
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where 

we = cZk?, and w? = c2(k? + (1 + 2)K?). (95) 

It is convenient to express these quantities as 

w2 = o2(k + 2x2), (96) 
with 

a2 = 1, and a? = 1+4 2. (97) 

The above results lead to the Fourier inversion of G“) as the integral 

—27¢% ca e-i (wt—k-r) 
(i) — Lact 

Gali [tk ete [to (98) 
or by use of partial fractions as 

a ~ilw 1 1 =o 5; [ae et erst bo) ( :- ata): (99) we—weE w —w? 
  

  

where &* denotes the unit vector «+ /«. The w integrals are done by residue integra- 
tion, yielding 

    

em iut . 

[os = 2 Qe, n= 0,1. (100) 
w? — w2 Wy 

The integral over ks is done using a cosine transform result as 

  

Seay SID Wat oo SID Wat w 
[aks efbsz2 wn” 2/ dk3 cos k3|z| “ = H(cst—z)—Jo(ankVcst — z). (101) 

Wn 0 Wry, Cs 

To accomplish the remaining inte rations over k,, k2, introduce the plane polar co- g § 
ordinates « and ¢. Since &+ is just @ (see equation 29), the ¢ integration can be 
written 

7 sin? ¢ —singcosd 0) — 
/ dg —singdcos@ cos? d Q | eixReose 

ns 0 o , 

(102) 
l1—cos?d? 0 0 | 

ixRceosd 

0 0 

2 [ios 0 cos? 0 

where the reduction on the right follows from elementary properties of the trigono- 
metric functions. Introducing the unit vectors & and ¥ along the transverse axes, and 

recalling the integral representation of the Bessel function, this integral reduces to 

Qn Jo(KR)&& + 2(9 — B2) [ ‘ddcos? ¢ ei Reosd, (103) 
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The remaining angular integral can also be reduced to an explicit Bessel function as 
follows: 

® 1 @ 2 ixRcosd _ _ "_ txRcosd [a6cos ge 5 aR? ef dge 2 qR2 (eR). (104) 

Using the defining differential equation for Jo and the relation J}(z) = J,(z), derive 

1 @ 1 
Ke dR? = Jo(KR) = oR 1(«R) - Jo(KR). (105) 

Assembling our results, we have 

H(t)H (cst — z) ): Qo 2 42) _ 2 42 g Tapes Te [ane (olan y eRe z Jo(Ky/ cht? — 2?) 

«a 1 aa (Jo(cR)aG + Sh (nR\(@e—9H)), (108) 
where a = a; = /1 + 27. 

The final integration over « is accomplished with the aid of the identities 

[dr nJo(nR)Jo(S) = a = a), (107) 

and co 

[ dk Jo(kR) J; (KS) = me) (108) 
These lead to the closed form result 

g?) = ie (si afeqr— 2 ~3(R- fat? — 2 )| vy 

+[H(R-afge—2 — H(R- Vt? - 27) = a). (109) 

which, using standard properties of the Dirac and Heaviside functions, may be cast 

oo - He (2 B+ 2) “Gali a 
4p cha2,/# + 22 ar | R 

To complete the determination of g = g© +g"), note that the Fourier inversion 
of G is the isotropic Green’s function which may be written as 

g = ze) Mls 3 6(t — te) +5 a tp ta(t)) 7 Tr 

+ (Zot ts) ~ 3 Mensa) (U-#)]. 
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Here the indicator function 4,4) is defined as 

1 a<r<b 
Mab (£ ={ ’ 112 

! ail ) 0 otherwise (112) 

and the P-wave and S-wave arrival times at r are defined as 

tp=—, and ts=—. (113) 
Cp Cs 

Discussion of results 

It should be emphasized again that the purpose of these Green’s tensor calcula- 

tions is only to suggest of the utility of using Thomsen notation as a starting point in 
TI wave equation studies. The full result would entail inverting the entire C matrix 
which would “scramble” the terms considered above. However, the result is sufficient 
to indicate that, in contrast to the phase velocity application, a perturbation expan- 
sion of the Green’s tensor in the Thomsen parameters is only valid under restricted 
circumstances—for example, the difference of the Dirac functions can only be replaced 
by a derivative of the Dirac function for small 7 under the restriction of small R (or 
in frequency domain under the restriction of low frequency). 
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ABSTRACT 

Optimization is a tool for many inverse calculations. However, in practice it 

is found that functions we wish to optimize are often highly non-convex (multi- 
modal). An example of optimizations with such difficulties is in seismic waveform 
inversion. The waveform misfit functions are generally multi-modal, partly be- 

cause of the oscillatory nature of seismic waves. 

In this paper, I show how multiresolution analysis can be used to deal with the 

multi-modal nature of objective functions arising in seismic inversion problems. 

Using residual statics estimation as an example, this paper shows that the wave- 

form misfit function is multi-modal even for the simplest case, and, indeed, MRA 

simplifies the waveform misfit function. By studying the complexity of objective 

functions on MRA decomposed data, increased understanding of the complexity 

of objective functions, such as those arising in inverse problems, can be gained.     
  

REALITY IN OPTIMIZATIONS 

Optimization is a tool for many inverse calculations. However, in practice it is 
found that functions we wish to optimize, objective functions, are often highly non- 
convex (multi-modal). Many optimization algorithms have been developed to handle 
different inverse problems; each of them usually works well for some situations but 

fails for the others. Therefore, it is important to understand what makes some inverse 

problems difficult, while others are not. 

The multi-modalities in optimizations are especially serious for seismic waveform 

misfit functions. This is partly caused by the oscillatory nature of seismic waves. 
When there are many local minima, the gradient-based searching methods have little 
chance of finding the correct global minimum. 

Global search methods are used by many researchers when dealing with multi- 

modal misfit functions. Rothman (1985; 1986) solved a residual statics problem by 

simulated annealing (SA). Scales et al. (1992), Smith et al. (1992), Sen and Stoffa 
(1991a; 1991b; 1992) and Gouveia (1993) studied SA and genetic algorithms (GAs) 
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on a variety of multi-modal optimization problems, received satisfying results for 
problems they studied. 

Although it can be proved that SA and GAs converge to global extrema asymp- 
totically, it is not guaranteed that they would find the global extrema in a finite 
amount of computational time. Gouveia (1994) studied some hybrid methods of the 
traditional gradient-based searching and distributed-parallel GAs. They show that 
these hybrid methods are more efficient for the residual statics estimation than a 
distributed GA. 

Many researchers found other alternative ways to overcome problems of local 
minima, while keeping the computation effort relatively low. Here I describe two 
strategies. 

The first approach is to choose initial models that are close to the global extrema 
by integrating into the solution formalism a priori knowledge other than data itself. 
Although applying a priori information to inversions does not reduce the complexity 
of the objective function in global sense, it helps to confine the searches to a smaller 
range, which increases the chance of convergence to global minima (Tarantola, 1987). 
Tn a seismic waveform inversion, Chapman (1985; 1988) suggested using travel-time 
information to infer a smooth velocity model, which is used as the initial guess to 
the waveform inversion. Scales and Tarantola (1994) conducted statistical analysis on 
geologic and well-log information in order to obtain a priori information for waveform 
inversion. 

The second approach is to simplify the objective function of optimizations so as to 
reduce the total number of local minima. Shaw and Orcutt ( 1985) suggested using the 
envelope of seismic data as the fitting target for simplifying the objective function of 
waveform inversions. Unfortunately, they found that the “envelope” in seismic data 
was sensitive to noise. 

Despite the failure of “envelope inversion”, there has been significant interest in 
simplifying the waveform misfit function while not having to extract indirect informa- 
tion from the data. In waveform inversions, the success of the differential semblance 
optimization (DSO) method (Symes and Carazzone, 1991; Symes, 1993) demonstrates 
that the complexity of objective functions in inversions is significantly affected by the 
parameterization of the target models. Chevent (1994) and Symes (1994) proved 
theoretically that DSO produces almost convex objective functions in some waveform 
inversions. 

Multi-scale ideas are also used to deal with the multi-modality of ob jective func- 
tions in inverse calculations. Seismic waveform data can be decomposed into several 
data sets by low-pass filters, each of which contains progressively higher frequency 
data. Optimizations are applied to these data sets iteratively in order to increase the 
chance of finding the global minima (Saleck et al., 1993; Chen, 1994). This paper 
describes a similar approach by means of the multiresolution analysis (MRA). As the 
first step of studying the complexity of inverse problems, this paper studies a simple 
residual statics problem. 
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MULTIRESOLUTION ANALYSIS 

What is a Multiresolution Analysis? 

Multiresolution analysis (MRA) was formulated based on the study of orthonor- 
mal, compactly supported wavelet bases. Wavelets theory and its applications are 
rapidly developing fields in applied mathematics and signal analysis. Wavelet basis 
representation of certain signals show advantages over the traditional Fourier basis 
representation both theoretically and practically. The MRA concept was initiated 

by Meyer (1992) and Mallat (1989), which provides a natural framework for the 
understanding of wavelet bases. Here, I give a brief description of orthonormal, com- 
pactly supported wavelet bases; detailed information can be found, for example, in 
Daubechies (1992) and Jawerth and Sweldens (1994). 

An orthonormal, compactly supported wavelet basis of L?(R) is formed by the 
dilation and translation of a single function #(x), called the wavelet function: 

Pie(2) = 2-92-72 —k); j,k © Z, (1) 

where Z is the set of integers. In equation (1), the function y has M vanishing 
moments up to order M — 1, and it satisfies the following “two-scale” difference 
equation, 

L-1 

(a2) = V2 5° gup(2x — k). (2) 
=0 

The wavelet function ¥(x) has a companion, the scaling function ¢(r), which also 
forms a set. of orthonormal bases of L?(R), 

din () = 2°976(2 4x —k);  7,k EZ. (3) 

The scaling function $(z) satisfies, 

+00 

/ o(x)dx = 1. 
—00 

and the “two-scale difference” equation, 

9(z) = v2 > hyo(2x — k). (4) 
=0 

In equations (2) and (4), two coefficient sets {g,} and {h,} have the same finite 
length L for a certain basis, where L is related to the number of vanishing moments 
M in #(z). For example, L equals 2M in the Daubechies wavelets. In the wavelet 

representation of signals, {hy },=0,...,,-1 behaves as a low-pass filter and {9 }x=0,...,5—1 
behaves as a high-pass filter to signals. These two filters are related by 

go = (—1)*hy_4; =k =0,...,L—1, (5) 
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Fic. 1. Illustration of the sequence of multiresolution analysis subspaces V;. W; is 
the orthogonal complement of V; in V;_1. Space Vo represents the space that contains 
the finest resolution data, and Vp = V3 @ W3 @ Wo @ W4. 

        

and are called quadrature mirror filters (QMF). An extensive study of the QMF can 
be found in (Monzon, 1994). 

