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ABSTRACT

Pseudo zero-offset raypaths, determined using common shot experiments along a
dip line, are used to determine corresponding raypaths for a source recciver
configuration along the common trend in a 2.5-D layered acoustic media.

Ray theory is used to derive an expression for the amplitude of the wave
propagating away from the source. Then we derive the geometrical spreading,
reflection and transmission effects for the given source-receiver geometry.

We finally show that the difference between the expression for the in-plane and
out-of-plane wave propagations in a 2.5-D earth is that we have an extra term in the
out-of-plane spreading in the strike rays when compared to the dip ray amplitude
factor.

Given the pseudo zero-offset data and the slowness in the strike direction, we
show that all the parameters for the experiment are determined.

Except for the slowness in the strike direction being constant, this experiment is
three dimensional.
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1. INTRODUCTION

Areas of interest for hydrocarbon exploration (sedimentary basins) are very often
2.5-D in nature. That is, the geology along the strike is invariant.

The mathematical definition of a 2.5-D earth is that the structural variations are
essentially 2-D cylindrical in three dimensions while the wave propagation is 3-D
(Bleistein, 1986).

Often, reflection seismic surveys are conducted in a grid of dips and strikes. The
ray theoretical modeling and inversion for a 2.5-D earth, with the source and receiver
configuration along the dip line was developed by Bleistein (1986) and Docherty (1987).
In this paper the forward problem for a source and a receiver configuration along the
common trend in a 2.5-D earth is solved.

This work was motivated by Marathon Oil Company, who is a sponsor of the
Consortium Project on Seismic Inverse Methods for Complex Structures at the Center
for Wave Phenomena. The University of Houston built a 2.5-D model at their Seismic
Acoustics Lab and shot along the dip and strike of the model. This data was donated
to the Center for Wave Phenomena. As the Center for Wave Phenomena did not have
modeling and inversion codes for strike lines, it was necessary that they be created.

We begin, in Section 2, with the discussion of the kinematics of rays along the
common trend (strike) of a layered acoustic media. That is, we show how the raypath
in the strike direction can be determined from its corresponding pseudo zero-offset
raypath along the dip direction. Then, in Section 3, we review some results from
asymptotic solutions of the reduced wave equation (Keller and Lewis, 1964) and ray
theory (Bleistein, 1984) and (Bleistein, 1988), and develop an expression for the
amplitude of the wave propagating in the strike direction. The amplitude factor will
also be used in our common strike inversion code that will be developed in the near
future.

Finally, we finish with some examples generated by the pseudo zero-offset and
common strike shot code. These codes are ready to be used.
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2. KINEMATICS OF COMMON STRIKE RAYS

A mathematical model in which there is no variation of speed in a given direction
(e.g, z,) is called 2.5-D. In our case, this means that the acoustic velocity is
represented as ¢(z;,z3) from which it follows that p,, the second component of
slowness, is constant on rays. The direction of constant p, is known as the strike in
geology, as shown in Figure 1.

Given a source-receiver configuration parallel to the common trend of a geological
structure, specular reflection points directly under the profile line miss the profile
except in the least interesting case of horizontal flat beds. Hence, any non 3-D
migration or inversion technique that tries to image these points fails because data
associated with these points are not recorded. On the other hand, a 2-D migration will
erroneously place out-of-plane events in-plane.

Consider a ray crossing n+1 interfaces between source and receiver. In layer
with constant velocity ¢;, located between interfaces 1 —1 and 7(¢>0), the traveltime 7
of the wave must satisfy the eikonal equation,

(V)i = (2.1)

[x}
u.lql’_‘

By using the method of characteristics to solve this equation one can show that
the gradient of the traveltime or slowness vector is constant in each layer and can be
expressed as,

(V)i = (P1isP2isP3i) - (2.2)

The continuity condition for the tangential component of slowness at interfaces,
otherwise known as Snell’s law, has an interesting consequence in our case. Since py; is
one of the tangential components of slowness, due to the cylindrical nature of the
model, we have

P2i = Pa(i+1) = P2 > (2.3)

which is a constant along the ray.

