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ABSTRACT

High-resolution real-time monitoring of reservoir changes is essential during COs in-
jection or hydrocarbon production. This study leverages convolutional neural networks
(CNNss) that employ multitask (MTL) and transfer (TL) learning to accurately predict
relevant reservoir parameters from seismic data. CNNs are initially trained to estimate
the P-wave velocity from 2D multicomponent seismic data and then are fine-tuned
through TL to obtain the S-wave velocity, density, and saturation. This methodology
is applied to a synthetic CO, sequestration model based on California’s Kimberlina
storage reservoir. When using MTL, CNNss are trained simultaneously on multiple re-
lated tasks by taking advantage of their commonalities. After pretraining the model
on a 2D line, it can be fine-tuned to predict the reservoir parameters from the data
in the crossline direction. Our work addresses the challenge of training-data scarcity,
promotes efficient use of computational resources in reservoir monitoring, and helps
increase the accuracy of real-time monitoring of the fluid movement inside the reser-
VOIr.
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1 INTRODUCTION

Monitoring the time-lapse changes in subsurface reservoirs is crucial for effectively managing oil and gas production and CO2
injection for carbon capture and storage (CCS). These changes, particularly the fluid movement and saturation levels, directly
impact operational strategies and environmental safety. Elastic time-lapse full-waveform inversion (FWI) of seismic data is capable
of estimating the parameters of realistic heterogeneous anisotropic models (Queiler and Singh, 2013; Liu and Tsvankin, 2021).
However, FWI faces such challenges as parameter crosstalk and trade-offs, which are partially mitigated by choosing an optimal
model parameterization (Mardan et al., 2022; Pan et al., 2018).

The variation in fluid saturation within a reservoir leads to changes in the elastic parameters (the P- and S-wave velocities and
density), with density being the most difficult parameter to estimate in time-lapse FWI (Pan et al., 2018). Evaluating fluid saturation
from time-lapse seismic data involves complex and often error-prone processes (Ajo-Franklin et al., 2013; Vasco et al., 2019).
Finally, conventional (physics-based) inversion methods, such as FWI, are computationally intensive and may not be suitable for
efficient continuous long-term seismic monitoring.

Here, we employ recent advances in computing science and machine learning to solve complex nonlinear inverse problems
that arise in reservoir monitoring. Deep-learning (DL) algorithms use a data-driven input-output relationship that circumvents some
of the FWI constraints. Without relying solely on physical and geologic information (Biswas et al., 2019; Zhang and Gao, 2022;
Liu et al., 2023; Wang et al., 2023b; Wu et al., 2019; Liu et al., 2020). Among commonly used ML techniques are convolutional
neural networks (CNNs), recurrent neural networks (RNN5s), and transformer methodologies. For example, Um et al. (2022, 2024)
present a DL network for monitoring CO» saturation. Feng et al. (2023) introduce a benchmark data set for predicting the P- and
S-wave velocities using CNNs. Long short-term memory (LSTM) and CNNs are employed by Simon et al. (2023) for velocity
model-building.

Wang et al. (2023a) combine CNNs (U-Net autoencoder - autodecoder) and transformers in seismic interpretation for fault
detection. Application of transformers in geophysics is still nascent compared to CNNS, partly because transformers are historically
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more aligned with Natural Language Processing (NLP) algorithms (Mauricio et al., 2023). If CNNs are trained with transfer learning
(TL), they may perform better than pure transformer-based networks, especially for relatively small data sets (Kornblith et al., 2019;
Mauricio et al., 2023).

Incorporating multitasking into CNNss is a promising approach for predicting multiple reservoir parameters. Multitasking with
multiple encoders and decoder CNN architectures is a powerful tool for capturing complex geospatial relationships by simultane-
ously processing multiple seismic attributes. The encoder compresses the input data into a compact representation for the inversion
tasks. The multiple decoders handle several tasks simultaneously by learning various properties of seismic data. However, these
architectures require extensive and diverse training data sets to capture the variability in geologic formations. They also incur higher
computational costs due to their complex structure.

