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ABSTRACT

Multi-source, multi-geophone data provides a redundancy which can be
exploited for image enhancement after pre-stack common shot or common
geophone inversion., After common shot inversions are averaged over shots or
common geophone data are averaged over geophomes, the resulting inversionmns
are both sums over all shots and geophones. We pose the question of how to
weight each of inversions in the averaging process. In this paper, we
answer that question by imposing the criterion that the resulting averages
yield exactly the same inversion algorithm, except possibly for the order in
which the summations are carried out. We show that this criterion is
sufficient to determine the weighting factors and that the resulting
inversion operator is symmetric in source and geophone coordimates, except
in the extremely rare case when the background demsity at the source and

geophone locations are different.
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GLOSSARY

WKBJ amplitude of 3D Green's function for acoustic wave equation,
constant density, source point at X, and obvservation point at x.

WEBJ amplitude of 3D Green'’s function for acoustic wave equation,
constant density, source point at Lg and obvservation point at x.

WEBJ amplitude of 2D Green's function for acoustic wave equation,

constant density, source point at X and obvservation point at x.

WKBJ amplitude of 2D Green's function for acoustic wave equation,
constant demnsity, source point at 58 and obvservation point at x.

Inversion output from a single common geophone data set.
Inversion output from a single common shot data set.
Weighted inversion over shots (13).

Weighted inversion over geophomes (15).

cz(g)gs°gg.

Background propagation speed.

Observed data in the frequency domain.

Inverse Fourier transform of filtered observed data (9) for 3D
inversion.

Inverse Fourier transform of filtered observed data (9) for 2.5D
inversion.

Determinant that arises in the inversion (4), defimed by (9).
Determinant that arises in the inversion (11), defined by (12).

Angular aperture of initial ray directions at x to all source or
geophone locations.

V'I':s-

Vtg.

Distance from gz to source and receiver points, respectively.
Background density.

plxg), p(gg).

WKBY travel time from x  to g in background propagation speed.
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INTRODUCTION

The inversion formalism that we presently use [Bleistein, Cohen and
Hagin, 1986, Bleistein, 1986, 1987a, 1987b, Cohen, Bleistein and Hagin,
1987] provides a pre—stack inversion method for inverting either common shot
or common receiver data. A typical seismic survey contains redundant data,
allowing for either type of inversion. Therefore, ome could contemplate
averaging the inversion of the common shot data over all the shots, or
averaging the common receiver data over all of the receivers. In either
case, one obtains an inversion as a sum (integral, in a continuous model)
over all sources and receivers,

The question arises, then, how this averaging is to take place, that
is, how the outputs of the separate common shot inversions are to be
weighted in the sum, or how the separate common receiver inversions are to
be weighted in that sum. We propose that the weightings ought to be
determined by the requirement that the two "averaged inversions” be
identical, since they both represent an inversion as a sum over all shots
and receivers. We show here that this criterion is sufficient to determine
the weights. This results in an inversion operator that is symmetric in
source and receiver coordinates except for a ratio of background demsities
at the source and receiver locations. In all but the rarest of cases, this
ratio would be equal to unity. That is, the background demsities at the
source and receiver points will be equal. Thus, we view this operator as a
symmetric operator for all practical applications,

Ve believe that averaging in this manner will enhance the image of the
output as compared to the separate pre-stack inversions. However, we find

that something is lost in this averaging process. The peak amplitude of the




DERIVATION OF WEIGHTING FACTORS

Let us suppose that sources and receivers are arrayed on a surface, S

dl
whose equation is
x = f(og) , o = (01.02) e So . (1)

That is, as the two parameters (o,,0,) vary in a domain S5, x ramges over
the source/receiver surface so’ In the totality of expetiments, both the
sources and receivers cover Sc. In a common shot experiment, the source
location, x4, is fixed while the geophome locatioms vary over some subset of

S5. This subset is different for each shot. Therefore, we characterize a

common shot experiment by
x (&) = £(§) , £ eS8 gg(n) =f(g) , ne Sn(ﬁ) . (2)

If we re-order the data as common geophone data, them for each geophone
location, the source locations vary over some subset of S;. This subset
also differs for each geophone. Therefore, omne characterizes a common

geophone experiment by
) = £, ge S 5z (8) = £(5) ., e S0 . (3)

