

WV

COMPUTATIONAL ASPECTS OF THREE DIMENSIONAL

SEISMIC INVERSION

by
Patrick W. Quist

Partially supported by the Consortium Project of the
Center for Wave Phenomena and by the Selected Research
Opportunities Program of the Office of Naval Research

Center for Wave Phenomena
Department of Mathematics
Colorado School of Mines
Golden, Colorado 80401
(303)273-3557

CWP-045

TABLE OF CONTENTS

ABSTRACT .iceeecesncscscscccscscscsccsssssscssssssscscnss
LIST OF FIGURES B Y
LIST. OF TABLES csssecesecscsssescesccccsccsssscscene
ACKNOWLEDGEMENTcceecsscssssccsssccasasosccconss
INTRODUCTION Y
CHAPTER 1 SEISMIC INVERSION ALGORITHM ...ecevceccee
Inversion FOrmulas ...cecececcccsscccscsccsccasccce
CZ3D2 Structure cecesccccesscesccscccccsccosscnns
Input Model Data ..eececcccsscccccccsccccssscncns
CHAPTER 2 CRAY ARCHITECTURE eseesescescscesvessssce
Cray Clock seecessaccsescscsceatosssascssnsssanne
Functional Units tesssectsceccccssccsssrsccscnans
Solid-state Storage DeviCe .ieececccccececcccsass
Theoretical Rates .iiiccecececceccassveccccccncas
CHAPTER 3 CZ23D2 PERFORMANCE ON THE CRAY .cccovcocces
SPY Results eeccsscccsscccecccsccescessssccsnnane
FLOP ResUltS ..iicececccccccsccscocsccsscocccassanse
CHAPTER 4 DATA TRANSFER cecscccsesssssssecsssccncnse
Information TheOry .ieeececccccccccccsccsssacccne

Huffman COding 0 0 0000000000000 800000080000800006000

14
17
17
18
21
22
29
32
37
49
50
57

ABSTRACT

Very briefly, data inversion is: given the recorded
data, deciding what caused the data. For the seismic
industry, inversion is the process of taking data which
varies with time and converting it into data which varies
with depth. After inversion, the peaks on a trace provide
the depth at which a change occurs in the subsurface while
the amplitude of the peaks measure the magnitude of that
change,

The Center for Wave Phenomena has developed a
computer program to invert three dimensional seismic data.
Inverting seismic data takes enormous amounts of CPU time
and "core" memory. Except for small test cases, this type
of work is impractical on a machine such as the CSM Gould
9750 or VAX 8600. For my thesis, I ported the CWP
inversion code to a Cray X-MP computer in Minneapolis for
testing and optimization. A Cray computer has both a very
fast central processor and a large memory, so problems of
this type can be successfully solved. Even with the
Cray's capabilities, though, the code should be
efficiently designed and implemented. |

Another aspect of this thesis is bringing the

inverted data back to Colorado School of Mines to either

LIST OF FIGURES

L. iii

.
Page

[Figure 1.1 Ray Path Diagramccccecceccscsas 8
1.2 Maximum Offset vs. Depthcceeeeee 9

r 1.3 Range of effect of input line 11
) 1.4 Geometrical relationships 13
| 1.5 Diagram of input modelccce0cce0. 15
[4.1 Plot of Information vs., Probability .. 51
4.2 Resolution on Seismic Traces 56

(4.3 Huffman Coding Treeccceceeeeceess 59
4.4 Distribution of 8 bitsccieceeeee 65

ACKNOWLEDGEMENT

The author gratefully acknowledges the support of the
Office of Naval Research, Mathematics Division, through
its Selected Research Opportunity Program, and the
Consortium Project on Seismic Inverse Methods for Complex
Structures at the Center for Wave Phenomena, Colorado
School of Mines., Consortium members are Amoco Production
Company, Conoco, Inc., Geophysical Exploration Company of
Norway A/S, Marathon 0il Company, Mobil Research and
Development Corp., Phillips Petroleum Company, Sun
Exploration and Research, Texaco USA, Union Oil Company of

California, and Western Geophysical.

this code is nearly optimum. It is only nearly optimunm,
since some time could be saved by moving a square root
call, but that is more of a production worry than an
academic worry.

Chapter 4 will change focus from the inversion code to
returning the data back to Colorado School of Mines. The
inverted data set may be quite large, so some data
compactification schemes are examined. To this end, a few

basic information theory concepts will be presented. The

data set size can be significantly reduced which will

directly decrease the transfer cost,

parallel (or even straight), and the number of traces per
line may vary from line to line. However, the number of
time samples per trace will usually be constant within a
survey, as it will be in this paper.

