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INTRODUCTION

This book is a review of the research program at the Center for Wave Phenomena,
Colorado School of Mines, as of April 30, 1992.

The projects described here reflect our dual interests in 1) computer-efficient seis-
mic data processing, and 2) inversion — including amplitude effects(dynamics) as
well as phase effects (kinematics) in seismic methods.

Two new sponsors have joined our consortium during this year. We welcome the
support and interaction of Elf Acquitaine and Compagnie Générale de Géophysique

(CGG).

CWP people

The consortium project has been led by Norm Bleistein, Jack Cohen, Dave Hale
and Ken Larner. We currently have two visiting faculty: Michel Dietrich, from CNRS,
Grenoble, France; and Jianchao Li from the Department of Geophysics, China Uni-
versity of Geosciences, Beijing. Both men will return to their home countries this
summer. Michael Zhdanov, Head of the Troitsk Branch of the Institute of the Physics
of the Earth, USSR Academy of Sciences, begins a one-year visit with us in May.

Students who received partial or full support by the project during the past year
are Phil Anno, Craig Artley, Tong Chen, Lydia Deng, Francesa Fazzari, Tong Fei,
and Andreas Reuger. Other students who worked with the CWP faculty include
Mohammed Alfaraj, Tariq Alkhalifah, Zhenyue Liu, and Omar Uzcategui.

Jo Ann Fink manages our administrative matters, and Barbara McLenon is our
publications and technical editor. Marge Hoage, in her role as Ken Larner’s secretary,
also contributes her efforts to CWP. Research associate John Stockwell serves as our
systems manager and resident scholar.

Below is a summary of CWP activities during the past project year.

Presentations at the 91 SEG meeting

The following authors presented papers at the International Meeting of the Society
of Exploration Geophysicists in Houston:

e Mohammed Alfaraj and Ken Larner, Dip-Moveout for Mode-Converted Waves

e Phil D. Anno, Emergence Planes for Three-Dimensional Ray Tracing

Craig T. Artley, Dip-Moveout Processing for Depth-Variable Velocity

Norman Bleistein and Jack K. Cohen, The Cagniard Method in Complex Time
Revisited

Justin P. Hedley, 3-D Migration via McClellan Transformations on Hexagonal
Grids
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e Ken Larner, Migration Overview

e Zhenyue Liu and Norman Bleistein, Velocity Analysis by Inversion

Status of recent papers

CWP-090: Dong, W., Emanuel, M.J., Bording, P., and Bleistein, N., 1990, A com-
puter implementation of 2.5D common shot inversion: Geophysics, 56, 9, 1384-
1394.

CWP-095: Hale, D., 1990, Stable explicit depth extrapolation of seismic wavefields:
Geophysics, 56, 11, 1770-1777.

CWP-096: Hale, D., 1990, 3-D depth migration via McClellan transformations:
Geophysics, 56, 11, 1780-1785.

CWP-098: Bleistein, N., and Cohen, J.K., 1991, An alternative approach to the
Cagniard deHoop method: to appear, Geophysical Prospecting.

CWP-099: Li, Z., 1990, Compensating finite-difference errors in 3-D migration and
modeling: Geophysics, 56, 10, 1650-1660.

CWP-100: Mikulich, W., and Hale, D., 1990, Steep-dip v(z) imaging from an en-
semble of Stolt-like migrations: Geophysics, 57, 1, 51-59.

CWP-101: Dong, W., and Bleistein, N., 1990, 2.5D Kirchhoff inversion theory ap-
plied to VSP and crosshole data: joint paper with MIT, submitted to Geophys-
ical Prospecting.

CWP-103: Bleistein, N., 1991, Mathematica and the method of steepest descents:
to appear in two parts, Seismic Exploration Journal.

CWP-105: Alfaraj, M. and K. Larner, 1992, Short Note: Transformation to zero
offset for mode-converted waves: Geophysics, 57, no. 3, 474-477.

CWP-106: Aldolaijan, A., 1991, Residual phase estimation by homomorphic trans-
formation: submitted to Geophysics.

CWP-108: Cohen, J., 1992, Packages for logic and set theory: Mathematica Journal,
2, no. 1, 91-93.

CWP-109: Cohen, J. and David R. DeBaun, 1991, Discrete approximation of linear
functionals: submitted to Mathematica Journal.

CWP-110: Hedley, J.P., 1991, 3-D migration via McClellan transformations on
Hexagonal Grids: to appear in Geophysics August, 1992.
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CWP-111: Worley, Shelby C., 1991, The geometry of reflection: submitted to Geo-
physics.

CWP-112: Hale, D., and C. Artley, 1991, Squeezing dip moveout for depth-variable
velocity: submitted to Geophysics.

CWP-113: Dietrich, M., and J.K. Cohen, 1992, 3-D migration to zero offset for a
constant velocity gradient: submitted to Geophysical Prospecting.

Excerpts from the following student theses appear in this review. Sponsors will
receive the completed reports in the near future:

CWP-114: Deng, H.L., 1992, Seismic wave propagation in thinly-layered media with
steep reflectors: M.Sc. thesis, Colorado School of Mines.

CWP-115: Artley, C., 1992, Dip moveout processing for depth variable velocity:
M.Sc. thesis, Colorado School of Mines.

CWP-116: Fazzari, F., 1992, A dip-dependence divergence correction: M.Sc. thesis,
Colorado School of Mines.

CWP-117: Anno, P., 1992, A Klein-Gordon Theory for Acoustic Modeling and
Imaging: Ph.D. thesis, Colorado School of Mines.

Computer program documentation

We now offer our software on unix tar diskettes or tapes. Sponsors with access to
Internet can also acquire files by FTP. Call us if you have questions on how to access
those files.

UO8R: Docherty, P., Documentation for the 2.5-D common shot program CSHOT,
1988. Proprietary: 1/27/91. Revised version distributed to the sponsors, July,
1991.

U13R: Dong, W., CXZCS: A 2.5D common shot inversion program in a c(x,z)
medium. Edited by Z. Liu. Proprietary: 2/14/93. Revised version distributed
to the sponsors March, 1992.

U15: Hsu, C., CXZCO: A 2.5D common offset inversion program in a c¢(x,z) medium.
Edited by Z. Liu. Proprietary: 10/12/94.

Two additional codes written by Dave Hale are also available to sponsors on
request through the FTP directory or by request:

e Migration by extrapolation

¢ Triangular modeling package
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Transformation to zero offset for mode-converted
waves by Fourier transform

Mohammed Alfaray

ABSTRACT

Approximate transformation to zero offset (TZO) for mode-converted waves
can be done in the frequency-wavenumber ( f-k) domain by using an expression
for the moveout of reflections from dipping reflectors in a constant-velocity med-
ium. The moveout expression is derived by first writing both time and offset as
power series in a slowness parameter v. Traveltime is then obtained as a power
series in offset, by matching like powers of v in those two power series.

The f-k formulation for TZO, here, is based on the hyperbolic approximation
to the derived moveout expression. Unlike that for ordinary p-waves, at this
level of approximation the f-k formulation for mode-converted waves has an
extra, time-invariant, linear phase shift corresponding to a constant lateral shift
in space. For a horizontal reflector, the lateral position of the conversion point for
mode-converted waves should actually change as a function of depth and offset. I
further modify the phase shift to be time-variant to better resemble this behavior
of converted waves. Besides being shifted, the impulse response of this TZO
method is an ellipse that is slightly squeezed relative to that of ordinary p-waves.
Application of this TZO method to synthetic data shows that even at this level
of approximation it is important to tailor TZO to treat mode-converted waves.
Conventional TZO fails to correct data as well.

INTRODUCTION

Transformation to zero-offset (TZO) for a constant-velocity medium is well under-
stood and is readily implemented when dealing with either p-waves or s-waves. For
instance, TZO can be achieved by first applying normal moveout (NMO) correction
and then applying dip moveout (DMO) correction to the prestack seismic data (e.g.,
Hale, 1984). The TZO process transforms prestack seismic data in such a way that
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common-midpoint (CMP) gathers are closer to being common-reflection-point (CRP)
gathers after the transformation.

Converted (p-s or s—p) waves are different from normal (p—p or s—s) waves in that
the downgoing and upgoing waves travel at different velocities, even in an isotropic,
homogeneous medium. This makes the kinematics more complicated than those en-
countered in the absence of mode conversion.

TZO for mode-converted waves has been investigated by several researchers.
Sword (1984) suggested that mode-converted data be transformed, in both offset and
midpoint, prior to any conventional processing. His analysis is valid for only small
offsets. Harrison (1990) and den Rooijen (1991) have proposed integral solutions for
the TZO process for converted waves in constant-velocity media. Implementation
of their methods is carried out in such a fashion that the recorded nonzero-offset
time ¢ is directly mapped into its corresponding zero-offset time 3. TZO for mode-
converted waves can also be achieved by applying DMO prior to NMO correction
(Alfaraj and Larner, 1992) by means of transforming the prestack data into a non-
physical offset-time domain. The DMO correction depends only on the ratio of the
velocities, not on the individual velocities themselves. Although kinematically cor-
rect, this nonphysical-domain TZO approach falls short of properly treating phase
and amplitude.

Here, a method is proposed to address the TZC problem for converted waves in
the frequency-wavenumber (f—k) domain. The derivation is based on an approximate
expression for the moveout of reflections from a dipping reflector in a constant-velocity
medium. The derived moveout relation expresses traveltime-squared as a power series
in offset; the f—k TZO formulation itself is based on the hyperbolic approximation to
the derived moveout relation. This level of approximation avoids having to deal with
cubic and higher-order equations. To alleviate the discrepancy arising from truncating
the power series, I modify the f-k formulation to yield a TZO operator that honors
the lateral shift in conversion point, relative to the midpoint, for horizontal reflectors.

THE KINEMATICS OF CONVERTED WAVES

For ordinary p-waves, and in a constant-velocity medium, traveltime can be ex-
pressed as an explicit function of offset, zero-offset time, velocity, and dip (Levin,
1971). This relation, the well-known hyperbolic moveout equation, is used as the
basis in deriving TZO by Fourier transform for ordinary p-waves (Hale, 1984). For
mode-converted waves, an exact time-distance relation was introduced by Harrison
(1990) and by Alfaraj and Larner (1992). Unfortunately, unlike the situation for or-
dinary p-waves, the traveltime expressions for mode-converted waves are not explicit
functions of dip. To formulate an f-k TZO operator, we need a moveout relation
in which time explicitly depends on dip. An approximate dip-dependent moveout
relation is derived next.
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The derivation is based on the model of a single dipping reflector in a constant-
velocity medium, as shown in Figure 1. In that figure, the offset distance separating

) X ~
S y 4

FIG. 1. Depth section depicting a mode-converted, reflection ray path in a homoge-
neous medium with a dipping reflector.

source s and geophone g is x. The quantity D designates the distance from the
midpoint y (between s and g) to the reflector, whose dip angle is §. The angles
between the normal to the reflector and the incident and reflected (mode-converted)
rays are, respectively, ¢, and ¢,. From the geometry of the figure, offset z can be

expressed as
2D(tan ¢, + tan ¢y)

¥ = Scost + sinf(tan ¢, — tan @y) 2

With the downgoing and reflected waves traveling at speeds v and ~yv, respectively,
the traveltime for the reflection is then given by

1 1 1 zsinf 1 1
b= v lD (cosdx9 t+ 7cos¢g) + 2 ('ycos¢g B cos¢3)l ) (2)

The angles ¢, and ¢, can be expressed in terms of a slowness parameter v along the
dipping interface using Snell’s law:

L= sin @, _ sind)g. (3)

v Yv

In the presence of dip, and unlike that for ordinary p-waves, traveltime for mode
converted waves is no longer an even function of offset within a CMP gather. That

3
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is, considering p—sv conversion for example, interchanging s and ¢ in Figure 1 yields
a different ray path and, hence, a different traveltime. The dependence of time ¢ on
offset x can thus be expressed in the following series form

=cp+cx+cx®+ed+..., (4)

which includes both odd and even powers of z. In the absence of mode conversmn
odd powers of x would drop out from this power series expression.

Equations (1) and (2) can be expressed in terms of the slowness parameter v by
substituting for ¢, and ¢, their values from equation (3). Consequently, t2, z, z2,
3, ..., are expressed as power series (Taylor expansion) in the slowness parameter v.
After substitution of those into equation (4), the coefficients ¢; can then be recursively

solved for by matching like powers of v. The first five coefficients are

_ (2D\* _
© = (E) =T
o 2(1 — y)tpsiné
1+7)v, ’
o 4ycos? 0 + (1 —7)%sin? 6
(1 +7)%02 ’
e 8v(1 — ) cos? Gsin b
(1 +7)30v3
. 49(1 — ) cos® @ [('y —1)cos?0 + (2 — 2y — 7?) sin? 0]
4 =

(14 7)*tgv2 ’

where v, is an average velocity (Alfaraj and Larner, 1992), given by

2 [1 1 ]
—— = - + - .
Vg v v
If the series in equation (4) is truncated beyond the third term, the approximate

moveout relation, after some algebra and trigonometric substitution, becomes

2(1 — y)torsin @ 4yz? [(1 —7)% — 47] x%sin%6
1+ 7)va (1+7)%3 (1 +7)%2

2 =12

(3)

-+

This relation is clearly an even function of neither offset nor dip. Note that when vy =1
(no mode conversion), equation (5) reduces to the well-known hyperbolic relation for
ordinary p-waves. Equation (5) will next be used to facilitate the derivation of TZO
in the f-k domain.
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f—k TZO FOR CONVERTED WAVES

The third term in equation (5) has no dip dependence, and is referred to here as
T?. Define NMO-corrected time t, by
£2

n

=2 -T2 (6)

with the assumption that the recorded and the NMO-corrected seismograms, p and
Dn, Tespectively, are related by p,(t.,y,h) = p(t,y, h). Here, y denotes midpoint and
h is half-offset, given by z/2. Zero-offset time ¢ is then obtained from (5) and (6) as

. 2(y—1)hsinf + \/t?.(l + v)202 + 16yh2sin® 4
0 =

(1+7)va ’ ™

where it is assumed, again, that po(to,y, ) = pn(tn,y, h).
For a given half-offset h, the 2-D Fourier transform of po(to,y, k) is defined by

Po(w,k,h) = [dtge [ dye™™ po(to,y, h). (8)

The integration over ¢y in the above transformation can be expressed in terms of ¢,
using the change of variables given by equation (7). Making use of the relations for
the zero-offset slope (Atg/ Ay) in the physical and Fourier domains, i.e.,

Aty  2sinf _k

N> w’

it follows from (7) that

[

tn 4yh2k?
. P V¢ L
dty J (1 + 7)22w?’

and the transformation in (8) can then be written as
Py(w, k, k) = / dt, A™! et Bk / dy e pa(ta,y, h), (9)

where B = h(y — 1)/(v + 1). The fact that B is a constant (for a constant offset 2h)
implies a linear spatial phase shift, i.e. €/B*, in the Fourier domain. This linear phase
shift, in turn, corresponds to a constant lateral shift in the space domain. Specifically,
this constant shift is the asymptotic approximation (offset very small compared with
depth) for the spatial location of the conversion point for a horizontal reflector.

2-D inverse transformation of equation (9) yields the desired TZO data, i.e.,
po(to, y, h), as follows

po(te,y, h) = (2;)2 / dw et / dk e Py(w, k, h).

5
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The corresponding TZO operator in the t—y domain is obtained by finding the inverse
Fourier transform of Py(w, k, h) when p,(t,,y,h) is an impulse. This is accomplished
by applying the method of stationary phase to equation (9) (see, for example, Bleis-
tein, 1984; and Liner, 1988). The TZO operator in the t-y domain is found to be an

ellipse, given by )
to\? Yo)
3 =] =1. 1
(t,.) +(7) =t (10)
The quantity H is a scaled version of half-offset h, given by

27
H=YLlp 11
1+ (1)

Equation (11) implies that the TZO impulse response for converted waves is a
squeezed version of that for ordinary p-waves. The quantity Y is the location of the
output zero-offset trace; it is shifted from the output location for ordinary p-waves,
Yo, and is given by
1—7
Yo=yo— ——h. 12
0=1Y 1+ (12)
When v = 1 (no mode conversion), equation (10) reduces, again, to the well-known
DMO ellipse for ordinary p-waves.

The offset scaling as implied by (11), and the shift in the output zero-offset trace as
suggested by (12), are equivalent to the transformation introduced by Sword (1984).
Sword suggested that each prestack seismic trace, in the time-space domain, be given a
new midpoint location and a new offset, consistent with equations (11) and (12), prior
to any processing. The TZO approach introduced here, on the other hand, accounts
for the location of the new midpoints, as suggested by Sword, without having to deal
with trace interpolation in the time-space domain; each trace is simply shifted to the
desired location by introducing a spatial phase shift in the f-k domain, as suggested
by the transform in equation (9).

The formulation of this TZO approach was based on a truncated version of the
series in equation (4). Considering only the first three terms of the series, as was done
in the derivation above, results in a quadratic equation in ¢y, as a function of ¢,,, the
solution of which is not difficult to find and is given in equation (7). If higher-order
terms of the series are also considered, the resultant equation in ¢3 becomes cubic or
higher order. Solutions to the cubic and higher-order equations are too lengthy for
our purposes and are, therefore, deemed impractical to implement.

One result of the truncation of the power series was that the phase shift obtained
in (9) was constant and time-invariant. The actual spatial shift of the conversion
point for a horizontal reflector, however, is known to vary with reflection depth, or
time (Tessmer and Behle, 1988). It is easy to embed time-variance of the conversion
point in the phase shift of the transform in (9), and thus partially alleviate errors
arising from truncating the series. Figures 2 and 3 show impulses and TZO impulse
responses for TZO constructed in this way.

6
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Figure 2 shows ten impulses on a common-offset (2h = 5000 m) section. Assuming
a p—sv mode conversion with velocity ratio v = 1/2, the response of the TZO operator
to those impulses is shown in Figure 3. Each impulse response is an ellipse that

Midpoint
20 40 60 80

Time (s)

4.0]

F1G. 2. Ten impulses in a constant-offset section used to test the response of the
TZO operator for mode-converted waves. The offset here, 5000 m, is chosen large to
emphasize the lateral shifts seen in the impulse responses in Figure 3. The midpoint
spacing is 100 m.

has now been squeezed, relative to that for ordinary p-waves, in the sense that its
horizontal axis, when extended to the surface, spans a distance that is smaller than
offset 2h. The ellipses in Figure 3 also differ somewhat from the actual asymmetric
trajectories expected in the zero-offset mapping for mode-conversion (see, for example,
Harrison, 1990). Furthermore, each ellipse has been laterally shifted in such a way
that the apex now corresponds to the conversion point for a horizontal reflector.

APPLICATION TO SYNTHETIC DATA

Seismic data were simulated based on the zero-offset model depicted in Figure 4.
p-sv mode conversion, with a velocity ratio v = 1/2, is assumed. The downgoing
velocity is 2000 m/s, corresponding to an average velocity v, of 1333 m/s. The
velocity used to NMO-correct the data is

vvmo = v/ = 1414m/s,

as dictated by the term T introduced in equation (6); this choice matches that typi-
cally made in practice—stacking velocity for reflections from nearly horizontal reflec-
tors. An NMO-corrected CMP gather, with no TZO applied, is shown in Figure 5.

7
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Midpoint
20 40 60

[
o

3.5+ M

4.0’ te

Fi1G. 3. Response of the TZO operator to the impulses shown in Figure 2. The
squeezed ellipses have time-variant lateral shifts. Midpoint spacing is 100 m.

0.51

1.5

Zero-offset time (s)

2.0

2.5

3.0

20 40 60 80
Midpoint

F1G. 4. Constant-velocity, zero-offset model consisting of four reflectors in a homo-
geneous medium. The dip angles are 0, 20, 40, and 60 degrees, respectively. The
midpoint spacing is 12.5 m.
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Offset (m)
0 500 1000 1500 2000

Fig. 5. NMO-corrected CMP gather taken from the middle of Figure 4 (midpoint
41), with trace spacing of 25 m. TZO correction has not been applied. Reflections
from the dipping reflectors are poorly aligned.

As seen in the figure, not only are reflections from dipping reflectors poorly aligned,
the residual moveout for the mode-converted data does not exhibit the hyperbolic be-
havior typical of poorly-corrected, ordinary p-wave data. Moreover, these data have
the appearance of being under-corrected, whereas NMO-correction of ordinary p-wave
data leads to over correction prior to TZO. Clearly, these data will not produce an
acceptable stack of the reflections from the dipping reflectors.

After the NMO correction, the data in this test were sorted into common-offset
gathers, transformed to zero offset using the f—k approach outlined above, then back-
sorted into CMP (or, more precisely, CRP) gathers. The TZO-corrected CRP gather,
corresponding to Figure 5, is shown in Figure 6. Alignment of reflections has been
considerably improved, although the reflections on the far-offset traces for the deepest
reflector, with a dip of 60 degrees, have been over-corrected. Each TZO-corrected
CRP gather was then stacked. The stack, shown in Figure 7, exhibits reflection times
that are close to those predicted for the zero-offset model in Figure 4. The amplitudes
of the reflections from the steepest reflector are reduced somewhat as a result of the
imperfect alignment of the TZO-corrected reflections in Figure 6. The relatively-low
amplitudes seen in the reflections on the first few midpoints in the stack are attributed
to the fact that this TZO method tends to shift seismic energy to the right (to the
left if sv—p mode conversion), consistent with the results observed in the impulse
responses shown in Figure 3.
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Offset (m)
0 500 1000 1500 2000

3.0

Fi1c. 6. TZO-corrected CRP gather corresponding to Figure 5. Alignment is im-

roved, although residual moveout exists on the far-offset traces for the deepest
Fsteepest) reflector.

Midpoint
0 20 40 60 80
AR i
0.54
ffifitiin
1.0 T il
_ el
= N i |
1.5- T
dg.) # }»\»}»}& I
= &&”&&#»
2.01 i W
2.5 i
3.0

FiGg. 7. Stack of the data after applying TZO. Reflection times are close to those
expected for the zero-offset model depicted in Figure 4.
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For comparison, the NMO-corrected mode-converted data in Figure 5 were also
processed by applying the conventional f-k TZO method; i.e., with v = 1, thus
assuming no mode-conversion. The result, Figure 8, exhibits alignments of reflections

Offset (m)
0 0 500 1000 1500 2000
bl
0.51
1.0

@ il
o 1.5
£
(S %
C3ts
2.0- ity il
fififer vt
(it
2.5 126
3.0

F1G. 8. CRP gather corresponding to Figures 5 and 6 after application of conventional
TZO, which erroneously assumes no mode conversion. Alignment is poorer than that
in both Figures 5 and 6.

that are not only poorer than that in Figure 6, they are even worse than that in
the NMO-corrected gather (Figure 5) with no TZO applied. Mode-converted seismic
data, therefore, should not be TZO-processed with conventional TZO algorithms that
do not account for mode conversion.

As equation (5) implies, reflection times for mode-converted waves depend on
both dip and the sign of dip. The f-k TZO method derived here, however, has no
preference (bias) as to the sign of dip and, therefore, is expected to handle both
positive and negative dips equally well. This assertion is verified by testing the f—k
TZO method on synthetic seismic data, generated based on the zero-offset model
depicted in Figure 9. The four reflectors, in this model, have dips that are the
negative of those in Figure 4, with midpoint 41 having the same zero-offset reflection
times in both models. Again, the downgoing velocity is 2000 m/s, and the velocity
ratio is 0.5. The NMO-corrected gather corresponding to midpoint 41, prior to TZO,
is shown in Figure 10. Reflections from dipping interfaces have now been severely
over-corrected; recall that the same reflections were under-corrected when the dips
had opposite signs, Figure 5. It is clear, again, that these data will not produce an
acceptable stack of reflections from the dipping interfaces.

11
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0.5

1.0{/

Zero-offset time (s)

1.5
2.0

2.51

3.0-

20 40 60 80
Midpoint

Fic. 9. Constant-velocity zero-offset model consisting of four reflectors in a homo-

geneous medium. The midpoint spacing is 12.5 m. This model is a mirror image of
that depicted in Figure 4.

Offset (m)
0 0 500 1000 1500 2000
[
0.5
sl
1.0l s L}
IW'..... b4

Time (s)

o
%

X

;
—
% S

X
‘éﬁ

=

2.5-

3.0

F1Gg. 10. NMO-corrected CMP gather taken from the middle of Figure 9 (midpoint
41), with trace spacing of 25 m. TZO-correction has not been applied. Reflections

from dipping reflectors are severely over-corrected. Compare with those in Figure 5;
the only difference is in the sign of dip.
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The counterpart of Figure 10, after application of TZO as described above, is
shown in Figure 11. Alignment has significantly been improved. Reflections on the

Offset (m)
0 0 500 1000 1500 2000
RIas

0.5

1.0
)
o 1.5
£
i

2.5

3.0

Fi1G. 11. TZO-corrected CRP gather corresponding to Figure 10. Alignment of
reflections have significantly been improved. Reflections on the far-offset traces for
the deepest reflector are now slightly under-corrected, as opposed to that being over-
corrected for opposite dips (Figure 6); the difference is only in the sign of dip.

far-offset traces for the deepest (steepest) reflector have now been slightly under-
corrected, whereas those in Figure 6 (opposite dips) were over-corrected. The stacked
section, corresponding to the TZO-corrected data in this test, is shown in Figure 12.
Reflection times from all reflectors are, again, consistent with those in the zero-offset
model, Figure 9.

Finally, to further emphasize the negative consequences stemming from ignoring
mode conversion in TZO when dealing with mode-converted data, the NMO-corrected
data of this test were also TZO-processed assuming no mode conversion. The erro-
neously TZO-corrected CRP gather corresponding to Figures 10 and 11 is shown
in Figure 13, in which reflections from dipping reflectors are clearly over-corrected
(compare with those under-corrected, Figure 8, when dips were opposite in sign).

CONCLUSION

A method has been introduced for doing transformation to zero offset in the f-k
domain for mode-converted waves. The formulation is based on a truncated series for
traveltime as a function of offset, assuming a single dipping reflector in a constant-
velocity medium. Similar to that of ordinary p-waves, this f-k TZO method works on
NMO-corrected data, and yields an impulse response that is an ellipse that is shifted
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F1G. 12. Stack of the TZO-corrected CRP gathers. Reflection times are practically
the same as those predicted for the zero-offset model depicted in Figure 9.
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F1G. 13. CRP gather corresponding to Figures 10 and 11. which erroneously assumes
no mode conversion. Alignment is clearly poor and, therefore, data processed in this
way will not produce an acceptable stack.
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and squeezed relative to that for ordinary p-wave data. Results from synthetic data
tests indicate that

1. the f-k TZO approach here acts to correct misalignment of NMO-corrected
data on CMP gathers, regardless of the sign of dip, and

2. mode-converted seismic data should not be TZO-processed with conventional
TZO algorithms that ignore mode conversion.
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Transformation to zero offset for mode-converted
waves in the k-t, domain

Mohammed Alfaray

ABSTRACT

The principles underlying the Gardner dip moveout (DMO) approach, which
was originally developed for ordinary p-waves, are readily extended to mode-
converted waves. The process achieves transformation to zero-offset (TZO) of
mode-converted seismic waves in two steps. First, DMO correction is applied
by simply transforming the prestack data into a nonphysical offset-time domain.
Velocity analysis in the nonphysical domain yields a dip-independent average ve-
locity as the velocity that best stacks the data. TZO is then achieved by applying
normal-moveout (NMO) correction, using the average velocity, and finally stack-
ing the gathers in the nonphysical domain.

Implementation of this TZO method, however, is deemed unfavorable due
to three problems. The problems in increasing order of severity are: ampli-
tude and phase distortion, an amplitude-versus-offset problem, and a large-offset
problem. The problem of amplitude and phase distortion seems unsolvable for
mode-converted waves when using this TZO method. In addition, neither the
AVO nor the large-offset problems can be overcome, even when dealing only with
ordinary p-waves.

Despite these problems, useful information can still be obtained from this
TZO method. Brute zero-offset sections, with coarse treatment of amplitudes,
can be generated. Also average velocities, for converted-wave reflections, can be
obtained from conventional velocity analysis performed on gathers in the non-
physical domain. The average velocity is useful in exploration applications, such
as migration and conversion from time to depth. Study of synthetic seismic gath-
ers shows that the average velocity obtained is not highly sensitive to the choice
of the velocity ratio.

INTRODUCTION

Alfaraj and Larner (1992) have described a method for the transformation to zero
offset (TZO) of mode-converted seismic waves that is an extension of the Gardner dip
moveout (DMO) method (Forel and Gardner, 1988) originally developed for ordinary
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p-waves. Just as with the Gardner method, the derivation of TZO for mode-converted
waves is based on the assumption that seismic waves propagate in a homogeneous,
isotropic medium.

Practical implementation of this TZO method encounters, in increasing order of
severity, three problems: amplitude and phase distortion of data when the prescribed
transformation of coordinates is done, a similar distortion in amplitude as a function
of source-to-receiver offset, and an additional problem at large offset. I present an
alternative approach in light of the foregoing problems.

THE (k,t,) TZ0 METHOD

TZO for mode-converted waves can be achieved in two steps. First, the seismic
data are corrected for DMO; second, normal moveout (NMO) correction is applied to
the data. The first TZO step, i.e., DMO correction, is independent of velocity. DMO
correction can be applied automatically to the data by transforming the recorded seis-
mic data from the physical (offset-time) domain into a nonphysical domain, Gardner’s
(k,t;) domain.

To transform the data to the nonphysical domain, consider a seismic trace whose
half-offset between source and receiver is h and whose recorded time is t. Ignoring the
fact that there is no mode conversion at zero-offset, let b denote the position, relative
to the midpoint, of an equivalent zero-offset trace, as shown in Figure 1. Alfaraj and
Larner (1992) have shown that the physical half-offset h can be transformed into a
new half-offset k, and the recorded time ¢ into a new time ¢; according to

k? = B2 — b2, (1)

and
ok

= \/2h(ah + BY) b

where o, a, and 3 are constants, depending only on the ratio, 7, of the upgoing
velocity to the downgoing velocity,

(2)

= 141/,
a = 141/
B = 1-1/7 (3)

After the transformation, seismic reflections in the (k,t;) domain have hyperbolic

moveout given by
s o [2k)°
tl == to + — ) (4)

a

where t; is the time experienced along a zero-offset ray travelling down with a velocity
v (p-wave velocity, for example) and reflected up with a velocity yv (sv-wave velocity,
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Fi1g. 1. Depth section depicting mode-converted reflection. Here, 2h is the offset
distance between source s and receiver g. The midpoint is located at the surface
point x = 0. The downgoing and the upgoing velocities are, respectively, v and ~yv.
Thg equivalent zero-offset trace, for this geometry, is located a distance b from the
midpoint.

for example). The velocity, v,, relates two-way time along a zero-offset ray to distance
traveled along the same zero-offset ray. Its reciprocal is the arithmetic mean of
the downgoing and upgoing slownesses. That is, for a downgoing velocity v, the
relationship for the average velocity v, is given by

1 1/1 1
%2 (; ¥ 77,) - )
From (3), v, is also given by
2v
Vg = ;— (6)

Equation (4) is a standard NMO equation; time t; is hyperbolic with the new offset
k. In this NMO equation, the moveout velocity, v,, is dip independent, as seen in
equation (6), one of the goals in transforming data to zero-offset. Hence, after the
transformation, the data are DMO corrected. Note that the transformation (and
hence the DMO correction itself) does not depend on the individual p- or sv-wave
velocities themselves; rather, it depends only on the velocity ratio vy .

Having applied DMO correction, TZO can now be completed by applying NMO
correction to the data. Obviously, as equation (4) implies, conventional velocity
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analysis in the (k,t;) domain yields the dip-independent average velocity, v,, as the
velocity that best stacks the data. Consequently, the data can be stacked, after NMO
correction, to yield reflections at their true zero-offset times.

Furthermore, as shown in Figure 1, after TZO the zero-offset data and the recorded
nonzero-offset data pertain to a common reflection point. That is, TZO has removed
the problem of reflection-point dispersal (Deregowski, 1986) for mode-converted data.
In addition, recall that for ordinary p-wave data, reflection-point dispersal is not an
issue when the reflector is horizontal. For mode-converted data, however, it is. TZO,
as described here, removes reflection-point dispersal for mode-converted data when
the reflector is horizontal, as well as when it has dip.

PROBLEMS WITH THE (k,t,) TZO METHOD

Amplitude and phase distortion

Although the theory holds from the kinematics point of view, implementation of
this (k,t;) TZO method does not treat amplitude and phase properly. Figure 2b
shows an output (k,t;) gather. The input data consist of 101 synthetic common-

Offset 2h (m) Offset 2k (m)
o 0 200 400 600 800 1000 o [1] 200 400 600 800 1000

0.5 0.5
s X
'é 1.0 ;Ef 1.0 ‘“
¢ M

1.5 1.5

2.0 2.0

a b

F1G. 2. (a) Representative synthetic CMP gather over a horizontal reflector at 400-m
depth. (b) Output (k,t;) gather, with severely distorted amplitude and phase. The
input data are ordinary p-wave (y = 1) synthetic CMP gathers, and the medium
velocity is 1000 m/s.

midpoint (CMP) gathers over a single horizontal reflector. Only ordinary p-waves
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are considered in this example, i.e., ¥ = 1. The input wavelet is a sinc function, with
unit amplitude and a dominant frequency of 12.5 Hz (a low frequency is assumed
here to emphasize the shape of the output wavelet). Each input CMP gather consists
of 51 traces (including the zero-offset trace), with an increment in source-receiver
separation distance of 20 m. The distance separating two consecutive CMP gathers
is 10 m. For this horizontal-reflector model, all input CMP gathers are identical; one
such gather is shown in Figure 2a. The location of the output (k,t;) gather is at
CMP location 51, midway along the line. All 101 CMP gathers contribute equally,
without any special weighting, to the output (k,t;) gather shown in Figure 2b.

The (k,t;) result depicted in Figure 2b clearly shows an increase in amplitude
with offset (with the exception of the last few traces). The maximum amplitude
(offset = 900 m) is about 40 times larger than the input unit amplitude (the zero-
offset trace). The variation in amplitude is due to changing Fresnel-zone width as a
function of k and ¢;. The Fresnel-zone width for this model (Appendix A) is shown
in Figure 3 for different values of k. For the range of k values shown in Figure 3a, the

Fresnel Zone (m) Fresnel Zone (m)
;0100 200 300 400 500 600 700 800 90 1000 o0_190 200 300 400 500 600 700 800 90 1000

0.1+
0.2

zbs

F1G. 3. Fresnel-zone width for the (k,¢;) gather depicted in Figure 2b. The Fresnel
zone increases with increasing k£ in the time window 0.8 — 1.25 s for the range of &
shown in (a). In (b), the Fresnel-zone width decreases as k (large) increases for the
same time window. Corners seen on the curves are explained in Appendix A.

Fresnel-zone width, and therefore the amplitude, increases as k increases across the

time window of interest (0.8—1.25 s). Figure 3b shows the Fresnel zone for another
range of k’s, this time the large k’s. Consistent with the observation that amplitude
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starts to decrease with increasing k in this offset range (starting at offset 2k ~ 900 m
in Figure 2b), the Fresnel-zone width also decreases with increasing k.

Compared with the zero-phase input wavelet in Figure 2a, the wavelet in the out-
put (k,t;) gather has undergone a significant amplitude and phase distortion that
varies with time and offset. The distortion is worst at offset 2k =~ 600 m, where the
Wavelet contains a low-frequency precursor. To see how this distortion takes place,
first note again, that each output trace gets contributions from many midpoints and
many offsets. In fact, any offset-midpoint combination satisfying equation (1) will
contribute to this single, constant-offset output trace in the (k,t;) domain. Further-
more, the number of physical traces, contributing to a single (k,t,) trace, varies as a
function of k and ¢;. The final (k,?,) trace is a result of stacking the contributions
from all possible traces in the (h,t) domain. In other words, each output trace is
a mixture of traces from different offsets and midpoints. Figure 4 shows the contri-
butions from all possible midpoints, before stack, to the (k,t;) trace whose offset,
in Figure 2b, is 600 m. In this figure, it is clear that the stacked trace will eventu-

Midpoint location (m)
-400 -200 0 200 400

|
N

|
il il
QUL

F1G. 4. Contributions from many midpoints to one single output trace in the ék ,t1)
domain. In this example, the stack of this gather forms %xe trace whose offset is 600 m
in Figure 2b. The locations of contributing midpoints are relative to the location of
the output (k,¢;) gather.

Time t1 (s)
=}

ally have an amplitude that depends on the width of the Fresnel zone for the event.
Besides, stacking the curved event (smile) in that figure introduces a rho-filtering
(Newman, 1990), which gives rise to the precursor seen in the final stacked trace.
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Due to the complexity arising with the kinematics of mode conversion, an analytic
description of those smiles is not available when « # 1 (even for horizontal reflectors)
and, therefore, an inverse rho-filter cannot be readily designed. For ordinary p-waves,
the analytic expression describing such smiles depends, among other things, on dip.
Consequently, when generating a k trace, an expression for the Fresnel-zone width
derived assuming some dip, will be correct for only that dip. The Fresnel-zone widths
shown in Figure 3 were obtained assuming a horizontal reflector. Widths based on
a horizontal reflector (Appendix A) are later used to balance amplitudes in (k,t,)
gathers.

Aside from the amplitude and phase distortion, as the theory predicts, the event
in the (k,t;) gather of Figure 2b is approximately hyperbolic, with a moveout velocity
equal to that of the medium. This is shown by applying a constant-velocity (1000 m/s)
NMO correction to the synthetic gather of Figure 2b. The result, depicted in Figure 5,
shows that the main energy of the (distorted) event is now flattened.

Offset 2k (m)
0 200 400 600 800 1000

2.0

F1G. 5. The (k,t;) gather of Figure 2b is flattened after applying a constant-velocity
NMO correction to the data. The velocity used is the medium velocity, 1000 m/s.

For ordinary p-waves, Forel (1986) avoided this amplitude and phase problem
completely by not transforming the data to the (k,¢;) domain. Instead, he selected a
different method for implementing DMO—the constant-velocity-migration approach
outlined by Ottolini (1982). Forel and Gardner (1988), however, did apply the (k, ;)
TZO implementation to ordinary p-wave, 3-D synthetic data. They observed, just
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as I have shown for the 2-D case, that the amplitude and phase had undergone a
distortion that varied with time and offset, although the kinematics (timing of events)
were correct.

The AVO problem

It is only when b is zero that the new offset k is the same as the physical offset A,
as equation (1) implies. This condition (i.e., b = 0) is always true only for a horizontal
reflector with no mode-converted waves, in which case TZO is not even needed. In
general, however, k and h are not the same; for mode-converted waves, they differ
even when the reflector is horizontal. Even when k and h are the same, the final (k, ;)
trace is always a mixture of traces from different offsets and different midpoints. This
drawback certainly makes AVO analysis in the (k,?;) domain meaningless.

The large-offset problem

Further investigation of equation (1) reveals yet another problem intrinsic to the
(k,t;) domain—one that arises for large offsets 2k. Large-k traces cannot be correctly
constructed in most cases. The half-offset k is considered large when its value is
comparable to the largest physical half-offset, 2k, in question.

The relationship between the physical and the nonphysical offsets, given in equa-
tion (1), is schematically shown in Figure 6. In that figure, each circle, whose radius

H S |

|
i
0

N7/

' m
k

F1Gc. 6. Schematic diagram showing the relationship between the physical and the
nonphysical half-offsets as given in equation (1). Here, circles represent constant,
physical half-offsets. The maximum physical and nonphysical offsets are H and k,y,,
respectively.

is equal to a constant physical half-offset h, shows the relationship between k and b.
The largest circle has a radius H, corresponding to the maximum physical half-offset
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in question. As k increases, larger circles, and hence larger physical offsets, are in-
volved; this, in turn, limits the values allowed for b to progressively smaller ranges
in constructing k traces. In the extreme case, when the nonphysical half-offset is
maximum, k,,, and is equal to H, only one value for b (b = 0) is allowed.

For horizontal reflectors with no mode conversion (the case when b is really zero),
there should be no problem with generating traces with large k’s. Figure 2b is an
example of this case. For dipping reflectors (with or without mode conversion), how-
ever, large-k traces will always be erroneous. That is, the time ¢; will depart from a
hyperbolic trajectory. For mode-converted waves, large-k traces will always be also
erroneous even for horizontal reflectors. The reason for the error in these two cases is
simply that the actual b, in the corresponding physical seismic traces, is never zero,
whereas only small values for b are used (allowed) in the process of generating the k
trace.

Synthetic (k,¢;) gathers from different models, Figure 7, show the problem en-
countered with the large-k traces. To minimize the amplitude variations from trace
to trace, each trace has had a gain (based on the Fresnel-zone width, as discussed
earlier) applied to it as a function of k and ¢,. For all these (k,t;) gathers in Figure 7,
the input data consist of 101 CMP gathers synthesized over a reflector whose depth
is 400 m; the largest offset (2h) is 1000 m. The medium velocity is 1000 m/s, and the
input wavelet is zero phase with unit amplitude. The reflector in gather (a) is hori-
zontal, with only ordinary p-waves. Since the actual b is exactly zero for this model,
the event is hyperbolic as expected—no kinematics problems arise with the large-k
traces. Gather (b) is the same as (a), but now the reflector dips 20° downward from
source to receiver; note the nonhyperbolic behavior of the event in the large-offset
traces. Gathers (c) and (d) show the case when dealing with mode-converted waves
(downgoing velocity = 1000 m/s, v = 0.5) for a horizontal and a dipping (20°, down-
ward from source to receiver) reflector, respectively. Events in the large-offset traces,
of gathers (c) and (d), weaken and clearly follow a nonhyperbolic path, confirming
the existence of the problem with the kinematics for large values of k.

In generating a k trace, contributions from different midpoints (i.e., from a range
of b values) are stacked. Figure 4 is an example of the contributing traces before
they are stacked. For each k trace, the theoretical b range (Appendix D) may or may
not be totally included within the available range calculated based on equation (1).
(e.g., large-k traces typically require large-h traces which in turn, especially when b
is large, may not have been recorded). When generating a k-trace, reflections from
contributing midpoints, before stack, typically form a ‘smile’ in the (k,¢;) domain.
The maximum time ¢, along a smile is attributed to a midpoint that really pertains
to the same reflection point as that dictated by b. That is, the appropriate midpoint
(the one giving rise to the actual b value in question) yields the maximum ¢, along
a smile. The stack of the smile will ultimately have its timing close to that of the
maximum ¢; of the smile (Appendix E). As long as the b range, used in generating
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F1c. 7. The problem with large-k traces. The event in (a) is hyperbolic for all
k values, because the reflector is horizontal with no mode-converted waves. When
the reflector is dipping, or when mode conversion is present, large-k traces become
erroneous (i.e., nonhyperbolic), as depicted in (b), (c), and (d). In (b), the reflector
dips 20° downward from source to receiver. Events in (c¢) and (d) show the problem
for mode-converted waves; the reflector in (c) is horizontal, whereas that in (d) dips
20° downward from source to receiver. 10
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a k trace, encompasses the actual b associated with this k trace, the moveout of the
corresponding k-trace (after stack) will be hyperbolic in accordance with equation (4).

As an example, the smile in Figure 4 peaks when the midpoint location is equal
to zero; this corresponds to the actual value for b in that model, for a horizontal
reflector with no mode conversion. In general, the extent to which an event in a &
trace (after stack) will follow a hyperbolic trajectory in a (k,t;) gather depends on
whether or not the actual value of b for that trace is within the range of b values
used in generating the k trace itself; the actual b value for each k trace, however, is
a complicated function of dip, depth, and velocity ratio (Appendix E).

ALTERNATIVE SOLUTION

Despite the problems associated with the (k,¢;) TZO method, some useful infor-
mation may still come out of use of this method. When amplitude is not of concern,
for example, one can use the (k,t;) approach to generate a zero-offset section for
mode-converted waves. Off course, the zero-offset section will then have distorted
amplitudes. The (k,t;) method can also be used to deduce velocity information when
dealing with mode-converted waves.

As equation (4) implies, velocity analysis in the (k,t;) domain yields the average
velocity, v4, as the velocity that will best stack the data. With the average velocity
determined, TZO by some alternative method (e.g., Harrison, 1990) can then be used.
After substituting for k and ¢, their expressions in equations (1) and (2), respectively,
equation (4) can be rewritten as follows

t2 = (h? — b?) [2h(c(;z—t):ﬂb) — (%)21 . (7)

Equation (7) shows that the average velocity can be used to directly transform the
prestack seismic data from recorded time ¢ to zero-offset time ¢g.

VELOCITY ESTIMATION

Velocity analysis was performed on three models: one with a horizontal reflector
and two with reflectors dipping 25° downward and upward (from source to receiver),
respectively. The parameters for all these models are such that all have the same
zero-offset time (0.95 s) at the location where velocity analysis is performed. The
dominant frequency of the input zero-phase wavelet is 12.5 Hz (a low frequency chosen
to emphasize the shape of the output wavelet; higher frequencies yield similar results).
The downgoing velocity is 2000 m/s, and a v = 0.5 is chosen, yielding an average
velocity, v4, of 1333 m/s based on equation (6). For comparison, velocity analysis
was performed in both the (h,t) and (k,t;) domains.

For the reflector dipping 25° downward, the results from the (k,t;)-domain ap-
proach are shown in Figure 8. Figure 8a shows the output (k,¢;) gather, whereas
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Figure 8b shows the same gather after applying a low-cut filter with a corner fre-
quency of 3 Hz. The filter was applied to suppress the near-DC component in the
output gather in Figure 8a. Because of the problem with the large-k traces, as dis-
cussed earlier, the last few traces were muted out before doing the velocity analysis.
The stacking velocity for this event is found to be 1370 m/s, which is close to the
average velocity (1333 m/s). The NMO-corrected (k, t;) gather is shown in (c) in that
figure, and the stacked (zero-offset) trace is shown in (d). Note that the peak of the
stacked trace is at 0.95 s, the correct zero-offset time. A conventional CMP gather, at
the same location as that of the above (k, ;) gather, is shown in Figure 9a. Velocity
analysis on this gather yields an erroneous stacking velocity of 1200 m/s, 10 percent
lower than the average velocity. This low value in stacking velocity clearly cannot be
attributed to the familiar cos@ dip-correction factor. The NMO-corrected gather is
shown in (b), and the stacked trace, shown in (c), shows that the event is now 20 ms
later than the expected zero-offset time. Note, however, the stacked (k,t;) wavelet
in Figure 8d is not as close to being zero-phase (input wavelet) as that of the (h,t)
wavelet in Figure 9c; the quality degradation in the (k,t;) wavelet is due to improper
phase treatment.

For the horizontal reflector, the results of the analysis in the (k,t;) domain and
the (h,t) domain are shown in Figures 10 and 11, respectively. The stacking velocity
obtained in the (k,t;) domain (1350 m/s) is practically the same as the average
velocity, whereas that obtained in the (h,t) domain (1480 m/s) is 11 percent higher
than the average velocity. The timing of the event did not differ much from the true
zero-offset time in either case.

For the reflector that is dipping 25° upward, the results are shown in Figures 12
and 13. The stacking velocity obtained in the (k,t;) case (1360 m/s) is, again,
practically the same as the average velocity. This time, however, the stacking velocity
from the (h,t) domain (2450 m/s) is about 85 percent higher than the average velocity,
again not accounted for by the 6 factor.

From the foregoing examples, I conclude that velocity analysisin the (h,t) domain,
for mode-converted waves, yields erroneous results; the velocity depends only not on
the dip, but also on the sign of the dip. Those velocities should not be used in time-
to-depth conversion or any application other than CMP stacking. On the other hand,
the velocity obtained in the (k,¢;) domain does not depend on dip; it is close to the
average velocity. This average velocity can be reliably used in seismic applications,
such as transformation to zero offset, migration, and even time-to-depth conversion.