The MRA of L?(R) is a set of nested, closed subspaces {V;; j € Z}, such that 

V3 CW CU CW... (6) 

where the basis for the subspace V; is a set of orthonormal, translated functions, and 
each of these functions sets is a fixed dilation of the scaling function, {oj 4; k € Z}. 
Therefore, these subspaces have the property 

f(a) € Vo => f(2%x) EVs Vie Z. (7) 

Defining W; to be the orthogonal complement of V; in Vj~-1, they are related by 

Vj-1 = Vj © Wj. (8) 

The wavelet basis {);;k € Z}, as in equations (1) and (2), forms the orthonormal 
basis of the subspace W;. Therefore, for 7 < np, we can have 

Vj = Vag ® Way ® Wag-1-. ® Wy 41. (9) 

Figure 1 illustrates the nesting of subspaces V; and their orthogonal complements 
W;. In Figure 1, Vo contains the original data which has the finest resolution; the 
projection of the data on {V;; 7 = 1, 2,3} has increasingly coarser resolution. In this 
paper, the data projected onto the subspace V; is referred as the decomposition of 
data at resolution level j. 
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We define the projection of a function f € Vo on V; to be f?(r). Then the jth 

resolution level of the function has the form 

fila) = X Sit bin(2), (10) 

where 5; is the projection of the function f(x) on the basis ¢;,; that is, 

sin = f f(t) d5x(2) de. 

Next, define the projection of f(x) on the subspace W; to be 

df? (x) = 2 din %j,e(2)s (11) 

where d;, is the projection of function f(z) on the basis «',, 

dj. = / f(x) bj x(x) dz. 

Then, equation (9) implies that the original function f(r) € Vy can be represented 

by 

1 

f(x) = f(x) + >) df?(z) 
J=no 

1 

= Do Snok Pnok(Z) + D> Do dik Uya(z)- (12) 
k j=no k 

Figure 2 shows the decomposition of a simple synthetic scismic trace at various 

resolution levels for two different wavelet functions. The original trace is a Ricker 

wavelet, i.e. a normalized second-order derivative of a Gaussian function, with a 

peak frequency of 30 Hz. The left figure shows the decomposition by a Daubechies 

orthonormal basis with 2 vanishing moments, while the right figure shows the same 
decomposition with 3 vanishing moments. The Ricker wavelet (f) is the left most 
trace in each box, while the remaining traces correspond to f? of equation (10), 

where j = 1,2,3, respectively. From Figure 2, it can be seen that the decomposed 

traces contains progressively lower frequencies with the increase of decomposition 

levels while the major features of the original signal are preserved. Comparing the 
two plots in Figure 2, we also observe that the increasing the number of vanishing 
moments increases the smoothness of the decomposed signal. 

A Symmetric and Shift-Invariant Wavelet Basis 

In many applications, it is required that the processes applied to the obtained 

signals be shift-invariant. For example, in examining the multi-scale property in 
residual statics correction problems, it is important that the error-fitting function 
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0 1 2 3 0 1 2 3 
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F F 

0.8- 0.8- 

1.0- 1.0- 

1.2- 1.24 

Fic. 2. Decomposition of a Ricker wavelet at increasingly coarser resolution levels. 
The bases of the decompositions are Daubechies wavelets with 2 and 3 vanishing 
moments for the left and right figure respectively. The first traces represents the 
signal at the finest level, which is the original signal. 

at each scale have a common — or at least close to common — global minimum. 
Therefore, we expect that the relative time-shifts among traces at each scale to be 
almost the same as it was in the original data, and that the waveforms not be deformed 
from one trace to another. However, the orthonormal wavelet bases representations 
are generally not shift-invariant. This shift-variance can be seen directly from the 
construction of their bases, equations (2) and (4), because of the change of step sizes 
among different scales in these definitions. Therefore, the Daubechies wavelet bases 
are not suitable for our purpose. Figure 3 shows ten copies of randomly shifted 
Ricker-wavelet traces, and their projections onto the subspace V3 in the Daubechies 
bases with 2 vanishing moments. The decomposed waveforms on the right of Figure 3 
are deformed to different shapes among traces with different time-shifts, and they do 
not have the same relative time shifts of those shown on the left of Figure 3. 

Saito and Beylkin (1993) suggested using the shell of an orthonormal basis when 
shift-invariant is required. Without loss of generality, let us assume that the signal 
we consider having finite length N = 27. Consider a family of functions 

{die(2)}icics,ocken-1 

and 

{bi4(2) }igjcs,ockgw—t) 
where 

Vja(z) = 2-4/?(2-4(a — ky), (13) 

n(x) = 2-4/79(274 (ax — k)), (14) 
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Fic. 3. Ten traces of randomly shifted Ricker-wavelet traces (left) and their decom- 
position at resolution level 3 in the Daubechies wavelet bases with vanishing moments 
of 2 (right). 

  
  

        
  

  
  

# Traces # Traces 

o 91234567891 §§ 01234567 8 9 19 

0.2- 0.2- 

0.44 ) 0.44 

@. 
0.6- @ 0-6- 

E E 
0.8- 0.8- 

1.04 1.0- 

1.2 1.2- 

Level-3 Shifted Traces Level-4 Shifted Traces 

Fic. 4. The decomposition of ten copies of randomly shifted Ricker-wavelet traces, 
in the shell of the Daubechies basis with 2 vanishing moments, at resolution levels 3 
and 4. The original traces are shown on the left of Figure 3. 
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Level-3 Shifted Traces Level-4 Shifted Traces 

Fic. 5. The decomposition of ten copies of randomly shifted Ricker-wavelet traces, 
in the auto-correlation shell of Daubechies basis with 2 vanishing moments, at 
resolution levels 3 and 4. The original traces are shown on the left of Figure 3. 

where the functions ~(r) and ¢(x) are a wavelet and scaling function, respectively. 
The new family of functions defined by equations (13 and (14 can also serve as bases 
for subspaces V; and W; in MRA. They are complete, but they are redundant and 
not orthonormal (Saito, 1994). Therefore, the decomposition of a function in these 
bases is not unique. However, by forcing an additional constraint to the projection, 
a function f € Vo may still be decomposed in the shell of an orthonormal basis much 
the same way as it was in an orthonormal wavelet basis itself. In this case, the basis 
functions in equations (10) and (11) are replaced by w;4(x) and 5,4 (2). 

The representation of signals using this family of bases are shift-invariant among 
different scales. Figure 4 shows the same numerical experiment as that in Figure 3, 
except using the shell of orthonormal bases expansion at resolution levels 3 and 4. 
The relative time-shifts among traces are preserved while the waveforms are deformed 
to the same amount. However, the original symmetric waveforms are deformed to 
asymmetric waveforms. This deformation of the waveforms is not desirable, and may 
cause problems for some applications. 

To overcome this problem, a family of symmetric, shift-invariant bases are intro- 
duced (Saito and Beylkin, 1993). Let @(r) and (zx) be auto-correlation functions of 
scaling function and wavelet function respectively, 

B(z) = [ $y) oy —2) dy, (15) 
V(x) = / vy) vy — 2) dy, (16) 
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where 7? and ¢ satisfy equations (2) and (4) respectively. Construct a family of bases 

{Uj4(z) hisi<s, O<k<N-1 

and 

{Oi4(2) }i<i<u,osk<n-1; 
where 

;,(x) = 274/2(274 (x — k)), (17) 

U5 4(z) = 2-9/6 (2-F(a — k)). (18) 

Now, we have an auto-correlation shell of an orthonormal basis that is both symmetric 

and shift-invariant. Figure 5 shows the expansion of shifted Ricker-wavelet traces in 
the auto-correlation shell of Daubechies basis. It can be seen that both the symmetry 

of the waveforms and the relative time-shifts are preserved at resolution levels 3 and 
4. 

There exists a fast algorithm for expanding a function f € Vp using the auto- 

correlation shell of orthonormal basis (Saito and Beylkin, 1993). I only give the 
formulas of the discrete expansion; detailed derivation can be found in (Saito and 
Beylkin, 1993). 

Suppose that Si and Di are the projected signal onto the subspaces V; and W; 

at the sampled positions respectively, that is 

SL = fi(kA), Dj = Dfi(kA), 

where A is the sampling interval. Then, two symmetric filters, P = {p,}_ L+1<k<L-1 
and Q = {qz}-1+1<k<n-1 are applied recursively to the signal we wish to decompose, 

. L-1 . 

S= Do pi Shyas-11 
l=—L41 

* £-1 . 1 

Di = >» qd She oii; (19) 
l=-L+1 

(20) 

where 0 < k < N,1 <j < J, and L is the filter length in the “two-scale dif- 

ference” equations of wavelet and scaling functions as in equations (2) and (4). In 
equation (20), N = 2/ is the number of samples of the signal and the filter coefficients 
pp and gq, are, 

2-1/2, for k = 0, 

Pe= {9 Zan, otherwise; (21) 

and 

Q-1/2 for k = 0 

~ 
22 

4 —p,, otherwise. (22) 
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In equations (21) and (22), coefficients {a,},=1,..,,-1 are the correlation of the low- 
pass filter {A;}:<0,..,,-1 in equation (4), 

_j2 LE hi hize, for k is odd, 

ok = {3 for k is even. (23) 

MULTIRESOLUTION ANALYSIS FOR INVERSE CALCULATIONS 

Many inverse problems are solved by optimization methods. Mathematically, 
gradient-search optimization methods work well when the objective function is con- 
vex (e.g., a “basin”) in the searching range; and the wider the basin of attraction 
leading to the bottom, the more likely that the optimizations converge to the opti- 
mum point. Optimizations have difficulties when there exists more than one point 
with zero gradient (e.g. local minima, flat area) in the searching range. Unfortunately, 
this is usually the case in many realistic inverse problems. The complexity of objec- 
tive functions can be affected by many factors, such as noise, frequency bandwidth, 
and features of the information in the observed data. 

As studied in the above section, an MRA can decompose signals into various res- 
olution levels. The data with coarse resolutions contain less detailed information and 
lower frequencies, while keeping major features of the original signal consistent with 
the low frequency information. These less-information data can serve as a relaxation 
to optimizations. Therefore, by using data at coarser resolution levels, complexity of 
objective functions may be reduced, which increases the performance of optimizations. 

A Simple Residual Statics Problem 

Let us first consider a simple residual statics problem. Consider a trace containing 
one Ricker wavelet; duplicate the trace with an unknown shift. Figure 6 shows two 
traces as described above. Now, we look for the time-shift between the two traces 
by applying an optimization, that is, searching for the time-shift which maximally 
aligns the two traces. This is a simple residual statics estimation problem using the 
stacking power method; there is only one unknown in the optimization. The objective 
function is formulated as a least-squared error, 

N-1 

E(5) = $° (Poi — 6) — Py(a))?, (24) 
1=0 

where P(t) and P,(t) are the two data traces, N is the number of samples per trace, 
and 6 is the unknown time-shift. The goal is to find the time-shift 6 that minimizes 
the error function E(6). Figure 7 shows the error function as in equation (24) for 
the fitting of these two traces. In addition to possible problems caused by the local- 
minima, the basin of attraction leading to the global-minimum is “steep” and narrow, 
while the two areas to the sides are “flat”. The global structure of this objective 
function suggests that the global minimum point may be hard to find by traditional 
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Fic. 6. The observed data in the first example. Two traces contains identical wave- 
forms of Ricker wavelet with a 30 Hz peak frequency. The relative time-shift is the 
unknown we are seeking. 
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Fic. 7. The error-fitting function with respect to the relative time-shift between 
two traces. The goal is to find the optimal point where the mean-squared error is 
minimum, 
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Fic. 8. The histogram of the obtained time-shifts of 50 conjugate-gradient optimiza- 
tion experiments starting from uniformly distributed random initial models between 
[—0.2, 0.2] s. The horizontal axis is the number of shift-samples, where the sample 
interval is 0.01 s, and the grid size of the histogram is 4 samples. The number of 
times that found the true global minimum is 8 out of 50. 

gradient-based searching methods. Assuming that we know a priori the time-shift 
between the traces lies in the range of [—0.2, 0.2] s, the searching range is restricted 
to this interval. Figure 8 shows the histogram of the obtained time-shift for 50 
optimizations by using the Conjugate-Gradient and Cubic-Line-Search tools 
provided in the CWP Object-Oriented Optimization Library (Deng et al., 1995); 
initial models are randomly chosen between [—0.2,0.2] s. As expected, the chances 
of finding the correct global minimum is small. In the case of this test, there are 8 
out of 50 experiments that the correct time-shift was found. 