Geologic data, such as cross sections or borehole
data, usually varies with depth, whereas seismic data
varies with time, making it difficult to correlate the
two. Seismic data can be converted to depth data through
the process of inversion (or migration). The purpose of
inversion is to replace the time dependence of the input
data with a depth dependence., After inversion, the
position of the peaks on a trace indicates at what depth
there is a change in some measurement of interest
(typically propagation speed) while the amplitude of the
peaks relates to the magnitude of that change.

One of the major assumptions connected with seismic
data acquisition is that all of the recorded energy came
from directly below the recording line. This assumption
does not allow for off-line contributions which arise in
an inhomogenous world. One of the aims of three
dimensional inversion is to sort the input data in such a
way that off-line contributions are accounted for and

their information used.

e e

a series of layers with jump discontinuities
in the velocity (or impedance) at these -
layers." (Cohen and Hagin, 1985)

The discrete version of formula (1) is

B(X) = cl Z§=1 I %:1 A(Djk.Z)W(Ejank-T(xcEj:ﬂk))'

where C; is a constant arising from the discretization
procedure, k = 1, ... ,K (K = number of input lines),
and j = 1, ... ,J (J = the number of traces per input
line),. K and J can each be of the order n, so the
summation is of order n2, This summation is repeated for
each output point, x. Since x = (x,y,z) and each of these
directions can be of the order n, there are n3 output
points. This yields an operations count of n3. This
operations count is an easily obtainable upper bound.
Generally, the number of input points will be less than

n2, so the operations count will be less than n3,

CZ3D2 Structure

The inversion program is called C23D2, and was
written by B. Sumner and Drs. Hagin and Cohen. It has an
accessory program worth mentioning, which was written by

B. Sumner. The program is CZ3D1 and it filters the

-~

Ray Path Diagram
Offaet (£t.)

-} 500 1000 1500 2000 2500 3000

[[P N B N RTINS Y SO0 SN S S A S WS W R A A N B AN AN

Lo o baa s o bap o baa o bapeaiy

E

.Dcpfh (£t.)
8

Figure 1.1
Ray path diagram

The values, t and A, are tabled in an array which is
referenced by depth and horizontal offset, The maximum
offset possible for each depth is an important quantity,
as it will determine loop indices in the second section of
the program., The graph below (Fig. 1.2) illustrates the
basic character of how maximum offset varies with depth.
The graph will rise to a peak since the longer the energy
travels, the further it can travel. The tailing off is

due causality, since the recording lasts for a finite

n"\

that the integration requires 5 nested loops. The order
of computation is:
Loop on input lines
Read the input line

Loop on output lines
Read and/or write output line

Loop on depth
Read correct table record

Loop on the output traces
Loop on the input traces
sum
end loop
end loop
end loop

end loop

end loop.

When the program was written, care was taken to
minimize the number of I/O operations. During any run,
there are four data files which require either reading,
writing, or both, The first filed used is the input data.
Since this data typically will be stored on a magnetic
tape, the authors wanted to cycle through it only once.
Hence the leading loop of the 5 loops cycles though the
input lines, reading the information for one line into a

two dimensional array.

10

-ﬁ———‘q——‘.bﬁ

The third file necessary for the inversion is the
table of travel times and amplitudes calculated in the top
section. This table is referenced by depth and offset,
with records within the file containing the information
for one or more depths. The third loop, which iterates on
the depth variable, reads a new record from this file if
the current depth is not covered by the information
previously read. This information is stored in a one
dimensional array, which is then referenced by offset.

The final file is the output data. Like the input
data, it will typically be stored on magnetic tape. This
file is written after the computation is complete, so it
does not affect the loop structure.

The only loops not yet mentioned are the two
innermost loops, which are also the most important of the
five, using over 90% of the run time. These loops sum
along the the traces of both the input and output lines,
See the diagram below. For this diagram, the input line,
output line, depth, and output trace are all fixed. The
current output trace is at the center of the circle, The
depth determines the maximum range of input (the radius
of the circle), hence the integration range of the input
line (points a and b) may be calculated. The deepest loop

then steps across the input line from a to b, calculating

- 12 -

Input Model Data

This should be enough of an overview of CZ3D2 to
acquaint the reader with the program layout, so the next
issue is the data used throughout this thesis. No field
data was used, but rather, computer generated data was
used. The generating program was written by B. Sumner and
is named SYNTH1. That program calculates the seismic data
for one line based upon an input model. That line is then
replicated to simulate three dimensional data.

Two models are used for tests in this paper. The
first is a single horizontal reflector at 1000 ft with a
1000 ft/sec jump in propagation velocity across that
reflector, while the second has three dipping reflectors
with various jumps in the propagation speed. See Figure
1.5.

