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ABSTRACT 

Alkhalifah and Tsvankin (1995) show that P-wave normal-moveout (NMO) veloc- 
ity for dipping reflectors in transversely isotropic (TI) media with a vertical symmetry 

axis, specified in terms of ray parameter, depends just on the zero-dip NMO velocity 

[Vimo(0)], and a parameter 7 that is a combination of Thomsen’s (1986) parameters. 
Their inversion procedure makes it possible to obtain 7 and reconstruct the NMO ve- 

locity as a function of ray parameter using moveout velocities for two different dips. 

Moreover, Vamo(0) and 7 determine not only the NMO velocity, but also long-spread 

(nonhyperbolic) P-wave moveout for horizontal reflectors and the time-migration im- 

pulse response. This means that inversion of dip-dependent information allows one 

to perform all time-processing in TI media using only surface P-wave data. Such 

findings have paved the way for constructing a full processing sequence for TI media. 

The first and most important step in processing data in TI v(z) media is parameter 

estimation. Alkhalifah and Tsvankin (1995) generalized the single-layer NMO equa- 
tion to layered TI media with a dipping reflector. This equation provides the basis for 

extending TI velocity analysis to vertically inhomogeneous media. The multi-layered 

NMO equation is based on a root-mean-square (rms) average of modified interval 
velocities corresponding to a single ray parameter, that of the dipping event. There- 

fore, modified interval velocity values can be extracted from the stacking velocities 

using a Dix-type differentiation procedure. In addition, the 7 inversion is performed 

simultaneously with the interval velocity evaluation in each layer. 

Since the moveout for reflections from steep reflectors is small and relatively insen- 
sitive to velocity, stacking-velocity estimates can be improved by applying velocity 

analysis after doing dip moveout correction (DMO), which increases the moveout, 

and therefore increases the moveout sensitivity to velocity. As a result, a modifica- 

tion to the NMO velocity equation is done to accommodate the application of the 

DMO operation, which here is based on the assumption of a homogeneous, isotropic 

medium. 

Time migration, like DMO, depends on two parameters in vertically inhomoge- 

neous media, namely the NMO velocity and 7, both of which can vary with depth.
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Therefore, the NMO velocity and 7 estimated using the dip dependency of P-wave 

moveout velocity can be used in a TI time migration. 

An application of anisotropic processing to seismic data from offshore Africa 

demonstrates the importance of considering anisotropy, especially as it pertains to 
focusing dipping events. 

INTRODUCTION 

While it is convenient to consider the earth subsurface to be homogeneous, it is 
at a minimum vertically inhomogeneous. Through the combined action of gravity 

and sedimentation, velocity variation with depth represents the most important first- 

order inhomogeneity in the earth. This is one reason why time migration (based 

on lateral homogeneity) works well in so many places. Dip moveout (DMO) and 

migration algorithms that can handle isotropic v(z) media are well established, and 
even velocity estimation in such media is considered trivial. Nevertheless, problems 

remain in focusing images, estimating depths, and preserving dipping events in v(z) 

media. It may be that the problem at this point is the restrictive assumption that 

the medium is isotropic. Because basic processes that developed the earth’s crust 

(i.e., sedimentation, pressure and gravity) have a preferred direction (vertical in most 

cases), seismic wave speed can vary with propagation direction in the vertical plane. 

Otherwise, it is difficult to explain the success of isotropic homogeneous DMO in 

areas with a clear velocity increase with depth (Gonzalez et al., 1992), knowing that 

such an increase in velocity causes the dipping events to stack at a lower velocity than 

the horizontal ones (Artley and Hale, 1994). 

The first and most important step in a successful processing sequence for P-wave 

data is to estimate the medium parameters needed to apply the various processing 

operations. Existing work on anisotropic traveltime inversion of reflection data has 

been done for laterally homogeneous subsurface models (Byun and Corrigan, 1990; 

Sena, 1991; Tsvankin and Thomsen, 1995). These inversions, although providing 

useful information on anisotropy in the subsurface, either use the weak-anisotropy 

approximation or require P-wave data to be supplemented by additional information 

(e.g., the vertical velocity from check shots or well logs). For example, the inversion 
method of Tsvankin and Thomsen (1995) requires acquisition of S-wave, as well as 
P-wave data, for estimation of anisotropy parameters to be feasible. One reason 
for the limitations associated with these algorithms is the number of parameters 

needed to be estimated in transversely isotropic (TI) media. Using Thomsen’s (1986) 
notation, three parameters (Vpo, €, and 5) are needed to characterize the kinematics 
of P-waves in TI media with vertical symmetry axis (VTI). As shown by Tsvankin 
and Thomsen (1995), P-wave moveout from horizontal reflectors is insufficient to 
recover the three Thomsen’s parameters, even if long spreads (twice the reflector 

depth) are used. In fact, it is impossible to recover these three parameters using any 

additional surface P-wave data including moveout from dipping events (Alkhalifah 
and Tsvankin, 1995). The reason for this ambiguity is the trade-off between the 
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vertical velocity and anisotropic coefficients, which cannot be overcome by using any 

P-wave surface seismic information. 

Therefore, there is a redundancy in the three-parameter representation that char- 

acterizes P-wave moveout in VTI media. In fact, Alkhalifah and Tsvankin (1995) 
demonstrated that, for TI media with vertical symmetry axis (VTI media), just two 
parameters are sufficient for performing all time-related processing such as NMO cor- 

rection (including non-hyperbolic moveout correction, if necessary), DMO correction, 

and prestack and poststack time migration. Taking V, to be the P-wave velocity in 

the horizontal direction, one of these two parameters, 7, is given by 

VP e—6 
= 0.5(54~ -l) =—— 1 

and the other, the short-spread normal moveout (NMO) velocity for a horizontal 
reflector, is given by 

Vamo(0) = Vpov 1 + 26, (2) 

where Vpo is the P-wave vertical velocity, and € and 6 are Thomsen’s (1986) dimen- 
sionless anisotropy parameters. 