This remarkable property gives us an opportunity to solve the eikonal equation in
a much simpler way than the 3-D ray tracing. That is, we fix p; and rewrite (1) as

1
plitpii = = (2.4)
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where

¢
V= T, (2.5)

vV 1-c?p}

is a velocity that is always higher than the true velocity in the layer. This means that
by solving the 2-D pseudo zero-offset problem defined by equation (2.4) and velocities
from equation (2.5), we are able to completely determine the offset ray for the
corresponding value of p,.

For this we define Z;,; as a plane parallel to the z, axis and containing the
segment of the pseudo zero-offset ray between the interface ¢ and ¢+1 (Figure 1). It
follows from (2.4) that Z;,, (1=0,...,n) are the planes of wave propagation in the strike
direction.

The incremental distance traveled by the ray in the strike direction through layer
t is given by

Azy; = Pz”i\/(Azli)z‘*'(Axsi)Z ) (2.6)

where Az); and Azy; are the incremental distances through layer 7 for the pseudo
zero-offset raypath. We can see that if the root in (2.5) is complex, there is no
propagating wave (post critical angle). This happens whenever p, is greater than the
total slowness in the layer under investigation.

The incremental traveltime through layer 1 is also given exclusively in terms of the
kinematics of the pseudo zero-offset section by

1+p%vz- 172
—ZL [(Azli)2+(Ax3i)?']

¢i

AT,' ==

L; (Az1)* +(Azg)? . (2.7)

¢y

Given any value of p, and the pseudo zero-offset raypath determined using (2.5),
we are sure that the reflected specular ray from the 7+1 interface, will lie in the Z;
planes and pass somewhere through the profile line. But we still do not know what
value of p, gives the specular ray that comes to our specific receiver that is located at
an offset = zé“.

From (2.5), we had seen that p, ranges between 0 and ps,,,, = min(1/c;),
0<:<n+1. This helps us to control our value of p,. py =0 corresponds to
propagation in the (z;,z3) plane and py = pg,., corresponds to propagation in the z,
direction along the interface ¢. Hence, for p, greater than zero and less than p,,,,,, we
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use (2.6) to calculate the travel distance z§ ™! of the ray in the strike direction. Then

we check if this value is greater or less than the offset. When the percentage error falls
within a prescribed bound we keep this ray.

In this manner we are able to calculate the total distance traveled by the ray from
the source to the receiver. To find the total traveltime of the specular ray, we divide
the ray segment within each layer by the velocity of the wave in the layer and then
add the results. We will derive these results in greater detail in the next section.



3. 2.5-D COMMON-STRIKE AMPLITUDE

In this section we derive an expression for the amplitude of the wave propagating
from a point source in a layered acoustic medium to a receiver along the trend of the
medium.

To do this, we review some results from asymptotic solutions of the reduced wave
equation (Keller and Lewis, 1964) and the ray theory (Bleistein, 1984) and then solve
our specific problem. We start with the time-reduced wave (Helmholtz) equation.

2

¢*(z)

ViU (z,w)+ U(z,w) =0 . (3.1)

Here z=(z,,,,z3) and U(z,w) is the scalar potential.
We introduce the WKBJ solutions for U(z,w) defined by

(e ¢] x)
U(z,w) ~ e™3) E )" (3.2)

We will discuss only the leading order term and thus set
U(z,w) ~ A(z)e™™®) | (3.3)

Below we will refer to A(z) and 7(z) as the amplitude and traveltime of the wave
from the source to the position z.

Substituting U(z,w) into equation (3.1) and then equating the coefficients of w?
and w in equation (3.2) to zero, we obtain the eikonal equation,

(Vr)? = , (3.4)

and the transport equation,

2VA-VT+AVir=0 . (3.5)

Introducing a running parameter o along the ray (Bleistein, 1984), we rewrite the
equation of the ray as

&




z = (z1,23,23) = z(0) . (3.6)

The method of characteristics for the eikonal equation yields the following system of
ordinary differential equations for z

d—z(;—’l ~vr . (3.7)

From this equation, it follows that

d | dz d
4 [d“] =2V

Introducing the vector p = (py,p2,p3) the total slowness is

p=Vr . (3.9)

Therefore, the ray equations can be rewritten as follows:

dz
~=p, (3.10)
dp 1 1
— ==V , 3.11
o 2 62(2) ] ( )
dr dz 1
SCLIN v A )
1o T Io cz(z) (3.12)

. ] —o0, (3.13)



and p, is a constant along a ray, given by its initial value.