This one diagram depicts both models. The single
plane model is the same as the three dipping planes model
except that the second and third reflectors are not
present. On this diagram, the horizontal and vertical
scales are not equal so the dips are exaggerated. The
propagation speed and density of each layer is labeled
within the layers., The panel to the right shows the input

reference velocity which C23D2 used to calculate the

_14...

travel times and amplitudes for the three dipping planes
model. Notice that the reference velocity matches the
model near Trace 1, but by Trace 100, the reference
velocity does not match. Where the reference velocity is a
poor estimate of the actual velocity, the result produced
by C23D2 will not be as good.

At the bottom of the diagram, two data sets are
listed, identifying the input grid and output window for
each set., They are named hugeinv and biginv for the
relative size of the output data file at the time which
they were first run. The hugeinv set will be used in the
Cray results section and the data transfer section, For
the Cray tests, two varations of hugeinv will be used: a
10 line and one line output window. The biginv data set

will be mentioned in the data transfer section only.

_16-

p— prm

operate at 6.67 Mips. The Cray X-MP has a cycle time of
9.5 nanoseconds, resulting in a maximum instruction rate
of 105 Mips. This fast clock requires specially designed
chips and cooling, each of which adds to the cost of a
Cray computer. Also, short wire lengths between
components 1is necessary to lessen the transfer time
between the components. The short connections lead to the

aesthetically pleasing circular shape of Cray computers,

Functional Units

The Cray X-MP has various configurations. It is
available with 1,2, or 4 processors and with 1,2,4,8, or
16 million words of memory. The various combinations are
denoted by X-MP/ab where 'a' is the number of processors
and 'b' is the memory size. For example, this project was
completed on an X-MP/48, Though the four processors were
not used for this project, a future project could
incorporate the multi-processing power to reduce the
overall run time of the inversion program.

Each of the processors has 12 functional units, and of
these 12, only the 3 floating point units will be
discussed. These units do the following operations:
addition, multiplication, and reciprocal approximations.

The other functional units have similar design, but they

- 18 -

28.5x10-4 seconds., In vector mode, a result is obtained
every clock period after the 6 cp necessary for the first
pair to pass through the functional unit. This is called
start-up time, The same vectors then require only 50006
cp, or 4.75x10"4 sec. 1Ignoring the start-up time, this is
precisely 6 times faster than the scalar mode, and that
can be generalized for any functional unit., The number of
segments in a functional unit is equal to the start-up
time of that unit and will decrease the amount of time
needed for that operation by the same factor. The
functional unit times for the Cray X-MP floating point

functional units is listed below.

Addition 6 cp
Multiplication 7 cp
Reciprocal approximation 14 cp

A functional unit may pass its results onto a
different unit rather than returning them to the
registers, This is called chaining and like segmentation,
increases the effective speed of a Cray computer. Each of
the units can operate at a maximum rate of 1 operation per
clock period, or 105 Mflops. However, when the results
are chained the effective speed can increase to 210 or
even 315 Mflops, since each of the units in the chain

produce one operation per clock period.

- 20 ~-

Before SSD With 1 file
Assignment on SSD
(sec) (sec)
TIME EXECUTING IN CPU - 53.1329 52.8161
TIME WAITING TO EXECUTE - 136.9485 137.8345
TIME WAITING FOR I/O - 567.0504 8.8585
Table 2.1

SSD I/0 wait time improvement of 70 to 1

Note that the the CPU time and execution wait time are
comparable, but that the I/O wait time dropped
dramatically, from 567 sec down to 9 sec. This example is
extreme, but fairly representative of SSD capabilities.
It should noted that I/O wait time is highly dependent
upon the system load at the run time and these figures
will vary. Also, the SSD is a reéource which must be
allocated, so on occasions the job sat in a queue waiting

for available space.

Theoretical Rates

Before moving on to how well C23D2 performed on the
Cray, it is interesting to see some example operating
rates on a tightly controlled program. This next section
will present results of simple vector operations obtained

under dedicated time on the Cray. It alsowill introduce a

- 22 -

T

By ot ety

loops may not be significant, these seven loops were
nested in one outer loop with an iteration count of 100.
The first call allows the user to name the loop, so the
name of each operation is listed under the Name column.
Because the utility itself has an overhead of 300 - 600
clock periods, so the number of clock periods spent within
the loop should be long compared to 600. For the test,
each of the vectors was dimensioned to 50,000, thus easily
passing the clock period constraint.

For the ease of reading, the FLOP results have been
broken into three tables. Table 2.3 shows the loop name,
number of passes through that loop, and the timing
information for each loop. Table 2.4 presents the
number floating point operations for each the loops; and

Table 2.5 lists the operating rates of each of the loops.

