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ABSTRACT

Compressive sensing (CS) is an alternative to regular Shannon sampling capable of capturing the

same amount of information about seismic wavefields from much reduced measurements. It relies

on randomized sampling patterns and a sparse data representation in a domain of interest to re-

construct the regularly sampled object. This technology applied to land seismic acquisition design

promises to deliver the same data quality as a regular acquisition with fewer samples or superior

data quality with the same number of samples. Compressive sensing is a strong contender for help-

ing to overcome some of the challenges associated with land seismic data, providing the ability to

affordably record the intricate wavefields propagating in the near surface without aliasing. Record-

ing high-quality non-aliased wavefields can lead to significant improvements in the understanding

of the near surface and in suppressing noise. However, near surface wave phenomena tend to prop-

agate with low velocities and contain the majority of the source-generated energy, making the much

weaker reflection signals barely discernible. This results in data that are rich in high wavenumber
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content and have amplitudes of interest that span several orders of magnitude. When dealing with

high dynamic range non-stationary data, the Fourier domain is not optimal for providing sparse

representation - a necessary condition for successful application of compressive sensing. In con-

trast, a discrete complex wavelet transform can localize high energy features, has good directional

selectivity, and is near-shift invariant. Combined, these properties allow complex wavelets to rep-

resent detail-rich wavefields with high dynamic range in a compact form which is essential for a

sparsity-promoting reconstruction.

Another important ingredient of a successful CS data reconstruction is the choice of an ap-

propriate sparsity-promoting algorithm. Since complex wavelets provide a multiscale signal repre-

sentation, global approaches that simply rely on the distribution of high energy coefficients in the

transform domain are not the best choice. To account for differences in coefficient energy distribu-

tions at different decomposition levels of the complex wavelet transform, we develop a scale- and

orientation- dependent iterative soft thresholding scheme (IST) for reconstructing land wavefields.

Our approach requires little parametrization, is easy to implement, and robust to reconstructed wave-

field sampling grid and dynamic range. We test the developed soft thresholding scheme on different

wavefields with randomly missing traces, and compare the data reconstructions to the spectral pro-

jected gradient solver and projection onto convex sets. We quantify the reconstructions by a direct

comparison of Fourier coefficients between fully sampled and reconstructed wavefields. Taking

log10 of Fourier coefficients prior to computing the quality metric de-emphasizes the importance of

magnitude match while highlighting Fourier coefficient support accuracy which usually translates

into good structural fidelity of reconstructed data. We find that our IST performs consistently among

all examples, yielding high structural fidelity while performing gentle denoising.
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INTRODUCTION

Land seismic data suffer from a number of quality issues, such as low signal-to-noise ratio, phase

distortions, or environmental noise. The majority of these problems stem from the near surface noise

(Regone, 1997) and can be addressed by acquiring non-aliased wavefields. However, achieving

this goal following the classical sampling theorem (Shannon, 1948; Jerri, 1977) is prohibitively

expensive due to the required trace density. The near surface often consists of loose soil and poorly

consolidated sediments, giving rise to strong and slow surface waves, guided waves, and scattering

noise, especially in presence of lateral heterogeneities (Stork, 2020). The waves traveling in the

near surface are only sensitive to the upper 10s or 100s of meters and provide no information on the

deeper structure and are considered noise for most imaging applications. However, it is recognized

that high fidelity recording of the surface waves is valuable in building the near surface models and

computing reliable static corrections (Socco et al., 2010; Krohn and Routh, 2017; Monk, 2020). The

need to record non-aliased surface waves is thus twofold: 1) to constrain the near surface model and

2) to remove them from seismic records without compromising the significantly weaker reflections.

The sampling needed for regular non-aliased recording is dictated by the slowest phase veloc-

ity expected in the seismic record and the highest frequency present in that signal. Figures 1a and

1b show examples of densely sampled land records with their corresponding FK spectra in Fig-

ures 1d and 1e. Note that the strong energy associated with surface waves has phase velocities

below 200 m/s and reaches frequencies of 50-60 Hz. In these scenarios, the regular sampling inter-

val would have to be less than 2 m which is not feasible for large scale surveys: terrain obstacles and

access restrictions often prevent placement of sources and/or receivers at desired locations. Stork

(2023) argues that some locations for sources or receivers can be predicted as noisy and problem-

atic prior to the survey, furthering the case for deliberate irregular acquisition. Enabled by recent
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advances in nodal acquisition technology (Freed, 2008; Manning et al., 2018), compressive sensing

(CS) emerges as a feasible methodology for acquiring data on an irregular grid and with smaller

channel count than required for a regular survey, allowing for recovery of non-aliased wavefield on

a regular grid as a post-acquisition step.