Transfer learning (TL) leverages models pretrained on similar data sets, which enables the application of the learned features
to new (but related) tasks. TL enhances model generalizability and accelerates the training process, which helps overcome data
scarcity and/or lack of computational resources (Simon et al., 2023). The effectiveness of TL depends on the relevance of the
features learned from the source domain for the target domain, which makes selection of appropriate pretrained model particularly
important. The papers by Tajbakhsh et al. (2016), Becherer et al. (2019), and Kumar et al. (2022) highlight the value of fine-tuning
in optimizing neural-network models and a delicate balance in adjusting pretrained models to new tasks. Although geologic and
geophysical model-driven CNNs are potentially capable of estimating the elastic parameters (Li et al., 2022), they are limited by
the memory and data requirements, particularly for 3D data sets (Li et al., 2023). The results also depend on the quality of the input
data, and CNNs require extensive computational resources.

This study aims to leverage the strengths of CNNs with TL and MTL to efficiently predict relevant reservoir parameters from
seismic data. We propose a novel approach in which CNNs, initially trained to estimate the P-wave velocity from multicomponent
seismic data, are fine-tuned through TL to obtain other medium parameters. We start by discussing multitasking (MTL), transfer
learning (TL), and the corresponding neural network architectures. Then we present a methodology for preparing training data
using the available physics information and prior knowledge. The network’s performance is validated using noise-contaminated
data generated for the realistic synthetic model of CO> injection into Kimberlina reservoir in California. Finally, we discuss the
impact of the available prior information and of the quality of the simulated training data on the accuracy of the reconstructed
time-lapse parameter variations.

2 METHODOLOGY

2.1 Multitask learning (MTL)

Applying deep learning to seismic inversion allows CNN algorithms to recognize patterns and infer relationships in seismic data for
parameter predictions. MTL is designed to enhance model generalization by leveraging domain-specific information across related
tasks. It involves parallel training on a shared representation that includes feature extraction from the encoders. After obtaining
these shared features, the network branches into multiple decoders, each responsible for a separate task. The outputs from these
decoders are evaluated, and the cumulative losses are used in the back-propagation to further train the network. This feedback loop
allows the network to develop shared representations that are beneficial for all tasks (Figure 1).

The MTL architecture, conceptualized by Caruana (1997), fosters inter-task learning with different tasks acting as mutual reg-
ularizers, which increases prediction accuracy (Vafaeikia et al., 2020; Zhang and Yang, 2022). This architecture is further analyzed
in recent studies by Li et al. (2023), where MTL has been applied to seismic inversion tasks, demonstrating its effectiveness in
predicting reservoir properties. The main goal of MTL is to obtain the mapping function f : X — Y that connects the input
domain x(¢) € X to the output domain y(z) € Y across n input-output pairs {[x(1),y(1)], [x(2),y(2)], ..., [x(n),y(n)]}. This
mapping seeks to minimize the loss across all tasks without increasing the model complexity by using regularization:

mﬂi}nZZ{ﬁ[wt,xt(i),yt(i)]} FAQW), (1)

where t = 1,2...T is a task with the corresponding data set [x¢(4),y+(7)], n+ is the number of training samples for the task ¢,
w; are the model parameters for ¢, £ is the total loss for the model parameters wy, W = {wt}thl is the combined set of model
parameters for all related tasks, and ) is the weighting factor for the regularization term 2.

Our implementation utilizes a CNN-based autoencoder-decoder framework to extract shared features among tasks and translate
them into the pertinent elastic parameters. Despite the challenges posed by cross-task interference and the need for a large network
size to accommodate multitask learning, this approach has proved effective by leveraging multiple prediction tasks.
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Figure 1. Flowchart of a multitask learning (MTL) CNN architecture.
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Figure 2. Transfer-learning workflow includes sequential steps of freezing layers, fine-tuning the non-frozen layers to adapt to new data, training
the model with the new data, and evaluating the model’s performance for the new task.

2.2 Transfer learning (TL)

Our project is focused on monitoring the CO2 movement in the reservoir by employing a neural network trained with seismic data to
predict the velocities, density, and saturation. CNN models, however, tend to have a large size, which necessitates using substantial
memory and storage. Also, training these models is computationally expensive due to the complexity of the data and the intricacies
of the simulation. Finally, fine-tuning the models requires a careful optimization of numerous hyperparameters.

To mitigate these challenges, we employ transfer learning, which enables us to utilize pretrained models that can be adapted
to a specific task with relatively minor adjustments. The proposed methodology involves training the CNN on a well-sampled
parameter and then fine-tuning it for other parameters in a different domain (Ruder, 2019). This approach mitigates the problems
caused by a limited sample size for specific parameters and can produce accurate results without requiring an extensive data set for
fine-tuning.