These two parameters can also be characterized directly in terms of the elastic 

coefficients c;; as follows 

€11(¢33 — C44) 1 

7= 2c13(c13 + 2c44) + 2c33¢44 2” 
  

and 
  

Vimo(0) = €13(Cig + 2c44) + C33C44 

nme (c33 _ C44) , 

The fact that we cannot uniquely determine the elastic coefficients from 7 and Vamo(0) 

does not matter, because time-related processing depends just on Vamo(0) and 7. 

Alkhalifah and Tsvankin (1995) further show that these two parameters, 7 and 
Vamo(0), can be obtained solely from surface seismic P-wave data, using estimates of 
stacking velocity for reflections from interfaces having two distinct dips. 

The inversion technique discussed by Alkhalifah and Tsvankin (1995) is designed 

for a homogeneous medium above the reflector, while realistic subsurface models are, 
at a minimum, vertically inhomogeneous. Therefore, it is appropriate to extend the 

inversion mechanism of Alkhalifah and Tsvankin (1995) to handle vertically inhomo- 
geneous media. 

Alkhalifah (1995b) suggested to invert for 7 and Vamo(0) using the nonhyperbolic 
moveout behavior of P-wave reflections in vertically varying VTI media. Although 

this method does not require dipping events to be present, which makes it more flexible 
than the dip-dependent moveout approach of Alkhalifah and Tsvankin (1995), it is
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less stable and depends on having reasonably large offsets to obtain realistic estimates 

of parameters at greater depths. 

A key feature of time-related processing is that the final output is still given 

in time. Therefore, a reflection from a horizontal reflector at zero-offset (coincident 
source and receiver) remains in exactly the same position after applying NMO, DMO, 

and time migration. As a result, all transformations done by these processes are with 

respect to this zero-offset reflection rather than its depth position. This eliminates 

the need to specify the depth of the reflection point. In VTI media, such a feature 

is valuable because it eliminates the need for the vertical velocity when time -related 

processing are expressed in terms of Vjmo(0) and 7, and therefore, reduces the number 

of required parameters needed to specify these processes. (Vertical velocity, however, 

is required in any attempt to convert seismic data from time to depth.) 

The bulk of the paper concentrates on the v(z) inversion process. Here, I extend 

the inversion technique of Alkhalifah and Tsvankin (1995) to handle layered trans- 
versely isotropic media based on the fact that NMO velocity for dipping reflectors is 

a, root-mean-square (rms) average of its interval values. Such an rms relation, derived 
by Alkhalifah and Tsvankin (1995) for transversely isotropic layered media, depends 

also on only Vamo(0) and 7. Next, I study the dependence of both DMO and time 

migration on Vjmo(0) and 7 in vertically inhomogeneous media. Then, I apply the 

inversion method, as well as anisotropy processing, to a marine data set from offshore 

Africa. 

NMO VELOCITY FOR DIPPING REFLECTORS IN TI MEDIA 

The analysis here is based on the equation for the normal-moveout (short-spread) 

velocity for dipping reflectors in a homogeneous anisotropic medium derived by Tsvankin 

(1995): 

Vamo(6) = V0) VE igh ar (3) = tangdV? cos d 1— $s 

where V is the phase velocity as a function of the phase angle 6 (@ is measured from 
vertical) and ¢ is the dip of the reflector; the derivatives are evaluated at the dip ¢. 

Unfortunately, reflection data do not carry any explicit information about dip; rather, 

we can count on recovering the ray parameter p(¢) corresponding to the zero-offset 

reflection. Therefore, for inversion purposes, formula (3) must be recast in terms of 

the ray parameter (Alkhalifah and Tsvankin, 1995), 

1 dt sin d 

where to(xo) is the two-way traveltime on the zero-offset (or stacked) section, and 29 
is the midpoint position. In this case, the phase angle ¢ and phase velocity V(¢)
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corresponding to a given value of p can be obtained from the Christoffel equation and 

used in formula (3) (Alkhalifah and Tsvankin, 1995). 

VELOCITY ANALYSIS IN V(Z) MEDIA 

Inversion in layered VTI media can be implemented through a layer-stripping algo- 

rithm where the parameters of a certain layer (or interval) are estimated by removing 

the influence of the overlying layers. The layer-stripping portion of the inversion is 

similar to what Dix (1955) used to estimate interval velocities from stacking velocities 
based on a small-offset approximation. 

NMO velocity equation for dipping reflectors in v(z) media 

For horizontal layers, whether the media are isotropic or VTI, the NMO velocity at 

a certain zero-offset time, tp, (equivalent to the migrated time, for horizontal layers) is 
given by an rms relation (Hake et al., 1984; Tsvankin and Thomsen, 1994) as follows 

1 sto Viol to) = =~ f° timo(7)4P, (5) 
where Upmo(T) are “interval NMO velocities” given by 

Vamo(T) = (7) 1 + 26(7), 

and u(r) is the interval vertical velocity. 

For dipping reflectors, when expressed in terms of ray parameter p, NMO velocity 

is also given by a similar rms relation (Alkhalifah and Tsvankin, 1995). 