Developed in the signal processing community, CS is one possible solution to the problem of

retaining the needed information about the signal of interest from reduced measurements. Early

works by Candès et al. (2006a); Donoho (2006) establish the CS theoretical framework. There

are two main elements to the CS approach: selection of sampling scheme that is as incoherent as

possible with respect to the domain in which data are considered sparse (Candès and Romberg,

2007; Candès and Wakin, 2008), and the appropriate choice of reconstruction strategy.

Different sampling schemes were considered for geophysical applications. Hennenfent and Her-

rmann (2008) show that for localized transforms such as curvelet transform it may be beneficial to

constrain randomized sampling with the maximum gap size, ensuring that there are no regions con-

taining only zeros within the entire operator support. Naghizadeh and Sacchi (2010) investigate

multidimensional sampling operators in the Fourier domain and conclude that randomly sampled

multidimensional data should only suffer from a minor spectral distortion. Jiang et al. (2018) design

a CS field trial defining their source and receiver sampling locations on regularly indexed grid ac-

counting for access restrictions and implementing gap size control while minimizing aliased energy

in the sparse domain. Though the benefits of CS for seismic data acquisition have been demonstrated

(Mosher et al., 2017; Jiang et al., 2019; Blymyer et al., 2021), finding the optimal reconstruction

strategy for specific sampling scheme and sparse domain remains an open research area.

One of the most popular choices for a sparse domain in seismic data acquisition and reconstruc-

tion is the Fourier domain. Liu and Sacchi (2004) introduce minimum weighted norm interpolation
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with spectral weights derived directly from data and adjusted iteratively. Trad (2009) extend the

reconstruction approach to five dimensions. Though memory-consuming, such an extension is par-

ticularly favorable for seismic data sparse recovery: 5D objects tend to be more sparse than 2D

or even 3D objects. Because wavefields usually vary the fastest along time, and less rapidly over

space, adding spatial dimensions (sources and receivers) introduces reciprocal information, con-

tributing to the sparsity of the entire object. For the same reason, successful reconstruction of 2D

gathers tends to be more challenging, particularly on land, where amplitudes can vary by several or-

ders of magnitude over short distances. The gathers shown in Figures 1a and 1b are examples of 2D

land wavefields showcasing that particular feature which we highlight by using a semi-logarithmic

color normalization available in matplotlib (Hunter, 2007). The strongest energy is concentrated in

the source region and can be four orders of magnitude higher than the energy 200 m away. For con-

trast, we also show a window from a synthetic gather in Figure 1c. Note that, though the wavefield

is intricate, the amplitude variability over distance is not significant. High dynamic range objects

such as raw land seismic wavefields containing near offsets are not well-approximated as sparse

in the Fourier domain (Pawelec et al., 2021). The FK spectra in Figures 1d and 1e illustrate why:

rapid energy decay introduces large number of non-zero Fourier coefficients, and setting these co-

efficients to zero leads to substantial signal distortions. As a result, Fourier-based reconstructions

require data windowing, range compression, or working on a single frequency slice at a time. The

discrete complex wavelet transform (CWT) does not suffer from this problem. Complex wavelets

are localized in time and space and have directional sensitivity (6 directions in 2D and 28 directions

in 3D). With linear computation time and only 2D redundancy for D−dimensional signals, com-

plex wavelets are particularly attractive for representing and analyzing non-stationary signals. In

particular, CWT found applications in denoising (Julayusefi et al., 2012; Peng et al., 2014; Yu et al.,

2017, 2022) and discontinuity detection (Liang et al., 2019), but its use for data reconstruction is
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not well-studied despite indications that it shows promise, outperforming some popular contestants

such as curvelets (Li et al., 2014; Pawelec et al., 2021).

Since complex wavelets can sparsely represent high dynamic range wavefields, they allow for

reconstructing detail-rich land records without windowing or amplitude processing (i.e. gain or

normalization). However, reconstruction success strongly depends on the reconstruction approach.