Using equations (3.10), (3.11) and (3.12), and some initial conditions, that is,
values of z, 7 and p at some specified value of o, constitutes a well-posed problem.
These equations can be used to find the ray path.

Next we investigate the transport equation to develop an expression for the
amplitude of the wave.

Following Lewis and Keller (1964) and Bleistein (1984), rewrite the transport
equation as

V-(A%V7)=0 . (3.14)

In regions where the velocity is constant, we use the divergence theorem to obtain

[v(a29nav = [4*Vrads =0 (3.15)
Vv S

where V is the volume bounded by a tube of rays sealed at both ends by a surface of
constant o. Since no rays are dispersing on the side of the ray tube, the surface
integral then reduces to an integral over the ends of the tube.

Following Lewis and Keller (1964) and Docherty (1987), we shrink the tube of
rays to the central ray in the ray tube and obtain

A*(0)p(0)dS = A*(o0)p(00)dSo (3.16)

where o is an arbitrary point of the ray and oy is the value of o on some initial surface.
For our specific problem, that is, a 2.5-D layered acoustic media with source and
receiver along a line of common trend, we choose a pair of parameters (8, p,) that
characterize a ray within the ray tube. Here p, is the constant value of the second
component of the slowness vector along a ray, and  is the angle the ray makes with
the z direction as was used by Docherty (1987). The ray equations now take the form

z = z(0,6,p2) (3.17)

with o, # and p, as the ray coordinates; 3, and p, label the ray and o varies along the
ray.

To model a strike line ray, introduce a point source at & = (£;,&5,€3) (Bleistein,
1986). The initial data for our problem is then




z(0,8,p2) = & , (3.18)

T(O’,Bap2) =0 ’ (319)
p(0,8,p2) = [sinﬂ c(¢§)"—p3, pa, cospy/ C(E)‘Z—p%] : (3.20)

In the neighborhood of the point source, we consider the velocity to be constant.
Hence, the wavefronts close to the source are spherical surfaces, centered at the source,
and the solution to the reduced wave equation is the 3-D Green’s function,

_ 1 iwlz-gl/e
U(z,w) prp—y e . (3.21)

We consider, now, the solution of (3.16) for A(c). Note, first, that the cross-sectional
area of our ray tube is given by

ds = |n- g%x 68 dfBdp,
— JdBdp, . (3.22)
Using equation (3.8) we can see that
. —(—)% (3.23)
therefore, the ray Jacobian J can be rewritten as
;o1 - ;ii g; ai:; ‘ (3.24)

Hence, the amplitude of the wave at any o is given as



(3.25)

From equation (3.25), note that the amplitude of the wave away from our source
is proportional to the square root of the ratio of the ray Jacobians at oy and 0. This is
a measure of the expansion or contraction of the ray tube known as geometric
expansion or geometrical spreading.

In this equation A(gy), p(0g) and p(o) are known. We need to find expressions for
J(0p) and J (o).

We begin by looking for an expression for J(og). For og = 0 and J(op) = O the
solution method breaks down. Hence, we have to appeal to a canonical problem that
produces A(op). From our ray equation

z = (2,,29,23) = z(0) . (3.26)

Therefore, around the source

231—61 =0 sinﬂ

Vv 1-picl
c1

Ty—E&y = pao ,

Vi-piei (3.27)

z3—E&3 = 0 cosf

¢1
Using equation (3.27) we obtain
8:1:1 1—p2 )
a5 o cosf ‘. ,
oz
2 _ o ,
ap
0z, 1—pe?
—2 _ _senf—c " 3.28
Y, o sinf o , ( )

|
i




oz, —pycy0 sinf

op2 VvV 1-p3c}

6222
ops
Oz3 —pacjocosf
= ; (3.29)
o2 /1-piel
dzy . 1-pici
=sinf——— ,
do C
6Z2
ao_ - p2 ?
dz3 v 1-pjcf
3 = COS,B_—_‘ . (330)
g cy

Using equations (3.28), (3.29) and (3.30) with equation (3.24) we have a very
simple expression for J(oy), namely,

(o
J(op) = — . (3.31)
c1
For our point source,
1
A = ;
(00) 47['(2—6)
c
=— . (3.32)
4oy

Thus, A(0p) v/J(00)p(09) = 1/47 and equation (3.25) can be rewritten as
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Af0) = e . (3.33)

In a medium with a smooth velocity profile, equation (3.33), with knowledge of
J (o), can be used to calculate the amplitude of the wave at any o. However, the
purpose of this paper is to determine the amplitude and traveltime of the wave in a
layered acoustic media with jumps in velocity across the interface and an observation
profile along the common trend. As a result of this equation, equation (3.15) is valid
only within a layer. At the interfaces we need to include transmission and reflection
effects.

