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ABSTRACT
As large-scale passive data are collected more frequently, we need tools that can more
quickly help us explore possible seismic events in massive seismic data. This paper
presents a new algorithm that uses QR decomposition as a proxy for event detection
in seismic data through coherence analysis. The algorithm requires identified events
to exhibit coherence between sensors across multiple sub-windows or transient high
amplitudes. By employing the QR decomposition, the algorithm streamlines the com-
putation process, enhancing its applicability in real-time event identification scenarios
or improving user interactivity during large-scale data exploration. e show that two key
steps in the typical coherence analysis workflow (i.e. matrix-matrix multiplication and
eigenvalue decomposition) can be condensed into a single step through our use of the
QR decomposition. This results in a faster algorithm. Experimental results demonstrate
the algorithm’s effectiveness in distinguishing seismic events from background noise,
showcasing its potential for practical implementation in seismic monitoring systems.
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1 INTRODUCTION

As seismic instrumentation advances, multiple techniques for detecting and characterizing events have emerged. These include
methods such as Short-Term Average/Long-Term Average (STA/LTA), which rely on amplitude changes, and template matching,
which necessitates pre-existing event templates for identification ((Gibbons and Ringdal, 2006), (Sabbione and Velis, 2010)). These
methods have drawbacks, either in terms of limited applicability to noisy data, or significant computational cost. Coherence-based
methods detect events by exploiting the similarity of recorded events on adjacent sensors. With the increasing prevalence of dense
recording systems like Distributed Acoustic Sensing (DAS), coherence-based methods offer a promising alternative, particularly
when conventional methods prove ineffective.

Coherence-based methods can be used as a way to measure how similar time series recorded by neighboring sensors are,
serving as an indicator for event occurrences. However, a drawback of this approach is its reliance on parameters such as array
spacing to differentiate between coherent events and noise. Therefore, it becomes imperative to carefully select these parameters
based on the targeted events. Seydoux et al. (2016) found that covariance matrices, a closely related technique to the one used
in this report, can effectively identify teleseismic earthquakes and seismic activity from local sources contingent upon the chosen
parameters. When applying these methodologies to DAS data, we have the flexibility to adjust sensor spacing during processing,
considering the frequency range of the events of interest and the potential noise levels, thereby mitigating the risk of false detections.

Our research interest here comprises exploring efficient methods for event detection through coherence analysis, coupled with
compression techniques that enable us to achieve this with minimal data transfer. In this report, we talk about a fast estimation
algorithm and its connection with the conventional approach to coherence analysis. We first describe the traditional implementation
of coherence analysis for an array of sensors, followed by an exploration of QR decomposition and its potential to streamline
computations. Our findings indicate that two of the steps in the process of coherence matrix analysis —matrix-matrix multiplication
and eigenvalue decomposition—can be condensed into a single step by employing QR decomposition resulting in a new, faster
algorithm. This streamlined approach for detection estimation shows effectiveness that is comparable to the conventional method.
We conduct a computational time comparison between these methods to assess their efficacy.
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2 THEORY

COHERENCE ANALYSIS

Coherence analysis is a statistical tool that can be used for evaluating the similarity between two signals. It quantifies the degree
of correlation between signals, with a coherence value of 1 indicating a strong positive correlation, -1 indicating a strong negative
correlation, and values in between reflecting the extent of correlation. For an array of n sensors each recording a time series, a
coherence matrix at any frequency, f , can be constructed which has entries representing the coherence between pairs of signals.
For example, the ith entry of the jth column of the coherence matrix would correspond to the coherence of the signal recorded by
sensor number i with the signal recorded by sensor number j. The covariance matrix, another commonly employed matrix, differs
by its absence of a normalization factor, resulting in a range spanning from ∞ to −∞. The use of these matrices in event detection
originates from Lawley (1956), which proposes that the eigenvalues of coherence matrices correspond to the sizes of independent
signals within the data. In seismic data analysis, the largest eigenvalues typically represent the coherent signals, whereas the smaller
ones often correspond to background noise (Seydoux et al., 2016).

