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ABSTRACT 

Leon Thomsen introduced a set of parameters that allow specialization to 

weakly transverse isotropic (TI) media without losing the capability of treating 

the general TI medium. For this reason, many studies of transverse isotropic 

media involve the conversion of expressions in the conventional notations to the 

corresponding expression in terms of Thomsen’s parameters y, 6, and e. These 

conversions are awkward because one of the transformation equations is nonlinear 

in 6. For example, in the Voight tensor notation, 

  

Ci3 = —peg + py (ce — c&)? + 2c%(c% — c2)6. 

By introducing a modified parameter, é, this relation can be made linear. Indeed, 

the entire transformation from Voight notation to Thomsen notation becomes 

linear. The same is true for the conversion from the other conventional notations. 

If an expression in the pure Thomsen parameters is desired, one can replace 6 

by its definition in terms of 6 as the last step in the calculation. In the limit of 

weak transverse isotropy, the parameter 8 reduces to Thomsen’s 6. Thus, in this 

important special case, the conversion to pure Thomsen notation amounts to just 

replacing 6 by 6. The Mathematica package, Thomsen.m, containing functions to 

automate conversions between the various TI notations accompanies this article. 
  

INTRODUCTION 

Leon Thomsen (1986) introduced a set of parameters that allow specialization 
to weakly transverse isotropic (TI) media without losing the capability of treating 

the general TI medium. For this reason, many studies of transverse isotropic media 

involve the conversion of expressions in the Love, Voight or Hookean tensor notations 

to the corresponding expression in terms of Thomsen’s parameters 7, 5, and e«. These 

conversions are awkward because one of the transformation equations is nonlinear in 

6. For example, in the Voight notation, 

  

Cig = —pc% + py (cB — c3)? + 2c3(c2 — 2)6, (1) 

 



where p is the density and cp, cs are the compressional and shear speeds. By intro- 

ducing a modified parameter, 6, this relation can be made linear. Indeed, the entire 

transformation from Voight notation to Thomsen notation becomes linear. It also 
turns out that many expressions are simpler in terms of a parameter f introduced by 

Ilya Tsvankin (1994). The five parameters cp, f, 7, €, and 6 form a convenient canon- 
ical set of parameters. Once expressions have been cast in terms of these parameters, 

one can make subsequent substitutions that eliminate f in favor of cg and/or 6 in 

favor of 6. 

In this report, I describe a Mathematica package to convert between the various 

notations for the TI parameters. In particular, the user has the choice of using cg or 

f and the choice of using 6 or 6. 

THE PARAMETERS 6 AND f 

First, simplify equation (1) by introducing Tsvankin’s f: 

ch — 
f= -S, (2) 

Cp 

C13 = —pcg + pepy f? + 2f6. (3) 

Next, eliminate the square root by introducing 6 as 

f? +276 =(f +4), (4) 

yielding 

obtaining the linear expression 

Cig = —pcy + pep(f + 4). (5) 

Equation (4) allows us to express 6 in terms of 6 or vice versa: 

~ 

p=5(14 5). (7) 

An application of the binomial theorem to equation (6) shows that in the limit of weak 
transverse isotropy, the parameter 6 reduces to Thomsen’s 6. Thus, in this important 

special case, the conversion to the Thomsen parameter amounts to just replacing 6 

by 6. 

The quantity 6 introduced in this section also plays a role in the basic TI wave 

equations. In a companion report (Thomsen Operators and Thomsen Matrices: this 

volume), I show that the TI wave equation operator has the exact form, 

L= LO + LM + 660 + £0. (8) 

and 
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Here, the operator £ is the isotropic wave equation operator, while the “Thom- 

sen operators,” £™, £2), and £®, characterize the anisotropic contributions. The 

isotropic operator and the three Thomsen operators are independent of the Thomsen 

parameters 7, 6, and ¢, so that the TI operator is linear in 7, €, and the modified 

Thomsen parameter 6. 

