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ABSTRACT 

If we assume the velocity profile is an image that can be compressed greatly 

using wavelets, then a relatively smaller wavelet represented model can be equiv- 

alent to a larger physical model; then we obtain the modified Cohen/Bleistein 

inversion formalism by restricting the perturbation to the smaller wavelet repre- 

sented model. The method demonstrates three important features: first, all the 

Cohen/Bleistein technique can be modified easily; second, much larger inverse 

problems can be solved since they are expected to be greatly reduced; third, the 

ill-posedness can be alleviated by ladder inversion, i.e. inversion from low to high 
wave number versions.     
  

INTRODUCTION 

By a linearization process, most seismic inverse problems can be written as Fred- 

holm integral equations of the first kind, as 

ic: X,;X,)m(x)dx = b(x,;Xs), 

where m(x) is the model to be determined, and the kernel k(x;x,,x,) and the right- 

hand side b(x,;x,) are known (at least in an interative manner). The use of such 
integral equations as a numerical tool in large-scale computations is rather limited, 

because such integral equations normally lead to dense systems of linear algebraic 

equations, and the latter have to be solved either directly or iteratively. Beylkin et 

al. (1991) introduced a very important and interesting idea, namely that if regularity 

permits, using compactly supported wavelets, such as Daubechies (1992) wavelets, 

dense matrices can often be converted to a sparse form. This technique is called the 

compression of operators. 

In our paper, instead of compressing the kernel, we compress the model, m(x). 

This demonstrates several important features: first, the assumption of the model 
  

*Department of Mathematics, University of Wyoming, Laramie WY 82071 

tCenter for Wave Phenomena, Colorado School of Mines, Golden, CO 80401



m(x) being an image is natural; second, the compression of m(x) exactly also leads 
to the compression of the kernel, or in other words, the compression of the operator; 

third, the compression of the model naturally truncates the very high wavenumber 

components which cause ill-posedness; finally, since our aim is to obtain the model 

m(x), we can simply set the cut-off error for compression of the model, while to set 

the cut-off error for the compression of the kernel to control the error of the model 

m(x) is an open question (See Beylkin et al, 1991.). 

MULTIDIMENSIONAL WAVELETS GENERATED BY SINGLE 
MOTHER WAVELET 

By Multiresolution Analysis, C?(R*)—square integrable functions of three inde- 

pendent variables-can be decomposed into a ladder of subspaces with orthonormal 

wavelet bases by fast decomposition algorithms. Thus any function in C?(R3) can 
be represented on these wavelet bases. The coefficients bear very striking physical 

features of both space and aperture, due to the space-aperture localization properties 

of wavelets. The signal can be reconstructed from these wavelet coefficients by fast 

reconstruction algorithms. Storing the nonzero wavelet coefficients can substantially 
compress the signals. 

The Daubechies’ (1992) orthogonal wavelets are compactly supported. The com- 

pactness of support translates to a saving of computation and storage. For geophysi- 

cal problems, including migration and inversion, symmetry is also desirable. However 

simultaneous symmetry and compactness is impossible, thus we use the least asym- 

metric compactly supported wavelets with maximum number of vanishing moments 

(Daubechies, 1992). More vanishing moments mean better approximation for smooth 

functions (Wickerhauser, 1992). We choose wavelets with the above features to apply 

the velocity inversion by wavelet represented perturbation. 

Suppose 7) € £2(R) and ¢ € L?(R) are a pair of Daubechies’ compactly supported 
wavelets and scaling functions. In the case of a real orthonormal mother wavelet and 
real signals to be processed, we can define the midpoint and radius of 7 in the space 

domains, 

o = |x| ¥(2) P de, (1) 

dy={f@-2F1¥@) Pac}, (2) 
and in the aperture domains as 

k= (2m) [| BUR) Pak, (3) 

Ag = (2m) f [YP | HR) Paw), (4)



The above definitions are slightly different from those of Chui (1992), and here the 
Fourier image of f € £?(R) is defined as 

fk) = [et f(x)dz 
Then, for example, the wavelet coefficients of f € £?(R), defined as 

di =< f,bj; >= (20) < fi dj > (5) 

represent the local information in a space-aperture window centered at (27 (i-+a*), +2~Jw"): 

[2’ (é+a*—Ay), 2’ (i+a*+Ay)] x {[2-7(—k* Ag), 2°77 (—k* + Ag)JU[2-7 (k*—Ag), 2-7 (k*+A5)]}. 

