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INTRODUCTION

This is the annual consortium project review on the current status of the research
program of the Center for Wave Phenomena at the Colorado School of Mines as of
April 7, 1989,

We are delighted to welcome a new sponsor, Chevron. We are gratified by the
continued support we are receiving in these difficult times for our industry. We know
we have survived contractions in university support and in-house support throughout
the industry.

We continue to make substantial progress on developing seismic inverse methods
for complex structures. Our methods provide a reflector map and estimates of
variations in earth parameters across reflectors for progressively more complex (and
more realistic) models of the seismic experiment. A natural adjunct of this inversion
research is the development of forward modeling capability for problems of the same
complexity as are addressed by our inversion research.

We started five years ago with a formalism that seems primitive when compared
to our present capabilities. We were able to invert zero-offset acoustic data in a
depth-dependent background medium. We now have capability to model and invert

elastic data in both isotropic and anisotropic media. We have also revisited dip .

moveout and transformation to zero-offset and analyzed it with an eye towards true
amplitude analysis. We are beginning studies of well-to-well and VSP inversion and
the problem of resolution, as constrained by source/receiver configuration, which
becomes more severe in these kinds of surveys than in surface surveys.

Our solutions of the inverse problem take the form of spatially weighted Kirchhoff
migrations of frequency filtered traces. The amplitude of the output provides a means
of estimating the earth parameter variations (sound speed, density, Lamé parameters)
across each reflector.

Our forward modeling capability exploits ray theory and/or Kirchhoff-
approximate Kirchhoff integral methods. The combination of the two methods allows
for Kirchhoff modeling in inhomogeneous media.

Our two-dimensional modeling and inversion both account for out-of-plane
geometrical spreading. We refer to this hybrid of three-dimensional propagation in a
medium with two-dimensional variation as two-and-one-half dimensional, (2.5D). We
originally adopted that designation from Gerry Hohmann, who wuses it in
electromagnetic modeling and inversion. It seems as if that designation is now catching
on in the seismic literature, as well.

The People

The consortium project is led by Norm Bleistein and Jack Cohen. Students
currently supported by this project during the past year, in whole or in part, are Phil
Anno, Kidane Araya, Craig Artley, Sebastien Geoltrain, and Chris Liner. Other
supported students working with us are Wenjie Dong and Jeff Emanuel.



Administrative matters are handled by Jo Ann Fink and our technical typist is
Barbara McLenon. In addition, John Stockwell has taken on the role of ‘“resident
scholar.”

Presentations at the November 88 SEG Meeting

[1]

(2]

3]

[4]

Geoltrain, S., and N. Bleistein, 1988, Aspects of anisotropic wave propagation:
Extended Abstracts, 1988 International Meeting of the Society of Exploration
Geophysicists, Anaheim, 1151-1155.

Liner, C. L., and J. K. Cohen, 1988, An amplitude-preserving inverse of Hale’s
DMO: Extended Abstracts, 1988 International Meeting of the Society of
Exploration Geophysicists, Anaheim, 1117-1123.

Liner, C. L., and N. Bleistein, 1988, Comparative anatomy of common offset dip
moveout: Extended Abstracts, 1988 International Meeting of the Society of
Exploration Geophysicists, Anaheim, 1101-1105.

Sumner, B., and N. Bleistein, 1988, Prestack elastic Kirchhoff migration and
parameter estimation: Extended Abstracts, 1988 International Meeting of the
Society of Exploration Geophysicists, Anaheim, 963-965.

Status of Recent Papers
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[12]

CWP-063R: Large Wave Number Aperture Limited Fourier Inversion and Inverse
Scattering with Appendices, by Norman Bleistein. Invited paper, Wave Motion,
Special Issue on Inverse Problems, March 1989.

CWP-073P: General Theory and Comparative Anatomy of Dip Moveout, by
Christopher Liner. September, 1988. Submitted to Geophysics. Distributed to
sponsors as 073R.

CWP-074R: Propagation of Elastic Waves in Transversely Isotropic Media, by
Sebastien Geoltrain. September, 1988. Distributed to sponsors.

CWP-079: Aperture for Kirchhoff Inversion, Jack K. Cohen. Draft sent to
sponsors, January, 1989.

CWP-080: Stacking of Narrow Aperture Common Shot Inversions, Norman
Bleistein and Jack K. Cohen. To be submitted to Wave Motion.

CWP-081: Mapping Reflection Seismic Data to Zero Offset, Christopher L. Liner.
Doctoral thesis. Excerpts in this project review. Full thesis to be distributed to
Sponsors.

CWP-082: Asymptotic Solutions to Direct and Inverse Scattering in Anisotropic

Elastic Media, by Sebastien Geoltrain. Doctoral Thesis. Excerpts in this project
review. Full thesis to be distributed to sponsors.

CWP-083: Master’s Thesis. Jeff Emanuel. (In progress.) Excerpts in this project
review.
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CWP-084: Finite Difference Ray Tracing and Common Shot Inversion, by Wenjie
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CWP-085: Diffraction and Tomography and Inversion Aperture Preliminary
Report, by N. Bleistein and J.K. Cohen. In this project review. (In progress.)
CWP-087: Seismic Inverse Methods for Complex Structures, Status Report,

February, 1989, by Norman Bleistein and Jack K. Cohen. To appear in Internat’l
Jour. of Imaging Systems & Technology, June, 1989, ed. Enders Robinson.

CWP-090: Ray Theoretical Modeling for Seismic Surveys along a Common Trend
(Strike) in Layered Acoustic Media, by Kidane Araya. (In progress.)

COMPUTER PROGRAM DOCUMENTATION:

(Proprietary to CWP Consortium Members)

U09: Docherty, P., CXZ: Fortran program for laterally varying velocity
inversion, 1988. Distributed: 7/27/88.

U10: Sumner, B., Computer programs for modeling and inversion in isotropic
elastic media, 1988. Distributed: 9/21/88.

Ull: Geoltrain, S., TRISO: Fortran Ray Tracing Program for Horizontally
Layered Transversely Isotropic Media, 1988. Preliminary version available on
request. Documented version to be distributed, Summer, 1989.
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ABSTRACT

An important trend in modern seismic data processing is toward the development
of amplitude preserving algorithms.

Toward that goal, a Born theory of DMO (BDMO) is developed directly from the
wave equation. This follows the work of Jorden (1987), but considerable progress is
made toward a more straightforward derivation, simplified amplitude terms and
analytical verification. In synthetic tests, common shot BDMO yields a very clean
image and successfully preserves the angular reflection coefficient. Finally, Kinematic
DMO and BDMO are tested on physical model data. Relative to conventional results,
the BDMO algorithm yields greater reflector continuity, as well as meaningful
amplitudes.

-ii-



GLOSSARY OF NOTATION

Symbol Introduced Definition

A; (2.9) Born prestack inversion amplitude

Acos (2.79) BDMO common offset amp term

Ahot (2.51) BDMO common shot amp term

A, (2.4) Born zero-offset modeling amplitude

Ay (1.17) Hales A term; common offset
without log-stretch

A, (1.24) Log-stretch common offset term

A (1.25) Notfors Log-stretch common offset
term

Ay (1.26) Shot profile term .

2a (2.49) Opening angle between r, and r, (
a = incident angle )

a(z) (2.1) Velocity perturbation

ay(z) (2.9) * with angular refl. coeff.s

a,(z) (2.4) “ with normal refl. coeff.s

B (1.8a) General inverse DMO amplitude
factor

B (1.58¢) (v—y')/hory/h

B, (2.26) z,—Z,

B, (1.86) Ys/h

B, (2.25) z,—1,

c,C’ (A2, A8) General DMO amplitude factors

A (1.76b) log,(1—6%)/2

A, (1.86) log(1— ﬂoz)/z

At,,Az, (2.81) Time and space sample rates

/ (1.26) Full offset

F(),G() (A2, AT) General functions

é1, 91 (A3, A9) Temporal phase factors

b2, b2 (A4, A10) Spatial phase factors

o, (2.4) Zero-offset modeling phase

&; (2.9) Born prestack inversion phase

- iii -
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Symbol Introduced Definition
o (2.60, A4) General phase function
h (1.12) Half-offset
H() (A18, A19) Beylkin determinant
Hypot() (2.48) Common shot Beylkin determinant
Heos() (2.78) Common offset Beylkin determinant
I (A4) Generic integral for stationary phase
IRpyuio, (1.72) Full Log DMO impulse response
IRy, (1.65) Hale DMO impulse response
IR Nytfors (1.68) Notfors Log DMO impulse response
J (1.4) Jacobian for change of variables in
an integral
ks (1.27) Offset wavenumber
k, (1.11) Horizontal (midpoint) wavenumber
ky, (1.56) k, stationary point
k, (1.20) Generic zero offset wavenumber
W, (1.2) Frequency variable for ¢,
w; (2.9) Frequency variable for ¢;
1, (1.21) Frequency variable for 7,
P,(t,,z,) (1.1) Zero offset data
Polwnzp)  (L58D)  Pyfuwy,,)/ iy
P,(Q,,2,)  (1.67b) P,(0,,2,)/ Vi,
Pp(t,,z,) (1.1) NMO’d offset data
Q (1.71) Simplifying expression
To (2.5) - Distance from subsurface point to z,
ro (2.10) Distance from subsurface point to z,
ry (2.10) Distance from subsurface point to z,
R(a) (2.53) Non-linear, angular reflection coeff.
t,t; (1.12,2.44) Recorded reflection time
t, (1.1) NMO’d reflection time
t (1.1) Zero offset reflection time
toc (2.72) t, critical point
t. (1.18a,b) Minimum cut-off time for log-stretch
To (1.18a) Log-stretch of zero offset time
Tn (1.18b) Log-stretch of NMO time
Te (1.18a,b) Minimum cut-off for 7
-iv -



Symbol Introduced Definition
0 (1.9) Physical dip of reflector
v (1.9) Constant wave speed
v; (2.10) Prestack inversion velocity
v, (2.5) Zero-offset modeling velocity
V(z) (2.2) Velocity field
%,z (2.4) Subsurface coordinates
z, (2.28) z stationary point
z,, (2.62) z, stationary point
z, (1.1) General nonzero offset coordinate
Z,,Z, (2.14, 2.15)  Source and receiver coordinates
z, (1.1) General zero offset coordinate
é (A4) General variable
& (A4) Stationary point
vy (1.9, 1.58) Midpoint coordinates
Yi (1.9) Surface intercept of dipping bed in
midpoint coordinates
Ys (1.85) y stationary point
2, (2.21) z critical point
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Inversion Theory Approach

Deregowski and Rocca (1981) considered a hypothetical experiment where
prestack migration is followed by zero-offset forward modeling. The impulse response
for this cascaded process is an operator which maps prestack data to zero-offset: the
DMO impulse response. Their analysis was only aimed at finding the geometry of the
DMO operator. That is, they were concerned only with the kinematics of the cascaded
process.

