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Ch. 1 - Sec. 1 

1. GREEN'S FONCTIONS 
  

In this chapter we discuss those properties of scalar Green's functions 

which make them useful as sources by themselves and as adjunct elemental 

sources in finding field distributions for more complicated problems 

involving surfaces and volumes. We begin with the Green’s functions for the 

wave equation in n=1,2,3 spatial dimensions and 1 temporal dimension. Using 

different boundary conditions we show that in (n,1) dimensions there are 

five possible Green's functions and, using their interrelationships, only 

three independent ones. Each one has various uses depending on the problem 

at hand. Integration over time yields the corresponding Green's functions 

for the Helmholtz equation again in n=1,2,3 spatial dimensions. We also 

treat separately, and briefly, the causal Green's function for the parabolic 

wave equation. 

Fourier transform representations of these Helmholtz Green’s functions 

are often useful, as are additional integral representations formed by 

integration over one or two of the Fourier transform variables. This leads 

to integral representations associated with the names Weyl, Sommerfeld, and 

Weyrich. These are all spectral representations of some kind, the Weyl 

representation being a two-dimensional integral over the transverse 

wavenumber components, the Sommerfeld representation a one-dimensional 

representation over the (radial) transverse wavenumber, and the Weyrich 

representation a one-dimensional representation over the vertical wavenumber 

component. Both the latter use cylindrical symmetry properties. Plane wave 

spectral decompositions are also treated as are their interrelations with 

the above representations. An example is discussed of the use of the 

representations in the half-plane. 

For complicated geometries the most straightforward approach to solving
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boundary value problems is to use integral equations. To develop surface 

integral equations using Green’s functions as elemental sources, or their 

derivatives as dipole sources, it is necessary to know their analytic 

properties. In particular spatial singularities must be treated in such a 

way that the resulting integral equations may be solved using classical 

techniques. This is called regularization, and we demonstrate the 

regularization of the first and second vector derivatives of the Helmholtz 

Green's function. 

Finally we discuss the Green's function in one-dimension using 

conventional methods here generalized to inhomogeneous media. We treat a 

general method of finding profiles for which the one-dimensional Helmholtz 

equation is solvable in terms of known classical functions. 

1.1 GREEN'S FUNCTION FOR THE WAVE EQUATION 

1.1.1 (3,1)—DIMENSIONS 

The Green’s function is defined as 

(3,1) Get (x, x'st,t!) (1.1) 

in three spatial and one temporal dimensions. It satisfies the wave 

equation given by (c is the wave speed) 

[ve - co PatfoO eM ax rtet) = Bae eet), (1.2) 

where the Laplacian is defined by



Vv =a +a +a. (1.3) 
x y z 

It is convenient to do many of the manipulations in four-vector notation 

x = (x,x,) x, = ct , (1.4) 

with the scalar product defined by 

> 0 space-like 

re x=z-g-x, [= 0 light-like (1.5) 

<0 time-like . 

Using this notation the Green's function satisfies 

(3,2) e — e = LJ « (x,x') = -8(x-x') = -6(x-x')8(x,-x!) (1.6) 

where we have defined the d’Alembertian operator 

2 —-2,2 2 2 C)-v-c“a=-v-a . (1.7) 

Since we have 8(x,-x,) = ¢ 8(t-t’) we see from (1.2) and (1.6) that our 

Green's functions are related by 

6 xe t.t) = 6 6M x2"). (1.8) 

Since the delta function source term is a function of the difference 

between the space-time source point (x’) and receiver point (x), and the 

coefficients of the differential operators in the d’Alembertian are 

constants (homogeneous medium), the Green’s function only depends 

functionally on the difference x-x’. For convenience we write it as a



function of this difference, and introduce the Fourier transform in the 

difference argument 

6 (xy = (an) *ffffexptikex) BOM Uae (1.9) 

with notation (# is circular frequency) 

kex = kex -kK x 3 kK, = w/e 

d’'k= dk dk. (1.10) 

Applying the d’Alembertian operator to (1.9) we see that (1.6) is satisfied 

provided 

GO Ky = (K? - 0 a (1.11) 

We note that the four-dimensional delta function is written as 

B(x) = (2n)* {{{fexpcix-xa*x . (1.12) 

Using (1.11) and defining w,=|,K| we can write (1.9) as 

  66) (x) = - 1 U0 tere Oe . (1.13) 
(2n)* 

To evaluate (1.13) we must first evaluate the k, integral 

© exp(-ik x) 

3. (x) o kt Op 0



To do this we must define how to treat the pole terms at ky =tw, in the 

integrand. There are two equivalent ways to do this. The first is 

(a) Fix the poles — offset the contour 

There are five ways to do this illustrated below: 

1,4 4-7 Lo R: retarded 

Here the integration contour is written as semicircles above 

the two poles at tu,- It is called the retarded contour for 

reasons which will be clear later. 

2. TOV ET OTN advanced 

Here the integration contour is written as semicirlces below 

the two poles at tu,. 

3. —>4 x4 xf >—P: principal value 

Here the poles are evaluated using the Cauchy principal value 

definition of the integral. 

4, yp: Dy son 

Here the integration contour is written using semicircles, 

one below the pole at -w, and one above the pole at +w,- The 

name arises from F. Dyson in his work on quantum field 

theory.



S.—>-x boy xy >-C: causal 

Here the semicircles are reversed from the Dyson contour. 

The second method is to: 

(b) Fix the contour - offset the poles 

For this method we fix the contour along the real ky axis from -@ 

to », and shift the poles. The above five become 

——— 
1. x R: retarded 

x A: advanced 

x——> P: principal value   

4. x D: Dyson 
- 

x 

5. x C: causal 

——_——_______» 

x 

Each method makes clear that we will treat (1.14) as an integral in the 

complex plane. We use method (b), i.e. we shift the poles by an amount is 

and consider the results in the limit as e>0. That is we shift them into



the imaginary part of the complex ky Plane. We thus have 

(ko - w) (e+ o) > fE,- (u,+ ioe) | [k,+ a ipe| , (1.15) 

where a,f=11, 0 depending on the shift. For the five cases we have that 

C: a=1,p=-1 . (1.16) 

To evaluate the poles, use the Dirac-Plemelj relations for distributions (we 

assume the limit s—> 0) 

1 1 
= Pp— id . yrie y F m1 (y) (1.17) 

That is, we express the poles at y + ie in terms of principal value (P) 

distributions and half-residue terms from the semicircles. (Ref. 1.4, p. 

476.) We thus have for one pole 

  

  

1 1 
= = Pp + ani &(k -w,) , (1.18) 

k, [, + iae | k,- & o -& 

and for the product of two poles 

1 

(k~ wy - iae)(k,+ w,- ip.) 

= Pp i + mil a &8(k - wo) - B S(k + w,) (1.19) 
2 2 20 [ 0 k 0 k ] . ° 

kK) - Oy k



ime 1 ~- DEC. Lt 

Substituting (1.19) into (1.13) we can thus write all of our examples in 

terms of two integrals as 

62> (x) = ~(2n)* Tr a) + (ni/2) [a I, (x,-x,) - B 1, (z-x,)]] » (1.20) 

where the integrals are defined by 

I(x) = p(({{ 2S a’k (1.21) 

and 

exp [i(k-x + ox | a reer ~ fff (20 
°% 

To evaluate I, use the following distributional relation 

1 it i . a 1. , 1.23 P= z [. exp(iat) Tel da ( ) 

which can be easily proved as follows 

f exp(iat) Tel da = i} expliat)da - ( exp(iat)da 
—o@ 0 —o 

ap | i oxp[ialt + ie] ]de - [ exp[ialt - tera 

lim i + i 

e> 0 t + ie t - is 

: 1 
2iP= , 

where the latter step follows from the relations (1.17). I, can thus be



written as 

I(x) = - + fas Tel (Gf exp(-iak-k + ik-x)d’k . (1.24) 

Completing the square in the four-dimensional integral and introducing the 

change of variables 

k’ =k - (2a) x 

and the integrals 

co 

) dp exp(Fiap ) = frvtiar] , 

we can evaluate the four-dimensional integral to get 

I(x) = (x? /2) fae a exp[ix:x(4a)~"] . 