In the 1D case, define the subspaces of £?(R), as 

Vi = span{¢,i(2) = 274/29(24x — i),i € Z} (6) 
and 

Wi! = span{v;;(2) = 2-4/7y)(2% a — i), € Zh. (7) 

In the 2D case, define the subspaces of £?(R?), as 

V? = span{;4(x) = $4,, (71), (#2), 1 € Z?, x € R*}, (8) 

and 

Wi = span{?}4(x) = Vjuir (21) $3, (x2), i € Z?,x € R’}, (9) 

Wi, = span{p? (x) = $;,, (11) Pj, (v2), 1 € Z’, x € R*}, (10) 

wi = span{?? (x) Be Wir (21) P59 (x2),i € Z?,x € R’}, (11) 

and 

Wi = oi, Wi. 
Here, @ is the direct sum. In the 3D case, similarly, we define the linear subspaces 

of £?(R), as 

Vi = span{$;i(x) = $44, (1) bj,i2 (2) j,i (#3), 1 € Z?, x € R?}, (12) 

and 

Wi = span{ yj ;(x) 5,8, (21); in (£2) 5,45 (23), 1 € Z, x € R}, (13) 

Wi = span {#7 ;(x) 31 (11) Vj,4 (€2) 3,4, (#3), 1 € Z?,x € R3}, (14) 

W3 = span{h}4(x) = $4 
(x) 

(x) 

( 

Wi = span{ pi; (x ini ( 

Wi = span{ i? ;(x 

(x3) 

(x3) 

21) bj,i (T2) Vj,i3 (43), 1 € Z?, x € R54, (15) 

11) Vj 4 (2); (23), 1 € Z°,x € R*}, (16) 

vis (211) j,i (@2)Vj,i5 (#3), 1 € Z, x € R*}, (17) 
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Wé = span{¥9;(x) = Vy,i, (#1) Dijin (v2) ;,5 (#3), 1 € Z?,x € RY}, (18) 

Wi = span{w7 s(x) = djs, (21) Yj,is (72) Yjis (23), 1 € Z*,x € R}, (19) 

and 

W? = @/.,W}. 

We extract some results of Meyer’s Multiresolution Analysis, as follows: 

Va £?(R), as j 4 —00; 

{%;;,i € Z?} constitute an orthonomal base for V’,j € Z; and 

Viil=Wwewi. (20) 

The set. of functions, {viii € Z5}, constitute an orthonomal base for Wj, j € Z,1< 

1<7, and {yi ,,ie Z?,1 <1 <7,j € Z,} constitute an orthonomal base for L?(R°); 
etc. 

ON THE COMPRESSIBILITY OF THE MODEL 

The success of data compression with wavelets suggests that only a few wavelet 
coefficients may contain sufficient information to reconstruct the signals (Meng and 

Yang, 1995). Thus, it is a good idea to calculate the few wavelet coefficients of a 

velocity model v instead of the fully spatially discretized model through a large, and 

often seriously ill-posed computation (Yang and Meng, 1995). 

For example, Yang and Meng (1995) compressed a bulk modulus « with 1024 
samplings by only storing the wavelet coefficients with absolute values greater than 

the cutoff= e||x||° and determined compression ratios with respect to different cutoff 
levels. For example, the compression ratios 92% and 90% were obtained for cutoff 

rates 2.56% and 1.024% respectively. Yang and Meng (1995) concluded that in the 
1D case, the “size” of an inverse problem can be greatly reduced if the inversion of 

parameters is carried out in wavelet represented form. 