The coherence of two signals, x, and y can be computed at frequency, f as

Cx,y(f) =
|E[Px,y(f)]|2

E[Px,x(f)]E[Py,y(f)]
(1)

where Px,y(f) is the cross-spectral density between x(t) and y(t) at frequency, f , while Px,x(f) and Py,y(f) represent the auto-
spectral density of x(t) and y(t), respectively. The spectral densities are defined as:

Px,y(f) = Fx(f)Fy(f) Px,x(f) = Fx(f)Fx(f) Py,y(f) = Fy(f)Fy(f)

where Fx(f) and Fy(f) represent the Fourier transform of x and y at frequency f and · refers to the complex conjugate operation.
In certain applications, coherence analysis aims to assess the similarity between two signals that do not have a previously well-
understood relationship, such as in studying the relationship between electroencephalogram (EEG) and electromyogram (EMG)
signals to understand the connection between the brain and muscles (Coffey et al., 2021). In those cases, we need a statistically
sufficient number of samples to achieve reliable estimations. However, when detecting seismic events, our focus lies in identifying
short-term coherence between offset signals that should appear somewhat similarly on nearby sensors. As a result, we can achieve
the desired results by finding the average within small averaging windows. In such scenarios, we can use the Welch’s method within
each averaging window:
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Where n is the number of sub-windows within the averaging window. Hence, for each sub-window, we need the Fourier transform
value at frequency, f for x and y, that is, F (i)
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The coherence matrix can be constructed as,
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Where,
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H is the hermitian operator, and |.|2 is applied element-wise to construct C(f).

Using a coherence matrix for event detection

After the computation of the coherence matrix, we use it as an event detection tool by finding and studying the decay of the
eigenvalues of the coherence matrix. If a few eigenvalues significantly surpass others by orders of magnitude, we attribute them
to individual events. Conversely, if the eigenvalues exhibit comparable magnitudes, they predominantly signify background noise.
There are various ways of quantifying this with a detection parameter. In this report, we use,

detection parameter =
λ1∑n
i=1 λi

(6)

Where λk is the kth eigenvalue when the eigenvalues are ordered by magnitude. In this case, once we set a threshold, we can
classify whether or not there is one significant event.
In summary, we carry out the following steps for event detection to each averaging window separately.

(i) Divide the averaging window into w sub-windows.
(ii) For each sub-window, (i),

• Compute the Discrete Fourier Transform for each sensor, x
• Use the Fourier transform value corresponding to frequency f to compute U

(i)
f (x)

(iii) Use the computed values to build the matrix, Uf .
(iv) Using eigenvalue decomposition of C(f) =

∣∣UfU
H
f

∣∣2, compute the detection parameter.
(v) Choosing a threshold, use detection parameter to classify events and background noise

This report is focused primarily on finding a more efficient approximation than this standard technique, but that also maintains
sufficient accuracy for practical applications.

QR Decomposition

The QR decomposition factors a matrix into two constituent matrices: a unitary matrix, Q, and an upper triangular matrix, R. In
this decomposition, the columns of Q embody a set of orthogonal directions that capture all the information within the original
matrix. The entries of R represent the proportion of each of the columns in Q contained in the columns of the original matrix.
Specifically, the ith entry of the jth row of the R matrix represents the magnitude of the jth column of the Q matrix contained in
the ith column of the original matrix. The Q matrix can be constructed by choosing one column of the original matrix, and then
finding other directions in the original matrix perpendicular to this direction.
When finding the eigenvalue decomposition of C(f), we want to find a unitary matrix of eigenvectors, Λ and a diagonal matrix of
eigenvalues, D such that,

C(f) = ΛDΛT (7)

We propose that if the columns of Q approximate the direction pointed to by the eigenvectors of C(f), we can approximate C(f)

as:

C(f) ≈ QD̃QT (8)

Let,

Uf = QR
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Then,
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Since Q is unitary, QHQ = I. This gives,

C(f) = QRRHRRHQH

= Q
∣∣∣RRH

∣∣∣2 QH

Comparing this with equation 8 gives,

Q
∣∣∣RRH

∣∣∣2 QH ≈ QD̃QT

So now assuming that RRH is approximately diagonal, the eigenvalues of the coherence matrix can be approximated by the
diagonal of RRH . That is,

D̃ ≈ diag(
∣∣∣RRH

∣∣∣2) = diag(RRH)2

Through computational experiments, we realized that diag(RRH) works as well as diag(RRH)2 and produces results closer to
the traditional methods. Hence, we use diag(RRH) in our algorithm.