- 24 -~

These tables have a few striking features which will
be discussed in the next few paragraphs. First, the mega-
flop rates in Table 2.5 are somewhat slower than expected.
Second, a single square root requifes 15 operations to
obtain that result. Also, the minimum function and
conditional were slower than expected.

For the moment, concentrate on the F_ADD entry of
Table 2.3 and recall the operation time estimated for that
operation in the functional units section (4.75% sec).
This estimated time was the same operation as done by
F_ADD, except for the 100 passes through the F_ADD loop,
so multiplying that number by 100 makes the times
comparable. The time obtained on the Cray is 6.36x10"2
sec, which is considerably longer than the expected time
of 4.75x10-2, The difference lies in that our calculated
time ignores the time needed to reference the vectors,
The FLOP utility, however, has that time available to it,
sO it uses the total time to calculate its mega-flop rate.
That is the correct way to calculate the rate since
preparation time should be included in the overall rate.

It also explains why the mega-flop rates in Table 2.5
are somewhat lower than expected. The author expected
rates closer to the maximum of 105 Mflops for the floating

addition and multiplication and closer to 210 Mflops for

-26-

‘—ﬁ

-ﬁ -ﬁ ‘-Q'

oy

F‘Hm

root and that loop is the most time consuming part of the
inversion.

Note that the two square root loops have the highest
rate of results, yet they took the most time. Recall from
Table 2.4 that a square root requires 15 operations,
whereas the other loops have only one or two operations
per pass. The high number of operations raises the speed
of obtaining a square root, but it is still a time

consuming result.

- 28 -

.

=

produced. the following results on the Gould and Cray.

Line no,: 40 Trace no,: 40
7 Beta Delta C |
950.0 -0.2363918E-01 =0.2309326E+03 |
962.5 -0.4238997E-02 -0.4221103E+02 *
975.0 0.3477888E-01 0.3603203E+03 khkk
987.5 0.7448769E-01 0.8048262E+03 Khkhkhhhk
1000.0 0.9243470E-01 0.1018491E+04 Ahkkkhhhkhk
1012.5 0.7705796E-01 0.8349163E+03 khkkkkkkx
1025.0 0.3677832E-01 0.3818259E+03 kkkk
1037.5 -0.6571915E-02 -0.6529008E+02
1050.0 -0.3130101E-01 =-0.3035098E+03 *)
Table 3.1
Gould Inversion Results
Line no.: 40 Trace no.: 40
z___ Beta Delta C |
950.0 -0.2363822E-01 -0.2309236E+03]
962.,5 =-0,4238809E-02 -0.4220917E+02 *
975.0 0.3477962E-01 0.3603283E+03 khkx
987.5 0.7448657E-01 0.8048135E+03 khkhhhhkk
1000.0 0.9243472E-01 0.1018491E+04 kkkkhhhkkhs
1012.5 0.7705859E-01 0.8349240E+03 khkkkhkkkk
1025.0 0.3677790E-01 0.3818216E+03 *kkk
1037.5 =0.6572199E-02 -0.6529287E+02
1050.0 -0.3130036E-01 =-0.3035038E+03
Table 3.2

Cray Inversion Results

These tables are produced by an accessory program to

Cz3D2 named CZ3D3 which was written by B. Sumner. The

line and trace number of the output are identified at the

_30-

A,

bin, whether it is a user statement label or a compiler

generated label.

SPY Results

Since SPY relies on statistics, it should be used
only with large runs, so the following table was produced
by SPY using the hugeinv output window. The table was
edited to show the first few lines of the printout, the
innermost loops of the integration, and the subroutines.

Referring to Table 3.3, the first three labels are

compiler generated labels, while the labels suffixed with

-A or -B are the tops and bottoms of do loops in the
program. For instance, the 420A label is the top of the
depth loop while the 4208 is the bottom of that 1loop.
Also, not all of the user statement labels appear in the
printout. For example, the 410A label has no 410B
counterpart because in the CZ3D2 code, the 410 continue
statement directly follows the 400 label, so the 4108
label would be included in the 4008 bin. The HITS column
is just the total number of times that SPY found the
program control in that bin. Similarly, the SECONDS column
is the number of seconds spent in the bin. The column

headed by %SUB lists the percent of the run used for that

-32_

module alone, while the column headed by %PRG applies to
the total run time, The %CUM stands for cumulative percent
and is just the running sum of the $%PRG column.

The part to note from this table is that the bins
containing the labels 400A and 4008 use 64.6% of the
program run. These labels pertain to the innermost loop
of Cz3D2., If the bin named 410A is included with those
two then the percentage of the run spent in these bins
increases to 72.7% and the section of the program included
is increased to the two innermost loops. Since these
loops dominate the run, they are the most likely
candidates for any optimization,

Also notice that the cumulative percentage column
does not sum to 100%. This is because SPY distinguishes
between program and system control. 1In this case, C23D2
accounted for 73.9% of the run time and system calls

comprised the other 26.1%. See Table 3.4.