CONCLUSION

Investigation of the (k,¢;) TZO method reveals that this method has three prob-
lems; namely, improper treatment of amplitude and phase, AVO distortion, and a
problem with the large-offset traces. In addition, neither the AVO nor the large-offset
problems can be overcome, even when dealing only with ordinary p-waves. I recom-
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F1G. 13. Analysis in the (h,t) domain for a reflector (dip=25° upward from source
to receiver). (a) Input CMP gather. The NMO-corrected gather (v = 2450 m/s) is
shown in (b). The stacked gather yields the trace shown in (c).
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mend, therefore, that the (k,t;) TZO approach not be used as a primary processing
scheme of seismic data. This approach, however, could be useful in deducing velocity
information, especially for mode-converted data since this (k,t;) transformation is
not highly sensitive to the choice of velocity ratio.
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APPENDIX A: FRESNEL-ZONE WIDTH

Before discussing the Fresnel zone, the general form of the smile, the stack of which
generates a (k,t;) trace, will first be derived. Only ordinary p-waves are considered,
i.e., v = 1. For 7 # 1, the mathematics become rather tedious, as quartic symbolic
equations arise.

Consider the surface point a, Figure A-1, at which a (k,t;) gather is to be gen-
erated from input CMP gathers. A constant-velocity, single-reflector medium is as-
sumed. With D being the distance from point a to the reflector, the theoretical

19




Alfarag k-t; TZO for mode-converted waves

| 2h |
S a J 8 » X
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4

F1G. A-1. Subsurface model consisting of a single dipping reflector in a constant-
velocity medium. An output (k,t;) gather is desired at location a. Any midpoint

y with source-receiver (s—g) offset (2h) encompassing point a will contribute to the
output (k,t;) gather. The zero-offset time, which the (k,t;) gather inherits, is expe-
rienced along path D.

zero-offset time at point a is given by

2D
ty = T, (A'l)
where v is the medium velocity. Any trace whose source-receiver line encompasses
point a will contribute to the output (k,t;) gather. One such trace is depicted in
the figure, with distance 2h, between source s and receiver g, encompassing point
a. Because the reflector is dipping, the distance D, from midpoint y to the reflector

varies with location of midpoint.

The recorded time ¢ from the source down to the reflector and back up to the
receiver can be expressed as
9hcosf\>
=2 + ( = ) , (A-2)

where tg, is the midpoint zero-offset time given by ¢y, = 2D, /v. For convenience, let
point a be the origin. Then ¢y, can be expressed as

2ysinf
toy =to + 4 5 (A-3)

with positive dip being downward from source to receiver. Substitution of equa-
tion (A-3) into equation (A-2) yields

. 2 2
2 <t0+ 2ys;1n0> N (2hcos0) . (A-4)

v
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For v = 1, equation (2) becomes t; = kt/h, which, from equation (A-4), can be

written as ) )
k2 2y sin 0 2h cosé
t?:-}—;[(to-}. yv ) +( ” ) ] . (A-5)

Noting that y (Figure A-1) and b (Figure 1) are equal with opposite signs, equation (1)
can be used to eliminate h from equation (A-5). The result, after simplification,

becomes \ . )
2 k (to 4 Zyilna) + (2kcos€) . (A-6)

1= 2y y? v
For constant k, equation (A-6) gives the general form of the smile in generating a k

trace.

The behavior of the smile depends, among other parameters, on dip, which is
normally unknown. In deriving the Fresnel-zone width, I shall assume a horizontal
reflector (6 = 0). Then equation (A-6) reduces to

k22 2k\ 2
2 _ 0 -
tl——k2+y2+(v) , (A-7)

which describes a symmetric smile whose maximum time ¢;,,4, (occurring at y = 0)
given by

2
2 gy (i—k) . (A-8)

Let the width of the zone that the smile spans within a time interval At; be 2Ay.
With Aty = t1mae — t1, then t1,40, t1, and At; are also related by

t2

lmax

— t% = (Atl )2 + 2t At;. (A-g)
From equations (A-7) and (A-8), we can write

k2t2

I R - SO
170 k24 (Ay)?’

lmazx

(A-10)
which, after substituting for g its value from equation (A-7) and simplification, can
be written as
2 2 (Ay) |, 2k *
2 L —=2 2 [
v
Equating the right-hand sides of equations (A-9) and (A-11) and solving for y yields

lmaz k2 (A'll)
2
Ay= kJ (Ah)? + 26,48 (A12)

8- (%)
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If At is chosen to be half a cycle, i.e., At; = T/2, where T is the dominant period
of the wavelet, then Ay (half the Fresnel-zone width) can be expressed as

(A-13)

where f is the dominant frequency of the wavelet.

It should also be noted that the Fresnel-zone width cannot exceed a maximum
value determined by the maximum offset present in the data. Take, for example,
the case when & = 300 m in Figure 3a. The maximum half-offset was 500 m. As
equation (1) implies, the maximum Fresnel-zone width should be 24/500% — 3002 =
800 m. In other words, Fresnel-zone widths greater than 800 m, in this example,
require larger offsets not present in the data. This explains the corners seen in the
curves of Figure 3.

APPENDIX B: GENERAL TRAVEL-TIME EQUATION

From the hyperbolic relation, equation (4), and after substituting for k2 and t,
their expressions from equations (1) and (2), the travel time ¢ can be solved for as

follows 2h(ah + b) AR — )

ah + -

t? = t2 : -
i (5 ) (&)

From the relationship between D and D, (Figure A-1), with positive dips being

downward from source to receiver, and noting that b = a — y, the relation between ¢,
and g, can be expressed as

to = to, + 2bsinf (B-2)

a

Substitution of equation (B-2) into equation (B-1) yields the following general ex-
pression for the travel time ¢ for any velocity ratio «y

2 _ 2h(ah + ) [ (to,, N 2bsin0>2 I b2)] | (B-3)

= R2(h - ) ) 2

APPENDIX C: QUARTIC EQUATION FOR b

For ordinary p-wave reflection, the location of an equivalent zero-offset reflection,
i.e., b, can be analytically derived, as a function of offset, depth, and dip. Figure C-1,
which shows a depth section with a dipping reflector, is used to find b in the presence
of mode-conversion.
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Y
4

F1G. C-1. Depth section depicting a ray path for p-sv mode conversion. The trace
has offset 2h between source s and receiver g. The distance from the midpoint y to the
dipping () reflector is D,,, and that from b (the location of an equivalent zero-offset

trace) to the reflector is D. The distance from s along the ray path to the reflector
is l,, and that from the reflector to g is {;. The incidence and reflection angles are 8,

and 6, respectively.

From Pythagorean theorem, and noting that D = D, +b sin 6, the distance along
the ray path from the source to the reflector, l,, and that from the reflector to the
receiver, Iy, can be expressed as

l = /(h +b)2cos?0 + (D, — hsin )2, (C-1)
ly = \/(h —b)2cos?20 + (D, + hsin)2. (C-2)
At the reflection point, Snell’s law is
sin 1
— = —, C-3
sinf, vy (€-3)

From the geometry of Figure C-1, and taking positive dips downward from source to
receiver, it can be shown that

sing, Wl’ﬂ (C-4)
and - p
sinf, = (__—llﬁ_' (C-5)
9
By substituting equations (C-4) and (C-5) into equation (C-3), we get
I,h—b
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For a downgoing velocity v, and recorded time ¢, we have
vt=1,+1,/7. (C-7)

Substitution of equation (C-6) into equation (C-7) yields

1h-»
vt = la (1 + ?m) . (C-8)

Equation (C-8), upon substituting expression (C-1) for I, and squaring both sides,
becomes

1 k-]
Y2h+b|’
but the term (vt)? can also be solved for, from the kinematics relation for mode-
converted waves (Alfaraj and Larner, 1992), as

(vt)? = [(h + b)? cos? 8 + (D, — hsin6)?] [1 + (C-9)

(vt)? = 2h(ah + Bb) [1 + ’?‘2—12_2?] , (C-10)

which can also be expressed in terms of D, as

('Ut)2 = 2h(ah + 3b) [1 + (Dy + bsin 0)2]

P (C-11)

Eliminating (vt)? from equations (C-9) and (C-11) and simplifying yields the following
quartic equation in b

(B + )05 + (D, — hsin8)?| (ah + Bb)(h — b) =
2h(h +b) [A? — b2 + (D, + bsin)?] . (C-12)

APPENDIX D: RANGE OF b

When dealing with ordinary p-waves, the DMO impulse response (i.e., the DMO
ellipse) has a lateral extent of 2h. The part of that lateral extent corresponding
to non-evanescent seismic data (i.e., the range of b) is, Forel and Gardner (1988),

bounded by

b=, (D-1)

relative to the midpoint.

Now, consider mode-conversion. Let the range of b be bounded by b,,4, and bin
relative to the midpoint. A surface of constant traveltime (pseudo ellipse) is depicted
in Figure D-1. The extreme points, T4, and z,,;,, are trivially deduced as
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Y
Z

F1G. D-1. Surface of constant travel time (pseudo ellipse) for a mode-converted
wave. The range of b corresponding to possibly recorded seismic data is along the
line connecting source s and recorder g, but shorter than offset 2h.

_vt—nh
Tmaz = o ) (D-2)

and ; "
Tmin = — 2 -:_n ’ (D_3)

where o is given by equation (3), and = 1 — 1/ is another constant that depends
only on the velocity ratio. For reflections from a vertical wall (z=0), the distance R,
from point b to reflection point (z, z), can be expressed as

R= Tmaez — bmara (D'4)

or

R = zpi, — bmin, (D'5)
depending on whether the wall is situated to the right or to the left of the midpoint
y, respectively. The expression for R? (Alfaraj and Larner, 1992), is given by

R? = (h? — b?) [ﬂ— - 1] (D-6)
2h(ah + Bb) ’

where a and (3 are defined in equation (3). Substituting for Z,,q; and T, their re-

spective values from equations (D-2) and (D-3), squaring of equations (D-4) or (D-5),

and inserting the result in equation (D-6) yields quadratic equations for bp,q; and bpin

respectively. Solutions for b,,,, and b,,;, are, respectively,

_ h(2ah — nut)

mazr — m’ (D-7)
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and
_ h(2ah + qut)

bmin - mh—)- (D'S)

For v = 1, the range of b as given by equations (D-7) and (D-8) reduces exactly
to that in equation (D-1).

APPENDIX E: MAXIMUM ¢, ALONG A SMILE

A ‘smile’ in the (y,t;) domain, after stack, typically generates an event on a k
trace. The maximum t;, along a smile, occurs at a midpoint y corresponding to
the b value that is the location of an equivalent zero-offset trace. The proof of this
assertion, when v = 1, follows.

Consider the relation for ¢? as given by equation (A-6). Differentiating that equa-
tion with respect to y and setting dt, /dy to zero yields the following quadratic relation
iny

2y sin 8 + tovy — 2h%sind = 0. (E-1)
Since y = —b, equation (B-2) can also be written as
2ysin g
to = to, — . (E-2)

Substituting for ¢, its value from the above equation, and solving equation (E-1) for

y yields \ \
2h*sind _ h®sin @ — b (E-3)
'Utoy Dy

which is the same as that derived by Levin (1971). This proves the assertion made
above.

y:

Although not proven analytically, this same assertion also holds for mode-converted
waves (y # 1); I have shown this numerically.
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ABSTRACT

We propose the Klein—-Gordon differential operator from electromagnetics as a ba-
sis for acoustic modeling and imaging of waves in variable-density media. A change of
the dependent variable in the acoustic, variable-density wave equation reveals it to be
essentially the Klein—-Gordon equation in disguise.

Moreover, the Klein-Gordon operator is dispersive and, in the acoustic context,
contains a damping coefficient related to the density gradient. This means that density
gradients distort the traveltimes of waves through dispersion. Specifically, those gra-
dients enter into phase and group velocity expressions derived from the Klein—-Gordon
operator. A companion ray-theoretical prediction supplements this wave analysis. Den-
sity gradients impact ray traveltimes (appear in a new eikonal equation) when the wave-
length of density variation is on the scale of the seismic wavelength.

The new dependent variable ¢ is related to the original pressure p of the variable—-
density wave equation through p = ,/p ¢, where p represents density of the medium. It
is the quantity ¢ that satisfies the Klein-Gordon equation. We see that p is related to
g through an amplitude factor alone, so that variable-density traveltimes are governed
completely by the Klein-Gordon dispersion relation. This relation should therefore ac-
count correctly for traveltime distortion produced by density variation. Furthermore,
one corrects the Klein-Gordon wavefield amplitude to a variable-density amplitude
simply by multiplying by ,/p.

Importantly, no density gradient calculations are required for Klein—-Gordon model-
ing or imaging, as with the variable-density wave equation. Instead, one conveniently
parameterizes Klein-Gordon models by the speed of the medium and a damping co-
efficient. Loosely speaking, different choices of the damping coefficient correspond to
different rates of density variation.
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INTRODUCTION

In our experience, geophysicists do not associate traveltime variation with density
variation in acoustic or elastic wavefield interpretation. Rather, given a constant
index of refraction, density variation within the medium of propagation is associated
only with amplitudes. This point of view prevails because density does not occur as
a variable in Snell’s Law or the eikonal equation.

Nevertheless, in this paper we predict a continuum of density effects on acoustic
wavefields—including a traveltime distortion when density variation is rapid. We
also derive, exactly and asymptoticly, the dispersion relation which should account
properly for that distortion during acoustic modeling or imaging procedures. The
dispersion relation can be written in the Klein-Gordon form (see e.g., Bleistein, 1984)
found in electromagnetic applications.

We express the governing equation for acoustic propagation in a variable—density
medium as

R

This result is derived in detail in Appendix A as equation (A-20). The symbols p, p,
¢, and f denote a small pressure fluctuation, density of the acoustic medium, material
speed, and an acoustic source, respectively. Oftentimes, the fractional density term
(where Vp/p is fractional density) in equation (1) is neglected (Claerbout, 1985;
Wapenaar and Berkhout, 1989). However, this term can be large (and will affect
traveltime) if density varies rapidly over space. DeSanto (1989) gives a derivation
which preserves the fractional density term. We will, at each appropriate juncture,
point out how its exclusion affects the results. Essentially, none of the new concepts
we present hinge on the presence of the fractional density term, though it certainly
exerts a quantitative influence.

We first undertake a limited but exact analysis of equation (1). This reveals that
waves do not propagate with speed c, as they do in constant density media. Instead,
speed of propagation is wavelength dependent. That is to say, a variable density
acoustic medium is dispersive, though assumed to be perfectly elastic. The damping
coeflicient responsible for this dispersion is proportional to the gradient and curvature
of the density function. Consequently, rapid density variations produce a dispersive
traveltime distortion.

Following that exact analysis we perform an asymptotic analysis beginning with
equation (1). This approach extends the scope of speed functions ¢ that can be
considered analytically, though at the expense of making the usual high frequency
wavefield approximation (Cerveny et al., 1977). Initially we selectively scale equa-
tion (1) to obtain a ray analog to the wave analysis. Importantly, the scaled equation
admits asymptotics not only for slow variation in p and ¢, the usual limitation, but
also allows rapid variation in p. A hierarchy of asymptotic dispersion relations (and
solutions) emerges for the variable-density wave equation. That hierarchy embeds
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results for slow variation as a special case, and points again to the Klein—Gordon
dispersion relation.

WAVE ANALYSIS

We begin our investigation by analyzing equation (1) for the case of constant ¢
and specifically restricted density functions. Though this is a special case, it can be
solved exactly—at least as far as is needed to identify several important propagation
characteristics in a variable-density medium. Furthermore, the restrictions of this
exact analysis can be met locally in any inhomogeneous medium. Consequently, we
expect that wave phenomena predicted for our special case will in some sense manifest
themselves in the case of general inhomogeneity.

The main aim of the wave analysis will be to derive a dispersion relation and phase
and group velocity expressions for particular constant—c variable—p media. These ex-
pressions will establish that density gradients act as a damping mechanism in acoustic
media, causing dispersive propagation.

The key step of analysis is a change of the dependent variable from pressure p to

q where

def P
9= —= . (2)
N

This change transforms equation (1) to the well-studied Klein-Gordon form, giving
the advantage of a much simpler and well-trod path. Fourier transforms reduce, for
our constant—c variable—p example, the new equation on ¢ to an algebraic expression;
the solution for g is expressed in terms of inverse Fourier transforms. One deduces
phase and group velocity by evaluating the inverse transform over temporal frequency.

Klein—Gordon form

The Klein-Gordon differential form derives from substitution of the change of
variable of equation (2) into equation (1). Accordingly, we shall analyze the problem
described by

2 62
Aq-Yq- 527 =0,
c c ot (3)
q(x,0)=r(z),  Lax,0)=s(z),
with AVp
p2 el 22VP 4
‘s (4)

The symbol A designates the Laplacian operator. The identity
Ap A Vp V
VP _Ap Vp Vp (5)
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is central to collapsing terms to a single Laplacian on ,/p. We have also elected to
replace the source term of equation (1) with equivalent initial data r and s.

The Klein—Gordon differential equation also governs electromagnetic waves in the
ionosphere and de Broglie waves for free relativistic particles. In the electromagnetic
context, symbol b in the Klein-Gordon operator corresponds to a resonant frequency
of the plasma and serves to introduce damping . Relative curvature A,/p/,/p of the
square root of the density function, scaled by c¢2, introduces damping in the present
context. Equation (5) expresses the relative curvature of \/p as a weighted sum of
curvature and fractional density terms in p.

We see from equation (2) that Klein—-Gordon amplitudes are related to variable—
density amplitudes through an amplitude factor alone, albeit a spatially varying fac-
tor. This means that variable-density traveltimes are governed totally by the Klein-
Gordon dispersion relation (that we shall derive below). Equation (2) does not,
however, apply at discontinuities in either the damping or speed coefficients. This is
because interface conditions, and not the wave equations (1) and (3), govern ampli-
tudes at boundaries. Interface conditions should be applied to compute amplitudes
at boundaries.

Finally, we point out that the Klein—-Gordon operator is self-adjoint while the
operator of equation (1) is not. Propagation problems for variable-density media
may therefore be done in g—rather than p—for the sake of convenience if for no other
reason. If one excludes the V - (Vp/p)p term from equation (1), ? of equations (3)

and (4) becomes
2 M — 22 . 2
VP 20 2p
The Klein—Gordon form is therefore retained, but with a more complicated damping
coefficient than the one in equation (4).

Velocities

Consider now the constant coefficient case of equations (3). This case limits ¢ to
a constant (c,) and p to that class of density functions satisfying

avi=2y (©

with b2/c2 constant. Herein lies another analytical reward for the change of variable
in equation (2). The Klein—-Gordon representation makes it possible to work with a
constant coeflicient—yet variable density—wave equation.

That is, a single value for b,/c, implies a density function, from equation (6).
Hence, Klein—Gordon modeling and imaging algorithms may “think” in terms of the
damping and speed for a layer, rather than speed and a density function. Klein—
Gordon algorithms avoid thusly the need to calculate gradients of a density function,
a requirement for variable-density algorithms based on equation (1). Indeed, we

4
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assert from equations (3) that the canonical acoustics problem is constant b and
constant c—not constant p and constant c—as one might presume. Constant density
is a special case described jointly by b, = 0 in the ¢ variable, and p = /p, ¢. Acoustic
modeling and imaging algorithms for variable-coefficient problems may be designed
naturally as a repeated implementation, once for each constant—coefficient layer, of
the canonical problem.

It is important, in turn, that one understands the solutions to equation (6). One
must ensure that the density function implied by a given value of b, is physical. Suffice
it to say now that there are solutions to equation (6) and that they may be used to
construct many physically realizable density functions.

To proceed toward velocity expressions we define forward Fourier transforms on ¢

Q(k,w) = /_ O:Od:v /0 " dt g(x, t)e~ k)

and apply them to equations (3) to obtain

[k2 w? b2]Q_ S() , , BUE).

as

C,

Scalar quantity k represents the magnitude of the k vector and S and R are transforms
of the initial data in equation (3). The solution ¢ can now be written as an inverse
Fourier transform of Q. That is,

/dk /dw li:‘;R(k) = S(k) gik-z—wt) (7)

— c2k2 — b2
c2k? — b2

1
z,t) =
q( ) (27r)4
Limits and paths of integration are left unspecified, to be chosen according to physical

constraints on gq.

The dispersion relation emerges as a by—product of evaluating the integral over
w in equation (7). Residue calculus supplies an exact method of evaluation. For the
integral at hand, residues come from simple poles in the integrand on both the real
and imaginary w-axis at

(8)

Indeed, equation (8) is the Klein-Gordon disperszon relation.

Planes of constant phase travel with speed w/k to give

\/ C2k? + b2
v, = +————

= 1+ (M) . 9)
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Group (energy) velocity vy, given by dw/dk, is

vy = ¢ /J 1+ % (A—\/“/B_e)o (10)

from equation (8). Clearly, inhomogeneity in density imposes a dispersive traveltime
distortion upon propagating acoustic waves. Equations (9) and (10) disclose that
the diagnostic propagation speeds depend on the relative curvature of ,/p as well as
wavenumber, and v, # ¢ # v,.

Density profiles

The above dispersion relation and velocities are contingent upon constant coef-
ficients in equation (3). That is, speed ¢ must be constant and ,/p must satisfy a
differential equation, namely equation (6). In this section we present several of the
requisite density solutions for three-dimensional and one-dimensional (layered) me-
dia. Any linear combination of these density functions is valid because equation (6) is
linear and homogeneous in ,/p. It will be clear that these functions are not physical
over the entire solution domain. For example, density may become much too small
(even negative) beyond a certain region in space. One must limit the range of the
independent (space) variable in any single layer to restrict these solutions to their
physical domain.

Consider a density scatterer having three-dimensional spherical symmetry. Radial
distance r defines the distance from the center of the scatterer. For this symmetry,
equation (6) assumes the form of a modified Bessel differential equation (Abramowitz
and Stegun, 1965) with solutions

inh e
Qsmp&;c[r) , Kd=f_lczg;

Vi= (11)

Cg%‘rﬁm , Ci,Cs arbitrary constants.

These two solutions may be combined linearly to produce density functions that
decay or grow with r. The choice one makes for ratio |b,|/c, controls the rate
of growth or decline away from the center of the scatterer. Equations (11) offer
three-dimensional profiles for studying the effect of density scatterers on wavefield
dispersion—independent of wave phenomena that originate from variable c.

Let us now turn to density solutions for layered media, taking the depth coordinate
to be z. Equation (6) simplifies greatly for p = p(z). By elementary techniques one

finds solutions
Cre™, Che™** ,02>0;

VP = (12)
C) cos(|k|z), Casin(|x]z) ,b2<0.

For real b, the ratio |b,|/c, again sets a rate of growth or decay for the density function.
For imaginary b,, |b,|/c, determines a wavenumber for sinusoidal density oscillation.

6
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From equation (6), imaginary b, corresponds physically to a negative relative curva-
ture in /p. Equations (12) provide suitable density functions for analyzing the effects
of layered density gradients on acoustic wave propagation.

It is also interesting to consider those density functions given by a constant frac-
tional density Vp/p. Though this condition restricts density more than equation (6),
the identity in equation (5) provides a motivation. Equation (5) shows that the rel-
ative curvature of ,/p, when expanded, contains fractional density terms. In fact, if

one chooses
Vp . . def VP

— = 2Kk%,, Yo = ) 13
p 7 Vol (13)

then :
AV _
VP

as before. That is to say, forcing fractional density to be constant forces the same on
the relative curvature of \/p. (The converse statement is not true.) For the case of
equations (13)

p(x) = Ce*Vo®, (14)

Recalling that « (or b,) may be real or imaginary, equation (14) reduces to equa-
tions (12) for layered media.

As we cautioned above, the density solutions presented here do not take on phys-
ical values over the entire range of their independent variable. Those solutions that
vary exponentially depart from their physical bounds particularly rapidly. We shall
address this difficulty by giving formulas that calculate a physical range 6z over which
the depth coordinate of equations (12) may vary for one continuous layer.

First we derive a range formula for the real, exponential solutions of equations (12).

We write

p(82) = pmin€®™*,

where p,,i, is the smallest value we wish to accept for density. One then solves for
that 8z such that

pmine2msz = Pmaxz>
obtaining
1ec, Pma:c)
6z =——1In . 15
2 Ibol (pmin ( )

Equation (15) gives the restriction on 6z necessary to keep density values between
Pmin aNd Praz, based on the ratio of speed and the damping coefficient in a layer.

An example calculation with equation (15) will provide a concrete sense of its
physical implications. We choose a medium with sizable intrinsic dispersion, say
|bo] = (1/2)w,, where w, is defined to be the dominant frequency of the signal. The
dispersion relation k2 = (w2/c2) — (b2/c?) quantifies dispersion as “sizable” when
|bo| is not neglible in relation to w,. We pick w, = (27)30 Hz, ¢, = 3000 m/s,
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Pmin = 2.2 g/cm® and ppa; = 2.4 g/cm®. Equation (15) yields a layer thickness of
about 1.5 m for those parameter selections.

That layer is quite thin, considering that the dominant wavelength computed from
the dispersion relation is 115 m, about seventy-five times as long. We thus predict
that the propagating signal cannot disperse appreciably through a single layer of this
type. The amount of time spent traveling in that 1.5 m layer is negligible with respect
to the period of a 30 Hz signal. However, that same density profile, when stacked in
a thick repetitive sequence, should significantly disperse the propagating wave.

One can follow similar logic to derive a range formula for the sinusoidal solutions
of equations (12). For those solutions we obtain

Co . Pmin
62 = — | # — 2 arcsin . 16
|bo ( Pmaz ( )

The value of pn,. specifies the peak of the sinusoid. Evaluating equation (16) with
the same parameters used in equation (15), layer thickness 6z = 18.5 m. Clearly,
sinusoidal density variation can be sustained over a much greater depth range than
can exponential variation. On the other hand, the dominant wavelength still exceeds
the layer thickness considerably. We again estimate that some stacking of density
layers of the sinusoidal type will be necessary to induce measurable dispersion.

We conclude our discussion of density, and the acoustic damping created through
density variation, by examining what happens when b = 0 in equation (3). When
= 0 the Klein—Gordon equation reduces to the constant—density form of the wave
equation. To our immediate satisfaction, the special restriction on b does not also
impose constant density. This means that—in the ¢ variable—variable density mod-
elling can be accomplished with the constant—density wave equation. This statement
is true for all density functions that satisfy Laplace’s equation,

v2/p =0. (17)

Of course, many functions satisfy equation (17), particularly when ,/p varies over
two spatial dimensions. In two dimensions, the real and imaginary parts of all analytic
functions are available as variable density profiles for constant—density modeling. The
required density functions are quadratic in z for p = p(z).

SCALED WAVE EQUATIONS

Now we turn to scaling of the variable-density wave equation. In doing so we
seek to proceed consistently from the exact wave methods of the preceding material
to a companion asymptotic approach. This properly scaled equation will admit an
entire spectrum of asymptotic dispersion relations, each corresponding to a different
relative choice for the wavelength of density variation.
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Let us expand the gradients on pressure in equation (1) and take a Fourier trans-
form over time ¢t to obtain

Ap(z) ~ (%a%) Vp-V. (-Y;p-) p+ c;Zi)p = 0. (18)

The source term f may be dropped without loss of generality. The ray method,
used in obtaining asymptotic solutions, replaces source excitations with equivalent
initial data for ordinary differential equations written along the rays. We prepare
equation (18) for asymptotic analysis by explicitly representing all length and time
scales of its independent variables and coefficients. In the present context these scaling
constants carry units of length, inverse time, or their product, and characterize spatial
and temporal rates of variation.

Imagine that the density and speed functions have dominant wavelengths (length
scales) A, and A, and introduce scaled coefficients

AEe) <o), UfEa)E (). (19)

We define scaling constants L and w, of the spatial coordinate  and frequency w in
equation (18) through the relations

W= W , z = (L/27)x, . (20)

Angular frequency w, is interpreted as a reference or dominant frequency. Length scale
L carries the length units of the spatial coordinate, implying that |2 | is dimensionless
and O(1). It is also expedient to make the definitions

,Jdéf L/AP ’ ndéf L/Ac ’ (21)

and write
p=pluz),  E=&nw). (22)

One “scales” equation (18) by making the substitutions of equations (19), (20),
and (22). We arrive at

Vip Vip -
At - (502s) W= (B2) p+ Niortroap =0 (29)

p(pe)

given

def L

= —V

Vi 2n
and L
def Wo . def Co
(27)c, ’ "= (24)

The speed constant ¢, symbolizes a reference speed for the medium. Formally, all
asymptotic analysis should start from equation (23). This equation is scaled such

9
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that its coefficients are dimensionless and can be weighted in a balance of terms
through choice of the time and length scales.

Hence we shall proceed from equation (23) to the specific scaled equation we
require. In effect, we select another change of the spatial coordinate that will bias the
asymptotic analysis towards speed functions which vary slowly over space (large A.),
yet will preserve a multitude of possibilities for A,. We will derive later on, from this
scaled differential equation, asymptotic dispersion relations which correlate with that
of the constant—coefficient Klein-Gordon equation. It may seem reasonable that this
correlation will be the outcome, since constant coefficients in equation (3) coincide
with constant ¢ (large A.) and constant damping coefficient b—not constant p.

Taking
T2 d_g_f ney , (25)
V2p Vap N o
Aop(Peg) — | —22 | . wp—-w, . [ 22 a2 = 26
2P(2,,:B2) (ﬁ(%wz)) vy 2 ( F p+ nzw *(xe)p=0 (26)
if )
%E -y
U]
Equations (21) and (24) render
U A A Wol ¢
— = - = . 27
n A, 7 (27)c, (27)
Realizing that
S(E
Veb(ya)| _ ot
P n
we substitute %5
b B
—_— = a7, 28
P (28)

into equation (26), insisting that || = O(1) and interpreting 4, as a constant direc-
tion vector of the gradient of density, as in equation (13).

Equation (26) becomes

. N,
Azp(‘g‘;‘wz) - (a%'y,,) - Vop + ?w2"2(3’2)19 =0. (29)

The symbol « .represents an arbitrary scalar constant, to be determined. Equa-
tion (28) makes the simplest interesting assumption about the fractional density
function, assigning it to be constant. Though this assignment is consistent with
that of equation (13), one could also consider spatially varying fractional densities for
more generality. With that degree of generality the divergence of fractional density
in equation (26) does not vanish necessarily, as in this treatment.

10




Anno, Cohen, & Bleistein Klein—-Gordon acoustic theory

A nonvanishing divergence (of fractional density) term contributes to the travel-
time of waves in that it enters into the acoustic damping coefficient, and thus the
Klein—~Gordon dispersion relation. Its absence alters the damping, as was pointed
out when the Klein-Gordon form was introduced. Though not at all obvious at this
point, one would conclude during ray analysis that, if nonvanishing, that term may
also contribute to the traveltime of rays.

Indeed, one may proceed straightway with ray analysis on equation (29). We shall
develop, instead, yet another scaled wave equation. This equation will be simpler and
easier to work with than equation (29). In particular, we observe that equation (29)
has a constant coefficient on its V% (first order) term, and eliminate that gradient on
p in favor of a zeroth order term (with no gradient). Try

LoB4 .
p(%‘;—azz) = e2 57" “”q(%ﬁazz) (30)

in equation (29). One obtains
1w\ (A )
Baq - [(-af‘-) - (Zai(e) ] ofsa) = 0, (31)

a Klein—Gordon differential equation. Let us establish several points concerning equa-
tions (30) and (31).

We first emphasize that the ¢ of equation (31) is one and the same as that of
equations (3). One establishes that equivalency by scaling equations (3) as above,
then identifying o(u/n) as

g Acb,
a=— = —=,
n T Co

Equation (32) holds by virtue of equations (13) and (28).

Moreover, equation (32) establishes that p really is p(%;wg) as advertised in equa-
tion (30). Substitution into equation (30) gives

(32)

bk (Ac
p(%@) = ecolo (2,“’2)(1(%‘:“,2), (33)

a function of the proper argument. Finally, we see from equation (14) that our new
solution form (equations (30) or (33)) merely makes the statement p = ,/p ¢, like
equation (2).

What have we accomplished through scaling the wave equation? It is well known
that finite difference modeling with equation (1) simulates wavefield dispersion as-
sociated with rapid variation in medium properties. Asymptotic ray solutions must
be derived from scaled equations (29) or (31) to account for rapid (z = )) density
variation. (From equations (27), density varies at the scale of the seismic wavelength
when p = A.)

Finite differencing accounts automatically for large or small time and length scales.
Those scales are implicit in the dimensional operators and coefficients of equations (1)

11
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or (3). On the other hand an analytical, asymptotic treatment relies on the analyst to
identify a balance of terms, based on selection of the scaling constants. Those scales
must be made ezplicitly available for the choosing. We will discover in what follows
that analysis, directly on equation (18), corresponds implicitly to choosing u/n = 1.
Implicitly, the density and speed functions are assumed to vary at the same (slow)
rate over space.

RAY ANALYSIS

We shall unveil through equation (31) a hierarchy of eikonal and transport equa-
tions as the ray theoretical analogs of the preceding wave theory. The classical eikonal
and transport results (e.g., Cerveny et al., 1977 and Bleistein, 1984) occupy one posi-
tion in the hierarchy—and thus are subsumed by this approach. This pair of equations
provides analytical means for calculating traveltime and amplitude, respectively. For
this reason, the eikonal equation may be thought of as an “asymptotic dispersion
relation”.

We will discover that rapid density variation influences traveltime through the
appearance of the acoustic damping coefficient in a new eikonal equation. The Klein—
Gordon wave theory gave the same prediction, yet through expressions for group or
phase velocities (equations (9) and (10)). Slow variation belongs with the transport
equation, which governs ray amplitudes.

The asymptotic ansatz made is that
idF(4Ac

q(;—\:w% %) ~ A(%&wﬁ %)e SFH(35T2) (34)
with A having the formal expansion
Al A2
; + = +....
iMn ~ (iA/n)?
Here 7 is a (dimensionless) traveltime, the conjugate variable of dimensionless fre-

quency A/7n. The character A symbolizes the full amplitude, Ag the leading order
amplitude, etc. Inserting the ansatz into equation (31) gives

A=A+ (35)

o ~  ~2x2 #2 1
- ﬁl%T'VzT—w IV F[ia] A
(36)
+ i%[QVz’T‘ - VLA + AA2'T-] + AsA ~ 0.

We see from equation (36) that—through our efforts to scale the wave equation—
we have built in the freedom to weight variously the ratio of x to 7 in an asymptotic
balance of terms. That is to say, we are free to choose a wavelength for density
variation relative to speed variation (equations (27)). From equation (28), different
choices also amount to different magnitudes of fractional density.

12
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A continuum of possible ratios u/n is available. However, inspection of equa-
tion (36) indicates pu/n = (A\/n), j =...,—1,0,1,..., are positions in that contin-
uum where fundamental reordering of terms occurs. It is at those positions where
the p/7n term exactly matches, surpasses, or recedes from the other terms with regard
to their ordering in A\/7, the expansion parameter. We discuss below the two most
interesting cases, u/n = (A/n)° and p/n = (A/n)!. From those one can characterize
generally the nature of rayfields over the entire spectrum of values for u/7.

p=mn

We choose p/n = 1 in equation (36) and, consistent with the asymptotic expansion
of equation (34), take A/7 large enough (by taking w, and A, large enough) such that

V7F . Vi = 0?72(x,) . (37)

By reverting to dimensional coordinates and variables one identifies equation (37) as
the familiar eikonal equation. Dimensional time 7 is

def A .
= —F
2mwe,w

(38)

We refer back to equations (19), (20), (24) and (25) to obtain the dimensional analog

1
V’T'VT—C—2im—). (39)

Thus, traveltime through a “x = 7" medium is governed by the classical eikonal
equation, equation (39). From equations (27), 4 = 7 corresponds to A, = A.. Density
varies at the same slow rate of spatial variation at which speed varies, as required
by large A/7n. Bleistein (1984) demonstrates that one may also obtain equation (39)
through asymptotic analysis directly on unscaled wave equations, taking w to be the
expansion parameter. We conclude, by comparison with our result from a scaled
equation, that the direct approach corresponds implicitly to choosing p = 7.

Similar analyses give the same eikonal equation and
2Vt -VAq) + AAT =0 YV ou/n= /9, j<O0. (40)

This leading order transport result is identical to the one for constant density media
(Bleistein, 1984). Thus, the case p = 7 serves as a transition point (j = 0) for variable
density acoustic media—below which (j < 0) rays propagate as if in a constant density
medium.

p=2A

The choice p/n = A/n corresponds, from their definitions, to choosing A, =
2mco/w,. In words, this is a situation where density varies on the same scale as a

13
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reference wavelength for the medium. Hence, a “u = A\” medium is thinbedded with
respect to density. Equation (36) gives, by dominant balance in powers of A/7,

1 k1
Azx) Ew?

(In addition to dimensionalization, we have used equations (27) and (32) to solve for
a.) This new eikonal equation provides the basis for predicting a rayfield traveltime
distortion due to density gradients, distinct from the influence exerted through c.
Moreover, equation (41) shows traveltime 7 to vary not only with space but also with
frequency, as it should in a dispersive medium.

Vr-Vr =

Define the wavenumber k %' |V7|w to see that equation (41) is the asymptotic
equivalent of a Klein-Gordon dispersion relation. With that definition we obtain

2 2
1.2 w bo

EORCE .

a form quite similar to that of equation (8). Let us compare the two.

The ray-theoretical result in equation (42) permits speed functions that vary
slowly with space, unlike equation (8). That generality was bought at the price
of requiring, effectively, that w be large. On the other hand, the wave-theoretical
result in equation (8) is valid for all w. Differences notwithstanding, these dispersion
relations have identical forms when c is constant.

We complete the ray investigation by identifying p/n = A/n as another transition
position (j = 1). Equation (36) requires the trivial solution A ~ 0 for all u/n =
(A/m)¥, j > 1. Apparently, waves of the type proposed in equation (34) cannot
propagate in a medium where density varies still more rapidly.

CONCLUSIONS

Theory, wave and ray, predicts that rapid density variation induces a dispersive
traveltime distortion for signals propagating in an acoustic medium. That dispersion
is of the Klein—Gordon variety, originating through an acoustic damping related to
the gradient and curvature of the density function.

Consequently, Klein—-Gordon modeling and imaging algorithms should correctly
treat variable-density acoustic traveltimes. Moreover, because a nonzero damping
coefficient implies a nonconstant density function, those algorithms avoid entirely the
usual need to compute density gradients.

Rather, a Klein—-Gordon algorithm may be designed naturally as a repeated im-
plementation, once for each layer, of the canonical constant-speed, constant—damping

14
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problem. For full execution of the theory, algorithms should include spatially—variable
scaling (by ,/p) of Klein-Gordon amplitudes to obtain variable-density amplitudes.
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APPENDIX A: VARIABLE DENSITY WAVE EQUATION

In this appendix we derive a linear wave equation for inhomogeneous acoustic
media. The derived equation contains a fractional density term which is neglected
normally. This term is important to acoustic propagation times when the wavelength
of the seismic wave is similar to the wavelength of density variation.

Our derivation strategy comes from first principles. We write exact expressions
for conservation of mass and linear momentum and choose an equation of state ap-
propriate for fluids. Perturbation of these expressions gives a pair of linear differential
field equations; a wave equation on pressure is derived from this system.

Exact equations

Consider a fixed volume V of fluid surrounded by a surface S. An outward pointing
unit normal vector n gives the orientation of the surface at each point. Conservation
of linear momentum is described for this fluid volume by

%/vadv = —}ipndS—/Vde—figvpv-ndS
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— —/VVpdV—/Vde—/VV-('vpv)dV, (A-1)

where p, v, p, and f respectively symbolize pressure, particle velocity, fluid density,
and an acoustic source (body force density). The first two integrals on the right side
of the equation calculate momentum gained per unit of time ¢. The last integral
accounts for fluid flux out of the volume (momentum lost per unit time).

Since V' is arbitrary, equation (A-1) can be written in equivalent differential form

as
0
(gtv) + V. (vpv)+ Vp=—f.
Expansion of the divergence gives
0
%+v-V~(pv)+pv-Vv+Vp=—f

as recorded in Wapenaar and Berkhout (1989). Expansion of the time derivative
shows that

v % +V. (pv)] +p [%—?—+v~Vv] + Vp = —f(x,t). (A-2)

The second bracketed term is referred to as a material or Lagrangian derivative on
v. Conservation of mass requires that the first bracketed term be zero.

In particular,

%/VpdV = —fgpv-nds
= - /V V- (pv)dV (A-3)

expresses mass conservation for the fluid volume as a whole. At a point, the differential

equivalent

gg +V-(pv)=0 (A-4)

holds. This treatment assumes no sources or sinks of mass within the volume.

Collecting results, conservation of linear momentum is written exactly (albeit,
nonlinearly) as

p %lt’-+v-v'v] + Vp = — f(=,1). (A-5)

Equation (A-5) gives three scalar relations in five unknown functions. Mass conver-
sation (equation (A-4)) adds a fourth equation. An equation of state

p=p(p) (A-6)

provides the necessary fifth, modeling compression/expansion of the fluid as an adi-
abatic process (Zemansky, 1968).

16
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Linear equations

To proceed toward a linear wave equation, we linearize the system of five equa-
tions (A-4)—(A-6) by expanding all functions in perturbation series, as did De-
Santo (1989). That is,

p(@,t) = 0+ e,

p(e,t) = pO+e®,  and

v(z,t) = vO 4 ew®, (A-7)
where ¢ is a small, dimensionless parameter. Background functions (those with a ()

are interpreted as descriptions of the medium before waves are introduced. Pertur-
bations from the background state are due to waves.

Substitution of equations (A-7) into equation (A-4) gives linear, ordered expres-
sions for mass conservation. That is to say, to zeroth order in ¢

©
QST + V- (pOv@) =0 (A-8)
and, to O(e!),
op) (01 (1))
‘a—t+V°(p v+ V- (pHv™)=0. (A-9)

Substitution of equations (A-7) into the expression for momentum conservation (equa-
tion (A-5)) produces

(0)
p0 w2, vp® =0 (A-10)
to O(1) (where £ = 0) and
do® . 5y®

to O(e!).
Quadratic velocity terms were neglected to obtain linear expressions. However,
v(® was not taken to be zero, as is typically the case (Wapenaar and Berkhout,

1989). Analysis of the equation of state (A-6) reveals v(®) = 0 to be inconsistent with
a variable-density acoustic medium, as we now show.

We follow the analysis of DeSanto (1989). Taking p(® = p(®(p(®) the chain rule
gives

Vp® = c2vp©® (A-12)
with 95
def OP
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The assumption v(® = 0 requires Vp(® = 0 from equation (A-10), and equa-
tion (A-12) in turn requires Vp(® = 0. That is to say, an inhomogeneous fluid
medium is, to zeroth order, in hydrodynamic equilibrium. Hydrostatic equilibrium
(v® = 0) is not permissible for media with arbitrary density variations over space.

Equation (A-12) will be used to trade background pressure gradients for density
gradients, density being the quantity measured routinely in exploration geophysics.
Again, we follow DeSanto (1989) to derive another substitution. Expanding pressure
about the background state p(®(p(®) and using equations (A-7),

op®
© 4 ep® = O L P ) O
P +ep PU g A)

0
op® i

— 0
= p -I-eap(o)p .

Therefore,
p = 2pM (A-14)

to O(e!). This result gives a substitution for density perturbations in terms of pressure
perturbations.

One additional physical simplification is assumed customarily for exploration geo-
physics problems. One normally assumes 9p(® /3t = 0 (or, p©@ = pO(z) at most).
This implies that, to zeroth order, the fluid is incompressible and can not flux out of
the volume. Proof of these physical consequences depends on liberal use of the di-

vergence theorem. From equation (A-8), V - (p@v(®) = 0 implies fg (v®.n)dS =0
and equation (A-9) simplifies to

(1)
a_gt + V- (pQvD) = 0. (A-15)

Also, if p(@ = pO[p(®(z)] then ¢ = ¢(x) at most, from equation (A-13).

Equations (A-10) through (A-15) constitute the system of linearized expressions
needed to write a linear wave equation on a single field (perturbation) quantity. We
choose to write the equation for pressure. Density perturbation terms are replaced
with pressure perturbations in equations (A-15) and (A-11) using equation (A-14).
All background functions are then expressed in terms of background density through
equations (A-10) and (A-12). These substitutions give

1 apW
c_2-3t— +V. (p(o)'v(l)) =0 (A-16)

and

pM 4+ Vp = — fW(,1). (A-17)
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The above pair of differential equations are the field equations for linear waves in
inhomogeneous acoustic media. The wave equation

Vp(o) 1 a2p(1)
1 1 _ 1
Ap — V. [—/)(T)P( )| - 2(z) o =V fO(a,t) (A-18)

results from the divergence of equation (A-17) minus the time derivative of equa-
tion (A-16). This result is recognized to be the wave equation for a constant—density
medium but, with an additional term, the term with brackets.

Another form of the variable density wave equation is also common. Expand
the bracketed term in equation (A-18) and factor out p{® from terms containing
differentiated pressure. These manipulations produce the form

Vo) Vo 1 82
© XY gl | YR W__2 9P _g. D i

]
2O
is a fractional density. Though this term is often neglected (Claerbout, 1985; Wape-

naar and Berkhout, 1989), we showed that the differentiated equation of state (A-12)
and equation (A-10) require, strictly speaking, that it be included.

where

Traditionally, background and perturbation superscripts are dropped. This sim-
plification gives

o(z)V - [?] V. [?] P- sy = /@0, (A-20)

with f(z,t) & v. FO(x,t). Equation (A-20) is the final wave equation form sought
in this development.
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Network parallel 3-D FFT

Tong Chen and Dave Hale

ABSTRACT

The use of network-connected workstations to do parallel computing is at-
tractive due to the good performance-to-cost ratio. The deciding factor of the
performance is the ratio of computation to communication costs. In 3-D seismic
processing, the communication cost can be frustratingly high.

By distributing the 3-D data set, which may be too big to be stored on any
one disk attached to one workstation, to several disks, each attached to its own
workstation, we may perform the data input/output operations in parallel. How-

ever, when data flow between disks is needed, the cost of communication may be
high.

The communication cost can be reduced by controlling the data flow and
making it also run in parallel. Some experimental tests involving network com-
munication suggest an optimal strategy of data flow. Using this strategy, a 3-D
turning wave migration of 1000samples x 1000traces x 1000lines, for example, can
be performed in 18 hours on five network-connected IBM RS/6000 workstations.

INTRODUCTION

The use of network-connected computers to do parallel computing is of current
interest to geoscientists (Koshy, 1991; Black and Su, 1991). By running many high-
performance workstations, such as the IBM RS/6000, in parallel, we may achieve
speeds comparable to those of supercomputers, while the performance-to-cost ratio is
much higher. Advances in the processing power of workstations and communication
speed of networks make network parallel computing (NPC) feasible today. Further
improvements of the communication speed using optical fibers will make NPC even
more attractive (Almasi et al., 1991). Meanwhile software systems such as Linda
(Carriero and Gelernter, 1989) and PVM (Parallel Virtual Machine) (Beguelin et al.,
1991) make NPC easy to implement.
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For any application, the deciding factor in NPC is the ratio of computation to
communication costs. Geoscience applications such as seismic modeling and imaging
seem to be quite fit for NPC, because they have high computation to communication
ratios. A detailed discussion of speedups relative to single-workstation computation
for a 2-D migration application, under different circumstances, can be found in Al-
masi(1991).

For many 2-D seismic applications, where the data set can reside in memory, NPC
implementations are not difficult. Figure 1 illustrates the diagram for this kind of
implementation using a message-passing system such as PVM. A prototype program
using PVM in this way can be found in the Appendix.

disk
\ 7
R worker 1
]
master
N e
——— >
. worker n
T\'.\
\\Q

F1G. 1. Working scheme for a message-passing system in NPC when data can reside
in memory. The black arrows denote commands, and the clear ones, data. The master
reads data from the disk and sends them out to the workers. After being processed,
the data are sent back to the master, which writes them to the disk. Notice that all
the disk I/O is carried out by the master.