Computational comparison

Using random matrices, we explore the computational efficiency of the proposed algorithm in comparison to two other techniques
of calculating the exact or approximate eigenvalues of the coherence matrix. The matrices used here have a column dimension
half the size of the row dimension, reflecting the anticipated scenario in the case of streaming DAS data where there are more
sensors (rows) than time sub-windows (columns). The random matrix here is analogous to Uf as used in computing C(f) above.
We compute the eigenvalues as we would in the traditional method. Then we approximate the eigenvalues using our algorithm
-which uses the QR decomposition- and by using the square of the singular values of Uf . The results of this test are summarized
in Figure 1. The x axis shows the number of rows in the random matrix versus the computation time on the y axis. Traditional
computation methods exhibit the longest processing times, followed by an SVD-related approach. Conversely, the new QR-based
approach demonstrates the shortest processing time.

3 EXPERIMENTS

DATA

The data used in our computational experiments here was recorded in 2016 at the Brady Hot Springs site in Nevada as part of an
investigation into the feasibility of using Distributed Acoustic Sensing (DAS) for cost-effective monitoring of geothermal reservoirs.
The data consists of approximately 8km of fiber optic cable deployed horizontally in a shallow trench, with 1m channel spacing
resulting in around 8000 channels recording at 1000 samples per second (Coleman, 2016).
In choosing data to test our algorithm on, we select snapshots of data from the Brady Hot Springs dataset that provide anticipated
responses for both events and background noise when subjected to coherence analysis. For the background noise, we use data
recorded between 12:00:18 AM and 12:01:18 AM on March 12, 2016, as shown in 2 (bottom). For microseismic event data, we use
data recorded between 8:38:18 AM and 8:39:28 AM on March 14, 2016, shown in 2 (top). This data contains three microseismic
events that happen within the space of about five seconds from each other according to the event catalog provided by Li and Zhan
(2018). The selected channels are chosen from a linear part of the array from channels 3100 to 5100.
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Figure 1. Computational test for the efficiency of the proposed algorithm in comparison to other alternatives. The data used are random matrices of
size dimension rows by 0.5*dimensions columns.

Test of coherence for detection

From the data described above, we select 200 sensors at a regular interval of about 10m, and using a sub-window length of five
seconds and no overlap between sub-windows, we compute the detection parameter at the various frequencies using the traditional
coherence analysis approach. This result is summarized in figure 3. The detection parameters for the background noise are depicted
in yellow, whereas those for the microseismic events are represented in violet. It’s notable that the background noise curve exhibits
a predominantly flat profile, with the exception of a few spikes. One particularly significant spike occurs at 7.5 Hz, which is also
prominently visible in the events curve. This spike likely arises from a consistent noise source present across the whole dataset.
Conversely, the event curve shows high values within a wider frequency range below 50 Hz, which peaks around 20 Hz. Our goal
is to make similar plots with distinctive noise and event profiles using a more efficient algorithm.

Next, we redo the same computational experiment using the method of QR approximation outlined above. The result of this
test shown in figure 4 shows a similar pattern as seen in figure 3. This pattern indicates a clear distinction between data containing
just background noise and data containing a microseismic event.