NOTATIONS FOR THE TI ELASTIC PARAMETERS 

Using f and 6 as introduced above, the Voight parameters are expressed in terms 

of the Thomsen parameters, 7, 5, €, and the material parameters by the equations 

(Thomsen, 1986): 

Cu = pc?,(1 + 2e) 

C33 = pcp . 

Cig = —pcy + pcp(f +64) (9) 

Cu = pes 

Ces = pcg(1+ 27) 

Note that here, “3” is used as the index corresponding to the axis of symmetry—many 

authors use “1” as the distinguished direction. 

The Love parameters are simply aliases for the Voight parameters (Musgrave, 

1970): 

A Ci 

F= Cg (10) 

LD = Cu 

N Cee 

In terms of the Voight notation, the fundamental Hookean parameters are given 
by: 

Ci = C33 

Cor = C3333 = Cu 

Co233. = C3322 = Ci — 2Ces 

Cii3zg, =~ C3311 = Cit22 = Coon = Cig (11) 

Craig = Corer = Corie = Choa = Cag 

Cisis = C3131 = C3113 = Cia31 = Cag 

Co303 = C3032 = C3203 = Coase = Ces 

Finally, mention a lesser used notation appearing in Kuprazde (1976): 

Cr = Cn 

3



Co = Ci — Cee 

Cy = C33 

Cs = Cag 

THE MATHEMATICA IMPLEMENTATION 

The Mathematica implementation reserves the following variables for their mean- 
ing as notations for the elastic parameters: 

rho, cp, cs, gamma, delta, deltaTilde, epsilon, eta, f, 

Cii, C33, C13, C44, Cé6, 

A, C, F, L, N, 

C1, C2, C3, C4, C5, C6, 

C1111, C2222, C3333, C2233, C3322, C1133, C3311, 

C1122, C2211, C1212, C2121, C2112, C1221, 

01313, C3131, C3113, C1331, C2323, C3232, C3223, C2332 

Note well that users of this package cannot use these variables for any other purpose! 

The conversion rules are implemented by the user functions: 

ConvertCij converts an expression in the Voight parameters to an expression in the 

canonical variables cp, f, y, €, and 6. 

ConvertWeak assumes the weak TI limit and converts an expression in the Voight 

and/or Thomsen parameters to an expression in the variables cp, f, y, €, and 6. 

EliminateF replaces f by its definition in terms of cp and cg. 

EliminateCs is a partial inverse of EliminateF; it replaces cg in favor of cp and f. 

EliminateDeltaTilde replaces 6 by its definition in terms of 6 and f. 

EliminateDelta is a partial inverse of EliminateDeltaTilde; it replaces 6 in favor 

of 6 and f. 

EliminateEta replaces 7 by its definition in terms of 6 and e. 

EliminateEpsilon is a partial inverse of EliminateEta; it replaces 7 in favor of 6 
and €. 

EliminateLove replaces the Love parameters by the Voight parameters. 

EliminateKuprazde replaces the Kuprazde parameters by the Voight parameters. 

EliminateHooke replaces the Hooke parameters by the Voight parameters.



ConvertThomsen converts an expression from Thomsen notation to Voight nota- 

tion. Any of the variants, 6, 6, 7, cs, and f may appear in the expression. 

SineForm writes a trigonometric expression using powers of sine. 

CosineForm writes a trigonometric expression using powers of cosine. 

The user functions are implemented with the aid of “private” or “hidden” rules 
such as: 

CsToFRule = 

cs“n_Integer?Positive -> 

(cp*2(1 - £))*Quotient[n,2] cs*Mod[n,2] 

DeltaRule = deltaTilde -> f(Sqrt[1+2delta/f] - 1) 

CijRules = 

{ 
Ciil -> rho cp*2 (1 + 2 epsilon), 

C33 -> rho cp°2, 

C13 -> -rho cs*2 + rho cp*2 (f + deltaTilde), 
C44 -> rho cs°“2, 

C66 -> rho cs*2 (1 + 2 gamma) 

These rules cannot be directly accessed by the user—the “public” functions described 
above provide the user interface. For example, the private DeltaRule rule is accessed 
by the public function EliminateDeltaTilde: 