In 3-D seismic processing, however, the situation is different. For many 3-D ap-
plications, besides so-called inline processing, crossline processing is also required,
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which in turn requires that the data set be accessed from different directions. The
data set is typically so large that it cannot reside in memory, which necessitates a
lot of disk I/O, both sequential and random access. The cost for disk I/O, especially
random access I/0O, is so high in 3-D seismic processing that high speedup can hardly
be achieved using parallel computing, even with some supercomputers. Also, a 3-D
data set may be too large to be stored on one disk of a workstation, which makes
NPC implementation a bit difficult. Black and Su (1991) suggested using a larger
machine capable of managing the large volume of data. A different strategy is to
use several workstations, each with its own disk (Figure 2). Fortunately, having sev-
eral disks available is a sufficiently common situation in network environments. Also,
using several disks makes it possible to perform disk I/O in parallel.

disk 1
/ 'v_ ~
] worker 1
master
worker n
-~

T
Cair

F1G. 2. Working scheme for a message-passing system in NPC when data are dis-
tributed among several disks. The black arrows denote commands, and the clear ones,
data. The master functions only to coordinate the workers. Every worker reads data
from its own disk and writes data to its own disk. In this case, disk I/O is performed
in parallel by different workers.

For NPC implementations of 3-D seismic processing, distribution of the data
among several disks is necessary. The strategy for data distribution can dominate
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the efficiency of processing. Using 3-D FFT as an example, we suggest a strategy of
data distribution.

3-D FFT is an example where accessing of data on different disks is needed.
This accessing requires network communication, which is expensive using network
hardware and software now available. Noticing that we have several disks, we tried
to make the data flow in parallel. Some experimental results allowed us to design an
effective strategy to control the data flow.

By following the selected strategy above, we can perform a 3-D turning wave
migration for a data set of size 1000 x 1000 x 1000 on five IBM RS/6000 workstations
in 18 hours.

DATA DISTRIBUTION

In 3-D seismic processing, the data set is typically too big to be stored on one
disk attached to one workstation. A 3-D seismic survey of dimension 1000samples x
1000traces x 1000lines, for example, requires 4 Gbytes of storage. The disks we
usually have for our workstations each have 1.2 Gbytes capacity, so that we must
distribute the data to several disks. We seek an optimum strategy for the data
distribution.

In some applications, such as deconvolution, which is a one-dimensional process,
the distribution is simple. We can store a piece of data (many seismic lines) on
each disk. Each workstation processes only its own piece of data. After all the
workstations have finished their own processing, the results are composited. Little
data communication is necessary.

In many other cases, however, since we have both inline and crossline processing,
a lot of data communication is needed. One example is the 2-D FFT along inline and
crossline dimensions in 3-D seismic migration or modeling programs. A flow chart of
the example is as follows:

FFT f(t,z,y) to F(t,k.,y)
Transpose F(t,k.,y) to F(t,y,k.)
FFT F(t,y, k;) to F(t, k,, k)
For all k,{

For all k,{

}
}
IFFT F(t,k,, k) to F(t,y,k.)
Transpose F(t,y,k;) to F(t, ks, v)
IFFT F(t,k,,y) to f(t,z,y)

Let’s consider several strategies for this example.

4
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Fi1G. 3. T slice data distribution. This choice will benefit the 2-D FFT, but requires
transposition of the entire data set.

T slice

Since 2-D FFT is a two-dimensional process, the seemingly ideal method of data
distribution would be to let each workstation store a set of time slices (Figure 3).
For every time slice, each workstation reads the X-Y data plane and performs a 2-D
FFT. In this way, each workstation can process its own piece of data. No network
communication seems necessary, but this strategy requires that time T be the slowest
computational dimension, while in real applications, it is typically the fastest dimen-
sion. Transposition of the entire data set is thus needed, which is difficult due to its
requirements for huge storage and long running time.

Y slice

According to the format of the data recorded, we can make Y slices. Every
workstation stores some Y slices (X-T sections) (Figure 4). Obviously, in this way,
an FFT along the X direction is easy. For every Y slice, each workstation reads the
X-T data plane and performs an FFT along the X direction. But, FFT along the
Y direction is difficult, since it requires data on different disks. This indicates much
network communication. Furthermore, it is difficult for the FFT along the Y direction
to run in parallel, since at one moment, several workstations may access the data on
one disk, resulting in I/O conflict.
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XY slice

From the discussion above, we have seen that the Y slice makes FFT along the X
direction easy to implement. To deal with the problem in computing FFT along the
Y direction, we make additional X slices (Figure 5). In this way, we actually chop the
data set into several block files. For the FFT along the X direction, each workstation
reads data from the block files on its local disk and forms an X-T data plane. For
FFT along the Y direction, we would like for the workstations to read data from their
local disks also. One way to satisfy this is to swap the block files and put the data
for one Y-T data plane on one disk. This is why the X slice is necessary. Since the
data for FFT along the Y direction are now on one disk, I/O conflict is avoided.

DATA COMMUNICATION

Using the 2-D FFT as an example, we examined different strategies of data dis-
tribution. The XY slice method seems to be the best in this case. However, in
this strategy, after FFT along the X direction, swapping of the block files is needed,
which requires network communication. Figure 6 illustrates the distribution of the
block files when we use five workstations. Since we use five workstations, we have
5 X 5 block files. Swapping the block files is like transposing a matrix, in this case, a
5 by 5 matrix.

(0,00 (0,1) (0,2) (0,3) (0,4) (0,00 (1,0) (2,0) (3,0) (4,0)
(1,0) (1L,1) (1,2) (1,3) (1,4) (0,1) (1,1) (2,1) (3,1) (4,1)
(2,00 (21) (22) (23) (249 [=]02 12 (22 (32 (42
(3,00 (31) (32 (33) (3,4) (0,3) (1,3) (2,3) (3,3) (4,3)
(4,0) (4,1) (4,2) (4,3) (4,4) 0,4) (1,4) 2,4) (3,4 (4,4)

The block files on the diagonal of the matrix need no swapping. The other 20 files
are to be swapped. Choosing NFS file read/write, to implement the swap of block
files, we can obtain a transfer rate of about 250 Kbytes/s. For a typical 3-D seismic
survey of size 1000 x 1000 x 1000, and using five workstations, we can estimate the
cost of the swap. The size of each block file is 4 x 1000 x 1000 x 1000/25 bytes. A
transfer rate of 250 Kbytes/s is assumed when swapping, and 20 swaps are needed.
The cost of the swap, if done sequentially, is therefore:

size of each block file
transfer rate
4 x 1000 x 1000 x 1000/25
250 x 1000
~ 3.6 hr. (1)

T = number of swaps X

= 20 x

This estimate shows that swapping the block files sequentially is very expensive.
Notice that when swapping in this way, only one workstation and one disk are busy

7
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Fi1G. 6. Swapping of block files. In the case of using five workstations, there are 25
block files. Since the block files on the diagonal need no swapping, 20 block files are
to be swapped.

at any given time. The other workstations and disks are idle waiting for the swap to
finish. This suggests the possibility of doing the swapping in parallel. Since swapping
the block files requires network communication as well as disk read/write, the perfor-
mances of all of these operations will determine our parallel strategy. We did some
experiments to estimate the costs of network communication and disk read/write,
since, unfortunately, theoretical analysis of these costs is difficult.

Local disk read/write

We did some tests for local disk read and write. Making sure that the disk is a
local disk, we did some timing for writing to a file and reading from it. The transfer
rate as a function of the package size of each read/write operation is shown in Figure
7. From this figure, we find that the cost changes little when the package size varies.
We obtained rates of about 2 Mbytes/s for read and about 1.6 Mbytes/s for write.

Remote disk read/write

We did a similar test for a remote disk. We did the test in NFS environment with
a token ring. The result is shown in Figure 8. Again, the cost does not change too
much when we varied the package size. One impressive feature about this result is
that reading from a remote disk is much faster than writing to it. This suggests one

8
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Local R/W rate

Rate(M bytes/s) Total size = 160M bytes
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Package size(K bytes)

F1G. 7. Transfer rate of local disk read and write. The black line is for write and the
grey one for read. Notice that the performance changes little when the size of each
read/write changes.

Remote R/W rate

Rate(M bytes/s) Total size = 160M bytes

24
= wite | i :
S S e T B TSI
F read ! ! :
7Y S R - S
1.2 - A SRR JE O
0.8 * ----------------------------------
Y [ S— S —
0
4 40 400 800 1600 4000

Package size(K bytes)

Fi1G. 8. Transfer rate for remote disk read and write. The black line is for write,
and the grey one for read. Notice that the performance changes little when the size
of each read/write changes. Also notice that read from a remote disk is significantly
faster than writing to it.
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way to reduce the communication cost, that is, making every write operation local
when swapping the block files. Figure 9 illustrates the strategy.

workstation 1

read : >D

yd

| write

ﬁ

workstation 2

read [ )

£
L~
=

~~—
“_ read

F1G. 9. Reading from a remote disk and writing to the local one can reduce the
communication cost.

I/O conflict

From Figure 9, we can see that to swap the block files in parallel, several work-
stations may have to access the disks simultaneously. This, of course, will cause I/O
conflict. One way to avoid this is to synchronize the read and write operations. We
call it synchronous strategy. We can wait for all the read operations to finish, and
then write. But this will take a lot of time, not only waiting to synchronize the read
and write operations, but also on the extra messages to synchronize. Another way
is to try to reduce the severity of the I/O conflict. We call it asynchronous strategy.
From the results of our experiments, we found that having one read operation and
one write operation to a disk is possible, where the read is performed by a remote
workstation and the write by the local one. Figure 10 shows the combined transfer
rate for reading from a remote disk and writing to the local one, done sequentially
and in parallel. Here, doing sequentially means we perform only one remote read and
local write at a time, where there is no I/O confilct. And doing in parallel means we
have more than one ( in our case two ) workstations doing remote read and local write
at a given time, which may cause I/O conflict. From this result, we find that doing
remote read and local write in parallel is even a bit faster than doing it sequentially,
which indicates little problem of I/O conflict. We also tried the synchronous strategy.
The result turns out that the synchronous strategy is no faster that the asynchronous
one.

10
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Effect of /O conflict
Rate(Mbytes/s) Total size = 80M bytes
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Fi1G. 10. Combined transfer rate for remote read and local write. The black line is
for doing sequentially, and the grey one for doing in parallel. Notice that the rate for
the parallel one is even a bit higher than that for the sequential one.

Network capacity

Another factor to be considered, when swapping the block files in parallel, is the
capacity of the network—the total size of data that can be transferred at the same
time in the network. According to our experimental results, five packages of message,
each of size up to 800 Kbytes in the network have little effect on the transfer rate. This
indicates that we can swap the block files in parallel without thrashing the network.

NETWORK PARALLEL SWAP

The above experimental results indicate that swapping the block files in parallel is
feasible. The remaining problem is how to design a strategy to satisfy the constraints
from the above experimental results. The constraints are:

1. making every write operation local

2. for a given disk, having only one read operation by a remote workstation and
one write operation by the local workstation occur at a time

3. only generating one temporary file at each step when swapping

Figure 11 illustrates the strategy for the swap. The block files on the NE-SW
diagonal need no swapping. Our strategy is to start from the diagonal. First, swap
the block files on the sub-diagonal and super-diagonal. Notice that for n workstations,
only n—1 elements are on the sub-diagonal and n — 1 on super-diagonal. In a periodic

11




Chen and Hale Network Parallel 3-D FFT

(a) (b)

4

DV
(3)

(c)

F1G. 11. Strategy of parallel swapping of block files. In this 5 x 5 case, the swap is
done in two steps. (a) is the first step, where the block files along the sub- and super-
diagonals of the matrix get swapped. Those along the diagonal need no swapping.
Also, the files at the corners of the matrix, which can be considered as along the
sub- and super-diagonals in terms of modulo, are swapped. These swaps are done in
parallel. (bs) is the second step, which finishes all the swaps in this case. (c) is the
detail of each swap. First read from a file and write it to a temporary file. Then write
the file to be swapped to the file just read. Finally, rename the temporary file to the
file swapped.

12
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sense (modulo n), two more block files are also on the sub- and super-diagonals. We
can swap the 2n block files in parallel. Second, swap the block files one more step
from the diagonal. And then, the next time, one more step, and so on. For example,
in the first step, on workstation m, we read from file ([m + 1],,m), which is on the
disk of workstation [m + 1],, and write it to (m,[m + 1],), which is on the local
disk. In this way, we can satisfy all three above constraints. In this way, instead of
swapping two elements of the matrix at each step, we actually swap two colums. For
n =5 and n = 4, the processes are shown as follows:

n=2>5
(0,1) (1,0) (0,2) (2,0)
(1,2) (2,1) (1,3) (3,1)
2,3) | =1 3,2 |, (2,4) | =] 4,2
(3,4) (4,3) (3,0) (0,3)
(4,0) (0,4) (4,1) (1,4)
n=4
(0,1) (1,0) (0,2) (2,0)
(1,2) (2,1) (1,3) (3,1)
2,3) |~ | 3,2 |’ 2,0) | = | (0,2)
(3,0) (0,3) (3,1) (1,3)

When using n workstations, we need P(n,2) = n(n—1) read and the same number
of write operations, to swap the block files. Doing it in parallel, we need only the time
for P(n,2)/n = n — 1 read and the same number of write operations, where the read
is from a remote disk and the write is to the local one. The parallel operation can
reach a combined transfer rate of about 300 Kbytes/s, according to our experimental
results. For n = 5, only two steps of swaps are needed, where one swap includes two
read and two write operations. When n = 4, only 1.5 steps of swaps are needed, since
in the second step of the swap, the upper half of the swap is actually identical to the
lower one.

For comparison with the sequential solution, we can estimate the cost of this
strategy, for the problem of 1000 x 1000 x 1000 with five workstations. The cost of
swap is now:

4 x 1000 x 1000 x 1000/25
300 x 1000
~ 0.6 hr. (2)

T = 4%

CONCLUSION

For the flow chart of the 3-D migration or modeling, we can estimate the cost, for
the size of 1000 x 1000 x 1000, using five workstations.

13
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For FFT along the X direction, disk I/O needed is almost sequential. (It is not
sequential since we have to read data from several files.) The combined rate for read
and write is about 600 Kbytes/s. The I/O time is

4 x 1000 x 1000 x 1000/5
600 x 1000
~ 1333 sec. (3)

T

The time for computation, assuming that the workstations run at speed of 10
MFLOPS, and the constant factor a in the cost of FFT equals to five, is

a x 1000 x 1000 x 1000 x log, 1000/5
10 x 1000 x 1000
= 1000 sec. (4)

Tcmp

We can estimate the time for FFT along the X direction very roughly as

Tz = 71:'0 + Tcmp
~ 1333+ 1000
~ 0.6 hr. (5)

Similarly, we can estimate the time for FFT along the Y direction. In this case,
random disk I/O from different files is needed. The combined rate for read and write
is about 150 Kbytes/s.

4 x 1000 x 1000 x 1000/5
150 x 1000
~ 5333 sec. (6)

T'io=

The time for computation should be almost the same as that of FFT along the X
direction.

These give the time for FFT along the Y direction as

Ty = '-Tio + Tcmp
~ 95333 + 1000
~ 1.8 hr. (7)

The time for the inverse transformations should be almost the same as for the
FFT’s, except the time for scaling.

Using turning wave migration (Hale et al., 1991) as an example, we can estimate
the cost for a 3-D data set of size 1000 x 1000 x 1000, running on five IBM RS/6000
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workstations. From our preliminary result, migration or modeling takes about 12
hours. Using the estimate for the time of the swap and the FFT’s, we can get the
total time as

T = To4Tow+ Ty +Tng+ Ty + Tow + T
= 06+06+18+12+1.840.6+0.6
= 18 hr. (8)
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APPENDIX: PROTOTYPE PROGRAM USING PVM

A prototype program using PVM is shown below. This program illustrates a PVM
implementation of master-worker mode, where only the master stores the original
data. The workers get both data and instructions from the master. This is different
from what we mainly discussed in the paper. But it is usefull for most 2-D PVM
implementations.

The program computes the sum of a x z[i], for i = 0,1,...,n — 1. Notice that
we have a master and a worker program. The master program distributes the data
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among several workers, which compute their partial sums. The master then collects
the partial sums and adds them up.

The include file sum.h defines the messages used in the program. The names of
the master and worker processes (called components in PVM), are also defined.

The include file sum.h is as follows:

/* define message types for simple PVM program */
#define MASTER O

#define SCALAR 1

#define NEEDWORK 2

#define INT 3

#define NEEDSUM 4

#define SUM 5

/* master and worker components */
#define CMASTER “"summaster"
#define CWORKER "sumworker"

The master program is as follows:

/*

PVM application - a simple example of an approach that might be used to

parallelize migration of different frequencies.The program computes the

sum of a*x[i], for i=0,1,...,n-1. The computation is distributed over a
user-specified number of workers, which compute partial sums. The main

(master) program adds up these partial sums and prints the result.

In the migration analogy, the scale factor a corresponds to velocity
information required by each worker. The number x[i] corresponds to the
data for the i’th frequency, and n corresponds to the number of frequencies.

*/

#include <stdio.h>
#include "pvm.h"
#include "sum.h"

main (int argc, char **argv)

int master,a=2,one=1,total=0,sunm;
int n,nv,iw;

/* get parameters #/

if (arge!=3) {
printf("Usage: Ys <# of values> <# of workers>\n",*argv);
exit(-1);

n = atoi(x++argv);
nv = atoi(*++argv);

/* enroll in pvm */
master = pvmEnroll (CMASTER);

/* create nw instances of sumworker */
for (iw=0; iw<nw; iw++) {
if (pvmInitiate(CWORKER,NULL)<0) {
fprintf(stderr,”cannot initiate worker %d\n",iw);
pvmLeave() ;
) exit(-1);

fprintf(stderr,"’d workers started\n",nw);
/* send master instance to all workers */

pvmBeginMessage () ;
pvmPutNInt (1,&master);
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pvmSend (MASTER, CWORKER , -1) ;

/* send scale factor to all workers */

pvmBeginMessage() ;

pvmPutNInt(1,&a); .
pvmSend (SCALAR,CWORKER,-1) ;

/* while integers remain to be summed */
while (n>0) {

/* get request for work */
pvmReceive (NEEDWORK) ;
pvmMessageInfo(NULL,NULL,NULL,&iw);

/* send an integer to worker that requested work */
pvaeginMessage%);

pvmPutNInt(1,%one);

pvmSend (INT,CWORKER,iw) ;

/* decrement number of integers */
n--;

}

/* request sums from workers */
pvmBeginMessage() ;
pvmSend (NEEDSUM, CWORKER , ~1) ;

/* while workers remain */
while (nw>0) {

/* get sum */

pvmReceive (SUM) ;
pvmMessageInfo(NULL,NULL,NULL,&iw);

pvmGetNInt (1,&sum);

/* fprintf(stderr,"vorker %d sum=Y%d\n",iw,sum); */

/* accumulate sums */
total += sum;

/* terminate worker */
pvmTerminate (CWORKER,iw) ;
nw--;

}

/* leave pvm */
pvmLeave() ;

The worker program is as follows:

/* simple worker program */

#include <stdio.h>
#include "pvm.h"
#include "sum.h"

static int msgtypes[2]={INT,NEEDSUM};

main()
{

int instance,master,msgtype,a,x,sum=0;

/* enroll in pvm */
instance = pvmEnroll(CWORKER);

/* receive master instance number */
pvmReceive (MASTER) ;
pvmGetNInt (1,2master);

/* receive scale factor */
pvmReceive (SCALAR) ;
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pvmGetNInt (1,&a);

/* loop while integers remain to be summed */
do {
/* request work from master */
pvmBeginMessage() ;
pvmSend (NEEDWORK , CMASTER ,master) ;

/* get message from master */
msgtype = pvmNReceive(2,msgtypes);

/* if integer received */
if (msgtype==INT) {

/* accumulate in sum */
pvmGetNInt (1,&x);
sum += a*x;

/* else if sum requested */
} else if (msgtype==NEEDSUM) {

/* send sum */
pvmBeginMessage() ;
pvmPutNInt (1,&sum);

) pvmSend (SUM,CMASTER ,master) ;

} while (msgtype!=NEEDSUM);

/* leave pvm */
pvmLeave() ;
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Seismic wave propagation
in thinly layered media with steep reflectors

H. Lydia Deng

ABSTRACT

Seismic waves reflected from steep interfaces beneath layered sediments spend
a significant amount of time travelling more or less horizontally. Therefore, ac-
curate imaging of steep geologic structure requires knowledge of the behavior of
these horizontally propagating waves. In particular, the role of evanescence and
tunneling of seismic waves propagating in thinly-layered media must be under-
stood.

For thinly-layered media, reflected seismic waves show frequency-dependent
amplitude and phase behavior that varies with reflection dip. This dip-dependent
attenuation and dispersion is not well understood and is ignored in conventional
seismic processing.

Waves propagating vertically in a sequence of thin layers are known generally
to lose high frequencies by stratigraphic filtering. However, waves reflected from
steep reflectors in a thinly-layered medium are additionally attenuated and dis-
persed by the less well-known evanescent filtering. Seismic waves become evanes-
cent when they arrive at a high-velocity layer at post-critical angle. When the
high-velocity layer is thin relative to a seismic wavelength, a significant amount
of low-frequency energy tunnels through to an adjacent low-velocity layer. Com-
pounded loss of evanescent energy through high-velocity layers yields attenuation
and dispersion of seismic waves reflected from steep reflectors.

An improved understanding of this filtering action may help us to improve
seismic processing techniques used to image steep geologic structures.

INTRODUCTION

Only recently, seismologists have begun to directly image steep geologic structures,
such as overhanging salt domes intruding into a sequence of thin sedimentary layers
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source receiver

F1G. 1. Seismic waves reflected from a steep interface spend a significant amount of
time traveling more or less horizontally in a layered medium with a trend of velocity
with depth.

in the Gulf of Mexico. While reflection seismic data can give a good indication
of the presence of salt, accurate imaging of the flanks of salt bodies requires both a
good understanding of seismic waves in thinly-layered media and adequate processing
techniques.

Studies of acoustic well logs show that a major portion of the stratigraphic column
of the Gulf of Mexico is made up of a somewhat binary sequence of alternating layers
of sand and shale (e.g., Velzeboer, 1981). As velocities in such media usually tend to
increase with depth, such a medium is referred as an increasing-trend, velocity-layered
medium in this paper. It is also common to find massive salt structures, such as is
depicted in Figure 1, in that area. In an increasing-trend, velocity-layered medium,
seismic rays taking off from the Earth’s surface exhibit generally increasing propa-
gation angle (i.e. angles as measured with respect to the vertical) with increasing
depth. At some depth, some of the rays travel horizontally along sedimentary layers
before being reflected from an overhanging interface.

Observation of synthetic seismograms shows that seismic waves traveling in thinly-
layered media are attenuated and dispersed differently for different interface dips.
This dip-dependent wavelet shaping may be largely related to the difference of propa-
gation angles of seismic waves traveling in a sequence of sedimentary layers. Figure 2
shows a snapshot of waves propagating in a velocity-alternating medium; this syn-
thetic seismogram is generated by the frequency-wavenumber domain finite-difference
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(FKFD) algorithm described in Appendix A. In figure 2, we can see that waves are
attenuated differently for different angles of propagation in such a velocity-alternating
medium.

offset (km)
0 0.5 1.0 1.5

depth (km)
o
[3,]

—
o

1.5-&

F1G. 2. A snapshot of seismic waves propagating from a 2-D point source at the
origin. The velocity of the medium alternates between 1.6 km /s and 2.26 km/s; the
bed thickness of the medium is 120 m.

Stratigraphic filtering (e.g., O’'Doherty and Anstey, 1971; Banik and Shuey, 1985a;
Banik, et al., 1985b; White, et al., 1990), caused by destructive interference of short-
period multiples, is well known to attenuate high frequencies of the seismic signal.
Waves traveling in a sequence of thin, sedimentary layers may also lose their high
frequencies through evanescent filtering, because only the low-frequency energy tun-
nels through the high-velocity layers (e.g., Fuchs and Schulz, 1976). Attenuation of
seismic waves reflected from steep interfaces in thinly-layered media likely can be at-
tributed to a combination of stratigraphic and evanescent filtering, both of which vary
with propagation direction. This dip dependence is typically ignored in seismic data,
processing. A good understanding of the behavior of horizontal traveling waves may
thus help us to improve our processing of seismic reflections from steep interfaces.

Reflection synthetic seismograms used in this study are computed by the FKFD
scheme (Korn, 1988) followed by the Born approximation (e.g., Bleistein and Gray,
1985); the implementation is described in Appendix A.




Deng Wave Propagation in Thin Layers

ATTENUATION OF SEISMIC WAVES IN THIN LAYERS

Amplitudes of seismic waves are altered in a frequency-dependent way while they
propagate. For example, it is well known that seismic waves lose their high frequen-
cies because some of the high-frequency energy is absorbed by the medium due to
inelasticity. Therefore, seismic data lose temporal resolution at late recording times.
This frequency-dependent attenuation is quantitatively described by the “Q” of the
medium. The change in the frequency content of seismic data with increase of record-
ing time is a form of non-stationarity.

Observations of seismic data indicate that attenuation of seismic waves can be
caused by other mechanisms, as well. Figure 3 shows reflections from a horizontal
interface beneath two different sedimentary media, one with a linear velocity vari-
ation without layering, and the other an increasing-trend, velocity-layered medium.
Figure 3a shows the reflection for the linear-velocity medium. The layered medium,
corresponding to Figure 3b, has a bed thickness smaller than the dominant wave-
length of the seismic signal. The reflection wavelet for the layered medium is broader
than that for the medium without layering. Broadening of the wavelet shows that
some of the high-frequency energy is lost through multiple reflection as waves travel
in the thinly-layered medium. This phenomenon can be seen clearly in Figure 3c,
which shows the frequency spectra of these two reflections.

O’Doherty and Anstey (1971) observed that the high-frequency content of seismic
waves appears to be attenuated by the superposition of short-period multiples. When
seismic waves travel through a sequence of sedimentary layers, a series of multiples
is produced at velocity discontinuities. These multiples cannot be distinguished indi-
vidually if thicknesses of the layers are smaller than the seismic wavelength. Seismic
wavelets, which are the superpositions of both primaries and multiples, are thereby
broadened in time. As a result of these interferences, seismic waves lose their high fre-
quencies as they travel through a sequence of thin layers. This phenomenon is known
as stratigraphic filtering. Though this effect on seismic signals is similar to that caused
by inelasticity, the stratigraphic-filtering effect is due to destructive interference, not
to absorption of seismic energy.

Following O’Doherty and Anstey (1971), much progress has been made toward
understanding the attenuation behavior of seismic waves due to thin layers. Banik and
Shuey (1985a) derived formulas to describe quantitatively the apparent attenuation
and time delay caused by stratigraphic filtering in a statistical sense. In addition,
they studied this filtering for sedimentary sequences typically logged in oil and gas
wells (Banik et al., 1985b).

However, their work was based on an assumption that seismic waves propagate
vertically through sedimentary layers (i.e., perpendicular to the reflecting boundaries).
Seismic waves reflected from a steep interface spend a significant amount of time
traveling more or less horizontally. These waves, traveling at large incident angles
may be attenuated and dispersed by another, not well-known reason. Successful
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FI1G. 3. Zero-offset reflections from a horizontal interface beneath (a) a linear-velocity
medium (v(z) = 1.6 + 0.5z (km/s)) and (b) an increasing-trend, velocity-layered
medium where the velocity has a linear trend of 1.6 + 0.5z (km/s) plus a sinusoidal
variation with a bed thickness 60 m. The dominant frequency of the source signal
is 10 Hz. (c) shows the frequency spectra of these seismic traces, the dotted line

corresponds to the trace in (a) and the solid line corresponds to the trace in (b).
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imaging of steep geologic subsurfaces likely requires that the behavior of horizontally
traveling waves be understood.

Figure 4 shows reflections from a vertical interface in two different sedimentary
media, a linear-velocity medium without layering (Figure 4a) and an increasing-trend,
velocity-layered medium (Figure 4b) with a bed thickness comparable to the dominant
wavelength of the seismic signal. As was the case for vertical incidence, the reflection
wavelet for the layered-medium arrives at the same time as that for the linear velocity
medium, but is broader. In addition, the wavelet for the layered medium has lower
amplitude than that for the linear-velocity medium. The frequency spectra shown in
Figure 4c highlight differences in these two reflections. High frequencies in the waves
that travels nearly horizontally in the layered medium are largely attenuated - more
so than are those in vertically propagating waves.

As observed in Figures 3 and 4, seismic waves reflected from horizontal and ver-
tical interfaces are attenuated and dispersed differently. Because of ray bending,
those waves reflected from vertical interfaces spend more time travelling in each layer
and travel through fewer layers than do those reflected from horizontal interfaces.
Therefore, the stratigraphic filtering of waves reflected from steep interfaces will be
different, and perhaps less severe. Therefore, the severe loss of high frequencies ob-
served for waves reflected from vertical interfaces implies that there must be another
mechanism that contributes to the attenuation of seismic waves that propagate with
large, non-vertical angles.

EVANESCENT FILTERING

When seismic waves arrive at a high-velocity layer with their incident angle larger
than the critical angle, the propagating waves become evanescent. Amplitudes of
these evanescent waves decay exponentially away from the layer boundary, with slower
amplitude decay with distance for long-wavelength waves than for short-wavelength.
When evanescent waves arrive at the boundary of a low-velocity layer before their
amplitudes have exponentially decayed to negligible values within the high-velocity
layer, the transmitted waves become propagating again. These long wavelength waves
are known as tunnel waves; they have tunnelled through the thin, high-velocity layer.

Extended travel as evanescent waves attenuates the high-frequency content of seis-
mic waves that travel through a sequence of alternating layers with large propagation
angles. Figure 5 schematically illustrates the frequency-dependence of this evanescent
filtering, a low-pass filtering of seismic waves that are evanescent over a portion of
their travel paths. The increasing angle of ray paths with depth increases the amount
of evanescent energy with a faster decaying rate. Therefore, it is the propagation
angle and the thickness of high-velocity layers at the bottom of the travel path of
waves, where has the most significant evanescence, largely determine the amount of
energy survives the evanescent filtering.
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F1G. 4. Zero-offset reflections from a vertical interface. (a) is the reflection for a
linear-velocity medium. The velocity function is v(z) = 1.6 + 0.5z (km/sf). (b) is the
unction has

reflection for an increasing-trend layered-velocity medium. The velocity
a linear trend of 1.6 + 0.5z (km/s) plus a sinusoidal variation with a bed thickness

150 m. The dominant frequency of the source signal is 10 Hz. The horizontal distance
from the source to the vertical interface is 2.5 km. (c) shows the frequency spectra of

these seismic traces, the dotted line corresponds to the trace in (a) and the solid line

corresponds to the trace in (b).
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F1G. 5. Seismic waves become evanescent when they reach the boundary of a high-
velocity layer beyond critical angle. In the high-velocity layer, the amplitudes of high-
frequency components decay faster than do those of low-frequency components. Some
of the low frequencies tunnel through the high-velocity layer while high frequencies
do not.

REFLECTIONS FROM VERTICAL INTERFACES

Due to evanescent filtering, seismic waves reflected from a vertical interface em-
bedded in a layered medium are attenuated and dispersed. As zero-offset reflections
end at a vertical reflector with a 90-degree propagation angle, the amount of energy
loss due to evanescent filtering is related to the thickness of sedimentary layers and
the velocity contrast between low- and high-velocity media. Keeping the velocity
contrast of the sedimentary layers a constant, changes in the bed thickness of the
sediments greatly alters the evanescent filtering of seismic waves.

Figure 6 shows frequency-dependent behavior of waves reflected from a vertical
interface in layered media with different bed thicknesses. When the sedimentary lay-
ers are thick relative to the wavelength of seismic waves, repeated evanescent decay
greatly attenuates the high-frequency energy. The low resolution and weak ampli-
tudes of the waves in Figure 6a shows that only very low frequencies survive the
evanescent filtering in the medium where velocity varies slowly with respect to the
seismic wavelength. When the bed thickness of the sediments decreases, more and
more energy tunnels through the thin, high-velocity layers, especially at the bottom
of the travel path of waves. Figure 6 illustrates that resolution of the seismograms in-
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creases with a decrease in bed thickness of the sediments. Figure Gd has the sharpest
reflections of all four seismograms. When the bed thickness of the layered medium
is smaller than the minimum wavelength of the seismic signal, most of the seismic
energy survives the repeated thin high- and low-velocity alternating layers.

Figure 7 shows frequency spectra of reflections from vertical interfaces, which
verify the observations from Figure 6 that frequency-dependent attenuation is more
severe for larger ratio of bed thicknesses to wavelength . When bed thicknesses are
comparable to the seismic wavelength, only low frequencies can survive the evanescent
filtering. As layers of sedimentary media become thinner, progressively more high-
frequency energy survives the thin, high-velocity layers. If the bed thickness of the
medium is smaller than the minimum wavelength of the seismic signal, the shape
of the frequency spectrum is similar to that for a medium without velocity-layering;
seismic waves tunnel through the thin, high-velocity layers for all frequencies.

DIP-DEPENDENT ATTENUATION

Both stratigraphic filtering and evanescent filtering cause high-frequency loss of
seismic waves reflected from a geologic structure beneath a sequence of sedimentary
layers. The amount of high-frequency loss is determined to both the bed thickness of
the sediments and the dip of the interface.

Figure 8 illustrates the geometry of zero-offset waves reflected from interfaces with
different dips. The high-frequency loss of waves reflected from horizontal interfaces
is caused by only stratigraphic filtering because no evanescent energy is produced.
The increase of reflector dip weakens the stratigraphic filtering; evanescent filtering
cannot attribute to the loss of seismic energy until the reflector is steep enough to
produce evanescent energy. The high-frequency loss is mainly attributed to evanescent
filtering for waves reflected from vertical interfaces because of their large propagation
angles. Therefore, for intermediate dips between 0 and 90 degrees, reflections have
their high frequencies attenuated by the possible combination of the two filtering
effects depending on the bed thickness of the sediments and the dip of the interface.

Figure 9 shows the scaled frequency spectra of synthetic seismic reflections from
vertical and horizontal interfaces embedded in an increasing-trend, velocity-layered
medium. The bed thickness is 150 m, comparable to a typical wavelength of the
seismic signal. Waves reflected from the vertical interface are more bandlimited than
are those reflected from the horizontal interface. This observation demonstrates the
strong evanescent filtering of seismic signals when the bed thickness of the medium is
comparable to the spatial wavelength of the seismic signal, while stratigraphic filtering
is weak in this particular medium.

As the sedimentary layers of the medium get thinner, more high-frequency en-
ergy tunnels through high-velocity layers. However, shortening of the time-delay
of short-period multiples increases the likelihood of losing high frequencies due to
stratigraphic filtering. Therefore, the decrease in the bed thickness of the sediments
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F1G. 6. Zero-offset reflections from a vertical interface in four layered media. The
velocity in each medium has a linear trend of 1.6 + 0.5z (km /s) and a sinusoidal vari-

ation with bed thickness (a) 250 m, (b) 150 m, (c) 100 m and (d) 60 m, respectively.
The dominant frequency of the source signal is 10 Hz.
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F1G. 7. Frequency spectra of the reflections from a vertical interface in four different
layered media. The dominant frequency of the source signal is 10 Hz. The velocity in
each of the media has a linearly increasing trend of 1.6 + 0.5z (km/s). One medium
has no velocity-layering. The bed thicknesses of the other three media are 150 m,
120 m and 60 m, respectively.

decreases the high-frequency loss due to evanescent filtering but increases the loss due
to stratigraphic filtering.

Figure 10 shows the scaled frequency spectra of waves reflected from different dip-
ping interfaces with the same travel time, where the ratio of changes of the medium to
the typical wavelength is less than 0.5. I use the frequency fy 5, where the correspond-
ing amplitude drops to 60% of the peak amplitude, to measure the frequency content
of the reflection. The spectrum corresponding to the vertical interface contains more
high frequencies than that for the horizontal interface, i.e. fy¢ for the vertical inter-
face is higher than fo¢ for the horizontal interface. The fy¢ for the 45° interface is
higher than does that for the horizontal interface, and lower than that for the vertical
interface. This dip-dependent phenomenon tells us that the high-frequency loss of
waves reflected from a dipping interface is dominated by stratigraphic filtering if the
thickness of layers in the medium is much smaller than the seismic wavelength.

11
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FiG. 8. Geometry of zero-offset reflections from interfaces with different dips. In a
medium with a sequence of sedimentary layers, reflections from a steeper interface
spend more time travelling in each layer.

CONCLUSION

Velocity layering may cause two possible forms of low-pass filtering on reflection
seismic waves: stratigraphic filtering and evanescent filtering. The action of these
different filters depends on the dip of the reflecting interface as well as the bed thick-
ness. Figure 11 summarizes the general dependence of the action of these two filters
on reflector dip and bed thickness.

The frequency content of waves reflected from a dipping interface beneath a layered
medium depends on the combined action of stratigraphic filtering and evanescent
filtering. When the layers are thick relative to the seismic wavelength, the high-
frequency loss is dominated by evanescent filtering; high frequencies are more severely
attenuated with increase of reflector dip. However, when the layers are thin relative to

12
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F1G. 9. Scaled frequency spectra of the reflections from a horizontal (left) and vertical
(right) interface embedded in a sequence of thin layers. Both reflections have the same

travel time. The velocity of the medium has a linear trend of 1.6+ 0.5 z (kim/s) and a
sinusoidal variation with a bed thickness of 150 m. The source signal has a dominant
frequency of 10 Hz.

the seismic wavelength, the high-frequency loss is dominated by stratigraphic filtering;
that filtering becomes less severe with increase of reflector dip.

The research in this paper is based on a qualitative observation and analysis of the
dip-dependent attenuation of synthetic seismograms. Reflections recorded in these
seismograms correspond to increasing-trend, velocity-layered media. For a further
study of this behavior, stochastic-velocity background media may need to be used for
a quantitative understanding of evanescent filtering.

The loss of high-frequency signal in seismic waves reflected from geologic struc-
tures is important. Improved imaging of structures may require a dip-dependent
deconvolution to regain those high frequencies.
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APPENDIX A:
MODELING OF SEISMIC WAVES IN THIN LAYERS

To reduce the complexity of dealing with both steep interfaces and thinly-layered
sedimentary media, the modeling algorithm used to generate reflection synthetic seis-
mograms in this research is performed in two steps,

1. Calculate the Green function for a sequence of thin sedimentary layers, ig-
noring the existence of geologic structure. A frequency-wavenumber finite-
difference(FIKFD) scheme (I{orn, 1988) is used to compute this Green function.

2. Using the Green function, compute reflections from dipping interfaces via the
Born approzimation (Bleistein, 1985).

Waves propagating in thin layers - Green’s function

Due to high-frequency assumptions, conventional methods based on the WKBJ
approximation fail to predict even the first arrival times for waves traveling in thinly
layered media. Commonly used reflectivity methods become prohibitively expensive
for media where the velocity is continuously changing, or media that contain many
thin layers. The basic assumption for reflectivity methods is that the medium is
made up of homogeneous layers, and interfaces of each layers must be dealt with
individually. The FKFD algorithm introduced by Korn (1988) has no high-frequency
approximation, and the seismic wavefield is computed for all depths simultaneously.

The FKFD algorithm is a combination of integral transformations and a finite-
difference technique. The wavefield for each frequency and wavenumber, the frequency-
wavenumber response of the medium, is calculated by a one-dimensional finite-difference
scheme. The summation of these frequency-wavenumber responses yields the seismic
wavefield in the medium.

The acoustic wave equation may be reduced to a second-order ordinary differential
equation when the wavefield is decomposed for each frequency (w) and wavenumber

16
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F1G. A-1. The finite-difference mesh used in the modeling. The wavefield is computed
by finite-differencing for each frequency and wavenumber.

dld 2 w?
pd—z%E;P + (%}% - k2) P = —v—zé(z — 25)S(w), (A-1)
where p(z) is bulk density, z is depth, v(z) is the medium velocity, S(w) is the Fourier
transformed signature of a source located at depth z,, and P(w,k, z) is the pressure
field. Equation (A-1) may be solved by a second-order implicit finite-difference scheme
(Deng, 1992). Figure A-1 shows the finite-difference “star” used to calculate P(w, k, 2)
for a single frequency and wavenumber. For each frequency and wavenumber, the
finite-differencing is performed for all depths by solving a tri-diagonal linear system
(Deng, 1992).

The seismic wavefield is obtained by integrating frequency-wavenumber responses
computed by the finite-differencing. For a line-source, or a two-dimensional (2-D)
point source, the integration is a 2-D inverse Fourier transform of the frequency-
wavenumber responses,

plt,r,2) = Z% / * dwe=! / ke P(w, k, 2), (A-2)

where 7 is the horizontal distance from the source, k = k, is the horizontal wavenum-
ber, and p(t,r, z) is the wavefield corresponding to a 2-D point source.

To satisfy the condition of causality, the integration over frequencies in equa-
tion (A-2) is taken above the singularities on the real axis,

w=v+1ie, where € > 0. (A-3)
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The frequency-wavenumber response P(w, k, z) is thus computed for complex frequen-
cies w. As aresult of using complex frequencies, the wavefield is exponentially attenu-
ated by an amplitude factor e™¢*. This attenuation avoids the possible alias of seismic
traces, wherein signals of late times appear at early times on a seismogram. P(w, k, z)
is obtained by solving a complex-coefficient, tri-diagonal linear system (Deng, 1992).
Therefore, the wavefield corresponding to a 2-D point source is represented by

1 [ . o0 "
p(t,r,z) = —2/ dwe"""t/ dk ™" P(w, k, z)
47° J_ —o0

= %e“ /oo dve ! /oo dk e*" P(w, k, 2). (A-4)
47 —00 —00

As shown in equation (A-4), the frequency integral is performed by a Fourier trans-
form followed by an amplitude correction that compensates for the use of complex
w by an exponential factor e in the time domain. Hence, use of a large imagi-
nary part of frequency can result in boosted noises at late times. An imaginary part
€ = log.(100)/T, where T is the maximum recording time, keeps the amplitude factor
to be at most 100 at the latest time; this choice of € is used in this research.

Reflection from dipping interfaces

The reflected wavefield is often referred to as the scattered wavefield, while the
wavefield corresponding to the Green function is the incident wavefield (e.g., Bleis-
tein, 1984). Under the assumption of small reflection coefficients, a first-order Born
approximation (e.g., Bleistein and Gray, 1985) gives zero-offset reflections from a
dipping interface using the incident wavefield.

For our problem, the velocity of the sedimentary medium is taken as the back-
ground velocity, and the presence of an interface perturbs the velocity function. As
a result of this perturbation, the real velocity of the model, which is made up of a
sequence of sedimentary layers and the interface, may vary laterally as well as ver-
tically. If the background velocity function is ¢(z) and the real velocity function of
the model is v(x, 2), the perturbation a(x,z) due to the interface is defined by the

expression
1

1
v2(2,2)  cX(2)
The wavefield for a single frequency, P(w, z, z), is the solution of the 2-D Helmholtz
equation

1+ a(z,2)]. (A-5)

o (10 ik w? w?
ooz (537) ™ oy = ey NG S0 ()

where S(w) is the Fourier transformed signature of a source located at (z,, z,).

For an interface which has a perturbation o < 5%, the zero-offset reflection field
Py(w,z,2) can be obtained by an area integral (Bleistein and Gray, 1985),

[i: (lfaf(ﬁ,v'})Gg(w, |€ - :L‘sla |77 - zsl)- (A'7)

0 1
Py(w,2,,25) = w2S(w)/0 ‘17762(,7)
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In this research, I have assumed that the perturbation exists only on the interface,
a(z,z) = a(z, 2)6(x — 2,)6(z — 2,),

where (z,,2,) lies on the interface. Under this assumption, the double integral in
equation (A-7) is reduced to a line integral along the interface L,

P50, 2) = 68S(0) [ dl€,1) e 66 Con€ =l =2, (A8)

where I(£,7) is the arc length of the interface at (£, 7). This delta-function perturba-
tion assumption reduces the computation from the area integral to a line integral.

However, the use of a delta function introduces a spatial differentiation to wavelets
because of the reduction from an areal integration to a line integration. Since the
purpose of this research is to study the behavior of seismic waves caused by velocity
layering, and as the same differentiation will occur with or without the layering, this
differentiation of wavelets does not affect the result of this research.
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A small dip, small offset representation
of the DMO operator in a medium
with a constant velocity gradient

Michel Dietrich

ABSTRACT

A small dip, small offset approximation of the dip moveout (DMO) operator
is derived in a medium with a constant velocity gradient in the vertical direction.
The DMO impulse response is defined by four parameters: the vertical time t,,,
the half source-receiver offset h, and two "squeeze” functions 7,(t.) and ~,(t,)
which are directly related to the central curvature of the DMO operator in the
inline and crossline directions.

The expressions obtained show that the DMO operator depends only weakly
on the velocity function considered: for a fixed value t,,, the squeeze factors -y, and
7y depend solely on the gradient k and are notably independent of the reference
velocity V. Furthermore, the 7, factor in the inline direction shows only little
sensitivity to variations of the velocity gradient k. However, the v, factor in the
crossline direction is directly proportional to k.

It is also shown that the approximate representation of the DMO operator
remains accurate for large source-receiver offsets. The relative error in curvature
in the inline direction is usually less than 10%, even for the largest offsets used in
conventional seismic surveys. The curvature of the DMO operator in the crossline
direction can be exactly computed for any offset h.
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INTRODUCTION

Dip moveout is a simple and cost-effective seismic processing which is usually
applied to the data by assuming that the seismic wave velocity is constant. DMO
processing in inhomogeneous media is more difficult to implement, because the DMO
operator is then a two-dimensional, complex-shaped function of the zero-offset trav-
eltime. In a recent paper (Dietrich and Cohen, 1992, hereafter referred to as Paper
I), we derived an ezact formulation of the DMO operator in a medium characterized
by a constant velocity gradient in the vertical direction. Our analytical formulation
gives a complete solution of the problem, but does not permit to study (analytically)
the overall behaviour and properties of the DMO impulse response in a simple way.
In particular, it is often desirable (and instructive) to represent a complex seismic
processing operator by a truncated power series to obtain its simplest possible ex-
pression. The complexity of the parametric definition of the DMO operator given in
Paper I prevents such an analysis.

In this paper, I derive an approximate representation of the DMO operator for
a linear velocity-depth function, which is valid for small source-receiver offsets and
small dips. The DMO impulse response is basically defined by the curvature at the
origin (in two orthogonal directions), and by the vertical time corresponding to a
horizontal reflector. The expressions of the curvature are obtained from the normal
moveout velocity in the inline and crossline directions.

The central curvature in the inline direction is obtained as a particular case of the
general formula derived by Hale (1988) for a vertically inhomogeneous media. The
curvature in the crossline direction requires more calculations, but can be derived
by extending Hale’s approach in the strike direction. The final formulas obtained
emphasize the relative insensitivity of the DMO impulse response relative to the
velocity profile considered, and confirm the high degree of accuracy of the approximate
DMO formula proposed by Hale (1988) in the inline direction, for an arbitrarily
complex V(z) medium.

I. GENERAL PROCEDURE

The DMO mapping operator in a depth-dependent medium can be approximately
represented by the function

2 2
— __ T Y
fo=ta |1 Yz(tn)h? Ty (ta)h? , 1)

where g is the two-way traveltime along the normal incidence ray, and (zo,yo) are
the coordinates of the point of emergence of the ray at the surface of the ground.
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Fic. 1. Small dip, small offset representation of the DMO impulse response in a
vertically inhomogeneous medium. The operator is defined by the normal moveout
time ¢,, and by the central curvature in the inline (24) and crossline (yp) directions.

Y.(t) and 7,(t) are time-variable squeeze functions in the inline and crossline direc-
tions respectively, and are related to the curvature of the DMO operator through the
relations

%t tn

5 = ———— and - = 2
T N R T R o~ Wt @

Since 7, is usually positive, and 7,, negative, equation (1) generally represents a
saddle-shaped operator, as depicted in Figure 1. It can also be noticed that equation
(1) differs from the constant velocity DMO ellipse by an additional contribution in
the crossline direction, and by the squeeze factors 7, and ,.