We might imagine extending this idea and cascading a PSFM operator, based on
the DSR equation, with zero-offset modeling. Each would be an integral operator and
we might hope to simplify the result analytically. But to what end? Any such derived
amplitude term is still based on the unknown amplitude behavior of the prestack
migration.

However, if we were to use a prestack migration operator whose amplitude
characteristics were completely known, then this cascaded approach would take on new
meaning. Luckily, such as class of migration operators has recently become available
(Bleistein, 1987; Beylkin, 1985). To distinguish these amplitude-preserving operators
from those of classical migration, they have generally come to be termed snversion
operators. The name derives from their origin in mathematical inverse theory.

Pursuing the cascaded operator approach an inversion theory transformation to
zero-offset was developed by Jorden (1987; Jorden and Bleistein, 1987). A prestack
inversion operator was combined with a zero-offset modeling integral. Both operators
were theoretically based on the Born asymptotic solution to the point source, scalar
wave equation. This approach combines the elegance of Deregowski and Rocca’s
original idea with the amplitude-conscious rigor of mathematical inverse theory.
Unfortunately, owing to the difficulty and subtlety of the derivation, mathematical
errors crept into the analysis of Jorden (1987).

In this Chapter, a correct and simplified derivation will be given. The resulting
algorithm will be verified analytically then numerically tested on synthetic and field
data. Wherever possible, correct results due to Jorden will be referenced and not re-
derived.

2.2 The Wave Equation Basis

In what follows, we will be deriving a direct mapping of offset seismic data to
zero-offset. This process will be termed Born theory Dip-Moveout (BDMO). Along the
way there will be several caveats which itemize limitations of this method.

With kinematic DMO we identified the NMO equation as the underlying
foundation, and the resulting process, regardless of details, contained no more physics
than the NMO equation itself. For BDMO, the governing equation is the constant
background, point source, scalar wave equation



P(t,z) = —&t)&z) , (2.1)

vz {1+a(z)} 9?

v? ot?

where P(t,z) is the wavefield, and z is a position three-vector. The velocity term is an
expansion of the true velocity field, V(z), with respect to a constant background
velocity , v,

1, 1+ az)
V2(z) v?

(2.2)

The quantity a(z) is termed the velocity perturbation, and we will be discussing
solutions to the wave equation in a perturbative sense. That is, in the limit as

a(z) <1 . (2.3)

We can view (2.1) in two fundamentally different ways. If the velocity terms, v
and a(z), are known then solving (2.1) for the data, P(¢,z), will be a forward modeling
process. Conversely, if the data and background velocity are known then solving (2.1)
for a(z) is an snverse problem.

Of course, this discussion of the wave equation is oversimplified. It is only meant
to orient the reader to quantities arising in the inversion and modeling integrals and
how they relate back to the wave equation.

To be consistent with Jorden (1987), we will be carrying two background velocities
through the analysis. One, v,, is a modeling velocity and the other, v;, is a snversion
velocsty. The numerical examples below are concerned with Amplitude Versus Offset
(AVO), and the two background velocities will be taken as equal. However,
discriminating v, from v; may be useful in velocity analysis (Jorden, 1987).

Before proceeding we should recognize that whatever results are derived below can
have no more physical meaning than the wave equation itself. This equation is highly
idealized. Wavefronts are exactly spherical and propagate without distortion with the
constant background velocity. There is no allowance for free surface, radiation patterns
or attenuation. Even with these limitations, a Dip-Moveout process whose amplitudes
are based on (2.1) is a great improvement over one based solely on the NMO equation.

2.3 Born Modeling and Inversion in 2.5-D

The 3-D wavefield, P(t,z), in (2.1) exists at every point in three dimensional
space. Consider a backscatter experiment where the source and receiver are coincident.
Since we are taking the background velocity, v, as constant the only reflections

-4-
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2. BORN THEORY OF DIP-MOVEOUT

2.1 Introduction

In Chapter One many forms of kinematic Dip-Moveout were presented. For all
their differences these still share a common origin. They were based ultimately and
completely on the NMO equation. However, this may not be obvious in some cases.
For example, the “Exact Log” algorithm seems to be ultimately based on an analytical
expression for the DMO impulse response. But that impulse response was derived from
a stationary phase calculation on Hale’s DMO integral, which is based in turn on the
NMO equation.

Kinematic DMO, by definition, addresses only the issue of travel times. In this
Chapter, detailed attention will be given to the problem of DMO amplitudes.

We should be concerned with DMO amplitudes because in practice data
amplitudes are interpreted after DMO. This interpretation can be prestack
Amplitude-Versus-Offset (AVO) analysis or even post-stack, post-migration as in
bright spot work. If the entire processing stream, including DMO, is not carefully
designed with amplitude preservation in mind, then amplitude interpretation becomes a
precarious business.

How can the DMO amplitude problem be approached? DMO was originally
developed from the following conceptual model: DMO is defined as whatever must be
done to NMO’d data so that poststack migration yields the same result as Prestack
Full Migration (PSFM). Whether or not this goal has been attained by kinematic
DMO depends on how the DMO definition is interpreted. If we are only concerned with
getting the same reflector location as PSFM, then kinematic DMO is just the ticket
(until velocity variations become too strong). However, if we want to match
amplitudes with the PSFM result, things become more difficult. First, what are correct
PSFM amplitudes? Secondly, if we are stacking the DMO result before migration, then
the amplitude comparison should be with summed prestack migrations, not individual
prestack migrations. All of this implies subtle pitfalls for the unwary when considering
DMO amplitude.

It was shown in Chapter One that a typical kinematic DMO processing stream
decouples into independent processes: Geometric Spreading correction (GS), NMO, and
DMO. As the theory of DMO amplitude preservation progresses, we can expect to see
(at least) two camps arise. One will attempt to maintain the decoupled processing
stream, and place an obligation on DMO to perform whatever amplitude modification
is required. Another approach, a more rigorous one, will not insist on a decoupled
processing stream. The sequence: GS+NMO+DMO, will give way to a single process
that directly maps raw data to zero-offset. This direct mapping approach will be
developed here by drawing on the work of Jorden (1987).



Previous Investigations

Every DMO process, kinematic or otherwise, has some kind of amplitude behavior.
Some writers explicitly address this issue while others, more interested in the imaging
aspects, do not. Since the term DMO applies to many different types of processes, we
cannot expect a unique statement of what DMO should do to amplitudes. However, we
would like to require that DMO, in whatever form, honor the wave equation in an
amplitude sense.

As alluded to above, kinematic DMO (Hale, 1984; Berg, 1985) makes no pretense
of honoring wave equation amplitudes.

Beginning with Yilmaz and Claerbout (1979) there have been several careful
derivations of DMO from Prestack Full Migration (PSFM). We might term this
approach operator decomposition. The idea is to manipulate the PSFM operator so
that something between NMO and post-stack migration is isolated, and call this DMO.
Of course many PSFM operators are known. But, the one universally used in this
approach to DMO is based on the Double Square Root (DSR) equation (see Claerbout,
1984). A particularly elegant exposition is given by Hale (1983). Recently Black and
Egan (1988) revised this approach by proposing a new smaging condition.

DMO amplitudes derived by this approach, will be compatible with those of
PSFM based on the DSR equation. Unfortunately, this method of prestack migration
is, itself, not rigorous with respect to amplitudes. Specifically, we have no theoretical
justification for relating the migration result to subsurface reflection coefficients.

Another approach to the DMO amplitude problem has also appeared, which we
might term locally rigorous. By this we mean a basically intuitive approach of
accounting for specific amplitude factors in a rigorous, but isolated, manner.
Deregowski and Rocca (1981), while deriving the DMO impulse response from
kinematics, propose an amplitude which is empirically related to the impulse response
curvature. They mention that a more rigorous amplitude treatment is possible using
ray theory. Following up on this, Deregowski (1985) used ray theory and some a priors
conditions, such as operator taper, to find an amplitude term. This analysis
presupposes that various processes such as geometric spreading correction have already
been performed on the data. A combination of theoretical derivation and a priors
assumptions also appears in the amplitude work of Beasley et al. (1988). Finally,
Gardener and Forel (1988) argue for an amplitude term based on linearized scattering
coefficients, operator curvature, spreading and midpoint sampling. This paper is a
follow-up of their work proposing an inherently 3D DMO process which is applied
before NMO (Forel and Gardner, 1988).

The difficulty with the locally rigorous approach is its heavy reliance on the
individual author’s intuition. Also, there is the very real possibility of overlooking a
needed term, or confusing amplitude effects of different order.
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observed will be due to perturbation, a(z). Within the context of zero-offset modeling
a(z) is proportional to the normal incidence reflection coefficient multiplied by a
Heaviside step function. The step function gives the location of the velocity
discontinuity, and from o(z) its magnitude is known. This interpretation of alpha
holds only for zero-offset modeling, and for this special case we will term the
perturbation a,(z).

If the background v and a,(z) are known, then an approximate 3-D solution to
(2.1) can be derived from the Born theory (Cohen, Hagin and Bleistein, 1986). We will
be interested here in processing a 2-D line of data, while still allowing for 3-D spreading
effects. This is termed 2.5-D theory, and is discussed at length by Bleistein (1986).
Modeling and inversion formulas for 2.5-D are derived from their 3-D counterparts by a
stationary phase calculation which eliminates the out-of-plane variables.