The further change of variables a=(4a)~* then yields 

I(x) = -4n° B(x"), 

which can also be written as 

I, (x) = ~4n*(22)"* [8 + x,) + &(r - x) | . 

The latter follows from the general distributional result 

8(£(x)) = 2 &(x - x,)/ [fx | 
i 

where f(x;)=0. 

We evaluate I, using spherical coordinates with 

(1.25) 

(1.26) 

(1.27) 

(1.28) 

(1.29) 

(1.30)



dk = wo. , 14, d(cos 6)dg 

k-x = 0, r cos® ; r= | k x| e (1.31) 

The angular integrals are straightforward, and we get 

eo 

I (x,x,) = (an fiz) { [exp fim, (x, + r)] - exp [iw, (x,- r) } Jao, » (1,32) 

Introduce a small convergence factor 

  

I (x,x,) = (2n/ir) lim expfiw, (x + r+ ie) 
ano 20 [ [ k 8 ] 

- exp fiw, (x,- rt ie) J ao, 

1 _ 1 = (2n/r) 1, xtrtie x - 4? ie (1.33) 

If we use (1.17) and combine the terms we get 

  

2 

I (x,x.) = 4n PL + 224 
a‘~’”o z r bes, r) - 8(x 5+ o| . (1.34) 

By substituting -x, for x, and rewriting we get that 

I,(z.-x,) = [I,Gex] 

2 
2n i 

r 
  4n Pa - [B(x,- 2) - Bxyt 2d] (1.35) 

x 

We thus have all the necessary integrals from (1.29), (1.34) and (1.35) and 

can evaluate our Green's functions from (1.20). The results are: 

- 10 -



Eg. 1. RETARDED GREEN'S FUNCTION (a=p=-1) 

60>) (x) = (ane) B(x.- 2). (1.36) 
R 

This result means that after a time t, a pulse in three-dimensions is 

concentrated on the surface of a sphere of radius r=x9=ct (i.e. it is an 

out going spherical wave). Also we note that since 

8(x - r) = 8(et - 4) = co &(t-xr/e) , 

we have that following (1.8) 

GO) (x) =o Geez ty, 

In addition this is called a retarded Green’s function since any field u can 

be expressed as an integral over a source function f as 

u(x) = ul(x,x,) = (fax: fax; of? **) (x-x") f(x", x,) ° 

Substituting the Green’s function from (1.36) and evaluating the Xo 

integration yields 

u(x) = (ffag? Caner f(x’.x,- xr) , 

where r=|x-x'|. The latter is an integral over a source function f 

evaluated at a retarded time. 

-i11-



wane = weve = 

Eg. 2. ADVANCED GREEN’S FUNCTION (a=B=1) 

We have that 

an’) (x) = (4nz)"* &(x, +r) (1.37) 

This is an incoming spherical pulse concentrated on a sphere of radius r=- 

ct. Thus for a real pulse it must exist for negative times. It is called 

an advanced Green’s function since any field can be written as the spatial 

integral over a source function f evaluated at an advanced time x,+r in 

analogy to the previous discussion. 

Bg. 3. PRINCIPAL VALUE GREEN’S FUNCTION (a=p=0) 

From (1.20) this is directly related to I, so that 

ot?) (x) = (4n)~" B(x’). (1.38) - 

We also note that it can be written as a linear combination of (1.36) and 

(1.37) 

6 (x) =f [ol wo + acy]. (1.39) 

so that another representation is 

oy”) (x) = (8nz)~* [8 (x,- r) + &(x,+ 2) | > (1.40) 

’ 

which also follows from (1.29) and (1.30). Ina sense it is a standing wave 

Green's function since it balances both incoming and outgoing wave Green's 

functions. 

-12-



Eg. 4. DYSON GREEN’S FUNCTION (a=-1, §=1) 

By relating the I, integral to the principal value term (1.38) we get 

that 

6PM xy = GM (ry +t pr, (1.41) 
D P 4n x 

Rg. 5. CAUSAL GREEN'S FUNCTION (a=1, B=-1) 
  

This is just the complex conjugate of the Dyson function 

(1.42)   

2 

(3,2) _ al3,2) _ i 1 
Go (x) = G6 (x) P — . 

4n x 

Finally we can easily conclude either from the explicit forms of the 

five functions (1.36), (1.37), (1.38), (1.41) and (1.42) or from the 

definitions (1.16) and (1.20) that we have the relations 

oer =F foe inr + oP]. 
and 

6x) =F foley + Pi]. (1.43) 

so that only three of the five functions are linearly independent. In 

addition we also note that the difference of any two of these Green's 

for example functions is a solution of the homogeneous equation, i.e. 

(3,2) _ g(@,2) (1.44) 
g = G A 

satisfies 

(1.45) 

- 13 -



1.1.2  (2,1)-DINENSIONS 

Here we compute the Green’s functions in two spatial and one temporal 

dimension. We do this by identifying one spatial coordinate and integrating 

the (3,1) Green's functions over this coordinate. We choose the z-direction 

as our direction of integration and write the radius r as 

[p*s (2 - 2] , (1.46) * " 

where 

pe-p' » gp=(x,y) , (1.47) I
S
 " 

will be the remaining two-dimensional vector. The Green’s functions we 

define all satisfy the equation 

(ay + a2 - e*at) g'7>*) (pc) = -8(c)8(P) (1.48) 

Eg. 1. RETARDED GREEN’S FUNCTION 

We define Gi?-*) as the spatial integral over 6i?+*) given by (1.36) 

, s 

where r=|x-x'| and t=x9-x,- It is 

60) (p,c) = [ 6 iss az’, (1.49) 

_ 1 “ &(r - t) , = i —S’ a’ 

We define 

- 14 -



t =z-z!' at = -dz’ 

re=P+t? 

at/r = dr/{ = dr (x - p*)?/? » (1.50) 

so that 

(2,2) 1 ( 8c - tide 
G ’ (P,t) = j ae =» 

R ~ mJ, (e?- p?)?/? 

and, evaluating the 5-function, we get 

(2,2) _1 O(c - P) 
Gp (P,t) = 2a (3. p?y3l? ° (1.51) 

This illustrates the fact that, in two dimensions, the effect of an impulse 

after a (scaled) time t has elapsed has spread over a region of spatial 

extent P<r. A line source in three dimensions produces a field which at any 

given point has a tail. 

We can analogously define the other Green’s fumctions as integrals over 

the corresponding (3,1) dimensional Green’s functions. From (1.37), (1.40), 

(1.41) and (1.42) we get 

Eg. 2. ADVANCED GREEN’S FUNCTION 

(2,2) _1_ 0(-<-P) 
6, (P,t) = 2m 2 _p2yi/? e (1.52) 

- 15 -



Eg. 3. PRINCIPAL VALUE GREEN’S FUNCTION 

  

on) (p,e) = i , i. 7a [oce-P) + e(-c-P) | . (1.53) 

(c -P ) 

Eg. 4. DYSON GREEN'S FUNCTION 

g(4>) (pc) = g'?2>*) (pc) + i O(P-]tp) e (1.54) 
D ~ P ~ 4n [p?-2?)2/? 

and finally 

Eg. 5. CAUSAL GREEN’S FONCTION 

(2,2) = (2,2) - i o(P- t ) Go (P,t) Gh (P,t) an alr . (1.55) 

1.1.3 (1,1)—DINENSIONS 

The Green’s function in one spatial and one temporal dimension is 

defined as 

De Eax-x' 5 tax xa olt-t") , (1.56) 

and satisfies the equation 

(a? = a2) 69) (e,n) = -8(8) Bt). (1.57) 