Using the MRA for Optimizations 

Let us decompose the observed data into various resolution levels by representing 
them with wavelet bases. For the above example, the traces {P,(x); i = 0,1} of 
lengths N = 2/ can be represented in the form of equation (12), 

1 N-1 

P(x) = Pp(z) + D7 Yo dix Yie(z), (25) 
j=no k=0 

where 1 < no < J and P**(z) is the projection of the original data onto the subspace 
Vno- Therefore, equation (24) can be rewritten as, 

N-1 

E™(6) = 2 (Po°(i — 8) — Pre(i))? + R™(6), (26) 

where R"(6) is the residual error term which is related to the detailed information 
being projected onto subspaces {W;; j = 1,..., no}. 
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Fic. 9. The mean-squared error functions for two seismic traces at various resolution 
levels. The traces are decomposed in the Daubechies basis with 2 vanishing moments. 
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Ignoring certain levels of fine-resolution information, i.e., ignoring the residual 
term in equation (26), the resolution level np representation of the seismic traces can 
be used for optimization. Figure 9 shows the objective function E”° (6) at various 
resolution levels, no = 1,2,3,4. It shows that the global complexity of the objective 
function is reduced with the increasingly coarser level of resolution, and there are 
wider basins of attraction leading to the global minimum. However, Figure 9(d) 
shows that the global structure of the objective function is severely distorted when 
detailed information is ignored. 

This phenomenon is caused by the shift-variance nature of compactly supported, 
orthonormal wavelet bases. In the inverse problem discussed here, it is required 
that the bases used to represent the signals be shift-invariant. According to the 
discussion of the previous section, two families of bases are shift-invariant. Because 
of the symmetric feature of the auto-correlation shell of orthonormal bases, we choose 
this family of bases for this study. From this point on. the paper uses only the 
auto-correlation shell of orthonormal bases to decompose the signal. unless otherwise 
indicated. Figure 10 shows the objective function at resolution levels ng = 2,3, 4,5 in 
an auto-correlation shell of the Daubechies wavelet basis with 2 vanishing moments. 
The global structure of the objective function also shows the desired simplification as 
that in Figure 9, such as a wider basin of attraction leading to the global minimum, 
less oscillations and smaller “flat” area in the searching range. Moreover, the global 
minimum is not shifted at any decomposed resolution level. Figure 10(d) show that 
the whole searching range transformed to one wide basin of attraction, which would 
lead all initial models to the global minimum. 

Figure 11 shows the same histograms as that shown in Figure 8, except the data 
used for optimizations are decomposed at various resolution levels. These results 
confirm our prediction that there are increasing chances for local-search optimizations 
to find the global minimum when coarse-resolution data are used. For Figure 11(d), 
all searches converge to the global minimum when data are decomposed to resolution 
level five. 

For the simple problem discussed above, five levels of decomposition are needed 
to reduce the objective function to a convex function in the searching range. In 
addition, the global minimum of this simplified objective function coincides with that 
of the original objective function. Therefore, the correct solution is reached when only 
coarse resolution data are used in this example. In the next example, an optimization 
applied to the coarse-resolution data will not suffice. 

More Examples 

For more complex optimization problems, further reduction of resolution may be 
needed to make objective functions convex. The severe loss of information may cause 
an erroneous global minimum of the objective function. 

Here, I show another example of residual statics correction problem for a trace 
with complex waveforms and unknown noise. Figure 12 shows a trace taken from a 
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Fic. 10. The mean-squared error functions for two seismic traces at various resolution 
levels. The traces are decomposed in the auto-correlation shell of the Daubechies basis 
with 2 vanishing moments. 
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Fic. 11. Histograms of the obtained time-shifts of 50 conjugate-gradient optimization 
experiments for data at various resolution levels. Initial models are chosen randomly 
between [—0.2, 0.2] s. The horizontal axis is the number of shift-samples, where the 
sample interval is 0.01 s, and the grid size of the histograms is 4 samples. All 50 
experiments found the true solution when the data are decomposed to resolution 
level 5. 
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Fic. 12. A real seismic trace and its duplication with an unknown shift. 
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Fic. 13. The mean-squared error functions for two real seismic traces shown in 
Figure 12. 
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field seismic record, and its duplication with an unknown shift. We repeat the process 
discussed in the previous section on these two traces. Figure 13 shows the ob jective 
function for this optimization. Due the oscillatory nature of the seismic field data and 
unknown noise, the objective function shows complicated local and global structure. 
The basin of attraction leading to the global minimum point is extremely narrow and 
steep, which makes it almost impossible for any gradient searching methods to find 
the correct solution. 

Again, the auto-correlation shell of the Daubechies basis is used to decompose the 
traces to coarse resolution levels. Figure 14 shows objective functions when applying 
various level of decomposition to traces in Figure 12. As expected, the complexity of 
the objective function is greatly reduced after the data being decomposed to coarse 
levels. 

However, it is worth noticing the global minimum point are slightly shifted in 
Figure 14(d), though the objective function shows a nice, convexity shape. This 
problem may be caused by the loss of information when too much resolution was 
discarded from the data. In this case, an iterative process similar to a multi-grid 
iteration can be used to enhance the resolution progressively; i.e. the solution of a 
coarse-level optimization is used as the initial model to the following optimization at 
a finer level (e.g., Chen 1994). 

DISCUSSION 

The MRA can be used for analyzing signals at various scales. One of these first 
studies in the field of wave propagation was conducted by Morlet et al. (1982a; 1982b). 
In recent years, many researchers have been applying the technique successfully to 
data compression and processing. Cohen and Chen (1993) gave some intuitive insight 
as well as suggestions on possible applications in seismic imaging. This paper shows 
that wavelet theory can also be used to study optimization as applied to inverse 
theory. 

Taking advantage of MRA in wavelet theory, seismic data can be decomposed to 
coarse resolution levels, while keeping major features in the original signal. This paper 
has described the first step of the study on the complexity of inverse calculations; the 
influence of MRA on objective functions has significant effects on the performance of 
optimizations. The objective functions can be simplified and they approach convexity 
when data are decomposed to a low resolution. This initial study demonstrates that 
MRA may be a useful tool for characterizing complexity of objective functions in the 
optimization approach to inverse problems. 

Using the residual statics correction as an example, I have shown in this report 
that the waveform misfit function is multi-modal even for a simple problem, and MRA 
indeed can simplify the complexity waveform misfit function. Comparing Figure 7 
and Figure 10, Figures 13 and 14, the objective functions for the wavelet decomposed 
data show a wider basin of attraction leading to the global minimum, a reduced 
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number of local minima, but non-distorted global feature. 

As discussed in this paper, the choice of bases used to decompose the data is 
critical for this application. In addition to the time-invariance and the symmetry 
issues of the bases, the influence of vanishing moments to objective functions remains 
to be investigated, especially its tradeoff with computational intensity. 

More tests will be done for more realistic optimization problems. For example, in- 
verse problems we encounter usually have many unknown parameters to be recovered; 
the observed data may also be contaminated by noise. Therefore, it is important to 
study the influence of the MRA on these realistic problems. Results of these studies 
can be used to characterize complexities of certain inverse problems. As all the other 
inverse algorithms, the computation cost is also an issue that needs to be studied. 
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ABSTRACT 

Bayesian inversion (Tarantola, 1987) provides a concise mathematical frame- 
work that formally allows the incorporation of @ priori information into geo- 
physical data inversion. In this methodology, the general solution of an inverse 
problem can be regarded as a probability density o(m) over the space of models, 
that consists of the product of two probability density functions. One, known as 
the likelihood function L(m), measures the extent that the observed data are fit 
by model data. The other, p(m) quantifies the a priori knowledge that is possibly 
available about the inverse problem. This information, derived for instance from 
regional geology considerations, well-log data and other types of geophysical data, 
can be incorporated into the inversion problem, via model covariance matrices of 
p(m). The construction of these matrices from such sources of information is a 
complicated problem, and in the large majority of cases, ad hoc simplifying as- 
sumptions are made. As a consequence the significance of the model covariance 
matrices is lost. 

In this work I study the effect of model covariance matrices in a linear, iterative 
amplitude-inversion algorithm. I illustrate in a simple example some advantages 
of building covariance matrices from statistical considerations about the under- 
lying model, as opposed to using the Tikhonov regularization method (Tikhonov 
and Arsenin, 1977) . This method builds covariance matrices generally under the 
assumption of model smoothness, providing little flexibility to incorporate more 
realistic information about the inverse problem. 

The linear, iterative amplitude-inversion algorithm is proposed in Jin et al. (1992). 
In their work the inversion problem is formulated under the small scatterer, or 
Born, approximation. The resulting linear system of equations is solved by a min- 
imization of a weighted least-squares norm, with weights derived from ray theory. 

The solution, i.e., perturbations to a given background velocity model, is obtained 

by a quasi-Newton optimization method, possibly an expensive approach since it 

makes use of an approximation to the second derivatives of the objective function. 

However, Jin et al. (1992) showed that the Hessian matrix can be approximated 
by a diagonal matrix with good results. 
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INTRODUCTION 

Seismic amplitude or travel time inversion methods are a major topic of geo- 
physical research due to their potential capability of extracting detailed lithologic 
information about the subsurface. Several inversion methodologies are described in 
the technical literature. Although the procedures differ, it is acknowledged in all of 
them that the data alone do not constrain all the model features that one aims to 
estimate. To reduce the ambiguity of the inverse problem it is necessary to incor- 
porate a priori information about the underlying model. The Bayesian approach for 
geophysical data inversion (Tarantola, 1987) paves the way for the incorporation of 
such knowledge. In this methodology, the general solution of an inverse problem is 
defined as a probability density o(m) over the space of models, that consists of the 
product of two probability density functions. One, known as the likelihood function 
L(m), measures the extent that the observed data are fit by model data. This func- 
tion accounts for uncertainties in the data, i.e., data features that were not taken 
into account in the forward modeling step. Examples are noise in the data, multiples 
in the situation where the forward modeling procedure just generates primaries, and 
so on. The other probability density function, p(m), quantifies the a priori knowl- 
edge that is possibly available about the inverse problem. In this work I will assume 
that p(m) and L(m) are Gaussian probability distributions, defined by the following 
expressions 

p(m) = ((2n)™ det Cy) texp [-5(m ~ mo)” Cy-(m — mo)] 

L(m) = ((2x)% det Cp)? exp [-5(o(m) - dobs)? Cp~'(g(m) - dovs)| . (1) 

Here, M is the number of model parameters; N is the number of observations; Cy 
and Cp are the model and data covariance matrices, respectively; dops is the observed 
data vector; g(m) represents the modeled (synthetic) data for the model m, and mg 
is the mean or most likely model. 