3D WAVELET REPRESENTED CB METHOD 

As in Cohen and Bleistein (1979), we introduce a right-handed coordinate system 
xX=(2 1, £2, 23), with x3 being positive in the downward direction into the earth. The 

observed field is the backscattered response from acoustic point sources set off at 

every point x, = (rj,73,0) on the surface of the earth. We assume the total field 

u(xX;X,;w) is a solution of the Helmholtz equation, 

we 

Au(x;X,;w) + oa)" (x;X,;w) = —6(x1 — 2})8(r_ — 25) 6(z3). (21)



In this equation, v(x) is the variable reference speed we seek. For simplicity, we will 
omit the overhat for the Fourier transforms from this section. 

As in Cohen/Bleistein (1979), we model the problem as if the medium is extended 
to negative infinity in z3. Cohen and Bleistein introduced a reference velocity co(x) 

and an arbitrary perturbation. However, here we restrict the perturbation to be a 

linear combination of certain dilated and translated versions of a mother wavelet, 

inspired by the ladder inversion method developed in Yang and Meng (1995), based 

on the fundamental ideas of Daubechies (1990) and others, thus we set 

1 

v(x) 

  

aw ithe iy alx . (22) 
jill 

We decompose the total field into an incident and scattered field 

u(X;Xs3W) = uy(x; X55 w) + ug (x;xX5;w), (23) 

in which w;(x;x,;w) is the response to the source in the unperturbed medium, 

w 
Aur(x;X.3w) + Bx) yu 

and ug for small perturbation must then satisfy 

uz(X;Xs;w) = —8(2, — rj) 6(r2 — 15) 6(x3) (24) 

2 Ww 
° . . . =— -= Augs({x;X.3w) + (x) Us(Xj}X.;w) = 

wr 
do Gah a) er (2; X55). (25) 

COX) 5 

Cohen and Bleistein used the Green’s function to write down a representation of 

the backscattered field ug(x,;x,;w) and obtained 

  

  

Ug(Xp3 X53) =w \ di ifog ue 1(X} X53 w) Uz (X;X,p5 ww). (26) 
gli 

Again, this is an equation with unknown d = {d);,1 <1 < 7;j € Z}. The Green’s 
function u; is a solution of 

E + ex a5 * 1(X,Xs,w) = —6(x — x,). (27) 

The WKB approximation to uw, is 

ur(X,X5,w) ~ A(x, x,) exp[tw7(x, x,)], (28) 

Here, 7 is a solution of the Eikonal equation 

1 
. = 2 Vr-Vr Px’ (29)



and A is a solution of the transport equation, 

2Vr-VA+ AV?r =0. (30) 

In general we can obtain the asymptotic Green’s function by 3D ray theory. Then 

(26) becomes 

tus (Xr5 X43 W) = Do dy iGji(Kr X05 w). (31) 
jib 

where 

bi a(x) 
cB(x) 
  gh i(Xp3%o3w) = w > dx A(x, x.) A(x, x) exp{iw[7(x,x,) + 7(x,x,)]}. (32) 

One can derive a linear system of equations with constant coefficients for ds iD 

applying wavelet transforms with respect to x, and x,. This yields 

Isls Elyils 
U5, tf 13 Jest] 43 ;(w) = » i953 Air sty 5 iJostt 43 s(¥), (33) 

ji 

by 

where 

ysl tye 
UF ee asia it ig (W ) = f dred i ig (T}, £9) | actansu, “it ig(Z1,TQ)Us(Xrj X55), (34) 

and 

Flyile 
Tpisiesit A5id eit #3 sw) = w? | dxidesy Je stot s(21, ©) 

(35) 
t t yy : [aes ss ig ai, 29) 0a ( 05650), 

Equation (33) is the linear system we seek for the set of coefficients, d, 5. We do 

not know anything about the coefficient matrix for this system in general. However, 

below, we show that this system is readily invertible for the zero offset constant back- 

ground case. Furthermore, each coefficient will be given in terms of a “localization” 
of the observed data in the Fourier domain. These observations support continued 

research on this approach to inversion. 