The basis pursuit with projected spectral gradient (SPGL1) method (van den Berg and Friedlander,

2009, 2011) is a common choice for solving sparsity-promoting regularization problems because it

is readily available and can handle complex numbers. In seismic interpolation problems, a popular

data reconstruction strategy is projection onto convex sets (POCS) due to its ease of implemen-

tation and relatively straightforward parametrization (Abma and Kabir, 2006; Gao et al., 2013).

We show that yet another approach, an iterative soft thresholding (IST)(Donoho, 1995; Daubechies

et al., 2004), can match or better the reconstructions obtained from SPGL1 and POCS, as demon-

strated by Fourier domain SNR. Though iterative soft thresholding with wavelets, often referred to

as ‘wavelet shrinkage’ (Donoho et al., 1995), has been successfully used in image restoration prob-

lems, we are not aware of its application to seismic data reconstruction. Our main contribution is

developing a strategy for scale- and orientation-dependent thresholding that is inspired by the link

of the mixed norm minimization problem with ℓ1 constraint to the maximum a posteriori estimate

with a Laplacian prior (Alliney and Ruzinsky, 1994; Tibshirani, 1996; Figueiredo et al., 2007). The

only parameter required for the initial threshold estimation is the noise standard deviation σn. We

show that this parameter can be estimated directly from data, yielding threshold values that converge

on a good reconstruction. As a result, IST is easy to use and implement and yields high-quality re-

constructions. Furthermore, if one adjusts the stopping criterion appropriately, IST can also be used

as a denoising tool.

This manuscript begins with a brief review of the basic properties of the complex wavelet trans-
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form and introduces the intuition behind correspondence of scales and orientations and Fourier

frequency-wavenumber bands. Next, we discuss the compressive sensing framework and the it-

erative thresholding approach. We then show reconstructions for randomly decimated wavefields

with 50% missing traces which highlight the favorable qualities of soft thresholding and POCS.

Finally, we summarize our findings and conclude that iterative soft thresholding is the optimal

complex-wavelet domain reconstruction strategy, easy to implement, and capable of reconstructing

structurally-consistent wavefields.

COMPLEX WAVELET TRANSFORM

The discrete complex wavelet transform (CWT) extends the real wavelet transform by introducing

several desirable qualities absent from a critically sampled real wavelet transform (Selesnick et al.,

2005). First, unlike real wavelets that exhibit oscillatory behavior around singularities, the mag-

nitude of CWT is consistently high around such features, allowing for more intuitive coefficient

interpretation and feature identification. Second, CWT is near-shift invariant:, i.e., small signal

shift causes only a minor change in coefficient magnitude with a near-linear phase encoding of the

shift amount. Thus, this property limits the number of possible coefficient patterns introduced for

example by shifting the sampling matrix, yielding more predictable reconstruction results. Third,

complex wavelets in two and more dimensions offer enhanced directional selectivity, avoiding the

‘mixing’ of directions characteristic of the real transform (e.g. its inability to distinguish between

±45◦). Finally, CWT is less sensitive to coefficient aliasing that results from transform implementa-

tion via an imperfect filter bank (filters do not completely attenuate signal’s spectral content outside

of filter’s pass band).

While CWT is a redundant transform, the redundancy factor does not depend on scale and is 2m
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for m-D signals (Kingsbury, 2001; Selesnick et al., 2005). Similarly to the Fourier transform, when

CWT is used for analyzing real-valued signals, coefficient symmetries can be exploited, allowing

for memory savings with the right transform implementation. We use CWT implementation via

dual-tree filter bank of real wavelet filters, with the two tree branches providing real and imaginary

parts of complex coefficients. The filters used for CWT must meet stringent design criteria including

perfect reconstruction and jointly yielding an approximately analytic transform. Kingsbury (2001)

and Selesnick (2002) provide detailed requirements.

