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ABSTRACT 

Bayesian inversion (Tarantola, 1987) provides a concise mathematical frame- 

work that formally allows the incorporation of a priori information into geo- 

physical data inversion. In this methodology, the general solution of an inverse 

problem can be regarded as a probability density o(m) over the space of models, 

that consists of the product of two probability density functions. One, known as 

the likelihood function L(m), measures the extent that the observed data are fit 
by model data. The other, p(m) quantifies the a priori knowledge that is possibly 
available about the inverse problem. This information, derived for instance from 

regional geology considerations, well-log data and other types of geophysical data, 

can be incorporated into the inversion problem, via model covariance matrices of 

p(m). The construction of these matrices from such sources of information is a 
complicated problem, and in the large majority of cases, ad hoc simplifying as- 

sumptions are made. As a consequence the significance of the model covariance 

matrices is lost. 

In this work I study the effect of model covariance matrices in a linear, iterative 

amplitude-inversion algorithm. I illustrate in a simple example some advantages 

of building covariance matrices from statistical considerations about the under- 

lying model, as opposed to using the Tikhonov regularization method (Tikhonov 
and Arsenin, 1977) . This method builds covariance matrices generally under the 
assumption of model smoothness, providing little flexibility to incorporate more 

realistic information about the inverse problem. 

The linear, iterative amplitude-inversion algorithm is proposed in Jin et al. (1992). 

In their work the inversion problem is formulated under the small scatterer, or 

Born, approximation. The resulting linear system of equations is solved by a min- 

imization of a weighted least-squares norm, with weights derived from ray theory. 

The solution, i.e., perturbations to a given background velocity model, is obtained 

by a quasi-Newton optimization method, possibly an expensive approach since it 

makes use of an approximation to the second derivatives of the objective function. 

However, Jin et al. (1992) showed that the Hessian matrix can be approximated 
by a diagonal matrix with good results. 
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INTRODUCTION 

Seismic amplitude or travel time inversion methods are a major topic of geo- 

physical research due to their potential capability of extracting detailed lithologic 

information about the subsurface. Several inversion methodologies are described in 

the technical literature. Although the procedures differ, it is acknowledged in all of 

them that the data alone do not constrain all the model features that one aims to 

estimate. To reduce the ambiguity of the inverse problem it is necessary to incor- 

porate a priori information about the underlying model. The Bayesian approach for 

geophysical data inversion (Tarantola, 1987) paves the way for the incorporation of 

such knowledge. In this methodology, the general solution of an inverse problem is 

defined as a probability density o(m) over the space of models, that consists of the 
product of two probability density functions. One, known as the likelihood function 

L(m), measures the extent that the observed data are fit by model data. This func- 
tion accounts for uncertainties in the data, i.e., data features that were not taken 

into account in the forward modeling step. Examples are noise in the data, multiples 
in the situation where the forward modeling procedure just generates primaries, and 

so on. The other probability density function, p(m), quantifies the a priori knowl- 
edge that is possibly available about the inverse problem. In this work I will assume 

that p(m) and L(m) are Gaussian probability distributions, defined by the following 
expressions 

p(m) = ((27)™ det Cu) 2exp [-5(m —mo)’ Cy7'(m— mo)| , 

L(m) = ((27)*% det Cp) ?exp [-5 (oC) — dos)? Co ~*(g(m) — dovs)| . (1) 

Here, M is the number of model parameters; N is the number of observations; Cy 

and C'p are the model and data covariance matrices, respectively; dops is the observed 

data vector; g(m) represents the modeled (synthetic) data for the model m, and mo 
is the mean or most likely model. 

In this situation the probability density o(m), also known as a posteriori proba- 

bility density function is also Gaussian and given by 

o(m) « exp [—5(o(m) — dobs)” Cp '(9(m) — dobs) + (m — mo)? Cy (m — mo)| 
(2) 

The covariance matrix C'y of the probability density function p(m) is a possible 
connection between the a priori information and the inverse problem. This informa- 
tion can be derived from regional geological considerations, well-logs, interpretative 
work and so on. To build covariance matrices from those sources is not trivial and 

is seldom attempted, at least in the published inversion literature. A specific case 

where model covariance matrices, and higher order statistical moments are derived 

from well-logs is described in Scales and Tarantola (1994). In view of this difficulty,



Gouveia Model covariances 

ad hoc techniques are commonly used to build the model covariance matrices. Con- 

sequently, the significance of these matrices (and also of p(m)) is lost. 

