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ABSTRACT
Compared to standard acoustic sensing fibers that are purely sensitive to strain mo-
tions, the proposed Distributed Magnetic Sensing (DMS) fibers employ additional
magnetostrictive materials embedded in the fiber cladding, making them sensitive to
magnetic-field-induced strain motions. DMS offers unparalleled spatial resolution and
cost-effectiveness compared to classical point-wise magnetometers, especially in challenging-
to-access areas. In this study, we explore the magnetic response through theoretical
modeling, the influence of temperature on DMS, and potential geophysical applica-
tions in various borehole environments. This study provides a basic understanding of
the measuring principle of DMS and guidelines for ongoing and future research on
improving and applying DMS to geophysical surveys.
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1 INTRODUCTION

Distributed fiber optic sensing of static strain, dynamic strain, and temperature has become increasingly adopted for time-lapse
monitoring of subsurface and well conditions. The ability to carry out long-term electric and magnetic monitoring campaigns along
with geomechanical, seismic, and temperature monitoring can help us better constrain the geology and fluids in a reservoir, or can
help us detect potential well integrity issues (Alambaugh et al., 2021). While distributed electric sensing is also currently being pur-
sued simultaneously, this report focuses on understanding an in-development fiber-optic sensing technique for measuring magnetic
fields called distributed magnetic sensing (DMS).

Recent advances in fiber optic production technology allow us to embed materials that respond to magnetic fields (e.g. nickel
or Metglas) in single-mode fiber optics while they are being drawn. By embedding these materials in the fiber optic rather than
having an external material, the nickel or Metglas material is protected from degradation, such as the corrosion that can happen in
subsurface CO2 sequestration or other scenarios. When these materials expand or contract in response to a magnetic field, a process
known as magnetostriction, some of that strain is transferred to the fiber core as another source of strain that can be measured with
a distributed acoustic sensing (DAS) interrogator. Subsurface magnetic sensing requires high sensitivity, so Bragg gratings are writ-
ten into these specialty fibers to create discrete reflectors. Changes in the material, spacing, treatment of the material before/during
the fiber draw process, and the amount of embedded material can affect the strength of the fiber response measured by the DAS
interrogator (Dejneka et al., 2024; Hileman et al., 2022).

Because this technique of measuring the changes in a magnetic field with fiber optics is indirect, it is important to be able to
model any non-linearities in the mechanism by which these data are acquired. This modelling capability will be essential to inter-
preting and inverting data from any future field trials of the new sensing system, as well as delineating any constraints on the design
of reliable experiments. This report provides an overview of the magnetostriction mechanism behind the response of the embedded
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materials and presents an overview of 3D simulations of magnetostriction. Specifically, we investigate the anticipated response to
applied magnetic fields at varying amplitudes and frequencies, and the expected changes in response at variable temperatures. This
report focuses primarily on temperature ranges that would be experienced in surface and shallow subsurface tests, but provides a
path forward for higher temperature modelling that could be relevant to deeper scenarios. Further, we simulate expected responses
to several borehole casing scenarios to understand the potential for identifying well integrity issues.

2 THEORY OF MAGNETOSTRICTION

Magnetostriction is the strain induced in a ferromagnetic material by an effective magnetic field, Heff , which includes the applied
magnetic field and fields generated within the material (Cullity and Graham, 2009). Domains within ferromagnetic materials have
magnetization magnitudes at the saturation magnetization value Ms. When a ferromagnetic material is in an ideal demagnetized
state (i.e. all magnetic domain orientations are of the same volume), the material exhibits a net zero external magnetic field. When
an external magnetic field H is applied to the material, the domain magnetic moments M experience a torque per volume which
aligns the overall magnetic moment of the material in the direction of H if ||H|| is large enough to saturate the material. The
Landau-Lifshitz-Gilbert (LLG) equation,

dM
dt

= γ∗(M × Heff )−
α

M

(
M × dM

dt

)
, (1)

describes the dynamics of the total magnetic moment of a ferromagnetic material (Gilbert, 2004; Wieser, 2015), accounting for
damping of the domain motion. In eqn. 1, the constant γ∗ = γ(1 + α2), with γ = ge

2mc
, where e and m are the charge and mass

of the electron, c is the speed of light, and g is the spectroscopic splitting factor (g = 2 for electron spin); and the damping term
α = λ/γM , where λ is an adjustable damping parameter.