In practice data covering all x, and x, are often not available. Instead, we have 

different gathers of data of limited extent. As we shall see, we can modify (33) for 
particular data acquisition geometrics.



3D CONSTANT REFERENCE WAVELET REPRESENTED CB 
METHOD 

In this section, we specialize to the case in which cg is a constant, and consider the 

zero-offset case. We set € = x, = x,. In this case, u;(x;&;w) can be expressed 

explicitly, since it is proportional to the spherical Hankel function of the first kind. 

Then equation (26) becomes 

  

pod [axv}a(x) ) expleio|x = €1/co), (36) 
us(€; €;w) x — €p 

ais 

To solve equation (36) for d by Fourier methods, following Cohen and Bleistein 

(1979), we introduce the function, 

alge) = ~ie, [Hats Se) (37) 
Then we have 

O(E; ang <> di Jax Wh i(x ena . (38) 

0 j,i 

This is the analog of equation (26), although we have already modified that equa- 

tion by differentiating with respect to w. In this case, the simple convolution form of 

the result makes Fourier transformation in —the specialization of x, and x, to zero 
offset—more attractive. Accordingly, we introduce the transverse Fourier transform in 

the variables € and &9: 

O(ki, ko;w) = J a8:a&0(6;w) exp[—2i{kié1 + k2€>}}. (39) 

The factor of two in the phase here is a convenience, since without it a factor of two 

woumd have to be introduced into the familiar dispersion relation (41), below. 

We now apply this Fourier transform to equation (38) to obtain an integral equa- 

tion for 051,145 Hi ;(k). The result of transforming this equation is 

— 8ricik3O(k1, ko;w) = ds [ dag} ;(k1, ke, 3) exp(2iks|xr3|). (40) 
2. i 

In this equation 

(sgn w) /a2/B— PKB, w?/cR > KP + HY, 
k3 = (41) 

ig/k? + k5 — w?/cG, w?/co < k? + ki. 
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The function 15.14) ;5;(x) and also 05.44) ;¥4;(ki,k2, 23) are assumed non-zero 
only for x3 positive. Therefore, there is no need for the absolute value sign in equation 

(40) and the right side of this equation becomes the 3D spatial Fourier transform of 

Lihi di 5D ;(x); or, Then 

» di, Wi i(k )= —8richk3O(ki, ko;w), k = (k1, ke, ks), (42) 
iti 

with k3 defined by the dispersion relation, which is the upper choice in equation (41). 

The function O(k;,k2;w) is defined in terms of the observed surface data through 
equation (39). By the orthonormality of the wavelets we obtain 

di; = —8nic3 / dkk3©(hy, ko;w)Wi;(k), for all l,j and i. (43) 

Thus, we have not avoided the use of wavelet transform by introducing the Fourier 

transform in this case; we have merely postponed its application to the Fourier do- 

main. Furthermore, because this is the zero offset case, we apply the wavelet trans- 

form only in the common source/receiver variables, not in two sets of variables as in 
the general discussion, above. This result provides an indication of the likelihood of 

inversion of equation (33); for the zero-offset case, the Fourier transform has effected 

the inversion of this system of equations. 