Vinal. t9(0)] = eo [nal ter (6) 
where Upmol[P, tm] is the interval NMO velocity as a function of vertical time (migrated 

time), tm, and to(p) is zero-offset time for a single ray parameter, p. This ray pa- 
rameter corresponds to the reflection from the dipping reflector at time to(p) used 

to measure V,2_,[p, to(p)], where to(0) = tm corresponds to the two-way traveltime 
to a horizontal reflector; i.e., migrated time. As demonstrated in equation (4), the 

ray parameter can be determined from the slope of the reflection in the zero-offset 

domain. 

The integral in equation (6) can be expressed in terms of migrated time, t,, as 
follows 1 dty(p) 

2 t ee / "ye? Stolp) dr. VamolP, o(p)] to(p) 0 Unmo(Ps T) dr T (7) 

This equation reduces to equation (5) for horizontal reflectors (p = 0), where dto(P) —], 
Further, vgmo(p,7) depends only on the interval values vpmo(0,7) and (7) in each
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layer or time sample. Alkhalifah and Tsvankin (1995) show that to(p) is a function 
of the medium parameters Upmo(0) and 7, as well as the vertical time, given by 

to(p) = tmf[n, Unmo(0), p]- (8) 

Thus, 

ai = fin, Unmo(0), pl, (9) 

where f is the operator that relates the vertical time to the zero-offset time, which 

can be obtained through ray tracing. As a result, Vamo[p, to(p)] based on equation (7) 
depends on 77 and vVamo(0) in each layer. For isotropic media, 7 = 0, and 

1 
Ff [Unmo(0), p] = Viap eo) 

Equation (6), when expressed in terms of discrete layers, is given by 

[ViO2(p)P way (p) [vNno(P)? (10) 

where At? (p) is the two-way zero-offset traveltime through layer 7 for ray parameter 

p. 

To obtain the NMO interval velocity in any layer i (including the one immediately 

above the reflector), we apply the Dix formula (Dix, 1955) to the NMO velocities at 

the top [V,¢—)] and bottom [V,@.] of the layer: 
nmo 

@ to” (P)[Visno(P)P = #9” (P) (Vaso? (®)? 
[vu .(p)? = 10 1D 

to (p)— ty “(p) 
where i 'p ) and t(p ) are the two-way traveltimes to the top and bottom of the 
layer, respectively, calculated along the ray given by the ray parameter p for normal- 

incidence reflection from the dipping reflector, used in measuring stacking velocity; all 
NMO velocities here correspond to a single ray-parameter value p. Suppose, we wish 

to use equation (11) to obtain the normal moveout velocity [v),(p)] in the medium 
immediately above the reflector to use as an input value in the inversion algorithm 

discussed above. Clearly, from equation (10), the recovery of vu‘) (p) requires ob- 
taining the moveout velocities in the overlying medium for the same value of the ray 
parameter. However, as we will see later, such a problem can be solved by using an 

interpolation procedure. 

  : (11) 

Inversion in v(z) media 

When interval NMO velocity values, v{").(p), are obtained for at least two distinct 
dips, the problem reduces within each layer (or time sample, if the inversion was based 
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on the integral form) to a homogeneous inversion that can be solved in the same way 

described by Alkhalifah and Tsvankin (1995). Therefore, interval values v{") (p) for 
two distinct dips in each layer (or each time sample) are used to estimate 7(7) and 
Unmo(0,7). Since estimating v("),(p) using equation (11) depends on obtaining v!") ,(p) 
for previous layers at the same ray parameter, estimating 7(7) and vpmo(0,7) must 
be done simultaneously with the layer-stripping process for v“) .(p). 

nmo 

First, I use the values V,2) (p,) and V,) (p2), which correspond to the first interval, 
nmo 

to estimate n) and v{!),(0) using the inversion of Alkhalifah and Tsvankin (1995) for 
a homogeneous medium, where p; and po are ray parameters of the dipping reflectors 

in this first interval (one of these reflectors could be horizontal). Each interval is con- 
sidered homogeneous. Then, I use the estimated 7 and v@) (0) to obtain V2) (p3) 

nmo nmo\P. 

and V,() (p4), as well as dior) and Holes) in the first interval. Ray parameters p3 
and p4 correspond to the dipping (or horizontal) reflectors in the second interval. 

Using equation (11), I then obtain the interval values v@)|(p3) and v),(p4), which 
corresponds to the second interval, from V,(!) (p3) and V,“!) (p4), and in turn use them 
to obtain 7?) and v@?) (0), and so on. 

Although the method requires NMO velocities measured at two different dips in 

each interval, one can define interval thicknesses depending on the available reflec- 

tors. Specifically, each interval is chosen to include two dips, no matter how large 

that interval gets. A better and more practical approach is to fit a piecewise-linear, 

continuous interval velocity models for each of the ray parameters of the dipping re- 

flections used to measure the stacking velocities. These models satisfy these measured 

stacking velocities based on equation (7). Specifically, the interval velocities are taken 

as continuous at the times of the measured stacking velocities and linear in between. 
Eventually, we must obtain at least two continuous interval velocities corresponding 

to two distinct dips. As a result, the homogeneous inversion is applied at each time 

sample to obtain Upmo(0,7) and (7). A detailed description of the inversion is given 

in Appendix A. 

As with isotropic media, intermediate interval values (i.e., values between mea- 

sured ones) can be estimated using any interpolation technique between measured 
values. The sole requirement is that interval values yield the measured stacking ve- 

locities based on equation (7). For example, we could consider the measured values 
to be constant in each layer. Here, however, the application is based on a linear 

interpolation that keeps the inverted values continuous. This continuity is important 

for various ray tracing applications. 