The objective of this work is to illustrate with a simple example how a specific 

seismic amplitude inversion algorithm can benefit from a model covariance matrix 
built using statistical considerations about the model one seeks, derived from some 
source of information (for instance, well logs). I compare the result obtained with 
this approach with the one obtained when I used the Tikhonov regularization method 

(Tikhonov and Arsenin, 1977) to construct the model covariance matrix, based on 
model smoothness assumptions. As will be shown later, both results are equivalent 

for the case considered here. However, two advantages can be pointed out in favor 

of the statistical construction of the model covariance matrices. First, the absence of 

a weighting factor, required by the Tikhonov approach, to incorporate the a priori 

information into the inverse problem. Second, the assessment of the uncertainties of 

the inversion procedure is probably more accurate when the model covariances are 

constructed honoring, at least to some extent, the statistics of the model parameters. 

The amplitude seismic-inversion algorithm discussed here is based on the work 

of Jin et al. (1992). They linearize the isotropic elastic inversion problem with the 

Born approximation (Cohen and Bleistein, 1979) yielding a system of equations that 

is weighted according to ray-theoretic considerations and solved by a quasi-Newton 

method. They derived a diagonal approximation to the second-derivative matrix, 

which is a direct consequence of the weighting applied to the system. 

This paper is structured as follows. I begin with a brief exposition of the inversion 

algorithm proposed by Jin et al. (1992). Here I restrict this outline to the acoustic 

approximation. Following that, I review the theoretical aspects of the regularization 

theory and present an example to illustrate its utility in the situation of inversion of 

noisy data. I also point out the connection between this theory and the more general 

Bayesian approach. Next I carry out the comparison, for a given inverse problem, be- 

tween the results of the asymptotic linear iterative inversion when model covariances 

derived from the model statistics are used as opposed to Tikhonov regularization 

matrices. Finally, I present conclusions and future research directions for this work. 

ITERATIVE ASYMPTOTIC AMPLITUDE INVERSION 

Jin et al. (1992) proposed a linearized asymptotic inversion method where the 
seismic inversion is formulated as the optimization of a data misfit objective function 

for elastic parameter estimation. Essentially the method consists of solving an over- 

determined system of equations obtained from the linearization of the integral solution 

of the wave equation via the Born approximation. In their work Jin et al. (1992) solved 
this system using a weighted least-squares criterion. This weighting is derived from 
ray theory considerations. Following is a brief description of the algorithm for the 

acoustic inverse problem.
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Linearization 

As in many inversion procedures the velocity c(r) of the medium is characterized 

by a long-wavelength velocity profile co(r) plus small deviations 6(r) (scatterers) from 
this background velocity, where r is the position vector. The ultimate objective of the 

type of inversion algorithm discussed here is to estimate such deviations, given the 

background velocity. This approach, derived from perturbation theory, is relatively 

common in the inversion literature (e.g. Beylkin, 1985, Cohen and Bleistein, 1979, 

and others). 

Leaving the algebraic details to the references (Bleistein et al., 1994), it is possible 
to show that the recorded (scattered) wave field u,(rg,1s,t) and the source (incident) 
wave field u;(rg,rs,t) satisfy the following integral relationship, here expressed in the 

frequency domain !: 

Us(Tg,Ts,W) = [dr gle, rg,)m(x) (wil, P50) +u,(r,T5,w))w, (3) 

where D is the domain of integration over the diffraction points; m(r) = ae), the 
unknown perturbation scaled by the background velocity, is the parameter sought in 

the inversion, and g(r1,r2,w) is the Green’s function for an impulsive source at r2 

recorded at rj, computed in the present work from ray theory. For a 2D medium this 

Green’s function is given by 

1 
g(v1,%2,w) = A(ry, ree" T2) Wan (4) 

Here, 7(r1,r2) and A(ri,r2) are the ray theoretical traveltime and amplitude that 
satisfy the eikonal and transport equations, respectively. Equation (3) is nonlinear 

with respect to m(r) because it contains a product of this unknown quantity and 

the scattered (observed) field u,(rg,rs,w). The Born approximation, which basically 
neglects the scattered wave field in comparison with the incident wavefield under the 

“small scatterer” assumption, is used in the linearization of Equation (3). Noticing 

that u;(r,rs,w) = g(r,rs,w), this linearization results in the following equation: 

Us(Pg,Ts,W) = fdr ale 24, w)m(e) ole, Tg, W)w?, (5) 

or, in matrix form: 

Gm = ug. (6) 

Here, G is the Born operator matrix; m is the unknown normalized scattering vector, 

and ug is the recorded field. 