EliminateDeltaTilde[expression_] := expression /. DeltaRule//Simplify 

The main conversion engines are the functions ConvertCij and ConvertWeak. The 
first merely provides public access to the appropriate private rules: 

ConvertCij[expression_] := expression/. CijRules/. CsToFRule//Simplify 

The implementation of ConvertWeak is a bit harder. While Mathematica has a fa- 

cility for expanding functions in multiple power series, there is no built-in way to 
impose that terms like e? and €6 are equally to be neglected. A simple way to impose 
such conditions is to introduce a scaling parameter, here x, and expand in this single 
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parameter (this is analogous to the methodology used in the Calculus of Variations 
and other applications where functional derivatives are needed). Despite the pro- 

gramming maxim of having modules do a single job, for user convenience I decided 

to embed a call to ConvertCij within this code: 

ConvertWeak[expression_] := 
Module[{x, tmp}, 

tmp = ConvertCij [expression] ; 
tmp = tmp /. EpsilonRule /. DeltaTildeRule /. 

{ 
epsilon -> epsilon x, 

deltaTilde -> delta x, 

gamma -> gamma x 

3; 
Normal@Series[tmp, {x,0,i}] /. x->1 /. CsToFRule// 

Simplify//PowerExpand 

] 

USAGE EXAMPLES 

Voight to Thomsen Examples 

The cracks expression defined below is used as an example to illustrate use of 

the functions in the Thomsen.m package. The corresponding equation, 

C11C33 — C7, = 2Ce6(Ci3 + C33), (13) 

represents the relation between C;;’s for TI media formed by a system of thin parallel 
horizontal cracks in a purely isotropic matrix. It comes from the fact that in this 
case there are only four independent parameters instead of five for general TI media. 
See the more detailed discussion in the paper by Schoenberg and Sayers (1995) (the 
only difference is that their cracks are vertical). First, convert the expression to the 
canonical parameters and store the result in the variable generalCracks: 

cracks = C11 C33 - C13°2 - 2 C66 (C13 + C33); 

generalCracks = ConvertCij [cracks] 
4 2 

cp (-deltaTilde + 2 epsilon - 2 deltaTilde f - 

4 deltaTilde gamma - 8 f gamma + 

2 2 
4 deltaTilde f gamma + 8 f gamma) rho 

Next, eliminate f in favor of the speed cg: 
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EliminateF [%] 

  

  

2 

4 2cs deltaTilde 2 

cp (-2 deltaTilde + ---------------- ~ deltaTilde + 

2 

cp 

2 4 

8 cs gamma 8 cs gamma 

2 epsilon - + - 

2 4 

cp cp 

2 

4 cs deltaTilde gamma 2 

) rho 
2 

cp 

Just as an illustration, switch back to the canonical representation by eliminating cg 
in favor of f: 

EliminateCs[%] 
4 2 

cp (-deltaTilde + 2 epsilon - 2 deltaTilde f - 

4 deltaTilde gamma - 8 f gamma + 

2 2 

4 deltaTilde f gamma + 8 f gamma) rho 

Voight to Weak TI Thomsen Examples 

Do the canonical conversion in the limit of weak TI. Recall that in this limit, 6 
and 6 are equal. 

weakCracks = ConvertWeak[cracks] 
4 2 

2 cp (epsilon - delta f - 4 f gamma + 4 f gamma) 

2 

rho 

Use Mathematica to solve for 6:



delta /. Flatten@Solve[weakCracks == 0, delta] //Simplify 

epsilon 

correc = - 4 gamma + 4 f gamma 

f 

Use a typical value cp/cg = 2 which is equivalent to the value f = 3/4 to get a feel 
for this result: 

4/. £ -> 3/4 

4 epsilon 

aalaaieiaieinial - gamma 

3 

Introduce cg in favor of f: 

EliminateF [weakCracks] 

4 2 2 4 

2 (-(cp delta) + cp cs delta + cp epsilon - 

2 2 4 2 

4 cp cs gamma + 4 cs gamma) rho 

Solve for 6 in the new variables: 

delta /. Flatten@Solve[% == 0, delta] //Simplify 

4 2 2 4 

cp epsilon - 4 cp cs gamma +4cs gamma 
-( ) 