In this situation the probability density o(m), also known as a posteriori proba- 
bility density function is also Gaussian and given by 

o(ma) oc exp [—=(9(mn) — dors)” C5!(9(m) — dope) + (mm — mo)" C5} (m — me)} . 
(2) 

The covariance matrix Cy of the probability density function p(m) is a possible 
connection between the a priori information and the inverse problem. This informa- 
tion can be derived from regional geological considerations, well-logs, interpretative 
work and so on. To build covariance matrices from those sources is not trivial and 
is seldom attempted, at least in the published inversion literature. A specific case 
where model covariance matrices, and higher order statistical moments are derived 
from well-logs is described in Scales and Tarantola (1994). In view of this difficulty, 
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ad hoc techniques are commonly used to build the model covariance matrices. Con- 
sequently, the significance of these matrices (and also of p(m)) is lost. 

The objective of this work is to illustrate with a simple example how a specific 
seismic amplitude inversion algorithm can benefit from a model covariance matrix 
built using statistical considerations about the model one seeks, derived from some 
source of information (for instance, well logs). I compare the result obtained with 
this approach with the one obtained when I used the Tikhonov regularization method 
(Tikhonov and Arsenin, 1977) to construct the model covariance matrix, based on 
model smoothness assumptions. As will be shown later, both results are equivalent 
for the case considered here. However, two advantages can be pointed out in favor 
of the statistical construction of the model covariance matrices. First, the absence of 
a weighting factor, required by the Tikhonov approach, to incorporate the a priori 
information into the inverse problem. Second, the assessment of the uncertainties of 
the inversion procedure is probably more accurate when the model covariances are 
constructed honoring, at least to some extent, the statistics of the model parameters. 

The amplitude seismic-inversion algorithm discussed here is based on the work 
of Jin et al. (1992). They linearize the isotropic elastic inversion problem with the 
Born approximation (Cohen and Bleistein, 1979) yielding a system of equations that 
is weighted according to ray-theoretic considerations and solved by a quasi-Newton 
method. They derived a diagonal approximation to the second-derivative matrix, 
which is a direct consequence of the weighting applied to the system. 

This paper is structured as follows. I begin with a brief exposition of the inversion 
algorithm proposed by Jin et al. (1992). Here I restrict this outline to the acoustic 
approximation. Following that, I review the theoretical aspects of the regularization 
theory and present an example to illustrate its utility in the situation of inversion of 
noisy data. I also point out the connection between this theory and the more general 
Bayesian approach. Next I carry out the comparison, for a given inverse problem, be- 
tween the results of the asymptotic linear iterative inversion when model covariances 
derived from the model statistics are used as opposed to Tikhonov regularization 
matrices. Finally, I present conclusions and future research directions for this work. 

ITERATIVE ASYMPTOTIC AMPLITUDE INVERSION 

Jin et al. (1992) proposed a linearized asymptotic inversion method where the 
seismic inversion is formulated as the optimization of a data misfit objective function 
for elastic parameter estimation. Essentially the method consists of solving an over- 
determined system of equations obtained from the linearization of the integral solution 
of the wave equation via the Born approximation. In their work Jin et al. (1992) solved 
this system using a weighted least-squares criterion. This weighting is derived from 
ray theory considerations. Following is a brief description of the algorithm for the 
acoustic inverse problem. 
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Linearization 

As in many inversion procedures the velocity c(r) of the medium is characterized 
by a long-wavelength velocity profile cg(r) plus small deviations 6(r) (scatterers) from 
this background velocity, where r is the position vector. The ultimate objective of the 
type of inversion algorithm discussed here is to estimate such deviations, given the 
background velocity. This approach, derived from perturbation theory, is relatively 
common in the inversion literature (e.g. Beylkin, 1985, Cohen and Bleistein, 1979, 
and others). 

Leaving the algebraic details to the references (Bleistein et al., 1994), it is possible 
to show that the recorded (scattered) wave field u,(rg,rs,t) and the source (incident) 
wave field u;(rg,rg,t) satisfy the following integral relationship, here expressed in the 
frequency domain !: 

us(Tg,Ts,w) = fara, rg,w)m(r)(u;(r, rs, w) + u(r, Ps, w))w, (3) 

where D is the domain of integration over the diffraction points; m(r) = ae, the 
unknown perturbation scaled by the background velocity, is the parameter sought in 
the inversion, and g(r1,r2,w) is the Green’s function for an impulsive source at ro 
recorded at ri, computed in the present work from ray theory. For a 2D medium this 
Green’s function is given by 

1 

tw 
  9(t1,T2,w) = A(ri,rg)e*7r1 2) (4) 

Here, 7(r1,r2) and A(r1,rz) are the ray theoretical traveltime and amplitude that 
satisfy the eikonal and transport equations, respectively. Equation (3) is nonlinear 
with respect to m(r) because it contains a product of this unknown quantity and 
the scattered (observed) field u,(rg,rs,w). The Born approximation, which basically 
neglects the scattered wave field in comparison with the incident wavefield under the 
“small scatterer” assumption, is used in the linearization of Equation (3). Noticing 
that u;(r,rg,w) = g(r,rs,w), this linearization results in the following equation: 

us(fg,¥s,w) = [acoe, rg,w)m(r)g(r, rg, w)w”, (5) 

or, in matrix form: 

Gm = us. (6) 

Here, G is the Born operator matrix; m is the unknown normalized scattering vector, 
and ug is the recorded field. 

In the inversion algorithm, the linear system of equations (6) is solved for the 
model m by a quasi-Newton technique described next. 
  

1Throughout this paper fg and rg will represent spatial coordinates of receiver and source re- 
spectively, t the traveltime and w the temporal frequency. 
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Solution of the linear system 

The linear system of equations (6) is usually over-determined, since the number 
of observations (data points) is larger than the number of unknowns. Therefore it 
is necessary to define what it is meant by the solution of the system. In their work 
Jin et al. (1992) used the following weighted least-squares criterion for this definition: 

min $(m, 9) = min : [a fav [du (ug—Gm)"Q(u.—Gm). (7) 

Where ro is the output point, i.e., the coordinate of the scatter point to be estimated; 
Q is a diagonal matrix that implements the weighting and will be described later. In 
matrix form Equation (7) can be written as: 

min S(m,ro) = min (us — Gm)" Q(us — Gm). (8) 

Notice that the sum in Equation (7) is carried out over the angles 7) and € defined in 
Figure 1. Ideally, for the best resolution, it would be desirable to sample the scattering 
point from all angles, which is not the case for seismic experiments. Moreover, instead 
of summing over the angles ~ and €, a more suitable coordinate system is defined by 
the source and receiver locations. Considering this coordinate system, Equation (7) 
can be rewritten as: 

min S(m, ro) = min 5 | ate f dry fds (ug — Gm)"Q(ug— Gm) J (rg, 2056, w). (9) 

Here, J(rg,rs,é,#) is the Jacobian of the transformation, that should account for 
the discretization of the data acquisition. One of the most interesting aspects of the 
work of Jin et al. (1992) is the weighting diagonal matrix Q. The zi** element of the 
@ matrix relates to a given source-receiver pair and is defined as follows: 

Ip(rg, Yo, rs) ||? 
SS 10 
4n*wA?(rg,to,Ts)’ (10) 

Q(rg,0s,, Fo) = 

where (see Figure 1) ||p(rg,ro,rs)||? is the square modulus of the total slowness 
vector at the scattering point, defined as p(rg,ro,ts) = V7(ro,1s) + Vr(tg,to) = 
Ps(To, Ts) +Pg(tg,ro), and A(rg, ro, rs) isan amplitude factor defined as A(rg,To,Ts) = 
A(ro,Ts)A(rg, Fo). 

The justification for the weighting matrix Q comes from ray-theory. This ma- 
trix compensates for geometrical spreading losses and tends to eliminate wide angle 
reflections from the inversion (small values of ||p||). Gray (1994) also avoided wide 
angle reflections in his migration procedure, under the justification that those events 
might be spatially aliased. Notice that the Q matrix depends on the coordinate ro. 
A drawback of this formulation of Q is the presence of the temporal frequency w 
in the denominator, weighting down the higher-frequency information. However, as 
will be shown later, the main benefit of using such weighting is accomplished by a 
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Fic. 1. Geometry for one scattering point. 

diagonal approximation of the Hessian matrix (2"¢ derivative matrix of the ob jective 
function with respect to the model parameters) allowing an efficient implementation 
of a quasi-Newton algorithm for minimizing the objective function defined in Equa- 
tion (9). 

The minimizer of the objective function defined in Equation (9) satisfies the fa- 
miliar normal system of equations 

G¥QGm = G¥ Qus. (11) 

Where G¥ is the Hermitian adjoint of G. It is well known that direct or iterative 
techniques are available for solving linear system of equations. Jin et al. (1992) opted 
for a quasi-Newton iteration method given by 

Mn+1 = Mp — H,~'y(m,). (12) 

Here, mn+1 is the updated model; my is the current model; H,~! is an approximation 
for the inverse of the Hessian matrix evaluated at model mn, and y(mn) is the 
gradient of the objective function evaluated at model my. Each iteration performed in 
Equation (12) has a computational cost equivalent to a pre-stack migration algorithm. 

The analytic computation of the derivatives of the objective function in Equa- 
tion (9) is facilitated by the fact that WKBJ Green’s functions and the Born approx- 
imation have been used. Therefore it is not complicated to show that the gradient of 
the objective function with respect to the model parameters is given by 

7(r,ro) = aa | ate f arg Beye Ig. 206 P)H[dug(rg,ts,t = T(rg,r, rs). 

(13) 
H[dus(rg,rs,t = T(rg,¥,%s)] is the Hilbert transform of the data residual evaluated 
at the total travel time r(rg,r,rs) = T(r,1s) + T(rg,r). 
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Along the same lines it is possible to show that the ij** element of the Hessian 
matrix H = G4QG is given by 

2A(rz, Yj, Ts) 1 —iw(r(rg tT; ,Ps)—7(rg,r;,rs)] . ope) ae Ag Fj) Fs) j irs) A{r;,r;] i [ace f arg f doulfp| A(r 5, Ti,Ts) J(rg,¥s,€, pe 

The above equation can be considerably simplified with a sequence of approxima- 
tions. First notice that in the process of the quasi-Newton iterations the i** row 
of the Hessian matrix will be dotted with the gradient vector to yield the updated 
model parameter at the coordinate r;. Therefore r; is the output point rg men- 
tioned previously. So, by using the same methodology as in Bleistein et al. (1994) 
and Beylkin (1985) the traveltime 7(rs,r,rg) and amplitude A(rg,r, Tg) are expanded 
about the output point r;. This procedures results in the following expression, after 
keeping terms to first order for the travel time and just the zero-th order term for the 
amplitudes: 

1 —iwp(r-—r- Helen] = 5 / dr, [ drg [dsl plPT(eg.r,é, ve“, (15) 

Furthermore assuming that J + 1, and going to the [~,w] domain we get: 

1 _wp(r—r: Halristi] = 5 / dr, / dip / dus w||p||2e7P 5-7 (16) 

Introducing the variable K = wp we obtain: 

1 ~iK.(r:—r: Haltisti) = 5 / dr, / dy / dl|K]| |[K]Je 5-7 (17) 

Notice that the integrals over the [K, 7] domain represent the integration in cylindrical 
coordinates of a constant. If ||K|| ranged from 0 to +00, and ~ from 0 to 2z, this 
integral would result in a delta function. This is obviously not the case; nonetheless 
Jin et al. (1992) make this assumption, and the final expression for the approximation 
of the Hessian is given by: 

Hlti,j] = war ~ i) f drs. (18) 

Here, Arg is the receiver spacing. Equation (18) is the final approximation to the 
Hessian that will be used in the quasi-Newton iterations described in Equation (12). 
Notice that it is invariant from iteration to iteration. Although this approximation 
worked fine with the examples shown in this work and also in Jin et al. (1992) it 
remains to be seen how it behaves for the situation of more complex data sets. 