In the inversion algorithm, the linear system of equations (6) is solved for the 
model m by a quasi-Newton technique described next. 
  

1Throughout this paper rg and rg will represent spatial coordinates of receiver and source re- 
spectively, ¢ the traveltime and w the temporal frequency. 

5
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Solution of the linear system 

The linear system of equations (6) is usually over-determined, since the number 
of observations (data points) is larger than the number of unknowns. Therefore it 
is necessary to define what it is meant by the solution of the system. In their work 

Jin et al. (1992) used the following weighted least-squares criterion for this definition: 

min $(m,r9) = min 5 / dé / dip / dw (us ~ Gm)" Q(us — Gm). (7) 

Where fro is the output point, i.e., the coordinate of the scatter point to be estimated; 

Q is a diagonal matrix that implements the weighting and will be described later. In 

matrix form Equation (7) can be written as: 

min $(m,ro) = min (us — Gm)"Q(us — Gm). (8) 

Notice that the sum in Equation (7) is carried out over the angles 7 and € defined in 
Figure 1. Ideally, for the best resolution, it would be desirable to sample the scattering 

point from all angles, which is not the case for seismic experiments. Moreover, instead 

of summing over the angles ~ and €, a more suitable coordinate system is defined by 

the source and receiver locations. Considering this coordinate system, Equation (7) 
can be rewritten as: 

min $(m,19) = min 5 / dr, / drg / du (ug — Gm)" Q(us — Gn) J(rg, 7s, €,%). (9) 

Here, J(rg,rs,€,#) is the Jacobian of the transformation, that should account for 

the discretization of the data acquisition. One of the most interesting aspects of the 

work of Jin et al. (1992) is the weighting diagonal matrix Q. The iz” element of the 
Q matrix relates to a given source-receiver pair and is defined as follows: 

l[p(rg, Fo, ts) I? Q = 10 
(rg,¥s,”,¥o) An A?(rg,T0,Ts)’ ( ) 

where (see Figure 1) |[p(rg,ro,rs)||? is the square modulus of the total slowness 
vector at the scattering point, defined as p(rg,ro,rs) = V7(ro,ts) + Vr(rg,ro) = 
Ps(To, fs) +Pg(rg, ro), and A(rg,ro, rs) isan amplitude factor defined as A(rg,ro,ts) = 
A(to,Ts)A(rg,Fo)- 

The justification for the weighting matrix Q comes from ray-theory. This ma- 
trix compensates for geometrical spreading losses and tends to eliminate wide angle 
reflections from the inversion (small values of ||p||). Gray (1994) also avoided wide 
angle reflections in his migration procedure, under the justification that those events 

might be spatially aliased. Notice that the Q matrix depends on the coordinate rg. 

A drawback of this formulation of Q is the presence of the temporal frequency w 

in the denominator, weighting down the higher-frequency information. However, as 
will be shown later, the main benefit of using such weighting is accomplished by a
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    (r, ’ Xo) Pola Bre» Xp» Fg) 
Fic. 1. Geometry for one scattering point. 

diagonal approximation of the Hessian matrix (2"¢ derivative matrix of the objective 

function with respect to the model parameters) allowing an efficient implementation 

of a quasi-Newton algorithm for minimizing the objective function defined in Equa- 

tion (9). 

The minimizer of the objective function defined in Equation (9) satisfies the fa- 
miliar normal system of equations 

G¥QGm = G" Qus. (11) 

Where G¥? is the Hermitian adjoint of G. It is well known that direct or iterative 

techniques are available for solving linear system of equations. Jin et al. (1992) opted 

for a quasi-Newton iteration method given by 

Mny1 = My, — H,~!y(my). (12) 

Here, mn41 is the updated model; my is the current model; H,~! is an approximation 

for the inverse of the Hessian matrix evaluated at model my, and y(my) is the 
gradient of the objective function evaluated at model my. Each iteration performed in 

Equation (12) has a computational cost equivalent to a pre-stack migration algorithm. 

The analytic computation of the derivatives of the objective function in Equa- 

tion (9) is facilitated by the fact that WKBJ Green’s functions and the Born approx- 

imation have been used. Therefore it is not complicated to show that the gradient of 

the objective function with respect to the model parameters is given by 

_A(tg,1,¥s)_ Ts) 2 _ 
Y(t, To) = a fats f dre 4 A2(rg,T0,¥s) a3 TF IIP Il I(rg,ts,€, p)H[dug(rg,rs,t = 7(rg,T,Ts)]- 

(13) 
H[dug(tg,rs,t = T(rg,F,¥s)] is the Hilbert transform of the data residual evaluated 
at the total travel time r(rg,r,rs) = T(r,Ts) + 7(rg,r). 