_34—

In the above table, the system calls are listed along
with Cz23D2 and its subroutines. Some FORTRAN intrinsic
function such as SQRT(), COS(), and ALOG() are not counted
with the program run, but have their own entries in the
table. The system calls begin with a §. Notice that the
subroutines, listed at the top of the table beneath C2z3D2,
required virtually no time, Part of this is due to the
wide time slice that SPY uses (500 microseconds), but
mostly, the subroutines are a minor part of the program
run time. It is not worth the effort to attempt any
optimization within these modules, because any speedup in
them would not appreciably affect the total run time.

Looking again at the table, most of the system
routines use little or no time to execute. The exceptions
to this are the square root operation and the I/0O
routines $RCW, $RU, $WRTUTIL, and $WU, none of which can
be avoided. The square root is necessary for the
integration, so little can be done about it. Also, the
square root call is suffixed by -V, indicating that it is
a vector square root, providing the best performance
available.

Overall, SPY provided a good profile of the program
and helped narrow the optimization focus. The SPY utility

showed that the two innermost 1loops dominate the run

- 36 -

consideration is effectively utilizing the Cray hardware.
Of course, few if any programs will efficiently take
advantage of all of the vector capabilities. The user
must then decide whether the rate FLOP provides is
acceptable given the mathematical constraints within the
program.

The initial test of FLOP on C2Z3D2 used the three
dipping planes model with 10 output lines, 100 traces per
line, and 239 depth points (the hugeinv output window).
The FLOP results for this model and output window follow

(edited for easier reading).

- 38 -

ra—

—m—— P — o

The first result to notice from this table is the
dominance of C23D2 in comparison to the subroutines. C23D2
accounts for essentially 100% of the run time and floating
point operations. This result agrees with the SPY result
that the subroutines are not worth optimizing, even though
they run relatively slow (7.95 to 12.8 Mflops). The 80
mega-flop rate is acceptable, but not outstanding.

SPY indicated that the two innermost loops accounted
for most of the run time, so having a calculation rate for
those loops became important. Unfortunately, the FLOP
utility bogged down when isolating the loops with ten
output lines, so the output window was cut to one output
line, 100 traces 239 depth points on each trace. The one
output line FLOP results without the loop isolation
follow. The FLOP results with the loops isolated will be

presented later.

- 40 -

floating point operations also dropped, but again not
quite by the full factor of ten. The drop was from
2.25x1010 to 2.40x109 floating point operations. The
mega-flop rate for the two runs was comparable, 80.63 to
82.58. Keep in mind that FLOP is a statistical utility,
so that the differences mentioned could be either within
the FLOP error margin, or due to the variance of the load
on the Cray.

Compare the results for the subroutines. Notice that
they do not exhibit the reduction of the output window.
The run times are comparable, the operations count is the
same, and the rates are roughly the same for each
subroutine. That is because they are affected more by the
input reference velocity than the width of the output
window and the model was held constant for the comparison.
Had the reference velocity or the depth window changed,
then the number of operations and the run time for each of
the subroutines would have changed, but these were held
constant. The percentage of the run attributed to the
subroutines increases for the one line of output, but they
are still negligible. Henceforth, the subroutine entries
will be edited out of the FLOP results, as they do not add
any new information. Also, the one line output window

will be used for the rest of the FLOP results.

_42-

[

and the program as a whole., This indicates that any
optimization efforts should concentrate only on these
loops.

A few attempts were made to optimize these loops.
First, switching the loops was examined and found to be a
detriment to the execution time. The other attempts tried
to avoid a conditional within the innermost loop. These
tries neither helped nor hurt the performance of Cz3D2.
The next few paragraphs will explain each of these
results,

Currently, an output trace (the outer of the two
loops) selects all the input traces which sum into it.
Switching loops would mean an input trace summing into all
of the output traces for which it affects. 1In either
case, the innermost loop will have loop indices which
depend upon the other loop. That being the situation, the
innermost loop will iterate at least once and at most 78
times. (The upper bound is particular to the model used.
Generally, the maximum number of iterations occurs when
the input and output lines are coincident. Then the