We can compute the five Green’s functions either by integrating over the y- 

coordinate results 6(3.2) (pe) from Sec. 1.1.2, or by using pole shifting 

and complex integration techniques as we used in Sec. 1.1.1. We choose the 

latter. Introduce the Fourier transform 

- 16 -



6!) Ce ,2) = (22)? [fexp [ite ~ kt) [6 (ak, Dak, ak, *(1.58) 

and apply the differential operator in (1.57) to it. We can thus solve for 

the Fourier transform and write (1.58) as 

(a exp(-ik +) 
G eee) = ~(2n)~* fexp(ik, &) dk J aa dt. (1.59) 

k 
x ° 

Shift the poles of the integrand as in Sec. 1.1.1. That is we have that 

1 1 
(DE VEF EY ~*~ Ce -k- ine) E- iped 

° x ° x ® b o x 

= P 2 2 kj~ k. 

ni 

* te [as (x, - k) - B&(k,+ «| » (1.60) 

  

where we have used (1.17). The result for (1.59) is 

6'*> (ec) = -(an)~* fx ( i -t) - > a(&-t) + (ni/2) [a I, (&,-t) -B 1, (gt) ] » (1.61) 

in analogy to (1.20) where here 

a &é-k exp [i(kt ~ kt) ] 
1, (8,0) = eff Ee dk dk, (1.62) 

and 

> expfik (& + 1) 
1(é,t) = i Soars . (1.63) 

x 
—O x 

- 17 -



The values a and B are given by (1.16). 

The integrals can be easily evaluated using complex variable 

techniques. The results are 

I (é.t) = -(n7/2) sgn chsgn(é +c) - sgnl—é-t)) , (1.64) 

or 

2 

1,(&,t) = -n [O(c - Je] + o(-c - fep) . (1.65) 

and 

1, (8,%) = mi sgn(—E +7). (1.66) 

We combine these results using (1.64)-(1.66) and (1.16) in (1.61) to get the 

results: 

Rg. 1. RETARDED GREEN’ S FUNCTION 

(1,3) _1 Geet) =F ole - [ep - (1.67) 

Bg. 2. ADVANCED GREEN'S FUNCTION 

(1, 1 Go ee) = Fee - fe) - (1.68) 

Bg. 3. PRINCIPAL VALUE GREEN'S FUNCTION 

op (Ez) =F Lote - gp + o(-e - [gpd (1.69) 

- 18 -



Bg. 4. DYSON GREEN’ S FUNCTION 

on (ee) = -5 [oce)sen(e-x) + 0(-r)sen(é+2) | . (1.70) 

and 

Eg. 5. CAUSAL GREENS FUNCTION 

ont ese) =F [oce)sgn(e+e) + 0(-z)sen(t-e) | ° (1.71) 

Other compact values can also be derived, for example 

(1,2) 1 
6) (E02 = -% sgn [é - I< 1] , (1.72) 

and 

(a, 1 Go (e.e) =F senfe + Il] - (1.73) 

-19-



1.2 GREEN'S FUNCTIONS FOR THE AELNHOLTZ EQUATION 

1.2.1  (3)-—DIMENSIONS 

We can define the Green’s functions for the Helmholtz equation as the 

temporal Fourier transform of the Green’s functions for the wave equation 

derived in Sec. 1. Using the four-dimensional formulation we have 

6g = f oO (x2 explikyeddr , (2.1) 

where T=X_7X,° They satisfy the Helmholtz equation given by the same 

Fourier transform operating on (1.6). It is 

Wee eyez) = -Blg- 2) (2.2) 

where k,=w/c and w is circular frequency. We compute each of the Green's 

functions corresponding to the pole shifts in Sec. 1. 

Eg. 1. R8ETARDED GREEN’S FUNCTION 

From (1.36) we have that for a difference of arguments (r=|z-x’ |) 

GeeDexn) = G(s x) = (ane) Ble - 2). (2.3) 

Substitute this in (2.1) to get 

Ge (x,2') = Cane)" explikr) (2.4) 

which is an outgoing spherical wave, i.e. for harmonic time dependence 

- 20 -



exp(-iwt) = exp(-ik x,) ’ (2.5) 

the wave travels in a positive radial direction and satisfies an out going 

radiation condition of the form 

lim Q¢.._tlt«g (3) _ -2 
re E a,| Gp - O(r ) e (2.6) 

It expresses the field at the receiver point x due to a point source located 

at x’ in a homogeneous medium. 

Eg. 2. ADVANCED GREEN’S FUNCTION 

From (1.37) we have that 

GO D(x,x!) = (ane) “Ble + x) (2.7) 

which when substituted into (2.1) yields 

G(x, x") = (4nr) exp(-ik r) . (2.8) 

For harmonic time dependence this is an incoming radial wave satisfying the 

radiation condition 

lim | a (3) _ gy? tim | Bo a] G, = Or) . (2.9) 
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Eg. 3. PRINCIPAL VALUE GREEN’ S FUNCTION 

This can be computed either directly from (1.40) using a difference of 

arguments or from (1.39) represented here as half the sum of (2.3) and 

(2.8). The result is 

Gn (x.z") = (4nr)™* cos(k r) , (2.10) 

which for harmonic time dependence represents a standing wave. Note also 

that in contrast to the retarded and advanced functions, the principal value 

Green's function is real. 

Eg- 4. DYSON AND CAUSAL GREEN’S FUNCTIONS 

From (1.41) and (1.42) we have that 

60s) (x,2") = >) (x, 57) + i p_+ . (2.11) 
D,C P 4n° (x - x')” 

We substitute this into (2.1) and use (2.10) for the evaluation of the 

principal value term. The remaining integral can be evaluated using residue 

calculus methods. The result is 

(ee) = “*leos(k.r) + i (2.12) 6p, clS% ) = (4nxr) cOstkK rT) —- i sgn (k,) sin(k,r) , ° 

which can be rewritten as 

6'?) (x,x°) k >0 
RE fw. ° 

6?) (x, x") = 

6?) (x,x") ro , (2.13) 
A ~~ N 0 

and 
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6°) (x,x") k,>0 
OMA E SED = 

(3) ’ Go (xx!) k<o . (2.14) 

Because the Dyson and Causal Green's functions mix representations and do 

not satisfy either a well-defined radiation condition or a standing wave 

interpretation except for positive or negative frequency separately, they 

are not useful for our purposes. In addition negative frequency results are 

usually folded into positive frequency ones in applications, and neither the 

Dyson or Causal functions yield new results over and above those found from 

the retarded, advanced, and principal value functions. We do not compute 

them for (2) and (1) dimensions. 

1.2.2  (2)—DIMENSIONS 

The two-dimensional Helmholtz Green's functions are the temporal 

Fourier transforms of the Green's functions for the two-dimensional wave 

equation in Sec. 1.1.2. They are defined as 

(3,2) 6'*) (p,p") = ) G (P,t) exp(ik,t)dt , (2.15) 

and satisfy the Helmholtz equation given by the corresponding transfom of 

(1.48) which becomes 

(2) (a2 + ay +k 6 (p.p’) = B(x -x")Bly- yy"). (2.16) 
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Eg. 1. RETARDED GREEN’S FUNCTION 

For this case we substitute (1.51) in (2.15) to get 

© exp(ik t) 
on (pop) = = J TS dt. (2.17) 

P(t ~ P) 

If we make the substitution 

t = P cosh¢ 3 dv = P sinh¢g d¢ =, 

the integral becomes 

Gt” (pp) = az exp(ik Pcosh¢)d¢ (2.18) 
—O@ 

written from -© to > since the integrand is an even function of 9. The 

integral (2.18) is a representation of the Hankel function 

(3) = i pl) Gp (p.p') = 74 (k,P) , (2.19) 

which is an outgoing cylindrical wave, i.e. asymptotically 

a’*) (x Pp) ~ (2/nik,P)*/? exp(ik,P) (2.20) 

which spreads like a cylindrical wave with amplitude factor po2/3, 

Eg. 2. ADVANCED GREEN’S FUNCTION 

Substitute (1.52) into (2.15). The integration can be performed as 

above with an additional sign change in t. The result is the incoming 

Hankel function 
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(2) ry . . i gl?) 
6G, (p.p ) = 4 Le (k,P) ’ (2.21) 

which represents a cylindrical wave propagating in the direction of 

decreasing r. 