Let the recorded line of zero-offset data be represented by P,(w,,z,), where w, is
the zero-offset frequency and z, is the zero-offset source/receiver location. The 2.5-D
Born modeling formula is :

Py(woyZo) ~ (—tw,)?/? ffd:cdzA,, s a,(z,2) , (2.4)

where (z,2) is a two-vector spanning the subsurface. The amplitude and phase terms
are given by

1

4, = 1672 (u,r,)3? (2.5)
2r,
P = o (2.6)

To avoid ambiguity we will keep careful track of how the frequency multipliers are
defined, beginning with

(_'-wo)a/z = Iwo|3/2 ¢ ~i3megn(w;) /4 : (2.7)

where the goal is to retain analyticity in the upper half of the complex plane. This will
assure a causal time function. The relationship defining the zero-offset distance r, is

To =V (z— zo)z +2%, (2.8)

which is shown geometrically in Figure 2.1.

-5-



Starting with the Born forward modeling integral (2.4), it is possible to derive an
tnversion formula which will recover a,(z,z) when P,(w,,z,) and v are known. Of
course this would be a zero-offset inversion formula. In Born DMO we envision a
process of transforming a shot profile or a common offset section to zero-offset, not a
zero-offset section to zero-offset.

The inversion formula we need is for offset seismic data. Such a formula is given
for 3-D and general velocity variation by Cohen et al. (1986). Let the recorded offset
seismic data be given by P;(w;,z;) where w; is the frequency corresponding to reflection
time and z; is the spatial coordinate parameterizing the input data. The beauty of the
inversion formula is its generality. We need not specify at this point whether we are
inverting a shot profile or common offset section. It is assumed that the input data has
not been gained.

The inversion of, say, a shot profile will yield an approximate quantitative image
of the perturbation. But, the original shot profile contained angular reflection
coefficients. If the inversion background velocity, v, were variable, we would need to
trace rays to construct the inversion operator. To be consistent with the Born theory,
linearized reflection/transmission would need to be used. However, with a constant
background velocity, we have not introduced any reflection or transmission effects. We
are passing any angular reflection coefficient information present in the input through
to the output. To recognize this, we will denote the inverted perturbation as a,(z,z2).

In these notations, the 2.5-D, constant velocity inversion formula is

aq(z,2) ~ f f dz; dw; A;e P _P,\(/w'_;;'z,) , (2.9)

where the amplitude and phase terms are given by

23/2 4512 (,’ry)s/z H

A= .10
xl/2 (r,+r‘,)1/2 (2.10)
¢ = r’—:ri . (2.11)

As mentioned above, this inversion operator is general with respect to the sorting of the
input data. The input data acquisition geometry (common shot, common offset, etc.)
is specified by the Beylkin determsnant (Beylkin, 1985),

. H = H(z,2,z;) . (2.12)
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Specific formulas for H will discussed below.
The frequency term in (2.9) is defined by

Viw; = |w; |2 T/ (2.13)

The length factors r, and r, are defined in terms of generic source and receiver
locations, z, and z,, which are in turn functions of the general coordinate z;. From the
geometry of Figure 2.2, it follows that

n=vV(z-z)+2* ;z,= z, (%) (2.14)
re=V(z—z)+22 ;5 =z,(z) (2.15)

It is important to note that the inversion operator (2.9), unlike the Double-
Square-Root prestack migration operator, cannot be split into separate processes
(NMO, DMO, etc.). Although the phase function does allow this decoupling, the
wave-equation-based amplitude term (2.10) does not.

2.4 Derivation of 2.5-D Born DMO

At this point we have introduced 2.5-D Born integral operators for inversion of
offset seismic data, (2.9), and forward modeling of zero-offset data, (2.4). Following
Jorden(1987), we propose a Born DMO which can be represented by the cascaded
process

Born DMO = Z.0.Modeling [Invcrsion [Data]] ,

where Z.0. stands for Zero Offset.

It should be noted that Jorden began by cascading full 3-D operators. These were
then analytically reduced within the DMO derivation to 2.5-D. The 3-D operator
approach will not be developed here, but is interesting because it opens the possibility
of quantifying the out-of-plane component of 3-D DMO (Jorden, 1987).

The cascaded process defining Born DMO will involve substituting a,(z,z) for
@,(z,z). This means that we will be designing a process to pass angular reflection
coefficients from the input data through to the zero-offset result. The angular
information would then be available for further analysis.

Substituting the inversion (2.9) for a,(z,z) in (2.4), we can write



] Pl' )
Polwnrze) ~ (—iwe)?? [ [ [ [ dods desdu; 4, cilot--om) Diloom) (2.16)

Viw;

where all of the symbols are as defined above, and the composite amplitude term is

Ay = A A, = w?” (riry)*” H (2.17
1 - 140 — 21/2 (21)2 (”070)3/2 (r.+r,)1/2 . . )

The formula as given in (2.16) is not viable. The subsurface variables (z,z) are not
present in either the input data P;(w;,z;) or the output P,(w,,z,). These were
fundamental quantities for the individual modeling and inversion formulas, but for the
cascaded operation (2.16) they are dummy variables. In what follows our goal is to
analytically eliminate (z,z). The major events of the derivation follow Jorden (1987),
but there are differences in detail.

The first step is to inverse Fourier transform (2.16) with respect to w,. The
fractional frequency term will transform according to

(—iwp)?? ———  3,%?, ' (2.18)
so that (2.16) can be written as

Pi(wi’zi)

Poltorzs) ~ 8,2 [ [ [ [ dodzdzdu; 4, 6(t, - 8,) e = e (2.19)

where offsetting factors of 27 have been canceled.

The delta function argument is a function of z through (2.6) and (2.8). By setting
the argument to zero a critical point, z,, will be defined. This is given by

vt
=1, -(z—-zo)z 1 To = 020 ’ (2.20)

where the second equality follows directly from t, = ¢,. From a standard é-function
property (Bleistein, 1984, p.48), it follows that



6(z - ¢ oo
Olto = @0) = at - ';z: e =) (2.21)
0z ies .

Substituting (2.21) into (2.19), the z integration can be done by the sifting
property of the delta function to yield

—ive. Pilw;,z;
P,(te,z,) ~ 3:,3/2 fffdzd:c, dw; A, e wid: M , (2.22)

twy
where the amplitude term is now given by

5/2 3/2

Vot vl % (r,r)* ¢ H

A, = A = . 2.23
2 1 22, 23/2 (27r)2 (”o"o)llz (r,+r,)1/2 z, ( )

Note the z integration has been done exactly, no new approximation has been
introduced. However, integrating out this variable has had the effect of coupling the
other variables. Specifically, by (2.20) r, and rg are now functions of ¢,.

Isolating the z-dependence, we can write (2.22) as
Py(ty,2,) ~ 8,/ ffd ; dw; "z') fdzAz b (2.24)

The z integral will be evaluated by the method of stationary phase. The stationary
phase condition and its consequence are

09;
_a';' =0 => B, rg = _ﬂg Ty s (2°25)
where
Bs=2,—2, , By=z1—12,. (2.26)

The equality on the right of (2.25) is the stationary phase condition. Figure 2.3
shows the geometry of this condition. The line r, bisects the angle between r, and r,.
This means that the input phase ¢; = ¢; corresponds to a specular reflection, and the
output phase f, = ¢, is the normal incidence reflection time from that specular point.
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This conclusion is in agreement with Jorden (1987).
One consequence of (2.25) is found by multiplying both sides by §,/r ,,

2
ﬂaﬂg = -Q < 0, (2.27)

which proves useful in later analysis.
Solving (2.25) for z, will yield a critical point, z., given by

- "oz (B, + ﬂg)
z, = z, Tcﬂg . (2.28)

The critical point z, will not be defined if 8, =0 or f,=0. We conclude that z, must
lie between the source and receiver (i.e., |z,| < |z, | < |, ]).

Applying the stationary phase formula (Bleistein, 1984), gives the result

i omvr3r, |M?P ot
[asageiot o | 20T £ (2.29)
B, ("a + r,) Wy
Using the stationary phase evaluation, (2.29), we can write (2.24) as
o Polwiz
Py(ty,2,) ~ 8 %? f f dz; dw; Ag e =% 'J—(I:ﬁ)' , (2.30)
i
where the amplitude term is given by
2rvr,Sr 1/2 virir 2 H
Ay = Ay || = et (2.31)
By (rs+ ry) (47) (voro) (re+ "y) 1B, | 2

A consequence of the stationary phase calculation is a further coupling of the
remaining variables. Specifically, we now have the following relationships

1/2
t, = vi {ﬂaﬂg [1 - (U,‘t,‘/f) 2]} ’ (2.32)
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,2 Y12
re = |B,] {1~ﬂoﬂ } = |B,|wti/f, (2.33)
s Py
f02 1/2
Ty = Iﬂgl{l—ﬂaﬂg} = lﬂglvl'ti/fy (2.34)
r,+r r02 1/2
b=~ L = é{l—ﬂ,ﬂ,} , (2.35)

where r, is given by (2.20) and the full offset, f, is defined by
/= |ﬂ6|+|ﬂﬂl = |z—z;]| . (2.36)

As a time-domain algorithm, we would not know how to implement the o4, 3/2
operator in (2.30). This calculation will be done analytically. First rearrange (2.30) as

Py(torzs) ~ [ [ dz;dw; .”z‘) 8, 3/? [Aae"'“"‘“"], (2.37)

which isolates the ?,-dependence of the integrand. To be consistent with previous
“leading order” approximations, we can use the asymptotic equality

e 3¢; |1 _ins.
8,9 [Age™ %] ~ Ay (i [%} e (2.38)

Differentiating (2.35), and using (2.20), (2.33) and (2.34), we find

09, _ VoTof
at, 2v;r, | B, ]

(2.39)

From the complex square root definitions implied by (2.7) and (2.13) we have

(—iwy)*/?