We denote by Bg(g) the acoustic reflectivity function obtained by
inverting a single common shot data set. From Bleistein [1987b], equation

(4),




©

E(§,n,x) = l io F(w) do D(E,n,0) exp[ -iw[ Te t T ] ] (9)

is the filtered [iw F(w)] inverse Fourier transform of the frequency domain

data set D(ﬁ,n,m). evaluated at the sum of the traveltimes, tg + Tge
Finally.
Rs * B,
b, (z,p) = det °2s (10)
gl,:n = de ﬁ: .
)
2
an,

In (4-10), the cited equation (4), Bleistein [1987a] has been specialized,
with notation appropriately modified to account for the fact that this is a

common shot inversion - fixed x hence fixed ¢ and integration over

s’
geophones, hence varying g,
Similarly, ome can write down a common receiver inversion as an

integration over the shot array. This is also deduced from Bleistein

[1987b], equation (4). The result is

_l? l d3§ J =S n . (11)
8n

Bn(i) =
8¢ (W) pg  Adg legtpg |

The only new function in this result is



W (x) = l W (o . (16)
s

c

Substitution of (4) into (13) and (11) into (15) yields the two results

B lx) = —— a*t W (L1 a*n : =, an
8n W, (x) AsAg | RBs * B |
s_ 8, (&)
h (x,) E(Z.n,x)
B (x) = —— an W, (n.0) a’t ! I . (18)
8n W,(x) AsA p. t'PR
% g 1 Bs 7 Ry
So Sg(g)

Our objective is to make these two averages the same. First, we
interchange the order of integration in the first of these equations. Since
both lines represent integration over the identical source/receiver array,
this interchange must result in the integrations having identical ranges of
integration. Thus, to make the integrals agree, we mneed only make the
integrands agree. This reduces to the requirement

W,(5.3) By

ﬁx(i) W (x

(x,n) L]

n . (19)
)

This requirement can be simplified by using a result derived im Beylkin
[1985] and, alternatively, in equations (45-49) in Cohen, Hagin and

Bleistein [1987]. In the present notationm,




X, independent of {. Thus, a necessary condition for equality here is that

£ (x) olp,_,p,. )
W (gx) = — oL ' (24)
lpssl a(§1'§z)
and
£,(x) é(p, _,p,.)
W, (nx) = — l s 2s I . (25)

3(n,,m,)

with f£,(x) and f£,(x) arbitrary functions of x. However, the choice of f,
and f, affects neither (23) nor the averages, (17) and (18). Hence, we
choose both of these functions to be equal to ome.

We use these results to further simplify the criteriom, (23) to

Wo(x) = l I et | B
1 ~

S

o

Wz(i) =

a(plg.ngl dn dn,

—

a(E,,¢E,) Io, | a(n,.n,) oyl

These integrals are identical, since £ and p simply represent different
dummy variables of integration on the same surface So and Rg is the same
function of  as Bg is of n. Before stating our conclusion about W, and W,
we derive an interesting interpretation of this integral.

Let us consider the left side of (26), which can be rewritten as

dp, dp

Wo(x) = | 28 %8 | (27)
X .

P_(x)




c(x) o |b.(x.w)b (x.8) |ECE.n.x)
B (x) = ——— |a'g | a'n | = ¢ — - , (31)
4n 2 (x) [ AA Ig +p l
° s s (g) VB SEI™s 7B
o n
and
c(x) _;— b, (x,p)hb_(x,§) {E(E.n,.x)
B (x) = ——— |a'n | a’% | = |.§ L l, . (32)
an*a_(x) Py AsAglgs + Rsl
S, Sg(n)

It is now apparent that the averaged reflectivities differ omly in the order

of integration.
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ds ;g . (35)

A similar definition obtains for Ag: and T and oy. The data is defined by

E,(§,n,x) = I l |m| F(w) do D(E,n,w) exp[-im [ts+tsl + in/4 sgno ] . (36)

The 2X2 determinant H:(g,n) replaces the 3X3 determinant defimed by (10).