Eg. 3. PRINCIPAL VALUE GREEN’S FUNCTION 

This can be computed either directly by substituting (1.53) in (2.15) 

or as half the sum of (2.19) and (2.21). The result is 

(3) 1 . 2 
6 (pop ) — 7 No (kP) s (2.22) 

where N, is the Neumann function. 

1.2.3 (1)—DIMENSION 

We define the one-dimensional Helmholtz Green’s function as_ the 

temporal Fourier transform of the one-dimensional Green’s functions for the 

wave equation in Sec. 1.1.3. It is 

6!) (a,x) = fo? Cecrexplik, dae , (2.23) 

where t=x-x’. Fourier transformation of the differential equation (1.57) 

yields the ordinary differential equation 

  

a 

! +? 6) (n,x°) = - 8(x-x') , (2.24) 
2 o 

dx 

which is the one-dimensional version of the Helmholtz equation satisfied by 

all the one-dimensional Green’s functions below. 
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Eg. 1. RETARDED GREEN’S FUNCTION 

Substitute (1.67) in (2.23). Evaluation of the step function yields 

ot*) (x, x") = $ J [77 (Kor) ae . (2.25) 

g 

Recall that this Green’s function for the wave equation was computed with ky 

shifted to k,,. We can then directly evaluate the integral in (2.25) since 

the contribution at © vanishes. The result is 

(2 - 
Gp dx,x") = -(2ik,) * exp(ik, |x-x’ }) > (2.26) 

which is a one-dimensional wave which travels to the right. 

Eg. 2. ADVANCED GREEN’S FUNCTION 
  

Substitute (1.69) in (2.23). The integral evaluation proceeds in the 

same manner as the previous example except that here we note that the 

advanced Green’s function is computed with k, shifted to ky_. The result is 

o'*) (x,x') = (2ik,) exp(-ik, x-x'|) (2.27) 
A 

which for harmonic time dependence is a one-dimensional wave travelling to 

the left. 

Eg. 3. PRINCIPAL VALUE GREEN’S FUNCTION 

This can be computed either directly from (1.69) or by combining half 

the sum of (2.26) and (2.27) to give 

oy) (xx!) = -(4x,)* sin(k, |x-x' |) , (2.28) 

which represents a standing wave. 
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Ch. 1 - Sec. 3 

1.3 CAUSAL PARABOLIC GREEN’S FUNCTION 
  

The causal Green’s function which satisfies the parabolic wave equation 

V? glx x'st,t’) - 2y 28 = -8(x-x")a(t-t") (3.1) 
x ~~ ~~! ’ ot ~~ mr 

which contains only the first derivative in time and where y is a constant 

can be computed as follows. Causality means that there is no measurable 

effect until the source turns on, i.e. g must vanish for times t less than 

the source turn-on time t’. This is 

g(x,x’st,t') = 0 t<t’ . (3.2) 

Introduce the Fourier transform in x 

a(k,x'st,t’) = [[fexp (ig: x)a(z,x'st, tax , (3.3) 

and correspondingly Fourier transform (3.1) to get 

ag 2 Y iT + k's = exp(-ik-x')8(t-t’) » (3.4) 

where k is the Fourier transform variable and k*=k-k- We still require the 

condition (3.2) and the one-dimensional equation (3.4) has solution given by 

Bk z'etet') = (2y)* exp[-igez’ - R'(t-t")/2rfoce-t) 5 (3.5) 

where the step function defines causality. The inverse transform is 

g(x,x’st,t’) = (2)? [ffexp ig: 2) 5 (k x" st. tak ’ (3.6) 

and if we substitute (3.5) into (3.6) we note that the result is the Fourier 
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Ch. 1 - Sec. 3 

transform of a Gaussian. The latter may be treated by cartesian coordinates 

  

to yield 

3/2 1/2 |x-x'| 

g(zx'st.t') = — van, onl: poe lovee 3.7) 
(2x) (t-t") t 

It can be shown that this result can be generalized to n-spatial dimensions 

  

to yield 

2 

/2 |x-x’| 
(n) , 1) =i 1 2ynx I _7y ts ae 

g (x,x’st,t') a dy Ltt expl- > rr O(t-t’) , (3.8) 

(2n) 

where for 

n=1 x= (x} 

n= 2 x = (x,y) 

n= 3 x = (x,y,z) 

n x= (x,> Xi reeee x . 

- 28 -



1.4 REPRESENTATIONS 

There are several useful integral representations of the Green’s 

function for the Helmholtz equation. The latter is a spherical wave and the 

representations amount to expanding a spherical wave into either plane waves 

(spectral integrals) or cylindrical waves (Sommerfeld and Weyrich 

representations). 

1.4.1 WEYL REPRESENTATION 

The first representation is an expansion of a spherical wave into plane 

waves. The Helmholtz Green’s function in’ three dimensions satisfies the 

differential equation 

(w+ k?) GO (xigt) = 8le-n") (4.1) 

Fourier transform this equation with respect to x, i.e. multiply the 

equation by 

[ffexe [ix x + ky + x, 2) Jaxayaz » (4.2) 

to get the mixed representation 

Bx") = exp(ik-x’)(k’-k>)”* > (4.3) 

where 

2 2 2 2 2 2 2 
k= [kl =k +k tke kt ky , (4.4) 
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and Kk is the Fourier transform variable. Note that in (4.4), by defining 

the transverse part of the wavenumber 

k= (ke + kD? , (4.5) 
t x y 

we have essentially picked out the z-direction as special. Of course we 

could do this with any of the three directions. Using (4.3) the inverse 

Fourier transfom is thus 

    

6 2") = (an)? [{foxp[icx,x + ky + x, 2) [Bk x" ak (4.6) 

exp}jifk (x-x’) + k (y-y’) + k (z-z’) 
-_! | [K Z. z 1] dk dk dk, 
(2n)° (x) - K) (k) + K) x y z 

(4.7) 

where 

k= (ee - i)*/? (4.8) 

and where we have distinguished the poles in the integrand of (4.7) as poles 

in k,. We evaluate (4.7) cylindrically, i.e. we do the k, integral first 

using complex variables. We shift the poles by adding a small positive 

imaginary part to k, and hence to K. That is 

z _ o 

*K z— 2')0 Fig. 1.1 

-K,* z-~-~z'¢0 
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We evaluate the k, inte gral in (4.7) by closing the contour in the upper 

half plane (z-z’>0) or in the lower half plane (z-z'<0). The result is 

exp ik, (z-2") | ni te ak = TE ep lik |z-2' |) (4.9) (Kj, +E) 2 l2-2"| 

Using this in (4.7) and writing the remaining two integrals using the two- 

dimensional vectors 

  

x. = (kk) 5 xt = (x,y) » . (4.10) 

we get 

. exp|ik -(x,~ x!) + ik [2-2"|| 
6!) (5,4) = a {| tt = + dk» (4.11) 

(2n) + 

where ImK)>0. 

Equation (4.11) is the two-dimensional plane-wave spectral 

representation or Weyl representation. In deriving it we have singled out 

the z-direction as special. This is appropriate if the z-direction in the 

application is special, for example if there is a discontinuity in z or if 

the variability in the medium is in the z-direction. We treat this further 

in the next section. Also notice that here we shifted both poles by tie, so 

that effectivey one shifted above the axis and one below. For the retarded 

Green's function is Sec. 1 we shifted both w poles down. This is equivalent 

to what we have done here since we had 

k - a >k, - (wo - ig) k + ie -o@ 
oO ° 

k o 

k, + oO >k + (a + ie) k, + ie + a .



In both terms we give a positive shift to the k, term. By shifting the 

poles in the manner above we have derived the Weyl representation for the 

retarded Green’s function. Other pole shifts can be done to form a Weyl 

representation for the advanded or principal value Green's functions for 

example. 