An Example 

Consider the simple velocity model in Figure 2, which consists of just one hori- 
zontal interface. I generated the five shot gathers for this model shown in Figure 3. 
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Fic. 2. One-layer velocity model. The length of a shot gather is illustrated by the 
horizontal line in the figure. 

The forward modeling procedure used here is, as the inversion method, based on the 
Born approximation. To illustrate the action of regularization in amplitude inversion 
of noisy data, this is acceptable. 

The objective of the inversion in this problem is, given a background velocity of 
1.5 km/s, to estimate the magnitude of the velocity contrast to the second layer, 
ie., .2 km/s. In this noise-free situation the result, obtained in three iterations, is 
perfect, and is illustrated in Figure 4. This plot illustrates the perturbations to the 
background for several receiver positions as a function of depth. The spikes peak at 
the depth of 1.0 km with magnitude equal .2 km/s as expected. 
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Fic. 3. Five shot gathers generated for Figure 2. 

In the next section I illustrate the behavior of this inversion algorithm in the 
presence of noisy data. I also review how to regularize this procedure using Tikhonov’s 
approach, and present numerical examples that show the lower sensitivity of the 
regularized inversion with respect to noise, as compared to non-regularized inversion. 
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Fic. 4. Result of the inversion for the data in Figure 3. 

EFFECTS OF REGULARIZATION ON AMPLITUDE INVERSION 

Motivation 

Consider the data set shown in Figure 5. It is the same data set illustrated in 
Figure 3, but with the addition of band-limited random noise such that the signal-to- 
noise ratio is now 2. Repeating the inversion procedure for this data set, I obtained 
the result illustrated in Figure 6, which is a considerably degraded version of the 
noise-free inversion result. The magnitude of the spikes contain errors larger than 
50%. 
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Fic. 5. Data of Figure 3 with band-limited noise. The signal to noise ratio is 2. 

If just one shot gather of Figure 5 is used in the inversion, the final image, illus- 
trated in Figure 7, is even a worse one. This is an expected result since the noise is 
attenuated when five shot gathers are used due to the larger data redundancy. 

I applied Tikhonov regularization in the inversion algorithm discussed here, aiming 
at reducing its sensitivity with respect to perturbations (noise) in the data. I show 
the results later in this section, but first I briefly discuss this procedure and illustrate, 
with examples, the behavior of the regularized inversion algorithm for noisy data. 
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Fic. 6. Result of the inversion for the data in Figure 5. 
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Fic. 7. Result of the inversion for only the first gather in Figure 5. 

Basics of regularization 

Consider the linear system 

Ax = b, (19) 

where A is an operator of the forward problem that computes the data b for a 
given model x. The solution for x in Equation (19) is said to be ill-conditioned if 
it is non-unique and/or if a small perturbation on the data b corresponds to a large 
perturbation in the model x. The fundamental idea of Tikhonov’s regularization 
method (Tikhonov and Arsenin, 1977) is to replace the operator A by a family of 
approximate operators, functions of the so-called regularization parameter a, such 
that the solution z,* for each one of those parameters is well-conditioned, but, in 
some sense tends to x as @ goes to zero. The approximated solution x," can be 
defined as the minimizer of the quadratic functional: 

[| Ax — b|? + al] Rx]. (20) 

in the domain of R. The matrix R defines the correlation between different elements 
of model space according to some criterion, usually related to model smoothness, As 
it will be shown latter, the regularization matrix R and the model covariance of the 
probability density function p(m) are closely related. 

Similarly it is possible to introduce x", as the solution to the regularized normal 
equations 

(A7A + aR? R)x = A’b. (21) 

Note that R? R is positive semidefinite, so a direct consequence of Tikhonov’s method 
is to shift the spectrum of singular values of A’ A in the positive direction. Generally 
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this implies that the solution of the regularized normal system of equations should be 
less susceptible to perturbations in the data vector b (Karlsruhe and Lyngby, 1993). 
However, that is not always the case. As shown in Scales et al. (1990), a singular 
value decomposition of the matrix A is needed to understand what is actually being 
accomplished with regularization. 

The regularization parameter a controls the influence of the penalty term on the 
optimization problem described in Equation (20). If it is chosen too small, Equa- 
tion (20) is close to the original ill-posed problem, and the regularization would be of 
no or little effect. It @ is too large, the problem solved would have little connection 
with the original Equation (19). Choosing the “optimum” value of a is a complicated 
matter in practice. Algorithms do exist with this intent (e.g., Hansen, 1992), and one 
of them is described later in this paper. A drawback is that the computational cost of 
those procedures is sometimes too high to make this method reasonable in problems 
such as amplitude seismic inversion. 

Regularization of Amplitude Inversion 

In the specific problem of seismic inversion, a possible approach would be to use 
R to add a priori knowledge about the model one seeks. For example, if lateral 
velocity variations are negligible, R can be constructed such that the scatterers in the 
horizontal direction are correlated with (or imposed to be similar to) each other. In 
this case just for illustrative purposes, assume that we have five scatterers per layer. 
The matrix R that correlates those scatterers is: 

fT 1 1 0 Oo 

(22) 
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Other regularization schemes are available. It is also possible to regularize the 
inverse problem by attenuating the roughness of the final solution. This is accom- 
plished by imposing small variations on the first or second derivatives of the model 
parameters. Schematically those two regularization procedures are represented for the 
situation of five scatterers by the matrix R in Equation (23) and (24), respectively. 

1-1 0 0 0 
0 1-1 0 =O 

R={0 0 1-1 oO], (23) 
0 0 0 1-1 
0 0001 
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To incorporate Tikhonov’s regularization (for example the one described in Equa- 
tion (22)) in the iterative asymptotic inversion presented in the last section, the 
following steps have to be undertaken. The regularization term should be added to 
the objective function in Equation (9). This results in the following expression: 

min S(m, Yo) = min 5 | ate fdtg [do (us — Gm)" Q(u, — Gm) J(rg,ts, , ) 

@ DTD Al T5)(m(;) — m(x4))?. (25) 

Here, a is the regularization parameter. The matrix R is constructed with the param- 
eter X(rj,1j), which has the value of 1 if the scatterers rj and rj; are to be correlated, 
or 0 otherwise. m(r) is the magnitude of the scatterer at r;. As in Equation (8) the 
corresponding matrix form of Equation (25) is: 

min S(m,ro) = min (us — Gm)"Q(u, — Gm) + a m7 RR m, (26) 

where R is the regularization operator that couples the model parameters according 
to A(t, Fj). 

The differentiation of the regularization term with respect to the model parameters 
is incorporated in the gradient (13), yielding the following expression: 

ero) = 5 fate f arg far =e Il? I (tgs t4 6, Vy Hue gto, t = 7004, Fe) 
+a VA (rj, 15) (m(ri) — m(z;)). (27) 

The approximation used in Equation (18) is used in the regularized version of the 
algorithm. 

Finally the search direction in the Newton’s iterations (Equation (12)) should take 
into account the regularization operator R, resulting in the following update scheme: 

Mny1 = Mp — [H+ RTR] y(my). (28) 

In the next section I assess the performance of the regularized asymptotic inversion 
with the data set of Figure 5. 
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Choosing the Regularization Parameter 

Equation (20) defines an objective functional formed by two terms. The first one 

relates to the data misfit while the second incorporates the regularization scheme. An 
“optimum” regularization parameter a would provide an ideal balance between those 

two components, minimizing the regularization error and the perturbation error in 
the solution x,*. Several algorithms are available in the literature (Karlsruhe and 
Lyngby, 1993) for this purpose. Those methods are usually subdivided into two 

main categories, according to the assumption as to whether the magnitude of the 
perturbation on the data vector is known or not. 

In this section I present the algorithm described in Scales et al. (1990) and used 
in this work. This procedure relies on the definition of a data misfit threshold as a 

stopping criterion for the iterative inversion. Here, this stopping criterion is satisfied 

when the root-mean-square (RMS) of the residual is less than the RMS amplitude of 

the noise for a given time window. In this case convergence is assumed. 

To find an “optimum” a, the method proceeds as follows. The inverse problem is 
solved for several values of the regularization parameter. The data misfit for each one 
of the solutions x,* is plotted as a function of a, as shown schematically in Figure 8. 

A Data misfit 

* & 

* ® 

® ® 
threshold   

    

Qont a   
Fic. 8. Data misfit as a function of the regularization parameter a. 

The “optimum” value of a, a in Figure 8, is postulated as the largest regu- 
larization parameter for which the pre-specified data fit is achieved. Therefore the 
solution x9P** would have the desired data fitness and also be the most consistent 
with the a@ priori information used to build the operator R in Equation (20). 

This can be expensive procedure to carry on in practice, since the full inverse 

problem is solved several times for different regularization parameters. Nonethe- 

less, this procedure has been successfully applied in some situations as described in 
Scales et al. (1990) and Pratt et al. (1993). 
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An Example 

Carrying out the inversion procedure for the data set shown in Figure 5 under the 
assumption that the medium is laterally homogeneous, the regularization described 
in Equation (22), leads to the result shown in Figure 9. This should be compared 
with Figures 4 and 6. The regularization was effective in reducing the sensitivity of 
the inversion procedure to the noise in the data, yielding scatterers shown in Figure 9 
with the correct magnitude. 

Figure 10 shows the convergence of a particular scattering point as a function 
of the number of iterations for the noise-free inversion and the regularized inversion. 
The smaller number of iterations needed to obtain convergence in the latter case is an 
indication that the condition number of the problem was reduced in comparison with 
the non-regularized approach. Note that convergence to 0% error in the presence of 
noise is not possible since the amplitudes of the data are corrupted. 
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Fic. 9. Result of the inversion for in Figure 5 using regularization. 
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FIG. 10. Convergence plots for the noise-free and regularized inversions. 

Using the first- and second-order derivative schemes described in Equations (23) 
and (24) to invert the data set of Figure 5, I obtained the results shown in Figures 11 
and 12, respectively. The first-order derivative scheme provided comparable results 
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to the one shown in Figure 9. Such is not the case for the second-order derivative 
regularization. This scheme yields a smooth result, as illustrated in Figure 13. How- 
ever, due to the limited lateral extent of the velocity model, and the fact that the 
smoothing operator R in Equation (24) does not allow rapid changes in the model 
parameters, this procedure does not produce satisfactory results. 