In materials that exhibit magnetostriction, the cubic structure is not perfectly cubic (e.g. slightly tetragonal or rhombohedral)
so the material undergoes a change in length ∆l, and a subsequent strain λs = ∆l/l, when the domains are reoriented. The
strain experienced by an anisotropic cubic crystal when magnetized from the ideal demagnetized state to saturation in the direction
defined by the direction cosines α1, α2, and α3 (representing a normalized 3D vector) and measured in the direction defined by the
direction cosines β1,β2, and β3 relative to the crystal axes is
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where λ100 and λ111 are the saturation magnetostrictions in the [100] and [111] crystal directions (Cullity and Graham, 2009).
Assuming the magnetostriction of the material is isotropic simplifies eqn. 2 to
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)
, (3)

where λs is the isotropic saturation magnetostriction and θ is the angle between the measurement direction and the saturated
direction. While magnetostriction is typically not isotropic in materials, approximating the response as isotropic works well for
materials with anisotropic magnetostrictions close in value, like Nickel which has saturation magnetostriction values λ100 =

−46 ppm, λ111 = −24 ppm, and λs = −34 ppm (Hileman et al., 2022) - the negative sign indicates a decrease in length in
the direction of magnetization.

3 COMPUTATIONAL MODELING

3.1 Three-dimensional magnetostriction modeling

Ubermag is an open source micromagnetic modeling package (Beg et al., 2022) that includes more complex modeling capabil-
ities than those implemented in the two-dimensional model. In the two-dimensional model we did not specify the geometry of
the material, the size of the domains, or the other fields that make up the effective field. In Ubermag, it is possible to define a
three-dimensional grid of domains and run simulations from an initially demagnetized state, Figure 1. Ubermag also includes the
demagnetization field, anisotropy field, exchange field, and the Zeeman (applied) field in the effective field. These fields arise in
bulk materials in magnetics and are important to include because they change the dynamics of the magnetic moments and the
magnetostrictive response as a result. The mathematical form of the field energies are (Beg et al., 2022):

wz = −µ0Msm · H, (4)
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Figure 1. (left) Mesh of 3D cells defined in Ubermag. (right) 3D model results for a 100Hz source with an amplitude of 100 kA/m.

we = A(∇m)2, (5)
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wd =
1

2
µ0Msm · Hd. (7)

The energies are the Zeeman energy wz , the exchange energy we, the cubic anisotropy energy wca, and the demagnetization energy
wd. In addition, A is the exchange constant, K1 is the anisotropy constant, H is the external magnetic field, u is the direction of the
axis of anisotropy, and Hd is the demagnetizing field. To solve for the effective field from the energy, we substitute the total energy
Etot into

Heff = − 1

µ0Ms

∂Etot

∂m
, (8)

as in Liang et al. (2014). Substituting the result for Heff from eqn. 8 into eqn. 1 at each time-step allows us to solve for M at each
time-step. The resulting magnetic moment magnitudes are plugged into a version of eqn. 2 replacing all αi with mi (COMSOL,
2023),
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to solve for strain, then the magnitude of the discrete fourier transform (DFT) is taken to create an amplitude spectrum of the strain
response. An example amplitude spectrum is shown in Figure 1 for a source of amplitude 13 kA/m and frequency 100Hz applied
along the z-axis. There is a clear peak at the source frequency along with a double frequency peak and a small harmonic response
at 300Hz. This is a similar response to results seen in the lab, which will be discussed in the next section.

One limitation of the three-dimensional model is that the spatial scale of the cells must be smaller than the width of domain
walls in the material (Abert, 2019)

l =

√
A

Keff
, (10)

where A is the exchange constant and Keff is the effective anisotropy constant. For Nickel, this is on the order of 10−7 m,
meaning the cell sizes must have sides smaller than ≈ 100 nm. This presents an issue for modeling the fiber response since the
magnetostrictive wires have diameters on the order of 10 µm and the complexity of the 3D model increases on the order of n2,
where n is the number of cells, due to the long range nature of the demagnetization field (Abert, 2019). Being limited to small cell
sizes, modeling the actual size of the fiber may be unfeasible with this model, but modeling smaller elements may make provide
initial insights into the trends we expect to observe in field data. Additionally, the time-step used in the solver must be sufficiently
small to satisfy the Nyquist sampling condition of two samples per period of the magnetization vector precessional motion (Scholz
et al., 2003), which has a Larmor frequency of

ω = γHeff . (11)
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Figure 2. Plots showing the variation of the 100Hz and 200Hz peaks for (left) 0.01A/m to 1.02A/m and 10A/m to 98A/m.