7
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Along the same lines it is possible to show that the 77%" element of the Hessian 

matrix H = G4QG is given by 

1 A(r rj,t ) —iw[r(rg vs .¥s)—T(rg rs,rs)] 
Hiri] = <5 [4 fa fa 2 ps’ J ; 1g, grpts Brprsy [ri, 75] Ae | ats | We w w|| p|| Dir. ar.) (rg. iste) (rg, 0s é wye ae 

14 

The above equation can be considerably simplified with a sequence of approxima- 

tions. First notice that in the process of the quasi-Newton iterations the 7“* row 

of the Hessian matrix will be dotted with the gradient vector to yield the updated 

model parameter at the coordinate r;. Therefore r; is the output point rg men- 

tioned previously. So, by using the same methodology as in Bleistein et al. (1994) 

and Beylkin (1985) the traveltime 7(rg,r,rg) and amplitude A(r,,r, rg) are expanded 
about the output point r;. This procedures results in the following expression, after 

keeping terms to first order for the travel time and just the zero-th order term for the 
amplitudes: 

1 ~iwp(rs—r: 
A, [ri, r5] = za | ats [arg [dw wp? (rg, 26, €,v)e POS) (15) 

Furthermore assuming that J + 1, and going to the [~,w] domain we get: 

H,[ti.73] = a | dr, / dip / du w|{p||2e"P i (16) 

Introducing the variable K = wp we obtain: 

1 ~iK(r:—r: Halts ti] = Z5 / dr, / dip / d||K|| Klee 5-72, (17) 

Notice that the integrals over the [K, 7] domain represent the integration in cylindrical 

coordinates of a constant. If ||K|| ranged from 0 to +00, and w from 0 to 27, this 
integral would result in a delta function. This is obviously not the case; nonetheless 

Jin et al. (1992) make this assumption, and the final expression for the approximation 

of the Hessian is given by: 

  H,[r;, rj] = si Tj — Tj) [as (18) 

Here, Arg is the receiver spacing. Equation (18) is the final approximation to the 

Hessian that will be used in the quasi-Newton iterations described in Equation (12). 
Notice that it is invariant from iteration to iteration. Although this approximation 

worked fine with the examples shown in this work and also in Jin et al. (1992) it 
remains to be seen how it behaves for the situation of more complex data sets. 

An Example 

Consider the simple velocity model in Figure 2, which consists of just one hori- 
zontal interface. I generated the five shot gathers for this model shown in Figure 3. 

8
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Trace # 
5 10 15 20 25 

0.90 i i j 1 1 

= 1.00+-| 

1.10     
  

Fic. 4. Result of the inversion for the data in Figure 3. 

EFFECTS OF REGULARIZATION ON AMPLITUDE INVERSION 

Motivation 

Consider the data set shown in Figure 5. It is the same data set illustrated in 

Figure 3, but with the addition of band-limited random noise such that the signal-to- 

noise ratio is now 2. Repeating the inversion procedure for this data set, I obtained 

the result illustrated in Figure 6, which is a considerably degraded version of the 

noise-free inversion result. The magnitude of the spikes contain errors larger than 

50%. 
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Fic. 5. Data of Figure 3 with band-limited noise. The signal to noise ratio is 2. 

If just one shot gather of Figure 5 is used in the inversion, the final image, illus- 

trated in Figure 7, is even a worse one. This is an expected result since the noise is 

attenuated when five shot gathers are used due to the larger data redundancy. 

I applied Tikhonov regularization in the inversion algorithm discussed here, aiming 
at reducing its sensitivity with respect to perturbations (noise) in the data. I show 
the results later in this section, but first I briefly discuss this procedure and illustrate, 

with examples, the behavior of the regularized inversion algorithm for noisy data. 

10
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0.90 

= 1.004--B]-- a 

1.10 

  

  

      

Fic. 6. Result of the inversion for the data in Figure 5. 

25 

    

  

Fic. 7. Result of the inversion for only the first gather in Figure 5. 