- = w; . 2.40
iw,‘ ‘wl ( )
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Using (2.38)-(2.40), we can write (2.37) as

P,(t,,z,) ~ ffdz, dw; A, ¢ "Wt f’;(w,-,:n;) , (2.41)

where the amplitude is given by

wrof 197 0¥ vy 1o 2 121 H
Ay = Ay | —mm——— = s 2.42
! ? 2viry | Bs | 8 (27")3/2 (rs+rg) |8, l5/2 Zc (242)

and where we have defined a new symbol for the pre-processed input data
Pijwiyz) = Viw; Piw;,z) - (2.43)

The final step in the general 2.5-D derivation is to perform the w; integration. If
27 is scaled out of the amplitude, this is an exact inverse Fourier Transform. The
result is

Po(tmzo) ~ fd:l.','A5 131( t; = ¢;,z,-) ’ (2‘44)
where the amplitude term is now

v vy 1, 2 1,3 ryl/2 H
8 (2m)/? (rs+1p) 18,15/ 2,

A = 2rA, = (2.45)

Finally, from the sifting property of the delta function we can write (2.45) as

Py (te,2,) ~ ff dz; dt; Ag 8(t;— ¢;) i’:’(ti’zi) . (2.46)

which is the final form of the general 2.5-D Born DMO. Below we specialize to two
standard input data configurations.
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2.5 Common Shot Formula

Consider the input data, f’,-(t;,::,-), to be a shot profile. Let z, be the constant
source position, and z; be variable geophone coordinate. Then we have

=1z, , z,= constant. (2.47)

For this input data geometry, the Beylkin determinant, H, is given by (Jorden,
1987)

2. (ry+1g) (14 cos2a)

H, ., = . 2.48
shot v r,3 v, (2.48)

The angle 2« is the angle between the vectors r, and ry, as shown in Figure 2.1. The
cosine term is calculated from

(z—2z,) (z—z;) + 2*

l1+cos2a = 1+ Vr,'Vr, = 1+ vy (2.49)
=z, ;2=2,
or, after some algebra,
2(q 2 2
1 To (ﬂa +ﬂg )
l+cos2a = 1+ B.8, — 2.50
e [ s B.b, (250

Combine (2.45) with (2.48), and use the right side of (2.25) to considerably
simplify the expression. The result is

v, 1o /% (1 + cos2a)

shot 5( ahot) 8(2”)1/2 v',3/2 r‘l/2 Iﬂﬂl5/2

(2.51)

We will find in the next section that this amplitude term must be modified slightly to
yield a correct analytic result.

Finally, specializing (2.46) we get the common shot processing formula for Born
DMO

-13-



Po(tovzo) ~ ffdzy dti Aahot 5(ta'_¢i) Ps‘(tiazg) . (2'52)

The amplitude term (2.51) is singular for zero-offset, f=0, because in this limit
By =0. This limitation has been present since the stationary phase calculation in z,,
specifically in (2.28). The algorithm as developed is capable of processing finite-offset
data, and the incorrect results near zero-offset is easily identified on numerical output.

2.6 Analytic Verification

With (2.52) and (2.51) we have a process which claims to directly map shot profile
data to zero-offset. Further it is claimed that any angular reflectivity present in the
shot profile will be present in the zero-offset output. In this section we will investigate
these claims by applying the processing algorithm to analytic data for a horizontal
plane.

Figure 2.4 shows geometry for scattering from a general horizontal plane. The
source, z,, is fixed and there are assumed to be several receivers, z,. The depth to the
reflector is H, and the velocity down to that level is a constant v. In this calculation we
will not distinguish v; and v,. To leading order, the data received at the geophones will
have the form (Bleistein, 1984)

R (a) ¢ 2iw;r/v

2.53
8r7r ( )

Pi(wi:zg) ~ ’

where

r = %\/ 2, +4H" | (2.54)

The expression (2.53) will be our test data for the horizontal plane. The function R(c)
is the full non-linear angular reflectivity.

Before using the test data in (2.52), we must multiply by 1/iw;, and go to the
time domain via inverse Fourier transform. Now the test data takes the form

Py(t;,z,) = %ﬁ‘)f- f dw; \fiw; e ~wlti=r/0) (2.55)

Substituting the test data, (2.55), into the processing formula, (2.52), yields
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Py(to,2,) ~ f f f dzy dw; dt; By 8(t; — ;) fiw; ¢~ i) (2.56)

where the amplitude term is

R(a)

B, = —— A4 - .
1= Jgat, fohot (2.57)

As the analysis progresses the amplitude term will evolve. To simplify notation we will
explicitly introduce the 4,4, function (2.51) only at the end.

We begin the analysis by using the é-function to perform the ¢; integration in
(2.56). From this we get

Poltorte) ~ [ dui/r [ day By o021 (259)

where the z,-dependence has been isolated.

Without loss of generality, the algebra can be simplified by placing the source at
the origin, z,=0, and all geophones to the right, z,>0. It follows from (2.26) that
B, = — z,, and from (2.35) the specific form of ¢, is

2 1/2
g = +——& = Iy T (2.59)
' v v zo (2, — z,) ’ ’
Using (2.59), the phase of (2.58) is given explicitly by

® = —uw [45{—2—;} .

. 2 1/2 1/2
g e ——— U 7, +4 H*
v z, (zg —z,)

We now proceed to asymptotically evaluate the z, integral in (2.58) by the
method of stationary phase. Differentiating (2.60) with respect to z, yields

(2.60)
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2
r,“ (z, — 2z,
L 2o (5 =2m)
8d - Wy 2z, (z,—z,) Zy
= - . (2.61)

Oz, v r 2 1/2 1/2
1+ ——— 7} +4 H?
z, (zg — zo)

Setting (2.61) equal to zero results in an intractable quartic equation for the
critical value z,,. However, from the geometry of the problem we suspect that the

critical point is

z,, = 2z, . (2.62)

c
Substituting this value for z, into (2.61) and simplifying gives the result

% —w; %o To

oz, v (z,,2+r,,2)1/2 (302+H2)1/2

=0. (2.63)

This condition will be satisfied if r, = H. From Figure 2.4, this is seen to be true.
The second derivative of the phase, evaluated at the stationary point, is

e —w; H? (2.64)
dz,? 2vz,’? (z,% + H?)Y/? ’
and the sign of the second derivative is —sgn(w;).
Using (2.64) the asymptotic evaluation of the z, integral in (2.58) is
V. 2, p2\1/4
fdzg By e wilbimw/)  2VTVT (z0? + H)Y By ¢~ Hwildi=/) (2.65)

iw,- H

where B; and the phase are evaluated at the stationary point. Substituting this result
into (2.58), and canceling the common factor of \/iw;, we find

Poltorze) ~ [ du; By o™l (2.66)

where
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2Vrv z, (2,2 + H)Y*  R(a)

B, = A
2 H 1 67['2 r shot

R(a) v'/? z, (2,2 + H?)!/4
== 87‘-3/2 Hr A‘hot . (2'67)

Since B, does not depend on w;, the w; integration in (2.66) can be done
explicitly. The result is 27 times a delta function, so (2.66) becomes

Po(to’zo) ~ Bg 6(¢|' - 2'/”) ’ (2.68)

where

R(a) v'/? z,(z,? + H?)!/4
By = 27B, = P Aot - (2.69)

It is now convenient to explicitly introduce A,;,; . Rather than use the general
form (2.51), we use (2.62) and r,=H to simplify A,,,; as

A = H (1 + cos2a)
shot = " A2 12 zo (2,2 + H) /A (2.70)
so that B3 becomes
R(a) (1+ cos2a)
3 167 (z,% + H?)1/2 (2.71)

Because the argument is evaluated at the stationary point, zy,, the éfunction in

(2.68) has support at the zero-offset reflector location. Specifically, setting the
argument to zero and solving for the critical point to, We get

t,, = = (2.72)

in agreement with the geometry of Figure 2.4.
The last step in this analysis is to recast the é-function in (2.68) as
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(zoz + Hz)l/z
H

(@i —2r/v) = 8(t, —2H/v) . (2.73)

To get this result, we have used the &function property illustrated in (2.21) and the
fact that 2r/v is independent of t ,.

Combining (2.68), (2.71) and (2.73) we can write the final result as

R(a) §(t, —2H/[v) (1 + cos2a)
StH 2 '

P, (to’zo) ~ (2.74)

We have now shown that, when applied to analytic test data for a horizontal
plane, the BDMO process yields a reflector in the zero-offset position. Further, the
peak amplitude of the reflector is proportional to the angular reflection coefficient. We
will take this as a general result.

Of course, in true zero-offset data the angle a is zero because the vectors r, and r,
are colinear. The reflection coefficient is the normal incident one, R(0), and the cosine
term in (2.74) goes to unity. In our data processed to zero-offset we have two angular
terms, R(a) and (1 + cos2a)/2.

We use (2.74) in the following way. The goal in processing a general shot profile is
to create zero-offset output data of the form

R(a) é(t, —2r,/v)

8nr,

P, (toaza) ~ (2.75)

We see from (2.74) that the processing algorithm (2.52) yields the desired output
multiplied by an additional term (1+ cos2a)/2. Therefore, the algorithm amplitude
factor (2.51) should be divided by (1 + cos2a)/2, and the correct amplitude to be used
in (2.52) is

A _ Yo To f3/2
shot = 4(21r)1/2 v,-3/2 ’,‘l/z | ﬂg|5/2

(2.76)

In addition to correcting the processing amplitude term, we could use (2.74) in
another way. Imagine processing a shot profile twice, once using the (2.51) amplitude
term and again using (2.76). The second processing would be almost free if carried out
simultaneously with the first. The ratio of the two outputs, (2.74) divided by (2.75),
will be an estimate of (1+ cos2a)/2. From this number, the incident angle a could be
calculated. This estimate of a would have meaning only at reflector peak amplitude
locations. Following this approach one could hope to extract estimates of both R(«)
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and a from the data. For a discussion of this topic as it applies to prestack Kirchhoff
Inversion, see Bleistein (1987).

Finally, note that for reflection from a horizontal plane the spreading term 87r, is
constant. For a dipping plane or curved surface this will not be constant, and may
mask variations in R(a). From the result (2.75) it follows that we can process for R(a)
directly if the amplitude term (2.76) is multiplied by 8xr,.