Errors in the inverted interval values of 7 can arise from the linear interpolation 
of velocities used in the layer-stripping process, and from the inversion in each ho- 

mogeneous interval used to obtain 7. The interpolation errors are similar to those 

encountered in layer-stripping applications for isotropic media. Errors associated with 

the homogeneous inversion, as described in detail by Alkhalifah and Tsvankin (1995), 

depend mainly on the accuracy of the measured quantities, primarily the stacking 
velocities.
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Stacking-velocity measurements 

As is well known, the stacking velocity for steep reflectors (= “ane in isotropic 

homogeneous media, where @ is the reflector dip) is large; therefore, the moveout is 

small and insensitive to velocity. Specifically, the curvature of reflection moveout, 

dt? /d?X [x 1/V2.,], where X is the source-receiver offset, decreases with increase in 
velocity. As a result, the resolution of velocity analyses is poor, causing problems in 

picking the appropriate stacking velocities corresponding to dipping reflectors. 

One way to avoid this problem is to pick the stacking velocity after applying 

isotropic homogeneous DMO to the data. The DMO operation reduces the stacking 

velocity of dipping reflectors (approximately equivalent to multiplying by cos @), and 

therefore, increases the sensitivity of moveout to velocity. As a result, I modify the 

NMO velocity equation in TI media to account for the isotropic homogeneous DMO 

operation. This is accomplished by including the traveltime shifts that correspond to 

the DMO operation in the NMO equation for dipping reflectors. 

P(X) = 80) + (Gate +X? = BO) + > ? 

Vi2n0 (p ) Var (p ) 

where ¢ is the two-way traveltime as a function of offset, X. Therefore, the NMO 

velocity for a dipping reflector after isotropic homogeneous DMO is given by 

_ _ Vamo(p) 
Vole) = PVA) (12) 

Equation (12) can, therefore, be used to replace the Vimo(p) function in inverting for 
n and Vamo(0). 

There is an additional advantage in applying the DMO operation prior to velocity 

analysis in inverting for 7. Specifically, we can verify the presence of anisotropy by 

comparing the NMO velocity of the sloping event (after DMO) to that of a horizontal 

event (or any other distinct slope). If the velocity of the sloping event is higher, then, 
in most cases, anisotropy is present, and 7 is positive. If the medium is also vertically 

inhomogeneous, then the anisotropy is even more significant, because inhomogene- 
ity tends to reduce the influence of anisotropy on the isotropic homogeneous DMO 

operation (Alkhalifah, 1995a). If the velocity of the sloping event is lower than that 

of the horizontal event after applying a homogeneous isotropic DMO, then there are 

two possibilities: the first is that the medium is vertically inhomogeneous (Artley 

and Hale, 1994), and the second is that the medium is anisotropic with a negative 7, 

which is unlikely (Thomsen, 1986; Alkhalifah and Tsvankin, 1995). 

If the NMO velocities of the sloping and horizontal reflections are equal after 
applying homogeneous isotropic DMO (which is a goal of applying the DMO) then 

the medium may be isotropic and homogeneous, in concurrence with the type of 

operation used. However, if velocity analysis implies vertical inhomogeneity (which is 
typically the case), then anisotropy is present and has the same size (with an opposite 

8
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sign) influence as the vertical inhomogeneity on the DMO operation for these two 

dips (Gonzalez et al., 1992; Alkhalifah, 1995a). However, although the homogeneous 

isotropic DMO focussed these two reflections (the sloping and horizontal) at the same 
stacking velocity, it might not focus as well other reflections (with other slopes), 

because the isotropic v(z) DMO impulse response is not identical to the anisotropic 

one (Alkhalifah, 1995a). Here, I have tried to outline the main possibilities. The 

presence of strong lateral inhomogeneity would introduce further complications. 

TIME-RELATED PROCESSING 

The main argument used to show the dependence of time-related processing (e.g., 

DMO and time migration) on only Vamo(0) and 7 in homogeneous VTI media is that 
such time-related processing become independent of the vertical velocity Vpp when 

expressed in terms of Vamo(0) and 7. That is, it does not matter what values of Vpo, 

e, and 6 are used; only Vamo(0) and 77 need to be specified. To prove such an assertion, 

Vpo, € and 6 are varied from one test to another while keeping Vimo(0) and 7 the same, 

and changes in impulse responses (such as migration impulse responses or diffraction 

curves) are then observed. Alkhalifah and Tsvankin (1995) used such an argument 
for homogeneous media. Here I will apply it to vertically inhomogeneous media. 

Veo (m/ S) Vamo(9) (m/ S) 1} 
2000 4000, 2000 4000 0 0.05 0.10 0.15 

    

                    

Fic. 1. Parameter variation as a function of vertical time. The parameters here 
correspond to the interval vertical velocity (Vpo), the interval NMO velocity for hor- 
izontal reflectors [enmo(0}], and the anisotropy parameter 7. Different combinations 
of these parameters result in different models.
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Figure 1 shows parameter variations as a function of vertical time that I use 

below to generate impulse responses. The vertical velocity (Vpo) given by the solid 
black curve is the same as the vamo(0) curve, and, therefore, 6 for this model equals 

zero. When combined with vpmo(0), the other two Vpp curves correspond to 6 values 

that do not equal zero [see equation (2)]. The dashed curve (vertical velocity is a 
constant, 1500 m/s), when combined with vpmo(0), results in 6 reaching values as large 
as the unrealistic value of 2. Therefore, in terms of Thomsen’s (1986) parameters, 
the difference between the model given by the solid black Vpp curve and the model 

given the dashed curve is large, but the parameters have been chosen such that 7 is 

nevertheless the same. 