The orientations in the complex wavelet transform are related to the idealized Fourier domain

support of each wavelet. The common interpretation of these orientations in 2D is related to fea-

tures oriented at specific angles: ±15◦, ±45◦, and ±75◦. However, while such interpretation may

be helpful for natural images, it gives little insight for seismic data with spatial and temporal di-

mensions. Thus, it is helpful to represent complex wavelet coefficients on their idealized Fourier

domain support. While the coefficients at specific scale and orientation are supposed to represent

signal features from specific octave band, they can also contain some frequency and wavenumber

information outside of that band because wavelets are not perfectly analytical and filters imple-

menting the transform not perfect. Despite that, showing CWT coefficients in the Fourier space

offers valuable insight. Figure 2 visualizes coefficient magnitudes for a transform of the wavefield

from Figure 1b before and after random trace decimation. The correspondence of CWT’s angles to

more natural phase velocities is not simply that steeply dipping events correspond to high angles.

Instead, the highest concentration of complex wavelet coefficients corresponding to a particular dip-

ping event depends on spatial and temporal sampling. Since wavefields are frequently oversampled

in time, one may want to resample seismic data such that all sampling dimensions (space and time)

have usable information up to their respective Nyquist wavenumber or frequency, allowing for better

representation of specific wavefield features in the complex wavelet domain.
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Note that complex wavelet coefficients in Figure 2 are displayed on logarithmic scale. The com-

mon wisdom that high energy coefficients correspond to high energy events holds true. Trace dec-

imation introduces artifacts, but rather than being spread randomly throughout the whole domain,

these effects are fairly localized. At the finest scale, we see high energy coefficients introduced for

high wavenumber, low frequency quadrant (top left corner marked by a yellow box). Figures 2c

and 2d are a zoom-in at the scale and orientation marked by the box. Coefficients are plotted on the

same color scale, showing that after random trace decimation, missing trace magnitudes are weak-

ened, while the magnitudes representing the remaining traces are strengthened. The strengthening

is likely because gaps in the wavefield are perceived as singularities. This furthers the case for soft

thresholding: we would like to rebuild coefficient magnitudes inside gaps while weakening them

for the available data. A sparsity promoting algorithm that simply seeks to preserve the high energy

coefficients in the transform domain while disregarding weak coefficients as noise is likely to rein-

force data discontinuities. By driving these weak energy coefficients corresponding to gap locations

to zero we may ultimately prevent the recovery of the missing information. One way to counteract

that is to introduce a low resolution initial estimate (Gorodnitsky and Rao, 1997).

COMPRESSIVE SENSING

Compressive sensing is a sampling / sensing paradigm allowing for recovery of signals from incom-

plete measurements (Candès et al., 2006a; Candès and Tao, 2006). The key assumption is that the

target signal is or can be approximated as sparse in some representation, and that it is sampled in the

right way. Sparsity means that the signal’s information content can be expressed in a concise form,

for example by encoding locations and values of large wavelet coefficients in image compression

problems (Taubman, 2002). The concept of ‘right sampling’ is related to the relationship between

the sensing basis - ‘the data domain’ in the case of seismic acquisition - and the representation basis
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- data representation in the sparse domain. Formally, that relationship is described by coherence µ

µ(Φ,Ψ) =
√
n · max

1≤k,j≤n
|⟨ϕk, ψj⟩|, (1)

where ϕ and ψ represent basis functions from sensing and representation basis, respectively. When

the two bases have correlated elements, the coherence is large. In general, it is desirable to find

the pairing of bases for which the coherence is as small as possible, i.e., the bases that do not have

correlated elements. The combination of spikes in the physical domain and the Fourier basis has

maximal incoherence, hence one of the reasons for its popularity. Wavelet transforms are local;

when used as a sparse basis for signals acquired with random spikes, the sampling artifacts should

not spread through the whole domain. It leads to an interesting conundrum for compressive sensing

of seismic signals. From a practical point of view, the non-uniform sampling (i.e., either placing

the receiver and/or source on the grid or skipping the sampling location altogether) is the easiest to

achieve for seismic acquisition. Additional constraints can be placed on the geometry, for example

to limit the gap size for the benefit of reconstruction strategies or to account for natural obstacles.

For this type of sampling, Fourier representation seems like a natural choice. However, if the goal

is to recover raw high dynamic range records, the Fourier basis cannot sufficiently sparsify such

signals. Complex wavelets are less ideal from the coherency point of view, but provide significantly

sparser wavefield representation, making them a viable alternative to the Fourier basis.