1.4.2 SOMMERFELD REPRESENTATION 

For this case we expand the spherical wave in cylindrical waves. The 

expansion is essentially over the horizontal wave number. We begin by 

representing the Weyl representation (4.11) in cylindrical polar coordinates 

defined about x-x’ and y-y’. We have that 

. ° —_ , = 2 

expjik, (x, x1)| exp(ik,p cos®) , (4.12) 

where 

1/2 

p= [(x-x")? + (y-y')] = 1x47 ail » (4.13) 

and 6 is the angle between k, and Xe-Et" Using the cylindrical differential 

area element 

dk, =k, dk, do, (4.14) 

and the definition of the Bessel function (cylindrical wave) 

fn 3,(k,p) = (20)"*[ explik,p cos0)a9 (4.15) 

we evaluate the 6-integral as above to get from (4.11) 
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spa 2 2.4/2 o J (k plexpfi(k,,- k,) [z-2" |] : 

6°) (x,2") - if 2.1/2 t 
(4.16) 

an? (ke y- ke) 
dk   

t a 

where we have explicitly written out the square root K. The result (4.16) 

is a one-dimensional integral representation of a spherical wave in terms of 

cylindrical waves called the Sommerfeld representation. It is an integral 
  

written over the horizontal wavenumber k;> and is only useful for problems 
  

which contain an analogous horizontal symmetry (i.e. a parametric 

independence of 9). 

Alternatively, we can write (4.16) in terms of the Hankel function. 

The Bessel function J, can be written in tems of Hankel functions H(*) and 

n(?) as 

) (x,2)| . (4.17) - (3) (2 3,(k,p) = 1/2[n0" (x, + Bf 

Substitute this into (4.16), and use, in the n(?) integral, the result 

(2) (a) _ ni 
A, (kr) = Hy (e kr) , (4.18) 

t 

and, in this integral rotate the contour by defining a new variable 

nese" , (4.19) 

so that the limits of integration go from (0,©) to (0,e%i)=(0,-0). The 

result is an integral over only ni?) given by 
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1 /2 
1) mc 2 ' 

ut (x, pexp [i fx? ,-«, |z-z | 

2 2}a/2 

[ko ,- xt] 

Since n(?) behaves like an outgoing wave asymptotically, the representation 

  

(3) ny ad Go (x.5") = ge k dk - (4.20) 

(4.20) is useful in problems which contain this type of geometry, e.g. the 

exterior problem of scattering from a bounded object. Equation (4.16) on 

the other hand is useful for an interior representation, i.e. one which 

contains standing waves rather than outgoing waves. 

1.4.3 EXPLICIT EVALUATION oF 6°?) 

We mentioned that our representations were for the retarded Green’s 

function. We can explicitly exhibit this by evaluating all the integrals in 

6'3) From (4.7) we have that 

exp [ik- (x-x") 
6°) (x,x") = 4 (Il [ } dk (4.21) 

(20)? k*- &? 
  

Using spherical polar coordinates defined as in Fig. 1.2 

to
y 

    
Fig. 1.2 

    

  

we have that 
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il 

aR
 “(x - x’) = k|x - x’ |cos@ = kr cos® , z 

(4.22) 

dk = k dk sind d0dg . 

The g-integral just yields 2x. The O-integral is 

x 
[ explike cos®) sinO@d® = fexp(ixe) - exp(-ike) [(ike)™ . (4.23) 

0 

We evaluate the positive exponential integral using complex variables and 

pole shifts to k,tie to get (close in uhp) 

A) 

k exp(ikr) = ; . . [ese (erg, ni exp(ik r) (4.24) 

The negative exponential is evaluated by closing in the lower half plane 

with the same pole shifts (k,y,+ie) to yield 

k exp(-ikr) _ 
| (rE, |) (irk, |) = —ni exp(ik r) . (4.25) 

Combining all these results we get 

(3) , G(x, x") = exp(ik r)/4nr > (4.26) 

which was the same result as we found using the retarded contour in Sec. 2. 

1.4.4 WEYRICH REPRESENTATION 

An alternative representation of spherical waves expanded in 

cylindrical waves can be found by expanding in the vertical (k,) wav enumber 
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rather than the horizontal wavenumber as in the Sommerfeld representation. 

Starting with (4.21) we don’t do the k,-integral. Instead do the k, and ky 

integrals using cylindrical symmetry. Using the definition 

K = (k2— 47)7/?_, (4.27) 
Z 0 Z 

(4.21) is written as 

e ik «(x -~x’) 
1 ; | exp [ik (z-2") Jak, [feel dk dk. 6!) (x,x") = ; ; 

(2x) ki kK. 

  

(4.28) 

The latter two integrals can be evaluated using the cylindrical coordinate 

and Bessel function definitions in (4.12)-(4.15). The O-integral again 

yields a Bessel function so that we have 

  

(k,r) 
6°) (x,2") = 1. [ esos (z-2") Jak “edhe . (4,29) 

(2n) 2 2 k,- K, 

We use (4.17) for the Bessel fumction and in the integral for al?) we again 

rotate the contour (k,~ - k,) so that using (4.18) we again have an 

integral only over Hf?) , We get 

. (+ Mk p) 
(3) 1 to t 

G (x,x’) = exp ik (z-z’* ) dk [oe ° (4.30) 

2(2n)7 | [ss ] Jourk  * 

We have shifted our poles so that ImK,>0. We evaluate the k,-integral using 

complex variables and closing the contour in the uhp. Explicitly writing 

out K, we get 
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oo 

(3) i (fi, 2!” G cont) = ah | exo fie, Go-29 yh [pea ey pjax, (4.31) 

which is Weyrich’s formula, a one-dimensional integral representation in 

terms of the vertical wavenumber k,. The result (4.31) is often quoted 

using (4.26) as 

ff .; 1/2 
-; et aS” [pcxe- a) Je , (4.32) 

exp ik,(p + 2*)*/?| 

(p7+ 27) i/? 

where p,z are real, r=(p?+z2)7/? and OS arg (k2-a2) 4/4 dn. 

1.4.5 PLANE-WAVE DECOMPOSITION oF 6‘?? 
  

It is possible to derive two Weyl-type representations for the 

Helmholtz Green’s function in two dimensions. In two dimensions the latter 

satisfies the Helmholtz equation 

(2) (Vo + ROG) (x,.xt) = -8lx-xy) (4.33) 
~t’~t 

We Fourier transform the equation by multiplying by 

[Jexp(-ik,-2, 43, , 

where k.=(k,,ky) is the Fourier transform variable. The result is the mixed 

repre sentation 

~(2) _ _ Vt 2y no? 
Go" (ky xy) = exp(-ik, x1) (k, k,) . (4.34) 

The inverse transform thus becomes 
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2 ’ . (2) ’ g! Mx ox) [fosociny-2.8 (k,-2,dR, > (4.35) 

  

xi (om)? 

eet 
(2n) x y «x K,) ¢ 

where 

K- (ke my? . (4.37) 

We expressed the integrand of (4.36) in such a way as to do the k,- 

integration using complex variable techniques just as we did the k,~ 

integration in (4.9). The result is 

  

exp [ik _(y-y’) + ik_|x-x’]| 
6!) (x, 27) = | [My go Ja (4.38) 

(2x) Jeo y 

Alternatively we could define 

K = (k’-x7)*/?_, (4.39) 
x o x 

so that the denominator of (4.36) becomes 

(k - K )(k + K ) , 

y x y x 

and the obvious choice is to carry out the k,-integration. The result is 

(2) ni [ 
G (x,.x7) = 

“tt (an)? 

exp [ik (x-x’) + aK, ly-y' |] ik 

K 
x 

. (4.40)   

The representations (4.38) and (4.40) are both Weyl-type representations for 
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the two-dimensional Green’s function. Their use depends on exploiting the 

geometry of the particular application. 