Dip-moveout correction 

As mentioned above, Alkhalifah and Tsvankin (1995) showed that the NMO ve- 
locity for dipping reflectors depends on only two medium parameters in homogeneous 

VTI media, namely Vamo(0) and 7. Alkhalifah (1995a) further demonstrates that the 
DMO operation itself, as well as its impulse response, depends solely on these two 

parameters. This result holds as well for (7), as we see next. 

Figure 2 shows four DMO impulse responses generated using the anisotropic DMO 

algorithm described by Alkhalifah (1995a). The first of these responses (Figure 2a) 
corresponds to the parameters given by the solid black curves in Figure 1 for Vpo, 

Unmo(0) and 7. Note how different the DMO impulse response in VTI media are from 

the elliptical shape we have grown accustomed to for isotropic media. The responses 
in Figure 2b and 2c correspond to using the gray and the dashed curves of Vppo in 

Figure 1, respectively, while keeping the values of vpmo(0) and 7 the same as those 

used in Figure 2a (the solid black curves). The three DMO impulse responses look 
exactly the same; that is, they are independent of the value of Vpo, in support of the 

result that was partially suggested by equation (6), a small-offset approximation of 
the moveout. (Recall that for the response in Figure 2c, 6 reaches values of about 2!) 
On the other hand, if we change 7, using the gray curve in Figure 1 instead of the 
black one, the response changes dramatically, implying that it is highly dependent on 
7). 

Time migration 

Alkhalifah (1995b) showed that the nonhyperbolic moveout based on a Taylor’s se- 

ries expansion in vertically inhomogeneous VTI media is dependent on only vpmo(0, 7) 

and (rT). Again, such a moveout equation represents a small-dip approximation of a 

time-migration diffraction curve. 

Figure 3 shows four time-migration impulse responses generated using an aniso- 

tropic phase-shift time migration (Kitchenside, 1991). The first of these responses 
(Figure 3a) corresponds to the parameters given by the solid black curves in Fig- 

ure 1 for Vpo, Unmo(0) and 7. On the other hand, the responses in Figure 3b and 3c 
correspond to using the gray and the dashed curves of vertical velocity (Vpo) from 

10



Alkhalifah Anisotropy processing 
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Fic. 2. DMO impulse responses for an impulse at time 2.1 s and offset 1.5 km using 
(a) the parameters represented by solid black curves in Figure 1, (b) the vertical 
velocity given by the gray curve in Figure 1 while keeping the other parameters the 
same as (a), (c) the vertical velocity given by the dashed curve in Figure 1 while 
keeping the other parameters the same as (a), and (d) the 7 values represented by 
the gray curve in Figure 1 while keeping Vpp and vpmo(0) the same as (a). 
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Fic. 3. Zero-offset time-migration impulse responses for an impulse at time 2.1 s, 
using (a) the parameters in Figure 1 represented by the solid black curves, (b) the 
vertical velocity given by the gray curve in Figure 1 while keeping the other parameters 
the same as (a), (c) the vertical velocity given by the dashed curve in Figure 1 while 
keeping the other parameters the same as (a), and (d) the 7 values represented by 
the gray curve in Figure 1 while keeping Vpp and Ugmo(0) the same as (a). 
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Figure 1, respectively, while keeping vpmo(0) and 7 the same as those used in Fig- 

ure 3a. The three time migration impulse responses look identical. Given the large 

difference between the Thomsen’s parameters used to generate Figure 3a from those 

used to generate Figure 3c, the similarity of the responses that are based on the exact 

traveltime calculation (within the frame work of ray theory) is remarkable. Therefore, 

time migration in VTI media is also independent of vertical velocity when expressed 

in terms of Ypmo(0) and 7. However, if the gray 7 curve in Figure 1 is used, differences 

begin to appear. Specifically, note that, because of the overall lower 7, the response 

in this case is slightly squeezed (see arrows). Although the time migration responses 
appear to have less variation with change in 7 than do the DMO responses, note that 

the scales at which the responses in the case of DMO and time migration are plotted 

are not the same. The conclusion in any event is that migration will be less sensitive 

to ignoring anisotropy than DMO, at least for modest dip. This is consistent with 

the results of Alkhalifah and Larner (1994). 

FIELD-DATA EXAMPLE 

Figure 4 shows a stacked seismic section, from offshore Africa provided by Chevron 

Overseas Petroleum, Inc., that contains reflections from a large number of dipping 

faults. The section was processed using a sequence of conventional NMO and DMO 

without taking anisotropy into account. While horizontal and mildly sloping reflec- 

tions are imaged well, as we will see below, steep fault-plane reflections have been 

weakened because anisotropy was ignored. The predominant velocity variation in the 

section is vertical. In fact, in the area between CMP locations 400 and 800 and up 

to vertical time 3 s, the lateral variation of velocity is small. 

The arrows in Figure 4 point to the sloping reflections used to measure the stack- 

ing velocities. Likewise, Vimo(0) measurements are based on the horizontal events. 
Although the sloping reflections used in the inversion seem to span the whole 5 s of 

data, the actual parameter information stops at about 3.5 s — the vertical (migrated) 
time corresponding to the deepest reflection used in the measurement of stacking ve- 

locity. This difference follows from the relation between the vertical time [t,,] and 
the zero-offset time [to(p)]. In addition to the picked reflections, 7 at the surface is 
constrained to equal zero since these are marine data and the water layer is isotropic. 