Once the sensing and sparse bases are selected, the underlying signal can be recovered by a

sparsity-promoting algorithm. There are many possible choices that fall into at least two categories:

greedy pursuits that approximate signals looking for locally optimal representations one coefficient

at a time (Tropp, 2004; Tropp and Gilbert, 2007; Needell and Tropp, 2009) and convex relaxation

methods that solve a convex optimization problem that approximates the target signal (Daubechies
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et al., 2004; Candès et al., 2006b; van den Berg and Friedlander, 2009, 2011). The convex optimiza-

tion usually uses the ℓ1 norm to enforce the sparsity constraint and is formulated as

min ∥α∥1 s. t. ∥d− SΨHα∥22 ≤ ϵ, (2)

where α is a coefficient vector in the sparse domain, S is the sampling matrix, Ψ is the sparsifying

transform, and d is the recorded data. Basis pursuit and iterative soft thresholding fall into this latter

family of algorithms. Projection onto convex sets (POCS) falls into the greedy pursuit family.

ITERATIVE SOFT THRESHOLDING

Wavelet thresholding, sometimes referred to as ‘shrinkage’ (Donoho et al., 1995; Chambolle et al.,

1998) is a well-established technique used for image restoration (Donoho, 1995; Bioucas-Dias and

Figueiredo, 2007; Raj and Venkateswarlu, 2012) and aims to recover a high-quality image from

degraded samples, with degradation that can be purely due to noise, or blurring, or both. Iterative

soft thresholding also arises naturally as a way of solving a mixed norm minimization problem:

min
α

∥d−Gα∥22 + λ∥α∥1. (3)

In the context of complex wavelet seismic data reconstruction, G = SΨH , with sampling matrix S,

and inverse complex wavelet transform ΨH , while α represents the complex wavelet coefficients

of fully sampled wavefield. λ is the regularization parameter that in the IST fulfills the role of

threshold. The algorithm iterations involve matrix-vector multiplications with G and GH followed

by the shrinkage / soft threshold step (Chambolle et al., 1998; Figueiredo and Nowak, 2003; Beck

and Teboulle, 2009):
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αk+1 = Tλt
(
αk − 2tGH(Gαk − d)

)
, (4)

where t is the step size and the soft thresholding operator is defined as

Tλ(α)i = (|αi| − λ)+sgn(αi) =



αi + λ for αi ≤ −λ

0 for |αi| < λ

αi − λ for αi ≥ λ

, (5)

with the threshold λ. Note that this operator is defined for real-valued functions, however, the

extension to complex numbers is straightforward. Let αi = rejθ. Then, the complex thresholding

operator is simply Tλ(rejθ) = Tλ(r)ejθ (Daubechies et al., 2004).

Determining thresholds appropriate for a specific problem can be a challenge. The most com-

mon approach is to find a global threshold, or in other words, a single threshold value that is applied

to all coefficients. While performance of such an approach is reasonable if the noise is stationary,

the results can quickly deteriorate when the noise power varies from sample to sample (Lo and

Selesnick, 2006). For instance, signal-to-noise ratio for seismic data depends on offset, and the

disturbance introduced by irregular sampling does not affect all complex wavelet decomposition

coefficients equally (Figure 2b). Therefore, introducing scale- and orientation-dependent thresholds

has merit because it accounts for different coefficient energy levels among transform scales and ori-

entations. The question remains: how does one determine the appropriate thresholds? The answer

lies in the link of the mixed norm optimization problem from equation 3 to the probabilistic frame-

work (Alliney and Ruzinsky, 1994; Tibshirani, 1996; Figueiredo et al., 2007). From the Bayesian

perspective, one can view equation 3 as a maximum a posteriori solution to finding α from noisy
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observations

d = Gα+ n, (6)

where the noise n is assumed to be Gaussian and white with variance σn, and α belongs to a Laplace

distribution. Under these assumptions, Lo and Selesnick (2006) suggest the following threshold

definition

λ =

√
2σ2n
σw

, (7)

where σn is the standard deviation of the noise and σw is scale- and orientation-dependent standard

deviation for the wavelets coefficients with a zero-mean Laplace distribution (Selesnick, 2009).