The general procedure to derive a small dip, small offset approximation of the
DMO operator consists in writing the dip-dependent and dip-independent NMO equa-
tions, and in eliminating the finite-offset time T between these two equations. This
procedure has been employed by Hale (1988) in the inline direction, but remains valid
in any direction.

The dip-independent NMO equation relating the finite-offset time T to the vertical
time t,, is given by
4h? (3)
Vita)

T? =4 +

where
Va(t) = [ % /0 2 (u)du ]1/2 (4)

is the root mean square velocity at traveltime ¢.
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The dip-dependent NMO equation relating the finite-offset time T to the zero-
offset time Tp is similarly given by

4h?
T =15 + 3 (5)

dip(TO’p)
where Vy,(Ty, p) is the moveout velocity at time Ty and in the direction p traveled
by the zero offset ray.

Combining equations (3) and (5), we obtain the expression

1 1

T2 = 2 + 42 -
07 Vi(ta) Vi, (To,p)

(6)
which can be written in the form

T3 = th +(ta, P)R°N(p) (7)
where 7(t,, p) is the correction factor at time ¢, and in the direction p, and X is the
"two-way"” ray parameter of the zero offset ray in the direction p.

The equivalence between equations (1) and (7) can then be easily established by
noting that

6to atO
Ae=2— ;A= s
O0xg y Yo ( )
and
T = 4 hrol 5 IO =0+ Pyl ©)

(To denotes the two-way traveltime along the zero offset ray emerging at the source-
receiver midpoint, whereas ¢y represents the two-way traveltime along the normal
incidence ray corresponding to a particular reflection point in the subsurface).

Hale (1988) demonstrated that the «, factor in the inline direction can be ex-
pressed in the form

1) = 5VAt) T Valta)  dt,

1
- 5 ’ (10)

where
Va(t) = [ % /0’ vt (u)du ]1/4 . (11)

The derivation of expression v, in the crossline direction can be obtained from
equation (7) and requires the knowledge of the moveout velocity Vg, in the strike
direction.
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II. MOVEOUT VELOCITY IN THE STRIKE
DIRECTION

According to Levin (1971), the normal moveout velocity for a dipping reflector in
a constant velocity medium is given by

Vain(#,8) = Vo[l — sin® pcos?9)/2 | (12)

where ¢ is the dip angle of the reflector, and 6, the angle between the profile line and
the dip line. In the strike direction 8 = 7 /2, the moveout velocity is simply equal to
the contant velocity V4 of the medium.

The general expression of the moveout velocity in the crossline direction for a
vertically inhomogeneous medium can be obtained from the three-dimensional trav-
eltime equation for dipping layers derived by Diebold (1987). Diebold showed that
the traveltime equation along a raypath between a source S and receiver R in a stack
of homogeneous layers with interfaces of arbitrary dip and strike can be written as

T=ps - Xs + pr-Xr + D (a5, +qr,)% (13)
7

where X ¢ is the horizontal position vector from the source S to a vertical reference
line on which the layer thicknesses z; are defined; X g is the horizontal position vector
from the reference line to the receiver R; pg and py are the horizontal slowness vectors
of the rays departing from the source S, and arriving to the receiver R; and gs; and
qr; are the vertical slowness components of the source and receiver rays in layer j.
The summation is over the layers j traversed by the rays (Figure 2).

The reference line is fixed, but can be chosen anywhere, e.g., through the source,
at the receiver, at the reflection point, or elsewhere. The choice of the reference line
determines the layer thicknesses z; and the horizontal vectors X g and X g, but does
not influence the slowness components pg, pg and g;.

Diebold’s formula is particularly elegant because it is a mere generalization of the
well-known traveltime formulas in one- and two-dimensional layered media. Moreover,
Richards (1990) showed that the trigonometric proof of equation (13) given in the
original paper of Diebold (1987) is hardly needed when the raypath is decomposed in
a particular way.

In our problem, it is convenient to put the reference line at the reflection point
in the crossline direction = 0. With the assumption that the half source-receiver
offset h is small, we can write

Th=2[py-Xo + 1] = 2[Pf)y)y0+’r0] ) (14)
h2

T=2[ps-Xsg + 7] = T0+2[pgy)y—+67'] , (15)
0
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—_— Qs Bac)

Vertical
reference
line

F1G. 2. 2-D schematic of a 3-D raypath from source S to receiver R which is composed
of line segments that in general are not co-planar. Dipping interfaces are planar, but
are not presumed to share a common strike. The local layer thicknesses z; are defined
by the intersection of the interfaces with the vertical reference line. The gs,’s and gg,’s

denote the vertical slownesses in each layer, p; and pp are the horizontal slowness
vectors at the source and at the receiver, and SXS and X represent the horizontal
distances traveled along the source and receiver raypaths (after Richards, 1990).

where
(!I)h 2 2.
o= 40,2 ; T=.qs;z; and 6T=—£p;—2)2—7 . (16)
i i Yo i %,
We then obtain ah2
T2 =T2 + ———— + O(h* 17
0 ‘/d2ip(TO, yO) ( ) ( )
with
Viio(To, 90) = —'—ZZ)IO . (18)
po To

The above expression for Vyip(To, yo) was also given by Witte (1991). When the
horizontal distance y, traveled along the zero-offset ray is small, it can be shown that

‘/dip(TO, yO) >~ ‘/2(tmig) ) (19)

where ¢4 is the two-way migration (vertical) time corresponding to the reflection at
time Tp.
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ITI. THE LINEAR V(z) CASE

In a medium characterized by a velocity function V' (2) = Vj + kz, the expressions
of V(t), Va(t) and V4(t) at the two-way traveltime ¢ are respectively given by

eft — 1

kt

1/2 2kt _ 171/
] and V4(t)=V0[ — ] . (20)

V(t) = Voe®? | Vz(t)=V°[

When these expressions are substituted in equation (10), we find

kt, (e +3)

2 (¢ Z1) (21)

Ye(tn) =

In addition, the closed form expression of the traveltime T given in Paper I allows
us to write equation (18) in the form

sinh kTp/2

2 _— .
Viip(To, %0) = VoV (tmig) ¥Toj2 (22)
and, after some approximations,
kto A2V2(t,
Vo) = Vi) [1 - S0 23)

The expression of -y, can then be obtained from equations (6) and (7), and is simply

written kit
7y(tn) =t . (24)

4
Equations (21) et (24) clearly show that the squeeze functions v, and v, are
independent of the velocity V and depend only on the velocity gradient k. Moreover,

it can be demonstrated from equation (21) that
dvy., dk

. <<7 s (25)

which shows that v, depends only weakly on k. On the other hand, since v, is directly
proportional to k, the curvature of the DMO operator in the crossline direction will
be affected by errors in the velocity gradient k. (However, it should be recalled that
the most energetic contributions of the DMO operator are concentrated along the
inline direction — see Paper I).

The behavior of the DMO impulse response predicted by equations (21) and (24)
is entirely confirmed by the curves displayed in Figures 3 and 4. Figures 3 and 4
respectively show the ezact inline and crossline components of the DMO operator
(calculated from the equations given in Paper I), for several values of V; and k.

7
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FiG. 3. DMO erators in the inline direction for variations of
+10%, £20%, £30%, :i:40‘; +50% of velocity Vy (a), and gradient k (b). The stan-

dard values used in this calculation are V5 = 1.5 km/s, k = 0.3 /s, h = 2 km and
T = 6 s. The curves have been superposed by using the norma, moveout time tn
corresponding to the standard values.
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Fi1G. 4. Same as Figure 3, but in the crossline direction.
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DMO operator - Inline direction
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F1G. 5. Accuracy of the DMO approximation in the inline direction. The curves
show the relative error in curvature as a function of the half source-receiver offset h,
for four different values of the velocity gradient k. The other parameters used in this
calculation are Vo = 1.5 km/sand T =3 s .

Besides, it may be noticed from equations (2) and (24) that the curvature in the
crossline direction is independent of t,,, and can be exactly computed for any offset
h. Figure 5 shows that the curvature computed from equations (2) and (21) in the
inline direction remains very accurate when the source-receiver offset is increased.

CONCLUSIONS

An approximate representation of the DMO operator in a medium with a constant
velocity gradient has been derived. The approximate operator can be used for any
velocity gradient, and remains accurate even for rather large source-receiver offsets.
The DMO correction in the inline direction is almost independent of the velocity
function considered.

10
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A dip-dependent divergence correction

Francesca Fazzari

ABSTRACT

A divergence correction is conventionally applied to zero-offset data in an effort
to obtain reflection amplitude information. The conventional divergence correc-
tion compensates for the geometrical spreading of a point source in a horizontally
layered medium where velocity varies with depth only. The dip-dependent di-
vergence correction extends the conventional correction for improved amplitude
processing of dipping beds.

The dip-dependent divergence correction is computed by dynamic ray trac-
ing, and is applied to stacked data using a dip decomposition technique. This
correction decreases amplitudes relative to those obtained from the conventional
correction. The difference in amplitude is greatest for large reflector dips. In a
data example from the Gulf of Mexico, the conventional correction over-amplified
the reflection off a salt dome flank by a factor of 1.5.

High amplitudes near salt flanks are also associated with the presence of hydro-
carbons. Applying the dip-dependent divergence correction ensures that ‘bright
spots’ are not erroneously caused by over-amplification of steep dips by the con-
ventional correction.

In areas like the Gulf of Mexico, where the velocity function varies with depth,
and steep reflectors are commonplace, the poststack dip-dependent divergence
correction is an inexpensive way to improve the amplitude information in seismic
images.

INTRODUCTION

The divergence correction is applied to compensate for the decay in amplitude due
to the geometrical spreading of the wavefront generated by a seismic source. When
transmission losses can be neglected, the amplitudes in divergence-corrected seismic
data are proportional to reflection coefficients of interfaces within the subsurface.

1
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After appropriate divergence correction, properties of the subsurface become more
interpretable in terms of seismic amplitudes.

The divergence correction for a particular seismic event depends upon the loca-
tion of its subsurface reflection point relative to the source location, and upon the
structural configuration of the overburden. For zero-offset reflections from horizontal
beds in a v(z) medium, where the velocity v varies only with depth z, the reflection
point is specified by the vertical traveltime of the seismic energy and the velocity of
the medium. Traveltime and velocity therefore determine the zero-offset divergence
correction for horizontal reflectors.

Newman (1973) derived the zero-offset divergence correction vZy,st /vy, for a hor-
izontally layered homogeneous earth, where ¢ is the two-way vertical traveltime to
the reflector, v is the velocity at the surface, and vymgs is the root-mean-square av-
erage velocity along the vertical path between surface and reflector. This correction
is routinely applied to stacked seismic data.

Newman also derived the divergence correction for finite-offset reflections from
horizontal beds in a v(z) medium. For finite offset reflections, the divergence correc-
tion, and the reflection point depend on horizontal slowness (reflection slope), and
traveltime. These quantities are measurable in finite-offset seismic data. The finite-
offset divergence correction for horizontal reflectors, which is generally not applied in
practice, does not require two-point ray tracing.

For media with dipping and curved interfaces, other authors (e.g., Cerveny, et
al., 1977) have employed asymptotic ray theory to determine a general expression for
the wave amplitude, including divergence effects. Cerveny, et al., described how to
evaluate the divergence for finite offset and dipping reflectors using the dynamic ray
tracing equations. The divergence is computed by using two-point ray tracing to find
the subsurface reflection point, and then solving the dynamic ray tracing equations
for the raypath to that reflection point.

I use the dynamic ray tracing equations to determine the divergence correction
for any reflector in a medium where the velocity varies with depth only. This is the
dip-dependent divergence correction. For zero-offset data, the reflection point and
the divergence correction depend only on reflection slope and traveltime. The dip-
dependent divergence correction is applied to stacked data without the computational
cost of two-point ray tracing.

DERIVATION

Cerveny and Hron (1980) showed that for a seismic line recorded from a v(z)
medium, the three-dimensional divergence due to a point source reduces to the prod-
uct of two two-dimensional components: an in-plane component /g, and an out-of-
plane component /0. The in-plane dimensions are defined by a subsurface depth
slice beneath the seismic line, and the out-of-plane dimensions by a depth slice taken
perpendicular to the seismic line.
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Consider an in-plane raypath from a shotpoint to a subsurface reflection point. Let
7y define the initial (take-off) angle between ray and vertical z axis. The divergence
correction along the raypath is a ratio of the normal distance at time ¢ between the
ray with angle v and the nearby ray with angle -+ dv, to the initial normal distance.

The normal distance is described by the dynamic ray tracing equations, which are
based on the ray centered coordinate system (e.g., Cerveny and Hron, 1980).

Y

F1G. 1. The normal distance n between a ray characterized by take-off angle v and
a nearby ray characterized by take-off angle v + dv.

In ray centered coordinates, every point along a central ray i.e., the in-plane ray
from shot point to subsurface reflection point, has direction vector s and normal n.
s has magnitude equal to the distance travelled along the ray. The magnitude of n is
equal to the distance between the central ray (with angle ) and a nearby ray (with
angle v + dvy), when s is held fixed. The relationship of n to s is described by the
dynamic ray tracing equations (Cerveny, 1981a)

dn dp, Van

&P G T e 1)
where p, is the component of the slowness in the direction of the normal, and v, is
the second derivative of velocity with respect to n.

The divergence correction is a ratio of the normal distance at traveltime ¢ to the
initial normal distance. The initial normal is measured when the wavefront is at
unit distance from the source center i.e., when the distance travelled along the ray is
equal to one. As both normal distances become small, the normal at traveltime ¢ is
approximated by the differential dn and the initial normal distance by 1-dvy (Cerveny,
1981b). The divergence correction is therefore dn/dy. It is evaluated by taking the
derivative of the dynamic ray tracing equations (1) with respect to . Define q and p
so that
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In terms of these new variables, the derivative of equations (1) with respect to + is

dq — a2 dp _ 'U,nn
a - "P w7 (2)

The relationship s = vt was used to replace distance along the ray s by traveltime ¢.

Equations (2) govern the in-plane divergence ,/g. A similar expression governs
the out-of-plane divergence /o, the only difference being the value of the normal
curvature of the velocity function v ,,. For a one-dimensional velocity function which
varies with depth only, v, in the in-plane direction is equal to v,,zp§v2. v, is the
second derivative of velocity with respect to depth, and p, is the horizontal slowness
(reflection slope). The equivalent expression for the normal curvature in the out-
of-plane direction is v,zzp§v2, where p, is the horizontal slowness in the direction
perpendicular to the seismic line (crossline reflection slope). For a 2-D seismic line,
however, p, is assumed to be zero. In the out-of plane direction, the normal curvature
of the velocity function is therefore zero. Thus p is a constant, and equal to its initial
value of 1/vy. The differential equations for ¢ and q are

do _ v
dt - ’Uo’
dg .2 dp _ 2
dt =vp E - _v,zz pzv q, (3)

where both ¢ and ¢ are initially zero.

The in-plane divergence, and the out-of-plane divergence contribute to the total

divergence correction D,
D(p,t) = y/o(t)ya(p=,1).

For a horizontally layered medium down to the reflector, the dip-dependent divergence
correction depends upon the interval velocity of the medium through which the seismic
wave travels, reflection slope, and traveltime.

IMPLEMENTATION

I use finite differences to numerically solve equations (3) for ¢ and ¢ by marching
forward in traveltime along the ray. Given a particular velocity function, a divergence
correction table is generated for all traveltimes 7 and all possible reflection slopes p,.

For zero-offset reflections from dipping beds, the horizontal slowness (reflection
slope) and traveltime of a ray from shotpoint to reflection point are the same as for
a ray from reflection point to receiver. Further, the horizontal slowness that charac-
terizes the raypath of a particular reflection corresponds to reflection slope, which is
measured on a zero-offset section. Note that for finite-offset reflections from dipping
beds, the horizontal slowness and traveltime of a ray from shotpoint to reflection
point differ from those for a ray from reflection point to receiver. In the finite-offset

4
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case, these quantities require two-point ray tracing. For zero-offset data, however,
the raypath to a reflection point and the divergence correction are specified by a
particular combination of reflection slope and traveltime; no ray tracing is required.

The dip-dependent divergence correction is equivalent to a time-varying dip filter
because of its simultaneous dependence on reflection slope and traveltime. Although
dip-dependent processing is most easily implemented in the frequency-wavenumber
domain, the time dependent attributes of the table cannot be considered once the
2-D Fourier transform is made. To apply the divergence correction, I use a dip
decomposition technique similar to Jakubowicz’s (1990) method for efficient DMO.
The dip-dependent divergence correction is applied, for all times, to each reflection
slope in the wavenumber-time domain. The dip filtered data are then transformed
to the wavenumber-frequency domain. In this domain, only the frequencies near
the slope-wavenumber combination w = k/p, are included in the output. The dip
decomposition algorithm can be summarized:

Zero out Q(k,w)
Transform the stacked data p(z,t) to P(k,t)
For all wavenumbers k {
For all slopes p, {
Apply the divergence correction for all times ¢ so that:
s(k,t) = D(p.,t) x P(k,¢)
Transform s(k,t) to S(k,w)
For all frequencies w near k/p, {
Add S(k,w) to the output Q(k,w)
}

}
}

Transform the divergence-corrected data Q(k,w) to q(z,t)

DIVERGENCE CORRECTION TABLE

The conventional divergence correction over-amplifies reflections from dipping
beds. The amount of over-amplification depends on reflection slope, unmigrated
traveltime, and interval velocity function. For interval velocity functions that in-
crease with depth, the divergence correction is largest for energy that travels the
farthest and penetrates most deeply into the medium; i.e., at large times and at small
values of p,, where the raypath is nearly vertical.

Consider a dipping reflector and a nearly horizontal reflector in a medium where
the velocity increases with depth (Figure 2). If the unmigrated traveltime to these
reflectors along the normal incidence raypath is held constant, the dipping reflector
must be shallower than the nearly horizontal reflector. The average velocity along
the normal incidence raypath to the dipping reflector is therefore less than that for
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»,

1

F1G. 2. A shallow, overhung reflector and a deep, nearly horizontal reflector in a
medium where the velocity increases with depth. The traveltimes of the two normal
incidence raypaths are equal. The divergence correction is greater for the nearly
horizontal reflector than for the dipping reflector.

the nearly horizontal reflector. Consequently, for fixed traveltime, the divergence
correction decreases as reflection slope increases. The maximum value of the diver-
gence correction occurs at zero reflection slope or for horizontal reflectors, where the
conventional divergence correction, vZyst/vy is valid.

For small traveltimes, the difference between conventional and dip-dependent di-
vergence correction is small. The difference increases with traveltime. For large
traveltimes, an event with small reflection slope, such as the nearly horizontal re-
flector in Figure 2 must be located at depth in the subsurface. An event with large
reflection slope at late time, however, corresponds to a much shallower reflector, and
thus requires a smaller divergence correction. The divergence correction for the shal-
low reflector is much smaller than that for the deep, nearly horizontal reflector. As
traveltime increases, for events with large reflection slopes, the amount of amplitude
exaggeration after conventional divergence correction increases.

Figure 3 shows contours of the ratio of the conventional divergence correction to
the dip-dependent divergence correction, for the velocity function v = 1.5+0.6z. The
conventional divergence correction exaggerates amplitudes by less than three percent
for events whose reflection slope and traveltime fall above the contour labeled 1.03.
For events that fall on the 1.66 contour, including the dipping events in Figure 4b,
the conventional correction over-amplifies those events by approximately 70 percent.
The amount of over-amplification after conventional divergence correction increases
with reflection slope and traveltime.
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FiGc. 3. Contours of amplitude error that result from applying the conventional
divergence correction to a medium characterized by the velocity function v = 1.540.62
km/s. For the reflection slopes and times that fall along a given contour, such as the
1.66 contour, the conventional correction over-amplifies dipping events by about 1.7
times.

RESULTS

The examples in Figures 4 and 5 demonstrate the amplitude effect of the dip-
dependent divergence correction. The amount of over-amplification caused by the
conventional correction is shown in the difference plots, Figures 4c and 5d, where
the amplitudes of dip-dependent divergence-corrected data are subtracted from those
of conventionally corrected data. Both divergence corrections are normalized by the
initial correction for zero reflection slope i.e., v35(¢1)t1, where t; is the time sampling
interval.

The synthetic data were generated by a modeling program based upon the Kirch-
hoff approximation (e.g., Bleistein, 1986). The modeling program produced a stack
that was migrated by a finite difference migration process (Hale, 1991), which yields
amplitudes proportional to the reflection coefficients. Reflection coefficients of the
model reflectors were held constant throughout the model; this constancy is preserved
(Figure 4b) after applying the dip-dependent divergence correction.

The difference plot in Figure 4c demonstrates that the conventional divergence
correction has exaggerated the amplitudes of dipping reflections. For nearly horizontal
reflectors, the dip-dependent divergence correction and the conventional divergence
correction have the same action.

The dip-dependent divergence correction is applied to a Gulf of Mexico seismic
line in Figure 5. In the Gulf of Mexico, an interval velocity function that varies with
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FiG. 4. (a) Zero-offset synthetic data generated from an interval velocity model
v = 1.5 + 0.62. The amplitude error contours are those shown in Figure 2. The
dipping event at 4.5 s has a reflection slope of 0.6 s/km. This event falls upon
the 1.66 contour of Figure 2. (b) Migration of dip-dependent divergence-corrected
data. (c) The difference: conventionally corrected amplitudes minus dip-dependent
divergence corrected amplitudes.
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Fic. 5. (a) Contours of amplitude error that results from applying the conven-
tional divergence correction to a medium described by the interval velocity used to
migrate the data. (b) The stack. (c) Migrated data with amplitudes adjusted by the
dip-dependent divergence correction. (d) The difference: conventionally corrected
amplitudes minus dip-dependent divergence corrected amplitudes.
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depth is a good approximation to the velocity of sediments through which seismic
waves propagate. The arrow on the stacked data points to the salt flank, with a
reflection slope of 0.98 s/km at a time of about 3.5 s. This event falls on the 1.53
contour of Figure 5a. The conventionally corrected amplitudes along the salt flank
are thus over amplified by 50 percent.

Because the velocity increase is less rapid than in the model studied above, the
amplitude difference in Figure 5d is less dramatic than for the synthetic example
shown above. In this medium, the conventional divergence is valid over a larger
range of dips and traveltimes. As before, the dip-dependent divergence correction
has decreased the amplitudes of dipping beds at late times, and steeply dipping beds
at early times.

CONCLUSIONS

The error in amplitude due to the conventional divergence correction is most signif-
icant for events with large reflection slope at late times. The conventional divergence
correction has been shown to over-amplify dipping events by 50 percent on stacked
data (Figure 5). The dip-dependent divergence correction improves the processing
of amplitudes of dipping reflectors in a medium where the velocity varies only with
depth. Gulf of Mexico data, which often contain steep reflectors and where the ve-
locity profiles have little lateral variation, are particularly suited for the application
of this correction.

The dip-dependent divergence correction could be applied to prestack data if two-
point ray tracing is performed to determine raypaths to and from the reflection point
for each event. This is a topic for further study; however, I expect that the amplitude
effects of the dip-dependent divergence correction applied to finite-offset data, which
are subsequently stacked, will not differ significantly from those of the poststack
divergence correction.
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Reverse-time depth migration
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ABSTRACT

Where the subsurface is inhomogeneous, lateral and vertical variation in veloc-
ity and density should be considered when doing seismic migration. Reverse-time
depth migration based on the full wave equation is one general approach that
takes such velocity variation into account.

By changing dependent variables, I replace the second-order acoustic wave
equation by four first-order partial differential equations. A two-step explicit
finite-difference method was used to solve these equations. Results of application
to synthetic data indicate that this method can image the reflectors beyond 90
degrees with accuracy.

INTRODUCTION

Finite-difference migration has been widely implemented following approaches of
Claerbout (1985). His method employs a one-way wave equation that allows energy
to propagate only downward. Although successful in many situations, the method is
limited by the assumptions made in deriving the one-way wave equation. In partic-
ular, it is assumed that the spatial derivatives of the velocity field can be ignored.
However, such terms are significant in the presence of strong velocity contrasts. Most
finite-difference schemes based on the one-way wave equation contain a limit on the
maximum dip angle of the reflector. To deal with a variable velocity field, Kosloff and
Baysal (1983) developed a two-dimensional migration scheme in the frequency and
space domain based on a direct integration in depth of the acoustic wave equation.

Here, I introduce a two-step explicit finite-difference, reverse-time depth migration
scheme. The method is based on a set of first-order partial differential equations
derived from the second-order acoustic wave equation. This method can be applied
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with full consideration of variable velocity and density, and their gradients, and it
can accurately image the positions of the dipping reflector beyond 90 degrees.

THEORY

The key steps in deriving equations used for reverse-time depth migration here
are (1) to define the new dependent variables, and (2) to form the new first-order
equations in these variables, based on the second-order acoustic wave equation.

For velocity and density fields that are functions of space, the acoustic wave equa-
tion is

Lo [ ) S e

where p = p(z,y,2) is the density function, ¢ = ¢(z,y, 2) is the wave velocity and
f(z,y,2,t) is the source function.

With new dependent variables defined as

1 oP

q(z,y,2,t) = ma, (2)
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o n = ey o @
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w(w, Y%, t) = Map (5)

p(z,y,2) 8z’

the second-order acoustic wave equation (1) can be reduced to a new first-order partial
differential equation, and three additional first-order partial differential equations can
be derived from the definition (2) - (5). This gives a complete set of the first-order
partial differential equations for finding the migration images. These equations take
the form
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e (B, g

where a, B and « are the three components of wave velocity gradient, and A, B and
C are the three components of the normalized density gradient. These gradients are
function of space, and can be written as

(e, B,7) = Ve, (10)

(A, B,C) = %w (11)

From equation (2) it is seen that the new dependent variable ¢(z,y, 2,y) has a
90-degree phase shift relative to the variable P.

ALGORITHM

The set of equations (6)—(9) may now be solved by using the two-step Lax-
Wendroff finite-difference method, which has the second-order accuracy.

At each time step n, the variable ¢ is defined on the main grid points, while
u,v and w are defined at the centers between the main grid points in the z,y and
z directions respectively. In the Lax-Wendroff finite-difference method, temporary
variables are defined at auxiliary points at the half-time steps n + 1.

auziliary calculation:

n n n I )
S S At Yip ke ~ %otk Uitk Vig-lk
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where ¢,j and k are the space indices of z,y and 2, Az, Ay and Az are the spatial
steps, and At is the negative time step used for migration.

These auxiliary variables are then used in the main calculation to determine the
variables at the time step n + 1:

main calculation:
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Stability of the difference scheme is subject to the dimensions of the time and
space steps. To ensure stability, the time step should satisfy

min(QAz, Ay, Az)

At| <
I I \/glcmazl

(20)

The absorbing boundary condition (Clayton and Engquist, 1980) has been applied
to the two side boundaries and the lower boundary.

With this two-step calculation, we can obtain the depth migration image for spa-
tially variable characteristics of the media.

NUMERICAL EXAMPLES

I have tested this two-step explicit method on problems of two-dimensional depth
migration, in the case where a% = (0. Input data in one set of tests consisted of
unit impulses for two media: one with constant velocity and the other with constant
velocity gradient in depth. In other tests involving a reflector model, both constant
velocity and variable velocity fields are considered. Tests were also made with density
that varies linearly with depth. The results show that the density factor influences

only the amplitude of the image.

Impulse response

Figure 1 shows the impulse responses of the two-step algorithm where velocity is
a constant 2.0 km/s. Here, density is also constant, the spatial steps are equal to
0.02 km (Az = Az = 0.02 km), and the time step is -2 ms (At = -2 ms). From the
figure, it can be seen that three clear semicircular reflectors are in the right positions
with the highest dip close to 90 degrees. The weakening in amplitude at higher dips
is probably caused by insufficient data recorded (i.e., insufficient migration aperture).
For comparison, the one-step explicit finite-difference scheme applied to equation (1)
yields the impulse responses given in Figure 2. Strong dispersion arises in that finite-
difference scheme. Another test for lower frequency (5 times lower) gives the result
that the dispersion becomes weakening.

Figure 3 shows impulse responses for the case where velocity is linearly increasing
with depth, ¢ = 2.0 + 0.6z km/s, with density kept constant. For this velocity model,
the two-step explicit method can image reflectors beyond 90 degrees.

Other tests made for density linearly increasing with depth give the same image
positions as for the constant density field (Figures 1 and 3), but the density factor
influences the amplitude of the image.
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F1G. 4. Reflector model used to generate synthetic data for the tests described in
Figures 5 through 9.
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FIG. 5. Zero-offset synthetic time sections generated by Kirchhoff modeling (Hale,
1991) (a) for constant velocity ¢ = 1.6 km/s, (b) for velocity linearly increasing with
depth, ¢(2) = 1.6 + 0.6z km/s, (c) for velocity linearly increasing in the horizontal
direction, ¢(z) = 1.6 + 0.4z km/s, (d) for velocity model ¢(z,z) = 1.5 + 0.2z + 0.52
km/s.
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FIG. 7. Migrated section with velocity model ¢(z) = 1.6 + 0.6z km/s.
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Reflector model

The model shown in Figure 4 has five horizontal reflectors and five dipping re-
flectors with dips varying from 30 degrees to 90 degrees in 15-degree increments.

The input zero-offset time section was obtained by a Kirchhoff modeling program
developed by Hale (1991).

The first example is for a constant velocity of 2.0 km/s. The synthetic data are
shown in Figure 5a. The migrated section (Figure 6) shows that a good image is
obtained for horizontal reflectors and for reflectors with dip up to 60 degrees. For
steeper reflectors the image is poor because insufficient data were recorded. For a
vertical reflector, synthetic data cannot be recorded in constant velocity media, so no
migrated image is obtained.

The second example illustrates the migrated image for velocity linearly increasing
with depth, ¢(2) = 1.640.6z km/s. Figure 5b gives the synthetic data for this velocity
model. The migrated section (Figure 7) indicates that this two-step explicit method
can accurately image the 90-degree dipping reflector.

The third example is for variable velocity which is increasing horizontally, ¢(z) =
1.6 + 0.4z km/s. The synthetic time section is given in Figure 5c. The migrated
result (Figure 8) indicates that with laterally varying velocity the two-step explicit
method can give correct reflector positions for all dips. For the 90-degree event, the
recorded synthetic data are insufficient (Figure 5c), so we can hardly see the image.
The amplitudes appear weak for deep events and for the events in the slow velocity
region. Another test for a velocity field decreasing horizontally, ¢(z) = 4.0 — 0.4z
km/s, gives the same behavior. The reason for this is not fully understood yet,
further research is required.

For a velocity field that is changing both vertically and horizontally, c(z,z) =
1.540.2z 4+ 0.52 km/s, the synthetic time section is given in Figure 5d. The migrated
section (Figure 9) shows that we can accurately locate the horizontal, dipping, and
vertical reflectors. In this case, the result is qualitatively somewhere between that for
the two preceding cases. For the same reason as in the third example, the amplitudes
are weak for the events in the slow velocity region and at greater depth.

CONCLUSIONS

A two-step explicit reverse-time depth migration method is presented which can
be applied to arbitrary velocity and density fields (2-D in this application). Starting
with the acoustic wave equation, the new set of first-order partial differential equations
involves no additional assumptions. The migrated results show that this method can
accurately image the positions of reflectors with up to 90-degree dips for constant
velocities if sufficient data have been recorded, and beyond 90 degrees for variable
velocities, but the amplitude are weakening for the deep events and the events in the
slow velocity region. Strong dispersion in Figure 2 suggests that directly applying the

11
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one-step explicit finite-difference scheme to the wave equation (1) cannot correctly
get the migrated images. Other results suggest that when the density varies linearly
with depth, this variable density field does not influence the imaged positions of the
reflectors.
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Migration by the Kirchhoff, slant stack,
and Gaussian beam methods

Dave Hale

ABSTRACT

Gaussian beam migration offers features that are unmatched by any other sin-
gle depth migration method. Unfortunately, computer algorithms for Gaussian
beam migration are more complicated and difficult to understand than those for
most other methods.

One way to simplify Gaussian beam migration is to understand how it is
related to other methods that may be more familiar. In particular, Gaussian
beam migration is similar to Kirchhoff integral migration. It is also similar to
the phase-shift (or slant stack) migration method. In a sense, the Gaussian beam
approach to depth migration is to combine the best of these more familiar methods
to obtain an efficient, robust, and flexible method for seismic imaging.

INTRODUCTION

Computer programs for Gaussian beam migration tend to be more complicated
than those for migration via Kirchhoff, finite-difference, or Fourier transform methods.
The software development effort required to implement Gaussian beam migration is
substantial, and it is difficult to know whether or not the effort is worthwhile unless
you have already made it. Or unless someone else has.

Fortunately, enough research on Gaussian beam migration has recently been pub-
lished and presented that newcomers to the method (like me) should expect to be
rewarded for the time and money invested in understanding and implementing it. In
particular, work by Costa, et al. (1989), Lazaratos and Harris (1990), and Hill (1990,
1991) suggests that Gaussian beam migration provides desirable features that are not
available with any other single method commonly used today. Among these features
are computational efficiency, robustness with respect to ray caustics and shadows,
the ability to image reflector dips greater than 90 degrees with turning waves, and
straightforward extensions for migration of non-zero-offset sections and 3-D seismic
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data. Table 1 provides a brief comparison of several depth migration methods, with
respect to these features.

| Method | Domain [ Efficiency | Robustness [ TW? [ NZO? |
Reverse-time (t,z,2) Poor Good Yes | No
Finite-difference | (w, z, 2) Good Good No | No
Kirchhoff (t,z,2) Good Poor Yes | Yes
Slant stack (7,pz,2,2) | Good Poor Yes | Yes
Gaussian beam | (7,p,,z,2) | Good+ Good Yes | Yes

Table 1. A subjective comparision of depth migration methods. TW and NZO
denote abilities to handle turning waves and non-zero-offset (constant-offset) sections,
respectively.

This paper is an introduction to Gaussian beam migration, targeted for read-
ers who are already familiar with migration methods commonly used today, who
can appreciate analogies drawn between Gaussian beam migration and more familiar
methods. In particular, Gaussian beam migration is shown here to lie somewhere be-
tween the Kirchhoff and slant stack migration methods. Slant stack migration, while
perhaps the least familiar method listed in Table 1, is shown below to be a variant of
the well-known phase-shift (Gazdag, 1978) method.

'This paper is not intended to be a substitute for Hill’s (1990) paper, which contains
several] figures and examples that are particularly useful for understanding Gaussian
beam migration. Also, this paper does not introduce curvilinear, ray-centered coor-
dinates and their use in Gaussian beam migration, not because these subjects are
intuitive or irrelevant, but rather because they have been well presented by others
(e.g., Cerveny et al., 1982). Here, only Cartesian coordinates are used.

Parts of this paper are intended to clarify some parts of Hill’s (1990) paper that
I found difficult to follow, such as equations (23) through (27) of that paper. Also,
this paper derives equations, analogous to Hill’s equations (34a) and (34b), for two
key sampling parameters that must be computed in Gaussian beam migration.

KIRCHHOFF MIGRATION

Migration in this paper will be discussed in the context of the simplest 2-D,
acoustic, constant-density wave equation:

?w + Pw 1 0%w

0xr2 = 922 2 o2

=0, (1)

where w = w(t,z,z) denotes a pressure wavefield, a function of time ¢, horizontal
distance , and depth z. For migration of zero-offset (stacked) seismic data, based on
the exploding reflectors principle (e.g., Claerbout, 1985), the velocity v = v(z, 2) in
this equation must be replaced with half-velocity v/2. For simplicity, I will assume
that v in equation (1) has already been halved.
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The Kirchhoff integral method of poststack migration (e.g., Schneider, 1978) can
be summarized by the simple equation:

g(z,2) = /da:' A2z, 2)f[t = (e, 2, 2), 2], (2)

where g(z,2) denotes the subsurface image, and f(t,z) denotes the seismic data
recorded at the surface z = 0.

The functions t(z’, z, 2) and A(2’, z, z) represent the traveltime and amplitude of
a seismic wave that travels from the point (2/,z = 0) to the point (z,2). In actual
implementations of Kirchhoff migration, some additional filtering of the seismic data
f(t,z) must be performed; this filtering is not relevant here and has been omitted in
equation (2).

Computations implied by equation (2) can be performed in several ways, depend-
ing on the order in which one loops through the variables z’, z, and 2. Perhaps the
most efficient implementation is

Kirchhoff migration:

for all points (z,z2) {
g(z,2) =0

for all 2’ (all seismic traces) {
for all points (z,z) {
compute t(z',z,z) and A(2',z, z)
accumulate contribution to g(z, z) of f(t,z')

The most difficult part of this algorithm is the accurate and efficient computation
of the time and amplitude functions ¢(2’, z, 2) and A(z', z, z). This problem is difficult,
in part, because these functions may be multi-valued; i.e., more than one seismic wave
may arrive at the surface location (z’, 2 = 0) from the same subsurface point (z, 2).

This problem is illustrated in Figure 1, which shows the contribution to the
migrated image of a single (synthetic) seismic trace “recorded” at surface location
z' = 5km. The velocity function v(z,z) used in this example has a low-velocity
zone centered at horizontal distance £ = 4km and depth z = 1.5km, embedded in a
linearly increasing velocity function v(z,z) = 1.5 + 0.6z. Rays traced from the sur-
face location 2’ are superimposed on the image to highlight the multiple wavefronts
at points in the lower left corner of the image. Rays that intersect at subsurface
locations (z, z) imply multi-valued functions t(z', z, 2) and A(', z, 2).

Ray tracing, such as that illustrated in Figure 1, is often used to compute the
functions t(z2',z,z) and A(2’,z,z). In this example, many of the rays traced from
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F1G. 1. Contribution of one (synthetic) seismic trace in depth migration. Note (1)
the complicated behavior in the lower left corner caused by a low-velocity zone, and
%{2) that one trace has contributed to almost every point in this subsurface image. In

irchhoff migration, the complete image is obtained by summing the contributions
from all traces.

the surface location 2’ = 5km pass through or near the low-velocity lens and cross in
the lower left corner of the model. Asymptotic (WKBJ, high-frequency) ray theory
erroneously yields infinite amplitudes where rays cross. Even if the amplitude factor
A is omitted from equation (2), it is difficult and computationally expensive to find
all of the rays and their corresponding traveltimes ¢ between two points (z,z) and
(z',z =0).

A recent and popular alternative to ray tracing is the direct solution of a non-
linear partial differential equation (the eikonal equation) for the traveltime function
t (e.g., Vidale, 1988; Van Trier and Symes, 1991). This method and other similar
alternatives to ray tracing yield only the shortest traveltime ¢ between any two points
(z,2) and (2',2z = 0). Such methods fail to account for the multiple arrivals in the
lower left corner of Figure 1.

The problems caused by multi-valued time and amplitude functions (and infinite
amplitudes) tend to make Kirchhoff migration less robust in handling lateral velocity
variations than the other methods listed in Table 1. In fact, a Gaussian beam method
was used to compute the single-trace contribution shown in Figure 1. I did not
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attempt to reproduce this result with a Kirchhoff depth migration, primarily because
of the computational difficulties described above.

The computational cost of Kirchhoff migration is easy to estimate, given the al-
gorithm outlined above. The cost is proportional to the number of traces (number
of z') times the number of subsurface points (z,z) to be imaged. Assuming that
the number of samples in each dimension (time or space) is proportional to, say, the
number of time samples NNV in each seismic trace, the cost of Kirchhoff migration goes
as N3. This estimate is based on the assumption that t(z', z,2) and A(z',z,2) can
be computed in constant time for any given ', z, and z. As shown below, a cost
proportional to N3 is typical of depth migration methods.

SLANT STACK MIGRATION

The second depth migration method considered in this paper is one that, to my
knowledge, is never used. It is useful only because it is similar to migration methods
that are used, and because it represents one extreme in a spectrum of migration
methods that includes Gaussian beam migration.

Phase-shift migration
First, recall Gazdag’s (1978; Claerbout, 1985, 30-33) phase-shift method for depth
extrapolation of a seismic wavefield in the frequency-wavenumber (w, k) domain:
W(w, ks, 2) = W(w, ky, 2 = 0) A(ky Jw, z) e Jrd¢ M"}‘é@ﬁ’ (3)
where 8(p,, z) is the angle defined by
sin(p,, z) = v(z)p,,

and /2
[ v(2)cosby

A(pmz) - lvo cosé’(px,z)] . (4)

Equation (3) is the WKBJ solution (e.g., Aki and Richards, 1980, 416) to the differ-

ential equation,
W [ w?

dz? v2(2)

which is the wave equation (1), expressed in the frequency-wavenumber domain. Al-
though velocity v(z) is here restricted to be a function of depth z only, this limitation
will be removed below.

k§IW=O,

The angle 6(p,, z) defined above is the propagation angle at depth z of a plane
wave that emerges at the earth’s surface with angle 6, and velocity vy satisfying
sinfy = vgpy.

In phase-shift migration, the amplitude function A(p,,z) is often omitted, in
part because it goes to infinity as z approaches the turning point, that depth where

5
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6(ps, z) = 190 degrees. This erroneous infinite amplitude is similar to that encoun-
tered when performing Kirchhoff migration with WKBJ amplitudes determined by
ray tracing.

For migration of zero-offset seismic data f(t,z), we identify W(w,k,,2z = 0) as
the Fourier transformed data F(w, k). Inverse Fourier transform equation (3) from
wavenumber k, to distance z,

cos O(kz [w,

W(w7$‘l Z) = %/dkx A(k,/w,z) e—iwj:d(' v(¢ +ikee F(w) k:c)1 (5)

and then evaluate the inverse Fourier transform from frequency w to time t at ¢t = 0
to obtain the subsurface image

g(z,2) = %/dwe““’hoW(w,:v,z)

= L [ [ db, Ak, Jw, 2) e Jo == ik gy (6
472

Equation (6) concisely summarizes the phase-shift migration method.

From wavenumber %, to reflection slope p,

The ratio p, = k,/w that appears in phase-shift migration corresponds to the
slope of a reflection recorded in the seismic data f(¢,z). Equation (5) implies that
each reflection slope p, can be extrapolated in depth independently. This motivates
a change in integration variable from k, to p,:

W(w,z,2) = % [ e | Aps, z)e I &L i ke, = )

= [ dp. Az, 2)e™ 7= Bw,p,), (7)
where | |
w

B(w,p,) = gF(w,kz = WP, ), (8)

and

(P2, T,2) = /O’dcg%g((z%o

With this change of variables, equation (6) becomes

— PzT. (9)

1 —iwT T,z
9(z,z) = /dpx A(pg, 2) g/dwe (P2:2, )B(w,p,,.).

Recognizing that the integral over frequency w is just an inverse Fourier transform,
we obtain the following expression for the subsurface image:

o(z,2) = [ dp. Alps, 2)blr = 7(ps, 3, 2), 2] (10)
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An appropriate name for equation (10) is slant stack migration because the func-
tion b(7, p.) is a filtered slant stack of the surface seismic data f(t,z). Specifically,

b(r,pe) = p(r) % [ da f(t =7 +poa,2),

where p(7) is the so-called “rho” filter defined by

— 1 —twT le
p(T) = g/d&)e 27('.

To verify this relationship between b(7,p,) and f(¢,z), Fourier tranform b(r,p,) to
obtain

B(w,p;) = g /dTe‘“”/dxf(t =T+ Py, 1)

= _|27r| /da: e~ P F(w, 1)
||

= Yp . = wpy),
o (w,k wp )

which matches the definition of B(w, p,) given by equation (8) above.

Although the derivation of slant stack migration above began with the restriction
that velocity varies with depth only, equation (10) can be generalized to account
for lateral velocity variations, as suggested by the work of Sinton and Frazer (1982).
In the general case of v = v(z, z), the amplitude function A depends on horizontal
distance x as well as reflection slope p, and depth z, and both functions A(p.,z, z)
and 7(p,, z, z) are more difficult to compute than for the laterally homogeneous case.

However, as in Kirchhoff migration, these functions can be computed by ray trac-
ing. In particular, the function 7(p,,z, z) can be computed by

T(pe, T, 2) = (P, T, 2) — Poit’, (11)

where t(p,,z,2) denotes the time required for a ray to travel from the subsurface
point (z,2) to the surface with emergence angle 6, = arcsin(vgp,). vy denotes the
velocity at the surface location 2’ where the ray intersects the surface. Substitution
of the traveltime function 7(p,,,2) defined by equation (11) and a corresponding
amplitude function A(p,,z, z) into equation (10) yields slant stack depth migration.

The most straightforward algorithm for slant stack migration is analogous to that
for Kirchhoff migration:
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Slant stack migration:

compute filtered slant stack b(t,p,) of seismic data f(t,z)

for all points (z,z) {
9(z,z) =0
}

for all p. (all reflection slopes) {
for all points (z,2) {
compute 7(pz, z, 2) and A(p,,z, 2)
accumulate contribution to g(z,z) of b(,p.)

As for Kirchhoff migration, the most difficult part of this algorithm is the accu-
rate and efficient computation of the time and amplitude functions 7(p,,z, z) and
A(ps,x,z). Again, these functions may be multi-valued. Figure 2 shows the con-
tribution to the migrated image of a single reflection slope p,, corresponding to an
emergence angle of 20 degrees. The velocity function v(z, z) used in this example
is the same as that of Figure 1. Rays with the same emergence angle, but differ-
ent emergence locations, are superimposed on the image. Where rays intersect at a
subsurface point (z, z), the functions 7(p,, z, z) and A(p,,z, z) are multi-valued.

Even when velocity varies with depth only, the time (and amplitude) functions
may be multi-valued. To see why, simply trace two rays with the same emergence
angle, but different emergence locations, backwards into a subsurface in which velocity
increases with depth. The rays will intersect after one of them has turned beyond 90
degrees. When velocity varies with depth only, just two times 7(p,, z, z) are feasible
— one corresponds to the ray that has not yet reached its turning point, and the
other corresponds to the turned ray.

Assuming that ray tracing is used to compute the necessary time (and amplitude)
functions, the difference between the ray tracing for Kirchhoff depth migration and
that for slant stack depth migration is interesting. In Kirchhoff migration, we require
the time t(2’, z, z), which we may determine by tracing rays with different emergence
angles 6, backwards from the emergence location z’, until we find all of the rays that
pass through the subsurface point (z,z). In this approach, given 2/, z, and z, we
search for the appropriate emergence angles 8y, or equivalently, reflection slopes p,.
In slant stack migration, we require the time 7(p,, z, 2). Given p,, z, and 2, we search
for the emergence locations 2’ required by equation (11).

In a computer implementation of slant stack migration, we must convert the in-
tegral over reflection slope p, in equation (10) to a sum, which implies that we must
determine how finely to sample p,. The definition of p, = k,/w suggests that we
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Distance (km)
0 1 2 3 4 5 6

Depth (km)
N

W

4

Fic. 2. Contribution of one reflection slope p, in depth migration. Note (1) the
complicated behavior in the lower left corner caused by a low-velocity zone, and (2)
that one slope p, contributes to almost every point in the subsurface image. In slant
stack migration, the complete image is obtained by summing the contributions from
all reflection slopes.

choose Ap, = Ak,/w, where Ak, is the sampling of wavenumber k, we would use
in phase-shift migration. To avoid aliasing, we would choose Ak, = 27/X, where
X denotes the horizontal width of the seismic data to be migrated. To implement
equation (10) we must use a sampling interval p, that is independent of frequency.

Therefore, we choose
27

—th’

to avoid aliasing frequencies less than the highest frequency of interest, wy,.

Ap, (12)

Because of the similarities between the algorithms for Kirchhoff and slant stack
migrations, it is easy to verify that slant stack migration, like Kirchhoff migration,
has a computational cost proportional to N3, where N is again the number of time
samples. The number of slopes p, that must be imaged is, from equation (12),
proportional to the number of seismic traces, which tends to grow in proportion to
N. The cost of computing the filtered slant stacks b(7, p,) via FFTs [equation (8)] is
proportional to N?log N and is, therefore, likely to he a negligible part of the total
cost proportional to N3,
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Given their similar computational costs, one might wonder why slant stack migra-
tion is used less often than Kirchhoff migration. Perhaps the best explanation is that
slant stack migration is less straightforward and no better than Kirchhoff migration.
Slant stack migration is certainly no more robust than Kirchhoff migration. Be-
cause of the difficulties in computing the multi-valued time and amplitude functions
7(pz, z,2) and A(p,,, 2), the single-slope contribution shown in Figure 2 was com-
puted via a robust Gaussian beam algorithm, rather than the slant stack algorithm
outlined above.