Figure 14 shows a plot of the regularization parameter as a function of data misfit 
for the three regularization schemes. Notice that since the model is indeed laterally 
homogeneous, once the data misfit of the optimum solution is below the threshold, 
it becomes independent of the regularization parameter. According to this curve, a 
value for a of 5 for the regularization scheme described in Equation (22) and of 25 
for the first-order derivative scheme were chosen. In the case of the second-order 
derivative regularization the value was arbitrary, since the curve never drops below 
the data misfit threshold. 
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Fic. 11. Result with first-order derivative regularization. 
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Fic. 12. Result with second-order derivative regularization. 

RELATING BAYESIAN INVERSION AND REGULARIZATION 

In the inversion procedure proposed by Jin et al. (1992) the solution of the inver- 
sion problem was defined as the minimizer of the weighted least-squares norm defined 
by Equation (7), or by Equation (26) when regularization is used. The simple state- 
ment of these equations implies important assumptions about the statistical nature 
of the noise in the observed data and on the correlation between model parameters. 
The purpose of this section is to describe what those assumptions are. 
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As mentioned before, for Gaussian statistics the a posteriori probability density 

function o(m) is given by Equation (2), repeated here for convenience. 

o(m) « exp [-5 (oC) — dope)” C5!(g(ma) — dope) + (ma — xg)" C!(ma — mno)} . 
(29) 

When approaching an inverse problem using the Bayesian framework, we intend 

to determine which models, if any, are associated with large values of o(m). In 
other words we are interested in finding the maximizers of Equation (29). Under the 
Gaussian hypothesis this corresponds to minimizing the following quantity: 

min S(m) = min (g(m) —dobs)? Cp!(g(m) — dobs) + (m—mo)"Cz?(m— mo). (30) 

If mo is a null vector, Equations (30) and (26) are completely equivalent. The inverse 
of the weighting matrix Q-! plays the role of a data covariance matrix Cp, and the 

-1 
product [oR R] implements the model covariance matrix Cy. Therefore, the least- 

squares formulation of the inverse problem expressed in Equation (26) implies the 
assumption of uncorrelated Gaussian noise in the data and that the model parameters 
are also described by a Gaussian probability density function with zero mean. The 

model covariance matrix is defined by the regularization scheme. 

In the next section, I consider the situation where the model covariance matrix is 
built by assuming a given correlation length (Tarantola, 1987) between the scatterers 
that form the interface between two acoustic layers. The results will be compared 

with those obtained by the regularized inversion procedure. 

MODEL COVARIANCE ESTIMATION 

The random sequence illustrated in Figure 15 was generated by filtering a random 
white process with a filter of a given correlation length. Figure 16 illustrates the 
autocorrelation of this series and a possible exponential fit that will be used later in 
building the covariance matrix. A portion of this sequence was used to construct the 
lateral variation in velocity of the second layer as illustrated in the model shown in 
Figure 17. 

Five shot gathers generated for the velocity model of Figure 17, are illustrated in 
Figure 18. Notice the change in polarity of the reflection from the interface, caused 
by the lateral inhomogeneity of the second layer. 

As described in Tarantola (1987), a sequence such as that in Figure 15 can be 
approximately modeled as a Gaussian process with covariance function given by: 

Cli, j] = 07 e(*a4), (31) 

where A is the correlation length of the sequence, and o its standard deviation. A 
plot of this covariance matrix for a small problem consisting of 27 scatterers is shown 
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Fic. 17. Laterally inhomogeneous velocity model. 
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Fic. 18. Five shot gathers generated for the model of Figure 17. 

in Figure 19. Here, the correlation length is determined by fitting an exponential of 
the form e4 to the autocorrelation of the scatterers (Figure 16). Although the fitting 
is not very accurate, it provides an initial estimation of the correlation matrix that is 
likely to be superior to the assumption that the model parameters are not correlated. 

Again, the objective of the inversion is to determine the scatterer distribution 
given the velocity of the first layer. In this example, I compare the results obtained 
for the inversion of the model shown in Figure 17 for the target depth of 1 km obtained 
for the following cases: 1) non-regularized inversion; 2) regularized inversion using 
the operator FR described in Equations (22), (23), and (24), and 3) Bayesian inversion 
with the covariance matrix is given by Equation (31). 

Figure 20 shows the result obtained with the non-regularized inversion. The in- 
verse result is reasonably close to the true scatterer distribution, represented by the 
dashed curve in the Figure. The residual of this final solution is illustrated in Fig- 
ure 21. 

Figures 22, 23 and 24 show the results of the inversion using the three regulariza- 
tion schemes described in Equations (22), (23) and (24), respectively. As expected, a 
poor result was obtained with the regularization implemented by Equation (22) (Fig- 
ure 22), since the assumption of lateral homogeneity is a bad one for this situation. 
The other two approaches smoothed the final solution to a some degree, defined by 
the parameter a described earlier. I experimented several values for a, and the best 
results are illustrated by Figures 23 and 24, obtained with a = 1 in both cases. The 
first and second-derivative regularizations provided superior solutions than the one 
obtained with the non-regularized inversion. 

Finally, Figure 24 shows the inverse result when I used the model covariance 

177



Model covariances 

0.13 

0.12 |, @eee ee ee een eee svveeeseeeeeeeenaes 

0.11 F 
e eae: a priori 
2 0.1 + =——=<= a posterior! 

3 0.09} 

5 0.08 + 
3a 
= 
S 0.07 F 
a 

0.06 | 

0.05 | 

L 1 1 l \ 

0 5 10 15 20 25 

Scatterer number 

FIG. 19. Model covariance matrix as define in Equation (31). 
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Fic. 20. Result of the non-regularized inversion. 
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FIG. 21. Residual of the non-regularized inversion result. 
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Fic. 22. Result of the regularized inversion using Equation (22). 
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shown in Figure 19. This solution is comparable to the ones obtained by the first and 
second-order regularization schemes. An appealing advantage of this approach is the 
absence of the parameter a, since the covariance matrix is built based on statistical 
considerations. 

The fact that the results obtained with the derivative-based regularizations (Fig- 
ures 23 and 24) and with the model covariance defined by Equation (31) are equiv- 
alent, should not be surprising since the true scatterer distribution is smooth. Ex- 
amples dealing with more complex models are required to carry out a more thorough 
comparison between the two procedures. 
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FIG. 25. Result of the exponential model covariance inversion. 

Another important aspect of the Bayesian methodology is the possibility of com- 
puting the a@ posteriori model covariance, which provides insights on the resolution 
of the inverse problem solution. The a posteriori covariance Cy: (Tarantola, 1987) is 
given by: 

H -1)7} Cw = [G2QG+ Cyn). (32) 
Notice that, since the a posteriori covariance includes the model covariance Cy, 

this analysis would be of little significance if this matrix is built without resorting to 
the statistics of the model parameters, as it is done in the Tikhonov regularization. 

The a posteriori and a priori standard deviations (square-root of the main diag- 
onal of the a posteriori and a priori covariance matrices, respectively) are plotted 
in Figure 26. As expected, the a posteriori are smaller than the a priori standard 
deviations indicating that the inversion succeeded in reducing the uncertainties of 
the model parameters. Also, the deviations reduce towards the center of the model, 
which corresponds to a larger data redundancy available at this location. 

The results presented in this work, including the solution of the inverse problem 
shown in Figure 25 are still preliminary and require further research. The likely next 
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Fic. 26. Comparison between the a priori and a posteriori standard deviations. 

step is to estimate the model covariance matrix directly from the data (Figure 15), 
without resorting to exponential models. 

CONCLUSIONS 

Here, I presented a study on model covariances under the framework of amplitude 
seismic inversion. For simple examples I compared inversion results when the model 
covariance was built taking into account statistical considerations about the under- 
lying model with the case in which model covariances were derived from Tikhonov 
regularization. As indicated in this paper, the advantages of the former approach 
is the absence of a regularization parameter (a) and a more reliable a posteriori 
uncertainty analysis of the inverse problem solution. 

Tikhonov regularization, although an effective procedure for reducing the sensi- 
tivity of the inversion method to perturbations in the data (noise), might not provide 
the necessary flexibility for incorporating more general information about the inverse 
problem. In a more complex situation, not only in terms of the difficulty posed by 
the inverse problem, but also in the presence of different levels of information one 
would like to consider in the inverse problem, Tikhonov regularization is probably a 
limited approach for constructing covariance matrices. 

The simple results discussed in this paper motivate the use of realistic model 
covariance matrices in geophysical parameter estimation. For instance, one of the 
objectives to be accomplished in future work is to estimate model covariances directly 
from some source of information (for instance well logs), probably without resorting 
to exponential models as done in this paper. 

Closely related to the estimation of model covariance matrices is the quantification 
of the uncertainties of the inverse problem solution. This is an very important sub ject 
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that will be addressed in this research. 
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ABSTRACT 

Previous studies have shown the dependence of migration error on reflector 

dip when poststack migration is done with an algorithm that ignores the pres- 

ence of anisotropy. Here we do a numerical study of the offset dependence of 

migration error that can be expected when common-offset data from factorized 
transversely isotropic media are imaged by an isotropic prestack migration al- 

gorithm. Anisotropic ray tracing, velocity analysis and prestack migration in 

the common-offset domain are the basic tools for this analysis, which we apply 

to models with constant vertical gradient in velocity that are characterized by a 
particular combination of Thomsen’s anisotropy parameters: 7 = (e—6)/(1+26). 
The results show that the offset dependence of error in imaged position, and there- 

fore the quality of stacked, imaged data, depends largely, but not completely, on 

the anisotropy parameter 7. Generally, the larger the value of 7, the larger the 

problem of mis-stacking. Over a wide range of reflector dip, time-misalignment 
of imaged features on common-reflection-point gathers is considerably less than 

the error in imaged position on the zero-offset data. For all the model parame- 

ters studied, we expect stacking quality to be worst for reflector dip around 50 

degrees. Reflections from horizontal reflectors and those with dip close to 90 de- 
grees should stack well in all cases, and mistacking is not severe for overturned 

reflectors.     
  

INTRODUCTION 

Previous studies have estimated the errors that can be expected in the results 

of seismic data processing as a consequence of the assumption that earth is isotropic 
where it is not. Poststack migration (Larner and Cohen, 1993; Alkhalifah and Larner, 

1994) and dip moveout (DMO) (Larner, 1993; Tsvankin, 1995), for example, have 
been found to introduce mis-positioning of events when anisotropy is ignored. Er- 

rors in poststack migration and shortcomings of DMO when anisotropy is ignored 

bracket the issue of errors in prestack migration, but may not fully characterize the 
problems that might be expected when anisotropy is ignored in prestack migration. 
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Jaramillo and Larner (1994) did a qualitative demonstration of the positioning error 
in prestack migration based on a common-offset synthetic data set for a transversely 
isotropic medium with a vertical axis of symmetry (VTI medium) and constant veloc- 
ity gradient in depth. Although several algorithms are presently available for doing 
anisotropic migration, it is of interest to gain a more thorough understanding of the 
perceived need to take anisotropy into account in migration. 