1.4.6 EXPLICIT EVALUATION oF G‘?) 

Using (4.34) and (4.35) we can explicitly evaluate 6{2) using 

cylindrical coordinates and complex integration. We have 

  

exp fik,-(x,- x!) 
6°?) (x xt) = i. {| [ t Jay dk. (4.41) 

(2x) - xy 

ee
 

l
e
t
 

In cylindrical coordinates we have that 

ki (x.- xp) = Elz, xileos @ = kyr cos @ , (4.42) 

dk ak = k dk de . 

The O-integration yields 2n J,(kyr), and we replace Jy using (4.17). The 

integral involving H!?) is rewritten using (4.18) so that we only have an 

integral over H(?), It is 

oo (2) 
HH’ (kr) 

(3) ry - 1 ° t 
G (xy) = an [5 k dk ° (4.43) 

t o 

Since H{*) behaves like an outgoing wave, we evaluate (4.43) using complex 

integration by closing the contour in the upper half plane. The poles are 

shifted by k,>k,tie. The result is the cylindrical Green's function 

6) (x xt) = (isa) BO ep). (4.44) 
~t~t 0 0 

It is most usefvl for problems in cylindrical coordinates which have no 

angular dependence. 
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1.4.7 EXPLICIT RELATION BETWEEN G°*) ang G‘?) 

In three dimensions we have that 

exp [ik- (x-x’) 
66) (x, x") = 1 {Il oe Ea dkdk, (4.45) 

(2) k- k, 

Break up these three integrals into a k,-integral and a two-dimensional 

transverse integral as 

6!) (x, x") = = fosofie,te-2 Jo, 

ik +(x - x’) 

* 3 {= ee =t = des = . (4.46) 

(2x) ie F] 

The latter two integrals are just (4.41) but with kj replaced by K>=kj-k>. 

Using (4.44) we thus have that 

. a/2 
6 (x,2) =F | exppix (zo gol” [fee xt] fax,» 04.47) 8x 

which is just Weyrich’s formula (4.31). 

1.4.8 THREE-DINENSIONAL REPRESENTATIONS IN THE HALF-PLANE 

In the previous sections we presented several integral representations 

for the Green's functions. We placed no restrictions on the regions of 

validity of these representations, and consequently they are valid in all 

space. Here we treat representations valid in one or the other half space. 
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We have singled out the z-direction as special, and we define the half- 

planes using this. The Weyl representation for the retarded Green's 

function is from (4.11) 

  

. exp [ik,-(x,- x!) + aK |z-z'| 
ok?) (x,2") = mt {| [*Be' Ge" t * Jas, . (4.48) 

(2n)° K, 

If we restrict the region to z-z'20 so that the absolute value can be 

dropped we write the result as a three-dimensional integral as (the + sign 

indicates the region z-z'20). 

[eg tze20] = on” [| Ap(k)exp[ik-(x-x") Jak (4.49) 

where the amplitude function is defined by 

AR Uk) = (ni/K)6(k -K) (4.50) 

The advantage of this representation is in a three~dimensional problem where 

however the boundary is planar. 

Similarly, a representation for z-z'S0 can be written as 

[oy ee] = on {{| Ap (kexp [ike (x-x')]ak (4.54) 

where the amplitude is defined by 

Ap(k) = (ni/K)8(k + EK). (4.52) 

We can combine the two representations (4.49) and (4.51) to yield a quasi- 

three~dimensional Fourier representation where however the amplitude is 
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spatially dependent viz. 

(3) 
Gp 

W (x,x") (2? [[lagtena! wesn[ite a2 ae (4.53) 

and is given by 

Ap(z-z',k) = O(2-2")AP (k) + (z'~z)Ap (KE) 

(ni/K) foc 2-2") 8(k,-K) + O(2'-2)8(k,+ x) (4.54) 

We could also derive a Weyl-representation for the advanced Green’s 

function. It is 

K ~t 

wa exp [ik,-(x.- x!) - ik_|z-z'| 
(3) xt) = rai ; {{ [Pe (7 Ft Ja, . (4.55) 

with analogous representations for z-z’20 and z-z' <0 given by 

- + [o,en], = (2n) *{[pfares pe tex ye > (4.56) 

where 

£ 
A, (k) = ~ (nd /K) 5 (kt K) , (4.57) 

with the full three-dimensional representation given by 

6) x.5") = an" [cee were tre | ° (4.58) 

where the amplitude is 
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A (z-z',k) = ~ (0a) [8 (2-2") 8k + K) + O(ztz'’)8(k -K)] . (4.59) 
a Zz Zz 

From these representations we can also compute the representation for 

the principal value using 

( (3 3 oy ng) = 1/20 (2 + CZ] (4.60) 

so that 

ot) (x, x") = can)? [[agtara? ere [ik ra") Job ; (4.61) 

where 

Ap(z-z',k) = 1/2[ap( 2-2") + A (2p | (4.62) 

= (ni/2K)sgn(2-2") [5(e,-) - 6(k,+ KD] (4.63) 
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1.5 ANALYTIC PROPERTIES OF THE GREEN’S FONCTIONS 

1.5.1 ANALYTIC PROPERTIES OF Gp‘*? 

We discuss the properties of ef?) using distributions. We have that 

exp[ik, |x - x‘ I] 
nlx - x! ° 

Gt?) (x, x") = (5.1) 

We begin with the Weyl representation presented in Sec. 4. Here we have 

2 2 2 2 2 . 
= ~_ = + e K [x «| and kK, ky x It is 

. expJik.-(x,- x!) + ik [z-2° 1] 
ai. {i to=t “t ‘ dk,» (5.2) 

K, 

where x’ is the source point and x the receiver point. We keep the 

representation as a difference in these coordinates. We use the term 

K, = K + ie to distinguish the square root having a positive imaginary part. 

The properties are as follows: 

PROPERTY 1. 6, ‘°) (gz - x’) is continuous as z - z’>0. 
  

The proof is obvious. There are two cases, when z - z’ > O and 

z- z' <0. Both limits are the same. They are 

(3) g(?) lim Gy ‘(x - x’) = lim _ (x - x’) , 
z-2z'0" R z-z'>0 R 

and equating the limits of (5.1) and (5.2) we get 

ik p 4 
k 

e — ni . - ° t 

4np (2n)? {i ox ik, (z, | K, 
    , (5.3) 
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where p = x, - x'tl- Simply put the argument of the exponential in (5.2) 

vanishes independent of direction because of the absolute value. 

PROPERTY 2. The first derivative in depth is discontinuous. 

To prove this differentiate (5.2) with respect to z 

(3) ~ coy . Tisgn(z-z") wa, _ oe ; , a, Gl) (x ~ xt) = —esente=2”) 0g rofig -(x.- x1) + aK, faz lax, - 
(2n) (5.4) 

Note that the factor K cancels in the integrand. In the limit as z - z’ 0 

the exponent vanishes independent of direction but the antisymmetric signum 

function remains. Also, the integral for z - z’ = 0 is just the two 

dimensional delta function multiplied by (2n)?. The result is 

  lim 2 6 (r-x") = 2 ; lim sgn (z-z’) 
z-z'>0 (2n) z-z'->0 

° 4 e _ e ff oxp fix, (x, x) dk, > 

, (3), 4) 2-1 oy [2 z- z'->0* 
iio a6 (x-x') y «8 (x,- 3y) -1 2 - 2'30- (5.5) 

Note that the limits are independent of ky» so the same discontinuous 

derivative behavior holds for static potential theory. Define: 

; Mien = fi (3) | lim 0G, (x-z") 0G (xyexp) 2? (5.6) 
z-z'> 0+ 

so that the discontinuity is a distribution 
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disc fa.cy” ¢z.2°) | _., * [2,on" |], - lace] 
Z= 2 

“8 (x - x,) . (5.7) 

We show later that this is analogous to the discontinuous behavior for one- 

dimensional Green's functions. Here we also have an additional  two- 

dimensional delta function. 

PROPERTY 3. The transverse derivatives are continuous: 

Define the transverse differential operator as 

_ [ a/ax 
jt a/ay 

a 

Ca
de
 

Ca
te

 

Differentiating (5.2) we get 

  

k 

(3) ) = = i . , s ’ it . 