It is given by

B (x,n) = det . (37)

- R
ad
n (]
The analysis proceeds as in the previous section and results in the

symmetric imversion

p. |8 (x,m)B (x,8)|E (E,n.x) ,| o, +o
B,(x) = 2 de dnl—s 4 n e in o,

3/3
(2") QU(E) so sn(g) p! AszAgz |23+23 l

(38)

In this equation, B, (x,%) is defined by (32) when we interchange { and n and

interchange s and g. Also,
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INPULSE RESPONSES

We consider here the impulse response in a constant background medium
for a common shot inversion and for the symmetric inversion operator over
all shots in 2.5D., The point of this is to see the assymetry of the former
and confirm the symmetry’of the latter. It will possible to demonstrate
this both analytically and numerically.

We consider first the impulse response for the common shot imversion
defined by equation (33). Therefore, let us suppose that there is a single

shot at £ = -h, in the form of an impulse,

D('hoonnt) = S(Q‘ho)S(t'to)- (40)

Thus, for a source at -h,, the only nomzero data occurs at the receiver
located at h,. If the output is to be symmetric, them it should be possible
to interchange these two points without change the result. Alternatively,
the output ought to be a symmetric function of x. That is, replacing x by -
x should not change the output, since x = 0 should be the axis of symmetry.

For this data, the Fourier transform is given by

D(-b,,n,0) = 8(n-h )expliot }. (41)

We use (36) to define E,, However, we make a minor modification in that
definition. The filter, q|m|~exp{in/4sgn w} is designed to produce
bandlimited delta functions as output when the input is an array of
connected events spread over a number of traces. For impulse data, this
filter will produce a differemt distribution (in fact, 1/t’/’, peaking on

the reflector). To produce a bandlimited delta function for this data, we
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T = rc/ c , tg = rn/ c . (47)

When the specific function E, defined by (42) is substituted into (44),

the delta function, &(n - hy), can be exploited to carry out the n

integration., The result is

. |
SIRET Rk I R

Bg c’/’ rz ts = ts)r (48)
n
except that now n is evaluwated at h,, so that
_ 2 2 2 2
t§ = J;; +h) +z , rn = sz -h) +2z ’ (49)
(x + h)(x - h) +2z°

cos® = . (50)
T, I
§n

The impulse response, (48), is a scaled bandlimited delta function which

peaks on the ellipse,

ct, =t_+=zT = J(x +h) vzt 4 J(x -h)?+ 2 (51)
s g ° °
This is the expected location of the peak of the output. The scaling on the
delta function in (48) can be seem to be symmetric about the origin except
for the factor 1/r;. This factor characterizes the entire assymmetry of the

impulse response. Recall that r, measure the distance from the output

n
point, (x,z) to the geophone location, (h,,0). Thus, the effect of this

-17 -



Again, the output peaks on the appropriate ellipse. However, the symmetry
of the amplitude is now self evident. It should be noted however, that the
peak amplitude increases with depth, approximately like 0(z). The reason
for this is that the input was taken to have the same amplitude now matter
how deep the reflector is, that is, no matter how large t, is. In order for
the input amplitude to teﬁain constant, the reflector strength would have to
increase with depth. This is what is seen in this output.

Figures 1-3 demonstrate these results numerically. Figure 1 is the
impulse response for common shot inversion and should be compared to the
result (48). Figure 2 is the common geophome impulse response. This is
merely a reflection of the previous result through the 1lime, x = h,,
Finally, Figure 3 is the impulse response to the averaged inversion and
should be compared to the result (56). The predicted symmetry is evident in

the figure.
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APPENDIX

In this appendix, we derive equations (44) and (52). That is, we
specialize equations (33) and (38), respectively, and assume that the
background speed and demsity are constants. In this case, all of the
geometrical optics variables can be found in a number of places, including,
Bleistein [1986). The geometrical optics rays are straight lines, the
travels times are just distance divided by propagation speed, and o is just

distance times sound speed. In summary then,

2

* J(x - n)z +z ,

r, = Vx -8 +2° ., =

L}

n
(A1)
tg = rc/b , ﬁ = ﬁ/b , c§ = crg , on = ¢cr_ .
The amplitudes of the the WKBJ Green'’s functions are givemn by
1 c 1 c
A == | R A = = R (A2)
s2 2 |2nr 2 2 |Zar
| B 8 V 0

We use (37) to compute Hg(;,n) and the definition below (38) to compute
Hn(g,é) for this case, with pg and Rg the two dimensional gradietmns of the

coresponding travel times. The results are

2 2
B (x,q) = 22988 g (g -220088 (A3)
§ ~ czrz n~ czrz

n 4
with
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