One way to obtain a robust depth migration would be to combine the Kirchhoff and
slant stack methods, blending the single-trace and single-slope contributions together
to obtain the image at any given subsurface point (z,z). For any (z,2), we might
choose the blending weights to emphasize the contribution that is most accurate. For
example, where the Kirchhoff method implies infinite amplitude at a point (z, 2), we
would use the slant stack method to compute the contribution at that point. This
blending approach is analogous to that proposed for seismic modeling by Chapman
and Drummond (1982). That approach, which is based on Maslov asymptotic theory,
depends on the fact (not proven here) that the Kirchhoff and slant stack methods are
guaranteed not to fail simultaneously at any point (z, z).

As shown in the following section, Gaussian beams provide another technique for
combining the Kirchhoff and slant stack methods to obtain a robust depth migration
algorithm.

GAUSSIAN BEAM MIGRATION

Recall that the first step in slant stack migration is the computation of the fil-
tered slant stack b(7,p,) of the seismic data f(¢,z) recorded at the surface. This
slant stacking decomposes f(t,z) into plane waves, with each reflection slope p, cor-
responding to a different plane wave component. In contrast, Kirchhoff migration
requires no preliminary decomposition of the seismic data f(t,z); the decomposition
into individual seismic traces at unique surface locations x’ was performed when the
data were recorded.

Gaussian beam migration is similar to slant stack migration, in that it too requires
that f(t,z) be decomposed with slant stacking. The difference is that Gaussian
beam migration computes many local slant stacks (beams), each computed from small
overlapping subsets of the seismic data. As in slant stack migration, each plane wave
component of each subset contributes to the migrated image independently, and all
contributions are summed to obtain the complete subsurface image.

Local slant stacks

First, we extract a window of the data f(t,z) by applying a lateral shift and a
frequency-dependent Gaussian taper:

2

T Flw,z + ), (13)

-1
Fiw,z)=e*

W,
wy

10
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where z; is the center of the Gaussian window, and [ is the width (standard deviation)
of the Gaussian when frequency w = w;. It is convenient to choose w; to be the lowest
frequency of interest, so that ! is related to the maximum width of the Gaussian. If
we assume a Gaussian amplitude of 1/100 is negligible, then the width of the data

window after Gaussian tapering is approximately X = 61y/|w;/w|.

The local slant stack of F;(w,z) is defined as in equation (8) by

Bj(w,p;) = Clsu—i/dxe“‘“””Fj(w,z)

|w|
— F; r = WPz ). 14
C o Fij(w, k wpz) (14)
The extra scale factor C in this local slant stack will be determined below to normalize

the sum of overlapping Gaussian windows.

Local slant stacks, like the slant stacks of the preceding section, must be ade-
quately sampled in p,. Using the criterion of equation (12), but with X determined
by the width of the Gaussian window, we obtain

2w n
Ap, = — = ——, (15)
wp X 3l |wlwh|

which guarantees that frequencies less than the highest frequency of interest w; will
not be aliased. Although the derivation here of Ap, is quite different, the result is
similar to that in Hill’s (1990) equation (34b). The only difference is that Hill has a
factor of 4 in the denominator where equation (15) has a factor of 3.

Depth extrapolation
Depth extrapolation of the locally slant stacked (beam-formed) data window can
be performed as suggested by equation (7):
Wiw,2,2) = [ dpe Aj(pe,,2)e 5P B (w,p.). (16)

The function Wj(w, z, z) is only a part of the complete wavefield, because it is com-
puted for a single Gaussian window of data. The complete wavefield is given by
summing up contributions from many overlapping windows of data; i.e.,

W(w,z,z) = Z Wiw, z, z).

The key problem here, as in slant stack migration, is to compute the time and
amplitude functions 7;(p., z, 2) and A;(p,,,2). The dynamic ray tracing solution to
this problem is:

1. Trace one ray, with emergence location z; and emergence angle
0, = arcsin[v(z;,0)p,].

11
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2. Solve dynamic ray tracing equations along the ray for both point and plane-wave
sources.

3. Combine solutions for both point and plane-wave sources to obtain complezx-
valued time and amplitude functions 7;(p,, z, z) and A;(p,,z, 2).

A complete explanation of these three steps requires the introduction of concepts such
as curvilinear ray-centered coordinates, which in this paper would be an unnecessary
distraction. Hill’s (1990) paper summarizes these three steps concisely, and more
complete discussions are provided by Cerveny, et al. (1982) and Cerveny and Psenéik
(1984).

Were it not for the fact that both 7;(p,, z, 2) and A;(p., z, z) are complex-valued,
depth extrapolation for local slant stacks would be no more robust than that for the
global slant stacks of the previous section. The complex combination of solutions
to the dynamic ray tracing equations for both point and plane-wave sources ensures
that amplitudes will be well-behaved. In particular, the complex-valued amplitude
function A;(p,,z, z) never goes to infinity, unlike the WKBJ amplitude functions for
Kirchhoff, phase-shift, or slant-stack migrations.

Another important feature of the complex times and amplitudes computed by
dynamic ray tracing for Gaussian beams is that they are single-valued, unlike those
computed for Kirchhoff or slant stack migration.

Matching the surface seismic data

As in slant stack migration, we must ensure that the seismic wavefield at the
surface W(w, z, z = 0) matches the seismic data F(w,z). To this end, we arrange for
the complex-valued time and amplitude functions evaluated at z = 0 to be

i sgn(w) (z — z;)?
Ti(Pe, 2,2 =0) = polz—25) — 3 Iw(:l)( 12J

Aij(pgyz,2=0) = 1. (17)

The choice of the Gaussian width [ determines the weighting of the point source and
plane-wave source solutions to the dynamic ray tracing equations. Specifically, a tiny
[ corresponds to a point source, and a huge ! corresponds to a plane-wave source.

Inserting the times and amplitudes given by equations (17) into the expression for
the seismic wavefield given by equation (16), we obtain

(z—z;)%

Y KA .
Wiwe,2=0) = e 7 [ap, eore=) Bi(w,p,)
1w _21_("")2
= Ce *Il ¥ Fjw,z—zj)
. _7.1_("")2
= Ce I“l ¥ F(w,z).

12
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The complete wavefield at the surface is
Ww,z,2=0) = > Wj(w,z,z=0)
j

(z—z;)%

__ﬂl_

= F(w,z)C Ze_l“’%
J

~ F(w,z).
Hill (1990) showed that the error in the last approximation is about 1 percent if

x; = ]A
A Ig‘_"_’ml
w
w M2 A
= | —. 1
¢ Wy l ( 8)

Here, A is the spacing between the beam center location z;, the centers of the over-
lapping Gaussian windows. In order for this spacing to be independent of frequency,

we choose 1/2
A= (19)

Wh
where wy, is again the highest frequency of interest. The frequency-dependent scale
factor C given by equation (18) is most conveniently applied when filtering the local
slant stacks, as suggested by equation (14).

Hill’s (1990) recommended value for A is similar to that given above by equation
(19). The only difference is that Hill’s equation (34a) has a factor 2 where equation
(19) has a factor /2. Thus, Hill recommends a somewhat larger spacing between
beam center locations and a somewhat finer sampling of p, [recall equation (15)]
than are derived here. The differences between the values for A and p, in this paper
and those recommended by Hill are likely due to the application of a Gaussian taper
in equation (13) above. A different, non-Gaussian taper is implied by Hill’s equation
(27).

The subsurface image

Given equation (16), which describes one contribution Wj(w, z, 2) to the complete
seismic wavefield, we need only sum these contributions and integrate over frequency
w, as in slant stack migration, to obtain the subsurface image. Specifically, the
complete image is obtained by

g(III, z) = Z gj(x’ Z)’
J
where

1
gi(z,2) = ﬂ/dej(w,x,z)
1 —WwT; T,z
= / dprj(pz,x,z)ﬂ / dw e~ niP==3) Bo(w, p, ). (20)

13
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If the time and amplitude functions 7; and A4; in equation (20) were real-valued,
then it would be straightforward to identify the integral over frequency as an inverse
Fourier transform, and to obtain an equation analogous to equation (10) for slant
stack migration. Complex-valued 7; and A; make Gaussian beam amplitudes well
behaved, but they complicate our implementation of equation (20). In particular, we
require that g;(z,z) be real-valued, which means that we must preserve conjugate
symmetry in the frequency domain. Specifically, the sign of the imaginary parts of 7;
and A; must depend on the sign of w.

To see how to implement equation (20), we should express 7; and A; in terms of
their real and imaginary parts:

T = 7Tg+isgn(w)7y

A = AR+isgn(w)A1.

Remember that 7g, 77, Ag, and A; are all functions of the beam center location z;,
the reflection slope p,, and the subsurface image coordinates (z, z), even though this
dependence has not been stated explicitly in order to simplify notation below. In
terms of these real and imaginary parts, equation (20) may be written more precisely
as

1 - —{WT w7,
6i(z,2) = [dpe 5= [ dwlA, +isgn()al] By (w,p,). (21)

Note that, to avoid exponential growth of the integrand, we require 7; < 0, which is
consistent with equations (17).

Straightforward implementation of equation (21) would require numerous costly
integrations over frequency w. Therefore, we seek an equivalent time-domain expres-
sion by first defining

B(w,m) = e“I" Bj(w, p.), (22)

followed by its time-domain equivalent
rm ) = 5 [ dwe=m B, 7). (23)

Both B and b are functions of beam center location x; and reflection slope p,, although
this dependence has been suppressed to simplify notation. To account for the complex
amplitude function A in equation (21), recall that multiplication by —isgn(w) in the
frequency domain is equivalent to a Hilbert transform in the time domain. Therefore,
equation (21) becomes

gj(:B,Z) = /dpr [ARE(TR,T]) - AIEH(TR,TI)] , (24)

where by denotes the Hilbert transform of b. Equation (24) is similar to equation (10)
for slant stack migration; the differences are due entirely to the use of complex time
and amplitude functions in Gaussian beam migration.

14
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Algorithm and cost

Equation (24), with all of the steps necessary to evaluate the integrand, accounts
for most of the computational effort in Gaussian beam migration. It describes the
contribution to the subsurface image of one Gaussian-tapered window of seismic data.
The complete image is obtained by summing all such contributions, as in the following
algorithm for Gaussian beam migration:

Gaussian beam migration:

Jor all points (z,2) {
g(z,2) =0
}

Jor all x; = jA (all beam center locations) {
compute f;(t,x) by shifting and tapering data f(t,z)
compute filtered slant stack b;(7,p.) of fi(t,z)
for all p, (all reflection slopes) {
for all points (z, z) within beam {
compute complez-valued 7;(p,, z,z) and A;(pg,z, 2)
accumulate contribution to g(z,z) of bj(7,p.)

This algorithm for Gaussian beam migration is similar to both the Kirchhoff and
slant stack migration algorithms. One obvious difference is that Gaussian beam
migration has two loops outside the innermost loop over subsurface image coordinates
(z, z), whereas the Kirchhoff and slant stack methods have only one. This observation
might lead us to suspect that Gaussian beam migration is more costly than either
Kirchhoff or slant-stack migration. If the cost of the latter algorithms is proportional
to N3, is the cost of Gaussian beam migration proportional to N4?

The answer to this question is that although the computational cost of Gaussian
beam migration is somewhat difficult to estimate, it is certainly no greater than N3.
The cost of the outer two loops is proportional to the number of beam center locations
x; times the number of reflection slopes p;, which is proportional to NV, not N 2. This
is because the spacing between beam center locations A is proportional to the beam
width [ at the surface, whereas the sampling interval Ap, is inversely proportional to
l. [Recall equations (15) and (19).] For large beam widths, we have many reflection
slopes but few Gaussian windows of data to migrate. For small beam widths, we have
more Gaussian windows, but fewer reflection slopes to migrate. Therefore, the cost
of the outer two loops in Gaussian beam migration is proportional to N.

15
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Consider now the cost of the innermost loop over subsurface image coordinates
(z,z). For Kirchhoff and slant-stack migration, the cost of the innermost loop is
proportional to N2. Each trace or each reflection slope contributes to almost every
sample in the subsurface image, a computational grid that tends to grow as the square
of the number of time samples N in a seismic trace. For Gaussian beam migration,
the cost of the innermost loop is proportional to N times the width of a Gaussian
beam. Depending on the beam width, this product may be significantly less than the
comparable product for Kirchhoff or slant-stack migration, which accounts for the
“Good+” efficiency rating of Gaussian beam migration in Table 1.

Figure 3 illustrates the contribution of one beam in the innermost loop of Gaussian
beam depth migration. Although the width of the beam grows with distance from the
surface in this example, the area within the beam is less than the area affected by a
single trace in Kirchhoff migration or a single reflection slope in slant stack migration.

Distance (km)

Depth (km)
N

w

4

F1G. 3. Contribution of one Gaussian beam in depth migration. Note (1) the distor-

tion of the beam caused by a low-velocity zone, and (2) that one beam contributes to
fewer subsurface image points than one trace in Kirchhoff migration or one reflection
slope in slant stack migration. The complete image is obtained by accumulating many
such contributions.

The difficulty in estimating the cost of Gaussian beam migration lies in the diffi-
culty in estimating the width of the beam, for a given width [ at the surface. At great
distances from the surface, the beam width becomes asymptotically proportional to
N. The important issue is how quickly the beam width approaches its asymptotic

16
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value. However, even in the worst case, where the beam widens rapidly away from
the surface, the computational cost of the innermost loop is proportional to N2.
Therefore, the total cost of Gaussian beam migration grows at a rate no greater than
N3,

Note that the wavefronts in the Gaussian beam of Figure 3 are simple, because
dynamic ray tracing for a single ray was used to compute the complex-valued time
and amplitude functions that describe the beam. Dynamic ray tracing makes these
functions single-valued, so that the contribution of a single Gaussian beam to the
migrated image is simpler to compute than that of a single trace in Kirchhoff migration
or of a single reflection slope in slant stack migration.

CONCLUSION

Kirchhoff integral migration images each seismic trace independently. Because a
single trace is very localized in space, it contributes significant energy at all wave
propagation angles to the subsurface image. For a single trace, more than one prop-
agation angle can contribute to a single image point.

Slant stack migration images each reflection slope independently. A single reflec-
tion slope contributes to a narrow range of propagation angles, but each slope consists
of all traces, resulting in extremely wide wavefronts that extend from one end of the
seismic section to the other. For a single reflection slope, more than one trace can
contribute to a single image point.

Gaussian beam migration lies somewhere between the Kirchhoff and slant stack
methods. Instead of migrating one trace at a time for all reflection slopes (as in
Kirchhoff migration) or one reflection slope for all traces (as in slant stack migration),
Gaussian beam migration independently images each reflection slope in overlapping,
Gaussian-tapered subsets of traces. The innermost loop of Gaussian beam migration
is the accumulation of a relatively narrow beam that represents a narrow range of
propagation angles. Each beam contributes no more than once to each image point.
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ABSTRACT

The computational efficiency of Gaussian beam migration depends on the
solution of two problems: (1) computation of complex-valued beam times and
amplitudes in Cartesian (z, z) coordinates, and (2) limiting computations to only
those (z, 2) coordinates within a region where beam amplitudes are significant.

The first problem can be reduced to a particular instance of a class of closest-
point problems in computational geometry, for which efficient solutions, such as
the Delaunay triangulation, are well known. Delaunay triangulation of sampled
points along a ray enables the efficient location of that point on the raypath that
is closest to any point (xz, z) at which beam times and amplitudes are required. Al-
though Delaunay triangulation provides an efficient solution to this closest point
problem, a simpler solution, also presented in this paper, may be sufficient and
more easily extended for use in 3-D Gaussian beam migration.

The second problem is easily solved by decomposing the subsurface image
into a coarse grid of square cells. Within each cell, simple and efficient loops over
(z, z) coordinates may be used. Because the region in which beam amplitudes are
significant may be difficult to represent with simple loops over (z, z) coordinates,
I use recursion (a function that calls itself) to move from cell to cell, until the
entire region defined by the beam has been covered.

Benchmark tests of a computer program implementing these solutions suggest
that the cost of Gaussian beam migration is comparable to that of migration via
explicit depth extrapolation in the frequency-space domain. For the data sizes
and computer programs tested here, the explicit method was faster. However, as
data size was increased, the computation time for Gaussian beam migration grew
more slowly than that for the explicit method.
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INTRODUCTION

Gaussian beam migration may be summarized concisely (Hale, 1992) by
9(2,2) = 3 [ dp. As(pe,, 2) bilr = 75(p2, 3, 2), P, (1)
j

where g(z, z) denotes the subsurface image, a function of horizontal distance z and
depth 2, and b;(7, p;) denotes a local slant stack of seismic data recorded at the surface
z = 0, a function of time 7 for each reflection slope p,. The time and amplitude
functions 7;(p,,z,2) and A;(p.,x,2) are complex-valued, and they determine the
mapping of each local slant stack (beam) onto the subsurface image. The sum over
beam centers x; and the integral over reflection slopes p, simply accumulate the
contributions of each beam.

Figure 1 illustrates the contribution of one Gaussian beam formed from synthetic
seismic data. This beam corresponds to a beam center z; = 5km and a reflection
slope p, that is equivalent to an emergence angle of 36 degrees. The beam is refracted
by a gradual increase in velocity with depth and by a low-velocity zone centered at
z =4km and z = 1.5 km.

Distance (km)

Depth (km)
N

w

4

Fi1G. 1. Contribution of one Gaussian beam to a subsurface image. The fundamental
task in Gaussian beam migration is to efficiently compute many such contributions,
the sum of which yields the complete image.
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The fundamental task in Gaussian beam migration is to efficiently compute the
contribution, like that shown in Figure 1, of each beam to the subsurface image. The
prerequisite task of computing b;(7, p,) (beam forming) can be accomplished simply
by slant stacking a Gaussian-tapered window of data, and this tapering and slant
stacking can be performed efficiently via fast Fourier transforms. However, once the
data have been beam-formed, one must then efficiently map each beam onto the
subsurface image, and this mapping is complicated by two problems.

The first problem is due to the fact that the complex-valued functions 7;(p,, z, 2)
and A;(p.,z, z) are difficult (although not impossible) to compute in the Cartesian
coordinates x and z. They are more easily and typically computed as functions of
ray-centered coordinates (s,n) (Cerveny, et al., 1982; Hill, 1990; Figure 2 below).
Transformation from ray-centered coordinates to Cartesian coordinates requires that
we determine the point on a ray [the ray that defines the coordinates (s,n)] that
is nearest to a given point (z,z). As noted by Hill (1990), “the transformation
from ray-centered (s,n) to Cartesion (z,2) coordinates and ... are time-consuming
computations.”

The second problem in efficiently mapping each beam is that computations should
be performed for only those subsurface points (x,z) where the contribution of the
beam is significant. As illustrated in Figure 1, not all subsurface points are affected
by a given beam. In Gaussian beam migration of recorded seismic data, each beam
may contribute significantly to only a small fraction of the sampled subsurface points
(z,2). (See Hill, 1990, for some particularly good examples.) However, the subset of
samples affected by a single beam forms a region that may be quite irregular and not
easily translated into bounds for simple loops over = and z in computer programs.

This paper proposes solutions to these two computational problems: (1) finding
the nearest point on a ray and (2) working only within a beam. Following the discus-
sion below of these two problems and their solutions, the results of benchmark tests
of a computer program implementing these solutions are presented.

NEAREST POINT ON A RAY

In this section, I assume that dynamic ray tracing (Cerveny, et al., 1982; Hill,
1990) has been performed to compute complex-valued time and amplitude functions
in ray-centered coordinates (s,n). Equation (1) requires that these functions be
evaluated in Cartesian coordinates (z, z). Therefore, we need a method to determine
(s,n) coordinates from (z, z) coordinates.

Figure 2 illustrates the two different coordinate systems for the raypath used
to compute the beam of Figure 1. This raypath was computed by integrating the
dynamic ray tracing equations via a simple 4th-order Runge-Kutta method (e.g.,
Press, et al., 1986, 550-554). Solutions to these equations were thereby obtained at
points uniformly sampled in time along the raypath.

Solution of the dynamic ray tracing equations requires evaluation of velocity and
its derivatives along the raypath. Here, velocity was uniformly sampled in Cartesian
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F1G. 2. Time and amplitude functions for this Gaussian beam were first computed in
ray-centered coordinates (s,n) and then transformed to Cartesian coordinates (z, z).
s denotes distance along the raypath and n denotes normal distance to the raypath.

coordinates x and 2. Piecewise Hermite bi-cubic interpolation with continuous first
(but not second) derivatives (e.g., Thomson and Gubbins, 1982) was used to inter-
polate velocity and its derivatives at points along the raypath. An attractive feature
of bi-cubic interpolation in two dimensions is that it is easily extended to tri-cubic
interpolation in three dimensions, as required for Gaussian beam migration of 3-D
seismic data.

Although more sophisticated ray tracing methods might be used, the simple ray
tracing method described above is efficient in the context of Gaussian beam migration.
Accumulation of each beam requires evaluation of the seismic wavefield at many
subsurface points (z,2). If N time steps are used in the solution of the dynamic ray
tracing equations, then the computational cost of ray tracing is proportional to N.
However, the cost of using the results of this ray tracing, the cost of accumulating a
beam, is proportional to N times the nominal width N,, of the beam. As illustrated in
Figure 2, N, varies along the raypath. However, for typical beam widths, the O(V)
cost of simple Runge-Kutta ray tracing is insignificant compared with the O(N x N,,)
cost of accumulating the corresponding Gaussian beam.
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For any given coordinates (z, z), corresponding coordinates (s,n) can be deter-
mined simply by finding that point on the raypath that is nearest to (z, z). s is then
the distance along the ray to the nearest point, and n is the distance from (z, z) to
that nearest point. For the Runge-Kutta ray tracing described above, which yields
a raypath discretely sampled in time, we need only find the sample that is nearest
to the specified (z, z). Once we know the nearest sampled point, the complex time
and amplitude functions can be determined easily from quantities computed during
dynamic ray tracing (Cerveny and Pgencik, 1984).

As noted by Cerveny, et al. (1982), normals to a curved raypath will intersect
at large distances from the raypath, so that a single set of (z,2) coordinates will
correspond to more than one set of (s,n) coordinates. Fortunately, as illustrated in
Figure 2, Gaussian beam amplitudes tend to be largest at points (x, z) that are nearest
the raypath. Therefore, by choosing the smallest normal distance to the raypath, we
choose that set of (s,n) coordinates that tends to yield the largest contribution to
the subsurface image. In the special case that two or more points on the raypath
are nearest and equidistant to (z, 2), we will find only one of them, so that only one
contribution of the Gaussian beam will be accumulated at that point (z, z).

The simplest way to find the nearest point on the raypath is to compute the
distance from the specified (z, z) to all sampled points along the raypath, remembering
the sample that corresponds to the minimum distance. However, this approach is
inefficient, requiring a computational cost proportional to N for every point (z, 2).
This O(N) cost is significant, because the number of points for which the nearest
point problem must be solved is proportional to the area within the beam, N x N,
which implies an O(N? x N,,) cost per beam.

The reason that the simplest solution to the nearest point problem is so costly
is that it fails to take advantage of the fact that the nearest point on the raypath
for one (z,2) is likely to be close to the nearest point for a neighboring (z,2). As
one iterates over the points (z, z) within a beam in some ordered fashion, the nearest
point on the raypath is unlikely to jump wildly from end of the raypath to the other.

Unfortunately, it is difficult to guarantee that such wild behavior will never occur,
particularly in the cases of turned rays and rapid velocity variations. The simplest
method, while inefficient, is guaranteed to yield the nearest point.

In the remainder of this section, two more efficient solutions to the nearest point
problem are presented. Both are guaranteed to yield the nearest point on the raypath.
The first is highly efficient, but difficult to extend to 3-D ray tracing. The second is less
efficient, but easily extended to 3-D ray tracing. Both solutions have a computational
cost that is significantly less than the O(NN) cost of the simplest solution.

Triangles

Voronoi tessellation (e.g., Preparata and Shamos, 1985) provides a natural so-
lution to the nearest point problem. The region bounded by the Voronoi polygon
corresponding to any vertex in a Voronoi tessellation is, by definition, the locus of
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points that are nearer to that vertex than to any other vertex. If we let each sam-
pled point on a raypath be a vertex in a Voronoi tessellation, then to find the point
on the raypath nearest to an arbitrary point (z,z), we need only find that vertex
with a Voronoi polygon containing the point (z,z). Preparata and Shamos (1985)
show that the worst-case computational cost of constructing the Voronoi tessellation
is O(N x log N) and that the cost of finding the nearest vertex is O(log N).

Rather than constructing a Voronoi tessellation of the sampled points on a ray-
path, it is simpler to build its dual, a Delaunay triangulation of the Voronoi vertices
(Watson, 1981). Figure 3 shows the Delaunay triangulation of sampled points along
the raypath in Figure 2. For clarity in this figure, only one tenth of the sampled
points that are actually computed during ray tracing are shown in the triangulation.

The Delaunay triangulation, like the Voronoi tessellation, may be computed with a
cost of O(N x log N).

Distance (km)

Depth (km)

F1G. 3. Delaunay triangulation of sampled points along a raypath. By following the
edges of this triangulation, one can efficiently determine that point on the raypath
that is nearest to an arbitrary point (z, 2).

Given the Delaunay triangulation of a set of vertices, like that shown in Figure 3,
one can easily find the vertex that is nearest to any point (z,2). Starting from any
vertex, follow the edges of the triangulation, moving from vertex to vertex. When
moving from a vertex to one of its neighbors, always choose the neighbor that is
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closest to the point (z,z). Eventually, a vertex will be reached that is nearer to (z, 2)
than any of its neighbors. That vertex is the nearest vertex in the triangulation.

This algorithm is efficient when iterating over numerous (z, z) coordinates. The
nearest vertex (nearest point on the raypath) for one (z, 2) is likely to be close to the
nearest vertex for a nearby (z,z). However, this algorithm will successfully find the
nearest point on the raypath, even when that nearest point jumps from one end of
the raypath to the other as (z, 2) changes. As illustrated in Figure 3, the edges of the
Delaunay triangulation make such large jumps possible, although they will rarely be
taken.

In the special case of a straight ray (as for constant velocity), triangulation of the
collinear points along the raypath is impossible. However, the sampled points can
still be connected with edges such that the vertex-to-vertex search can be performed
as described above for a Delaunay triangulation. One way to avoid handling this
special case is to always include in the triangulation three artificial vertices that form
a large equilateral triangle containing the entire raypath. These fake vertices must
be far enough away from the raypath that they will never be the closest vertex in the
triangulation to any point (z, z) of interest.

The main drawback of the Delaunay triangulation solution to the nearest point
problem is that it is difficult to extend to three dimensions for use in Gaussian beam
migration of 3-D seismic data. Although such an extension is possible (the triangles
become tetrahedra), it is not trivial. Watson’s (1981) triangulation algorithm is
perhaps the easiest to extend to three dimensions, but the cost of triangulation with
Watson’s method is O { N3/2) for two dimensions and O (N 5/ 3) for three dimensions.
Therefore, in keeping with the goal of using only computational methods that may
be easily extended for use in 3-D imaging, an alternative solution to the nearest point
problem is proposed below.

Circles

Figure 4 illustrates another solution to the nearest point problem. Here, the N
sampled points along the raypath are grouped into N, clusters bounded by circles.
Each circle contains only a subset (roughly N/N,) of the N sampled points. To find
the point on the raypath that is nearest to a specified point (z, z), begin by choosing
one of the circles. A good choice is the circle that contains a point previously found to
be closest to a nearby (z, z). Interrogate (find the nearest point inside) this first circle,
and remember the minimum distance. Then, for all remaining circles, interrogate the
circle only if the circle’s radius plus the minimum distance found so far is less than
the distance from the circle’s center to the point (z,2). In other words, look inside
only those circles that could possibly contain a point closer to (xz,z) than the closest
point found so far.

The cost of this method depends on the number of circles and on the number of
sampled points inside each circle. If we make one (N, = 1) big circle containing all
of the sample points, then the cost of finding the nearest point is O(N), which is
no more efficient than the simplest search. Alternatively, if we choose N, = N tiny
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F1G. 4. Sampled points along a raypath are grouped into circular clusters to facilitate
the search for that point on the raypath that is nearest to an arbitrary point (a:, z).
The points inside any given circle can be ignored during this search if the minimum
distance found so far is less than the distance from (z, 2) to the circle’s boundary.

circles, each containing only one sampled point, then the cost is again O(N), because
we must interrogate all V circles. The most efficient use of the circles lies between
these two extreme choices.

In general, the cost of the circle-based solution to the nearest point problem is
roughly O(N, + kN/N,), where k is the number of circles that must be interrogated.
If the first circle interrogated contains the desired nearest point, then perhaps none of
the remaining circles need to be interrogated. If we suppose that this k = 1 ideal case
occurs frequently as we iterate over (z, z) coordinates, then the cost of the circle-based
search is minimized by choosing N, = v/N, and the cost becomes O(\/N ). For large
N (say, N > 100), this cost is significantly less than the O(N) cost of the simplest
search method.

The raypath in Figure 4 was sampled at N = 316 points. Therefore, there are
VN = 18 circles in Figure 4, and each contains 18 samples of the raypath, except for
the last circle at the end of the raypath, which contains only 10 samples. To find the
sample nearest to a point (z, z), each of the 18 circles must be checked to determine
whether or not it could possibly contain the nearest sample.
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The most attractive feature of the circle-based search method is that it can be
trivially extended to three dimensions, in which the circles become spheres.

For either two or three dimensions, the circle-based search method adds a factor
VN to the total cost of accumulating a beam. To keep this /N factor from becoming
significant for typical IV, the nearest point problem should be solved for only a subset
of the (z,2z) samples within a Gaussian beam. As suggested by Hill (1990), the
complex time and amplitude functions may be computed on a relatively coarse grid
of (z,z) coordinates, and then bilinearly interpolated for use in equation (1). My
experiments suggest that these functions can be sampled about 8 times more coarsely
in each spatial dimension than the beam itself, which implies an 82 = 64 fold reduction
in the cost of time and amplitude calculations for 2-D grids, and an 83 = 512 fold
reduction for 3-D grids. These reductions make the cost of the circle-based search an
insignificant portion of the total cost of accumulating the contribution of a Gaussian
beam.

WORKING INSIDE THE BEAM

One of the most useful properties of Gaussian beams is their compactness. The
amplitude of the beam in Figure 2 decays exponentially with distance-squared (n?)
from the central ray (Hill, 1990). For efficient Gaussian beam migration, we should
exploit this compactness by ignoring points (z, z) where the exponential decays to less
than, say, one percent of its peak value. In other words, we should solve the nearest
point problem and compute each beam’s contribution to the subsurface image for
only those points (z, z) where that contribution is significant.

Figure 5 shows the superposition of a coarsely sampled grid on the Gaussian
beam of Figure 1. Note that this grid does not include all points (z, z); rather, it
includes only those points where the beam amplitude is significant. As discussed in the
preceding section, complex times and amplitudes should be computed at the corners
of each cell of such a grid and then bilinearly interpolated for use in equation (1).
Computations should be restricted to only those cells having significant amplitudes
at all four corners. In other words, we should work only inside the beam.

As Figure 5 illustrates, the grid of cells within the beam may be irregularly shaped,
so that it may be difficult to determine the bounds of simple loops over these cells in
computer programs. For this particular beam, one might determine bounds in depth
z for each horizontal distance x within the beam. For other beams, however, multiple
loops over disjoint sets of z coordinates might be required for a single x coordinate.
Such loops over cells within an irregularly shaped beam become even more difficult
to organize in three dimensions.

A simple solution to the problem of working within the beam is to use recursion
instead of loops over cells. Begin with the corner of the cell that is nearest to the point
where the raypath intersects the surface z = 0. This corresponds to the cell corner at
a distance of about 5 km in Figure 5. For any reasonable beam width, the Gaussian
beam amplitude at this first cell corner is guaranteed to be significant. Compute the
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F1G. 5. Coarse grid of cells for which the amplitude of the Gaussian beam is sig-
nificant. The irregular shape of this grid suggests that a recursive algorithm should
be used to move from cell to cell, while accumulating the contribution of the beam
within each cell.

complex time and amplitude for this first cell corner. Then, compute the times and
amplitudes for the neighboring cell corners left, right, and below the first one. If the
amplitude at a neighbor is significant, then compute times and amplitudes for that
neighbor’s neighbors. Repeat this recursive process until times and amplitudes for all
cell corners with significant amplitudes have been computed.

The computer software that I use to set the complex time and amplitude at each
cell corner is written in the C programming language as follows:

void setCell (Cells *cells, int jx, int jz)
/ Kok ok » ok koo
Set a cell by computing the Gaussian beam complex time and amplitude of
its upper left corner. If the amplitude is non-zero, set neighboring
cells recursively.

ok * » Ak kR kK
Input:
cells pointer to cells
jx x index of the cell to set
Jjz z index of the cell to set
T T T T P T T
Notes:

To reduce the amount of memory required for recursion, the actual
computation of complex time and amplitude is performed by the function

cellTimeAmp(), so that no local variables are required in this
function, except for the input arguments themselves.

10
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/* If cell is out of bounds, return. */
if (jx<0 || jx>=cells->mx || jz<0 || jz>=cells->mz) return;

/* If cell is live, return. */
if (cells->cell[jx] [jz].live==cells->live) return;

/* Make cell live. #/
cells->cellljx] [jz] .live = cells->live;

/* Compute complex time and amplitude. If amplitude is
* big enough, recursively set neighboring cell. =/
if (cellTimeAmp(cells,jx,jz)) {

setCell(cells,jx+1,jz);

setCell(cells, jx-1,jz);

setCell(cells, jx,jz+1);

setCell(cells, jx,jz-1);

This setCell function “sets a cell” by computing the complex time and amplitude
_of its upper left corner. The first statement in this function ensures that the cell lies
within an array of cells that spans the entire subsurface image. The second statement
checks to see whether or not the cell has already been set. The third statement marks
the cell as being “live”. A live cell is a cell that has been (or, more precisely, soon
will be) set. The actual work of computing the complex time and amplitude is done
by the function cellTimeAmp. If the amplitude is significant, ce11TimeAmp returns
True and the function setCell calls itself four times, once for each of its neighbors
left, right, below, and above.

The type Cells has been defined elsewhere to be a C structure containing all of
the information required to compute times and amplitudes, including the results of
dynamic ray tracing sampled at points along the raypath, the circular clusters used
to find the nearest point on the raypath, as well as the grid of cells itself. The variable
cells is a pointer to (i.e., address of) this structure.

The live flag is used to avoid redundant computations and, even more impor-
tantly, to ensure that the recursion ends. Note that at least one of the four calls to
the function setCell is unnecessary, in principle, because the only way to set any
cell (except for the first cell) is to have already set one of its four neighbors. However,
rather than testing to see which of the four neighbors is live, it is simpler to have the
function setCell return if the cell has already been set.

For convenience, the grid of cells is represented by a two-dimensional array that
spans the entire subsurface image, not just the region within the beam. To avoid
having to initially turn off the live flag in every cell, which would require working
outside the beam, a pseudo-random integer is used to denote a live cell. For each
beam, a unique pseudo-random integer is generated. That integer is then used as the
live flag for every cell within the beam. A new and different integer is used for each
beam so that the live flags do not need to be turned off before processing the next
beam.

11
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In my computer program that performs Gaussian beam migration, the function
setCell is called explicitly only once for each beam to start the recursion. All other
calls to setCell are made by the function setCell itself.

After complex times and amplitudes have been computed at the corners of each
cell within the beam, we may then accumulate the contribution of the beam to the
subsurface image. Again, recursion is used to visit all of the cells that contribute
significantly, starting with the cell nearest the raypath at the surface. Only cells with
four live corners are used. Within each cell, simple loops over finely sampled z and
z coordinates are used to accumulate the cell’s contribution. Cells that have been
processed in this way are marked with another psuedo-random flag (different from
the live flag) that is unique for each beam.

BENCHMARKS

To analyze the cost of Gaussian beam depth migration, a series of benchmark
tests were conducted using a computer program based on the computational meth-
ods described above. All tests were conducted for equal numbers of time, horizontal
distance, and depth samples, so that computation time could be measured as a func-
tion of a single size V. In this way, the time required for Gaussian beam migration
was measured for sizes N = 100, 200, 400, and 800. All tests were performed on an
IBM POWERstation 520 workstation.

For comparison, the same sizes N were used to measure the cost of depth migration
via explicit depth extrapolation filters applied in the frequency domain, as described
by Hale (1991). This explicit method has a highly optimized inner loop, which in
these tests consisted of 20 complex multiplies and 38 complex adds. This inner loop
must be executed for all frequencies, horizontal distances, and depths. Therefore, the
number of times that this innermost loop is executed is proportional to N3.

The results of these tests are plotted in Figure 6. As indicated in Figure 6a, for all
sizes N tested, the explicit extrapolation method requires less computation time than
the Gaussian beam method. However, Figure 6b shows that the cost of the explicit
method grows at a faster rate than that of the Gaussian beam method. The slopes of
the almost linear curves in the log-log plots of Figure 6b indicate that the cost of the
explicit method is roughly proportional to N27, while the cost of the Gaussian beam
method is approximately proportional to N22, for the range of N used in these tests.

To highlight the relative costs of the two computer programs, the ratios of the
times required for the explicit program to the times required for the Gaussian beam
program are plotted in Figure 7. For the largest size tested here, N = 800, the
Gaussian beam program is about 20 percent slower than the explicit program.

We must be careful not to conclude from these benchmark tests that Gaussian
beam migration is inherently slower than migration via explicit extrapolation filters.
Rather, we should only conclude that, for the sizes tested, my current computer
program for Gaussian beam migration is slower than my current program for the
explicit method.

12
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F1G. 6. Benchmark tests of two computer programs for depth migration. Compu-
tation times for the Gaussian beam program are (a) greater than, but (b) increase
at a slower rate than those for the explicit extrapolation program. Logl0 and Log2
denote logarithms for bases 10 and 2, respectively.
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FiG. 7. Ratios of the computation times plotted in Figure 6a.

The most interesting results of these tests are the slopes of the almost linear
curves in Figure 6b, not their intercepts. Optimization of the innermost loops of
either computer program may significantly change the intercepts, but is unlikely to
change the slopes of these curves significantly.

CONCLUSION

Two of the most difficult (or at least awkward) computational problems in Gaus-
sian beam migration are (1) computation of complex-valued beam times and ampli-
tudes in Cartesian (z, 2) coordinates, and (2) performing calculations for only those
(z, z) coordinates within the region where beam amplitudes are significant.

One way to simplify these problems might be to restrict the use of Gaussian beam
migration to special velocity functions. For example, subsurface models with layers in
which velocity or the velocity gradient is constant might facilitate the mapping from
ray-centered (s,n) coordinates to Cartesian (z, z) coordinates, because the raypath
within each such layer could be expressed analytically.

The algorithms proposed in this paper were selected, in part, to make such re-
strictions unnecessary. For example, an efficient solution to the first problem requires
only that the results of dynamic ray tracing be well-sampled along rays traced from

14
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the surface. The algorithms proposed here do not depend on a specific representation
of velocity or a particular method for ray tracing.

The algorithms were also chosen to facilitate their extension to 3-D migration
and 2-D prestack migration of non-zero-offset sections. The square cells used in 2-
D migration simply become cubic cells in 3-D migration. For non-zero-offset data,
beam times and amplitudes must be computed for both source and receiver beams
(Hill, et al., 1991). By computing the required times and amplitudes on a coarse grid
of cells, as suggested by Hill (1990), we can reduce the cost of these computations.
Furthermore, by using recursion to move from cell to cell, we can limit subsequent
computations to only those cells where both source and receiver beam amplitudes
are significant. Extensions to 3-D poststack depth migration and 2-D prestack depth
migration, while not trivial, are straightforward.

The results of benchmark tests suggest that Gaussian beam migration is com-
petitive with the most efficient depth migration methods. Although my current im-
plementation of Gaussian beam migration is slower than a highly optimized depth
migration based on explicit extrapolation filters, benchmark timings suggest that
Gaussian beam migration may be most efficient for large data sizes (requiring more
than one hour on a typical computer workstation). As data dimensions increase, the
computational cost of Gaussian beam migration grows more slowly than that of the
explicit method.
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Migration error in transversely isotropic media
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ABSTRACT

Given the sensitivity of imaging accuracy to the velocity used in migration,
migration founded (as in practice) on the erroneous assumption that a medium is
isotropic can be expected to be inaccurate for steep reflectors. Here, we estimate
errors in interpreted reflection time and lateral position as a function of reflector
dip for transversely isotropic models in which the axis of symmetry is vertical and
the medium velocity varies linearly with depth. we limit consideration to media
in which ratios of the various elastic moduli are independent of depth.

Tests with reflector dips up to 120 degrees on a variety of anisotropic media
show errors that are tens of wavelengths for dips beyond 90 degrees when the
medium (unrealistically) is homogeneous. For a given anisotropy, the errors are
smaller for inhomogeneous media; the larger the velocity gradient, the smaller the
errors. For gradients that are representative of the subsurface, lateral-position er-
rors tend to be minor for dips less than about 60 degrees, growing to two to five
wavelengths as dip passes beyond 90 degrees.

These errors are independent of reflector depth and rms velocity to the re-
flector, but depend significantly on their ratio; i.e., on migrated reflection time.
Migration error, which is found to be unrelated to the ratio of horizontal to verti-
cal velocity, is such that reflections with later migrated reflection times tend to be
more severely over-migrated than are those with earlier migrated reflection times.

Over a large range of dips, migration errors that arise when anisotropy is
ignored but inhomogeneity is honored tend to be considerably smaller than those
encountered when inhomogeneity is ignored in migrating data from isotropic,
inhomogeneous media.
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INTRODUCTION

Difficult and unreliable as it is to measure anisotropy in the field, and as infre-
quently as it is done, it is nevertheless currently recognized and accepted that the
Earth’s subsurface is anisotropic—often, considerably so. For example, a frequently
used measure of anisotropy for p-waves, the ratio of velocity in the horizontal direc-
tion to that in the vertical direction, is commonly found to be 1.05 to 1.1, and is often
as large as 1.2 and higher (Seriff, 1986). For typical seismic wavelengths, the aniso-
tropy may be either an intrinsic property of the rocks or the result of thin layering of
different rock types. The distinction here is immaterial—the essential result is that
waves travel with different speeds in different directions.

Given the general increase in wave speed with depth in the subsurface, reflections
from steep interfaces—dips of 90 degrees and beyond—involve ray paths that sweep
through a wide range of angles from vertical. Consequently, for inhomogeneous, aniso-
tropic media, the energy propagates at different speeds due not only to variation in
velocity with position but also to its variation with direction of propagation. Given
the sensitivity of imaging accuracy to the velocity used in migration and given that
migration, in practice, is founded on the assumption that the subsurface is isotropic,
it is useful to analyze the positioning errors that arise from using migration algo-
rithms that assume isotropy when the subsurface medium is not. This issue should
be particularly relevant to use of steep-dip algorithms such as those that use turning
waves (Hale, Hill, and Stefani, 1991) to image flanks of overhanging salt domes.

While anisotropy exists for both p-waves and s-waves, and s-wave anisotropy has
been given the greater attention in the literature, most imaged reflection seismic data
involves p-waves, and that is what we treat here. Moreover, although anisotropy can
take on all manner of complexity, we assume the relatively simple, but plausible, form
of transverse isotropy with a vertical axis of symmetry. That is, the velocity of plane
waves (i.e., phase velocity) varies only with angle from the vertical; velocity is the
same in all azimuthal directions.

Also, since the Earth’s subsurface is not homogeneous (otherwise, among other
things, turning waves would not exist), studies of migration error restricted to aniso-
tropic models that are homogeneous can yield conclusions that, as we shall see, are
greatly misleading. Again, actual subsurface inhomogeneity can be complicated and
endlessly varied, so we limit consideration to a particularly simple form—media in
which the pertinent elastic moduli vary only with depth z. Moreover, the allowed spa-
tial variation will be such that ratios among the moduli remain independent of depth.
Cerveny (1989) refers to such media as factorized anisotropic inhomogeneous (FAI),
and shows simplifications that arise when ray tracing in FAI media. Furthermore,
following Shearer and Chapman (1988), we gain considerable efficiency in ray-trace

modeling of travel times with our assumption that velocity variations are linear with
depth.
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Here, we do numerical studies of errors in interpreted reflection time and lateral
position as a function of reflector dip for models of the type described above. We treat
only post-stack migration, and do so by considering only errors in the imaged position
of dipping reflections for media with no lateral velocity variation. Those positioning
errors are estimated from analysis of diffraction traveltime curves obtained by ray
tracing.

Anisotropy and inhomogeneity can have a pronounced influence on the shape
of diffraction curves, as evidenced by the comparison of diffraction curves for four
models shown in Figure 1. All four curves pertain to a scatterer at depth D = 1500
m, beneath midpoint ¥ = 0 m, in media having the same vertical root-mean-square
(rms) velocity. They differ in that the different subsurface models represent the four
combinations of homogeneous/inhomogeneous and isotropic/anisotropic. Here and
throughout this paper, the anisotropy is FAI transverse isotropy, with vertical axis of
symmetry. The two inhomogeneous models (solid curves) involve linear v(z), where v
represents any of the velocity-equivalents of the four elastic moduli describing p-wave
behavior in a transversely isotropic medium.

For those models, the vertical p-wave velocity is given by
v(z) = v + kz, (1)

with the gradient £ = 0.6 s™!, and the vertical-direction velocity at the surface vy is
such that the vertical rms velocity down to D = 1500 m is 3306 m/s, the vertical
velocity for shale-limestone listed in Table 1. For the homogeneous, transversely
isotropic model, the four elastic moduli [A, C, F, and L, in the notation of White
(1983)] are those of the shale-limestone medium listed in Table 1). Actually listed in

the table are velocities associated with the various moduli (i.e., Vo = 4/C/p—where
p is bulk density—is the p-wave velocity in the vertical direction; V4 is the p-wave
velocity in the horizontal direction; V}, is the s-wave velocity in the vertical direction;
and Vp is a velocity-like quantity associated with the elasticity modulus F). For
the anisotropic model with linear v(z), the moduli are such that their associated rms
velocities are equal to their constant-velocity counterparts in the homogeneous model.

In Figure 1, the curve for the homogeneous, isotropic model is a hyperbola, as ex-
pected, and the curves for the two inhomogeneous models are clearly non-hyperbolic,
with inflection points at midpoints beyond which reflections pertain to turning waves
(Hale, et al., 1992). While the diffraction curve for the homogeneous, anisotropic
model differs from that for the homogeneous, isotropic one, it is not evident from
this figure whether or not the curve is hyperbolic. As it happens, it is not: a plot of
the instantaneous slope of the T2 versus %2 line indicates that, while the T? versus
y? is almost straight, it is not strictly so. Instantaneous “stacking” velocity based on
the instantaneous slope of T2%(y?) increases with increasing midpoint value y, from a
value close to the velocity in the vertical direction at ¥ = 0 to one that is close to
that for propagation in the horizontal direction as y/D becomes large.
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Medium \/C/p \/A/p \/F/p \/L/p
m/s | m/s | m/s | m/s
Berea sandstone 4206 | 4210 | 1961 | 2664
Shale-limestone 3306 | 3721 | 2076 | 1819
Cotton Valley shale | 4721 | 5320 | 3095 | 2890
Pierre shale 2202 | 2235 | 1803 969

Table 1. Velocity-type quantities related to the four elastic moduli that are pertinent
to p-waves in transversely isotropic media. The four media listed are the same as
those studied by Levin (1990).