Basics of regularization 

Consider the linear system 

Ax = b, (19) 

———-——— -where-A-is-an-operator—of the forward problem that—computes the data b-for~a- 

given model x. The solution for x in Equation (19) is said to be ill-conditioned if 
it is non-unique and/or if a small perturbation on the data b corresponds to a large 

perturbation in the model x. The fundamental idea of Tikhonov’s regularization 

method (Tikhonov and Arsenin, 1977) is to replace the operator A by a family of 
approximate operators, functions of the so-called regularization parameter a, such 

that the solution +,* for each one of those parameters is well-conditioned, but, in 

some sense tends to x as a@ goes to zero. The approximated solution x,* can be 

defined as the minimizer of the quadratic functional: 

|| Ax — bl]? + || Rx||?. (20) 

in the domain of R. The matrix R defines the correlation between different elements 

of model space according to some criterion, usually related to model smoothness, As 

it will be shown latter, the regularization matrix R and the model covariance of the 
probability density function p(m) are closely related. 

Similarly it is possible to introduce x*, as the solution to the regularized normal 

equations 

(A7A + a@R™R)x = Ab. (21) 

Note that R’R is positive semidefinite, so a direct consequence of Tikhonov’s method 
is to shift the spectrum of singular values of A’ A in the positive direction. Generally 

11
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this implies that the solution of the regularized normal system of equations should be 

less susceptible to perturbations in the data vector b (Karlsruhe and Lyngby, 1993). 

However, that is not always the case. As shown in Scales et al. (1990), a singular 

value decomposition of the matrix A is needed to understand what is actually being 

accomplished with regularization. 

The regularization parameter a controls the influence of the penalty term on the 

optimization problem described in Equation (20). If it is chosen too small, Equa- 
tion (20) is close to the original ill-posed problem, and the regularization would be of 

no or little effect. It a is too large, the problem solved would have little connection 

with the original Equation (19). Choosing the “optimum” value of a is a complicated 
matter in practice. Algorithms do exist with this intent (e.g., Hansen, 1992), and one 
of them is described later in this paper. A drawback is that the computational cost of 

those procedures is sometimes too high to make this method reasonable in problems 

such as amplitude seismic inversion. 

Regularization of Amplitude Inversion 

In the specific problem of seismic inversion, a possible approach would be to use 

R to add a priori knowledge about the model one seeks. For example, if lateral 

velocity variations are negligible, R can be constructed such that the scatterers in the 
horizontal direction are correlated with (or imposed to be similar to) each other. In 
this case just for illustrative purposes, assume that we have five scatterers per layer. 

The matrix R that correlates those scatterers is: 
ro 

1-1 0 0 0 
1 0-1 0 0 
1 0 0-1 O 
1 0 0 0-1 
0 1-1 0 0 

R=}o 1 0-1 0 (22) 
0 1 0 0-1 
0 0 1-1 0 
0 0 1 0-1 

(0 0 O 1-1]     
Other regularization schemes are available. It is also possible to regularize the 

inverse problem by attenuating the roughness of the final solution. This is accom- 

plished by imposing small variations on the first or second derivatives of the model 
parameters. Schematically those two regularization procedures are represented for the 

situation of five scatterers by the matrix R in Equation (23) and (24), respectively. 

1-1 0 0 O 
0 1-1 0 0 

R=|0 0 1-1 Of, (23) 
0 0 0 1-1 
0 0 0 0 1 

12
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To incorporate Tikhonov’s regularization (for example the one described in Equa- 

tion (22)) in the iterative asymptotic inversion presented in the last section, the 
following steps have to be undertaken. The regularization term should be added to 

the objective function in Equation (9). This results in the following expression: 

min S(m,ro) = min 5 | ats f arg f dw (us — Gm)" Q(us — Gm) J(rg, rs, €,P) 

+a 22 Maisni)(m (rj) — m(xj))?. (25) 

Here, a is the regularization parameter. The matrix R is constructed with the param- 

eter \(rj,1j), which has the value of 1 if the scatterers rj and rj are to be correlated, 

or 0 otherwise. m(r) is the magnitude of the scatterer at rj. As in Equation (8) the 
corresponding matrix form of Equation (25) is: 

min S(m,ro) = min (us — Gm)’ Q(u, — Gm) + a m’ RR m, (26) 

where R is the regularization operator that couples the model parameters according 

to A(T, rj). 

The differentiation of the regularization term with respect to the model parameters 
is incorporated in the gradient (13), yielding the following expression: 

(rg,0,0s 
y(r, Yo) = ae eee A2( wigs BEL lp PA? T (rg, Fs, € v)H[dus (rg, Ts, t = T(rg,T,Ts)] 

rg,To,Ts) 

+a VDA (rj, rj) (m(ri) — m(x;)). (27) 

The approximation used in Equation (18) is used in the regularized version of the 

algorithm. 