For these reasons, here we do a systematic numerical study along the lines of 
the analysis for poststack migration error done by Larner and Cohen (1993) and by 
Alkhalifah and Larner (1994). Since offset is the new dimension, we focus our atten- 
tion on the offset dependence of error. Taking the zero-offset error as a reference, we 
study the spread of migration-position errors over the range of offsets typically en- 
countered in the seismic exploration. This spread of position errors gives information 
about the quality of stacking to be expected when data are prestack migrated with 
an isotropic algorithm, as is done in routine practice. 

To perform the error analysis we create a common-offset diffractor response using 
a ray-trace modeling technique described in Larner (1993), Larner and Cohen (1993), 
and Alkhalifah (1995), then simulate the stacking velocities that would be obtained in 
practice, and finally apply prestack isotropic, depth migration using the velocity in- 
formation. Position errors are computed in terms of the time error described in Larner 
and Cohen (1993). Once errors are computed for the different offsets, their differences 
from the zero-offset error are evaluated. These differences give an estimation of the 
offset- and dip-dependence of error and, by implication, stacking quality. 

For the tests, the TI media are characterized by the anisotropy parameters of 
Thomsen (1986). In particular, following conclusions of Alkhalifah and Larner (1994) 
and Tsvankin (1995), we study media having a range of realistic values of Thomsen’s 
parameters € and 6. Also, we limit consideration to media with vertical axis of 
symmetry (i.e., VTI media) and constant gradient in depth of the P-wave velocity 
along the vertical symmetry axis. (For all of our tests, the gradient is k = 0.6 s~.) 
Moreover, the media are factorized anisotropic inhomogeneous (FAI), which means 
that € and 6 are constants, independent of depth. 

Following the numerical study of error as a function of dip and offset, we generate 
synthetic multi-offset sections for a VTI model with reflecting segments having dip 
from 0 to 90 degrees in intervals of 15 degrees. Results of migrating these data support 
the results of the numerical study. 

MODELING 

To perform the error analysis, for each offset we initially create diffraction curves 
in a vertical plane. Shearer and Chapman (1988) have developed an efficient method 
for ray tracing in the type of media considered here — FAI media with constant 
velocity gradient in depth. (For FAI media, all ratios among the various elasticity 
parameters are independent of position.) For transversely isotropic media, the core 
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i Reflector 

Fic. 1. Illustration of Snell’s law. Here s and r are the source and receiver positions 
respectively, d is the diffractor position, u is the unit vector pointing along the re- 
flector, p, and py are the source and receiver slowness vectors at the scatterer, and 6 
is the dip of the reflector. 

of their result is the property that raypaths simply are scaled, rotated versions of the 

slowness curve, the curve that relates horizontal and vertical slowness at any point 

in the medium. Also, for such media, two-point ray tracing can be done by solving a 

quadratic equation. The details are explained in Larner (1993). 

To find the reflector dip associated with a given point on the diffraction curve 

requires use of Snell’s law of reflection for zero offset. Larner and Cohen (1993) solved 

for p; and p3 as a by-product of the ray-tracing routine. Here p, is the ray parameter 

or horizontal component of the slowness vector and p3 is the vertical component of 
the slowness vector. Snell’s law requires continuity of the slowness vectors along 
an interface. For nonzero offset, let us define pg = (p15, 73s) as the slowness vector 

for the incident ray, pr = (pir, P3r) as the slowness vector for the reflected ray, and 

u = (cos@, sin 6), a unit vector pointing along reflector (Figure 1). Snell’s law says 

Ps.U = Ppr.U , 

or 

piscos@ + p3,sin9 = pi,cos@ + ps3, sin 6. 

Solving for 0, we find 

6= arctan(P!t — Pls), 
P3s — P3r 

Two simple cases exemplify this formula. If the reflector is horizontal p;, = pi, 
and p3, = —p3r, So 8 = 0 as expected. The zero-offset case (ps = —pr) gives 
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@ = arctan(pi/p3), where p; = pi, = pip and p3 = p3, = pz. This formula was 
derived by Larner and Cohen (1993). 

For all of our tests, we consider just the case where the velocity gradient in the 
vertical direction is 0.6s—!, which we judge to be a sufficiently representative value for 
the subsurface, considering that the constant gradient is itself a simplification. Also, 
for all tests, the depth D of the scatterer is 1500 m. 

For the error studies, we consider media with the following range of Thomsen’s 
parameters: 0 < € < .3 and —0.2 < 6 < 0.3. Alkhalifah and Larner (1994) and 
Tsvankin (1995) have shown that the two parameters, 6 and ¢, are sufficient to char- 
acterize the error behavior of P-waves in VTI media. Tsvankin (1995), in particular, 
found that DMO behavior was governed primarily by the difference of the two pa- 
rameters, € — 6. More recently, Alkhalifah and Tsvankin (1995) have shown that a 
particular combination of € and 6, given by 7 = (e—5)/(1+ 26), fully characterizes all 
time-related processing of P-wave data (e.g., moveout, dip moveout, and poststack 
and prestack migration) in homogeneous VTI media. We shall collect most of our 
results in terms of the anisotropy parameter 7. 

Viewed in terms of Kirchhoff migration, errors arise in migration when data char- 
acterized by one set of diffraction curves are migrated with medium parameters for 
which the diffraction curves are different. Figure 2 shows a set of five diffraction 
curves for a scatterer depth of 1500 m and offsets 0, 1000, 2000, 3000, and 4000 m, 
in a medium with Thomsen’s parameters « = 0.2, 6 = 0.1. The curves show the 
familiar increased flattening near the apex with increasing offset, and an inflection 
point at the midpoint distance from the scatterer corresponding to the raypath that 
is horizontal at the scatterer. Note that, for midpoints greater than about 4 km, 
here, the curves for all offsets seem to overlap, perhaps suggesting that when data are 
migrated, errors in imaged positions will be independent of offset for larger dips. We 
shall find that such is not the case. While the curves are close, they do not overlap. 
The small differences in the diffraction curves will account for finite offset dependence 
of migration error. 

ISOTROPIC PRESTACK MIGRATION 

Velocity Analysis 

Certainly, migration results depend on the velocity function used in the migration. 
Here, we wish to mimic a common way in which migration velocity is obtained in 
practice. We start by approximating the stacking velocity that would be found for 
reflections from horizontal reflectors. 

First, we generate a zero-offset diffraction curve for a scatterer depth of 1500 m, 
i.e., the solid black curve in Figure 2. Least-square fitting a straight line to t? — x? 
gives the stacking velocity V.., at the given depth. To find the migration velocity 
at any depth from this stacking velocity, we assume that the vertical gradient in 
interval velocity, dv/dz, is constant and has been computed from velocity analysis 
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Midpoint (km) 

  

  

      

Fic. 2. Diffraction curves for different offsets. The offsets are 0—black solid, 1000 m— 
gray solid, 2000 m—black dot, 3000 m-black dash and 4000 m—thin black. Thomsen’s 
parameters € = 0.2 6 = 0.1 are used here. The vertical velocity function is given by 
v(z) = v9 + kz, where, for this model, surface velocity v) = 2000 m/s and velocity 
gradient k = 0.6. The diffractor depth is D = 1500 m. 

for reflections from within the overburden. We then solve a transcendental equation 

to find the migration velocity at the surface v,,(0). The resulting migration velocity, 
Um = Um(0) + (dv/dz) z, is not the true vertical velocity of the TI medium. 

Prestack Migration 

To simulate migration for a given offset, we apply common-offset isotropic migra- 

tion to the diffraction curve that would be observed for that offset in the modeled 

VTI medium (e.g., one of the curves in Figure 2). Any of several techniques can 

be used to compute analytically a diffractor position given the slope and traveltime 
along the diffraction curve in a common-offset section. We illustrate the one used 
here by starting with the simplest situation of a zero-offset diffraction response in a 

homogenous isotropic media. Consider the function 

f(a, z,t) = v°t? — 4 [(a — 24)? + (z — za)”)| =0, (1) 

which is the surface of a cone for any given diffractor position. Here v is the medium 
velocity, (xa, Za) is the diffractor position and (zx, z) is the source (also receiver) posi- 
tion. For a fixed z, for example z = 0 representing the earth’s surface, f is a hyperbola 
(the diffraction curve) in the time-midpoint (t—x) domain. (For zero offset, midpoint, 
source point, and receiver point are the same). For a fixed time t, and midpoint x 

(let us assume again that z = 0), f is a circle with center at (x, z) = (x, 0) and radius 
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r = vt/2. This circle is the aplanatic curve associated with midpoint (x, z) and trav- 
eltime t, the locus of all possible reflection points given the reflection time. Note that 
the diffractor point (rg, zg) is a point of the aplanatic curve. The inverse problem 
consists of finding the diffractor point (zg, 2a) given the traveltime ¢, velocity v, and 
slope p = dt/dx at a given midpoint (z,z). To find the two unknowns Xq and 24, 
we need one more equation. Given that we can measure p = dt/dz, it seems natural 
to take the implicit derivative of f in equation (1) with respect to x. This gives the 
second equation, 

(Xa, 24) = v*tp — 4(x — xg) = 0. (2) 
To see the explicit dependence of g on zg we recognize that zy = (vt /2) cos 6, where 0 
is the angle that the raypath from the source to the diffractor makes with the vertical. 
By recognizing also that p = 2sin6/v, we find 

9(2a, 24) = ztanO — (x — rq) = 0, (3) 

the equation of a straight line from source to diffractor, with angle @ respect to the 
vertical, i.e., the raypath from the source to the scatterer. This simple interpretation 
will not hold for the case of nonzero-offset geometry, as we will show later. 

Figure 3 shows the full geometrical interpretation of this problem. Equation (1) 
serves the double purpose of creating the diffraction response and the aplanatic curve 
by fixing the appropriate parameters as explained above. After constructing the 
diffraction response, we select a midpoint (x,0) and traveltime t. Given that time, 
we construct the aplanatic curve and then trace a ray with ray-parameter p from the 
source to the aplanatic curve. The point (zq, 2a) where the ray intersects the curve 
is the solution of the inverse problem — the diffractor position given the traveltime 
curve. The algebraic problem is as simple as the solution of a quadratic equation (1) 
and a linear equation (3), with unknowns zg and zy. 

Nonzero-offset homogeneous migration.—We start with the double square- 
root equation 

  

f(z,z,t) = (2 —h = 24)? + (z — 24)? + f(a th — 24)? + (2 — 24)? — vt =0. (4) 

The parameters are the same as before, with the addition of the new parameter h, 
half the distance between source and receiver. Equation (4) is a conical surface with 
elliptical cross section. As before, the diffraction response is generated by fixing 
z= 0. The function f describes a hyperbola only for h = 0 (previous case). As h/zq 
increases, the curve flattens near its apex (Cheops’s Pyramid; Claerbout 1982). For 
a fixed time t, fixed midpoint x, and z = 0, f represents an ellipse — the aplanatic 
curve associated with the midpoint (z, z) = (2,0) and time t. Again we seek (zq, 2a), 
given time and slope on the diffraction curve. Following the ideas above, we take the 
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Fic. 3. Zero-offset migration for a homogenous, isotropic medium. (a) A hyperbola 
is generated from the function f, fixing the diffractor point (xq, zq) = (0m, —500 m) 
and velocity v = 2000 m/s. A midpoint z, = 1500 m is selected and the traveltime 
t and slope p of a point along the diffraction curve are computed. (b) Given z,, and 
t the circular aplanatic curve is computed from the same function f. A ray with ray- 
parameter p and source location (Zm,0), intersects the aplanatic curve at the point 
(za, 2a). This is the solution of the inverse problem. 
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implicit derivative of f with respect to midpoint x, and replace dt/dzx by p, yielding 

(2a, 24) = (x —h— 24) + (2 +h — 2) —_ _p=0. 

poy (z — zq)? + (c& —h — x4)? poy (z —za)?+(h-2xq +2)? 