On the 1? segment of the ray we have
fA?Vr-ﬁ,-ds,- = fA%i_l)'V'r(i_l)'-ﬁ(,'_l)dS(,-_l) . (3.34)

From Docherty (1987), the unprimed subscripts refer to the incident ray and the
primed subscripts refer to the transmitted ray. At the ™ interface the transmitted
and incident amplitudes of the wave are related by

Ay = K;A; (3.35)
where K; is the transmission or reflection coefficient at this interface, depending on

whether we have transmission or reflection.

At the first interface with velocity ¢,

~ 1
On the % ray segment with velocity ¢;,
cosd; cosf;;
—‘C_t‘fA,ZdS, == —(tl'fA%,'_l)'dS(,’_l) s (3.37)
H

Ci-1y
where 0; is the angle of incidence at the interface 1 and (;_;)- is the angle of emergence

into the layer 1.

Since ¢; = ¢(i_y)’,
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N B cosf(;_yy N
fAidSi = WIA(i—l)'dS(i-x)
—_ Cosa(i_l)' KZ f 2 ds
= eoss;, R0 JAG-)dS6-y - (3.38)

At the end of the ray, at interface n+1 that is the receiver location,

A?,_H J _ cosf,
n+l —
Cn+1 Cn+1

K2 f Alds, . (3.39)

Using equations (3.36), (3.38) and (3.39), we are now able to find the final
amplitude of the ray

c1dBdp, = ., cosb
A =——[K— . 3.40
n+1 (47r)2dSn+l s 1 cos 01 ( )

Hence, given a ray path, we are able to calculate A2, but we still need to find the
value of dS,,;; for our model.

Next we calculate dS,, ;, for a survey along the common trend in a 2.5-D earth
dS, 1 = Jdodp, . (3.41)

Our objective is to determine the Jacobian given by equation (3.24),

62:1 6:51 (9:1:1
doc OB OJp,

J(0) 1 |0zy 9z Ozy
o) = . 3.42

p(o) | 0o OB Op; (3.42)
8233 823 8.’53

o 9 OJp,

We simplify J (o) using equations (3.28), (3.29) and (3.30) to obtain,
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3:1:1 82:1 6:1:1
do 9B Jdp,
1
J(o) = p 0 o . 3.43
(@) p(o) | ° (343)
853 623 8233
30 a,B 8p2

The nonzero terms in the second row of the determinant are the out-of-plane
spreading terms. Expanding about the second row in the above determinant we get

d(zy,z3)
a(ﬂ’p?.)

a(:I:l ,223)
9(0,P)

J(o) = — [pz } (3.44)

p(o)

In the above determinants, we know only dz, /80 and dz 3/d0. Hence we use the
chain rule for Jacobi determinants to get a simplified version of equation (3.44).

d(z,, z3) _ d(zy,23) a(r,B)
a(ﬂ,p2) a(Taﬁ) a(pZ,ﬂ)
o or
0z® gz ||%P2 9B
| Tar “Tag ||08 98
dps OB
o or
|82 gt ||0P2 08 .
or B ! (3.45)
0 1
where z(2) = (z1,23).