Chang et al. (2000) advocate for a similar threshold but without
√
2 factor, providing full derivation

and proving its near-optimality yielding denoising results within 5% mean squared error of the best

soft thresholding benchmark. Although originally intended for natural image denoising, λ = σ2
n

σw
is

well-suited for seismic data reconstruction within iterative soft thresholding framework, provided

that parameters σw and σn are selected appropriately. As suggested by Selesnick (2009), σw can

be estimated as σ̂w =
√
max(E[|α|2]− σ2n), 0, with α representing noisy wavelet coefficients at

specific scale and orientation. The noise level σn can be estimated as median absolute deviation

(MAD):

σ̂n = k · 1.4826 ·median(|αi − α̃|), (8)

where α̃ is the median of wavelet coefficients at specific scale and k is the empirically selected

integer scaling factor. MAD is a robust statistical estimator and a popular choice when the noise is

unknown (Donoho et al., 1995). A numerical constant of 1.4826 is related to the Gaussian distri-

bution assumed for the noise. Since the imprint of sampling in the complex wavelet domain is the

smallest for the coarsest scale, we recommend using the coarsest available scale with all orientations

to obtain the value of σ̂n, as in examples shown here. The choice of k depends on the level of data
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decimation and the amplitude of events surrounding the gap. We find that values of k greater than

10 are required when there are substantial gaps in high amplitude features.

DATA RECONSTRUCTION EXAMPLES

To assess the performance of complex wavelet domain reconstruction, we randomly decimate 50%

of the traces for wavefields shown in Figure 1. The three wavefields are used to avoid drawing

conclusions from potentially biased results. We opt against introducing gap size control in this

instance to better understand what the reconstruction limitations are. Note that the Fourier spectra

of the tested wavefields indicate that they are critically sampled or suffer from minor aliasing. This

is an important point because we might suffer potential information loss, particularly if significant

gaps happen to fall in the near offset region where the energy concentration is high and events

steeply dipping.

Each wavefield has the same number of samples in time and space and therefore the gap lo-

cation indices are also the same in each scenario. The peak amplitude is 1 in all cases, but the

minimum non-zero amplitude differs and is 1.48 · 10−10, 4.86 · 10−11, and 1.53 · 10−8, respectively,

clearly showing that wavefields have different dynamic ranges which impacts the reconstruction.

Recall that highest energy wavelet coefficients correspond to high energy concentrations in data -

however, there is also sampling noise resulting in relatively high coefficients in some places and

near zero coefficients in others. The reconstructions should, ideally, start with the strong events and

progressively stretch towards the low amplitude events while reducing sampling imprint on data.

The bigger range of data to be reconstructed, the more iterations with high initial thresholds the

reconstruction may need to restore events of interest.

The large dynamic range of the wavefields is also the reason to opt for Fourier domain rather
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than data domain quality assessment. Any single number describing pixel-by-pixel differences be-

tween two objects can be misleading and counter-intuitive to human observer’s perception, espe-

cially when large distortions or gaps are introduced (Eskicioglu and Fisher, 1995). That assessment

is further compromised when both high and low amplitude features of an object are important. To

partially avoid these pitfalls, we compute signal-to-noise ratios (SNR) in the Fourier domain for

the original Fourier coefficients and for logarithmic transformation of these coefficients. First, the

features of any specific trace are spread through Fourier domain, avoiding bias introduced by near-

zero reconstruction difference where data are available and the large but often high frequency, high

wavenumber differences where traces were missing. Second, taking the logarithm of Fourier co-

efficients magnitude before computing SNR helps to emphasize the coefficient structure, which is

important for accurate representation of slopes in data.

Figure 3 shows reconstructions with basis pursuit, iterative soft thresholding, and projection

onto convex sets in rows 1, 2, and 3, with their respective Fourier SNRs. The most visually striking

difference is for the synthetic wavefield: the basis pursuit approach leaves many gaps unfilled or

partially unfilled while both soft thresholding and POCS are able to overcome most of these gaps.

A glance at data differences between original fully sampled wavefields and their reconstructions in

Figure 4 shows that POCS is the most successful in restoring amplitude, while phase is consistent

and reliable in both reconstructions. Interestingly, one gap that still remains in data is partially filled,

depending on amplitude, wavelength and orientation of the events surrounding it. That is related to

the preferential treatment of some orientations by the complex wavelet transform: for a circularly

symmetric object, coefficients encoding some angles are not as strong as coefficients encoding other

angles, leading to an unfortunate reconstruction artifacts (partially unfilled gap) when wavefield

features happen to align with orientations represented by weaker energy coefficients.