maximum number of iterations is equal to:
2 * INT [MAX(range(z)) / MIN(dx, dy)],

where range(z) is an array containing the maximum range of

- 44 -

pr——

NAME CALLED TIME(SEC) AVE-TIME $AGE ACCUM3%
ORIGLOOP 11873 2.62E+01 2.21E-03 92.62 92.62

DEEP2 11873 3.13E+01 2.64E-03 93.79 93.79
NOIF_MIN 11873 2.63E+01 2.,21E-03 92.46 92.46
TRUNC 11873 2.61E+01 2.20E-03 92.32 92.32
NAME ADDS MULTS RECIPS FLOPS
ORIGLOOP 1.16E+09 1.04E+09 1.82E+08 2.39E+09
DEEP2 1.16E+09 1.04E+09 1.82E+08 2.39E+09
NOIF_MIN 1.16E+09 9.95E+08 1.81E+08 2.34E+09
TRUNC 1.16E+09 9.95E+08 1.81E+08 2.34E+09
NAME MEM/FLOP MMEM/SEC MFLOPS
ORIGLOOP 0.27 24.97 91.07
DEEP2 0.47 35.57 76.26
NOIF_MIN 0.28 24.91 89.00
TRUNC 0.28 25.09 89.65
Table 3.8

Composite of Four FLOP Runs

The other attempts at optimization were not as
drastic, but they had about as much success., First note
that number of multiplications and reciprocals dropped
slightly for the NOIF_MIN and TRUNC entries., That is
because a division was replaced by a multiplication of
its reciprocal within the innermost loop. One division
counts as 3 floating point multiplications and one
reciprocal, so both counts should drop.

The rate for each of these attempts is close to the
original rate of 91 mega-flops. These changes were to how

the horizontal offset is calculated., 1In calculating the

46.

geometry set up by the c(z) assumption. The present code
utilizes that geometry when tabling the travel times and
amplitudes, but does not for the inversion. The seismic
data structure is outwardly rectangular, so any
cylindrical symmetry within it is well masked. The rest
of this thesis will concentrate on transferring the data

from a remote computing facility to the users location.

- 48 -

affect the graphing of the data. The "compression" phase
uses a Huffman algorithm to encode the data in such a way
that the file size is smaller. Huffman encoding preserves
the information content, but then the data cannot be used
until it is decoded. Each of the methods can be
illuminated by information theory; so some concepts from

that theory will follow.

INFORMATION THEORY

Information theory defines quantities such as
information, entropy, and redundancy of a message. An
alphabet is the group of symbols, or possible symbols
within a message. Let M be the number of elements in the
alphabet., For example, the letters A, B, C, D, and E
comprise one alphabet (with M = 5) while the numbers 1-9
another. A meta-symbol is one or more of the symbols
combined. The probability associated with a meta-symbol
is the sum of the individual symbol probabilities and will
be interpreted as the probability of one of the individual
symbols occurring next. For this paper, the alphabet is
the 256 combinations of 8 bits, Note that each symbol in
an alphabet can itself be considered a message and will

have a probability of occurrence associated with it.

—50-

The information of a symbol, then, is defined to
be
I = -logze(i),
where P(i) is the probability of the ith symbol of the
alphabet occurring next in a given message. The negative
logarithm function was picked because it has the value 0.0
at 1.0 and increases without bound as the argument
approaches zero, while the base 2 was chosen so that the
information of a symbol is measured in bits,
While information is measured for individual symbols,
the entropy applies to the entire message. Entropy is

just the average information content of the message, or
H = -zM_; p(i)logap(i).

In this formula, the sum runs over all of the symbols in
the alphabet. Like information, entropy is measured in
bits, so entropy is also the average number of bits which
have useful information.

Another quantity, Hp,y, is needed before redundancy
can be defined. Hpaxr the maximum entropy, is a least
upper bound on the number of bits needed to encode M

symbols. Mathematically, this is simply

Hpnax = loggM.

_52-

to 8 bit integer data. That operation is followed by
packing 4 data points into one word of computer memory.
This phase shows that the above-mentioned classification
is not perfect. During the truncation, there is a loss of
information, so it is clearly reducing the entropy of the
data. However, the packing of 4 data points into one word
of memory reorganizes the data into a more compact form,
so it also reduces the redundancy of the data. Both
traits exist in this phase, Overall though, the loss of
information dominates the phase so it falls into the
entropy reduction category.

The 8 bit data format was decided uvon for two
reasons., First, 8 bits is equivalent to slightly more
than 2 significant figures, which is typically about the
accuracy of the inversion algorithm and of the original
time data. Secondly, a plot of the 8 bit data does not
look any different than a plot of 16 bit or 32 bit data.
See the following figure. That plot shows the same 5
traces of inverted data, but at various levels of
accuracy. The 2 bit and 4 bit displays exhibit clipping
and a lack of resolution between the peaks. The 8 bit to
32 bit displays, though, are essentially identical. The
human eye would be hard pressed to distinguish between the

displays, particularly when most seismic traces are

54

Resolution of Bit Representations

2 bit 4 bit 8 bit 16 bit 32 bit

S " e
- D T R T

JJJJJ

Figure 4.2
Resolution of seismic data at various accuracies

_56-

The Huffman method builds a code according to the
probability of a character occurring (Huffman, 1950). For
the next few paragraphs, consider a hypothetical message
of 50 characters composed only of the characters A, 8, C,
D, and E. Let them have the frequencies and associated

probabilities listed below.