Since 6:1:(2)/6ﬂ is taken at constant 7, it is tangent to the wavefront. Moreover,
oz /97 points in the direction of the ray that is orthogonal to the wavefront. Hence,
equation (3.45) reduces to

-13 -




d(z,, z3)
a(ﬁsPZ)

9z?
ap

9z(?
or

or
Ops

c? |9z = dr 9z
v | op P dz; Op,

v ap a ’ap2
c?o py |9z
=— o5 | (3.46)

Note that we have used (2.7) in (3.45) to get to (3.46), and the two terms p;dz,/dp ,
J=1 and j=3 have been ignored. This is because test results for a complicated
geological model have indicated that the variation of the in-plane component of the
raypath is essentially independent of the value of p,. Similarly,

a(:l;l ’3;3) 1 62(2)
| = (3.47)
8(0,B) v| ap
Combining these results in (3.44) we obtain,
(2)
J(o) = % [0 p%c2+a] a;ﬂ
oc 2 9 33(2)
= — 1 .
Hence, since dS, ,, = JdBdp,,
oc [ 9 o dz?)
dSr = 2 [phet 1] | T~ |abds - (3.49)
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Using equation (3.40), (3.41) and (3.49) we obtain,

cos 0

[o 0]
] 1
A, = 5 - [T (3.50)
(477') oc 9 9 8:1:( ) —0
_(p2C +1) aﬁ "=
v

cos 0;

As in Docherty (1987), we express 9z in terms of 3¢, a vector measured on the
observation surface along the dip direction. That is, we make the final approximation,

9z
ap

9¢

op

cosfp) , (3.51)

where 6}, is the angle between the normal to the (z;,z3) plane and the zero-offset
ray. Therefore, using equation (3.48) and (3.51) we obtain,

9¢

op

J = g—c(p%c2+1) cosfhy . (3.52)

Depending on whether we are doing ray tracing in a smooth velocity profile or layered
acoustic media, the expression of J in equation (3.52) can be used in equations (3.33) or
(3.41) respectively. Since we are in a layered medium, the amplitude for our ray at the
receiver location is given by

1/2

1 ¢ . cos 01’ 12
A = K; .
P (4) oc ., o H ' [ cos 0; } (3.53)
(P3e?+1) cosfp ) =

ap

v

The value of o can be calculated by solving equation (3.8). For our layered acoustic
medium case,

n+1

o= EciAdi ; (3.54)

=1

where Ad; is the length of the 3-D ray segment in the ¢ layer. The length of the ray
segment is calculated using the ray path as was shown in chapter one. Using cquation
(3.44) in equation (3.43), we obtain our final result for the amplitude
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, ~1/2
1 n+1 C;"Adi

4 -1 2 2 1]
n+1 47) z% c1on [Pz Cn+1t
1=

ap

—1/2
v
cosfy 4,

z cos O’ 1/
s 01
|. | K; { cos; ] . (83.55)

1=

In equation (3.55), the first square root term is the out-of-plane spreading factor.
The second square root term is the in-plane spreading term. The last square root
allows for the expansion or contraction of the ray tube at an interface. Comparing the
final expression for the amplitude to that of Docherty’s (1987) equation (2.49), it is
apparent that the only difference between the two expressions for the amplitudes are
the out of plane terms. If we set p,=0, our equation reduces to that of Docherty. This
should be the case since p, = 0 implies that the survey is conducted along the dip of
the geological section under consideration.

Once we know p, from the ray path, we are able to calculate the amplitude of the
wave at the receiver. The only unknown in equation (3.55) is 8¢/93. This was also
the case with Docherty. He approximated this by

9¢
op

d¢

ap

A¢
~Ap (3.56)

~

where A¢ is twice the receiver spacing and Af is the increment in takeoff angle for
shooting rays. In his experiment z, was always equal to zero.

Although there is one source and one receiver for each experiment, we use three
receivers along the dip line. This is because we need to determine 9¢/df. This is
done with the source acting as one of the receivers and the other two equidistant from
it on each side. Hence our 8¢/3 approximation is the same as Docherty’s.

Note that (3.51) can be rewritten as

oz %)
p

d
}% ‘ ; (3.57)

= wpy(0)Vg

where 7 is the unit normal to the observation surface at &, p, is the slowness in the
(z1,z3) plane, and g is the differential surface element on the observation surface.

Hence, a useful representation of (3.55) for the corresponding inverse problem is
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4. EXAMPLES OF SYNTHETIC ZERO OFFSET
AND COMMON-STRIKE SHOT RECORDS

In this final section, we present the results of ray tracing with our equations for
two models. Our ray tracer is a modified version of Docherty’s (1987), which is based
on homotopy or continuation procedure. The homotopy technique for ray tracing was
developed by H.B. Keller and two of his graduate students, D.J. Perozzi (1980) and
J.A. Fawcett (1983) at Caltech.