2.7 Common Offset Formula

Briefly, for processing common offset data the spatial coordinate of the input will
be midpoint, y. The general spatial variables thus specialize to

L=y , =y-f/2 , z,=y+f/2. (2.77)

The Beylkin determinant for 2.5-D common offset is (Jorden, 1987)

2 (rs+1;) (r, +1,2) (1 +cos2a)

H =
c0s (vi o r’)3

(2.78)

As with the common shot amplitude term, we compensate for an extra
(1+cos2a)/2 and arrive at

Up Ty f3/2 (raz + rg2)

A = Ags(H = 2.79
cos 5( COS) 4(2”)1/2 v 1’05/2 Iﬂg |5/2 ( )

Finally, the processing formula for common offset will have the form
Py(t552,) ~ f f dy dt; Acos 8(t;— ¢:) Pilti,y) , (2.80)

where the various terms are defined above in terms of the z’s in (2.77).
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2.8 Computer Implementation

In the preceding sections a theory for mapping raw, offset seismic data to zero-
offset was derived and mathematically verified. This follows and draws heavily on
Jorden (1987), but we have made considerable progress toward a more straightforward
derivation, simplified amplitude terms and analytical verification.

Here we consider some computational aspects of the problem. To be explicit, the
common shot algorithm will be discussed.

Recapping, the equations for common shot Born DMO are

P tov"o ffdzg dt; Aot 6(t _¢|) P(tuzy) ) (2‘52aga'in)

where the amplitude is given by

e v, 1o £
shot — 4(21r)1/2 w32 ¢ 112 | ﬁglsﬁ ’

(2.76again)

the phase is
1/2
rs+rg f r,,2
;= ——F = = 1- 2.35agai
¢’ v; L { ﬂaﬂg ’ ( agaln)
and
Pi(w;,z) = iw; Pi(w;,z) - (2.43again)

To calculate the various factors appearing in the amplitude and phase, we refer to
the following list. The variable to be calculated is on the left and the pertinent
equation number is on the right.

t, — (2.32),
ro, — (2.20),
rn — (2.33),

r, — (234),
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B, — (2.26),
B, — (2.26),
[ — (2.36).

The form of (2.52) is that of a (t,z)-domain DMO process. Taken literally, (2.52)
says that we should read a shot profile into the computer then do a weighted
integration through the profile to generate each output point. The dominant
contribution from this integral will be a stationary point corresponding to specular
reflection. If the range of integration is too narrow (i.e., too few input traces) then
endpoint contributions will dominate the output. We can expect to have confidence in
the output amplitudes only when we are well away from the endpoint effects. If we
were to process a single trace, the output would be nothing but endpoint effects. It
follows that the impulse response, which was the canonical experiment for Kinematic
DMO, is inappropriate for evaluating Born DMO. The canonical problem for DMO
amplitude, as with migration amplitude, is the plane reflector.

Rather than implement (2.52) literally, we choose an alternative where the input
data is read in one trace at a time and each input amplitude is sprayed along an ellipse
in the output data panel. This allows trace sequential processing, and the input data
need not be sorted by offset. The spraying operation is equivalent to performing the
integration in (2.52) because integration is a linear process.

In the theoretical development constant velocity has been assumed. Recall that
Born DMO simultaneously does spreading correction, NMO and DMO. While a
constant velocity DMO might be acceptable, constant velocity NMO is not. As is done
with standard NMO, we will use the constant velocity Born DMO theory, but actually
allow a variable rms velocity field. In this way we are treating the velocity field
consistently for spreading correction, NMO and DMO.

By treating the velocity field in an rms fashion we can expect good results until
the true raypaths are significantly curved. In this limit the rms treatment will yield
incorrect travel times and amplitudes. In general, by using the rms velocity field we can
expect to be accurate to leading order in offset-squared.

The spraying operation is accomplished as follows. An input trace is read in. The
trace is FFT’d, preprocessed in the frequency domain, and inverse FFT’d. For each
time, ¢;, on the input data we loop over output trace locations, z,, between the source
and receiver. With the output location fixed, compute the output time, t,, and the
amplitude term. Next, multiply the input data value by the amplitude term and the
geophone differential. Finally, add this value into the output data panel, and repeat for
all z,, all ¢; and all input traces.

The algorithm is summarized by the following program sketch. Here FFT and
IFFT mean Fourier transform and inverse Fourier transform, respectively.
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input data traces and rms velocity model
initializse output traces to sero

for all input traces {
read trace(t;) and get z,, z,
FFT trace(t;) {
multiply by /iw;
} IFRT trace(t,)
for all ¢; {
for all z, between z, and z, {
compute f,, £,
compute ¢,
compute r,, r, and r,
compute amplitude term A
add trace(t;) - A - dz, into output

As mentioned in Chapter One, operator aliasing can be a significant problem in
(t,z)-domain DMO algorithms. Born DMO is no exception. In fact, spatial aliasing
tends to degrade amplitudes before it affects imaging or reflector continuity. In
practice, operator aliasing occurs when the ellipse along which energy is being sprayed
has a local slope of more than one time sample per trace. The absolute value of the
local slope of the operator is found by differentiating (2.32) with respect to z,. The
result is

— (vt 2 11/2
dt,  |B,+8,] [1 (vits/ ) ] . (2.81)

dz, Yo BBy

This very strict aliasing criteria seems to be necessary for amplitude preservation.
However, some dips which are technically aliased according to (2.28) may be desired
(e.g., diffractions in stacked output). The aliasing criteria can be relaxed in this
situation so that all dips are processed.

Let At, and Az, be the time and space sample rates, respectively, on the output
data. Then using (2.81) we have the following condition to avoid operator aliasing,
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Jorden (1987) has shown that if 6 is the maximum anticipated reflector dip then ¢,
should be limited according to

< — 4, B, sind

= 00 (B 1 5y) . (2.82)

Finally, can we make use of the log-stretch methods of Chapter One for Born
DMO? The travel time relationship in (2.52) could be decomposed into NMO + DMO,
and the DMO part would become time-invariant under the log-stretch transformation.
However, the amplitude term is complicated and does not become time-invariant.
Thus, the log-stretch trick cannot be used to build a faster algorithm for BDMO.

2.9 Synthetic Examples

In this section the common shot algorithm will be tested on a few synthetic data
sets.

Figure 2.5 is a model for a horizontal plane at depth r, = 1000 meters, buried in a
medium of constant velocity, v; = v, = 3000 m /s. The near offset is 100 m, and there
are 100 receivers spaced 10m apart for a far offset of 1100m. Let R(a) = 1. This
model is highly idealized, but will allow us to check the numerical accuracy of the
algorithm. Figure 2.6 is the shot profile data for the model in Figure 2.5, and Figure
2.7 is the Born DMO result. The output reflector is properly located at the zero-offset
time, 2r,/v = .667 secs. Since R(a) is unit, the output amplitude should be flat away
from the endpoints and have amplitude (87r,)™! = 3.98 107°. The maximum values
away from endpoint contributions are within +£10% of the theoretical value. This
result is consistent with the theory, allowing for interpolation and other numerical
errors.

As a second test, take the model to be as in Figure 2.5 except that a velocity of
7000 m /s exists below the interface. Forward model data was created using Docherty’s
(1987) Cshot computer program. This is a ray tracing algorithm which incorporates
the geometrical optics reflection coefficient, R(a). The synthetic shot profile data for
the horizontal plane is shown in Figure 2.8. There are two competing amplitude effects
on this data. One is an increase of R(a) with offset, and the other is a decrease of
amplitude with offset due to geometric spreading. Figure 2.9 is the result of applying
BDMO to the shot profile data. Since the reflector is horizontal, the zero-offset BDMO
data has a constant spreading factor. The BDMO amplitude variations show R(c). If
the Cshot data for this case were processed directly for R(a) only the absolute scale of
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amplitudes would change.

We next consider a single dipping plane. Figure 2.10 is a ray trace diagram for the
model. The velocity increases from 3000 m /s to 7000 m /s across the interface. The
near offset is 200 m, the receiver interval is 20m and there are 100 receivers. At its
deepest point the reflector is 1500 m deep and the dip is 24 °.

Shot profile data for the dipping plane is shown in Figure 2.11. BDMO of this
data to zero-offset gives Figure 2.12. The image is very clean and the amplitude clearly
indicates increasing AVO. Recall that the amplitude is composed of two factors; R(a)
and zero-offset spreading. Since the dip is not severe the combined effect is a slight
boosting of the shallow amplitudes. Apart from this caveat, the BDMO result has been
successful in passing R(a) to the output image.

As a final synthetic example, we will process data gathered over a curved surface.
A ray trace plot is shown in Figure 2.13. The near offset is 200 m and reflector depth
varies from 1200 to 1500 m. Shot profile data for the is model is seen in Figure 2.14.
Note the characteristic “bowtie” indicating a geometrical caustic, or buried focus, in
the model. Applying BDMO, the zero-offset data of Figure 2.15 is created.

The caustic seen in the shot profile is still present in the zero-offset result. It has
not been unfolded by the DMO process.

We can imagine that there are two types of geometrical caustics: caustics due to
offset, and zero-offset caustics. The model in Figure 2.13 has a zero-offset caustic. This
means that we cannot hope to process the data to zero-offset and get valid estimates
for R(a) near the caustic. However, if the geometry of the model were such that only a
caustic due to offset were present, then the BDMO output would not have a caustic
and could yield an estimate for R(a) as in the previous examples.

In general, we can conclude that if a geometrical caustic exists in the zero-offset
wavefield, then DMO of any kind is an inappropriate tool for AVO analysis. In such a
case, only true amplitude prestack migration will suffice.

2.10 Physical Model Data Test

From the synthetic data tests of the previous section, we know that the BDMO
mapping to zero-offset preserves angular reflection information. Using physical model
data, we will now compare BDMO with conventional NMO+DMO processing. The
physical model data was acquired at the University of Houston, and is supplied
courtesy of Marathon Oil Company.