This again approaches a finite value in the limit z - z’~0 independent of 

direction and is 

  

k 
: (3) —n : jt 

lim d..6 “(x,x') = exp}ik °(x - z1)] dk, , (5.9) 
z-z'>>0 jtR ~*~ (2x) | ~t ~t “t K, t 

which can be evaluated directly by doing the integral or simply by noting 

that we can interchange the derivative and the limiting process to yield 

ik, p 

. (a) e lim 0.6) “(x-x') = 8, (5.10) 
z-z2'9006CUd UG RO jt 4xp s p= |x - x,'| . 

  

Next we want a representation for the full vector derivative. We will 

need this later to find the normal derivative of the function. For reasons 
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which will be clear later it is convenient to have this in three~dimensional 

integral form which is regularized, i.e. which has no derivative 

singularity, plus a singular term. Differentiate (5.2) (where j=1,2,3 and 

a, = a/a,) 

  

(3); oy - ni : : _o? 
9 Gp (x-x’) (om)? [[fxse¢ i6 5 Ky sgn(z-z | . 

dk 
: _ : ~t 

exp [ik,- (x, xi) + aK, |[z-2’ 1 x e (5.11) 

Now regularize the singularity in the z-derivative as follows: 

  

ak t 

95, (EE) = OG | iy, oxfiee (zy zp + feel] 

+ i8;, sgn(z-z') ° 

  

ni 
. 

oe 

| (2m)? | Gk, exp pihy” (Seo zp) | fexecax, 2 z'| 1] 

  + 3h ; (2x) °8(x,- :0| : (5.12) 
(2m) 

In the singular term we subtracted and added the term 1. This brought out 

the 5 function explicitly. We could have subtracted any function of z - z’ 

which has the limit 1 as z - z’> 0, as for example cos{k,(z - z')]. 

Regularization is not wnique, and this subtraction, or any appropriate 

subtraction, is a regularization in the sense that the resulting integral is 

not singular. 

We next want to reintroduce the k,-inte gration in (5.12). Recall that 

we eliminated this integration by evaluating it to derive the Weyl 
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representation. In the first integral it is simple to recover the k, 

integral. We use the result that (kyp>k, + ie, KOK + ie) 

ao 

: _ exp [ix (z - 2")| 
eKlz- 2] 2 kK [SPE tT a, (5.13) 

m1 Jeo x? _ K’ 

z + 

In the second integral we use 

exp Jik (-2")| 2 

sgn(z - 2’) exp(iK 2-2" |)-1] = ,; foxebs.te=] p> 4 dk, (5.14) 
k - K z z 

Zz + 

which can also be derived using residue calculus methods. The integrand in 

(5.14) has three poles, the one at k, = 0 evaluated using the principal 

value (P), and the other two using the shifts k, + ie or K + ie. The 

result in (5.12) is, noting that k? - K? = k® - ko 

exp Jike (x-x') 
a6. xx") a {Il ik oxo) (ore) dk 

(2)? jt ke ~ 

exp fix x-z9| K? 

* ib, — a PG J k - k, 2 

-i sgn(z-z’) 5(x - x’) & . (5.15) 2 ~t ~t "53 

Noting that the Fourier transform of cf?) is 

—1 

Ge”) (x) = e*- xe] (5.16) 

with kjk, + ie, we can write (5.15) as 
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  a, ex) = 5 4 {{[e-» ik (ax) ] OE Ge) Ps Uerak 
(2n) 

_ i &. sgn(z-z’) &(x,- x!) (5.17) 2 j? ~t St e e 

where 

x? 

Po(k) = 2ilk,, + 8, P || (5.18) 

The integral term is not singular. (In fact note that if we set z-z’ = 0 in 

the integral we get that the j = 3 term vanishes since the resulting 

integrand is an odd function of k,-) It is a Cauchy principal value 

integral. The subtraction of the term 1 has led to this. Subtraction of 

another term will lead to an alternate principal value integral. The full 

discontinuity is proportional to the j = 3 term, i.e. 

(3), | -[ (3), 0- | _ _ (2,5, (xa) ] -[2j6p Gre] = 8,82) (5.19) 

where the + and - signs refer to the limits as z-z' approaches zero from 

positive or negative values respectively. An alternative way of writing 

(5.17) is 

(3), 4, _ 1 —y ? - 1 —wyl -wy ? j% x') x, sgn(z-z d(x, x) ’ (5.20) 

where 

  

1 ~(3) 
R *) 

i ° me ~ ‘ “ ’ ° 

j% x (on)? (|| exp [ik (x-x » |e (k) P ,(k) dk (5.21) 

is the regular part of the derivative term. We can thus set both vectors x 
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and x’ onto the surface in R; and have a well defined limit. 

1.5.2 ANALYTIC PROPERTIES OF G{*) 

The full three-dimensional Fourier representation for G6) ¢x-x") is 

given by 

  6?) (x-x") = 
expfix,(z-2") | 

ba (on)? oxp ik, (z,-z}) [ax, Ke Ky » (5.22) 

2 

where K = [rs - “]" and kt = kr + ky . The retarded Green's function 

was computed by shifting these poles using kyp—k,4 or K->K,- The advanced 

Green’s function is computed using the shift k, +k, - ie = ky_ or K > 

K - ie = K_. The singularity structure in the complex k,~ plane is thus 

(k_) 

“EK tie® ° z-z')0 
——) | —— Fig. 1.3 

*K -ie z-z'<0 

We close the contour in the upper half plane for z-z'>0O and in the lower 

half plane for z-z‘'<0. The result is 

exp fix « z-z' )] -ni 

{ (k- K) (k,+ K) dk = “x. exp |[-ik|z-z' || , (5.23) 

so that the Weyl representation for the advanced Green’s function 
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(3) exp(-ik r) 
Gy (x-x')  "—Tar CI] r= |x-x'| 9 (5.24) 

is given by 

(3) ") _- ni : ’ ’ qx, Gy (g-x') = ; exp |ik,:(x,- 21) ~iK_[z-z'|[[ e525) 
(2x) - 

where we distinguish the square root term using K_ = K-ie. Its properties 

are 

1. Gf?) (x-x") is continuous as z-z’' 0. The limits from both 

directions are the same. Note that from the functional form the 

limit is 

~ik,p dk 

mo = oai ; {| oxpfik,*(z,- x) _ ’ (5.26) 
np (2n) - 

with p = lxe-xe'l- The square root distinguishes the contribution. 

2. The first derivative in depth is discontinuous. Differentiating we 

get from (5.25) 

(3); ey = oe Sgnlz-z') ae ot : | 06, (x-x') = -w SBE E— Il explik,: (x -x1) + ik [z-z'[ fag,» (5.27) 
(2) 

which in the limit as z-z' -0 from the two directions is 

(3), , 1 1 az" 30° ; = oe lim 8,6) (ux) =- Fz 2D[, TE Go (5.28) 
z-z 0 

which is the same discontinuity as the derivative of the retarded 

Green’s function in (5.5). 
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3. The transverse derivatives are continuous. From (5.23) we have 

that 

  li a, 60) (z-x") = 4 ik +(x /- 21)| nit dk (5.29) 
nn’ 90 jt A = (2n)° ©=P *St ~t ~t K “t ’ ° 

which from the functional form (5.24) equals 

ail exp(-ik,p)/4np| . (5.30) 

Hence we can write the full vector derivative as 

  

(3) -y') = -ni _ gt 956," an) = 8, (ll, i6,,K_ sgn(2-2 »| 

dk 

exp ike [Ee7 xt ]-ik_|2-2" || <= . (5.31) 

Now regularize in the z- derivative term. Rewrite (5.31) as 

  

dk 
(3), gy _ oni : E (le eet) ea cee |< aS, (x-x") Con)? ik, ¢xp ik (xy- zy) iK |z-z'| cK 

~i8;, sgn(z-z') : 

  [ase lfoeboeee sl becateetada (2n)* 

  

- aa (2n)* sceex| . (5.32) 

Reintroduce the k - integration (here k, ->k,-ie and K ->K -ie = K_) using 
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-K ° exp ik (2-21) 
exp [-i |2-2" i] = xi dk nr er (5.33) 

and 

k So z 

wexp ik (z-z') 2 
sgn(z-z’) eso [-ixls-v ifs] = t (abel ‘fe dk, . (5.34) 

- K_ Zz 

Note the minus sign in front of (5.33) and the plus sign in front of (5.34). 