The magnetic field strengths tested in the lab are 2 kA/m and lower, resulting in a Larmor frequency on the order of 5000 Hz,
meaning the sampling rate must be 10000 Hz to model the physics correctly. In practice, we implement higher sampling frequen-
cies than the Nyquist limit to ensure numerical accuracy. For lower magnetic field strengths, the sampling rate can be decreased
according to the Larmor frequency.

3.2 Applied Magnetic Field Sensitivity

The amplitude spectrum of the DMS fiber varies significantly with the amplitude of the external magnetic field. To demonstrate
this dependence, a suite of simulations were run from an applied magnetic field amplitude of 0.01A/m to 1.02A/m and from
10A/m to 98A/m. The results of these simulations for a 100Hz source applied to Nickel, Figure 2, demonstrate how the 100Hz
peak response appears at lower magnetic field than the 200Hz peak and increases predictably at higher magnetic field ranges.

The minimum magnetic field amplitude that the DMS fiber can sense in the lab is 50A/m, which is a 100 Hz amplitude
spectrum response at a 100 Hz source frequency. The 200 Hz response appears at a field strength of 400A/m. Both of these
amplitudes are higher magnetic fields than the model predicts, however, the model does predict that the 100 Hz response appears
at lower magnetic fields than the 200 Hz response. The model likely is not capable of predicting the correct magnetic field strength
because of a scale issue - the model is about 1000 orders of magnitude smaller than the fiber magnetic wires. Because of this scale
difference, it is not possible to include the number of domains that would be present in the Nickel rods in reality. Since the domains
have a magnetic field that has a lowest energy state when all domains are aligned, more domains in a system mean that the material
is less susceptible to lower external magnetic fields. This is part of the reason why the model with only eight domains shows a
response to lower magnetic fields than the lab experiments do.

3.3 Temperature modeling

Temperature modeling of the DMS fiber was performed using known relationships between Ms (Cullity and Graham, 2009) and α

(Mankovsky et al., 2013) with temperature, Figure 3. The data from the sources cited was unavailable to us, so values for Ms were
calculated for a given temperature using

Ms = M0 [m− tanh(m/t)] , (12)

where M0 is the magnetization saturation at 0K, m = Ms/M0, and t = T/Tc with Tc representing the Curie temperature. The
data for α as a function of temperature was fit to a Sigmoid function, resulting in the relationship for Nickel

α(T ) = 0.12677279− 0.10035642

(1 + e−0.0851499(T−69.35616788))
. (13)

Figure 4 shows the plots resulting from equations 12 and 13. Comparing to Figure 3, we see that these functions approximate
the data reasonably well. The amplitudes of the first two peaks of the amplitude spectrum produced by the temperature model for
Nickel at an applied magnetic field amplitude of H = 10kA/m and frequency f = 100Hz is shown in Figure 5. There is not a
significant amount of variation in the amplitude spectrum over the temperature range tested, which suggests that the signal does not
show high dependence on temperature fluctuations for this temperature range.
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Figure 3. Plots showing the (left) relationship between temperature and Ms (Cullity and Graham, 2009) (right) and temperature and α (Mankovsky
et al., 2013).

Figure 4. The modeled relationship between (left) Ms and temperature and (right) α and temperature.

3.4 Numerical modeling of magnetic sensing fiber in borehole environments

In the following, we present a series of numerical examples that assume: (1) the measured magnetic-field-induced strain along the
fiber can be accurately converted to the magnetic flux density along a certain direction; (2) the magnetic optic fiber is attached
to the inner casing surface, and the magnetic dipole sources are placed in the center of the well, without being attached to the
casing surface. We explore the response of the magnetic fiber along a vertical borehole under three scenarios: (1) with and without
conductive and magnetic permeable borehole casing; (2) with and without resistive oil layers surrounding the formations; (3) casing
with and without gaps. We are using the open-source SimPEG (Cockett et al., 2015) software to conduct frequency-domain borehole
electromagnetic (EM) simulations. The cylindrical meshes implemented in SimPEG can accurately handle the complex geometry
and properties of casings, facilitating the study of casing effects in various configurations. With the 2D cylindrically symmetric
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Figure 5. The amplitudes of the 100Hz and 200Hz peak for simulations at different temperatures.

meshes, we can simulate a vertically steel-cased well at a small computational cost (approximately 3 seconds per modeling run),
enabling us to rapidly study the potential EM field under various borehole environments.