A single shot profile from this data set is shown in Figure 2.16. The direct arrival
has been muted, but no gain has been applied. In scaled units, the time sample rate is
.004 sec, and the receiver interval is 24 m. The near offset is 244 m and there are 48
traces per shot. Three distinct events are seen on the data. Reckoning from the upper
surface the four velocities are 3580, 4800, 6830, and 4800 m /s.
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The line graph in Figure 2.16 shows a decrease of amplitude with offset for the
first reflection event. Geometric spreading can account for some of this amplitude
decay. The velocity contrast is +25% (3580 to 4800 m/s), so we expect a reflection
coefficient which increases gradually with offset until the critical angle is reached
(about 60 °). The depth to this reflector in this part of the model is about 880 m, so
the maximum incident angle is tan=(1390/880) = 57 °. The fact that we do not see
an amplitude increase at the far offsets implies a non-uniform source radiation pattern.
There may also be an attenuation effect at work. These additional amplitude factors
will be passed as a modified R(a) through the BDMO process.

Using a stratified rms velocity model, the shot profile was process to zero-offset
using BDMO, Figure 2.17, and conventional NMO+DMO, Figure 2.18. These are
shown as perspective plots in Figure 2.19. The BDMO result has better reflector
continuity, particularly at far offsets and for the deeper events. There is also a striking
difference in amplitude behavior with offset, as evidenced by the amplitude line graph.
On the basis of enhanced continuity and amplitude preservation, it is fair to conclude
that BDMO has given a result superior to NMO+DMO.

A trace sequential DMO algorithm, whether Born theory or conventional, will
yield a DMO stack when applied to several shot profiles. Any offset information for
R(a) which is present in processing of a single shot will be lost as several shot results
are summed to form the stack. The net result is like an integral of R(a) over c.

Using fifty shot profiles from the physical model data set, a stacked section was
created using BDMO, Figure 2.20, and conventional NMO+DMO, Figure 2.21. These
results are shown as perspective plots in Figures 2.22 and 2.23. An identical long-
window AGC was applied as display gain. The computer processing time was
approximately 50% greater for BDMO than NMO+DMO.

As we would hope, the stacked outputs are very similar. The location and
geometry of the major events are in agreement. Relative reflector strength for the well-
isolated events cannot be judged due to the application of AGC. However, reflector
continuity seems improved on the BDMO data. This is best seen on the deepest
reflector between 0.8 and 1.0 sec.

A steeply dipping event which is easily seen on the NMO+DMO stack is present,
but weaker, on the BDMO stack. Physically, this is an edge diffraction from the side of
the physical model. It seems that BDMO has boosted the continuous reflectors at the
expense of this diffracted arrival. One might suspect that the strict aliasing criteria of
(2.81) may have eliminated this severe dip. However, this event remains attenuated
even when the aliasing restraint is relaxed to process all dips up to 90 °. Furthermore,
when the data is stacked with the BDMO phase but using the Kinematic DMO
amplitude (1.65), this event is still attenuated. The author feels that a more
sophisticated approach to operator aliasing would solve this problem (see Beasly, et al.,
1988, and Hale, 1988).

The tests given here by no means constitute a comprehensive evaluation of Born
DMO. They are meant only to show that the process is computationally feasible and
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may have advantages over conventional DMO processing when amplitudes are of
concern.
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CONCLUSIONS

A general theory of Kinematic DMO and its inverse has been developed. It has
been shown that published formulas for common offset and common shot DMO are
special cases of the general equations.

An amplitude preserving inverse for Hale’s DMO was given and numerically tested
against the inversion formula of Ronen (1987b). It was shown that only the new inverse
preserves amplitude information.

The log-stretch formulations of Bale and Jakubowicz (1987), herein called Full Log
DMO, and Notfors and Godfrey (1987), herein called Notfors Log DMO, were derived
in a common notation using the general theory. Because time-independence of the log-
stretch frequency was assumed, the impulse responses for both of these algorithms
depart from the desired “DMO ellipse” geometry. The Full Log algorithm has an
impulse response in the form of an “inverted Gaussian”. The Notfors Log Dmo
impulse response is a fairly close match to the DMO ellipse, but is too wide at the top.
These departures from the Hale ellipse mean that some range of dips will be improperly
handled by the algorithm.

Shot profile DMO was derived, reproducing the formula of Biondi and Ronen
(1987).

Utilizing the method of stationary phase for the asymptotic evaluation of Fourier
integrals, Kirchhoff algorithms were derived for Hale DMO — reproducing the result of
Berg (1985) — and the log-stretch versions of common offset DMO. Analytic impulse
responses were derived in all of these cases; these quantified the geometrical differences
implied by the earlier numerical results. Also, the impulse response formulas show
that, like Hale DMO, the log-stretch formulations have time variant amplitude.

Following a suggestion by Ronen (1987b), a log-stretch formulation of common
offset DMO was derived, herein called Exact Log DMO, which preserves the DMO
ellipse. The algorithm is ezact with respect to impulse response geometry, but, again,
time variant amplitudes have been sacrificed. The form of this algorithm, like other
log-stretch formulas, is simply multiplication by a certain factor in the (k,w)-domain.

To test the practical aspects of the four common offset DMO algorithms — Hale,
Full Log, Notfors Log and Exact Log — each was run on a common offset field data
example. Steeply dipping events, particularly shallow ones, were severely degraded by
the Full Log algorithm. Notfors Log DMO was a vast improvement, but steep events
were still significantly mishandled. The Exact Log DMO algorithm was able to
correctly deal with all dips, in agreement with Hale DMO result. We conclude that
with Exact Log DMO, we have created a Hale-quality image at FFT speeds.

In the field of DMO amplitude, a Born theory of Dip-Moveout (BDMO) was
developed. The method is based on the general theory of inversion due to Beylkin
(1985) and Cohen, Hagin and Bleistein (1986). Development of the theory followed the
work of Jorden (1987), but differed in the starting point of the derivation and many of
the details.
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Figure 2.1: Geometry of 2.5-D zero offset Born modeling.
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Figure 2.2: Geometry of 2.5-D Born inversion.
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Figure 2.3: Geometry of 2.5-D Born Dip-Moveout (BDMO).
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Figure 2.4: Model for general scattering from a horizontal plane.
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Figure 2.5: Specific horizontal plane model, with R(a) = 1
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Figure 2.6: Shot profile data for the model in Figure 2.5.
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Figure 2.7: Result of processing the data in Figure 2.6 to zero offset using the BDMO
common shot algorithm. Away from endpoints, amplitude is constant.



l BB OB O E OB ORIk =




Shot Profile

Illll|IllllllllllllllllllIIILLlLllllllllllllllIlIlIIILL]JJJllllllllllLlllllIllllllllllllllllllllllll
0
0.204
T 0.408
1
m
e 0.612
0.8186
1.02
]llllIIIIIIHITIIIIIIIIIIIlllllllllIIIHIHHHIHlllllIlllllllllllll””llllIIIIIIIIIHHIHHITIH’
55 180 305 430
L ! L 0.000936
— 0.000468

/ \

— —0.00046!

TR Kp =

3 , , : ~0.000931
55 180 305 430

Midpoint (m)

Figure 2.8: Ray theory shot profile for a horizontal plane. The model is that of Figure
2.5 with v = 7000 m /s below the interface.
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Figure 2.9: BDMO of shot profile data in Figure 2.8. Amplitude Versus Offset (AVO)
behavior, due to Angular reflection coefficient R(a), has been preserved.
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Figure 2.10: Raytrace diagram for dipping plane model.
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Figure 2.11: Ray theory shot profile data for the dipping plane.
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Figure 2.12: BDMO of the dipping plane data in Figure 2.10. This output contains
R(a) and zero offset spreading.
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Figure 2.13: Raytrace diagram for curved interface model.
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Figure 2.14: Ray theory shot profile data for the curved interface model.
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Figure 2.15: BDMO of the curved interface model data in Figure 2.14. Amplitudes are

confused by the presence of a zero offset geometrical caustic.
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Figure 2.16: One shot profile from physical model experiment. The direct arrival has

been muted, but no gain has been applied. Data courtesy of Marathon Oil
Company.
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Figure 2.17: Common shot BDMO of the physical model data in Figure 2.16. Zero
offset spreading has not been removed. Compare Figure 2.18.
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Figure 2.19: Perspective plots of the BDMO result (above) and the conventional
NMO+DMO result (below).
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Figure 2.20: BDMO stack of fifty shot profiles from the physical model data set.
Long-window ACG has been applied as display gain. Compare Figure
2.21.
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Figure 2.21: Conventional NMO+DMO stack of fifty shot profiles from the physical
model data set. Long-window ACG has been applied as display gain.
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Figure 2.22: Perspective plot of the BDMO stack shown in Figure 2.20.
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Figure 2.23: Perspective plot of the conventional NMO+DMO stack shown in Figure
2.21.
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III. 2.5D SHOT PROFILE INVERSION

ITI-1. Inversion of Dip Lines over Cylindrical Models
ITI-1.1 Introduction

Seismic data is in the majority of cases recorded along lines, that is, a source
mechanism (vibrator, explosive, air gun, ...) is activated and the seismic field recorded
along a line of receivers, usually aligned with the source. We showed earlier that to
image a piece of reflector, one needs to integrate observations collected over a two-
dimensional acquisition surface. Therefore it is not surprising if the data gathered by a
single receiver line can only reconstruct a curvilinear segment of reflector. However,
seismic methods have long been successful in imaging the subsurface from line data.
This is probably because sediments often exhibit cylindrical structures, which are
completely characterized by their cross-section. Prior knowledge of the structural trend
of an area usually allows to position seismic surveys perpendicularly to the structural
direction (strike). Processing the data yields a cross-sectional image of the cylindrical
reflectors that can be extrapolated by invariance in the strike direction, at least over
some distance.

Line recording has obvious economical advantages, on land as well as at sea. On
land, a real 3-D survey would for instance involve setting a receiver line, and moving
the source perpendicularly to the line, rather than a simple trailing of the receiver line
behind the source on a preset and surveyed path. At sea, recording from a large
number of parallel streamers would be ideal, but is practically extremely difficult. This
is why the cylindrical model is always implicitely used in processing conventional
seismic surveys to make for the lack of subsurface coverage inherent to line recording.
Moreover, processing under this model is far less costly than full 3-D processing, both
computationaly and in terms of memory requirements. In inverting for a line of data in
the strike direction, it is usually possible to fully account for three-dimensional
propagation in the treatment of amplitudes. That treatment is the only one that is
truly consistent with the cylindrical model, and is referred to as 2.5-D inversion
(Bleistein 1987, Docherty 1987). The images obtained are cross sections of the reflectors
in the vertical plane containing the recording line. This, of course, fails to be true if the
subsurface geology is not cylindrical or if the line is not perpendicular to the strike.