Figure 2 is a perspective rayplot for a shot profile along the strike of a cylindrical
model where velocities increase from 1000 m/s in the first layer to 4000 m/s in the
bottom layer. The minimum and maximum offsets are 0.0 m and 4531 m respectively,
and the depth to the reflection point is about 1700 m. Despite a certain complexity in
the geometry of the boundaries, the reflection points are practically aligned with the
strike. From Table 1 and Table 2 we can see that the zero-offset and pseudo zero-
offset raypaths are essentially the same.

This interesting result motivated us to do further investigations; hence, we
increased the velocities in each layer by 4000 m/s and repeated the experiment. As
can be seen from Table 3 and Table 4, the difference between the zero-offset and
pseudo zero-offset raypaths is again negligible. At last we again increased the velocities
by 4000 m/s. From Table 5 and Table 6 we can see that the zero-offset pseudo zero-
offset raypaths are again essentially the same. This suggests that the propagation
planes do not change with offset, at least when the reflectors are smooth.

Figure 3 is a cross-section of a 2.5-D physical model supplied to the Center for
Wave Phenomena by Marathon Oil to test modeling and inversion codes.

Figure 4 is a zero-offset ray plot for the 2.5-D model in Figure 3. Despite the large
number of shot points (100), there are still some shadow zones on the last layer towards
the middle of the model. That figure also shows five caustics generated by the five
synclines of the 4™ layer. Figure 5 is a common offset rayplot for the same model, for
100 source-receiver pairs aligned with the strike. First, we notice that the reflection
points from all layers lie almost exactly in the vertical plane containing the midpoints
of the common offset experiment. Second, it is apparent that both caustics and shadow
zones observed on the zero-offset section are still present in the strike section.

Figures 6 and 7 are the zero-offset and common-strike shot records for the rays in
Figures 4 and 5 respectively. As could be expected, the traveltimes on the offset section
are larger than on the zero-offset section while the amplitudes are smaller, due to the
increase of the travel path.
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5. CONCLUSIONS

Given the pseudo zero-offset raypath, calculated with velocities 1/4/ ¢, 2| —p3 , we
have shown that the out-of-plane raypath can be determined. We have derived an
expression for the true amplitude of the wave propagating away from a point source
along the strike (out-of-plane) direction in a 2.5-D acoustic medium. In the case of a
layered medium, we have seen that the amplitude consists of out-of-plane, and in-plane
spreading factors, reflection and transmission coefficients at each interface and
spreading or contraction due to jump of discontinuities. All these components of the
amplitude are easily calculated once the raypath is determined.
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APPENDIX:

Reflection and Transmission Coefficients

In this appendix we derive an expression for the reflection and transmission
coefficients for our model. The assumptions made in the derivation of the reflection and
transmission coefficients is that the U(z,w) and its normal derivatives are continuous
across the interface. For a layered acoustic medium of constant density Bleistein
(1984) gave expressions for the reflection and transmission coefficients.

Here we specialize Bleistein’s expression for the reflection and transmission
coefficients to the special geometry of consideration in the paper.

At the ™ interface, the reflection coefficient is

c? 11/2

cos;— | — —sin? 6;
Ci+1

2 112 - (A-1)

Ci

2
i+l

K; =

cos §;+ —sin?6;

J

However, for our experiment at the ¢ th interface

cosl; = AL (A-2)
|p|
but
p';l = pu';l+p2(§22';l) y (A'3)

where p, is the total slowness in the (z,z3) plane. Since

it follows that

Hence,
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| py | cos b}

cosf; = P
p

= cos aqjcos 8} (A-6)

where «; is the angle which the ray makes with the (z;,z3) plane at the i interface
and 4! is the angle which the zero-offset ray makes with the normal to the surface at
the ¢* interface. In our experiment,

cos a; = 4/ 1—p% c,2- . (A'7)

We can see that, once we know the ray path, we can easily determine cosa; only from
the knowledge of p, and the velocities of the layers.