Finally the search direction in the Newton’s iterations (Equation (12)) should take 
into account the regularization operator R, resulting in the following update scheme: 

Myy1 = My — [H, + RT RY'y(my). (28) 

In the next section I assess the performance of the regularized asymptotic inversion 
with the data set of Figure 5. 

13
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Choosing the Regularization Parameter 

Equation (20) defines an objective functional formed by two terms. The first one 
relates to the data misfit while the second incorporates the regularization scheme. An 

“optimum” regularization parameter a would provide an ideal balance between those 

two components, minimizing the regularization error and the perturbation error in 

the solution x,*. Several algorithms are available in the literature (Karlsruhe and 
Lyngby, 1993) for this purpose. Those methods are usually subdivided into two 

main categories, according to the assumption as to whether the magnitude of the 

perturbation on the data vector is known or not. 

In this section I present the algorithm described in Scales et al. (1990) and used 
in this work. This procedure relies on the definition of a data misfit threshold as a 

stopping criterion for the iterative inversion. Here, this stopping criterion is satisfied 

when the root-mean-square (RMS) of the residual is less than the RMS amplitude of 
the noise for a given time window. In this case convergence is assumed. 

To find an “optimum” a, the method proceeds as follows. The inverse problem is 

solved for several values of the regularization parameter. The data misfit for each one 

of the solutions x,” is plotted as a function of a, as shown schematically in Figure 8. 

A Data misfit 

* * 

* * 

* * 
threshold   

sss
ene

see
 de

 

  > 
oO g 3 z   

Fic. 8. Data misfit as a function of the regularization parameter a. 

The “optimum” value of a, a°! in Figure 8, is postulated as the largest regu- 

larization parameter for which the pre-specified data fit is achieved. Therefore the 

solution x°Pt * would have the desired data fitness and also be the most consistent 
with the a priori information used to build the operator R in Equation (20). 

This can be expensive procedure to carry on in practice, since the full inverse 

problem is solved several times for different regularization parameters. Nonethe- 
less, this procedure has been successfully applied in some situations as described in 

Scales et al. (1990) and Pratt et al. (1993). 

14
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An Example 

Carrying out the inversion procedure for the data set shown in Figure 5 under the 

assumption that the medium is laterally homogeneous, the regularization described 

in Equation (22), leads to the result shown in Figure 9. This should be compared 
with Figures 4 and 6. The regularization was effective in reducing the sensitivity of 

the inversion procedure to the noise in the data, yielding scatterers shown in Figure 9 
with the correct magnitude. 

Figure 10 shows the convergence of a particular scattering point as a function 

of the number of iterations for the noise-free inversion and the regularized inversion. 

The smaller number of iterations needed to obtain convergence in the latter case is an 
indication that the condition number of the problem was reduced in comparison with 

the non-regularized approach. Note that convergence to 0% error in the presence of 

noise is not possible since the amplitudes of the data are corrupted. 

  

      

Trace # 
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Fic. 9. Result of the inversion for in Figure 5 using regularization. 
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Fic. 10. Convergence plots for the noise-free and regularized inversions. 

Using the first- and second-order derivative schemes described in Equations (23) 

and (24) to invert the data set of Figure 5, I obtained the results shown in Figures 11 
and 12, respectively. The first-order derivative scheme provided comparable results 
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to the one shown in Figure 9. Such is not the case for the second-order derivative 

regularization. This scheme yields a smooth result, as illustrated in Figure 13. How- 

ever, due to the limited lateral extent of the velocity model, and the fact that the 

smoothing operator R in Equation (24) does not allow rapid changes in the model 

parameters, this procedure does not produce satisfactory results. 

Figure 14 shows a plot of the regularization parameter as a function of data misfit 

for the three regularization schemes. Notice that since the model is indeed laterally 

homogeneous, once the data misfit of the optimum solution is below the threshold, 

it becomes independent of the regularization parameter. According to this curve, a 

value for a of 5 for the regularization scheme described in Equation (22) and of 25 
for the first-order derivative scheme were chosen. In the case of the second-order 

derivative regularization the value was arbitrary, since the curve never drops below 

the data misfit threshold. 

10 15 20 25 
  0.90 

€0.954-4-( 4 Cbd 

<= 
& 1.00+-- 

1.10          

Fic. 11. Result with first-order derivative regularization. 