I11-1.2 Inversion Formula

We now assume that the cylindrical model is valid and that a seismic line is
recorded perpendicular to the strike of an anisotropic structure (Figure (3.1)). We show
that in contrast to the isotropic case, processing with the cylindrical assumption does
not in general reduce to a two-dimensional problem, that is, the output (image) is not



located in the vertical plane of the data line. This stems from the peculiar properties of
energy propagation in anisotropic media.

We choose the z, direction to be along the strike, and parametrize the recording
line with the variable §;, that is:

z’ = (z{,0,23) |,

z" = (21(&),0,25(&))

where z; is the horizontal coordinate along the receiver line and the 2-direction is along
strike. We seek an inversion formula in the same form as (2.13), except that the
integration over the acquisition surface becomes a simple integral along the receiver
line:

BYe(z") = fdwf d§ {um(z',z‘,w) mMe(z’ 2", z°%)

AYe (z',z",2°,w) e

} —iw [m(z',z')+"’o(3'1=')] (3 1)

where AY? is the 2.5-D amplitude coefficient that must make the peak value of 8¢
equal to the specular reflection coefficient times the area under the source spectrum.
Proceeding as in (2.15), we substitute the matching mode of the Kirchhoff
representation into (3.1) to get:

ﬂém fdwwa w)fdfl fdnlda:2 |g,,| u (z, z') Ryo(z,2°)

INO(z,2",2°) INO(z,2",2%) AJQ (2",2" 2% w) e Bel=eh) (3.2)

where
Byo(z,z",2",2°) = V(z,2°) + PV (5,2") = 19(z",2*) = 9(z",2")

z = (z1(m), z2,23(m))



[ oomame N & dEE co e T o T~

e

Vigsl =

om

Note that the cylindrical reflector is parametrized by 7, and the strike variable z,. As
before, we evaluate (3.2) by the method of stationary phase; the stationarity conditions
are the same as (2.19) and (2.20), and can be specialized to our particular case to yield:

P (zz") +pf (52) =0 (3:3)
P +p0ma)]) g5 <0 (3.4

and
[p”(z,z')—pN(z',Z')]' ZZI =0 . (3.5)

Once again, the stationary points are specular points on the reflector and (3.2)
asymptotically reduces to:

ul(z,z°) RYE (z,2°) IN9(z,2",2%)
3/2

oz

BYC(z') ~ (2m)%/? fdw iwS(w) an,

|wl

ng(zl ’zr,xa) AéVQ (zl ,zr’za,w) wd(zz",2",2°) + i—;Lag"(w)SiKENQ

€ 1
\/|HNQ(z,a:',z',z")|

where Hyg is now the 3x3 Hessian of the phase:

| atgMe 92 eNe 3zq,zvo-

o¢l  9n8E 91,96
3reNe  2eNQ  H25NQ
360m  3%n,  9z,dm
A*eN?  S25NQ  32NQ
0610z2 9n,dz, 3z,

Hyg(z,2z’,2z",2°) =




In this form, Hyg is not easily computable; however, using the stationarity
conditions, and after some algebra, we can rewrite its determinant as follows,

2
IHNq(z,z',z',z“’H = -aa—z- |DNQ(Z,.‘B',Z',ZJ)I ’
m
where
NQ NQ
0 oP 4 oP t
9¢; ¢
NQ
| Dyo(z,2",2",2°) | = agfl 1) [VzPNQ'tl]'tl [VzPNQ'tzl'tl y (3.6)
oPY? [V,PNQ-tz] 4, [V,PNQ-tz] 2y
¢,
PYQ(z,z",2°) = pN(z,z") +p%zz")
$, = (Pévqxo)_P{VQ)
1 |PNQ| ’
and
t, = (0,1,0)

On the other hand, the signature of the Hessian can only assume the following
values:

sigHNQ = +1 ’ +3 ’

Consequently, within a constant, we can determine A{,” ? in the same way as before:

Viws/ IDNQ(z',z',z',z") |

- (2m)%/? [INQ(z',z',z")]zuN(z',z‘)

Ag’q(z',z’,x’)

so that the output becomes:
'BéVQ(z') = 2% fde(w) RYE (z,2°) e wP(z,2",2",2°)

and its peak value, reached at z’ =z, is:
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Substituting for AY? into (3.1), we finally obtain the 2.5-D common-shot inversion
formula:

B9 (z) = ‘('2:)1'5/—2‘fdw\/;f A&y S up(z",2° W) N9 (2', 2", 2%)
\/ |DNq(z,z',z’,z") I e-—iw [rN(:',z‘)+rQ(z',z’)]

2
[INQ(z',z’,z")] ul(z’,2%)

III-1.3 Discussion

As in the 3-D case, it is still possible to rewrite the inversion operator in the time
domain. However, this requires a preprocessing of the data that is not as simple as a
time derivative anymore. Instead, one has to take a half derivative of the signal, that is,
multiply the data by Viw in the frequency domain. This operation is a separate
processing step to be applied to the data before the inversion itself. The expression for
the preprocessed input U, (z",z°,t) is as follows

A

Um(z’,z-’,t) = %fdw‘/iw e—iwt fdtl Um(zr,za’t:) e'-wt, ,

where U, is, once again, the raw data. With this definition, the time domain inversion
operator is

B9") = oo [ 6 U (720 mnle" 2 10l 189" 27,5)

v | Dyg(z,2’,2",2%) |
2
[INQ(x',z’,z")] uM(z’,2?)




This expression does not significantly differ from the full 3-D formula, and indeed
except for the absence of the £, integral, this inversion usually requires three-
dimensional ray tracing. This is because the stationary points for a common shot
experiment perpendicular to the strike are usually not located in the dip plane (i.e. the
vertical plane containing the receiver line). This is well illustrated by the example
raypath perspective plot of Figure (1.17). As a consequence, the output ﬂév 9 must be
computed on a complete 3-D mesh. The determinant | Dyg| now involves derivatives
of the slowness vector PY? both with respect to the receiver location and the output
point.

This complication occurs whenever the symmetry of the anisotropy does not
match that of the cylindrical model. In those cases, the cost of inversion is in many
respects comparable to that of a 3-D inversion; the 3-D segment of reflector imaged in
this manner can be projected on the z; =0 plane to get the desired cross-sectional
image of the reflector, and parameter estimation can be carried out as previously
described.

However, for isotropic media or anisotropic media that possess the cylindrical
symmetry of the model, energy propagation remains within the dip plane and inversion
reduces to a much simpler two-dimensional process. This is described in Docherty 1987
for the acoustic case, and Sumner 1988 for the isotropic elastic case. Next we extend
their approach to the case of transversely isotropic media with a symmetry axis in the
dip plane.

II1-2. 2.5-D fractured media
I1-2.1 Introduction

The two-and-one-half dimensional fractured model is designed to represent
cylindrical media that are fractured along the strike direction. Considering that the
regional stresses are usually aligned along the axis of existing geological structures, this
model is probably representative of many real situations. On the other hand, this model
can be rightfully used whenever a single line of multi-component data is acquired and
that a polarization analysis of the shear waves reveals that the recording line is along a
principal axis of anisotropy. For our purpose, the 2.5-D fractured medium is a
superposition of cylindrical transversely isotropic layers with their anisotropy axis
within the dip plane. This means in practice that the various layers may be fractured
in different directions, insofar as the fracture planes always contain the strike axis.

In that case, the propagation of energy remains in the dip plane, although ray
direction (i.e. that of group velocity) and slowness direction (i.e. that of phase velocity)
remain distinct. This is easily verified by studying the expression of group velocity for
each mode given in equations (1.43); all three expressions are in the form:
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W = w,p, +w,p, ,
where p, and p, are the axial and radial vector components of the slowness P, that is:
P =Ppas+p, pra=0 |,

where a is the anisotropy axis which, according to our assumption and the strike axis
being z,, may be written as:

a = (a;,0,a3)
Alternatively, group velocity can be decomposed as:
W=Ws3t+W;, ,

where W,; and W, are respectively the in—plane and out —of —plane vector
components of group velocity:

W2 = w.psy 1, Wis=W-W, . (3.7)

Now consider shooting a ray from the source with an in-plane slowness (i.e pp=0);
according to Snell’s law and the cylindrical nature of the model, the slowness must
remain in-plane because p, is continuous across reflectors, that is:

p2 =0 along the ray
Therefore, according to (3.7), we have:
Wy=0 along the ray

which means that rays that start in-plane remain in-plane.
III-2.2 Forward Problem

As we just showed, the kinematics of a shot-profile across the strike are confined
to the dip plane. On the other hand, a proper handling of amplitudes in the forward
problem requires to evaluate scattering at interfaces as well as geometric spreading.
Interface scattering may be treated as described in Chapter I, but there is an additional
simplification owing to the complete decoupling of the SP mode on one hand, and the
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QP and QS modes on the other hand, in the case of in-plane propagation. To be more
specific, there is no conversion of energy between SP and QP / QS modes at interfaces;
the SP displacement is polarized exclusively in the strike direction, and in that sense is
an SH mode, while QP and QS waves are polarized in the dip plane. In that situation,
scattering breaks into two simpler parts: scalar scattering for the SP wave, and 2-D in-
plane vector scattering for QP / QS waves.

There remains to compute the geometric spreading along rays. Here again, the
problem can be decomposed into in-plane and out-of-plane spreading; the in-plane part
may be computed as usual from neighboring in-plane rays and, fortunately, the out-of-
plane part can be explicitly expressed from in-plane kinematic parameters, as we show
below.