Carrying out the inversion process described in Appendix A, using the measured 

values of stacking velocities and corresponding ray parameters, I obtain the functions 
Vnmo(T) and (7) shown in Figure 5. The inversion assumes no lateral velocity vari- 
ation in the region of the picks; mild lateral velocity variation, however, should not 

be a problem for this DMO-based inversion: most DMO algorithms, while based on 

lateral homogeneity, still produce practical results where lateral velocity variation is 

smooth. The continuous representation shown in Figure 5 is a direct result of fit- 
ting a piecewise linear velocity model, as mentioned in Appendix A, for both the 

mildly dipping reflectors (for simplicity I refer to them as horizontal reflectors) and 
the faults. In the water layer, vamo is equal to 1.5 km/s and 7, as mentioned earlier, 
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200 400 600 800 1000 1200 

  
Fic. 4. Stacked section from offshore Africa, after applying NMO and isotropic 
homogeneous DMO. The arrows point to the sloping reflections used in the 

inversion. 
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FiG. 5. Interval values vgmo and 7 as a function of vertical time. 

15



Alkhalifah Anisotropy processing 

is equal to zero. The accuracy of these estimated curves of U,;mo and 7 depends on the 

accuracy of the stacking velocity estimates for both dipping and horizontal reflectors 

(Alkhalifah and Tsvankin, 1995). Based on the locations of the measured stacking 
velocities (Figure 4), as well as the extent of the lateral homogeneity, these inverted 

values can be considered representative of the area between CMP location 500 and 

900. 

The interval values of 7 in Figure 5 show more detail than can be reliably trusted 
considering the many uncertainties associated with the few events picked in these 

data and the particular assumption used for interpolating interval NMO velocities. 

However, we can still trust the general trend of the 7 curve, which implies an overall 

increase in the anisotropy with vertical time up to about 3s. The 7 values after time 

equal 3.5 s were constrained to equal zero because no 7 information is present for 

these times using this inversion. The region above 3 s, which exhibits positive values 

of n, corresponds to a shale formation. Shale is often transversely isotropic and may 

thus be the major source of anisotropy in the data. 

CMP 
200 400 600 800 1000 1200 

  
Fic. 6. Stacked section after v(z) anisotropic DMO using the parameters in Figure 5. 
The NMO correction is based on the velocities obtained from the conventional velocity 
analysis. Compare with Figure 4. 

Next, I apply a DMO algorithm that uses the derived functions Upmo(T) and (7) in 
Figure 5. Figure 6 shows the result of TI DMO applied to the data, based on the ray- 
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tracing DMO algorithm of Alkhalifah (1995a). Relative to the result of isotropic DMO 
given in Figure 4, this section is much improved. Note, in particular, the reflections 

from the faults. The improvements extend throughout the whole section, and includes 

reflections not used in the inversion. This implies that the lateral variation in n, 

especially prior to 2 s, is small. 

Figure 7 shows representative VTI DMO operators used for these data; The 

shapes are far from the isotropic ellipse or even a stretched version of it. Therefore, 

we should expect the result from the anisotropic DMO to be different from that of 

the isotropic DMO, and so it is. 
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Fic. 7. VTI DMO impulses response for the parameters in Figure 5. The offset is 
1.5 km, and the apex is at (a) 1.8 s, and (b) 2.5 s. 

Figure 8 shows CMP gathers at CMP location 700 after (a) homogeneous isotropic 

DMO, and (b) v(z) VTI DMO using the parameters in Figure 5. The same NMO 
correction, based on the stacking velocities obtained from conventional semblance 
velocity analysis, was used in both DMO examples. The arrows point to reflections 

from some of the dipping faults present in this highly faulted portion of the data. 
Note that the maximum offset is large (up to X/D = 2). Clearly, for the isotropic 
DMO result, the reflections from the dipping faults are not aligned. They have de- 
viations caused by an NMO velocity that is smaller than what is needed for this 
anisotropic medium. Such deviations in reflection traveltimes are proportional to X?. 
Even the reflections from the horizontal events are not aligned. The misalignment 
for the horizontal reflections, however, is caused by the nonhyperbolic moveout asso- 
ciated with VTI media. Therefore, the deviations in this case start at larger offsets 

X/D > 1 (Tsvankin and Thomsen, 1994, Alkhalifah, 1995b), and are proportional 
to the nonhyperbolic term X*. This implies that the horizontal reflectors, as well 

as the dipping event, are less focused in Figure 4 than in Figure 6. Both horizontal 
and dipping events are better aligned after application of the ray-tracing anisotropic 

DMO based on the inverted parameters. Close comparison of Figures 4 and 6 reveals 
improvement in the horizontal features as a result of anisotropic processing. 
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Fic. 8. CMP gathers for CMP location 700 after (a) homogeneous isotropic DMO, 
and (b) v(z) anisotropic DMO. The NMO correction, based on the velocities obtained 
from velocity analysis, is the same for both examples. 
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Figure 9a shows the result of conventional processing: phase-shift, isotropic time 

migration was applied to the zero-offset section obtained by the isotropic homogeneous 

DMO. For comparison, Figure 9b shows the data imaged with phase-shift anisotropic 

time migration (using the inverted parameters of Figure 5) applied to the stack ob- 

tained from the v(z) VTI DMO algorithm. This comparison gives a clear picture of 

the benefit of taking anisotropy into account in DMO prior to doing migration. The 

improvements here are numerous and significant. One example is the fault located 

at CMP location 870, between 2.5 and 3 seconds. An interpreter using the isotropic 

processing result can easily extend the reflections across this fault ignoring it or sug- 

gest a minor subsidence to the left of the fault. However, the imaged result'of the 

anisotropic processing (as well as the inverted values of 7) suggests the extension of 

the shales up to 3 seconds under CMP location 800, and probably a larger subsidence 
has occurred. Another example is the region of the nearly horizontal events near 

CMP location 500, at 2.5 s. The improved continuity of the gently dipping events 

likely is a result of non-hyperbolic moveout correction in the anisotropic processing. 