  

  

              

Fic. 12. Result with second-order derivative regularization. 

RELATING BAYESIAN INVERSION AND REGULARIZATION 

In the inversion procedure proposed by Jin et al. (1992) the solution of the inver- 

sion problem was defined as the minimizer of the weighted least-squares norm defined 
by Equation (7), or by Equation (26) when regularization is used. The simple state- 
ment of these equations implies important assumptions about the statistical nature 

of the noise in the observed data and on the correlation between model parameters. 

The purpose of this section is to describe what those assumptions are. 
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Fic. 13. Velocity at 1.0 km depth obtained from second-order regularization. 
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Fic. 14. Regularization curves for the data of Figure 5. 
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As mentioned before, for Gaussian statistics the a posteriori probability density 

function o(m) is given by Equation (2), repeated here for convenience. 

o(m) « exp [-5(o(m) — debs)” C51(g(m) — dope) + (m — mo)" Cz!(m — mo) . 
(29) 

When approaching an inverse problem using the Bayesian framework, we intend 

to determine which models, if any, are associated with large values of o(m). In 
other words we are interested in finding the maximizers of Equation (29). Under the 
Gaussian hypothesis this corresponds to minimizing the following quantity: 

min $(m) = min (g(m) —dobs)” Cp '(g(m) — dobs) + (m— mo)? Cy (m—mo). (30) 

If mo is a null vector, Equations (30) and (26) are completely equivalent. The inverse 
of the weighting matrix Q7! plays the role of a data covariance matrix Cp, and the 

product [oRTR| - implements the model covariance matrix Cy. Therefore, the least- 

squares formulation of the inverse problem expressed in Equation (26) implies the 

assumption of uncorrelated Gaussian noise in the data and that the model parameters 

are also described by a Gaussian probability density function with zero mean. The 

model covariance matrix is defined by the regularization scheme. 

In the next section, I consider the situation where the model covariance matrix is 

built by assuming a given correlation length (Tarantola, 1987) between the scatterers 
that form the interface between two acoustic layers. The results will be compared 

with those obtained by the regularized inversion procedure. 

MODEL COVARIANCE ESTIMATION 

The random sequence illustrated in Figure 15 was generated by filtering a random 
white process with a filter of a given correlation length. Figure 16 illustrates the 

autocorrelation of this series and a possible exponential fit that will be used later in 

building the covariance matrix. A portion of this sequence was used to construct the 
lateral variation in velocity of the second layer as illustrated in the model shown in 
Figure 17. 

Five shot gathers generated for the velocity model of Figure 17, are illustrated in 
Figure 18. Notice the change in polarity of the reflection from the interface, caused 

by the lateral inhomogeneity of the second layer. 

As described in Tarantola (1987), a sequence such as that in Figure 15 can be 
approximately modeled as a Gaussian process with covariance function given by: 

Cli, j) = o% eS"), (31) 

where A is the correlation length of the sequence, and o its standard deviation. A 
plot of this covariance matrix for a small problem consisting of 27 scatterers is shown 
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Fic. 15. Sequence with a given correlation length. 

  

af 

i OO ] Exponential fit 
sesseeee: True correlation 

0.8 

0.7 F 

0.6 + 

Co
rr

el
at

io
n 

  

      

-300 -200 -100 0 100 200 30 

Scatterer number 

Fic. 16. Correlation and exponential fit for the sequence of Figure 15. 

1.0 x(km) 2.0 

  

Fic. 17. Laterally inhomogeneous velocity model. 
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Trace # 
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Fic. 18. Five shot gathers generated for the model of Figure 17. 

in Figure 19. Here, the correlation length is determined by fitting an exponential of 

the form e& to the autocorrelation of the scatterers (Figure 16). Although the fitting 
is not very accurate, it provides an initial estimation of the correlation matrix that is 

likely to be superior to the assumption that the model parameters are not correlated. 

Again, the objective of the inversion is to determine the scatterer distribution 

given the velocity of the first layer. In this example, I compare the results obtained 

for the inversion of the model shown in Figure 17 for the target depth of 1 km obtained 

for the following cases: 1) non-regularized inversion; 2) regularized inversion using 
the operator R described in Equations (22), (23), and (24), and 3) Bayesian inversion 
with the covariance matrix is given by Equation (31). 

Figure 20 shows the result obtained with the non-regularized inversion. The in- 
verse result is reasonably close to the true scatterer distribution, represented by the 
dashed curve in the Figure. The residual of this final solution is illustrated in Fig- 
ure 21. 