(5) 
Since this equation is nonlinear, the implicit derivative of f no longer represents the 
equation of a ray. As we shall see, this equation corresponds to an ellipse. Figure 4 
shows the geometrical interpretation of this problem. Equation (4) serves the double 
purpose of creating the diffraction response and the aplanatic curve by fixing the 
appropriate parameters. The algebraic problem is simply the solution of the ellipse (4) 
and its implicit derivative (5) for the unknown position (rq, 24). 

An alternative way to solve this problem, which will be more convenient for the 
inhomogeneous case, is to reduce f to the explicit form of an ellipse equation (Claer- 
bout, 1982). The new equation for f is 

  

Z—2q)? z— 24)? 

H(zy,t) =1— aa - CBE one (6) 
where the distance z — zg is the diffractor depth below the surface : = 0, and rx —2q 
is the lateral migration distance by which a midpoint z is displaced from the position 
directly above the diffractor. For a data point in the midpoint-time domain, this is 
equivalent to the amount of time and lateral distance required to move a given point 
on the flank of a hyperbola to the apex of the hyperbola. Let us shift coordinates, 
letting x — zg — x and z — zg — z and solve directly for the new zx and z in the 
equation 

Mut) =1— cos Gaye ane =O (7) 

Here we identify x and z as the lateral and vertical distances from a given data point 
(in space) to the diffractor position . The new function f is not only simpler than 
equation (6) but is also written in terms of the needed parameters. Regarding t as 
a function of r, we take the implicit derivative of f with respect to x and find, after 
simplification, 

g = —t(t?v? — 4h?)?x + p(t?v? ~ 4h?)?2? + pttyt2?. (8) 

Note that p = dt/dz is the same in the shifted coordinate system since the new z is 
a constant shift of the old one. By letting a = vt/2 and b = \/v?t?/4 — h?, we can 
write equations (7) and (8) as 

xz 2 
fe l-a-p-? 

(rx— A)? 2? 

9 = 1-" Pp 7 Rpm 
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Fic. 4. Common-offset migration for a homogeneous isotropic medium. ) A diffrac- 
tion response is generated by using the function f and fixing the diffractor point 
(za, Za) = (Om, —500m) for a medium velocity v = 2000 m/s and half—offset h = 500 
m. A midpoint z,, = 1500 m is selected, and its corresponding traveltime t and slope 
p are computed. With z,, and t, the aplanatic ellipse (b) is computed using the same 
function f. The intersection of the curve g with the aplanatic curve is the solution 
to the inverse problem, the diffractor position (xq, 24). 
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where A = t/2p and B = bt/2a’p. f is an ellipse with center at (0,0) and semi-axes 
a (horizontal) and b (vertical), and g is an ellipse with center at (A,0) and semi-axes 
A (horizontal) and B (vertical). Note that a,b,A,B are functions of the parameters 
v,t,p,h, and (0,0) is a point of g. The solution to the inverse problem is the lower 
intersection of these two ellipses. Figure 5 describes the geometrical interpretation of 
this problem. The algebraic solution is found to be 
  

  

_ t 2 42,2 
* = Bhp (4h? — to? + /16h4 — 8h74?v? + 4h2p%* v4 + tut) 

1 
= 30hpee (—4h? + £2v?)?(4h? — 2h2p?o? — #20? + 16h! — Bh? + Aner! + ted), 

Conversion from depth to migrated time is easily achieved by using 

tm = 2z/v. (9) 

‘The nonzero-offset migration for a constant velocity gradient in depth.— 
Slotnick (1986) shows that for an isotropic medium with a constant velocity gradient 
in depth, the raypaths are arcs of circles, and the traveltime is given by 

T= 1 cosh! a+ +2 
k 222 

Here, k is the velocity gradient, v(z) = v9 + kz, 2 = v(z)/k, and z = w/k. 2 is 
the horizontal distance from the diffractor to the source, and z is the depth of the 
diffractor. The total traveltime in a common-offset section is computed as t = 7, +7,, 
where 7, is the time from the source to the scatterer, and 7, is the time from the 
receiver to the scatterer. That is, 

—ph\2 4 92 4 92 24 524 52 
tai cosh7! (@~hy +2 +2 ny te +% + cosh! (eth) +2°+ 29 pet . 

k 22% 2229 

Here, h is the half-offset between source and receiver, and x is now the horizontal 
position of the midpoint. We obtain reflection times in a common-offset gather by 
fixing h in this equation; in the same way, we obtain reflection times in a common- 
midpoint gather by fixing x, and we obtain an aplanatic curve by fixing t. That is, 
for fixed t, the desired diffractor location (zx, z) relative to the midpoint must be a 
point of the aplanatic curve. The inverse problem consists of finding the coordinates 
(z,z) given the traveltime t, velocity v, and slope p = dt/dx at midpoint relative to 
the diffractor location. Dietrich and Cohen (1993) reduced the above equation to 

f(x,z,t) = (a? +y? + 2? +H? + h?)? — 42h? coth?(kt/2) — 422%? cosh? (kt /2) 

= 0. (10) 

Proceeding the same as before, we obtain a second equation by taking the implicit 
derivative of f with respect to midpoint x. This gives 

g(x, z) = 8h? xcoth? (kt/2) + 4h?kx? coth (kt/2) csch? (kt/2) p — 

4k 2? 49? cosh (kt/2) sinh (kt/2) p = 0. (11) 

196



Jaramillo and Larner Prestack Migration Error 

    
    
  

3h 

Yee) 

@ 2.5 
© 
= = 2} 

1.5} é 

i (x4, ,0 
. | m ) . 
4 1500 2000 2500 3000 

midpoint (m) 

(1500-1000  -500 500 1000 140 

oa, : 

E 
—— e 
£ a 

a. ® 
a) 

  

  
Fic. 5. Alernative method for common-offset migration for a homogeneous isotropic 
medium. Given the input parameters v,t,p,h we construct two ellipses. One, 
f, is associated with the aplanatic curve and the other, g, with is the implicit 
derivative respect to x. The intersection of the two is the solution to the inverse 
problem, the relative distance from the midpoint to the scatterer. The solution 
(2,2) = (1500m, —500m) agrees with the location of the scatterer in the specified 
model. 
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where, again, p = dt/dz. Figure 6 shows the traveltime curve as well as the curves 
corresponding to equations (10) and (11). The solution — x = 1500 m, z = —500 m 
— is consistent with the scatterer location in the given model. 

We solve equation (10) for 2? and insert this into equation (11). The result is the 
fourth-degree polynomial equation in r 

ax‘ + bx + cx? + dx +e =0, (12) 

The coefficients and solution of this equation are presented in Appendix A. 

The explicit solution for z in terms of the appropriate solution z and the original 
parameters v9,t,p,h,k is given by 

  

  

ae hex + 23 + vg /k? — 2hx coth?(kt/2) + h2kpzx? coth(kt/2)csch?(kt/2) 
~ x — pvp cosh(kt/2) sinh(kt/2)/k 

—U9 / k. 

For this constant-gradient model, the conversion from depth to time is then given 
by 

2 v(D) 
tm = 7108 (“2)). (13) 

The homogeneous case can be seen as a limiting case of the inhomogeneous one, 
obtained by taking k > 0. However, it is easier to solve the homogeneous problem 
as above than to take the mathematical limit of the inhomogeneous case. 

COMPUTATION OF ERROR AND ANALYSIS OF RESULTS 

In seismic data processing and interpretation we do not consider the positions 
of isolated points, but rather of reflections that are collection of points; that is, we 
interpret on a macro-scale. Larner and Cohen (1993) devised a way to estimate errors 
due to mis-positioning of reflections. We will use the same technique described there, 
but for a different reason. The error estimate is the difference between the times 
of the true and the incorrect migrated reflections at a given output position [i.e., at 
a given common-midpoint gather (CMP) location]. This time difference will vary 
with offset, and we use the variation of the time difference across all live offsets as 
our measure of expected stack quality. Specifically, if the range of time differences is 
smaller than half a period (here measured at a reference frequency of 30 Hz) we might 
say that the stacking quality is good. Thus, we focus our attention on the range in 
error over offset. In essence, we use the zero-offset error studied by Larner and Cohen 
(1993) and by Alkhalifah and Larner (1994) as the reference time error, and consider 
offset-dependent departures from this value, for all dips. 

For the tests, we use offsets of 1000 m, 2000 m, 3000 m and 4000 m, 4000 m being 
a typical length of streamer today. Also, we simulate muting of wide-angle data by 
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Fic. 6. Common-offset migration for an isotropic medium with constant velocity 
gradient in depth. Given the input parameters v,t,p,h,k, we construct two curves. 
One, f, is associated with the aplanatic curve and the other, g, with is the implicit 
derivative respect to x. The intersection of the two is the solution to the inverse 
problem, the relative distance from the midpoint to the scatterer. The solution 
(z, 2) = (1500m, —500m) agrees with the location of the scatterer in the specified 
model. 
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Fic. 7. Time error for four different offsets, for an isotropic medium (i.e., Thomsen 
parameters € = 0.0 6 = 0.0). The offsets are 1000—black solid, 2000 m—black dash 
3000 m— gray solid, and 4000 m—gray dash. The migration velocity coincides with 

the true vertical velocity for this isotropic case, so the migration is accurate for all 
ofisets. 

ignoring portions of traces for which X > d, where X is offset, and d is the distance 
between the midpoint and the diffractor. 

As mentioned above, the velocity that we use for migration is based on the stacking 
velocity for horizontal reflectors. For reference, we first consider a test in which 
the data are for an isotropic medium and are thus migrated with the appropriate 
algorithm. The expected result should be zero position error for any dip, and any 
offset. Given that the ray tracing and migration algorithms are independent programs, 
we can trust their functionality if the resulting error is zero. Figure 7 shows the (zero) 
error computed in this case. 

In our tests with models of TI media, we characterize the media in terms of the 
Thomsen parameters € and 6. As mentioned above, Tsvankin (1995) observed that, 
when anisotropy is ignored for VTI media, DMO error depends primarily on one 
particular combination of Thomsen parameters, the difference « — 6. Subsequently, 
Alkhalifah and Tsvankin (1995) showed that all time-related P-wave processing in 
homogeneous VTI media are fully described by the combination of Thomsen param- 
eters given by 7 = (e—6)/(1+4 26), plus the stacking velocity for horizontal reflectors. 
Patterned on their results, we therefore group our test results, in which 6 and € vary, 
by constant value of 7. 

Figure 8 shows results for four sets of (€, 6), all with 7 = 0.2. (Media for which 
n = 0 are elliptically anisotropic. Therefore, the magnitude of 7 is a measure of 
the departure of a medium from elliptical anisotropy.) The difference error is the 
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