One striking feature of the standard Cohen/Bleistein method (Bleistein el al, 1985) 
is the technique of obtaining the reflection coefficient r(x) by simply multiplying by 

iw/2cp in (43), yielding 

ri = 4nce / dkk3w0 (ky ka; w) Vij (k), (44) 

or equivalently, 

jl 
rie Aco Df dkydhadks kgwO(ky, ko; w) yi i(k) exp[2i{k,2x + kev, — kgx3}}, (45) 

where 

= Sor iy (x), (46) 
gla 

is the reflection coefficient, these results are obtained by considering only the leading- 
order asymptotic approximation and interpreting the output in terms of the reflec- 

tivity function of the subsurface. An immediate simplification can be achieved by 

extracting only the leading term of © as defined by equation (37), we have 

a Bus (hs, Bas w) 
O(ki, ko; w) = dw (47) 

Thus, we can rewrite (45) as 

4c? kg rt, = 2 2 | dk dkydkegdE, dfodt—tus(€; €;t)¥4 (I) 

(48) 
exp[{2i[k (v1 — &1) + ko(ae — €2) — kgxg] + iwt}], 
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or 

4 rhe = xy [ dhrdkpdudé dfadt tus (€; €;t)V} (ke) 
(49) 

exp[{2i[ki (21 — €1) + ke(t2 — &2) — kara] + iwt}}, 

where we integrate over the bandwidth of the data and over those values of k; and 

ka for which k3 = k3(k1, ko;w) as defined by (41) is real. 

Formula (43) or (48) has a clearer physical meaning than the standard Cohen/Bleistein 
formula. The correction of the velocity confined to a distinct spatial-aperture window 

is obtained from field data truncated to the corresponding wave number window. In 
other words, if we want to get the information about the earth structure in a certain 

spatial-aperture window, we only need the data in the corresponding wave number- 

aperture window. An important conclusion is that the inversion of wavelet coefficients 

dy can be carried out independently. That is, the equivalent system matrix of the 

first order perturbation system is essentially diagonal for a constant reference model, 

and, should therefore be “almost” diagonal for a low wave number reference model. 

2.5D WAVELET REPRESENTED CB METHOD 

In 2.5D, equation (31) is replaced by 

us(Xr}Xs3W) = Dodi igh. (Xi Xeiw), (50) 
j,i 

where 

I io. _ a, (11, 23) 

Fjyisjig Mri Xe) = ® f dares vl (ers) 

(51) 
J dxaA(x,x.)A(x,x-) exp{iw[7(x,x,) + 7(x,x,)]}. 

Here 7 is the solution of the 2D eikonal equation, and A is a solution of the in-plane 

3D (2.5D) transport equation, see Bleistein et al. (1987). 

To solve the equation for d',; i1,i3, We apply the wavelet transforms with respect to 

x, and x,. For a common source gather x, = (x,,0,0) and x, = 0, we solve for d by 

solving 

ur (w) = » dl 5 iT siasdede (w), (52) 

Jil it ts 

where 

uly i, (W) = " day (x,)ts(X,; 0; w), (53) 

and 

A! asinie to) =? f dare (ce) Oh i iy (ri 0502). (54) 
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For a common receiver gather, x, = 0 and x, = (z,,0,0): 

bl 
ult a, (w) = . d Oy sssig G7 kcvisihonts (w), (55) 

Jobst etd 

where 

uf a,(W) = / dx.w't ;,(2s)ts(0; x5; ~), (56) 

and ha 

jin sissiarie (w) =wW ® f dev, lorie (25)9}.4 81 53 (0; Xs,W w). (57) 

For a common midpoint gather, x, = —x, = (z,, 0,0): 

il, 
ult, (w) = & Os sig G55 sdesie (w), (58) 

Job yt1 83 

where 

U;,, tw) = | dxevs irs i, ( (r,)Us(X,} —XrjW), (59) 

and 

I, ssnsel) =O f dares, (Gr) tg ri Xe 2). (60) 
For the zero offset case, x, = X, = (2,,0,0): 

. _ bl 
uf, (w) ~ he ds i ig Gi igsdeyir (W)> (61) 

Ist yt 83 

where 

ulr . (w) = | dx,w't . (x-)Us(Xpj Xp; W), 62 
Irotr rote 

and 

OF sissies) aw ? f drew 5, (x (rr) G9} i is (Xp; Xp3 Ww). (63) 

Equation (52) for (55),(58),(61)] is a linear system for the wavelet coefficients. 