Letter Frequency Probability
A 20 0.40
B 12 0.24
C 10 0.20
D 6 0.12
E __2 0.04
50 1.00 totals
Table 4.1

Hypothetical message character distribution

A code for this distribution could be built as follows.
Find the characters with the two lowest probabilities (D
and E here), Assign the character with the lower of the
two probabilities to be 0 and the greater to be 1. Add
their probabilities to get a probability of either of them .
occurring, thus creating a meta-character. Now, search
the amended table for the next two lowest probabilities (C
and meta-character DE) assigning 0 and 1 as before.
Continue this process until the table has only one entry.

See Figure 4.3.

-58_

400 bits (roughly a four to one compression). Note that
this code is not unique. 1In building it, the lower of two
probabilities was assigned 0. The rule might just have
easily been the lower probability receives a 1. That rule
would have have resulted in an equivalent, but different
code.

A message is decoded as it is received, provided that
the key is present. The first bit is received, and tested
whether it is a 0 or 1 . If it is a 0, then the first
character of the message is an A, Otherwise it is the
meta-character BCDE, The next bit is examined. Again, if
it is a 0, the character is known (a B). Continue
examining bits until a character is determined, Then
start over until the whole message is deciphered.

The above example introduces the basic method. That
algorithm was developed in 1952 and there have been some
improvements since. The current approach finds common
substrings in the file, then finds an optimal code for the
substring., Also, the algorithm codes in blocks, so that
the new codes may change within a file, thus keeping the
codes optimal over a shorter range. One other improvement
over the original is that the code key does not need to be

stored.

- 60 =~

Hpax = 8.000
H = 5.426

R = 2,574,

It should be noted that the entropy, H, has dropped
while the redundancy, R, has increased. Sending the
packed data through the Huffman algorithm resulted in a
further 2.5 to 1 compression, for a complete compaction of
10 to 1. The following table lists the size, in bytes, of

the data set at each stage of the compression.

original packed compressed
Seismic data 964000% 240000 95387
Header information 1972 1976 1039
Total 965972 241976 96426

*Phis figure includes record separators between traces
(1000 traces)(8 bytes/trace) = 8000 bytes

Table 4.2
Sizes (in bytes) of the Hugeinv Data Set

The original data is in one file even though the chart
indicates two files. During the packing process the
seismic data is split away from the header information so

that more compression may be achieved during the Huffman

- 62 -

e

The Huf fman algorithm can compress the packed data
but not the raw data because of the different
distributions of the characters within each of the files.
The Huffman routine reads the input data one byte at a
time, so when the 32 bit floating point data is sent
through the routine, no patterns emerge. Taking 8 bits
from a floating point number results in a very flat
distribution. See the figure below. The two peaks near 100
and 300 octal respectively, are due to the way floating
point numbers are stored on the Gould and to the
restricted range of the seismic data. The leading bit is
a signbit and since our data takes on both negative and
positive values, two peaks are possible., Following the
signbit are 7 bits that are used for the exponent of the
floating point number. The seismic data is scaled to be
in the range [-1.0, 1.0], thus limiting the the possible
exponents to just a few. Even though these peaks are
present, they are not large enough for the Huffman
algorithm to take advantage of them,

Seismic data, though, has a distribution centered
about zero, See Figure 4.4. Most of the seismic data lies
between 1515 and 214g. There is data outside of this
range, but it is very infrequent. Truncating seismic data

to eight bits preserves the distribution of that data for

- 64 -

data set, That data set is the three dipping planes model
with an output window of 10 output lines, 100 traces per
line, and 239 points per trace. The run time of each
routine is the sum of the user seconds and the system
seconds, while the real time is the elapsed time for the

computer to run the program.

User time System time Real time
(sec) (sec) (sec)
Packing of data 15.7 2.2 20
Huffman encoding 3.4 0.6 4
Huffman decoding 2.6 0.5 8
Unpacking of data 8.9 1.6 11
Total time 30.6 4.9 43

Table 4.4
Run time chart for the compression
(Gould 9750)

No attempt was made to optimize the run time of the
packing and unpécking routines since they will be rarely
used. Also, the savings already made possible by the
programs far outweighs any possible benefits of optimizing
them. The Huffman routines, however, are more general and
will be used much more extensively, so somebody has
optimized them. The total compression time, then, is the
sum of all four routines (43 sec). That number should be

compared to the anticipated savings in transmission time

- 66 -

=

CONCLUSION

The authors of C23D2, B. Sumner and Drs. Cohen and
Hagin wrote a good program which performed as they
expected., It ported from the Gould 9750 here at CSM to a
Cray X-MP/48 in Minneapolis quite easily. For a while,
the I/0 wait time presented a problem, as it took up to
ten times longer than the actual run time, but taking
advantage of a high speed storage unit solved that
problem. The device is called a Solid-state Storage
Device and it reduced the I/0 wait time to virtually no
time.