It is not obvious that the differences seen in the curves of Figure 1 would give
rise to sizeable errors in migration when the wrong curve is used for the migration.
As we shall see, however, for reflections from steep reflectors (i.e., for regions of the
diffraction curves where y is large), the migration errors can be large—even tens of
wavelengths. As it happens, the largest errors arise when isotropy is assumed for
media that are anisotropic and homogeneous, rather than inhomogeneous.

ERROR COMPUTATION

The quality of a migration algorithm is usually assessed by applying the algorithm
to synthetic and, ultimately, field data. Typical test data consist of reflections from
plane-dipping reflectors, diffractions from point scatterers, and impulses. With data
from plane reflectors, one measures the position of the migrated reflection relative
to its known true location; with diffractions, one qualitatively assesses how well or
poorly the diffractions collapse about the apex; and with impulses, one studies the
shape of the impulse response.

Here, we are interested less in the quality of a particular migration algorithm
than in errors that arise when the migration is based on an erroneous assumption
(e.g., isotropy) about the velocity model. In the context of the Kirchhoff-summation
view of migration, errors arise because the wrong diffraction curve is used to do the
migration: points on sloping reflections are migrated to the wrong apex location.

Consider migration of the schematic, zero-offset, sloping reflection shown in Fig-
ure 2. In migrating the portion of the reflection in the vicinity of point (T,y), where
T is unmigrated reflection time, we first find the diffraction curve that is tangent
to the reflection at (T',y). If the velocity model is correct, migration will image the
point (T',y) at the correct migrated position (T,,,y,). Suppose, instead, that the
wrong velocity model is used for the migration. Then, as depicted in Figure 3, after
migration the point (7', y) goes to the erroneous position (T, y.) instead of (T}, yYm).
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F1G. 1. Diffraction curves T'(y), where T is two-way time between a surface source at
midpoint y and a scatterer at depth D = 1500 m beneath y = 0, for four related media
characterized by the same vertical rms velocity. (a) transversely isotropic, with linear

v(z)—black solid, (b) homogeneous, transversely isotropic—black dash, (c) isotropic

with linear v(z?——gray solid, and (d) homogeneous, isotropic—gray dash. The latter
curve is the only hyperbolic one.

Note that the point (T, y.) is at the apex of the erroneous diffraction curve that
is tangent to both the correct diffraction curve and the reflection at the unmigrated
position (T, y). For the numerical estimates of migration error as a function of reflector
dip, we do not actually compute reflections from plane-dipping reflectors. Instead,
we work with just diffraction curves, recognizing that any point along a diffraction
curve may be associated with a dipping reflector whose reflection is tangent to the
diffraction curve at that point. The estimation of migration error involves three steps.

1. Compute diffraction curves associated with a buried point scatterer (such as
those shown in Figure 1).

2. Estimate the erroneous position (T, y.) to which any given point on the diffrac-
tion curve for the anisotropic medium migrates when an algorithm that erro-
neously assumes isotropy is used for the migration.




Larner and Cohen Migration error

midpoint (y) ——>
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F1G. 2. Schematic time section showing the relationship between the unmigrated
position gtIZ:, y) on a sloping reflection and the position (1},,¥,,) to which it should
migrate. The migrated position is at the apex of the diffraction curve that is tangent
to the reflection %slope = p) at the unmigrated position.

3. Estimate the error in interpreted temporal and lateral position of a migrated
reflection by determining the departures in position and time of the erroneously
migrated point from the correctly migrated reflection.

Computation of Diffraction Curves

While travel-time computation in inhomogeneous media generally first requires
computationally intensive numerical integration to obtain ray paths, such numerical
integration can be averted for special classes of media. For example, in isotropic media
with constant gradient in velocity, ray paths are circular so that two-point ray tracing
and travel-time computation can be done analytically. Shearer and Chapman (1988)
have developed an efficient method for ray tracing in the type of media considered
here—FAI media with constant velocity gradient. For transversely isotropic media,
the core of their result is the remarkable property that ray paths are simply scaled,
rotated versions of the polar plot of slowness as a function of angle from the axis of
symmetry.

With this observation, Larner (1992) shows that, when the axis of symmetry for
the transverse isotropy is parallel to the velocity gradient, two-point ray tracing can
be done efficiently as the solution of a quadratic equation for 22 as a function of (z2)
followed by a secant search to determine the ray parameter p;. As shown in Figure 4,
(x1,23) is position along the ray path, where z3 is the coordinate in the gradient
direction, with 3 = 0 being the line along which the linear velocity function is zero,
and , is the coordinate in the orthogonal direction, such that z; = 0 at the ray’s
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reflection

time (7)

(T y
true diffraction e e)
curve erroneous diffraction
curve

F1G. 3. Schematic time section showing the relationship between the unmigrated
position (T, y) on asloping reflection, the position (T}, ¥) to which it should migrate,
and the position (T, y.) at which it is actually imaged when the data are migrated
with an erroneous velocity function.

turning point. The coordinate z3 is just a translated version of the depth z obtained
by rewriting equation (1) as

v(z) = k(z+ %) = kx3,

where v
T3 =2+ —. 2
3 + A (2)
Note, in Figure 4, that reflectors such as the one shown, in general, are not
perpendicular to zero-offset ray paths when the medium is anisotropic. For anisotropic
media, reflectors are orthogonal to the phase direction rather than the ray direction
(Byun, 1984).

Different solutions of the quadratic equation for z? [see Larner (1992)] give ray
paths for p-waves and for sv-waves. Here, we are interested in only the p-wave solu-
tions. Once the ray parameter is determined, numerical integration is still required
to obtain travel time; Cerveny (1989), however, shows the form of the integrand to be
particularly simple, and the integration thus efficient, for the particular type of aniso-
tropic medium under consideration here. The full procedure for computing T(y;) at
uniformly sampled midpoint distances y; is described in Larner (1992). There, it is
also shown that, for zero-offset rays in media of the type studied here, reflector dip ¢
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-=~_zero-offset
ray path

(X1 ’ X3) TTE
reflector ,

<«—— depth (2)

F1G. 4. Ray path in an FAI transversely isotropic, linear v(z) half-space, shown in
(z1,23) coordinates. The medium’s surface, z = 0, is equivalent to z3 = v, /k. Also,
z1 = 0 at the turning point. If this is a zero-offset ray path, then the line shown with
dip ¢ represents a hypothetical reflector; the solid portion of the ray path pertains to
a source-receiver location to the left of the reflector, and the dashed portion contains
a turning ray that would image the underside of the reflector from the right. Note
that the reflector is not perpendicular to the ray path except at the turning point.

at any point (z;,3) is given by
tan d) = _x_a (3)

as indicated in Figure 4.

Estimation of Erroneous Migrated Position (T, y.)

As illustrated in Figure 3, to find the erroneous migrated position (7T.;,v.;) at
which a point (T}, y;) is imaged, we must find the diffraction curve that is associated
with the migration-velocity model and is tangent to the true diffraction curve T(y) at
(Tj,y;). Specifically, the erroneous diffraction curve should have slope p; at (T}, y;),
where p; is computed as

_ L =T
’ Yi+1 — Yj-1
This would be no problem if the migration process were based on the assumption

that the medium were homogeneous and isotropic. Then, the migration diffraction
curve would be a hyperbola, given by

4(yJ - yej)2
V2 ’

m

2 __m2
Ty =T +
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where V;, is the migration velocity. Differentiating this equation gives the slope at
(Tj’yj)

_ Ty 4y — Yej)

b= - )
T dy; ViT;
or
p;V2T;
Yej = Y5 — %

Also, the erroneously migrated time would be given by
Tej = T] Ccos 0_1',

where
sinf; = ’TV (4)

Assume instead that the data are migrated with an algorithm that honors vertical
variation in velocity, but is founded on the assumption that the subsurface medium
is isotropic [e.g., the phase-shift method of Gazdag (1978)]. Then, at the outset, the
depth z; of the scatterer that would give rise to the migration diffraction curve with
slope p; at (T}, y;) is unknown, and hence, the migration velocity required to generate
that migration diffraction curve is initially unknown.

To find that scatterer depth and associated velocity, we match the slopes of the
true and migration diffraction curves at the point (7j,y;), as follows. Let the erro-
neous, migration diffraction curve be given by ¢(x), where, referring to Figure 3,

T=Y—Ye (5)

is the migration distance. We assume that the velocity model used for migration is
isotropic, with velocity given by equation (1). That is, the velocity at any depth z
is identical to the velocity in the vertical direction in the true, transversely isotropic
medium. (Below, we shall modify this assumption somewhat.) For such a medium,
ray paths are circles, and, using the expression of Dietrich and Cohen (1992), the
two-way time ¢ between a surface point at midpoint y and a scatterer at depth (g, 2)
is given by

2 (K2t 0+ v¥(2)
b= k cosh ( 2vpv(2)
= %cosh"l(a:l:2 + 3)
2
=z cosh™ 7, (6)
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where
k2
= 2v9v(2)
5 v + v%(2)
2v9v(2)
kt
n = ax2+ﬂ=cosh?. (7)

Differentiating equation (6) gives the slope of the diffraction curve

dt dazx

PR T RET ®)

Given measurements of T; (= t) and p;, and assuming that the constants vy and k in
equation (1) are known, we eliminate z from equations (7) and (8). There results a
quadratic equation for v(z;), whose appropriate solution is

vo(cosh é + sinh 6/1 — 2)

; 9
v(z) = 1+ ¢2sinh? 6 (9)
where
5= S
v
g = 3{?—0. (10)

Once v(z;) has been determined, the depth 2; is obtained from equation (1), z;
from equation (8), and y.; from equation (5). Finally, the vertical reflection time to
the scatterer is given by

v(2;)
T = —1 27,
7 2/ v0+ka %% 0 (1)

Estimation of Migration Error

We have just seen how the erroneous migrated position (T;, ¥e;) is computed. In
addition, the correct position (T},, ¥ ) is known to be just the apex of the diffraction
curve (Tj,y;) obtained from by tracing in the FAI transversely isotropic medium. At
first thought, it might seem from Figure 3 that the sought-after errors in migrated time
and position are just (T —T,) and (Ye—ym ), respectively (from here on, the subscript j
is dropped). While, in a sense that is true, such measures will not suffice for assessing
errors in position of the reflections that would confront interpreters. Interpreters
rarely identify how individual points in data move when data are migrated. Instead,

10
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they generally focus attention on reflections that, if not planar, are often locally
approximately so.

Consider the sloping reflections in the schematic, migrated zero-offset section
shown in Figure 5a. In practice, the incorrectly migrated reflection through migrated
point (T, y.) would be approximately parallel to the correctly migrated reflection
through (70, ym), as depicted in the figure. The quantities Ay and AT shown in
the figure are the measures of error that would be apparent to the interpreter. Note
that given (T, y.) and (Trn, ym), Ay and AT vary with the slope p,, of the migrated
reflection. That is, one has to know, or estimate, p,, in order to compute Ay and AT.
This fact becomes obvious when Figures 5a and 5b are compared. Figure 5b depicts
a situation where the apex positions (T, y.) and (T},,yn) are identical to those in
Figure 5a, but the slopes of the reflections differ greatly in the two figures. One might
pertain to a reflector dip that is less than 90 degrees, and the other to one that exceed
90 degrees. As a result, the migration errors Ay and AT differ considerably in the
two figures.

The dependence of Ay and AT on the slope p,, is readily seen in the geometry of
Figure 5. We have

Te—Tm
Ay = (ye—ym)——p—

AT = —p,Ay. (12)

So, these two inter-related measures of migration error can be fully estimated once
we know the slope p,, of the correctly migrated reflections. That slope is readily
computed from knowledge of v(z) and the reflector dip ¢. Such a reflector is depicted
in Figure 6. Also shown are vertical “paths” from two surface points separated by the
distance Ay down to the reflector. Migrated reflection time at the two surface points
is just the two-way time along these vertical paths. Locally, the migrated-reflection
slope is taken as constant, given by

AT, _dT,
Ay dy
dT,, dz

= -—tn¢dTm
T odz ody MO

I

Pm
But, for any v(z) medium,

z do
In = 2/0 v(a)’

SO

11




Larner and Cohen Migration error

midpoint (y) ————»
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£ %&@ (Te: Ye)
true migrated '?%@
reflection ‘e,
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¢

true migrated
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FIG. 5. Schematic time sections showing the erroneously migrated (dashed) and
correctly migrated (solid) reflections through the erroneously and correctly imaged
positions (7T¢,y.) and (T,,Ym). The lateral error in imaged reflection position is Ay,

and the time error is AT. Figures 5a and 5b differ only in that the slope p,, of the
migrated reflection differs in the two cases.
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F1G. 6. Schematic depth section showing a dipping reflector beneath a v(z? medium.
Migrated reflection times at two neighboring points on the surface are simply two-way
times along the vertical paths.

from which we get
2tan ¢
Pm =0 (13)

Note that this result, which is familiar for homogeneous media, holds for any v(z)
medium, even a generally anisotropic one. For our error studies, then, we have all
the information required to compute the migration errors Ay and AT once we can
associate any point (T}, y;) along the true diffraction curve (for a scatterer at depth z)
with a reflector dip ¢;. That dip is available from the ray-tracing result, equation (3).

WHAT FORM OF VELOCITY TO USE FOR MIGRATION?

Reiterating, our estimates of migration error come from relating the true diffrac-
tion curve (i.e., that for an FAI transversely isotropic medium with linear v(2) depen-
dence) to the diffraction curve associated with the time-migration process used, and,
almost universally in practice, that migration process is based on the assumption that
the subsurface is isotropic and vertically inhomogeneous. As is known, if the medium
were homogeneous and isotropic, no issue would arise as to which form of velocity
to use in the migration—migration velocity = rms velocity = stacking velocity (as-
suming horizontal reflectors) = medium velocity. Equally well known, for vertically
inhomogeneous, isotropic media, stacking velocity (obtained by T2 — X? analysis over
a finite spread-length X') exceeds rms velocity, approaching it as the spread-length

13
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approaches zero. When the medium is anisotropic (even when it is homogeneous),
the situation becomes more complex.

Levin (1979) has shown that, in a transversely isotropic medium with vertical axis
of symmetry, stacking velocity for p-wave reflections from horizontal interfaces differs
from the vertical velocity, even in the limit as spread-length X approaches zero. The
limiting stacking velocity can be larger or smaller than the vertical velocity, depending
on ratios among the four pertinent elastic moduli. Moreover, Thomsen (1986) shows
that, for so-called weak anisotropy, the relationship between these two types of velocity
is totally independent of the ratio of horizontal-direction velocity to vertical-direction
velocity, V4 /Ve—the most commonly quoted measure of degree of anisotropy. As we
shall see, this same discrepancy between zero-offset-limit stacking velocity and vertical
velocity in homogeneous media carries over into a difference between zero-offset-limit
stacking velocity and vertical rms velocity for inhomogeneous media.

Given this complexity, for studies of migration error and, indeed, when doing
migration in practice, which form of velocity should we use—vertical rms velocity,
stacking velocity based on finite spread-length, or the limiting stacking velocity as
offset approaches zero?

Figure 7 shows computed lateral position errors Ay for reflector dip ranging from
0 to 120 degrees, for four different choices of migration velocity. Results are shown
for the shale-limestone and Cotton Valley shale tabulated in Table 1 [the quantities
shown in Table 1 are computed from the parameters of Thomsen (1986)]. The media
treated in Figure 7 have linear velocity increase with depth, with vertical rms velocity
matching the Vo = 4/C/p values in Table 1 (e.g., the vertical rms velocity for the
inhomogeneous shale-limestone medium is 3306 m/s). For these tests, the reflector
depth is 1500 m, and the gradient ¥ = 0.6 s~! in the vertical-velocity expression
v(z) = vy + kz.

Not surprising, as seen in Figure 7, the position errors depend on the velocity
function used for the migration. For both the shale-limestone and Cotton Valley
shale, migration errors are smallest for the migration-velocity function v(z) that is
based on stacking velocity computed when the spread-length is comparable to reflector
depth—a satisfying result since, in practice, velocity is most often estimated in this
way. From the figure, the poorest choice of velocity function for migration is that
based on the vertical rms velocity, such as might be obtained from sonic-log data.

Perhaps most striking in the Figure 7 is the dramatically anomalous error behavior
for the Cotton Valley shale when the migration velocity is based on the rms velocity.
For the shale-limestone, errors for stacking velocity approach those for rms velocity
as the spread-length shrinks to zero. Such is not the case for the Cotton Valley shale.
This behavior for migration error is consistent with Thomsen’s (1986) predictions
that small spread-length stacking velocity for transversely isotropic media can depart
significantly from vertical velocity.

14
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FIG. 7. Position error Ay versus reflector dip for shale-limestone (top) and Cotton
Valley shale (bottom). For each, the reflector depth is D = 1500 m and the vertical
velocity gradient is ¥k = 0.6 s™!. For the dashed curve, the v(z) velocity function
used for migration is derived from the vertical rms velocity to the reflector. For the
other three curves, the v(z) velocity function used for migration is derived from the
stacking velocity to a horizontal reflector at depth D, with different choices of ratio
of spread-length to depth X/D used in the stacking-velocity computation.
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Medium VA/VC ‘/stack/‘/rms
X/D=1.0|X/D=0.5|X/D =0.1 | Thomsen
Berea sandstone 1.001 1.01 1.02 1.02 1.02
Shale-limestone 1.126 1.06 1.02 1.00 1.00
Cotton Valley shale | 1.127 1.16 1.18 1.19 1.19
Pierre shale 1.015 1.04 1.05 1.06 1.06

Table 2. For the four media treated in this study, columns 3-5 list the ratio of stacking
velocity to vertical rms velocity for three values of the ratio of the spread-length to
reflector depth. For comparison, column 6 contains the ratio of zero-offset stacking
velocity to rms velocity predicted by Thomsen (1986). Column 2 lists the ratio of
horizontal to vertical medium velocity—the most frequently quoted measure of degree
of anisotropy.

Table 2 gives a summary of the ratio Ve /Vrms measured in my studies with
transversely isotropic, linear v(2) media. For comparison are shown Thomsen’s predic-
tions, which were derived for homogeneous transversely isotropic media. The equality
of values in columns 5 and 6 of the table shows that Thomsen’s predictions extend to
inhomogeneous media. Moreover, also in agreement with Thomsen’s predictions, note
the considerable differences between the values in column 6 for the shale-limestone
and Cotton Valley shale despite the fact that the ratios of horizontal to vertical ve-
locity for the two media (column 2) are nearly identical.

Repeating, based on the curves shown in Figure 7, along with those for the other
media studied (Berea sandstone and Pierre shale; not shown here), the migration-
velocity function that is derived from stacking velocity computed when the spread-
length is comparable to reflector depth yields the smallest of the errors. Thus, both
in accord with these results and mimicking common practice, the velocity function
that we use for all the migration-error tests below is based on stacking velocity (for
horizontal reflectors) with X/D = 1, and the migration action simulated fully takes
into account velocity variation with depth.

MIGRATION-ERROR RESULTS

Anisotropy versus Inhomogeneity

Figure 8 shows position error Ay (top) and time error AT (bottom) as a function
of reflector dip ranging from 0 to 120 degrees for three different models, all of which
have properties related to those of the transversely isotropic shale-limestone listed in
Table 1. For all three curves, the reflector depth is 1500 m. The solid gray curves
pertain to a homogeneous medium with just the properties listed in Table 1. The
solid black curves are for a v(z) = vo+ k2 medium with gradient k = 0.6 s71, and with
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vp such that the vertical rms velocity to the reflector is 3306 m/s. Consider, first, just
the position errors. The gray curve exhibits large error for dips greater than about
60 degrees. Clearly if we limited our analysis to just homogeneous media, we would
conclude that failure to take anisotropy into account would lead to migration errors
that are intolerably large for steep reflectors. However, we find that the combination
of anisotropy and velocity variation with depth (solid black curve) leads to much more
tolerable errors—even for dips as large as 120 degrees. As we shall see below, in some
sense the shale-limestone is the most extreme of the four types of media studied here.
For the other media, the errors, even for the homogeneous models, are not so large as
those shown here. In all cases, nevertheless, errors are smaller for the inhomogeneous
models than for their (unrealistic) homogeneous counterparts.

Now, consider the dotted curve in the top part of the figure. This curve pertains
to an isotropic medium with v(z) identical to the vertical-velocity function in the
transversely isotropic shale-limestone. If we were to migrate data from such a medium
with an algorithm that honors the v(z) behavior, such as the phase-shift method of
Gazdag (1978) as extended for turning waves by Hale, et al. (1992), then we would
get near-zero error for all dips. The dotted curve, however, simulates errors that
would arise if the data were migrated with a simplistic Kirchhoff-type time-migration
algorithm (Schneider, 1978) that uses a hyperbolic diffraction curve based on the
stacking velocity. Such a limited algorithm is known to yield unacceptable errors for
steep reflectors; the dotted curve, then, shows the size of error that is corrected when
a phase-shift-type migration approach is used.

Stated differently, the dotted curve gives the errors when inhomogeneity is not
properly treated in the migration of an inhomogeneous, isotropic medium, while the
gray curve gives the errors when anisotropy is not taken into account in the migration
of a homogeneous, transversely isotropic medium with the shale-limestone properties.
Significantly, for dip less than about 60 degrees, anisotropy is the considerably less
serious issue.

Comforting as is the conclusion that errors are not so large when the medium
is both inhomogeneous and anisotropic, we should still note that the errors for the
poorly migrated isotropic medium are correctable (with, for example, a phase-shift
algorithm), whereas those for the anisotropic medium would require that we have
adequate information about the four pertinent elastic moduli of the medium and that
we use an imaging algorithm that takes the anisotropy into account.

The time-error curves in the lower part of Figure 8 tell a comparable story, but
they also show what appears to be a disturbing instability near 90-degree dip. Ac-
tually, the behavior is not so troubling as it may appear. For a plane reflector near
vertical, a huge error in reflection time would not be noticeable to the interpreter
since the temporal period of migrated reflections becomes large without bounds as
dip approaches 90 degrees. Similarly, a seemingly large error Ay in lateral position
is inconsequential for small dip since the apparent wavelength in the lateral direction
becomes large as dip approaches zero. Whether it be time error or position error,
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F1G. 8. Position error Ay (top) and time error AT (bottom) versus reflector dip for
three different cases related to the transversely isotropic shale-limestone. Solid black:
The actual medium is inhomogeneous with v&z) = vg + 0.6z and anisotropic; the
inhomogeneity is honored in the migration, and the plotted errors are due to neglect
of the anisotropy. Gray: The medium is the anisotropic shale-limestone, but now
velocity is constant; the plotted errors are again due to the neglect of anisotropy in
the migration. Dotted: Now the actual medium is isotropic but inhomogeneous, with
linear v(z), as above; the plotted errors are due to neglect of the inhomogeneity (e.g.,

migration is done with a Kirchhoff-type algorithm that uses hyperbolic diffraction
curves based upon stacking velocity).
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the interpreter will be concerned only with errors that are large relative to a period,
or wavelength, as the case may be. For that reason, henceforth, we shall study er-
rors normalized, as follows, so that they are expressed in terms of multiples of the
dominant period and wavelength in the migrated data.

Earlier, we saw that migration increases the slope of a reflection from p before
migration to p, = 2tan¢/v(z), afterward. Migration also lowers frequencies such
that horizontal wavelength A is preserved. Consequently,

1
X=fmpm=fp7 (14)

where f is frequency in the unmigrated reflection wavelet, and f,, is the frequency
after migration.

Subsequent position error curves are plotted in terms of normalized values given
by

ag=5Y, (15)
Ad
where, from equation (14),
1
Ad = — 16
T fap (16)

is the horizontal wavelength, after migration, corresponding to some assumed domi-
nant frequency f; in the unmigrated reflections.

If we, similarly, normalize time errors such that

AT = ar
Td
T4 = PmAd (17)
from equation (12) it follows that, simply,
AT = —Aj.

Note, that since p,, < 0 for dips exceeding 90 degrees, 74 as defined in equation (17)
is also negative for those large dips. This unusual choice, rather than defining 7,4 to
be always positive, is a convenience that ensures that the normalized time error is
continuous at 90-degree dip—indeed that it is just the negative of the normalized
position error.

Figure 9 shows the normalized position error Ag corresponding to the error Ay
in Figure 8. For the normalization here and in subsequent figures, the dominant
frequency is taken as 30 Hz.

While the errors for the homogeneous shale-limestone can be very large for steep
reflectors (more than ten wavelengths for dips exceeding about 60 degrees), errors
for the inhomogeneous counterpart are about two wavelengths for vertical reflectors,
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F1G. 9. Same as the top part of Figure 8 except that the position errors are now
the normalized quantities Ay, expressed in multiples of post-migration wavelengths
corresponding to unmigrated reflections with dominant frequency 30 Hz.

and just four wavelengths at 120-degree dip. Again, these errors are much smaller
than the errors for isotropic media that are corrected when a phase-shift algorithm,
as opposed to one that involves hyperbolic diffractions, is used for migration.

Dependence on Velocity Gradient

With reflector depth fixed at 1500 m and the vertical rms velocity at 3306 m/s,
Figure 10 shows the dependence of normalized position errors on the velocity gradient,
k, for the shale-limestone, and Figure 11 shows the normalized position errors for
the four media listed in Table 1. For all four media, the failure to take anisotropy
into account in migration is a less serious issue when the medium is inhomogeneous
than if it were homogeneous, but for only the shale-limestone is the difference truly
significant. For the others, failure to take anisotropy into account in the migration
appears to be a less severe problem than is that for the shale-limestone.

Not surprising, errors in most cases tend to be larger for larger reflector dip. Of
the four media, the Berea sandstone is most weakly anisotropic, and gives errors that
are least influenced by the inhomogeneity. The shale-limestone is anomalous in that
the position errors for larger dips are positive, whereas errors for the other media
are negative. Thus, steep reflectors in the shale-limestone are under-migrated when
anisotropy is not taken into account in the migration algorithm, while those in the
other media are over-migrated. Intuition might lead one to predict that the presence
of anisotropy would cause data to be under-migrated since isotropy-based migration
algorithms fail to adapt to the higher propagation speeds that arise for waves that
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Fi1G. 10. Normalized position errors (at 30 Hz) as a function of reflector dip for the

shale-limestone, with velocity gradients £=0.0, 0.2, 0.6, and 1.2 s~!. All models have
the same vertical rms velocity, 3306 m/s, and the reflector depth is 1500 m in all cases.
In all cases the medium is inhomogeneous and anisotropic, and the inhomogeneity is
honored in the migration. The plotted errors are due to neglect of the anisotropy in
the migration. Each curve shows the errors for the indicated velocity gradient.

turn close to horizontal. As often happens, intuition fails when it comes to anisotropy.
The diametrically opposing behavior of errors for the shale-limestone and the Cotton
Valley shale is particularly striking, again because the ratio of horizontal to vertical
velocity, V4 /Ve, is almost identical in the two media.

Based on the migration errors in Figure 11, we would infer that the shale-limestone
has the greatest degree of anisotropy, followed by the Pierre shale and Cotton Valley
shale, and finally the Berea sandstone—not quite the order that would be predicted
on the basis of V4/Vi. Note that errors for the Cotton Valley shale are somewhat
less dependent on the velocity gradient than are those for the Pierre shale (note: the
curve for gradient k = 1.2 s™! is not shown).

While linear v(z) is certainly not the norm for the earth’s subsurface, to the extent
that it is, k = 0.6 s~! is a somewhat representative value: k = 1.2 s~! is on the high
side, and k£ = 0.2 s7! is clearly too small to yield the velocity increases with depth
that are normally encountered. Thus, for all four media the “representative” case,
k = 0.6 s™1, exhibits errors no larger than three or four wavelengths and periods even
for dips as large as 120 degrees.
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F1G. 11. Normalized position error (at 30 Hz) as a function of reflector dip for the
four media listed in Table 1, with velocity gradients £=0.0, 0.2, 0.6, and 1.2 s™!. The

reflector depth is 1500 m in all cases.
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Dependence on Reflector Depth and on Stacking Velocity

Focusing our attention on the shale-limestone medium, Figure 12 shows the de-
pendence of migration error on medium velocity and reflector depth. As throughout
this paper, the ratios of the four velocity quantities characterizing the transverse
isotropy are independent of depth and match those for the velocities listed in Table
1. In generating the three curves shown in the top portion of the figure, the vertical
velocity at the surface vy was set so as to yield vertical rms velocities of 3000 m/s,
2200 m/s, and 1500 m/s at the reflector depth. For linear v(z) media characterized
by equation (1), the relationship between surface velocity vy and vertical rms velocity
Vrms(2) is given by

2 v’(z) — v}
Vims(2) = ———

rms

. (18)

v(2)

2log —=
og ~

Given kz and V,,,,, a Newton-Raphson search solves this equation for vg.

In this figure, the solid black curve pertains to parameters that are close to those
that generated the solid black curve in Figure 10. The dependence of errors on rms
velocity and on depth exhibit much similarity. The errors tend to become less positive
with either increasing reflector depth or decreasing velocity. Inspection of Figure 12
reveals a pattern that is better exhibited in Figure 13. There, it is seen that the
shape of an error curve is almost independent of either the depth or rms velocity so
long as the ratio of the two is held constant. Since this ratio approximates migrated
reflection time, we infer that the shape and, indeed, the sign of the error curve for
the shale-limestone is governed by the migrated reflection time. Thus depending on
the migrated reflection time the data may be either over-migrated or under-migrated
when anisotropy is not taken into account in the migration process.

Results of similar tests on the other three media listed in Table 1 confirm this de-
pendence of error on migrated reflection time. Thus, inferences, made in the preceding
section, about the relative importance of anisotropy for the four different media must
be reviewed in the light that error behavior for any given medium can vary consider-
ably with migrated reflection time. The complexity of the migration-error behavior
for the different media emerges in Figure 14.

For all the models treated in Figure 14, the velocity gradient is 0.6 s~!. The three
error curves shown for each of the four media pertain to rms velocity and reflector
depth chosen such that the migrated reflection time is approximately 0.67, 1.0, and
2.0 s (here, we ignore the inconsequential—for our purposes—distinction between rms
velocity and average velocity).

While it is satisfying to find that the migration errors depend only on migrated
reflection time, that dependence, nevertheless, can be significant. For the shale-
limestone medium, for example, ignoring anisotropy leads to under-migration for
shallow reflectors, but to over-migration of deeper reflectors. Moreover, at migrated
times later than about 1 s, reflections in the Cotton Valley shale become significantly
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F1G. 12. Velocity dependence (top) and depth dependence (bottom) of normalized
position errors as a function of reflector dip for FAI shale-limestone. All models have

the “representative” velocity gradient, k¥ = 0.6 s~'. Depth is held constant (1500 m)

for the velocity tests on the top, and vertical rms velocity is held constant (3000 m/s)
for the depth tests on the bottom.
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F1G. 13. Normalized position errors as a function of reflector dip for FAI shale-
limestone, for four values of approximate migrated reflection time 2D/V,,,. All
models have the same velocity gradient, k = 0.6 s~1. Within each box, are plotted
three nearly overlapping curves. Each curve is for a different choice of D and V.,
with values ranging over a factor of two.
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FI1G. 14. Normalized position errors as a function of reflector dip for the four media
listed in Table 1, for three values of approximate migrated reflection time 2D [V,ps.

All models have the same velocity gradient, k¥ = 0.6 s~1.

26




Larner and Cohen Migration error

over-migrated. Even the “relatively isotropic” Berea sandstone exhibits a growing
over-migration of the later reflections. If we were to rank degree of anisotropy on the
basis of migration error for reflections at or later than 2 s, migrated time, we would
say that the Cotton Valley shale is the most anisotropic, followed by the Pierre shale,
Berea sandstone, and then the shale-limestone— a different ordering than what we
inferred above, when all the reflectors were at the same depth and the vertical rms
velocities were given in Table 1.

DISCUSSION AND CONCLUSION

Failure to take anisotropy into account in migration leads to position errors whose
magnitude and sign both depend not only on the various elastic moduli of the subsur-
face medium, but also on migrated reflection time. These migration errors cannot at
all be predicted on the basis of the ratio V4 /V¢ of the horizontal to vertical velocity.
(Recall that this ratio is nearly identical for the shale-limestone and Cotton Valley
shale, which exhibit greatly differing error behavior in Figure 14.) In fact, any at-
tempt to determine which of several media is “most” anisotropic and which is “least”
is doomed to frustration. The answer is “it depends on the situation.”

If, for example, our problem is one of converting from time to depth based on ve-
locity analysis, then for an elliptically anisotropic medium, the measure of importance
would be the ratio V,/Vi.. However, elliptical anistropy is a poor assumption for p-
wave behavior, and, as Thomsen (1986) has pointed out, that ratio has no influence
whatsoever on the relationship between vertical velocity and the velocity estimated
from conventional velocity analysis. Alternatively, if our problem is one of assessing
migration error, then our ranking of degree of anisotropy might be based on size of
error—and even then, the answer would depend on migrated reflection time.

Of course the correct thing to do is migrate with an algorithm that takes anisotropy
into account. Verwest (1989) discussed migration in elliptically anisotropic media,
and Uren, Gardner, and McDonald (1990) have shown results on model-tank data
migrated with a frequency-wavenumber-domain approach that takes rather general
anisotropy into account. However, it is not algorithmic limitations that prevent the
use, in practice, of migration approaches that understand how to treat anisotropy.
Our information about the anisotropic characteristics of the subsurface is woefully
inadequate. We have seen that the most readily accessible measure of anisotropy—the
ratio of stacking velocity to vertical velocity-—does not provide sufficient information
about the pertinent elastic moduli. In fact, the elastic modulus F is not at all
obtainable from surface seismic data alone. While we do not have a good means
of quantifying anisotropic behavior either routinely or otherwise in practice, those
studies that have been done suggest that anisotropy is the rule, and the degree of
anisotropy is often considerable.

The limitations go deeper than this, however. Consider, for example, the many
assumptions about the medium made in order to do the analysis in this paper. The
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models studied are all (1) transversely isotropic, with (2) vertical axis of symmetry,
with (3) velocity variation in depth only, with (4) constant gradient, and (5) all ratios
among the four pertinent elastic moduli are independent of depth. While this combi-
nation of assumptions enabled efficient ray-trace calculation of the diffraction times
required in the analysis, We can give little justification of the appropriateness of the
models other than: (1) they provide more generality, and perhaps more realism, than
do isotropic models and (2) there is even less justification for models of anisotropy
that differ substantially from those used here.

Clearly, the studies here show that models of anisotropy are inadequate in describ-
ing migration error when inhomogeneity is not also taken into account. Also, while
the subsurface is, of course, not a constant-gradient medium, the range of gradients
studied here do provide examples of highly inhomogeneous media.

Ratcliff, et al. (1992) and Hale, et al. (1992) have presented examples from the
Gulf of Mexico of stunning, apparently quite accurate, migrations of overhanging
salt-dome flanks and of thin salt intrusions (100-m wide with more than 1-km vertical
relief) into faults surrounding salt domes. How could such features be imaged so well
given that the migration algorithms did not take anisotropy into account? While
the errors for some of the test cases here become sizeable for dips approaching and
exceeding 90 degrees, results here also suggest that if the subsurface in the Gulf of
Mexico is not “strongly anisotropic” in some appropriate sense, migration errors due
to the combination of anisotropy and inhomogeneity may be no more than two or
three wavelengths even for dips beyond 90 degrees. While two or three wavelengths is
not insignificant to explorationists, the common practice of trial-and-error selection
of migration velocity can readily accommodate errors of that size.

The error analysis in this study was limited to that for post-stack migration.
The straightforward extension of the methodology to pre-stack time migration and
dip-moveout is the subject of a future paper. One final comment: While numerical
estimation of migration error of the sort done here can be no substitute for actual
application of migration algorithms on synthetic and field data, such actual migration
demonstrations would have been totally impractical and inadequate for attempts to
understand the dependence of migration error on the range of model parameters
considered here.
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Dip-moveout error in transversely isotropic
media with linear velocity variation in depth

Ken Larner and Dave Hale

ABSTRACT

Levin (1990) modeled the moveout, within CMP gathers, of reflections from
plane-dipping reflectors beneath homogeneous, transversely isotropic media. For
some media, when the axis of symmetry for the anisotropy was vertical, he found
departures in stacking velocity from predictions based upon the familiar cosine-
of-dip correction for isotropic media. Here, we do similar tests, again with trans-
versely isotropic models with vertical axis of symmetry, but now allowing the
medium velocity to vary linearly with depth.

Results for the same four anisotropic media studied by Levin show behavior
of dip-corrected stacking velocity with reflector dip that, for all velocity gradi-
ents considered, differs little from that for the counterpart homogeneous media.
As with isotropic media, traveltimes in an inhomogeneous, transversely isotropic
medium can be modeled adequately with a homogeneous model with vertical ve-
locity equal to the vertical rms velocity of the inhomogeneous medium.

In practice, dip-moveout (DMO) is based on the assumption that either the
medium is homogeneous or its velocity varies with depth, but in both cases
isotropy is assumed. For only one of the transversely isotropic media consid-
ered here—shale-limestone—would v(z) DMO fail to give an adequate correction
within CMP gathers. For the shale-limestone, fortuitously the constant-velocity
DMO gives a better moveout correction than does the v(2) DMO.

INTRODUCTION

Given the complexity possible for subsurface structure, moveout of reflections
within common-midpoint (CMP) gathers can have all manner of complication. Nev-
ertheless, the approximation that moveout is hyperbolic over typical spreadlengths is
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adequate in much routine practice. Moreover, Levin (1979) and (1990) has shown that
the hyperbolic approximation remains valid for homogeneous, transversely isotropic
media. To whatever degree moveout approximates a hyperbola, however, stacking ve-
locity for anisotropic media can depart significantly from the vertical velocity. Given
the recognition today that anisotropy is the rule rather than the exception, it is of
interest to study stacking velocity for anisotropic media.

Levin (1979) considered reflections from horizontal interfaces in homogeneous,
transversely isotropic media with vertical axis of symmetry. (A transversely isotropic
medium is one in which the velocity of plane waves—the so-called phase velocity—
varies with direction of propagation from an axis of symmetry, but is independent of
direction within the plane perpendicular to the axis of symmetry.) Levin showed that
the stacking velocity, both for finite-length offset and in the limit of small source-to-
receiver offset, could depart substantially from the propagation velocity in the vertical
direction.

For each wave type—sh, (quasi)sv, or (quasi)p—the departure is a complicated
function of the five elastic moduli that characterize a transversely isotropic medium.
For sh-waves, for example, the stacking velocity exactly equals the velocity of prop-
agation in the horizontal direction. For p-waves, depending on the ratios among the
four pertinent elastic moduli, the stacking velocity may approximate either the ver-
tical or horizontal velocity; it may be somewhere between the two; or it can actually
be larger or smaller than both.

In his theoretical analysis of properties of weakly anisotropic media, Thomsen
(1986) obtained an expression for small-offset stacking velocity for p-wave reflections
from a horizontal interface. There, he showed that both the size and magnitude of
the departure of stacking velocity from vertical velocity are governed by a measure of
anisotropy that is totally unrelated to the ratio of horizontal to vertical velocity—the
most commonly quoted measure of p-wave anisotropy.

In numerical studies of traveltimes of reflections from plane-dipping interfaces be-
neath homogeneous, transversely isotropic media, Levin (1990) found that moveout
remains approximately hyperbolic and that stacking velocity depends on the orien-
tation of the symmetry axis for the anisotropy, as well as on reflector dip. When the
symmetry axis is normal to the reflecting plane, he found that the stacking velocity
Vitack(¢) for reflector dip ¢ satisfies

Vstack(¢) ~ Vstack(O)/ COS¢° (1)

Thus, for such symmetry, stacking velocity can be “dip-corrected” with the same cos ¢
correction that is used for reflections from a dipping interface beneath a homogeneous,
1sotropic medium.

For all of the media he studied (see Table 1), Levin found more complicated be-
havior of stacking velocity with reflector dip when the axis of symmetry is vertical.
His shale-limestone medium exhibited the most extreme behavior. For that medium,
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cos ¢-corrected stacking velocity exceeded the stacking velocity for horizontal reflec-
tors by almost 40 percent at a dip of 60 degrees.

Medium \/ Clp \/ Alp \/ Flp \/ L/p | Va/Ve | Vitack)/Ve
m/s | m/s | m/s | m/s
Berea sandstone 4206 | 4210 | 1961 | 2664 | 1.001 1.02
Shale-limestone 3306 | 3721 | 2076 | 1819 | 1.126 1.00
Cotton Valley shale | 4721 | 5320 | 3095 | 2890 | 1.127 1.19
Pierre shale 2202 | 2235 | 1803 969 1.015 1.06

Table 1. Velocity-type quantities and velocity ratios related to the four elastic
moduli—A, C, L, and F, of White 51983)—that are pertinent to p-waves in trans-
versely isotropic media. The four media listed are the same as those studied by Levin

(1990). Here, p is bulk density, V4 = {/A/p is p-wave velocity in the horizontal di-
rection, Vo = 41/C/p is that in the vertical direction, V; = v/ L/p is s-wave velocity

in the vertical direction, anf Vr = /F/p is a velocity-like quantity that has no ready
intepretation.

Levin’s numerical results support analytically-based calculations of Byun (1984).
Byun’s insightful analysis addressed moveout of reflections from plane-dipping reflec-
tors in transversely isotropic media under the assumption of small source-to-receiver
offset. While Byun’s development allowed for multi-layered media, with homogeneous
layers bounded by plane interfaces of arbitrary dip, his numerical examples pertained
to just the case of a single homogeneous layer above a dipping reflector—the same
model used by Levin.

While one may debate the nature of anisotropy present in the Earth’s subsurface,
without question the Earth is not homogeneous. In this study, we mimick Levin’s 1990
studies of Vjy.(¢) in media with vertical axis of symmetry, extending his approach
to treat media that are vertically inhomogeneous as well as transversely isotropic. To
limit the endless possibilities for ways in which an anisotropic medium can be verti-
cally inhomogeneous, we follow Cerveny (1989) in considering just media for which
the ratios among the various elastic moduli are independent of position. Cerveny
calls such media factorized anisotropic inhomogeneous (FAI). Yet another restriction
placed on the media considered here is that velocity varies only linearly with depth.

Despite having lifted the restriction that media be homogeneous, the limitations
on the media that will be studied here are considerable. Justifications for these re-
strictions are varied. Primarily, as Shearer and Chapman (1988) show, the restriction
to FAI media with linear velocity variation with depth affords simplicity and efficiency
in the required traveltime computations. Beyond that, given the meager information
available about elastic moduli for the subsurface, consideration of only FAI media
with vertical variation seems a reasonable way to restrict the endless possibilities for
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inhomogeneous behavior. The choice of vertical axis of symmetry is based on Levin’s
result that anisotropy exerts little influence on stacking velocity when the symmetry
axis is perpendicular to the reflector, but considerable influence when the symmetry
axis is vertical. Vertical axis of symmetry seems to be an end-case of likely geologic
importance. In contrast, the restriction to media with constant velocity gradient
has less geologic justification. Constant-gradient media, at least, can model sizeable
velocity variation with depth.

As in Levin’s studies, iteration is required to do the ray tracing between speci-
fied source and receiver positions and to model Snell’s law reflection in anisotropic
media. Whereas raypaths are straight for homogeneous media, they are curved here.
However, for the transversely isotropic FAI media considered here, the two-point ray-
tracing, based on a method of Shearer and Chapman, requires no costly numerical
integration.

Our interest in stacking-velocity behavior stems from implications for quality of
CMP-stacked data and of data that are corrected for dip-moveout (DMO). Routinely,
DMO is based on the assumption that the subsurface medium is homogeneous, and,
increasingly, DMO is based on velocity v increasing with depth z—so-called v(z)
DMO. In neither case, however, is anisotropy taken into account. The primary pur-
pose of this study is to assess, at least for the models considered here, implications
of ignoring anisotropy in DMO when the subsurface is transversely isotropic.

SHEARER AND CHAPMAN RESULT

Consider just two-dimensional (2-D) propagation along the reflection raypath con-
necting specified source and receiver locations on the horizontal surface. As illustrated
in Figure 1, the planar reflector is at the base of a single layer in which velocity in-
creases linearly with depth (as suggested by the shading in the figure). In progressing
from (1) homogeneous, isotropic models, to (2) homogeneous, transversely isotropic
ones, and then to (3) our FAI models, ray tracing and thus traveltime computation be-
comes progressively more difficult. Traveltimes of reflections from a dipping interface
in homogeneous, isotropic media are obtained simply from the law of cosines. Levin
(1971) showed that the resulting moveout within CMP gathers is exactly hyperbolic,
with stacking velocity given by

Vstack(¢) - Vstack(o)/ cos ¢ (2)

As Levin (1990) shows, for anisotropic (but still homogeneous) media, an iterative
search is required to find the raypath from a source at the surface to the reflector and
back to a receiver at the surface. First, a straight ray is sent in a trial direction from
the source to the reflector. At the reflector, Snell’s law is used to give the direction of
the reflected ray. For anisotropic media, however, Snell’s law does not directly relate
the angles of incidence and reflection associated with the raypaths (i.e., the paths
along which energy travels). Instead, it relates the angles of incidence and reflection

4
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Midpoint - y (km) Midpoint - y (km)
0 2 0

Depth - z (km)
Depth - z (km)

FiG. 1. Raypaths for reflections, in a CMP gather, from a dipping interface beneath
a medium with linear 'vgz). The velocity function in the isotropic medium is identical
to the vertical velocity function in the transversely isotropic shale-limestone medium
listed in Table 1. Raypaths are circular for the isotropic medium, but not so for the
shale-limestone. Note the differences in locations of reflection points.

of plane waves—so-called phase angles. In general, the direction along which energy
travels differs from the travel direction for corresponding plane waves, but the two
directions are related to one another (Levin, 1990) and (Byun, 1984). These two
authors describe the procedure for calculating the direction of the ray at an interface:

e given the incident ray direction relative to the direction of the symmetry axis,
compute the related incident plane-wave direction;

e given that plane-wave direction and the orientation of the reflector, use Snell’s
law to compute the reflected plane-wave direction; and

e from that computed plane-wave direction, compute the related direction of the
reflected ray.

Levin points out that for anisotropic media, Snell’s law gives a transcendental equa-
tion which is solved iteratively. The transcendental character comes from the fact
that Snell’s law involves both the direction and the velocity of the reflected plane
wave, but that velocity is not known at the outset because it itself is a function of
the (as yet to be determined) direction of the reflected wave.

For homogeneous media, once the direction has been determined for the reflected
ray, the location where the ray intersects the horizontal surface is just the point
of intersection of two straight lines. Recalling that this raypath initially left the
source point in some trial direction, it is unlikely that the reflected ray that was
Just computed will intersect the surface at the desired receiver location. Following
conventional two-point ray tracing, different take-off directions are then tried until
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the correct intersection point is found. The secant-search procedure (Press et al.,
1986, p. 248) generally converges within two to four iterations. Since the medium is
homogeneous, traveltime along each straight leg of the raypath is just the quotient of
the distance along the leg and the ray velocity in the direction of the ray.

When the medium is inhomogeneous as well as anisotropic, the procedure is much
the same except that raypaths are now curved, so the ray tracing requires more
computation than does just the intersection of two straight lines. When a medium is
generally inhomogeneous, this ray tracing requires numerical integration. Therefore,
the integration step size and, thus, cost of the ray tracing increase with increase in
desired accuracy. We avert the bulk of the costly ray tracing with the assumption
that velocity varies linearly in space.

For an isotropic medium with linear velocity variation, raypaths are just circles
(Slotnick, 1959). Take-off ray directions, raypaths, and traveltimes are related an-
alytically, so two-point ray tracing involves little more effort than that for straight
raypaths. While raypaths and ray tracing are not so simple for anisotropic media,
in an elegant proof, Shearer and Chapman (1988) have shown that raypaths in FAI
media with linear velocity variation can be simply described and, hence, efficiently
computed. For our model of transverse isotropy with symmetry axis and velocity
gradient in the vertical direction, their result is as follows: raypaths in such media
are merely scaled, 90-degree rotated versions of phase slowness (i.e., reciprocal of
phase velocity) curves. Clearly, this property holds for isotropic media, for which
both phase slowness curves and raypaths are circles.