Pretraining on a sufficiently large data set before transferring knowledge to a new task significantly increases the accuracy
and learning capabilities of the network compared to training models from scratch (Zhao et al., 2024), which enhances both perfor-
mance and generalization (Figure 2). TL can mitigate the need for new data collection by transferring knowledge from a domain
similar to the target (Weiss et al., 2016; Zhuang et al., 2020). Depending on the domain variability, TL can be categorized as
homogeneous (same feature space) or heterogeneous (different feature spaces). For example, Simon et al. (2023) apply TL to ve-
locity model-building by starting with horizontally layered media before training the network on more complex 2D models with
dipping structures. TL implementation involves feature extraction or fine-tuning, both aimed at reducing computational demands
(Ruder, 2019). We demonstrate the effectiveness of this approach by training our model using data acquired on a 2D line (inline)
and then applying the pretrained model to fine-tune the parameters on the orthogonal line (crossline). This approach facilitates
hyperparameter optimization. Unlike MTL, which balances the focus across multiple tasks, TL is designed to prioritize the target
task.
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2.3 Neural network architecture

We developed a CNN architecture designed for multiparameter prediction of reservoir properties by utilizing auto-encoders and
auto-decoders. The starting point is open-access software InversionNet (InvNet; Wu and Lin, 2020) for P-wave velocity prediction
from seismic data for a synthetic horizontally layered model. The new features of InvNet include adjustments to accommodate larger
models and optimization of the activation function. We changed the model dimensions, modified the corresponding convolutional
layers, and replaced rectified linear unit (LeakyRELU) activation functions by the Gaussian error linear Unit (GELU). The three
CNN versions developed and used in our study are as follows:

(i) Multitask learning network with two encoders and four decoders designed to predict model several parameters simultane-
ously.

(i) Multitask learning network with two encoders and two decoders designed to predict the P- and S-wave velocities. The
transfer-learning methodology is applied to fine-tune the pre-trained model to predict the other model parameters.

(iii) Single-task learning network with two encoders and one decoder designed to predict only the P-wave velocity, with TL
employed to predict the other model parameters.

Activation functions are mathematical operations applied to the input of a neuron. Non-linearity of the model is crucial for the
network to learn complex mappings between inputs and outputs, enabling it to capture intricate patterns in the data. Thus, the
choice of activation functions can significantly influence the performance of trained models in seismic inversion (Bai et al., 2021;
Xie et al., 2021). The GELU activation function, introduced by Hendrycks and Gimpel (2016), is smooth and differentiable, in
contrast to the LeakyReLU (Figure 3). As a result, GELU has been employed in various large language models (LLM) and transfer-
learning models, including BERT (Devlin et al., 2019), GPT (Brown et al., 2020), and ViT (Dosovitskiy et al., 2021).

For positive values of x in equation 2, the GELU function gradually approaches unity (Figure 3), thus allowing more of the
input to pass through with increasing x. The LeakyReLU, however, passes through all positive values with no changes. For z ~ 0,
the GELU function allows a small fraction of negative values to pass through, similar to a leakyReLU, but in a smooth manner. This
helps in maintaining the gradient flow during backpropagation for small z, which enhances the learning dynamics. The probabilistic
nature of GELU improves the generalization performance of the trained model. GELU avoids the "dying” ReL.U problem (where
neurons can become inactive and only output zero) and promotes a more diverse activation pattern across the neurons. The GELU

function is represented as:
1 T
GELU(z) =z ®(z) =z ( = |1 +erf | — R 2
() ) <2 [ <\/§ )D @

where ®(z) denotes the cumulative distribution function (CDF) of the standard normal distribution, which effectively weighs the
inputs in a nonlinear fashion based on their magnitude. This inherent probabilistic nature of GELU supports a more flexible input
processing, leading to variable decision boundaries, which can be particularly beneficial in complex learning problems. To increase
computational efficiency, GELU is often approximated as:

1+ tanh <\/z (z +0.045 x?’))] . 3)

This approximation closely emulates the behavior of the Gaussian CDF, thus offering a practical solution for integrating GELU into