Solving the linear system (52) is equivalent to calculating the fundamental determi- 

nant h(x, €); thus solving this system is the crucial step in the practical implementa- 

tion. 

Notice that, since we assume the velocity model is an image, due to the high 

compressibility of the wavelet coefficients, only a small number of unknown wavelet 

coefficients are sufficient, to effect the recovery of the velocity model. Thus, we expect 

that the system can be reduced in size substantially. For example, in Yang and Meng 

(1995), by solving a linear system similar to (61) for 1/20 of the unknowns, the 1D 

density and bulk modulus profiles were reasonably reconstructed. If we assume the 

model is a multidimensional image, then the ratio of the number of unknowns that 

need to be calculated to the number of total unknowns should be relatively small. 

One important step for us to “compress” the model to be determined successfully 

is to know where both in space and aperture we need to know about the model. This 

is not a problem in applications. 
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2.5D CONSTANT REFERENCE WAVELET REPRESENTED CB 
METHOD 

Recall that 2.5D inversion is obtained from 3D inversion under the assumption 

that there is no out-of-plane variation in the background velocity or in the velocity 
perturbation. Thus, only the operator depends on the out-of-plane variable, not the 

data. Thus, the inversion formulas for the 2.5D case are readily obtained from the 

results for the 3D zero offset case, as 

4c3 k Misdn = ef dkydhgdes dtu (E15 £154) Yh, in (bs) 

    

(64) 
-exp[{2¢[ki (21 — 1) — kgx3] + wwt}], 

or 

4 
thing = = f dbydirdE dt tus (Er; £154). jg (15 ha) 

(65) 
-exp[{2¢[ki (x1 — £1) — kgx3] + iwe})], 

where the dispersion relation 

we we 
fy = sane ( a). S — > ki. (66) 

ia) o 

The range of w and k, for which kg is imaginary is not used. 

STRATIFIED REFERENCE WAVELET REPRESENTED CB 
METHOD 

In the stratified reference case, we have 

us (rw) = D0 dii95,i(r) (67) 
ili 

where 
2 q . K 

Li.) & ya(X) exp[2iwT (K, x3)] 

spalried) = ae | 4x (as) ka(K,O)ks(K,25)E(K,23)H(K,2,) ©) 
here the quantities k3,#,H and the traveltime 7 are defined in Cohen and Hagin 

(1985). Again, we solve for d from the equations, 

. Isl, 
UF ae ix (w) = Do GiGi is (w), (69) 

jilsi 

where 

wy ir 23 (w) = [acs dsr DY rig (2] 2p) Us(Xr,W), (70) 

and hl 

ofits, apaglto) = 0? f derpdas eh, rig 21, 29) (52). (71) 
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CONCLUSIONS 

We have derived a system of equations for coefficients in a wavelet expansion of 

the perturbation in propagation speed. Our method is based on the Bleistein/Cohen 

inversion formalism. The system matrix is a multi-scale, multi-variable decomposi- 

tion of the inversion operator operating on the observed data. We have no a priori 

estimates of the condition number of this matrix. However, when we specialize to the 

zero-ofiset, constant background case, we find that Fourier transform leads to a well- 

conditioned solution for the wavelet coefficients we seek, leading us to believe that 

something similar is likely in the case of a slowly varying background velocity and 

small offset, at the very least. The Fourier solution also indicates that localization of 

the solution in space is directly tied to localization of the observed data in the wave 

number domain. 

When the perturbation consists primarily of reflectors (functions with nearly two 

dimensional support in a three dimensional domain, for example), we expect signifi- 

cant compression in the wavelet domain compared to a pointwise description of the 

velocity function. Thus, we expect that the number of wavelet decomposion coeffi- 

cients that we need to determine will be relatively small compared to the total number 

of data points in a Cartesian description of the velocity variation. 
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