For homogeneous, transversely isotropic media, phase velocity as a function of
angle # from the axis of symmetry is given by (White, 1983)

20v%(0) = (A+L)sin?0+ (C + L)cos?6 %
{[(A = L)sin®8 + (C — L) cos® 0] +
4(L + F)?sin® § cos? 0]2}%, (3)
where A, C, F, and L are the four pertinent elastic moduli governing p- and sv-wave
behavior. In equation (3), the plus sign in front of the radical pertains to p-waves,
and the minus sign to sv-waves. We shall be interested in only p-waves here. Dividing

both sides of equation (3) by 2pv?(8) yields the slowness curve governing 2-D wave
propagation.

1 = 0.5{(a+)p}+(c+)p§ +
{l(a = )p} + (c = Dp3]” +
4(1+ f)’pip3?} ), (4)
where a = A/p, etc., are the density-normalized elastic moduli, and

. sinf
pl - 'U(O)
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. (—5 (5)

are the components of the phase slowness vector in the z; (horizontal) and z3 (vertical)
directions, respectively. p; is commonly called the ray parameter.

Now, consider an FAI medium in which all velocity quantities (e.g., Vo = 4/c) are
linear functions of depth z. That is,

) = Va(0)(1 +g2)
Ve(z) = Ve(0)(1+ g2)
) = Vr(0)(1+g2)
) = Vi(0)(1+g2), (6)
and, in general,
v(z,0) = vo(0) (1 + g2), (7)
where V¢(0) is the vertical velocity at the surface, etc.; g is the gradient factor, which

is common to all velocity quantities in an FAI medium; v(z,6) denotes the phase
velocity in the 6 direction at depth z; and vy(6) denotes that at the surface.

Following Shearer and Chapman (1988), let z30 = 1/g, and define a new, shifted
vertical coordinate
I3 = 2 + T39. (8)

Then, equation (7) becomes

v(z3,0) = vo(9) g3, (9)
and so on for the other velocity quantities.

Shearer and Chapman’s remarkable result is that, for an FAI medium in which
velocity varies as described here, a scaling and 90-degree rotation of the slowness
curve, equation (4), gives the following equation for a raypath characterized by the
ray parameter p; in ;1,3 coordinates

2
I;q (a4 D23+ (c+ D2 +
1
{l(a = D2 + (c = Dal]* +
4(1+ f)Pa3al]?)2 ). (10)

In equation (10), the four elastic moduli are the values at the surface z = 0.

Given a ray parameter p;, to trace a ray trajectory we compute z; at different
depths z (or, equivalently, different vertical coordinates z3). Squaring equation (10)
gives a quadratic equation for 22

oz + B(p1,23)21 +v(p1, 23) = 0, (11)

7
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where the coefficients «, (3, and « all depend on the elastic moduli at the surface.
Figure 2 depicts a raypath in the z;,z3 coordinates. One of the four roots z; for a
given x3 is pointed out in the figure. Another is just at the arrow along the raypath
to the right of the z; axis. The other two roots give positions along a raypath for
Sv-waves.

N
5 P | raypath
% (X1,X3) /'// i
wavefront / ! turning point
' segment h\ |

Fi1c. 2. Raypath in a linear v(z), transversely isotropic FAI half-space, shown in

(z1,23) coordinates. The medium’s surface, z = 0, is equivalent to z3 = 1/g. Also,
z; = 0 at the turning point, i.e., ; = 0 is a line of symmetry.

For an isotropic medium with the same linear v(z) behavior, the moduli satisfy
a = c = f+2l, and equation (11) reduces to the familiar equation of a circle (Slotnick,

1986
) 1 )2 1 )\?
2 2_ - — —
S (gsineo) (gvopl) ! 12)

where Vj is now independent of 6.

From equation (10), full description of the transversely isotropic FAI medium
requires just V(2) and the three ratios a/c, f/c, and l/c. For the studies below, we
write the linear Vz(2) behavior slightly differently than in equation (6), as follows:

Ve(z) = Vo + kz, (13)

where, clearly k = gVp, and, for shorthand, V; is the vertical velocity at the surface
z2=0.

TRAVELTIME COMPUTATION

While it is of interest to see the curved raypaths that result from the ray-tracing
(e.g., those in Figure 1), our true interest is in computation of traveltimes between

8
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specified point on the raypaths. Here, we follow Cerveny (1989), who gives a com-
prehensive discussion of general FAI media along with a particularly lucid summary
of the Shearer and Chapman result. Cerveny shows that the vertical component of
slowness p3 behaves as follows

pa(u) = p3(uo) — g(u — uo), (14)

where u is a variable along the ray related to traveltime, and wg is the value of that
variable at the starting point of the raypath. He also shows that the traveltime along
the raypath requires the numerical integration

73(u) = 73(up) + /u: gz3(u)du. (15)

The 90-degree rotation of the slowness curve to obtain the raypath was based on the
observation that in the z;, z3 coordinate system, the components of slowness along a
raypath must satisfy

p1ry + pgrz = 0. (16)

That is, the position vector x and the slowness vector p are orthogonal everywhere
along a raypath. This is obviously the case for the circular raypaths in an isotropic
medium. For an anisotropic medium, however, recall that the ray and phase directions
differ, so that raypaths are not generally normal to wavefronts (see Figure 2), whereas
phase directions are.

Eliminating p; from equations (14) and (16) and setting the arbitrary value uy to

zero gives
z3 [u
I = : (E —Pso) . (17)

Substituting this expression for z; in equation (11) gives another quadratic equation,
this one giving z2(u), which provides the integrand for equation (15).

Thus, although numerical integration is required to compute traveltime, that in-
tegration is straightforward. We use the efficient scheme of Press et al. (1986, p. 110)
for integration by the extended trapezoidal rule.

TWO-POINT RAY TRACING FOR REFLECTION RAYPATHS

In ray-trace modeling, we generally wish to compute the path and traveltime be-
tween specified source and receiver positions in some z, z coordinate system. There-
fore, to use the method described above, it is necessary to relate the z,,z3 and =z, z
coordinates to one another. Equation (8) gives the simple translation required for the
vertical coordinates. We can express the required translation for the lateral coordi-
nate transformation as x; = ¥ — ., where z, is the x coordinate of the origin in z;.
To get at x., consider a ray from some point x,, z, to its intersection with depth z,.
The raypath is characterized by a fixed ray parameter p;, and that fixed value also
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fixes the location of z.. With p; given, we solve equation (11) twice, once with depth
T3 = T3, and again with 3 = x3,. The z coordinate z, of the raypath at depth 2, is
then given by

Ts + (21, — T15) = 2, + (2, — 2.) — (25 — T.) = 7, (18)

We can now address two-point ray tracing along a reflection path, such as in
Figure 1, between a specified source and receiver location. For all but the simplest
models, in two-point ray tracing one does not know at the outset the value of ray
parameter that describes the path connecting the two points. Therefore, starting
with an educated guess for the value of the ray parameter, some systematic search
procedure is required to arrive at the correct value. Such is also the case here.

In principle, we would first solve the appropriate equations that give the inter-
section of a downward ray from the source (specified by a trial ray parameter, or
equivalently, trial starting direction) with the dipping reflector. For the linear v(z),
transversely isotropic FAI medium considered here, computation of that intersection
point would require determination of the correct root of a quartic equation for 3.
Rather than working with quartic equations, we follow the two-phase search procedure
illustrated in Figure 3.

Instead of solving directly for the location of a trial reflection point R, along the
dipping reflector (Figure 3a), we first specify a trial depth z, for the reflection-point
position and a trial ray parameter. The point z; at which the trial raypath arrives
at depth 2, is the solution of quadratic equation (11). We next do a secant search to
find the ray parameter that yields z; & R;, the point along the reflector at the trial
depth z,.

At the trial reflection point (Figure 3b), we exercise Snell’s law to get the starting
direction for the upward portion of the raypath. For anisotropic media, Snell’s law
involves a relationship between the phase angles and phase velocities, which them-
selves are functions of the phase angles. The incident phase angle at the interface is
readily obtained from equation (16) (see, also, Figure 2).

PL_ %

—— =tan, 19
p3 I (19)

where, again, 6 is phase angle with respect to vertical. Given this angle and the
reflector dip ¢, we follow the iterative solution of the transcendental Snell’s law equa-
tion described by Levin (1990) to find the reflection ray angle. Once that angle is
determined, we then use equation (19) to get the ray parameter for the upward path.

Again, we solve quadratic equation (11), this time to get the location e of the
intersection of the upward path with the surface z = 0. Since this point, in general
will miss the desired receiver location, we do a second stage of secant search by varying
the trial depth z, of the reflection point (Figure 3c), and thus we continue to vary z,
and p; until e = g.

10
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S
z=0 ‘ 7 2=0

Cc

F1G. 3. Steps in the two-point ray tracing to obtain the raypath from a source to
a dipping reflector and back up to a receiver. (a) Solve a quadratic equation for the
lateral coordinate x; at which the downward ray with trial ray parameter p, intersects
trial depth z;,. Then do a secant search to find the ray parameter for the raypath to
the trial reflection point R, at depth 2, along the reflector. (b) Apply Snell’s law (for

transverse isotropy) to find the ray parameter for the reflected portion of the raypath.
This path intersects the surface at e, which differs from the desired receiver location
g. (c) Do another secant search to find the depth of the reflection point and the ray
parameter for the downward portion of the reflection raypath to the receiver.

MOVEOUT BEHAVIOR

In his studies with the four homogeneous media listed in Table 1, Levin (1990)
found that for spreadlength X,,,, comparable to the distance from the CMP to the
dipping interface, moveout was approximately hyperbolic for even the most aniso-
tropic of the four media—the shale-limestone. While we expect the hyperbolic ap-
proximation to hold for small angles even when the medium is both anisotropic and
inhomogeneous, it is of interest to know if that approximation can also hold for rou-
tinely used spreadlengths (i.e., spreadlength comparable to distance from CMP to
reflection point).

Figure 4 is a plot of T? versus X?, where T(X) is reflection time at offset X,
for the shale-limestone with different choices of velocity gradient k [equation (13)].
For all cases, the root-mean-square (rms) vertical velocity down to z = 3000 m is
3306 m/s, the value for Vi used by Levin, and the spreadlength equals 3000 m, the

11
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distance from the CMP to the reflector. While velocities in the Earth’s subsurface are
not linear, this range of values for k spans the spectrum from homogeneous to highly
variable with depth. We consider k£ = 1.2 s™! to be quite large, and k = 0.6 s™! to be
fairly representative.

Offset? (km?)

F1G. 4. T? — X2 curves for reflections from a dipping reflector (dip = 40 degrees) be-
neath various media with the transversely isotropic properties of the shale-limestone.
The four media, all of which have the same rms velocity between the surface and
depth = 3000 m, differ only in the velocity gradient k.

All curves in Figure 4 are approximately linear, indicating that the hyperbolic
assumption continues to be valid for our linear v(z), transversely isotropic models.
We shall consider this assumption more closely below.

The initial purpose of this study was to extend Levin’s numerical studies of stack-
ing velocity to media that are inhomogeneous, as well as transversely isotropic. Fig-
ure 5 is an independent reproduction of the dip-corrected stacking velocities in Figure
3 of Levin (1990). Stacking velocity was computed from a least-squares linear fit to
the 7% — X? moveout data over a spreadlength of 3000 m; then the velocities were
“dip-corrected” by multiplication with cos ¢ in accordance with equation (2). For a
homogeneous, isotropic medium, this dip correction should bring stacking velocity for
all dips to the value for zero dip. This is just what DMO would accomplish when
applied to data from such a model. Byun (1984) did this same correction, calling the
corrected stacking velocity diffractor velocity.

From the variation of the dip-corrected curves with dip in Figure 5, we would infer
that the shale-limestone is the “most anisotropic” of the four media tested, with the
Cotton Valley shale a distant second, followed by the Pierre shale and Berea sand-
stone. Also, as observed by Levin, the variations exhibit no simple or predictable

12
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F1G. 5. Cosine-of-dip corrected stacking velocity as a function of reflector dip for the
four homogeneous, transversely isotropic media in Table 1. These results duplicate
those of Levin (1990). The distance from the CMP to the reflector is 3000 m in all

cases.

behavior with dip. The difference in behavior of the curves for the shale-limestone
and the Cotton Valley shale is particularly noteworthy since the ratios of horizon-
tal to vertical velocity of these two media are almost identical (see Table 1). This
failure of the ratio V,;/V¢ as a predictor of much anisotropic behavior was explained
by Thomsen (1986), who showed that the ratio of normal-moveout velocity to rms
velocity had no relationship whatsoever to V4 /V. The values computed for Ve / Ve
tabulated in Table 1 quantitatively match Thomsen’s predictions.

Now, consider inhomogeneous media of the type treated in this paper. Figure 6
shows dip-corrected stacking velocity as a function of reflector dip for several variants
of the same four media treated by Levin. Superimposed in this figure are curves
for media with velocity gradients k¥ = 0 (Levin’s homogeneous media), and k =
0.2,0.6, and 1.2 s7!. The results show a remarkable insensitivity to the degree of
inhomogeneity. The only noticeable tendency is for an increase in velocity gradient
to reduce the dip-dependence of the dip-corrected velocities for the shale-limestone.
Thus, the inhomogeneity has a benign influence on the curves, mitigating somewhat
the stacking-velocity variations introduced by the anisotropy. This general tendency
of v(z) to reduce the influence of anisotropy was observed in a concurrent study of
migration-velocity error as a function of reflector dip (Larner and Cohen, 1992).

Two points of clarification about the curves in Figure 6 are necessary. First, let
us be more specific about our meaning in stating that curves with different values of
velocity gradient k pertain to “variants” of one of Levin’s media. We mean two things:

13
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F1G. 6. Dip-corrected stacking velocity as a function of reflector dip for inhomoge-
neous variants of the same four transversely isotropic media shown in Figure 5. The
velocity gradients for the solid gray, dashed gray, solid black, and dashed black curves

are, respectively, k = 0.0,0.2,0.6, and 1.2 s~ 1.

for a given medium, say shale-limestone, independent of k£ the ratios among all the
elastic moduli at a given depth are the same as those obtained from the moduli for
shale-limestone listed in Table 1. Second, the vertical velocity at the surface differs
for media with different gradients in such a way that the rms velocity down to the
reflector depth is the same for all variants and is equal to the value of V listed in
Table 1. Any other choice would have resulted in a large separation of the curves for
the different gradients in Figure 6.

The similarity of the curves in that figure thus supports a working hypothesis that
has been of much value in analysis and processing of isotropic data: the traveltime
behavior for v(z) media can be largely predicted through modeling with a homoge-
neous model having velocities comparable to the rms velocities in the inhomogeneous
medium. Examples of this are the so-called straight-ray assumption and the adequacy
of applying Kirchhoff migration with use of rms velocities to image data where reflec-
tors are not too steep. Thus, we can use simple homogeneous models, such as those
in Levin’s studies, for study of some anisotropic phenomena where the true medium
velocity actually varies with depth.

The second point of clarification relates to the nature of the dip correction. For
homogeneous media, the dip correction to apply to stacking velocity is just the cosine
of the reflector dip. For v(z) media, however, the dip correction is more complicated
and differs substantially from cos ¢, but still ignores anisotropy, just as does the cos ¢
correction for homogeneous media. Therefore, we seek an analytic expression for the
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small-offset or normal-moveout (NMO) velocity V,,,,, associated with reflections from
a dipping interface beneath a linear v(z) medium.

Shah (1973) and Hubral and Krey (1980) have shown the direct relationship that
in general exists between NMO velocity abd wavefront curvature near where the
normal-incident ray intersects the surface. For small offset, NMO velocity is given

approximately by
o _ 1dX

nmo — 'I_’od_p’
where Tj is the normal-incidence reflection time, X is source-to-receiver offset, and
p is the ray parameter, which we have previously called p;. For v(z) media, X(p) is

given by
x@y= [T~ (21)

V31— 21)2(0

where z, is the depth at the normal-incidence reflection point. Differentiating gives

dX (= v(0o)
= h TP 22

(20)

Also, Ty satisfies
do

To(p) = / v . 23

(o) 0 v(a)\/l — p*v?(0) (23)
Evaluation of these integrals for v(z) = vy + kz gives
v3(cos fy — cos

V208 = tlcoslh —c05 ) (24)

v(2;) 1 +cosby |’
vo 1+cos¢

sin 6y cos B cos ¢ log [

Here, we have used the fact that for the zero-offset path, 6(2) = ¢. For reflections from
a horizontal reflector (i.e., the normal-incidence path is vertical), similar evaluation
of the appropriate integrals gives

Vin(0) = l e l (29)

The dip-correction factor h(¢) applied to the stacking velocities in Figure 6 and in
subsequent figures is then
Vamo(0)

Vimal®)” (26)

h(¢) =

IMPLICATIONS FOR DIP-MOVEOUT

Figure 7 suggests the importance of applying the dip correction h(¢) and the
large difference between it and cos ¢. In Figure 7a are shown three curves of stacking
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velocity versus dip for the shale-limestone with the “representative” velocity gradient,
k = 0.6 s~1. The gray curve has had no correction for dip; it is directly the velocity
that gives the best fit to moveout over a spreadlength. The black curve has the h(¢)
correction, and the dotted curve has a correction that is close to, but not quite, cos ¢.
The correction used in the dotted curve (same as the black curve for shale-limestone
in Figure 6) is cos qS, where q3 is the apparent dip as perceived by a constant-velocity
DMO process. It is given by )

sin ¢ = pVitack(0)- (27)

That is, the apparent dip is the value that one would compute under the simplistic
assumption that the subsuface is homogeneous with velocity equal to the observed
stacking velocity for horizontal reflectors. Constant-velocity DMO makes this same
simplistic assumption.

6000 0.15
£ R
; no DMO correctigin ) :‘E 0.104- no 'DMO'GOI‘I’QO“OE\ ...................
$ 4000- | ' B 008 vz.DMO
>
g’ g --: R
k-] : [ [V R A et IS Tteg
8 const-v DMO
* a ? b

2000 7 T -0.05 T T

0 20 40 60 0 20 40 60
Dip (deg) Dip (deg)

Fic. 7. (a) Stacking velocity as a function of reflector dip for the shale-limestone
medium with velocity gradient ¥ = 0.6 s~!—uncorrected for dip (gray), after
DMO correction with a v(z) DMO process (black), and after DMO correction with

a_constant-velocity DMO process (dotted). (b) Residual moveout At at offset
X = 3000 m as a function of reflector dip for the same shale-limestone data un-
corrected (gray), DMO corrected with v(z) DMO (black), and DMO corrected with

constant-velocity DMO (dotted).

Clearly, from Figure 7a, either of the dip corrections brings the corrected stacking
velocity closer to the desired zero-dip velocity than does no correction. It appears, in
fact, that for the shale-limestone, the most anisotropic of the four media studied, the
constant-velocity DMO actually would perform better than a v(z) DMO (recall that
both ignore anisotropy; as a result neither properly corrects the stacking velocities).

Beyond the qualitative observations on relative behavior of the velocity curves, we
should be concerned with just how important are these differences in stacking veloc-
ity. Errors in stacking velocity leave primary reflections misaligned across individual
CMP gathers and hence cause those primaries—particularly the higher-frequency
components— to be attenuated when the data are stacked. Therefore, ultimately it
is this misalignment that should be of most concern.
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Let us postulate that, as is routinely done in practice, data receive an NMO
correction, with or without DMO, that is based on the observed stacking velocity for
horizontal reflections. Then, since the moveout of reflections from dipping reflectors
differs from this NMO, reflections will be misaligned prior to CMP stacking. With
the stacking velocities measured in our study, we can quantify the resulting timing
misalignment. Our measure of misalignment, which we shall time error or residual
moveout, is the difference in time that would arise on the far-offset trace. In these

tests, the largest offset is 3000 m, comparable to the distance to the reflector from
the CMP.

Plotted in Figure 7b are the time errors that arise when the data are simply
NMO corrected (no dip correction) and when they are DMO corrected with either a
constant-velocity DMO or a v(z) DMO. Timing errors are reduced substantially when
either of the (isotropic) DMO algorithms is used, but neither of the DMO approaches
reduces the error as much as would be desired. Also, note that although the medium
is inhomogeneous, the constant-velocity DMO correction yields the better result of
the two. As we shall see, this is a fortuitous result peculiar to the shale-limestone
medium.

The dependence of these moveout errors on velocity gradient for the shale-limestone
is exhibited in Figure 8. The curves for k = 0.6 s~! are identical to those in Fig-
ure 7b. In addition, Figure 8 shows curves for a larger gradient, k = 1.2 s71, and
for a homogeneous medium. For the homogeneous medium, k = 0, constant-velocity
DMO and v(z) are identical; both involve just the cos¢ correction. Note that the
larger the velocity gradient, the less serious is the residual moveout when the data are
just NMO-corrected. Also, while the errors that arise when constant-velocity DMO
is applied vary considerably with velocity gradient, those that arise when v(z) DMO
correction is done are less sensitive to the gradient.

The curves in the bottom right portion of the figure pertain to an isotropic medium
with velocity gradient of £k = 0.6 s~!. Since ignoring isotropy in DMO is no issue
for these data, the residual moveout goes to nearly zero when the correct v(z) DMO
is applied. If, instead, constant-velocity DMO is applied, the data become over-
corrected for the errors that arise when NMO alone is performed. All of the linear v(z)
models studied exhibit this known tendency for the constant-velocity DMO to over-
correct data from isotropic models. Also, in all cases the error after over-correction
is smaller than the error when no DMO is applied.

Similar curves of residual moveout error for the four media—shale-limestone, Cot-
ton Valley shale, Berea sandstone, and Pierre shale—are compared in Figure 9. Here,
we see that, in terms of expected DMO performance, the shale-limestone on which
we have focused most of our attention is the most anomalous, indeed the most aniso-
tropic, of the four media. v(z) DMO corrects the timing misalignment for the other
three media almost as well as if they were isotropic.

Based on residual moveout after v(z) DMO in Figure 9, the anisotropy of the Pierre
shale appears to be a distant second to that of the shale-limestone, with the Cotton
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F1G. 8. Residual moveout At at offset X = 3000 m as a function of reflector dip for
variants of the shale-limestone—data uncorrected for dip (gray), DMO corrected with

v(z) DMO (black), and DMO corrected with constant-velocity DMO (dotted). In (a),
(b), and (c), the medium is transversely isotropic with velocity gradient k& = 1.2,0.6,

and 0.0 s™!, respectively. In (d) the gradient is again k = 0.6 s™!, but here the
medium is isotropic. Note that data from the isotropic medium are well corrected
with a v(2) DMO correction. Also, in (6), since the medium is homogeneous, the v(2)
DMO is identical to constant-velcoity DMO.

Valley shale and Berea appearing to be only weakly anisotropic. This ranking of
the relative “degree of anisotropy” among the four media differs somewhat from that
estimated on the basis of the curves in Figures 5 and 6, where the Cotton Valley shale
showed larger variation in stacking velocity with dip than did the Pierre shale. The
variability of the stacking velocities, however, is misleading. Since the Cotton Valley
shale is a much higher-velocity medium than is the Pierre shale, a given moveout
error would give rise to a larger variation in velocity for the Cotton Valley than for
the Pierre. For this reason, the behavior of residual timing errors likely is the more
appropriate measure of the relative importance of anisotropy in DMO correction.
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F1G. 9. Residual moveout At at offset X = 3000 m as a function of reflector dip for
four media—data uncorrected for dip (gray), DMO corrected with v(z) DMO (black),
and DMO corrected with constant-velocity DMO (dotted). The vertical velocity

gradiant is k = 0.6 s ~! in all cases. Note that v(z) DMO with anisotropy ignored
1s adequate for both the weakly anisotropic Berea sandstone and the considerably
anisotropic Cotton Valley shale.

NORMAL-MOVEOUT VELOCITY VERSUS STACKING VELOCITY

As seen in Figure 4, data from our transversely isotropic, FAI linear v(z) models
all have moveout that is well approximated by hyperbolas for spreadlengths typically
used in practice. This suggests that an efficient alternative to hyperbolic fitting of
traveltimes to obtain the stacking velocity Vit would be evaluation of an analytic
expression for the small-offset moveout velocity, which we earlier called V,,,, [see
equation (24)]. The relative simplicity of the ray-tracing equations for linear v(z),
isotropic media allowed us to derive the analytic expression in that equation.

For our transversely isotropic FAI media, also with linear v(z), it happens that
we can obtain such an analytic expression for V,,,,, once we have done the ray tracing
for the zero-offset raypath. Whether or not a medium is isotropic, V,m, can always
be written as in equation (20). The ray tracing for the zero-offset raypath provides
the measured normal-incidence traveltime T, so we require an expression for the
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derivative dX/dp. Equation (11) gives an expression in z; as a function of p, which
we called p; there. Differentiating that equation with respect to p gives
2df | d
d:l,‘l xlaé + EZ'

dp ~  2x,(2az2 + B)

(28)
All the quantities on the right-hand side in equation (28) are known from the ray
tracing along the normal-incidence ray. The desired derivative dX/dp is given by

dX _ dzy  dzy,
dp ~ dp dp’

(29)

where x)9 is the value of z; at the surface of the medium, and z;, is the value of z;
at the reflector. Equation (29) gives the change in the lateral coordinate z19 at the
surface relative to the fixed reflector point at normal-incidence reflection. Of course,
when sources and receivers change within a CMP gather, the reflection point moves
as well. Holding the reflection point fixed in this computation is justified on the basis
of Fermat’s principle, which implies that the traveltime will differ little with small
difference in reflection point.

Figure 10 compares Vj;qck, based on the hyperbolic fit over a spreadlength, with
Vamo, computed from equations (29), (28), and (20). The curves show stacking veloc-
ity, uncorrected for dip, for the four media with gradient ¥ = 1.2 s~!. The match is
excellent for the three media other than the shale-limestone. While the match is good
for the shale-limestone, perceptible differences between the two types of velocity sug-
gest that the hyperbolic assumption is violated to some extent for some dips. These
differences are an indication that the 72 — X2 curves are not as quite as straight for
the shale-limestone medium as are those for the other media.

CONCLUSION

The behavior of dip-corrected stacking velocity with reflector dip computed by
Levin holds with remarkably little change when vertical inhomogeneity is incorporated
into the model of transverse isotropy, as long as the dip-correction is appropriate to
v(2) media. Without the dip correction, the larger the velocity gradient the smaller
is the residual moveout that exists in NMO-corrected data. For the media considered
here, stacking-velocity dependence on reflector dip can be adequately investigated
with homogeneous models having velocities that equal counterpart rms velocities of
the inhomogeneous media.

Only one of the four media studied—the shale-limestone— exhibits dramatic in-
fluence of anisotropy on stacking-velocity behavior. This, despite the fact that, in
other respects, two of the other media—Cotton Valley shale and Pierre shale—are
considered to be equally or more anisotropic than the shale-limestone. For example,
the ratio of horizontal to vertical velocity in the Cotton Valley shale is almost identi-
cal to that of the shale-limestone. Moreover, the NMO velocity of the Cotton Valley
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Fig. 10. Comparison of stacking velocity (solid) and normal-moveout velocity

(dashed)—both uncorrected for dip—as a function of reflector dip, for the four media
under study. Stacking velocity was computed by least-squares fitting of a straight
line to T? — X2 over an offset distance of X = 3000 m, while the normal-moveout
velocity is based on small-offset wavefront curvature. The largest departures are for
the shale-limestone, indicating that the hyperbolic approximation for moveout for
that medium is not valid for such as large offset X. Here, k =1.2 s ~1.

shale exceeds the vertical rms velocity by 20 percent, whereas the two quantities are
almost identical in the shale-limestone. Pending similar study of other models, we
conclude from the computations here that transverse isotropy will seldom be an issue
of practical importance in DMO processing.

As with other seismic phenomena, stacking velocity behavior in transversely iso-
tropic media differs from that expected for isotropic media in ways that are not readily
predictable from one medium to another. Those variations depend on the ratios of
the four pertinent elastic moduli—quantities that are neither often nor well deter-
mined in rock units, on either a small or large scale. With the derived expression
for NMO velocity as a function of reflector dip in a linear v(z), transversely isotropic
FAI medium, one could do a proper dip correction of stacking velocity, if the elastic
moduli and its depth dependence were known. Perhaps, this expression for the dip
correction will also give clues as to how DMO could be modified to accommodate
both v(2) and anisotropy. In practice, however, our information on the elastic moduli
and their variation within the subsurface is meager. Moreover, it is unlikely that the
subsurface would rather consistently have the properties of, say, the shale-limestone
from surface to dipping reflector. These considerations provide little motivation to
develop a DMO process for transversely isotropic media.
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ABSTRACT

Suppressing noise and enhancing useful seismic signal by filtering is one of the
important tasks of seismic data processing. Conventional filtering methods are
implemented through either the convolution operation or various mathematical
transforms. In this paper, we describe a methodology for studying and imple-
menting filters, which, unlike those conventional filtering methods, is based on
solving differential equations in the time and space domain. We call this kind of
filtering differential equation-based filtering (DEBF). DEBF does not require that
seismic data be stationary, so filtering parameters can vary with every time and
space point. Also, in 2-D and 3-D, DEBF has higher computational efficiency
than do conventional multiple-trace filtering methods.

Examples with synthetic and field seismic data show the DEBF methods pre-
sented here to be efficient and effective.

INTRODUCTION

Filtering in one form or another is universal in seismic data processing. Geo-
physicists use it to suppress harmful noise and enhance useful seismic signal, thereby
improving the signal-to-noise ratio of seismic data.

Many different 1-D and 2-D filtering methods have been used in seismic data
processing, in both the time and the frequency domains. Conventional 2-D moveout
filtering methods for suppressing coherent, dipping events, for example, include time-
space domain convolution filtering (Treitel et al., 1967) and frequency-wavenumber
(f-k) domain filtering (Wiggins, 1966). Although these methods have been applied
successfully in seismic data processing, some issues remain outstanding.

e Most commonly used filtering methods have directly or indirectly, explicitly or
implicitly, a common basic theoretical assumption: the statistical characteristics
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of seismic data do not vary with time and space. Seismic data, however, can be
quite non-stationary. The amplitudes of seismic traces gradually attenuate, and
the dominant frequency of seismic traces gradually reduces with time; spatial
variations of underground media and underground structures must cause spatial
variations of the characteristics of seismic data; and within common-midpoint
(CMP) gathers, the characteristics of seismic traces also vary in both spatial and
temporal directions, among other things because of moveout and of differences
in incident angle at reflectors. As a result, the stationarity assumption of typical
filtering methods is incorrect.

e To deal with spatial and temporal variations in data, one typically divides the
data into several time- and space-windows, within which the characteristics of
the filters are kept constant. The final filtered result is a combination of the
results obtained from all the time- and space-windows. Thus, the parameters
of these filters do not vary arbitrarily with time and space.

The implementation of conventional 2-D time-space domain convolution filtering
methods is a process of multitrace convolution. To get well-controlled filtered results,
we generally have to use long time and space convolution operators. In such cases,
this filtering method generally has lower computational efficiency than does the f-k
method. Despite its relative speed, in addition to its problems with handling non-
stationary data, the f-k domain filtering has further shortcomings:

o It often produces some harmful artifacts, related to Gibb’s phenomena, spatial
aliasing, and side effects.

o It often requires a great deal of core computer memory.

o It has some requirements for the length of traces and the number of input traces
to avoid wraparound problems and to meet demands of its algorithm.

e It cannot deal well with seismic data whose spatial sampling intervals are vari-
able.

To overcome these shortcomings of conventional filtering methods, new filtering
methods, especially in 2-D, have been developed in recent years. These include tau-
p domain filtering (Noponen and Keeney, 1983), median filtering (Hardage, 1983),
depth filtering (McMechan and Sun, 1991), recursive dip filtering (Claerbout, 1985)
and adaptive filtering. Tau-p domain filtering can be time-variable, but it is difficult
for this method to deal with space variation. While the two parameters of median
filtering—length of running window and number of iterations—can be made to vary
with space and time, neither offers fine control for the desired suppression of noise.
Depth filtering is based on the idea of wavefield downward and upward continuation
to remove near-surface effects, such as the direct wave and ground roll. This method,
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however, is computational inefficient. Recursive dip filtering method is a form of
filtering that can deal with variations of filter parameters with time and space. How-
ever, because this method uses a recursive algorithm in the time direction, data must
be transposed from trace sequence to time sequence.

The adaptive filtering methods can be divided into two main classes. The first
(Anderson and McMechan, 1988) still requires that seismic signal or noise be station-
ary; the second class (Katz and Katz, 1990), which is suitable for variations of seismic
data with both time and space, is based on the joint use of several sets of linear basis
filters.

With the increasing emphasis on 3-D seismic exploration, a variety of 3-D seismic
data processing techniques, such as 3-D velocity analysis, 3-D dip-moveout (DMO)
and 3-D migration, have been developed. As far as we know, however, no truly
3-D filtering methods have been put into practice. Typically, in order to filter 3-D
seismic data, one uses existing 2-D filtering methods to filter 2-D sections, first in the
inline direction, and then in the crossline direction. When doing so, the 3-D seismic
data must be transposed from the inline direction to the crossline direction—a costly
step, especially for unstacked data. Other than with these two-pass approaches,
many practical difficulties arise in generalizing directly the various above-mentioned
methods to 3-D.

In this paper, we shall describe a methodology for studying and developing filtering
methods based on differential equations. The key steps of this methodology are: (1)
design the filters and set up the filtering equations in the frequency domain or in the
f-k domain, (2) transform these equations back into the time or time-space domains,
as variable-coefficient differential equations, and (3) use a finite-difference algorithm
to solve these equations. The approach we use here is similar to those used in some
migration methods. These differential-equation-based filtering (DEBF) methods do
not require that seismic data be stationary, so their filtering parameters can arbitrarily
vary at every temporal and spatial point. That is, the theoretical foundation of these
methods is based on non-stationary processes, and thus better fits typical physical
processes.

Although our main purpose in this paper is to develop 2-D and 3-D DEBF meth-
ods, for simplicity we shall start our discussion with the 1-D case.

1. ONE-DIMENSIONAL PROBLEM

1.1 Principle of 1-D DEBF

Similar to the forms of 1-D Butterworth filters, we define the transfer functions
of 1-D filters as follows.
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Low-frequency-pass filters:

e
Hy(z,y,w) = P (1)
High-frequency-pass filters:
2n
H = — 2
2(:1;,y,w) a+w2n’ ( )
and the relation,
Hi(z,y,w) + Hy(z,y,w) = 1, (3)

where z and y are the spatial coordinates; w denotes the angular frequency, w = 27 f;
f is the frequency; « is a filtering parameter determined by the cut-off frequency;
and n is a positive integer that determines the steepness of the boundary between
the filter’s pass and reject zones. The amplitude curves of Hy(z,y,w) are shown in
Figure 1, for n = 1,2,--.,10. From this figure we can see that the larger is n, the
steeper the boundary between pass and reject zones. Given relation (3), we need
discuss only the low-pass filter Hi(z,y,w). Furthermore, any band-pass filter can
be formed by cascading a high- and a low-pass filter. Note, in equation (1), that
Hy(z,y,wy) = 1/2 gives

Q= wN2" = (27('f1v)2n,

where fy is the cut-off frequency. Suppose we use the 1-D low-pass filter defined by
equation (1) to filter seismic data. In the frequency-space domain, we have

Q(:L‘,y,w) = HI(II:, y)w) ‘ P(xay)w)’

(a + w2n) : Q(x’ y’ w) =a- P(x, y’ w)’ (4)

where P(z,y,w) is the Fourier transform of the input seismic data p(z,y,t) with
respect to t, and Q(z,y,w) is the filtered output in the frequency-space domain.
Although we are discussing 1-D filtering here, the seismic data with which we usually
deal are generally 2-D or 3-D. That is why we use as arguments (z,y,w). Inverse
Fourier transformation of equation (4) into the time-space domain yields
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] a(e 1) = oz, 5,) - pla, ). (5)

0
[a(a:, Y, t) + (_1)" at2n
Here, the filtering parameter o in equation (4) has become the time- and space-
dependent coefficient of differential equation (5). Equation (5), with parameter
afz,y,t) varying as desired in space and time, is just the 1-D filtering differential
equation we want.

Actually, we can choose a large value of n when solving equation (5). But as we
will see, we can benefit conceptually and computationally from choosing n = 1. Then
we obtain

0(2,3,0) — 5] ale,9,1) = a2, 3,0) -l 1), ©

with
a(z,y,t) = 4r’ fr(z,y, ). (7)

We see that, through o(z,y,t), the user-specified cut-off frequency fy in general can
vary in both time and space. However, for our simplified 1-D argument in this section,
we shall use (t) as short-hand for (z,y,t).

1.2 Algorithm for 1-D DEBF

Having derived filtering differential equation (5) or (6) to filter seismic data, the
key problem lies in finding a stable and efficient method of solving these equations.
Mathematically, many algorithms are available to solve this kind of differential equa-
tion. Here we use the finite-difference method. Instead of using the ordinary middle-
difference pattern, we choose (Claerbout, 1985)

q(t) T

a2 A1 - fT) ™ ()

where At is the time sampling interval, and

B = 025—1/n2

I = [0,1,0],
T = [-1,2,-1], (9)
q,. = [Qn—la Qn,qn+1]Ta

n = Q(nAt)a n=112a3a”'aLa
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and where L denotes the maximum length, in sample points, of seismic traces to be
processed. Substituting equation (8) and (9) into equation (6), we find

T
[anI + M] cqn = apl - pa, (10)
n=123,---,L,
where
a, = a(nAt),
Pn = [pn—lypn,pn-i-l]T,
pn = p(nAt),
po = 0, pry1=0.
If let
b, = At?a, =4n2AL2f%
(11)
an = fN(nAt),
equation (10) can be written as
0.1+(1-6,8)T]-q, = 6,(I-0T): pa,
n = 1,2,3,.---,L.
We may express this equation in matrix terms as
A .q =B, (12)

where

B=Cp7
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(b, ¢ 0 O 0 0]
as b2 Co 0 0 0
A= 0 aj b3 c3 0 0 ,
|0 0 0 0 ap by
[es i 0 O 0 0]
dy ea fa 0 0 0
C = 0 d3 é3 f3 0 O ,
i 0 0 0 0o .- dL €r i

a = [g,ee - al,
P = [Pl,Pz,Ps,"',PL]T,
an = ¢ = 0,01,
by = 60 —2(6.8—1),
dn = fo = 6.0,

en = 0,(1-2p).

Equation (12) is a differential equation-based, implicit finite-difference implemen-
tation of 1-D filtering. It can be seen that equation (12) is a diagonally dominant
tridiagonal system of equations, so, we can use a well-known fast algorithm to solve
this special system (Clearbout, 1985). This algorithm ensures a solution of equa-
tion (12) that is stable and efficient. The tridiagonal nature of the equation is a
result of the choice n = 1. To get sharper cut-off action, we see in Figure 1 that
we would have to choose the larger value of n in equation (5). If we did so, how-
ever, the resulting system of equations would no longer be tridiagonal, but rather a
system of equations with progressively increasing number of nonzero diagonals as n
increases. As a result, we would lose the computational advantage of the tridiagonal
system. Fortunately, however, we would have some other efficient solutions, such as
the Cholesky decomposition method. The computational cost of this solution grows
only linearly with the size L. By solving equation (12) with the user-specified cut-off
frequency fy(z,y,t), differential equation-based 1-D filtering of seismic data can be
implemented trace-by-trace.
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1.3 Examples with synthetic data

To test the effectiveness of the 1-D filtering method presented in this section, we
shall study a synthetic data example. The wavelet we used to create synthetic seismic
sections is defined by

s(t) = ?6‘2000'2 sin(307t) cos(62.57t).

Frequencies of this wavelet are in the range of typical seismic signals.

Figure 2a is a synthetic seismic section consisting of two horizontal reflections
with low-frequency (1-10 Hz) “noise” superimposed. Figure 2b shows the amplitude
spectra of four traces from Figure 2a. The results of applying time- and space-variable
filtering of the data in Figure 2a are shown in Figure 3. The low cut-off frequency in
this test is governed by the following parameters,

at the second trace: t200f1,t40010 and £450 40,
and at the 19th trace: t200£40,¢400£10 and ¢450f1.

Here, for example, t200f1,t400f10 and t450 f40 means that before 200 ms, the low
cut-off frequency is 1 Hz; at 400 ms, 10 Hz; and after 450 ms, 40 Hz. The low cut-off
frequencies at all other points are obtained by linear interpolation. Laterally, these
cut-off frequencies are also interpolated linearly between traces along which values
are specified. Figure 3a is the filtered section, and Figure 3b is the so-called noise
section, the difference between Figure 2a and Figure 3a. Figure 3c shows the ampli-
tude spectra for the 1st, 5th, 10th and 15th traces of Figure 3a. The results in these
three figures are just what we expect.

2. TWO-DIMENSIONAL PROBLEM

2.1 Principle of 2-D DEBF

Having introduced the conception of DEBF with the 1-D case, we now discuss 2-D
DEBF. In the f-k domain, we define the transfer functions of 2-D moveout filters we
use as follows.

High-dip-pass filter:

«
Hi(ks,y,w) = ot ik (13)
Low-dip-pass filter:
w?/ik,
W)= ——575, 4
H2(k y w) a+w2/zkz (1 )
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and the relation,
Hl(ka:,y, w) + H2(ka:,yaw) = 1, (15)

where k; is the wavenumber in the z-direction, and « is a 2-D filtering parameter
determined by the user-specified cut-off “dip” or by a combination of the user-specified
dominant frequency and cut-off apparent velocity.

Actually, we might have defined other forms for the transfer function, such as
Hy(ks,y,w) = of(a + w?/k2). While such a choice would give a response that is
strictly a function of slope k,/w, we choose the above forms for simplicity of devel-
opment, computational efficiency, and stability. Given relation (15), we need only
discuss the high-dip-pass filter H;(k,,y,w). Its amplitude and phase spectra are,
respectively,

1

Hl(k:my’w | = [} (16)
| ) V1 +wt/a2k?
and
0, (k 1Y 17
1(kz,y,w) = tan (akx)- (17)

Letting |H;(k.,y,w)| = €, some chosen amplitude level, then from equation (16)

€ w?
Vs o (a8
where ¢ is a positive constant, less than 1. For different values of ¢, equation (18)
describes different parabolas that are symmetric with respect to both the w- and k,-
axis and pass through the origin. That is, the contours of amplitude spectrum of the
2-D filter H(k,,y,w) defined by equation (13) are symmetric parabolas. If, further,
we let € = 1//2, we get a special contour,

k., =+

ky = £—. (19)

(0%

This is the expression of the half-power contour of H;(k,,y,w). Now let us see the
relationship between H;(k,,y,w) and the response of an ideal dip filter. In Figure 4a,
covering only the range w > 0 and k, > 0, the straight line denotes the boundary
k. = w/Vy between the pass and reject zone of an ideal dip filter, while the parabola
is the boundary of the filter H;(k.,y,w) defined by equation (19). Here, Vy is the cut-
off apparent velocity. Therefore, when using the filter Hy(k.,y,w) as a dip filter, we
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are, in effect, replacing the straight-line boundary of the ideal filter with the parabolic
boundary. To get desired filtered results, we should make the parabolic boundary of
Hy(k.,y,w) as close to the straight line boundary of the ideal dip filter as possible
within the range of w and k, of interest. This can be done by minimizing the area
between the straight line and the parabolic boundary. Over the frequency range of
interest, for example, if the range is from 0 to f,.., we get an expression for the
filtering parameter «,

a=2"BrfyVy. (20)

Here, we take fv = fna:/2 as the user-specified dominant frequency. If we use
the concept of apparent velocity to characterize 2-D filters, Hy(k,,y,w) is a low-
apparent-velocity-pass filter. Figure 4b shows three contours, ¢ = 0.707,0.6 and 0.5,
of the amplitude spectrum |H;(k,,y,w)|, when « takes the form of equation (20), for
fv =35 Hz and Vy = 3000 m/s. We see that H,(k.,y,w) is an approximation of the
ideal dip filter, and the transition of its boundary from the pass to the reject zone is
smooth.

Using H,(k,y,w) defined by equation (13) and (20) to filter seismic data, the
filtering equation in the f-k domain can be expressed as

Q(kmy)w) = Hl(k:c, y,LU) ° P(kzay’w)’

or
(iak, + wz)Q(kx,y,w) = ok, P(k,,y,w), (21)

where P(k.,y,w) is the Fourier transformation of the input seismic data p(z,y,t)
with respect to z and ¢; Q(k,,y,w) is the filtered result in the f-k domain. Inverse
Fourier transformation of equation (21) into the time-space domain yields

o & 3 Op(z,y,1)
[a(x7 yat)a - @]Q(w’y,t) - a(x)y’t)——ax_'

If the seismic data with which we deal are only 2-D, we can use the short-hand (x, t)
instead of (x, y, t) for the arguments. Thus, the above equation becomes

2 T
a(z, )5 — o3la(z, 1) = afa, ) 200, (22)
with
o(z,t) = 2837 fy Vi (2, t). (23)

Here, g(z,t) is the filtered output in the time-space domain, and the filtering param-
eter a(z,t), determined by fy and Vy(z,t), is a function of both time and space,
1.e. it can vary arbitrarily in both temporal and spatial directions. Equation (22) is
just the variable-coefficient differential equation we want for 2-D high-dip-pass, or

10
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low-apparent-velocity-pass, filtering. To solve this partial differential equation, we
use the following conditions:

p(xa t)lz:—-A:c =n: p(ﬂ?, t)|z=0)
Q(wa t)l:c:—Aa: =n- Q(-'If,t)lz_:o, (24)

q(x’t)|t=0 = 0’ q(x’ t)|t=tmu: = 0’

where 7 is a constant, 0 < 7 < 1, Az is the trace spacing, and z = 0 is the location
of the first trace in the seismic data.

2.2 Algorithm for 2-D DEBF

Using the modified Crank-Nicholson difference pattern (Claerbout, 1985) to solve
the determined problem (22) and (24), we obtain the following difference equation

az(;”b)I[Qm(n) — qm-1(n)] + m[qm(n) + Qm-1(n))]
= az(;)llpm(n) = Pm-1(n)); (25)

n=1,2,3,...,L, m:O,]_,Q,...’M,

and the discrete expressions of the conditions for determining solution
P-1 = 7 DPo,
q-1 = 7-qo, (26)

qm(O) = 0, Qm(L + 1) = 0,

where At is the time sampling interval, L is the maximum length of seismic traces in
sample points, M is the maximum number of traces processed, and

I = [0,1,0],
T = [-1,2,-1],
an(n) = a(mAz,nAt),
g = 0.25-1/n%
) = gq(mAz,nAt),
Pm(n) = p(mAz,nAt),
) = [gm(n —1),qm(n), gu(n + D)7,

11
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Pm(n) = [?’M(n ~ 1), pm(n), pm(n + 1)]7‘,
An = [gn(1),qm(2),qm(3),. .. a‘Im(L)]T’
Pn = [Pm(1),Pm(2),Pm(3), - ., Pm(L)]T

Let
Om(n) = 2882 (n)/ Az = 27B3TAL fNVm(n). (27)

Then the difference equation (25) becomes
[fra(n)I + (1 = 0 (7)B)T] - gn(n) = [Bm(n)I = (1 + Om(n)B)T] - gru—1(n)
+0m (n)(I = AT)[pm(n) — Pm-1(n)], (28)

n=1,23-+,L, m=0,12---, M.

If we let
[ b1 a; 0 0 0 0
a9 b2 (15 0 0 0
A= 0 ag b3 as 0 0 ,
0 0 0 O ar bg
[(dy ¢, 0 O 0 0
Co dg Co 0 0 0
B = 0 C3 d3 C3 0 0 ,
0 0 0 0 Cr, dL
[ f1 (4] 0 0 0 0
e2 fo e O 0 0
C=|0 e fie - 0 0
00 00 er fr

ap, = om(n)ﬁ - ]-a
bn - 0m(n) + 2(1 - 0m(n)ﬂ),
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¢n = 14 6,(n)g,

dn = Om(n) - 2(1+ 6m(n)B),
en = Onm(n)B,

fo = Ou(n)(1—2B),

equation (28) can be expressed in matrix terms as

Aq,, = Bq,,_; + C(Pm — Pm-1),
(29)
m=0,1,2---,M.