The transmission coefficient at the i* interface is given by

K 2cosb;
i = 2 1727 -
¢y A-8
cosf; + 2‘ —sin®; (4-8)
Cit1

From equation (A-1), we can see that the critical reflection, K;=1, occurs when
¢; = c,-+lsin20,-. And beyond this we get postcritical reflections. That is, the square
root in both the numerator and denominator in equation (A-1) becomes imaginary.
Thus, the reflection coefficient becomes complex. Since the numerator is the complex
conjugate of the denominator, the magnitude of the reflection coefficient of the
postcritical reflection remains unity. The postcritical reflection coefficient is

K,‘ = Cid,'., (A-g)

where

(A-10)

is the phase of the postcritical reflection coefficient. The most important thing in the
angle of incidence in our experiment is that its cosine is the product of the cosines of
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the angles that the ray segment makes with respect to the (z;,z3) plane and the
normal to the z, axis at the interface, refer to (A-6).
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Velocities in m/s 1000, 2000, 3000, 4000

Source Location
z, =6000.00, 7, =0.0, 3 =0.0

Receiver Location
£, =6000.00, z, = 0.0, 3 =0.0

I Z 3
6000.00 0.00 0.00
5996.95 0.00 1059.69
5644.10 0.00 2543.81
4710.04 0.00 4619.52
5644.10 0.00 2543.81
5996.95 0.00 1059.69
6000.00 0.00 0.00

Table 1: Zero offset ray path.
Receiver Location
£, =6000.00, z, =4531.05, z3 =0.0

z; Iy I3
6000.00 0.00 0.00
6027.31 192.75 1053.01
5735.08 774.85 2532.95
4781.63 2265.52 4651.73
5735.08 3756.20 2532.95
6027.31 4338.29 1053.01
6000.00 4531.05 0.00

Table 2: Strike ray path.
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Velocities in m/s 5000, 6000, 7000, 8000
Source Location
£, =6000.00, £, = 0.0, £3 =0.0

Receiver Location
z, =6000.00, z, = 0.0, z5 =0.0

E31 Ty T3
6000.00 0.00 0.00
5714.09 0.00 1119.92
5179.96 0.00 2585.90
4339.81 0.00 4452.91
5179.96 0.00 2585.90
5714.09 0.00 1119.92
6000.00 0.00 0.00

Table 3: Zero offset ray path.
Receiver Location
£, =6000.00, £, = 4555.43, 5 =0.0

z Z9 3
6000.00 0.00 0.00
5723.76 439.63 1117.94
5197.06 1159.46 2584.86
4353.63 2277.71 4459.13
5197.06 3395.97 2584.86
5723.76 4115.79 1117.94
6000.00 4555.43 0.00

Table 4: Strike ray path.
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Velocities in m/s 9000, 10000, 11000, 12000
Source Location
Il - 6000.00, IZ - 0.0, Z3 = 0.0

Receiver Location
z; =6000.00, £, =0.0, £3 =0.0

I Iy I3
6000.00 0.00 0.00
5629.46 0.00 1136.87
5051.16 0.00 2592.19
4235.05 0.00 4405.77
5051.16 0.00 2592.19
5629.46 0.00 1136.87
6000.00 0.00 0.00

Table 5: Zero offset ray path.
Receiver Location
z, =6000.00, £, = 4469.23, z3 = 0.0

‘31 Zy Z3
6000.00 0.00 0.00
5636.47 493.08 1135.49
5062.36 1216.03 2591.76
4244.20 2234.62 4409.89
5062.36 1216.03 2591.76
5636.47 3976.15 1135.49
6000.00 4469.23 0.00

Table 6: Strike ray path.
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Kinematics of Strike Rays

Strike :
el receiver

e B

strike-raypath

pseudo zero-offset
raypath —4>

Figure 1: Strike rays are confined to propagation (7, ;) planes.
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Figure 2: Perspective rayplot for a shot profile along strike.
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Figure 3:  2.5-D physical model (courtesy of Marathon Oil Company)
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Figure 4:

Zero-offset rayplot for a 2.5-D model.
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Figure 5:

Common offset rayplot source-receiver along strike.
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ZERO—-OFFSET RECORDS
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Figure 6: Pseudo zero-offset shot records for the 2.5-D model in Figure 3.
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STRIKE SHOT RECORDS
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Figure 7: Common offset shot records for the 2.5-D model in Figure 3.
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