The differences in reconstructions of land wavefields are more difficult to spot, partially due to
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the logarithmic scale spanning six orders of magnitude necessary to make all events visible. The

wavefield in Figure 1b is missing near offset information from the decimated data, causing the

reconstruction in that region to be relatively difficult, particularly within the first 0.3 s. The basis

pursuit additionally suffers from discontinuities in the reconstructed first arrival that thresholding

methods manage to avoid.

One important advantage of the soft thresholding approach over POCS is that there is no require-

ment to perfectly match the original data to achieve the reconstruction: since both original traces and

missing traces are reconstructed at the same time, one can decide on what level of original data fit-

ting is desirable - the same is also true for basis pursuit with denoising. Here, we show iterative soft

thresholding with a minor denoising that can be depicted on data differences in Figure 4. Denoising

operations primarily target both coherent and incoherent high wavenumber events. Specifically for

POCS, the original traces are re-injected at each iteration. While re-injection might be desirable

when data are high quality, such an operation can be problematic in more noisy scenarios, resulting

in reconstructing noise rather than signal inside gaps.

CONCLUSIONS

Complex wavelet domain thresholding techniques are successful in restoring land seismic wave-

fields with randomly decimated traces. Owing to the localized nature of the transform, both high

and low amplitude events can be captured in a relatively sparse representation, allowing for accu-

rate reconstructions of these features without the need for data windowing or amplitude processing.

Both iterative soft thresholding and projection onto convex sets with support-based thresholding

functions yield superior results to the basis pursuit with projected spectral gradient.

The success of soft thresholding relies on the scale- and orientation-based threshold definitions.
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These thresholds are estimated directly from the decimated data, with the noise parameter computed

using directional coefficients in the coarsest scale and multiplied by an integer constant. The choice

of constant depends on the degree of data decimation, especially if gaps are located around strong

events. We find that k = 5 is a good choice for data with less amplitude variation, such as Figure 1c,

or when gaps are not concentrated around near offsets, like in Figure 1a, but k = 40 is needed to try

and restore missing near offset information, particularly since 98.7% of the recorded shot energy

is contained in (−20, 20) m offset range. Soft thresholding has a natural termination point when

the desired data residual is reached, making such an operation an attractive approach for denoising

while reconstructing. Though POCS yields improved amplitude fidelity in the presented synthetic

case, IST has consistently the highest SNR for log-compressed Fourier coefficients which indicates

a better overall structural fidelity of the IST-reconstructed wavefields. Thanks to the provided recipe

for finding σn and σw, our IST approach requires little user input and testing, making it fast and

easy to use.

Projection onto convex sets also yields satisfactory reconstructions but needs more customiza-

tion to select optimal bounds for starting and ending thresholding points as well as for the thresholds

progression. For land wavefields, exponential thresholding scheme proves the best while the syn-

thetic example benefits from linear step progression with a degree of Gaussian smoothing in the first

few iterations. POCS is a good choice for reconstructing high quality data, but because the original

unaltered traces are re-injected at each POCS iteration, the denoising effect cannot be achieved,

affecting the reconstruction.
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d e f

Figure 1: (a)-(c): Seismic records used for reconstructions experiments and (d)-(f) the correspond-
ing FK spectra. (a) Land record with 1.25 m receiver spacing, (b) land record with 2 m receiver
spacing, and (c) synthetic data with 10 m receiver spacing. All records are normalized such that
their peak amplitude is 1. We use symmetric logarithmic scale to emphasize the large data dynamic
range. FK spectra are displayed with logarithmic color mapping.
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Figure 2: Magnitudes of complex wavelet coefficients for wavefield in Figure 1b: (a) before and
(b) after random trace decimation. (c) and (d) are zoom on the CWT coefficient magnitudes from
yellow boxes in (a) and (b). Random trace decimation introduces stripe-like pattern mimicking
missing trace geometry while the coefficients representing the remaining traces are strengthened.
– CWP-1017
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Figure 3: Reconstructions of the wavefields in Figure 1: (a)-(c) basis pursuit with SPGL1 solver,
(d)-(f) iterative soft thresholding, and (g)-(i) POCS.
– CWP-1017
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Figure 4: Data differences between fully sampled wavefields from Figure 1 and their reconstructions
from Figure 3: (a)-(c) basis pursuit with SPGL1 solver, (d)-(f) iterative soft thresholding, and (g)-(i)
POCS.
– CWP-1017
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