This equation is an example of differential equation-based implementation of 2-D
filtering. As for the 1-D example, equation (29) is a diagonally dominant tridiagonal
system of equations, so it too can be solved by using a fast algorithm. Also, from
equation (28) and (29), to get the filtered result at a given point, only six adjacent
points on two adjacent traces are involved; thus to obtain one output trace, only two
input traces are used. So, on the one hand, computational operators of this kind
of filter are quite short in both temporal and spatial directions and computational
efficiency is high; on the other hand, through use of the implicit approach in the time
direction and the explicitly recursive approach in the space direction, we, in effect,
achieve an extended 2-D impulse response.

So far, we have been discussing 2-D high-dip-pass filtering. By relation (15),
instead of applying directly Ha(k,,y,w) defined by equation (14), we subtract the
filtered result of 2-D high-dip-pass filtering from the original input seismic data to
get the result of 2-D low-dip-pass filtering.

2.3 Examples with synthetic and field data

We demonstrate the action of the 2-D filtering method first on synthetic and
then on field seismic data. Figure 5a contains horizontal events and events with
moveout we shall call small, moderate, and large. Figure 5b shows a time- and space-
variable high-apparent-velocity-pass (or low-dip-pass) filtered result of Figure 5a. In
this section any given dipping event has been passed at some time and space points
and rejected at the others. In this example, the dominant frequency is 20 Hz, and
the cut-off apparent-velocity Vy(z,t) was governed by the following parameters,

at the first trace: t1500V'5500 and 3510V 50,
at the 250th trace: $1500V'5500 and $2510V'50,
and at 500th trace: t1500V5500 and t1510V50.

Here, for example, 1500V 5500 and ¢3510V'50 means that before 1510 ms, the cut-off

apparent-velocity is 5500 m/s and after 3510 ms, 50 m/s. The values of Vi at all
other points are obtained by linearly interpolation.

13




L: & Larner Differential Equation-Based Filtering

Figure 5c is a detail, corresponding to the box position in Figure 5a, of the high-
apparent-velocity-pass filtered results of Figure 5a obtained by using 2-D DEBF, and
Figure 5d is that obtained by f-k filtering. Our purpose is to reject the steep events
and to pass the horizontal events and those three events with small dips. The cut-off
boundary just coincides with the events with moderate dip. Comparing Figure 5c
with 5d, we see that f-k filter has a sharper cut-off boundary than does DEBF, but
has some artifacts on the side, while DEBF does not.

The second example is a demonstration of noise suppression on a field shot record.
Figure 6a shows the raw data, which are contaminated by large-moveout coherent
noise in the upper part, and Figure 6b shows the 2-D time- and space-variable DEBF
filtered result of Figure 6a showing suppression of the coherent noise. Here, fy =
30 Hz and Vy(z,t) was governed by the following parameters,

at the first trace: t700V2700 and 10003500,

at the 32nd trace: ¢t1500V3500,

at the 52nd trace: t800V2200 and ¢1500V/3500,

and at the 72nd trace: t1100V1700 and ¢t2000V 3500.

The final 2-D filter example is a common-offset field seismic section. The raw
section (Figure 7a), especially the right part of this section, has much steeply dipping
background noise. In Figure 7b, this noise has been reduced, and the signal-to-noise
ratio thereby has been improved.

Clearly, although we do not show it here, this kind of filtering method could also
be used to separate down-going and up-going waves in VSP data.

For a test data set consisted of 1024 traces, each containing 1024 samples, we
have compared the computational efficiency of the 2-D DEBF program written in
FORTRAN with that of an f-k filtering program in C on an IBM RS/6000 work-
station. Under the same conditions, the 2-D DEBF method took 1 minute and 20
seconds, while the f-k-domain filtering method in the SU system took 1 minute and
37 seconds. This test suggests that speeds of the 2-D DEBF and f-k methods are
comparable.

3. THREE-DIMENSIONAL PROBLEM

3.1 Principle and algorithm of 3-D DEBF

In the previous section, we defined the high-dip-pass filter and discussed its im-
plementation in detail. One way for us to define the transfer function of a 3-D
high-dip-pass filter is as follows,

Qg ay
o, + w?/ik, o, +w?/ik,

H(ky, ky,w) = = Hy(kz,w) - Hi(ky,w), (30)
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where both Hi(k.,w) and H(k,,w) are 2-D high-dip-pass filters, where H;(k,,w) is
used in the x-direction (say, the inline direction), while H;(k,,w) is used in the y-
direction (say, the crossline direction). Using H(k;, ky,w) to filter 3-D seismic data,
we obtain the filtering equation in the f-k domain

Q(kzy ky,w) = H(kz, ky,w) - P(ky, ky,w)

(31)
= Hy(ky,w) - Hi(ks,w) - P(kz, ky,w).
If we let
¢ 27
G(kz,ky,w) = H](kz,w) . P(kz,ky,UJ) = %.'.—uﬂ/zkz . P(kx, ky,CU), (32)
then equation (31) becomes
— : - Y% Gk
Q(kz, ky,w) = Hy(ky,w) G(kz, ky, w) a, +w2/iky G(kz, ky,w). (33)

Inverse Fourier transformation of equation (32) and (33) into the time-space domain
yields a system of 3-D high-dip-pass filtering differential equations,

o 0 _ Ip(z,y,t)
[am(IL‘, y’t)_a; - ﬁ]g(:pa Y, t) = aa:(x) y,t)Ta (34)

and
o & dg(z,y, t)

[ay(xa y’t)@ - ﬁ]q(x, Y, t) - ay(x, y’t)T, (35)
where p(z,y,t) is the original input; g(z,y,t) is the intermediate filtered result ob-
tained after equation (34) is used in the x-direction; and ¢(z,y,t) is the 3-D final
filtered result.

Because both equations (34) and (35) are 2-D variable-coefficient differential equa-
tions, we can solve them using the algorithm described in the 2-D case. However,
in practice, we wish to avoid the costly transposition of 3-D seismic data when im-
plementing the 3-D DEBF method so that the total computational efficiency can be
further raised. Fortunately, we can alternately and recursively solve equation (34) and
(35) between two adjacent traces in the x-direction and between two adjacent lines in
the y-direction. The scheme is shown in Figure 8. That is, we first get the intermedi-
ate result, g(x 4+ 1,y +1,t), using g(z,y+1,t),p(x,y+1,t) and p(x + 1,y +1,t), then
get the final result, ¢(z+1,y+1,t), using g(z+1,y,t), g(z+1, y,t) and g(z+1,y+1,t).
As a result, we need not transpose 3-D seismic data from the inline direction to the
crossline direction and then from the crossline direction to the inline direction for
subsequent processings. To our knowledge, no other existing filtering methods can
do 3-D filtering in this way.
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As before, implementation of 3-D low-dip-pass DEBF requires only subtraction of
the high-dip-pass filtered result from the input data.

3.2 Application to synthetic data

Figure 9 is a sketch map of a 3-D common-shot experiment with 20 lines and
121 receivers on each line. Figure 10a simulates the direct arrival, along with four
horizontal reflection events. Moveout of the direct arrival varies with both time and
azimuth. Figure 10b, the filtered result of the 3-D DEBF method with fy=35 Hz and
Vn=6000 m/s, shows that the dipping event has been strongly suppressed in both the
inline and the crossline directions, while the horizontal events have been preserved.

CONCLUSIONS

We have developed the method and shown examples of DEBF filtering in 1-D,
2-D, and 3-D. Unlike conventional filtering techniques, which use convolution opera-
tions or mathematical transforms, the method presented here directly solves variable-
coefficient differential equations, and, as a result, the filtering parameters can vary
at every time and space point. When we use a finite-difference algorithm to solve
these filtering differential equations, the filtering processes are transformed into the
solution of tridiagonal systems of equations, which have known, efficient solutions.
From the principles and algorithms of these filtering methods and the examples with
synthetic and field seismic data we have done, we conclude that the DEBF methods
have the following characteristics.

1. DEBEF filter parameters can arbitrarily vary with both time and space.

2. Because their operators are short, the computational efficiency of DEBF is quite
high. (Its speed for 2-D processing is comparable to that of f-k filtering, which
lacks flexibility for addressing non-stationarity.) Furthermore, because we use
an implicit solution in the time direction and a recursive approach in the space
direction, their impulse responses, in effect, are long.

3. Because these DEBF methods process seismic data trace-by-trace, they need not
do any transposition of seismic data. This further raises the total computational
efficiency, especially for 3-D filtering. Moreover, these methods therefore require
less inner computer memory.

4. DEBF methods do not have any specific requirements for the length and the
number of input traces.

5. Because these methods need relatively little core memory and are relatively
efficient, they are well suited for use not only on large computers, but also on
microcomputers and workstations.
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6. Although not shown here, they can be adapted to treat seismic data with non-
uniform space sampling intervals. While non-uniform sampling makes the com-
putation more complicated, it poses no fundamental limitation.

7. 2-D and 3-D dip filters cannot distinguish between events with positive dips
and those with negative dips.

8. For the simple filter examples considered here, the cut-off boundary of DEBF
is not as steep as that readily obtainable with f-k filtering.
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FIG. 2. (a) Synthetic data contaminated by 1-10 Hz low-frequency “noise”. (b) Am-
plitude spectra of four of the traces in (a).
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F1G. 3. (a) Time- and space-variable filtered result of Figure 2a. The low cut-off
frequencies are both time- and space-variable. (b) Time- and space-variable filtered
“noise” section. (c) Amplitude spectra of the time- and space-variable filtered section
(a) within a 400 ms time window centered on 200 ms.
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F1G. 4. (a) Area between the straight-line boundary of an ideal dip filter and the

parabolic boundary of the 2-D high-dip-pass DEBF filter. (b) Straight-line boundary
of an ideal dip filter and three contours of the amplitude spectrum |H;(k,,y,w)|.
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DEB low-dip-pass filtered section of (a) to compare with (d). (d) Detail of low-dip-
pass filtered section of (a) obtained by using f-k filtering.
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Fic. 6. (a) Field shot record with strong, dipping coherent noises in the upper

part. (b) Time- and space-variable filtered result of (a). All dipping noises have been
removed, improving the signal-to-noise ratio.
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F1G. 7. (a) Common-offset field seismic section with some dipping background noise.
(b) DEB filtered section of (a).
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F1G. 8. Sketch plan view showing lines of data used in an implementation of the 3-D
DEBF method.
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F1G. 9. Plan-view sketch map of a 3-D common-shot experiment.

25




Li & Larner Differential Equation-Based Filtering

(b)

F1G. 10. (a) Part of a synthetic seismic data set. The dipping event simulates the

direct wave in a 3-D case. (b) 3-D low-dip-pass filtered result of (a). The dipping
event has been strongly suppressed.
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Velocity Analysis by Residual Moveout

Zhenyue Liv and Norman Bleistein

ABSTRACT

Velocity analysis by normal moveout encounters problems in handling dipping
reflectors or lateral variation of velocity. Prestack migration provides a powerful
tool to do velocity analysis, which is based on the following principle: the imaged
depths at a common location are independent of source-receiver offset when the
correct velocity is used. Conventional approaches, such as depth focusing analysis,
generally involve iteration, which requires repeated prestack migration. In this
paper, a residual moveout method for velocity analysis on multi-offset data is
presented that needs only a single prestack migration. A number of theoretical
problems in this method are studied. When the velocity has a lateral anomaly,
we derive a formula to calculate the interval velocity from the stacking velocity by
perturbation theory. A suggested data processing technique based on our method
is composed of prestack migration with a constant velocity, velocity analysis,
residual moveout, stacking, velocity conversion, and poststack residual migration.

INTRODUCTION

Normal moveout, typically used to do velocity analysis in seismic data processing,
is robust when reflectors are flat and velocity is laterally invariant. However, this
method encounters difficulty when reflectors are dipping or velocity varies laterally.
Some geophysicists, therefore, have concentrated on doing velocity analysis by migra-
tion, such as the focusing analysis and common location imaging methods (Jeannot,
1986; Al-Yahya, 1989). When the background velocity is correct, the imaged depths
at a common location are independent of source-receiver offset. Otherwise, if an in-
correct background velocity is used, the imaged depths at a common location change
with offset. In this situation, a residual moveout is observed in common-location
images of migrated data. The principle of velocity analysis is to choose a background
velocity so that the common-location images are close to a horizontal alignment.
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Conventional methods use iteration to correct velocities. In each step of iteration,
prestack migration is required. Consequently, the total computation is so huge that
application of this method is limited.

It would be desirable to estimate velocity directly from the residual moveout. If
this is successful, only one prestack migration is required. To make this estimate, we
need a quantitative relationship between the residual moveout and the error in back-
ground velocity. Some geophysicists applied this idea to velocity analysis (Doherty,
1976; Deregowski, 1990). However, no general formula was derived.

In this paper, the residual moveout is used to do velocity analysis on multi-offset
migrated data. By means of the reflector equation, we derived a general formula for
the residual moveout. Theoretically, an arbitrary background velocity can be used to
do velocity analysis. However, we prefer using a constant background velocity so that
the residual moveout is an explicit function of the velocity error. Furthermore, we may
use Stolt migration for constant velocity; this is much faster than other algorithms.
Under the assumption of a small offset, we obtain an analytic expression for the
residual moveout that is an explicit function of background velocity, curvature of
unmigrated data, and slope of unmigrated data. Furthermore, this residual moveout
is independent of the dip of the reflectors when the true velocity is a constant. Parallel
to NMO velocity analysis, we can use a semblance and velocity scans to do RMO
velocity analysis. Therefore, the program for RMO velocity analysis is similar to the
existing program for NMO velocity analysis, except in the residual term.

After velocity analysis, we obtain the stacking velocity that is assumed to equal
RMS velocity for a laterally invariant medium. However, when velocity has an
anomaly, this assumption is invalid. Lynn and Claebout(1982) proposed a formula
that gives a relationship between the anomaly of the stacking velocity and the anomaly
of the interval velocity. But this formula requires a stratified medium. In this pa-
per, we derive a formula that is valid for arbitrary velocity. This formula computes
the anomaly of the interval velocity from the anomaly of the stacking velocity by an
integral equation.

We have two ways to do migration: residual prestack migration or residual post
stack migration. We prefer the latter because poststack migration runs much faster
than prestack migration. The residual moveout, stacking, and residual poststack
migration are recommended to obtain the final structural image.

REFLECTION EQUATION

Seismic signals consist of amplitude information and phase information. Under the
high frequency assumption, phase information is simplified to traveltime information.
Therefore, seismic signals can be described approximately by traveltime-offset curves.
A traveltime-offset curve in seismic record corresponds to a specific reflector in the
earth. Given a reflector, we can compute the traveltime-offset curve by modeling.
On the other hand, given a traveltime-offset curve, we also can compute the reflector
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position (subsurface) by migration. Now, we will show how the geometry of reflector
is determined by the geometry of the traveltime-offset curve.

We shall denote by X a 2-D vector, X = (z,z) . Let x, be source position and z,
be receiver position located on the horizontal datum surface L with y the midpoint
and h the half-offset:

-’L‘,=y—h, xr=y+h
For any point X below the surface, 7,(z,, X) and 7,(X, z,), respectively, denote trav-
eltimes from z, to X, and from X to z,.

Suppose we know the total reflection travetime T'(y, k) and a background velocity
¢(z,z). Then, for each half-offset h, the reflector is determined such that

Ta(za,X) + Tr(X’ .’L‘,-) = T(yvh)v (1)
or, 0r. 0T

where X = (z, z) is the point on the reflector. Equations (1) and (2) show: if we know
the traveltime-offset curve T(y, h) (therefore, 8T /dy) for some h, we can compute a
imaged depth 2 for a fixed location z. If ¢(z,z) equals the true velocity, then the
imaged depth z is independent of offset h; otherwise, for wrong background velocity,
z varies with offset h. Consequently, the imaged depth provides us information on
velocity.

Equations (1) and (2) are for the common offset case. Similarly, we have the
reflector equation

T,(IL‘,, X) + Tr(X’ xr) = T(y’ h)) (3)
or, 0T
oz, Oz,’ (4)
for the common shot case; the equation
T,(il:,, X) + T,.(X, .’B,-) = T(y) h)a (5)
or, OT
oz, Oz, (6)
for the common receiver case; the reflector equation
7s(Zs, X) + (X, 2,) = T(y, h), (7)
or, 9r, 0T
o " ok~ oh' ®)

for the common midpoint case. Among these cases, only common offset has a sym-
metric imaged-depth function, which allows for the possibility of approximating the
imaged-depth function by a hyperbola.
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Specifically, when the background velocity is the constant, ¢, then

Ts(X, IL‘_,) = ,03/0, Tr(X, .’17,.) = Pr/C,
where
Ps = \/(:v, — )2+ 22, pr = \/(x, — )2+ 22,
For this case, equations (1) and (2) are simplied to
ps + pr = cT(y,h), (9)
0p, Op, or
=c—. 10
"oy oy (10)

Next, we will study the quantitative properies of z(h) when c(z, z) differs from the
true velocity.

RESIDUAL MOVEOUT

When the background velocity ¢(z,z) differs from the true velocity, there is a
deviation between the imaged depths of different offsets; i.e., a residual moveout from
a horizontal alignment is observed. We expect that this residual moveout can be used
to measure the error of the velocity and be independent of the dip of a reflector.

Constant Velocity and Horizontal Reflector

Suppose that the true velocity and background velocity are constants and the
reflector is horizontal. In this special situation,

T?(y, h) = T?(y,0) + 4h?/v?,

c
pe=pr = (2% +h?) = ST(y,h),

so that
2 2

22(h) = %Tz(y, h) — h? = %T2(y, 0) + (2/v? — 1)h2 = 2%(0) + (c2/v? — 1)h2.

That is, the moveout is the hyperbola
Z2(h) = 2%(0) + (*/v? — 1)h2 (11)

Equation (11) shows that the residual moveout is the exact hyperbola for constant
velocity v and horizontal reflector. This result is parallel to that of moveout in
unmigrated data.

General Case

For general velocity or arbitrary reflector, one should not expect a simple expres-
sion such as (11). Instead of that, we consider the asymptotic expression under the
assumption of small offset.
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First, because z is a symmetric function of h, we get

dz a3z
7 lh=0= 0, pr lh=0= 0, etc.

This implies the Taylor series expansion

2(h) = 22(0) + L2 |,y B2 + O(hA 12
2°(h) = 2°(0) + 5—5 |n=0 h” + O(%). (12)
Now let us try to estimate the second derivative,

d*z?

anr =0

For fixed z, the midpoint y and the imaged depth z are functions of offset h.
differentiating equation (1) with respect to h, we have

%_}.67} @4. 37’,+6T,- + %.}.% d_z—g@_*.g (13)
dy Oyl dh oh ~ Oh 0z 0z|dh  Odydh Oh’
Using (2), we get
LA L S L ”
0z 0z|dh  Oh oh  Ohn|’

Notice that y is symmetric in h, so

dy

7 h=0= 0.

Lemma. Suppose that f(z,y,z) is a smooth enough function. For any function
y=y(z) and z = z(z), if

dy dz
Iz |z=0= 0, Ip 12=0= 0,

then p of
Ef(x’y(x)az(x)) l::=0= a_z z=0 -
Proof. By the definition of the total differential,
de "= 8z "= 7 |y dz| "0 T |0z dz | 70T B 0
This completes the proof.
Using this lemma, and
dy dz

E h=0= 01 E lh=0= Oa




Liu and Bleistein Residual Moveout
we get
i QZ_ %_*-3 | o’T I 627"_*__612 | (15)
dh \oh ~ |on " 9n|) P=0T Bp2 h=0 " 192 T Jpz | Ih=0-

Also, from 4 |,_o= 0, we have

d [ 0r, 0Or.  dz or, Or. d?z
= [( ] |h=0= [( } |n=0

3—z+az dh (92-}-32)513 (16)

Differentiating equation (14) with respect to h, and using (15) and (16), we set up
the following equation for d?z/dh? |,—o

or, Ot d%z 0T 0%r, 0°%r,
( lh=0= lh=0

9. T3 am 7z =0~ B t 2 (17)

Equation (17) holds for any velocity function v(z, z), any background velocity c(z, z),
and an arbitrary reflector. Now we will simplify equation (17) for the laterally invari-
ant background velocity.

Suppose the background velocity is the constant, c. Then

T,=\/z2+(:v—y+h)2/6, Tr=\/22+($—y—h)2/c-

After calculation,

or, | 67, | z
aZ h=0=— a h=0= Cp,
01, o%r, 22

Oh? > In=0= Oh? 7 Ihmo= cp?/?’

where
p=1/22+(z —y)
We have
o7, + o7, lheo= 2_z
82 a h=0=— Cp’
o%r, 0%t 222 2 2z —y)?
7t | 0= 5= o=
Oh oh P cp cp

Using these results, equation (17) is simplified by

2z d%2 o*T 2(.7:—y)2 2

[cpdh2] Ih=o= dh2 Ih=o + T cp (18)

Furthermore,

d?z _d?2?
2z pT%) lh=0= Fis) |h=0,
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c
p= §T ln=0,
P - 2 ay h=0
Thus, we obtain the result
d?2? | 0T aT\?
el lh=0= > TW + (a—y-) } lh=0 —2, (19)
or )
d?r? o*T orT 8
hE lh=o= 2 Ta—h2- + (3—y) ] |n=0 2 (20)

where 7 is the migration time.

From equation (19), we conclude that after migration, the the main part of the
residual moveout is determined by the background velocity ¢, traveltime T, curvature
of unmigrated data 9°T/8h?, and slope of unmigrated data 8T /dy. This is true for a
constant background velocity ¢, any velocity function v(z, z), and arbitrary reflector.
In addition, the stacking velocity is defined by

o°T . (aT\?
T'W + (a_y> ] |h=0’ (21)

which can be directly estimated from the residual moveout. Compared to NMO, we
have the new term, 9T/8y. In the follow examples, one will see this term removes
the dip effect in RMO velocity analysis.

11
[cstk]2 4

For a small gradient velocity c(z) or a small dip of the reflector, equation (20) can

be modified to
8T (oT\? 8
TW + (a_y) } [n=0 —‘[c—]z, (22)

T™ms

d’r?
Tz [n=0=2

where ¢, is the root-means-squared velocity of ¢(z).

Examples For Constant Background Velocity

We use constant background velocity for these examples. For arbitrary c(z, z), the
residual moveout formula will become too complex to do velocity analysis. Further-
more, prestack migration is fastest for constant velocity. In addition to the normal
moveout formula (11), we now compute residual moveout by the formula (19) and (20)
for several special cases. These results are similar to normal moveout, except that
the former is insensitive to the dip of the reflector.
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1. Constant velocity and dipping reflector

Suppose that the true velocity is a constant, v, and the reflector dip is . In this

case,
T?(y,h) = 4y®sin? §/v? + 4h% cos? 6/v°.

We have,
o’T
[TW] |h=0= 4 cos® 8/v?,
oT .
o lh=0= 2sin6/v.
Therefore, B2
z
. lh=0=2(c?/v* - 1). (23)
22(h) = 22(0) + (c?/v? — 1)A? + O(R?). (24)
or
T2(h) = 72(0) + (1/v% — 1/c®)4h? + O(h%). (25)

Equation (25) shows that the residual moveout is independent of the reflector dip
and the stacking velocity is v, when the true velocity v is a constant.
2. Constant velocity and diffraction from a scattering point

Suppose that the true velocity is a constant, v, and a scatterer is located at the
point (z*,2*). In this case,

T(y,h) = [\/(y —h—a )+ ()P + [y +h -z )2+ ()] [v

We have, \ (o
o‘T 4 2*)
[TW] b E T P
a_T'_ 2 I _ 4 (y - x‘)z
(3y) TRy — 2+ ()
Therefore, \
% lh=o= 2(c%/v® = 1). (26)
2(h) = 22(0) + (c?/v?® — 1)h? + O(h%). (27)
" 72(h) = 72(0) + (1/v® — 1/c)4h? + O(h%). (28)

Again, equation (28) shows that the residual moveout is independent of the lateral
offset from the point scatterer and the stacking velocity is v, when the true velocity
v is a constant.
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3. Laterally invariant velocity and horizontal reflector

Suppose that the true velocity is a laterally invariant function, v(2), and the
reflector is horizontal, with depth z*. In this case,

T%(y,h) = T?(y,0) + 4h? [ [vyms(2"))? + O(RY).

We have, ,
(75| b= 4/t
%% lh=0= 0.
Therefore, Py 2
i o= 2 (e 1) )
2
22(h) = Z2(0) + (m - 1) h% + O(h4). (30)

Notice that z(0) # z*. That is, in depth migration, the imaged depth is inconsistent
with the desired point at which the root-mean-square (RMS) velocity is determined
from the residual moveout. However, if we let

2" ds
.=2/ ds_
’ 0

then

(8) = 7°0)+ (o - ) 0+ O, (31)

and 7(0) = 7*. Therefore, time migration can give us the correct location at which
the RMS velocity is determined by the residual moveout.

Equation (31) shows that when the true velocity is laterally invariant, the stacking
velocity determined from RMO is consistent with RMS velocity at the imaged time.

4. Laterally invariant velocity and dipping reflector

Suppose that the true velocity is a laterally invariant function, v(7), and the
reflector is a dip, with angle . In this case,

T -1/2
T(,0) = [ (1-p2*0)) "4
@.0) = [ (1-p**0) " do,
e
or? "=0T () — p2?)-3/24g

or

b;lh=0— 2p,

9
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where 7 is the vertical time at the reflection point and

__ sind
p= v(m*)’
Therefore,
*T (aT\? Jo (1 = p2?)3/2do
T— —_— _o=4 9 .
oz * (ay) } o= 4 o — poot) 72de (32

The stacking velocity is estimated by
Ji v(0)(1 = p*v*(0))~*/*do

[eo)? = v (1 —p2v2(0))-3/2do (33)
Notice that c,, does not equal the RMS velocity v, that is defined by
. =;1; 0" (o) do. (34)
In fact,
caal? = + (0~ udp® + O(p"), (35)
where

1
vj = ;;/0 vi(s)ds.

v4 is always greater than v, and they are equal only if v(z) is a constant. Therefore,
Cstk 1s always greater than vy and they are close for small p or a small gradient of
v(z). Furthermore, the imaged time, 7(0), is different from 7*, and

[oa((0))]* = w3() + %(vﬁ(T*) = )W) = v3(T))p’ + O(p*). (36)

Usually, v is bigger than vy, so v(7(0)) is bigger than v,(7*) when c is smaller than
va(7"). If ¢ is chosen suitably small, ¢, may be a good approximation to vy(7(0)).

we conclude that for a suitable background velocity, the stacking velocity from
RMO velocity analysis may approximate the RMS velocity at the imaged time.

Higher Residual Terms

The residual moveout is hyperbola-like only for small offset. In fact, offsets should
not be too small so that we can have a high resolution in velocity analysis. (See Liu
and Bleistein.) Therefore, we require an error estimate for formulas in nonzero offset.
This work is partially implemented in Mathematica.

Using the rule of differential for a compound function in equation (14) and setting
¢ constant, the fourth order derivative of 2z with respect to h satisfies

d*z d(ps + pr) _ [é'T &y T d*(ps + pr)
ani =0 [T | ko= |G 3 G gmagy) 0~ gpa - =0

d*z 3%(p, + pr) d®y 3*(p, + pr)
0 [dh2 ontoz | =0 73| anzgy | =0 (B7)

10
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For a constant velocity v and a dipping reflector with angle 6, we can obtain

dir? o= _24(1/v® —1/c*)sin’ 26
dhs =0 (z*)2 ’

(38)

where 7 is the migration time and 2* is the reflection depth. Therefore, from (38)
and (23), a more accurate expression for the residual moveout is

v?2 — 1/c?) sin?
72(h) = 72(0) + 4 (v—li, - ciz) w2 (t/ )2) 2+ O(R%)

= 7%(0) + 4 (vi2 - é) h? <1 - %(%)2 sin’ 20) + O(h%). (39)

For a constant velocity v and a scattering point at (z*, z*),

dir? 24(1/v® — 1/c?)sin% 20
dht |a=o= — (z*)? ’ (40)
where .
-z
0 = arctan
By the way, for the unmigrated data, the higher residual term is
o4T? 24 sin? 26 cos? 0
W |h=0= 2)2(2*)2 (41)

Equations (38) and (40) show that when the true velocity is a constant, small higher-
residual terms of moveout are obtained for a closed background velocity, small ratio
of offset to the imaged depth, and the dipping angle that is near 0 or 90 degree.

For laterally invariant velocity and a horizontal reflector with depth z*,

dir? 24(vg — v})
—_— pog= ————= 42
ai k=0 5§ (42)

where tg is the zero-offset time, and

The result in (42) is the same as in the unmigrated data.

Equation (42) shows that when the true velocity is laterally invariant, a small
higher-residual term is obtained for small gradient of the velocity.

11
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VELOCITY CONVERSION

In the previous chapter, we show how stacking velocity is obtained by moveout
methods. However, an interval velocity function is required for migration and inver-
sion. Usually, we assume that the stacking velocity equals the RMS velocity. Then
the interval velocity is computed by Dix equation or other algorithms. Unfortunately,
this assumption fails when the velocity has a lateral anomaly. Now we will give an
equation to solve for the laterally varying interval velocity. This equation requires
the small lateral variation and horizontal reflector.

Suppose the true slowness w(z, z) can be written as
w(z,z) = w(z)(1 + oz, 2)), (43)

where w(z) is a reference slowness and o(z, z) is a small perturbation. We obtain the
equation

(g, 2) = ] )/Oz [62a (f:fz‘;ds>2+a(l+ﬁ2(a))J i_a (44)

Tovs(2 0x? \ 7,(2) 72(2)

where dw, is the anomaly of the stacking slowness, T} is the zero offset time, and 7, is
the RMS velocity from the referenced velocity. When a and & are depth independent,
the result in equation (44) is the same as that of Lynn and Claerbout. Equation (44)
shows that the second derivative of a determines the anomaly of the stacking velocity;
the anomaly of the stacking velocity at a depth results from the anomaly of the
interval velocity above this depth. Furthermore, [’ #ds increases as o decreases, so
the anomaly of the interval velocity near the surface has the largest effect.

Applying Fourier transform, with respect to y, to equation (44), we obtain

z * 5ds \ 2 (o o

Equation (45) is a First-kind Volterra integral equation that is ill-posed. Therefore,
the recursive alogrithm for equation (45) is unstable. To obtain a stable solution, we
may apply the damping least-squared method to equation (45).

SYNTHETIC DATA EXAMPLE

To test the residual moveout method, we applied this method to synthetic seis-
mograms computed for a subsurface model in which velocity increases linearly with
depth z, according to v(z) = 1.5+ 0.8z km/s. The model, shown in Figure 1, consists
of five reflectors, each with a dipping and horizontal segment. Dips for the dipping
segments range from 30 to 90 degrees in 15-degree increments. The seismograms
contain 10 offsets, ranging from 100 m to 1900 m in 200 m increments. Because of
dipping reflectors and depth dependent velocity, the stacking velocity in equation (33)

12
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and the RMS velocity are not same but close each other. The error between the both,
shown in Figure 2, increses with depth and dip.

After prestack migration with the constant velocity, ¢ = 1.5 km/s, one of the
CDP gathers is plotted in Figure 3. Because the background velocity is lower than
the true velocity, all event locations increase with offset. The velocity scan for this
CDP is plotted in Figure 4. Unlike the velocity scans in NMO, velocity peaks here
are single-valued. After residual moveout, all events are corrected to horizontal ones
(in Figure 5). The stacking result is shown in Figure 6, which is equivalent to the
poststack migration with the constant velocity, c. By using the interval velocity
converted from the stacking velocity, poststack residual migration gives the correct
reflector positions (in Figure 7).

Model

N

\

ot
(64}
1

-t
o
1

Depth (km)
o

n
(o]
1

25

0 05 10 15 20 25 30 35 40
Midpoint (km)

FIG. 1. Subsurface model used to generate synthetic seismic traces.

CONCLUSION

Velocity analysis by prestack migration can handle dipping reflectors. Conven-
tional approaches use iteration, which results in larger computation than the method
proposed in this paper. Using the relationship between the residual moveout and
the error in the background velocity, we can estimate directly the true velocity with-
out iteration. Furthermore, stacking after the residual moveout provides a partial
migration output. With this output, a residual post migration should yield a more
accurate structural image. Using a more general background velocity, we may handle

13
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Dip (degree)

0 30 60 90
0 1 1

N

2 //

Contours of Velocity Error

Depth (km)

FIG. 2. The relative error between the stacking velocity and RMS velocity. The
difference of contours is 0.002. The arrow direction indicates increase of the error.
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Common location images (CDP = 161)

FI1G. 3. One of the CDP gathers after the migration with the constant velocity.
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Velocity (m/sec)
(1} >0 2500 3590
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Velocity Spectrum CDP 161

FIG. 4. Velocity analysis for the CDP gather in Fig. 2.
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Residual moveout CDP=161

F1G. 5. Residual moveout for the CDP gather in Fig. 2.
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Stack of CDPs 1 to 301

F1G. 6. Stacking for the ten offsets.

Migration Time (sec)
N

Residual Migration

FIG. 7. Poststack residual time migration.
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the lateral variation of velocity, but it will require a complicated algorithm. The
perturbation method here is suggested to handle the lateral variation of velocity.
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APPENDIX A: DERIVATION OF EQUATIONS (35) AND (36)

From Taylor’s expansion,
3
(1= p*%(0))™2 = 1+ S0*(0)p” + O(p"),

so that

/01— v3(0)(1 — p*?(0)) " %do = /T v3(0)do + —p / vi(o)do = (v + —v 2,
L= p00) 20 = 771+ Soip?).
Using these results and the definition in (33), we obtain

(v + 3/2 1’21’2)
™(1+3/2v p2)

[co)? = v+ = (v4 v3)p® + O(p*). (A-1)

This completes the proof of equation (35).

From the Taylor’s expansion,

vp(r) = v3(r*) + (1 =7 ) d = le=re +O((r = 7)%)
=v3(m) + (7/7" = D)(o*(r") - vz(T ) +0((r = 7)), (A-2)

where we use the fact that

(51—1;?2 lr=re= (V¥(T%) — v2(7%)) /7"
From
(0) = T(y, 0)y/1 = 3% = T(3, 0)(1 - 2¢%*) + O(p"),
and .
T(4,0) = [ (1= 7o) 2do = (14 203 + 0",
we have

7(0) = 7°(1+ 5(03(r*) - ) + O(p").

Subsitituting the above formula into equation (A-2) and setting 7 = 7(0), we obtain
* 1 * * *
v3((0)) = v3(7") + 5(v3(7") = )W) = v3(r))p* + O(p"). (A-3)

This completes the proof of equation (36).

18
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APPENDIX B: DERIVATION OF EQUATION (44)

Suppose reflectors are horizontal and the true velocity v(z, z) can be written by

1 1
'U(.’L‘, Z) - 1—)(2,)(1 + a(a:, Z)), (A'4)

where ¥(z) is a reference velocity and o(z,z) is a small perturbation. Under the
assumption of the small perturbation, we can calculate the two-way traveltime by

Tihy) = T(hy) +2 [ 20, (A5)

where @ is the angle of the ray path from the vertical, (§,0) is a point on the ray
path, and

&o)=y+ /z tan fds. (A-6)
Therefore,
9’T(h,y) 62T(h ) a(¢, o) da
T oR lr=0 Oh? In=o /o 8h2 \ cost Ih=o - (A-7)
From

0 (a(§,0)) _ 0%a 1 0a 0 1 92 1
Oh? ( cosd | Oh?cos +2_0—h(9h (cosﬁ) +afé,o )8h2 (0080—) , (A-8)

and 5 !
oh (cos0) Ih=0=0,
cosf |h=0= 1,
we have 52 (£.0) P o )
alé, o
on2 (W) In=0= oh? lh=0 +o(y, a)3h2 (cosG) lh=o (4-9)

Notice that £ is a function of &, so that

Pa 0¢ 0o 32£

udlihad ) A-

Rz = ag (ah) ¢ o1 (4-10)

From (A-6), £ — y is an odd function of h; hence

826 I 62(§ - y) I =0
oR? =0T Tgpz Ih=0= T

This result and formula (A-10) give

Pa 9
e heo= a ga (%) Iheo (A-11)
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Here we use the fact that £ = y at h = 0. To do the further calculation, we introduce

the slope parameter
__ sinf

(o)’

which is independent of o. Then

z vp
5(0)=y+/a mdS,
o
h_/° \/1—(5p)2d

o8 [* )]
5= | Tt

These formulas imply that

dh z ]
&= b T

o€ 0¢ dh [Z vds
an == 3, ln=0 / o lh=0= [Tods
From
1 1
cosf \/1 — (p)?’
we have

21\ & 1
Oh? (cosﬂ) ~ Oh? ‘/1 — (vp)?

_ & 1 (6_p)2+ 9 1 p
Op? \/1 — (vp)2) \Oh dp \/1_(1—,1,)2 Oh?’

Again, p is an odd function of k, so that

62
2P 0= 0.

Oh?
This result, formulas (A-12), and (A-14) give

o [ 1 I 1 1 o)
o1 (coe2) 0= 3 | T ) o= Goaom = Goior

By formulas (A-9), (A-11), (A-13) and (A-15), we obtain

& [a(t, o) _ 8a ([Fuds\® ()
i (i) o 5 (Foar) o)y
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Substituting this formula into equation (A-7), we have
0’T(h,y) d*T(h,y) : 0% ([Zods\® av*(0) | do
Rz Ih=0="pa Ih=o +2/0 o \Jivas) T (Tods 2| T (A-17)
‘The stacking velocity v, is defined by

_r . 0°T(h, y) |
v2(y, z) 4[( ) Oh2 ]|h=0- (A-18)

By using formula (A-5) and (A-17), we have

0T _ 0T 0T z do
[TW] |h=0= [T6h2 lh =0 +2ah2 Ih 0/ a(yva)? +

- : [a ([ ods\> av?(o) | do
100 [[ |5 (fe) +(fo‘ﬁds)2J R

_0°T 4
[TW] h=0= 327"

From

(A-19) becomes

4 4 8 ado [ vds av?®(o) | do
v (y,z)  92(2) Tv2/ v 2T/ [ay (f’vds) +(f0 vds)? J bk

or

1 riado  To, (+|0% ([*9ds\’ av*(c) | do
bu.2) = 7 |5+ [ayz (j;mk) Y| T (A0

where we use the relation

B 1 1 Us(z) 1 — 1
511),(3/, Z) - v,(y, ) vs(z) 2 (vf(y,z) 273(‘2)) ‘

From 7
/0 vds = 517,2(7'),
equation (A-20) becomes

[ vds 7%(0) )
) = oy ) [ayz (ﬁ,(z)) ralls ()’] g A
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Explicit Depth Extrapolation Filters for
Transverse Isotropic Media

Omar Uzcategui

ABSTRACT

Stable explicit depth extrapolation filters have been used recently in the down-
ward continuation of seismic wavefields for isotropic 2D and 3D migration. Similar
filters can also be developed for transversely isotropic (TI) media. The down-
ward continuation operator for TI media has basically the same form as that for
isotropic media, but now the phase velocity is a function of the propagation angle.
Therefore, for a given frequency, the wavenumber k, will no longer be a function
of a single velocity, a fact that has to be considered in the design of the filter.

A constrained least-squares method is used to calculate N-coefficients of a
finite-length filter such that the amplitude and phase errors with respect to the
ideal response of the downward continuation operator are minimized for a given
range of propagation angles. In the evanescent region, the amplitude response of
the filter is forced to be less than unity in order to get stability.

I have obtained explicit depth-extrapolation filters that do the propagation of
plane waves corresponding to the ¢P (quasi-p propagation ) mode for a trans-
versely isotropic medium. The resulting operators are stable and give accurate
results for the range of angles used in the design of the filter.

INTRODUCTION

Depth extrapolation of seismic wavefields is a fundamental process used in vari-
ous algorithms for depth migration. Traditionally, implicit methods based on finite-
difference algorithms (Claerbout, 1985) are used to get the extrapolated wavefield.
However, the use of explicit depth extrapolation filters (Holberg, 1988; Hale, 1991)
has become now as an important and efficient alternative to accomplish this goal.
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For transversely isotropic media, explicit depth extrapolation filters can be ob-
tained following the same steps used in the isotropic case but now considering the
anisotropic nature of the phase-velocity. The Taylor series method, which tries to
match the first N terms corresponding to the Taylor series of the Fourier transform
of the filter to the desired response, could not be applied for TI media, because the
matching of the derivatives is done for vertical propagation (k. = 0) and only the
vertical velocity is considered in the design of the filter. Another approach (Holberg,
1988) is try to minimize the amplitude and phase error of the filter in a given range
of propagation angles. By doing this, we are considering the different values that the
phase velocity takes for different propagation angles, so the anisotropic characteristics
of the phase velocity are taken into acount in the design of the filters.

In addition to the minimization of the amplitude and phase errors, it is also de-
sired that the amplitude response of the filter be equal to unity in the propagation
region (to avoid growing or decaying of this energy) and less than unity outside the
range of propagation angles (i.e., in the evanescent region to get stability). This leads
to the solution of a non-linear constrained least squares problem.

FILTER DESIGN

The theoretical downward-continuation operator for transversely isotropic media
can be obtained from the equations of motion for elastic plane waves propagating in
the vertical plane (z,z) (Kitchenside, 1991). The solution for the gP propagation
mode can be expressed as,

k, = ——cos(9) ke = ——sin(9), (1)

,,(0) Vi (0)

with

Vp2(0) = 02(1 + esin®(6) + D(8)"), (2)

where k. is the vertical wavenumber, w is the frequency in radians, 6 is the phase
propagation angle with respect to the vertical axis, V,(8) is the phase velocity for the
gP propagation mode and oy is the vertical velocity [V,(0)], e and D*(8) are functions
of the elastic constants of the medium (Thomsen, 1986).

After obtaining the downward-continuation operator for transversely isotropic me-
dia, the basic problem in the construction of explicit depth extrapolation filters is;
for a given frequency w, try to find N coefficients W; of a finite-length filter with
a Fourier transform W(k) that "matches” the theoretical Fourier transform of the
downward extrapolation operator given by

2 2
D(ky(6),w) = exp {isz:()e) (1 AU )) } 3)

w?
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where Az is the vertical sampling interval. We want to do the matching over just a
range of propagation angles (6 = 0. ..8,,4), or equivalently, over a range of wavenum-
bers |k;| < %%’f;l. Also, for stability in the evanescent region we impose the con-
dition |W(k,)| < 1.0.

The match with the theoretical response of the extrapolation operator has to be
done following some error criteria. Following Holberg’s (1988) criteria, we do the
matching by minimizing the sum of the square errors in the amplitude and phase
responses of the filter,

0=0m¢z
J(ka, w) = /0 (62 + o?)dks, (4)
subject to the constraints [W(k,,w)| = 1.0 for |k,| < ‘%1“751 and |W(k,,w)| < 1.0
for |k,| > @einPmez) Here o is the amplitude error of the filter given by a = 1.0 —

Vo (Omaz)
|W (k,,w)|, and § is the phase error of the filter given by § = k,Az — tan‘uﬁ"f((:vﬂ(,’:—:f)l)l.

Due to the symmetry with respect to k, of the downward-continuation operator,
the filter coefficients must also have this symmetry so that we need work with only a
half-length of the operator. Then, the complex response of the filter will be given by

j=N J=N
Wk, w) = ;) 2w, (j) cos(k.jAz) + ;} 2w;(j) cos(kyjAx), (5)

with Az equal to the sampling interval in the z direction, and w,(!) and w;(l) the
real and imaginary parts of the I** coefficient of the filter.

For the minimization of (4) I used the IMSL subroutine NCONF, which solves
a non-linear minimization problem subject to non-linear constraints, such as those
impossed following equation (4). The number of constraints used in a given calcula-
tion depends on the number of filter-coefficients desired. In general, stable results are
obtained when the total number of constraints used is equal to one-half of the total
number of filter coefficients.

NUMERICAL APPLICATION

Depth-extrapolation filters were calculated for a homogenous medium whose elas-
tic constants correspond to the so called Taylor sandstone (Thomsen, 1986). The
vertical P-wave velocity for this sandstone is ap = 3368 m/s and the vertical shear
wave velocity is 9 = 1829 m/s. The ratio of the horizontal to the vertical P-wave
velocity for this sandstone is almost 1.1.

In Figures 1 and 2 we see the amplitude response and the amplitude error of
the filter calculated for a single frequency of w = 27(20). A filter of 23 coefficients
(half-length=12) was used, and a maximum angle of propagation of § = 75° was
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considered. For this example we use Ax = Az = 10 m. We can see that for almost
all the propagation region (k, < 0.07) the amplitude error in the filter is very small
(less than 1/1000). This means that we can apply this filter for at least 1000 steps of
depth extrapolation, getting an amplification or reduction factor less than 2.7169 for
this given frequency.

In Figure 3, we see the phase error response in cycles for the same frequency
(f = 20 Hz). In general, the phase error is small for propagating angles less than
60° (Aé < 0.05 cycles). Near to 0,4, = 75° and beyond, the phase error reaches a
maximum of 0.01 cycles.

Figure 4 shows a contour display for the amplitude error for the range of frequen-
cies 0 < f < 50. The white areas correspond to amplitude errors less than 0.001.
The darkest areas correspond to amplitude errors of more than 0.01. We can see that
for the propagation region, the filter error is very small (< 0.001). In the evanescent
region, the darkest areas correspond to amplitudes less than 0.99, so in general, we
get stability in this region because the amplitude values are less than unity.

Figure 5 shows a contour display for the phase error in the propagation region
(0 =0,...,90°). The thin contours correspond to phase errors equal to 0.01 cycles
and the thick ones correspond to phase errors of 0.1 cycles. In general, the phase
error is large for the high frequencies (f > 30 Hz) and for angles greater than 60°.
The results obtained for the phase error are not so good as those for the amplitude
error. Holberg (1988) pointed out that a better result could be obtained by consider-
ing in the minimization process the derivatives of the amplitude and phase error with
respect to w and k,. We should also note that we did not impose any constraints
about the phase error, so this error was allowed to change with more freedom than
that for the amplitude error.

CONCLUSION

The methodology used to obtain depth-extrapolation filters for an isotropic medium
can be easily extended to the case of transversely isotropic media. It is necessary to
consider only the changes in the phase velocity with respect to the propagation an-
gle when we do the calculation of the theoretical depth-propagation operator. A
method that tries to match the filter response with the theoretical operator for differ-
ent wavenumbers or propagation angles was considered. This approach differs from
that used in the Taylor series method for isotropic media, where the match of the
filter and theoretical response is done for only vertical propagation (k, = 0). For TI
media, phase-velocity values for different propagation angles need to be considered.
In this way, the anisotropic character of the phase velocity is taken into account in
the design of the filters.

Filter coefficients were calculated by solving a minimization problem subject to
non-linear constraints in the amplitude response of the filter. The accuracy in the
amplitude response obtained with the filters for TI media is comparable with that
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obtained by Holberg (1988) and Hale (1991) for isotropic media. However, the phase
response needs to be improved. The use of constraints for the phase error and the
minimization of not only the phase and amplitude errors, but also their gradients
with respect to w and k,, could improve the phase response.
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F1G. 7. Position error Ay versus reflector dip for shale-limestone (top) and Cotton
Valley shale (bottom). For each, the reflector depth is D = 1500 m and the vertical
velocity gradient is k£ = 0.6 s~!. For the dashed curve, the v(z) velocity function
used for migration is derived from the vertical rms velocity to the reflector. For the
other three curves, the v(z) velocity function used for migration is derived from the
stacking velocity to a horizontal reflector at depth D, with different choices of ratio
of spread-length to depth X/D used in the stacking-velocity computation.
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F1G. 14. Normalized position errors as a function of reflector dip for the four media
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listed in Table 1, for three values of approximate migrated reflection time 2D [Vims-
All models have the same velocity gradient, k = 0.6 s,
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