Figures 22, 23 and 24 show the results of the inversion using the three regulariza- 

tion schemes described in Equations (22), (23) and (24), respectively. As expected, a 
poor result was obtained with the regularization implemented by Equation (22) (Fig- 

ure 22), since the assumption of lateral homogeneity is a bad one for this situation. 
The other two approaches smoothed the final solution to a some degree, defined by 
the parameter a@ described earlier. I experimented several values for a, and the best 

results are illustrated by Figures 23 and 24, obtained with a = 1 in both cases. The 
first and second-derivative regularizations provided superior solutions than the one 

obtained with the non-regularized inversion. 

Finally, Figure 24 shows the inverse result when I used the model covariance 
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Fic. 19. Model covariance matrix as define in Equation (31). 

  

        
  

0.15 

0.1 

3 
gp 0.05; 

‘E 
a 

£  oF 

5 
3 -0.05 | 

Ys Result of non-regularized inversion 
"" | === =: True scatterer distribution 

0.15 ~ ! I l L J 

0 5 10 15 20 25 

Scatterer number 

Fig. 20. Result of the non-regularized inversion. 
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Fic. 21. Residual of the non-regularized inversion result. 
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Fic. 22. Result of the regularized inversion using Equation (22). 
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Fic. 23. Result of the regularized inversion using Equation (23). 
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Fic. 24. Result of the regularized inversion using Equation (24). 
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shown in Figure 19. This solution is comparable to the ones obtained by the first and 

second-order regularization schemes. An appealing advantage of this approach is the 

absence of the parameter a, since the covariance matrix is built based on statistical 

considerations. 

The fact that the results obtained with the derivative-based regularizations (Fig- 
ures 23 and 24) and with the model covariance defined by Equation (31) are equiv- 
alent, should not be surprising since the true scatterer distribution is smooth. Ex- 

amples dealing with more complex models are required to carry out a more thorough 

comparison between the two procedures. 
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Fic. 25. Result of the exponential model covariance inversion. 

Another important aspect of the Bayesian methodology is the possibility of com- 

puting the a posteriori model covariance, which provides insights on the resolution 

of the inverse problem solution. The a posteriori covariance Cy: (Tarantola, 1987) is 
given by: 

-1 
Cur =(G*QG+Cu"'] 

Notice that, since the a posteriori covariance includes the model covariance Cy, 

this analysis would be of little significance if this matrix is built without resorting to 

the statistics of the model parameters, as it is done in the Tikhonov regularization. 

(32) 

The a posteriori and a priori standard deviations (square-root of the main diag- 
onal of the a posteriori and a priori covariance matrices, respectively) are plotted 

in Figure 26. As expected, the a posteriori are smaller than the a priori standard 
deviations indicating that the inversion succeeded in reducing the uncertainties of 
the model parameters. Also, the deviations reduce towards the center of the model, 

which corresponds to a larger data redundancy available at this location. 

The results presented in this work, including the solution of the inverse problem 
shown in Figure 25 are still preliminary and require further research. The likely next 
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Fic. 26. Comparison between the a priori and a posteriori standard deviations. 

step is to estimate the model covariance matrix directly from the data (Figure 15), 
without resorting to exponential models. 

CONCLUSIONS 

Here, I presented a study on model covariances under the framework of amplitude 

seismic inversion. For simple examples I compared inversion results when the model 

covariance was built taking into account statistical considerations about the under- 
lying model with the case in which model covariances were derived from Tikhonov 

regularization. As indicated in this paper, the advantages of the former approach 

is the absence of a regularization parameter (a) and a more reliable a posteriori 
uncertainty analysis of the inverse problem solution. 

Tikhonov regularization, although an effective procedure for reducing the sensi- 

tivity of the inversion method to perturbations in the data (noise), might not provide 

the necessary flexibility for incorporating more general information about the inverse 
problem. In a more complex situation, not only in terms of the difficulty posed by 

the inverse problem, but also in the presence of different levels of information one 
would like to consider in the inverse problem, Tikhonov regularization is probably a 

limited approach for constructing covariance matrices. 

The simple results discussed in this paper motivate the use of realistic model 

covariance matrices in geophysical parameter estimation. For instance, one of the 

objectives to be accomplished in future work is to estimate model covariances directly 

from some source of information (for instance well logs), probably without resorting 

to exponential models as done in this paper. 

Closely related to the estimation of model covariance matrices is the quantification 
of the uncertainties of the inverse problem solution. This is an very important subject 
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that will be addressed in this research. 
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