GELU(z) = 0.5

neural networks. The network architecture effectively translates seismic data into subsurface parameter predictions while balancing
the model complexity against computational demands. The encoder part of the network consists of eight convolutional blocks, each
containing a convolutional layer, batch normalization, and GELU (Table 1). If the network inputs have a zero mean and the unit
variances are not correlated, the convergence of the network speeds up. The decoder part consists of six deconvolutional blocks
that produce the outputs. The input to the network includes the vertical and horizontal displacement components of the simulated
shots. The loss functions of different tasks are calculated by combining the L;-norm and the mean-square error (MSE). The total

loss function of the network is defined as:
k

Low =Y Xi(li + MSE;), “
i=1
where k is the number of the predicted parameters, [; is the calculated L-norm for each predicted parameter, and \; are the scaling
factors that define the contributions of each loss function to the total loss.
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Figure 3. (a) GELU and LeakyReLU activation functions. (b) The derivatives of both functions.
Layer Type Output shape  Kernel size ~ Stride ~ Activation
ConvBlock 1 32x500x97 7x1 2x1 GELU
ConvBlock 2 64x250x97 3x1 2x1 GELU
ConvBlock 3 64x125x97 3x1 2x1 GELU
ConvBlock 4 128x63x97 3x1 2x1 GELU
ConvBlock 5 128x32x49 3x3 2x2 GELU
ConvBlock 6 256x16x25 3x3 2x2 GELU
ConvBlock 7 256x8x13 3x3 2x2 GELU
ConvBlock 8 512x1x1 8x12 2x2 GELU
DeconvBlock 1 512x10x10 4x4 2x2 GELU
DeconvBlock 2 256x20x10 4x4 2x2 GELU
DeconvBlock 3 128x40x40 4x4 2x2 GELU
DeconvBlock 4  64x80x80 4x4 2x2 GELU
DeconvBlock 5 32x160x160 4x4 2x2 GELU
Pad 32x88x150
DeconvBlock 6  512x10x10 3x3 1x1 Tanh

Table 1. Summary of the CNN architecture.

3 SYNTHETIC TEST

3.1 Data preparation
3.1.1 Forward modeling

The proposed methodology is applied to synthetic data for the model of the Kimberlina reservoir, a potential CO» storage site in
the Southern San Joaquin Basin of California. This data set includes models corresponding to different times during CO3 injection
(from pre-injection to 20 years after its start). The available parameters include the P- and S-wave velocities, density, fluid saturation,
and electrical resistivity defined on a 3D grid. Synthetic well logs of the P-wave velocity, density, and CO2 saturation in the injection
well and three monitoring wells provide additional information for monitoring CO> migration (Alumbaugh et al., 2023).

The velocity, density, and CO» saturation models are provided on a 10 m x 10 m x 10 m grid with 601 x 601 x 351 grid points.
A 2D seismic line extracted at x = 2100 m helps map the CO2 movement and calculate the time-lapse variations of the observed
parameters. COx is injected into a saline reservoir through a central well that traverses six sand-shale layers. The CO2 movement
inside the reservoir is modeled by considering buoyancy-driven migration patterns (Sigfusson et al., 2015).
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Configuration ~ Training samples  Trained parameters per layer ~ Batchsize ~ Epochs  Training duration (hrs:min:sec)

2 Enc. - 4 Dec. 12000 All 60 120 2:45
2 Enc. - 2 Dec. 12000 All 60 120 1:45
2 Enc. - 1 Dec. 12000 All 60 120 1:35
2 Enc. - 1 Dec. 2000 *see below 60 120 0:15

Table 2. Encoder-decoder configurations and their training duration for one GPU node.

*Trainable parameters are in the last layer of the encoder and all layers of the decoder.

3.1.2 Data generation

Saturation levels can be approximately estimated using empirical relationships between the P-wave velocity, porosity, and perme-
ability validated by laboratory and field studies (Gassmann, 1951; Mavko and Mukerji, 1995). We adopt a linear fitting formula
from Liu et al. (2023) to establish the velocity-saturation relationships from well-log data. This approach relies on the geologic
similarity between the field of interest and those used to derive the relation between velocity and saturation. Prior knowledge of
the actual baseline model is used to generate reliable training samples. The baseline velocity field, assumed to be obtained by full-
waveform inversion (FWI), is perturbed only inside the reservoir to obtain the training data (labels) and ensure accurate predictions
from the monitor data set. Logs from the injection and monitor wells are used to provide geologic and geophysical information that
helps constrain the training samples for the inversion.