The first experiment compares the magnetic response in a uniform half-space with and without a vertical steel casing (Figure 6).
The steel casing has a conductivity of 5 × 106S/m, while the background conductivity is 1 × 10−2 S/m. The casing has an outer
diameter of 0.1 m and a thickness of 0.01 m. The relative magnetic permeability µr of the casing is 100. We fix the electromagnetic
(EM) source position at a depth of 1000 m, and the magnetic fiber position extends from the surface down to a depth of 2000 m. The
EM source is a vertical magnetic dipole with a moment strength of 106 A/m2, generating monochromatic EM signals at a frequency
of 100 Hz. Top panel of Figure 7 describes the conductivity models, and the bottom panel shows the magnetic field on the inner
surface of the casing. Since the casing behaves like a waveguide, the magnetic flux density (represented by the cyan line) decays
much slower vertically with the casing than without the casing (represented by the black line in the bottom panel of Figure 7).

One interesting aspect during oil production or CO2 injection is how the oil-water ratio or CO2 saturation change along the
well. Since oil and CO2 are more electrically resistive than water, we examine the sensitivity of the magnetic field along the magnetic
sensing fiber to changes in the electrical properties along the well. We add two resistive layers to the background model (Top panel
of Figure 8) as the monitoring model. The bottom panel of Figure 8 shows the magnetic flux density under the background and
monitoring models, as well as their differential magnetic field. The source and fiber geometry are the same as in the previous
experiment.

Well casings are designed to prevent fluids from different formations from mixing during production or injection operations.
Gaps or cracks in the casing can lead to potential cross-flow of fluids between formations, compromising well integrity and poten-
tially causing leaks. Detecting and monitoring these casing gaps is crucial for maintaining well integrity. In the next example, we
consider a monitoring model with two gaps introduced in the casing (Figure 9). As shown in the bottome panel of Figure 9, the
maximum differential magnetic field directly indicates the location of the casing gaps. By leveraging the sensitivity of EM signals
to changes in electrical conductivity and magnetic permeability, EM methods have the potential to detect and locate casing gaps or
leaks without requiring direct access to the well.

4 CONCLUSIONS

Distributed magnetic sensing technologies are being developed to enable continuous monitoring of surface and subsurface pro-
cesses, but the magnetostriction mechanism that enables their response is governed by a nonlinear equation. Three-dimensional
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Figure 6. Casing geometry. The steel casing has a conductivity of 5× 106S/m, while the background conductivity is 1× 10−2 S/m. The casing
has an outer diameter of 0.1 m and a thickness of 0.01 m.

Figure 7. Top: Conductivity of the borehole model with and without steel casing. Bottom: Time-lapse vertical magnetic flux density on the inner
surface of the steel-cased well.

numerical simulations have enabled us to better model the responses of fibers tested in laboratory settings, but precise results do
rely on several calibrations or material property assumptions. These simulations can be used to predict the amplitude response to
varying magnetic field sources, but further scalability studies are needed for more realistic large-scale simulations. The magne-
tostrictive response does vary with temperature, but our simulations of this response change shows that the variation is relatively
small for typical surface and shallow subsurface conditions (i.e. between -40 C and 50 C), suggesting that this can be optionally
included as a secondary effect in analyzing future field data within these temperature ranges. We consider the potential future appli-
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Figure 8. Top: Conductivity of the borehole model with and without two resistive oil layers. Bottom: Time-lapse vertical magnetic flux density on
the inner surface of the steel-cased well.

cation of well casing integrity evaluation, both with and without fluid layers in the formation, and with and without casing or gaps
in casing. These studies suggest that applications in well integrity monitoring are a likely use case for these distributed magnetic
sensing fibers.
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Figure 9. Top: Conductivity of the borehole model with and without casing gaps. Bottom: Time-lapse vertical magnetic flux density on the inner
surface of the steel-cased well.
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