4 DISCUSSION

As shown in figures 3 and 4, the approximation method proposed here provides a large separation between events and background
noise across frequencies, which is qualitatively similar to the traditional method in differentiating between the events and back-
ground noise. By studying the R matrix, we gain some insight into some properties of the background noise and event signals that
help this method provide reasonable approximations. The rows and columns of the R matrix do not correspond directly to either
the time or sensor component of the data although it has the dimensions ‘number of sub-windows × number of sub-windows‘.
However, as stated previously, the ith entry of the jth row of the R matrix represents the magnitude of the jth column of the Q
matrix contained in the ith column of the original matrix. Hence, we can relate the columns of R to the various sub-windows and
the rows to the columns of Q.
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Figure 2. Data used for experiments. The data above contains three microseismic events that happen within the space of about five seconds from
each other, the first of which appears at about 50 seconds. The image below shows data recorded between 12:00:18 AM and 12:01:18 AM on March
12, 2016, and is expected to contain only background noise.
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Figure 3. Detection parameter at various frequencies for microseismic activity (violet) and background noise (yellow). The detection parameter is
generally low for the noise except at 7.5 Hz. That of the event shows high magnitudes in a wide frequency band below 50 Hz

First, looking at the R matrix for the 7.5 Hz noise (figure 5 (top)), we observe a prevalent presence of strong components in the
direction of the first two columns of Q, as evident from the first two rows of R. In the bottom image of Figure 5, we further note that
the approximate eigenvalues corresponding to the first two sub-windows significantly surpass those of others, meeting the criterion
for classification as an event. On the other hand, upon inspecting the R matrix of background noise (figure 6), we do not see any row
displaying notably larger values across multiple entries. This underscores the incoherence of such noise types. Consequently, we
can say that one condition for the classification of events through this approximation of coherence analysis is its coherence across
sub-windows.

Next, we can inspect the R matrix corresponding to the recognized event shown in Figure 7. Here, we observe low amplitudes
across all entries, except for two diagonal entries corresponding to the sub-windows where the events transpire. The corresponding
plot for the approximate eigenvalues reveals elevated values precisely at these locations. Since we don’t see any pattern of coherence
here, the simple explanation for the recognition of this event is the increase in magnitude within the frequency band of the event
within the respective sub-window. This gives us an alternate condition under which some signal might be classified as an event
using the algorithm provided.

5 CONCLUSIONS

We introduced an algorithm relying on QR decomposition, offering an efficient approximation of coherence-based event detection.
This method effectively identifies events characterized by coherence across multiple sub-windows or transient high amplitudes.
Extensions of this algorithm could involve the creation of streaming versions capable of real-time event identification. This could
be particularly important for applications where a limited subset of data associated with potential microseismic events could be
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Figure 4. Detection parameter approximated with QR decomposition at various frequencies for microseismic activity (violet) and background
noise (yellow). Like in the normal approach, the detection parameter is generally low for the noise except at 7.5 Hz. That of the event shows high
magnitudes in a wide frequency band below 50 Hz.

telemetered from the field elsewhere for expert analysis. Another extension that is an avenue of interest lies in exploring compressed
formats that can accompany this algorithm, facilitating event search within compressed versions of extensive archived data, which
could provide cost reductions for the management and sharing of large DAS data archives.
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Figure 5. R matrix for the recurrent noise at 7.5Hz (top) and the corresponding ”eigenvalue” approximations (bottom). The first two rows have
generally high amplitude across all columns. This is an indication of the persistence of the noise in time. The approximate eigenvalues are increased
in the first two entries which relate to the coherent noise and hence this is classified by the algorithm as an event.
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Figure 6. R matrix for the background noise (top) and the corresponding ”eigenvalue” approximations (bottom). Unlike the case of the coherent
noise, none of the rows in the R matrix exhibit high magnitudes across the columns. This shows the incoherence of this noise. Consequently, the
eigenvalue estimates vary very little in magnitude and hence this would be classified rightly as noise.
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Figure 7. R matrix for the microseismic event (top) and the corresponding ”eigenvalue” approximations (bottom). This shows generally low
magnitude except for the columns corresponding to the sub-windows within which the events occur. We don’t see much coherence here but the
increase in amplitude results in a high ”eigenvalue” and hence this was classified rightly as an event.
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