A total of 14,000 data samples were generated to model the reservoir parameters (Vp, Vs, p, saturation, Vp/Vs ratio, and
acoustic impedance). The synthetic elastic wavefield is excited by 37 shots (point explosions) placed with an increment of 80 m
at a depth of 130 m. The source signal is the Ricker wavelet with a central frequency of 10 Hz. We employ 289 receivers evenly
distributed with an increment of 20 m at a depth of 140 m. A subset of 12,000 samples covering the time interval from zero to 10
years after the injection was used to train the P-wave velocity prediction model. Testing for V5 is carried out with an additional 500
samples that correspond to about 12 years post-injection. Then transfer learning is employed to fine-tune the predictions of Vs, p,
saturation, Vp/ Vs ratio, and acoustic impedance using 2,000 training samples and 500 testing samples.

3.2 Test results
3.2.1 Multitask and transfer learning

Examining the training time for various encoder-decoder configurations helps evaluate the model’s efficiency (Table 2). As expected,
the time increases with the number of encoders and decoders. For 120 training epochs, the configuration with two encoders and
four decoders takes the most time (approximately 2 hr 45 min using one GPU node). In contrast, the setup with a single decoder
reduces the training time to about 1 hr 35 min. The targeted training of the last layer of the encoders and all decoder layers during
the fine-tuning phase brings the training time down to just 15 min, thus confirming the method’s computational efficiency. Hence,
focusing on fewer convolutional layers could offer an advantage for rapid convergence or in iterative training scenarios. Further
analysis will explore the implications of these efficiency gains for model performance and generalizability when using a pretrained
model for transfer learning.

Analyzing the learning rates and convergence patterns, particularly for the four-decoder configuration, reveals informative
trends (Figure 4). The normalized loss function trajectories indicate that the velocities Vp and Vs share similar decline patterns.
Therefore, their optimization paths can be aligned, whereas the density and saturation curves exhibit a more gradual decline and
may require different training strategies. Figure 5 shows the reservoir parameters predicted with the MTL approach. The input
to the neural network used for training included the simulated shots and the four training parameters (Vp, Vs, p, saturation). Our
approach to optimizing the seismic inversion process involves a combination of MTL and TL. First, the neural network is trained
using 12,000 samples to predict the velocity Vp (Figure 6). Then the pretrained model is employed to optimize the seismic inversion
process by fine-tuning the network to predict the other medium parameters individually. During this process, it is possible to freeze
and gradually unfreeze parts of the network. We emulate a field-data application where the number of training samples for each
parameter is different. A smaller number of training samples is used for fine-tuning, which helps reduce computational resources
without impacting the prediction accuracy. In elastic FWI, parameterizing the model in terms of the Vp/Vs ratio and acoustic
impedance (IP) often reduces the crosstalk compared to using Vp, Vs and p. Therefore, next we perform the following tests:
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Figure 4. Normalized loss functions for different parameters with four decoders. (a) Vp, (b) Vs, (¢) p, and (d) saturation.

Parameter SSIM Index  Frobenius norm  1ly-norm  ls-norm MSE
VP (noise-free) 1.03 5.22 1.54 5.22 2.01
Vp (SNR = 15%) 0.86 1.13 2.94 1.13 8.51
Vs (noise-free) 0.98 9.72 1.24 9.62 7.11
Vs (SNR = 15%) 0.95 2.03 5.54 2.03 3.22
p (noise-free) 1.12 5.63 8.4 5.63 2.43
p (SNR = 15%) 0.97 6.33 1.45 6.33 2.93
Saturation (noise-free) 1.00 0.64 8.55 0.64 3.1x10°°
Saturation (SNR = 15%) 0.99 1.32 22.3 1.32 1.33 x 104

Table 3. Performance metrics of the parameters predicted from the clean and noisy (the signal-to-noise ratio is 15%) data.

(i) Use dual encoder - dual decoders to train the CNN for the Vp/V5s ratio and IP.
(i) Use a pretrained model to fine-tune the CNN parameters for each parameter (Vp, Vs, p) individually.

7

The results of these two tests are similar, but the second approach is more computationally efficient (Figure 8). The pretrained model

also maintains prediction accuracy when the testing data are contaminated with Gaussian noise with the signal-to-noise (SNR) ratio
equal to 15 (Table 3).