4 2 2 

-cp + cp cs 

  

Use a standard Mathematica function to again get the result in our typical case: 

Limit[%, cp -> 2 cs]//Simplify 

4 epsilon 

sot rst ran - gamma 

3 

ConvertWeak can also handle expressions involving the standard Thomsen parame- 

ters, as well as f and 6:



ConvertWeak[C33(1 + 2 epsilon)“3 - C44(1 + deltaTilde + delta) 3] 
2 

cp (-6 delta + 6 epsilon + f + 6 delta f) rho 

Collect[%, {cp, rho, delta}] 

2 

cp (6 epsilon + f + delta (-6 + 6 f)) rho 

Eliminating 6 

When 6 is eliminated, the underlying square root becomes explicit (unless we make 
the weak TI assumption): 

EliminateDeltaTilde [generalCracks] 

4 2 

2 cp (epsilon - delta f - 2 f gamma + 2 f gamma - 

2 delta + f 
2 f Sqrt[----------- J] gamma + 

f 

2 2 delta + f 2 

2f Sqrt[----------- ] gamma) rho 
f 

And if we want to use the pure Thomsen parameters, continue by eliminating f: 

EliminateF [%] 

4 2 2 4 

2 (-(cp delta) + cp cs delta + cp epsilon - 

2 2 4 

2cp cs gamma + 2 cs gamma - 

  

  

2 2 2 

2 2 cp - cs + 2 cp delta 

2cp cs Sqrt[ ] gamma + 

2 2 

cp - cs 

2 2 2 

4 cp -~cs + 2cp delta 2 

2cs Sqrt[ ] gamma) rho 

2 2 

cp - cs



Now go the weak TI limit and recover our typical case for the third time: 

ConvertWeak[%] 

4 2 

2 cp (epsilon - delta f - 4 f gamma + 4 f gamma) 

2 

rho 

4 /. £ -> 3/4 
4 -3 delta 3 gamma 2 

2cp (-------- + epsilon - ------- ) rho 
4 4 

Solve[% == 0, delta]//Flatten 

4 epsilon - 3 gamma 

{delta -> ------------------- } 

Using the 7 Parameter 

Alkhalifah and Tsvankin (1994) introduced the parameter 

_ e—6 

~ 1426 
  7 

to facilitate time processing in transversely isotropic media. In the package, we offer 

routines to trade ¢€ for 7 and vice versa: 

EliminateEpsilon[epsilon] 
delta + eta + 2 delta eta 

EliminateEta[%] 

epsilon 

EliminateEpsilon[(epsilon-delta)/(1 + 2 delta)] 
eta 

Love Notation Example 

You can convert Love notation expressions to Voight notation and then proceed 

as above: 

EliminateLove[{F + L] 

Ci3 + C44 
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ConvertCij [%] 
2 

cp (deltaTilde + f) rho 

EliminateDeltaTilde[%] 

  

2 2 delta + f 

cp f Sqrt[----------- ] rho 
f 

EliminateF [%] 
2 2 2 

2 2 cp - cs +2cp delta 

(cp - cs ) Sqrt[ ] rho 
2 2 

cp - cs 

Kuprazde Notation Example 

Again, you can convert Kuprazde notation expressions to Cij notation and then 
proceed as above: 

EliminateKuprazde [C2] 

Cii - C66 

ConvertCij [4%] 

2 

cp (2 epsilon + f - 2 gamma + 2 f gamma) rho 

EliminateF [%] 
2 2 2 2 

(cp - cs + 2 cp epsilon - 2 cs gamma) rho 

Collect[%, {cp, cs, rho}] 

2 2 

cp (1 + 2 epsilon) rho + cs (-1 - 2 gamma) rho 

Hooke Notation Example 

EliminateHooke [C3322 + 2 C3223] 

C11 
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Converting from Thomsen to Love or Voight Notation 

Problem: Verify that the expression 

(1 + F)(-1 + F + 2 L)/(2 - 2 L) 

is equal to Thomsen’s 6 when the Love parameter C' = 1: 