Although most of the reflections here correspond to features within or near the 2-D 

plane that contains the sources and receivers, some events may represent out-of-plane 

reflections, requiring 3-D processing. Ignoring the three-dimensionality can cause 

mispositioning in some areas, especially where the fault reflections cross what seem 

to be continuous horizontal reflections. However, based on examination of parallel 

lines in the same area, most reflections are in the dip plane of the section. 

Lynn et al. (1991) observe that problems of mis-focussing of dipping faults are 

encountered in many data sets from around the world and such problems can not be 

attributed to use of 2-D as opposed to 3-D processing, lateral velocity variations, or 

statics problems. Their assessment is that such problems are caused by the presence 

of anisotropy. They also state that isotropic prestack migration often gives poorer 

results than does isotropic poststack processing applied to DMO-processed data sets. 

Whereas full prestack migration seems to be the ideal way to process data, it is 

intolerant of any shortcomings of the model or the data. 

DISCUSSION AND CONCLUSIONS 

Although the inversion described here cannot resolve the vertical velocity and 
anisotropic coefficients « and 6 individually, it makes it possible to obtain the pa- 

rameters needed to apply time-related processing (including NMO, DMO, and time 

migration) in vertically inhomogeneous media. These parameters are the zero-dip 
NMO velocity Upmo(0,7) and the anisotropy parameter 7(7). 

The inversion algorithm described by Alkhalifah and Tsvankin (1995) was de- 
veloped for a homogeneous, transversely isotropic medium above the reflector. To 

extend the method to vertically inhomogeneous media, the inversion must be applied 

using the NMO equation of Alkhalifah and Tsvankin (1995) for layered anisotropic 

media above a dipping reflector. The influence of a stratified isotropic or anisotropic 
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Fic. 9. Time migrated section using (a) isotropic phase-shift migration of the data 
shown in Figure 4, and (b) anisotropic phase-shift migration of the data shown in 
Figure 6 using the parameters shown in Figure 5. 
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overburden on moveout velocity can be stripped through a Dix-type differentiation 

procedure. 

Using sloping reflections to extract velocity information in v(z) media requires, 
among other things, positioning the reflections at their true (migrated) position. This 
is accomplished by relating the zero-offset time to the vertical (migrated) time, and 
therefore positioning the extracted interval velocities at their true times (relative 
depths). Although this concept is beneficial in isotropic media, it is exceptionally im- 

portant in anisotropic media, where such velocities are compared with those extracted 

from horizontal events, and then used to invert for anisotropy information, specifi- 

cally n. This inversion process is based on the rms assumption of stacking velocities 

for a given ray parameter. Such a relation, for horizontal reflectors, reduces to the 

familiar Dix (1955) expression. The idea underlying the inversion is that the Unmo(T) 

and 7(r) functions obtained from the inversion are those that best focus reflections 
from the dipping fault and the horizontal reflectors at the same stacking (or NMO) 
velocity, for each vertical time at which the velocity measurements are made. 

Analysis of dip moveout and time-migration impulse responses shows that these 

processes depend solely on two parameters Ujmo(0) and 7 in vertically inhomogeneous 

media. Therefore, the results of the inversion [values of Upmo(0) and 7] can be used to 
apply NMO, DMO, and time migration. To an extent, time migration can be used to 

evaluate the performance of the inversion in data that include reflectors with known 

positions (i.e., fault traces as delimited by terminations of sedimentary bedding). 

Specifically, the results of the inversion for 7 can be checked by inspecting the quality 

of images generated by poststack migration using the same inverted parameters. If 

the image indicates undermigration, the true 7 overall is higher than the estimated 

values. 

As we saw in the field example, isotropic DMO cannot properly focus dipping 

reflectors where the inversion results indicate that the medium is anisotropic. On the 

other hand, v(z) VTI DMO based on the inverted values of Upmo(7) and (7) did focus 
such reflectors, and, because it also takes non-hyperbolic moveout into account, it can 

even improve the focussing of horizontal reflections, as well. In addition, anisotropic 
time migration based on the inverted parameters [vamo(7) and n(r)] placed the steep 
reflections at their true time migrated position, while the isotropic migration, which 

used only the values of Uamo(7), mispositioned the sloping features relative to the 

horizontal ones. 

The cost of anisotropic processing is close to that of its isotropic counterpart. In 

fact, the processing algorithms needed for both types of media run in about the same 
time. For example, although slower than the typical log-stretched DMO techniques, 
the DMO algorithm used here (Alkhalifah, 1995) is as efficient as Artley and Hale’s 

(1994) isotropic v(z) DMO. The difference in computation effort for the isotropic and 
anisotropic algorithms in phase-shift time migration is negligible. The true additional 

cost of the anisotropic processing arises from the time needed to measure stacking 
velocities, as well as ray parameters, for the sloping reflections. 
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Applying a general anisotropic processing sequence, therefore, is appropriate for 

all data. If the medium is isotropic, then the lack of anisotropy will be reflected in 

the small values for the inverted parameter 7 (7 ~ 0). However, if 7 departs from 
zero by a substantial amount (i.e., 7 > 0.05), then it is best to take anisotropy into 
account. Practically, typical performance of isotropic DMO suggests anisotropy in 

data. In particular, the fact that an isotropic homogeneous DMO works better than 

isotropic v(z) DMO in a vertically inhomogeneous medium suggests the presence of 
anisotropy because this anisotropy counters the influence of an increase in velocity 

with depth. Nevertheless, the fact that isotropic constant-velocity DMO often works 

better than the v(z) DMO does not imply that the result is optimum. The DMO 
process can further benefit from an added degree of freedom, in our case 7, which can 

be calculated and has a physical basis, specifically anisotropy. Because it has this 

physical basis this same parameter provides the added degree of freedom needed in 

migration as well. 
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APPENDIX A: VELOCITY ANALYSIS IN LAYERED MEDIA 

The first step of the inversion process involves estimating stacking velocities as 

a function of zero-offset traveltime from P-wave reflection data. These velocities are 

commonly considered to equal the NMO velocity. Measuring stacking velocities is 

common practice in isotropic processing, but here we must estimate such stacking 

velocities for dipping, as well as horizontal reflections. In addition, we must measure 

the ray parameters (slopes) corresponding to these reflections. 