3.2.2  Influence of pretrained model distribution on fine-tuning efficiency

The parameters that closely match the source task’s distribution are predicted with faster convergence, which underscores the

importance of the parameter distribution in model adaptation (Tajbakhsh et al., 2016; Kumar et al., 2022; Becherer et al., 2019).

Thus, the range and distribution of the medium parameters strongly influence the model’s fine-tuning efficiency.

In the proposed flow, the CNNs were trained for the velocity Vp, which ranges from 1.9 km/s to 3.9 km/s, and its normalized

values range approximately from 0.5 to 1.0. The histogram (Figure 11) shows a highly skewed distribution which might be a sign
of outliers or non-representative samples in the data. This could potentially lead to slower convergence if the new data set does not
match this distribution.
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Figure 5. Predictions of the reservoir parameters. (a)-(d) The actual models of the P-wave velocity, S-wave velocity, density, and saturation,
respectively. (e)-(h) The corresponding models predicted from the noise-free data. (i)-(I) The corresponding models predicted from the noisy data.
(m)-(p) The normalized differences between (e) and (a), (f) and (b), (g) and (c), and (h) and (d), respectively. (q)-(t) The normalized differences
between (i) and (a), (j) and (b), (k) and (c), and (1) and (d), respectively.
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Figure 6. P-wave velocity field for the Kimberlina reservoir. (a) The actual model, (b) the model predicted from the noise-free data, and (c) the
model predicted from the noisy data. The normalized differences: (d) between plots (b) and (a), and (e) between plots (c) and (a).
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Figure 7. Reservoir parameters predicted with transfer learning. The actual models of the (a) S-wave velocity, (b) density, and (c) saturation. (d),
(e), (f) The corresponding models predicted from the noise-free data. (g), (h), (i) The corresponding models predicted from the noisy data. (j), (k),
(1) The normalized differences between (d) and (a), (e) and (b), and (f) and (c), respectively. (m), (n), (o) The normalized differences between (g)
and (a), (h) and (b), and (i) and (c), respectively.

We fine-tuned the pretrained model to predict the velocity Vs but could not achieve satisfactory convergence. In particular,
when CNN was tested on noisy data, the network did not perform well (Figure 7g). The velocity Vs ranges from 0.8 km/s to 2.25
km/s, and its normalized range is from 0.35 to 1.0, which is wider than that of V5 (Figure 11b). Because the pretraining was done
with Vp, whereas Vs has a different distribution, the model requires more iterations to properly adjust its weights for predicting V5.

Next, the network was fine-tuned to predict the Vp/ Vs ratio (Figure 8e), which ranges from 1.7 to 2.47, and its normalized
values range from 0.7 to 1.0 (Figure 11c). During the fine-tuning process, the model leverages its existing knowledge of V5 to
achieve faster convergence for Vp/Vs.

In another test, we calculated the velocity Vs from the Vp/V5s ratio. Figure 9 compares the Vs predicted directly and calculated
from the Vp/Vs ratio. The better prediction of Vp/Vs yields more accurate estimates of Vs, as discussed in more detail below.
Another way to overcome the issue of slow convergence with a limited number of training samples is to remove the outliers or
non-representative values. Therefore, we reduced the range of Vs from 0.8 - 2.23 km/s to 1.0-1.8 km/s prior to fine-tuning the
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Figure 8. Sections of the Vp/ Vg ratio and the acoustic impedance (IP). The ratio Vp/Vs: (a) the actual model, (c) the model predicted from
the noise-free data, and (e) the model predicted from the noisy data. (g) and (i) The normalized differences between (c) and (a) and (e) and (a),
respectively. The impedance (IP): (b) the actual model, (d) the model predicted from the noise-free data, and (f) the model predicted from the noisy
data. (h) and (j) The normalized differences between (d) and (b) and (f) and (b), respectively.

pretrained model. With this more narrow distribution, the model can converge faster, as the reduced range of the input, helps focus
the fine-tuning process. It takes only 120 training epochs for the model to converge and achieve an accurate Vs prediction for the
noisy data (Figure 10). If the distribution of the target task is different from that of the source task, there are two possible scenarios.
First, if the number of training samples is sufficient for fine-tuning, the network learns the new distribution and converges to an
accurate solution. Second, if the number of samples is limited, the network requires more training epochs to converge.
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100