ConvertThomsen[delta] /. C -> 1 

(1 + F) (-1 + F + 2 L) 
  

2 (1 - L) 

If we want the result in terms of the Cj;: 

EliminateLove [%] 

(1 + C13) (-1 + C13 + 2 C44) 
  

2- 2 C44 

A Final Realistic Example 

Despite the general utility of Mathematica, and the specific utility of the package 
introduced here, real examples often require the skillful intervention of the scientist. 
Consider the expression in equation (6) of Tsvankin (1994): 

expr = ((C11+C44) Sin[theta]“2 + (C33 + C44) Cos[theta]“2 + 
Sqrt[((C1i1 - C44) Sin[theta]°2 - 

(C33 - C44)Cos([theta]~2)°2 + 
4(C13 + C44)°2 Sin[theta]°2 Cos[theta]~2 

])/(2 €33); 

Converting to Thomsen parameters gives: 

exprThom = EliminateDeltaTilde@ConvertCij [expr] 

2 2 

(cp (2 - f) rho Cos[theta] + 

2 2 

cp (2 + 2 epsilon - f) rho Sin[theta] + 

4 2 

Sqrt[cp rho (epsilon - epsilon Cos[2 theta] - 
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2 

£ Cos[2 theta]) + 

4 2 2 2 

4 cp f (2 delta + f) rho Cos[theta] Sin[theta] ] 

2 

) / (2 cp rho) 

We can see the common factor of pe even if Mathematica cannot. Rather than 
wasting time trying to get Mathematica to recognize this factor, it is better to force 
it out directly. Here is one way: 

ratiosq = Limit[exprThom, rho -> 1/cp*2] 
2 2 

((2 - £) Cos[theta] + (2 + 2 epsilon - f) Sin[theta] + 

Sqrt[(epsilon - epsilon Cos[2 theta] - 

2 

f Cos[2 theta]) + 

2 2 

4 f (2 delta + f) Cos[theta] Sin[theta] ]) / 2 

The routines in the Thomsen package call on Mathematica’s Simplify routine; this 
routine has a canonical form for the trigonometric functions that does not always 
give what you may want. Thus, the package contains the functions SineForm and 
CosineForm to respectively emphasize powers of sine and powers of cosine. Sometimes 
none of the three forms will give exactly what you want, but often you will be able 
to“optimize” yourself after viewing the three possibilities. 

ratiosqi = SineForm[ratiosq] 
f 2 

1 - - + epsilon Sin[theta] + 

2 

2 2 

Sqrt[f + 8 delta f Sin[theta] - 

2 2 4 

4 epsilon f Sin[theta] + 4 epsilon Sin[theta] - 

4 4 

8 delta f Sin[theta] + 8 epsilon f Sin[theta] ] / 2 

To simplify further, one has to isolate the square root term: 
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a= 1 - £/2 + Sin[theta]“2 epsilon; 
b = (ratiosqi - a)°2//Simplify 

2 2 2 

(f + 8 delta f Sin[theta] - 4 epsilon f Sin[theta] + 

2 4 4 

4 epsilon Sin[theta] - 8 delta f Sin[theta] + 

4 

8 epsilon f Sin(theta] ) / 4 

bi = Collect{b, {epsilon, delta, f}] 

2 

f 2 4 

-- + epsilon Sin[theta] + 
4 

2 4 

delta f (2 Sin[theta] - 2 Sin[theta] ) + 

2 4 

epsilon f (-Sin[theta] + 2 Sin[theta] ) 

Finally, look at the weak limit: 

weakratiosq = ConvertWeak[ratiosqi]//SineForm 
2 4 

1 + 2 delta Sin[theta] - 2 delta Sin[theta] + 

4 

2 epsilon Sin[theta] 

Collect[weakratiosq, {epsilon, delta}] 

4 

1 + 2 epsilon Sin[theta] + 

2 4 

delta (2 Sin{theta] - 2 Sin[theta] ) 

4//Simplify 
2 

4 delta Sin(2 theta] 

1 + 2 epsilon Sin[theta] + ------------------- 
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