The operating rate of C23D2 turned out to be in the 80
mega-flops.‘ After testing the program, and trying a few
changes, that rate was found to be acceptable.
Particularly when contrasted with the test results
presented in Chapter 2., Those results were obtained
using long vector lengths (50,000 elements) and under
dedicated time, yet the floating point addition did not
obtain the 80 mega-flops that C23D2 did. C23D2 d4id not
have the advantage of long vectors, as its inner loop had
a minimum iteration of 1 and a maximum iteration of 78.
CZz3D2 did have very few memory references per floating

point operation (0.29), which helps its calculation rate.

- 68 =

By truncating the output data of CzZ3D2 from 32 bit
floating point data to 8 bit integer data, a great
savings in transmission time can be achieved. Following
the truncation, the packed data should be run through a
Huffman encoding algorithm, This two stage
compactification yields a data file size reduction of
approximately 10 to 1. It is only approximate because the
Huffman algorithm is highly dependent upon the input data.

This compactification has some drawbacks to it,
however. The phone transfer may cause some problems. If
even one bit is changed, the Huffman algorithm will not be
able to properly decode the data. The phone transfers
which were done utilized the local lines only. For those
transfers, no problems occurred, but the long distance
lines have more background noise which may cause problems.
A future project may examine this. Also, modems with
error checking exist, so they should be used when files

are transferred.

- 70 -~

Appendix A

TEST PROGRAM for FLOP

This is the program which was tested in the
Theoretical Rates section. It was run under dedicated
time, thus eliminating system conflicts with other
programs on the Cray. The idea was to see the rates of

various common operations. The operations are:

Operation Name
A(j) = B(3) *+ C(J) F_ADD
A(3) = B(3) * C(3]) F_MULT
A(j) = B(j) * C(j) + const. F_MULT_S
A(J) = sqrt(C(j)) BAS_SQRT
A(j) = sqrt(B(j) * C(3)) CHNDS QRT
A(3) = MIN(B(j), C(J)) MIN_FUNC
if (B(J) .LT. C(3)) IF_TEST

then A(]j) = B(J)

The FLOP routine allows the user to name the isolated

section, so the name column identifies the name I gave
each loop. 'F_ADD' is a floating point addition, 'F_MULT'
is a floating point multiplication, 'F_MULT_S' is the
multiplication followed by an addition of a scalar. The
two square roots are 'BAS_SQRT' for a basic square root
and 'CHNDSQRT' for a multiplication chaining into a square
root. The other two names should be self-explanatory.

The program follows.

- 72 -

500

600

700

800

900

CALL PERFON ('CHNDSQRT'R)
DO 500 J = ONE, VECLEN
A(J) = SQRT(B(J) * C(J))
CONT INUE
CALL PERFOFF

CALL PERFON ('BAS_SQRT'R)

DO 600 J = ONE, VECLEN
A(J) = SQRT(C(J))

CONTINUE

CALL PERFOFF

CALL PERFON (‘MIN_FUNC'R)
DO 700 J = ONE, VECLEN
A(J) = MIN(B(J) , C(J))
CONT INUE
CALL PERFOFF

CALL PERFON ('IF_TEST'R)
DO 800 J = ONE, VECLEN
IF (B(J) .LT. C(J)) A(J)
CONTINUE
CALL PERFOFF

CONTINUE

sSTOP
END

- 74 -

B (J)

00000000 00000000 00000000 10010111

The other data points may be packed into that word by
shift and bit-wise OR operations, First the data point is
shifted to the left, filling the vacant field on the right

with zeroes.
00000000 00000000 10010111 00000000

Then a bit-wise OR operation puts an unshifted data point
into the rightmost field. This procedure will work as
long as the data points do not overlap and as long as
zeroes, rather than ones, fill the fields which do not
contain data points., The program takes care of these
considerations by 1) using only positive values for the 8
bit data, and 2) shifting the data before the OR
operation.

PKBIT breaks the data into a header file and a
packed seismic data file. The header file contains
information such as number of lines, traces, depth points,
etc. It also contains the background velocity information
and the maximum amplitude by which the traces were scaled.
The seismic data is in a separate data file so that the
Huffman routine may yield more compression.

The unpacking routine works similarly, but it shifts

- 76 =