(e) (f)

Figure 9. Comparison between the directly predicted Vs models and the ones calculated from the predicted Vp/ Vs ratio. (a) The model predicted
from the noise-free data, (c) the model calculated from the Vp / V5 ratio predicted with the noise-free data, and (e) the normalized difference between
plots (¢) and (a). (b) The model predicted from the noisy data, (d) the model calculated from the V5 / V5 ratio predicted with the noisy data, and (f)
the normalized difference between plots (d) and (b).

y (km) y (km) y (km)
0 2 4 0 2 4 0 2
0 0 0
2.0
€ @
kv, 1.5
=g 2 2 £
1.0
(a) (b)
0 -0.10
§ 5 -0.05
N
L0.00

(d) (e)

Figure 10. Sections of the shear-wave velocity. The predictions are made using a reduced range of Vg (1.0-1.8 km/s). (a) The actual model, (b) the
model predicted from the noise-free data, and (c) the model predicted from the noisy data. The normalized differences: (d) between plots (b) and
(a), and (e) between plots (c) and (a).
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Figure 11. Histograms of the reservoir parameters: (a) Vp, (b) Vs, (¢) Vp/V5s ratio, and (d) constrained V. Each parameter is normalized by its
maximum value.

4 DISCUSSION

Implementing multitask learning (MTL) for simultaneous prediction of four reservoir parameters involves a complex interplay
between computational resources and model optimization. The large GPU memory required for such tasks significantly limits the
critical CNN parameters, such as the batch size, which in our study was constrained to 60. This limitation underscores the compu-
tational demands of MTL and highlights the need for efficient memory management strategies.

Moreover, the variable learning rates and the extended duration of training required for each parameter further emphasize the inher-
ent complexity in the simultaneous prediction of multiple properties. In particular, Figure 5 illustrates the challenges in accurately
predicting density up shallow, which is likely caused by the local optimization minima encountered during training. Clearly, it
is essential to strike a balance between extending training to enhance model performance for specific parameters and the risk of
overfitting other parameters.

The trial-and-error nature of neural-network training, driven by the random initialization and subsequent parameter optimization,
is time consuming, especially in MTL. This issue is critical in field-data applications, where it is desirable to include additional
recorded components in the training process. Transfer learning (TL) offers a promising approach for incorporating more features
into the model, thereby enhancing the model’s applicability and making it more flexible for parameter predictions. The resolution
and robustness of these predictions are controlled by the quality and diversity of the training samples, which should encompass
reservoir geometry and thickness, well data, and other geologic and geophysical information. Such comprehensive training data
sets are essential for accurately capturing the time-lapse changes in the reservoir.

In this study, we assumed that each layer is laterally homogeneous. Ongoing research focuses on adapting these methodologies for
field-data applications by properly taking into account heterogeneity and anisotropy. We also plan to employ transfer learning for
processing of 3D surveys using 2D prediction results.

5 CONCLUSIONS

Reservoir monitoring in hydrocarbon production and CO; injection can be conducted through high-resolution estimation of the
elastic parameters and saturation from seismic data. We proposed an efficient data-driven approach to seismic inversion that consists
of multitasking (MTL) and transfer-learning (TL) algorithms incorporated into convolutional neural networks (CNNs) that employ
the GELU activation functions. The proposed methodology improves the trained model’s learning dynamics and generalization
properties. The shared features of the recorded data are extracted to predict one parameter, which is followed by fine-tuning the
pretrained model to predict other parameters. We addressed several key challenges in ML techniques, including mitigation of data
scarcity, efficient model initialization for trainable parameters, and optimization of computational resources.

The methodology is tested on the realistic Kimberlina reservoir model to emulate field-data applications. The P-wave velocity is
predicted for a 2D line (inline) using a CNN that consists of dual encoders and one decoder. Then the pretrained model is fine-
tuned to estimate the S-wave velocity, density, saturation, V»/Vs ratio, and acoustic impedance. The robustness and generalization
of the CNN are validated using the input data contaminated by Gaussian noise. The proposed fine-tuning process also makes it
possible to estimate the medium parameters from data acquired in the crossline direction. The performance of the proposed method
depends on the availability of prior information and the accuracy of the baseline model. Ongoing work includes an extension of this
methodology to 3D seismic surveys with a focus on enhancing the model adaptability for field-data applications.
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