The inversion method can be applied using any number of dips using a least- 
squares approach. For simplicity, I constrain the description here to the model given 
in Figure A-1, where we have only two distinct dips (horizontal reflectors and a 

dipping fault). The medium is considered to be laterally homogeneous above the 

fault. Note that, because it is dipping, this single fault provides velocity information 

at several zero-offset times that can be used to extract vertical parameter variations 

with depth. 

After obtaining stacking-velocity information as a function of ray parameter and 

zero-offset time, we need to construct an interval-velocity model that satisfies the 
measured stacking velocities based on equation (6). As mentioned in the text, the 
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Fic. A-1. Depth model consisting of a fault and a number of horizontal layers. 
The rays drawn correspond to the measured stacking velocities (Vamolpi, ti(pi)] and 
Vamolpi+1,ti+1(pit1)]) described in the Appendix. Such rays illustrate the relation 
between the zero-ofiset time and the vertical time for the dipping fault. 
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velocity model that I use is continuous with linear increases in modified interval 

velocity (a quantity that depends on ray parameter) between the measured values 

of stacking velocities. For the horizontal reflectors (p = 0), construction of such 
a velocity model is straightforward, following the familiar method of Dix (1955). 
However, for the dipping fault, the problem is much more complicated because the 

ray parameter along the fault reflection varies with recording time due to the variation 

of velocity with depth. Therefore, the measured stacking velocities for the dipping 

fault at different vertical times correspond to different ray parameters. 

Suppose we want to fit a linear interval-velocity model between the measured 

stacking velocities Viamol[pi, ti(pi)] and Vamolpi+1, ti41(pi41)], Where p; and ¢; are the ray 
parameter and zero-offset time of the fault reflection used in measuring the stacking 

velocities. This linear interval velocity will correspond to a ray parameter p;,; and 

should be continuous with the calculated interval velocities prior to time t;(0) at this 
same ray parameter p;,;. Here, t;(0) is the two-way vertical traveltime to the reflection 

recorded at time t;(p;), as shown in Figure A-1. Therefore, the initial velocity for 

the linear model between Vamolp;, ti(p:)] and Vamolpi+1, ti+1(Pi41)] 1S UnmolPi41, ti(0)] 
calculated at vertical time ¢;(0) using the values of Upmo(0,7) and n(r) at 7 = t;(0). 
The interval values in between the two measured stacking velocities are given by 

Vamo(Pi+1,T) = Vamolpi+1, ti(O)] + as41[E(pi41, 7) — ti(pi4r)], (A-1) 

where a;+1 is the constant velocity gradient between vertical time ¢;(p;41) and t;41(pi41), 

and t(p;41,7) is the zero-offset two-way traveltime calculated as follows 

t(pi41,7) = I "f [n(71); Unmo(71), Pitildri, (A-2) 

where f, as mentioned in the text, is the operator that relates zero-offset time to 

vertical time. Here, 7 corresponds to the two-way vertical time, and t;(p;41) is the 

two-way zero-offset traveltime computed, using equation (A-2) by setting 7 = ¢;(0). 
For i = 0 (corresponding to the earth’s surface), to(p) = 0, and the interval velocities 
are estimated either by considering the medium to be homogeneous up to time t; (0) 

(a, = 0), or by using a value for the velocity at the surface that satisfies a certain 
condition (i.e., for marine data, velocity at the surface is usually set to 1.5 km/s). 
Therefore, the only unknowns in equation (A-1) as we progress from the top to the 

bottom of the seismic section are the velocity gradients a;. 

Using the expressions of stacking velocities and traveltimes given above, equa- 

tion (6) can be written as follows 

ti (pit) tiga (Pit1) 
VimolPi+1) ti4 (Pi41)|ti41 (Pitt) = [ Uimo(Pit1,7)dT + (ose) Uamo(Pi+1) TAT. 

iLPi+1 

(A-3) 
The first term on the right hand side can be calculated from the estimated values of 7 
and UVpmo(0) prior to t;(0). Let us assume that it equals f,. If we are trying to deter- 
mine a; corresponding to the region between the surface and the first measurement, 
then f; equals zero because to(p;+1)=0. 
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Substituting equation (A-1) into the second term of equation (A-3) results in 
a quadratic equation in a;4;. Solving equation (A-3) for a;4; involves solving the 

quadratic equation, and therefore 

041 = 0.5(y/ 
  

  

where tg = ti41(pi+1) — ti(Pi+41). 
Each time a new velocity gradient is obtained, for example a;,1, it is directly used 

to compute the interval velocities using equation (A-1) in the region between t;(0) and 
t;41(0). Then, these interval velocities, which correspond to the dipping fault, along 

with the horizontal interval NMO velocities, are used to invert — one sample at time 

— for Unmo(0,7) and n(7) based on the homogeneous DMO inversion of Alkhalifah 
and Tsvankin (1995). We continue to invert for Upmo(0,7) and n(7) as a function of 
vertical time until we reach the time t;,,(0). Then a new velocity gradient, a;,., for 

the region between t;+1(0) and t;,2(0) is calculated in the same way. 
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