Let us recall the expression of the ray Jacobian:

dz Oz
J(r,7) = W | 2= x 25
( N '72) l:a,h 3,12 :l

For convenience, we take vy, = p, as the out-of-plane ray parameter, so that dz/d~v,
and 9z /8~ 5 are orthogonal, and J can be rewritten as:

832
J s 11y =J ’ ’0 ’
(1,711,P2) (1,71,0) 3ps
where J(7,7;,0) is the 2-D in-plane Jacobian:
oz

b

J(r,m,0) = ' W(1,41,0) x 3_'71

which is computed from in-plane kinematic parameters only. On the other hand, the
out-of-plane coordinate of a ray after passing through the i* layer is:

(z2)i41 = (22)i + (W2)ita (riga—m) (3.8)
where (7;4;—7;) is the traveltime in the i layer and (z,); the out-of-plane coordinate

of the ray upon entering that layer.

Now we introduce the out-of-plane component of slowness for the ray, p,, which
according to Snell’s law is identical in all layers, and rewrite (3.8) as follows:

(z2)i+1 = (z2)i + (wy)izapa(rigi—7i) 1 =0,.,n
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By adding all these identities together, we obtain:

(z2)n = (22)0 = P2 2("’r)i+l (ri41—m)

Taking the limit of vanishing p,, we get a closed form expression for the out-of-plane

spreading at the n*® interface:

= 2(wr)i+1 (rig1—7) (3.9)

p2—0 P2 i

9z | _ lim (22)n = (22)o
9pz | B

where 7 and w, are now evaluated in the dip plane, that is, (3.9) provides the means of
evaluating a full three-dimensional spreading from in-plane ray parameters only.

IT1-2.3 Inverse Problem

The inverse problem is also subject to significant simplifications in 2.5-D fractured
media. First of all, the stationary points in the inversion formula are all located in the
dip plane z; =0, so that we need only compute the output ﬂév ? on a two-dimensional
grid. The image so obtained is a cross-section of the cylindrical reflector on which the
processing is targeted.

The next simplification occurs in the determinant | Dyg| of (3.6); in effect, the
geometry of the propagation and to the common shot configuration allow us to write
the following identities:

PN [ N
‘4, =0 , V,P Q-t]-t =0 |,
apPye OPNe 5,9
v.phe, ].t - d _9p
[ * 2 2 6.’52 an afl 851 ’

so that | Dyg | simply reduces to:

2 |aphe

3:1:2

dp e )
3

|Dyg| = t

The first factor only involves in-plane parameters; we show next that the second one
can be computed without out-of-plane ray tracing as well. For this, we recall that P, is
Jjust a sum of slownesses at the output point:
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ITI-3.2 Imaging Curved Reflectors

Although our computer implementation allows for stratified backgrounds only, this
does not exclude inverting for a curved reflector insofar as it is overlayed by a tabular
sequence. To proove our point, we consider such a model and generate nine shot
profiles using an acoustic ray-tracing program. The model comprises two flat reflectors
on top of a curved reflector which constitutes the target to be imaged. The velocities
increase from 3000m/s in the upper layer, to 6000m/s in the lower layer. The depth of
the first and second reflectors are 500m and 1500m respectively, and the average depth
to the curved reflector is 2500m. Each shot profile includes 41 split-spread receivers
spaced 20m. The move-up between shots is 500m. Figure (3.8) shows the geometry of
the model as well as the ray diagram for all nine shots (only 40% of the rays are plotted
for clarity). Figure (3.9) shows all nine shot records from left to right; for the purpose
of display, only one out of four traces is plotted. '

To invert this data, we use isotropic elastic layers with shear velocities matching
those of the acoustic model. We then simulate acoustic waves using SH waves, which
are also scalar waves in 2.5D media. All shot records are inverted separately, and then
stacked together to produce the final image (Figure (3.10)). Comparing Figures (3.8)
and (3.10), which are plotted to the same scale, we conclude that the reflector has been
accurately imaged everywhere but in the two regions not illuminated by any shot
profile. In order to image these areas as well, one would need to extend the survey to
the sides of the model.

ITI-3.3 Imaging Weak Reflectors

So far we have discussed examples where the input data is generated from a single
reflector with a single wavetype. These are not necessarily realistic conditions, and we
now examine a rather pathological model, where the signal of the target reflector is
weak and superposed to that of other, stronger reflectors. Figure (3.11) describes the
model in question. A vertically polarized source is placed at the surface, and all 64
primary reflections are traced to a set of 100 split-spread receivers. Figure (3.12) shows
the corresponding shot records for the horizontal (in-line) and vertical components of
displacement. The three events that dominate those records are all generated by the
first reflector; from fastest to slowest, these events are P—P, P—SV, and SV-SYV.
After Automatic Gain Control (AGC) is applied (Figure (3.13)), other events become
visible. In particular, the P—P—-QP—QP—P—P event from the target reflector is
visible on the vertical component at about 1.5s zero offset arrival time.

Figure (3.14) shows a direct inversion of the data using the correct background
velocities. Although the reflector is imaged at the correct depth of 2000m, there is an
unacceptable level of artifacts in the image. Those spurious effects are due to the
interference of strong events during the inversion. Actually, the “noise” at large offsets
comes from the SV —SV event. In effect, for an output point on the boundary of the
survey, the sum of traveltimes to the source and to the farthest receiver becomes
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comparable to the actual SV —SV traveltime at that receiver. Although the receiver
integration tends to cancel such contributions, the spatial aliasing of the SV —SV event
and its relative strength with respect to the target event result in large artifacts. The
“smile” above the reflector is, on the other hand, typical of an “overmigrated” event.
The event in question is the strong P—SV converted arrival clearly visible on the
horizontal component around 1.5s zero-offset traveltime. Although that event does not
fit the polarization of the inversion operator, its strength relative to the target event
results, once again, in a significant amount of artifacts.

To illustrate those points, we present two ‘“quick and dirty” remedies to these
problems. To minimize the interference of the SV —SV event, we first truncate the data
to keep only the 40% nearest offsets. Figure (3.15) shows that the SV —SV arrival does
not dominate the section anymore. In particular, the target event is now visible without
any gain on the vertical component, around 1.5s zero-offset time. Inverting this data,
we obtain the image in Figure (3.16); most of the noise at large offsets has disappeared,
but we are still left with the overmigrated P—SV arrival. In truncating the input data,
we have also considerably limited the illuminated portion of the reflector so that the
image only survives between offsets of -600m and 600m. To eliminate the smile artifact,
we reprocess the data without the horizontal component, and obtain the image in

. Figure (3.17). The reflector image is now strong, and the only artifact left is actually an

overmigrated SV —SV still present on the vertical component. To get rid of the last
artifact, we truncate the vertical component to traveltimes below 1.8s, and finally
obtain a decent, though restricted, image of the reflector (Figure (3.18)).

There are other alternatives to enhancing image quality while keeping the
complete angular aperture provided by the survey. The first one that we present here is
based once again on the elimination of the undesirable SV —SV and P—-SV events, but
this time by mean of r—p filtering. Without entering into the details of this technique,
let us simply say that it allows to separate events according to their velocity and zero-
offset traveltime, and thus makes it easy to select or reject particular events. Figure
(3.19) shows the shot records after 7—p filtering: the SV —SV and P—SV events have
been totally removed, and the target P—P—~QP—QP—P—P event can be guessed on
the vertical component. Figure (3.20) presents the image obtained by inverting that
data; the reflector is correctly mapped within the illuminated region, although the
amplitudes are somewhat altered.

The second alternative we present for improving the inversion output consists in
imposing limits on the reflector dip within the inversion algorithm. In effect, at an
output point located on a reflector, the sum of slownesses from source and receiver
defines the direction of the normal to the reflector. A priori information can therefore
be included in the inversion process to retain only those reflector dips that fall in the
expected range. That procedure has the advantage of not requiring any additional
processing, and its success lies in an adequate restriction on the range of the receiver
integration. Figures (3.21) and (3.22) show results of this technique when applied to the
rew data with dip limits of 25° and 10° respectively. With the 10° dip limit, the
image is virtually noise-free, and the full aperture of the survey has been used.
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Figure (3.1): A typical cylindrical model: the geometry is invariant in the strike
direction.
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Figure (3.2): Shot record and amplitude plot for the test case discussed in section
I-3.1.
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Figure (3.3): Inversion result for the example discussed in section ITI-3.1. Note that
the reflector location and reflectivity are correctly recovered within the illuminated
area.
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Figure (3.4): Ray diagram for the example of section III-3.1 showing the portion of
reflector actually illuminated by the survey.






- ——

= P—— [ emamnt P——— a1 e P
J \

Reflection Coefficient

0.33
0.25 / ' \
0.17
0.087
0.0044
-65 -33 -4.6e-05 32

Figure (3.5): Theoretical reflection coefficient to be compared to the amplitude plot

Incidence Angle (deg)

in Figure (3.3) (horizontal variables are different).

LY-Y-Lre - F






’N‘ N\ P ) fﬂ P ) . P —

P e

; > l

Slowness
1
C - 0.5
0
$ )
1
n
e L ~0.5
: T T -1
-2450 -1;50 =450 550 1550 2550
Offset
Normal
1.69
- 0.845
c
o)
$ 0
1
n
€ - —0.845
T T T T _1-69
-2450 -1450 -450 550 1550 2550
Offset

Figure (3.6): Direction cosines for the incident slowness and the reflector normal as
retrieved by the inversion at the reflector depth. Values are relevant only within
the illuminated zone (-1250m to 1250m).






o AA—— . — —my -u—.‘

i e e

Stack of 10 Shot Inversions

H
lllllllllllllllllllllllllllLlllLLllllllllllllll‘llIl]llll'llllllllllLllllllll'll"Xl'lll'lllllllllll

m T i 740
840
D
e 940
P
t
h ’ 1040
m
1140
- 1240
mmwmmmmrmmm—’
-2450 -1200 50 1300
M
a — 0.0906
X
0
A
m — -0.0906
p
; . : -0.181
-2450 -1200 50 1300
Offset (m)
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lost, the image shows no edge effects.
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Figure (3.8): Model and ray diagram discussed in section ITI-3.2. Note that some
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Figure (3.9): Nine shot records corresponding to the survey discussed in section
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Figure (3.12): Ungained shot records for the horizontal (left) and vertical (right)
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