The principal value term in (5.34) is an odd function. Using the Fourier 

transform of G{*) which is 

ai 
~(3) _ —2 13 G, (k) = E - x_| , (5.35) 

where k, —k,-ie the result using (5.33) and (5.34) in (5.32) is 

  

(3),...., .1 1 (eee) 1) 
0.6, ‘(x-x') = Z tomy? (|| exp [ik (x-x » |e, (k) P (kd 

(5.36) —- = sgn(z-2z')8 B(x - xi) . 
j3 

Note that the result is similar to that for the retarded Green's function, 

(5.17), except that here the Fourier transform of the advanced Green's 

function is under the integral. P; (k) is defined by (5.18). 
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1.5.3 REGULARIZATION OF a of"? 

We have that 

6 ea) =F [oxy + oie]. (5.37) 

so that combining (5.17) and (5.36) we get 

  

(3) + - 1 _!1 s(vezey | BO?) 0 Sp (x-x') = Toa? {| exp [ix (x-x | 6 (k)P | (k) dk 

1 
- z sen(z-z") 6 blz ze) ’ (5.38) 

where 

~(3) 2 2 vi Goce) = Pfe’- ae] (5.39) 

  

retarded and advanced Green's functions. 
    

1.5.4 REGULARIZATION OF 2,9; Gh’? 

We begin with the Weyl representation for the retarded Green's function 

in three dimensions 

dk (9) ni . . t 

gt * (2n)’ | | “tose * } x 
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Differentiate this representation to get 

dk 
(3) ni” . . ~t 

@ 56, (x) = —— | le, + Bis sga(z)k| exp iki :z,+ ix, lz|| rr 

(2x) * (5.41) 

and differentiate a second time to yield 

  

(3) ni : 
,G = 2iK 8(z) 6 6& + 

94,9 j R (x) (an)? | x + 2 j? m3 

2 +7 fe + 8K, sone) |e + 8 K,sentzd]] 

dk, 
. expfik,-z, + ix, [21] x (5.42) 

which can be written as four texms 

(3) _ ni . i ° 

2 
ik, k 

jt mt . 2 | K, + i sgn(z) Keo 5s + Ki bas 

2 : 
+i Koo + 2i 8 558202) dk, - (5.43) 

The first term is not singular, and using the relation 

exp (ik, |z |) 1 exp(izk,) 

Kyo a dk, 
' k- k, 

1 . a(3) 
= exp(izk,) Gp (k) dk ’ (5.44) 

we can write it as a three dimensional integral 
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= 1 2 1, ~(3) 

I, _ (2x)? {{| i KS ne PCIE x) Go (k) dk : (5.45) 
  

The second term containing the sgn(z) function has a possible delta 

function singularity in the limit as z +0. We regularize it as follows. 

First rewrite it as 

= Ri 2 te. 
i (on)? {| i sen(z) fk 455+ ki .5 3] exp(ik,-,)   

(5.46) 
- fexp(ik,|z[) - 1 + i ak, 

The term involving the +1 in the bracket can be written as the derivatives 

of a two dimensional delta function. The remaining tem can be written as a 

three dimensional integral using the relation (5.14) as 

  

32 

1 ~(3) _ 
sgn(z) exp(ik, |z|)_, | = <> jexp(ik z)G, (k) P| ;—| dk, (5.47) 

Zz 

The result is 

I=-- ( B(x.) 27 7 y Sgn(z) 8 s9mt* 54595] xt 

2 

+ {I| i* pe Bat ki8 P| £ frocnnel” are 
(2n)° mej? je mei] k, ~~ R ~ (5.48) 

The third term in (5.43) is not singular. Using the relation 

2 

aot a (nya (5.49) K,exp(ik, |z|) = ai exp(ik z) R (k) k : 

we can write it as a three dimensional integral 
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= 1 —2_2 ~(3) 
. 

i, (an)? (|| i KG, (k) exp( ik: x)dk 85, bs , (5.50) 

which can be written using the identity 

2 =(3) _ 2,3 2. 42 Ky GA?) ce) = cae | ee) / ck? ee) 

fig cage k) + «| / (k?- ke) 

ae ke BK) , (5.51) 
z R 

to yield 

  1 =! (|| dk ik Gn) exp (ike x)5 5,6 ,+ 8 843 8¢2) . (8.52) 

> (any? R j 

The fourth term in (5.43) is a delta function. It is 

  

_ ni : : . . I, “Ow? (| 246 ; ,8,,,5(2) exp[ik, -z,+ ik, Il] 4k, 

j3 m3 ~ 

The result (5.43) is given by the sum of I, thru I, from (5.45), (5.48), 

(5.52) and (5.53). The result can be written 

aa.c°?) 
1 z 

m? j5R (x) = - SR (x) - > san(2)[5,9,4¢ Bus, [8CE,) , (5.54) 
my 

where Rj (x) is the regular part of this mixed second derivative given by 

  Rj 2 = . (3) exp(ikex) G) “(k)P (k) dk , (5.55) 

(2n)° () ~~ UR mj ~ 
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and where 

2 
2 _ K 2 z Pai (k) = ek jet Pent? 557 ko] Ae | + wo 5s . (5.56) 

Note that from this representation it is easy to show that 

  

(0,8,+ 0,9,+ a,9,)G0" (x) = aS ({{ exp ike x)? (x) ak » (5.57) 

2 2 2 2 
where k =KkK+kKk+k . From the identity 

x y 2z 

2 2,2 _ 2~(3) k/(k -k,) = 14+ kG) °(k) , 

we see that 

2(3) = - ~ 4? al?) Vv G. (x) = -8(x) k, Go (k) , (5.58) 

which serves as a check on our results. 

Some properties of this representation are obvious. The first is the 

symmetry of the derivative operation 

aa g) 
m?j SR (x) = @ 

(3) j?moe (5.59) 

Since Gf?) is a homogeneous function we can exchange derivatives with 

respect to field and source coordinates up to a minus sign so that 

aa. 6!) (x-x") = arat GOP (xx) (5.60) 
mj R “** oj R ~* 

From (5.54) it is obvious that P is symmetric 

P .(k) = P, (k) . (5.61) 

Since m and j run from 1 to 3 we thus have at most six independent 
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components. Evaluating terms we get 

P =2k 5 P =2k » P= 2k 
a2 x 22 y 33 zZ. 

P = 2kk 
13 xy 

2 2 

= K _ K Pt asl E | 2 Pt Pie] (5.62) 
Zz Zz 

Other constraints are possible. Note that 

P P.=P (5.63) 

and 
2 

[P.3/P 5] = PsP . (5.64) 

Finally, note that the jump discontinuity in the representation (5.54) 

occurs only in the off-diagonal components. The discontinuity across the 

surface is 

(2,2, oe] - [ayes oe] =~ [beret Sns2je)8E2 > (5-65) 

Note also that if we spatially integrate these dipole terms by themselves 

the result is zero. For example 

{ 9it B(x, )dz, = Ore ’ (5.66) 

bet with an additional term in the integral we get for example 

{ff eay a; ,8(z,) dz, 8), ED |e ag. - (5.67) 

Note that if we have the difference of arguments we get 
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e e (3) eo --2 . at a5 Ge (x x) ~ Ry x) 

2 to e e an z= sen(z 2)(8 5 3 + 63) 54) Oke x,) . 

(5.68) 

To differentiate on the second argument note that 

an aj ot) (x -x)= a2 66°) (x! -x) , (5.69) 

by the homogeneity of the Green's function. Substituting this in (5.68) and 

writing the partial derivatives in terms of the unprimed coordinate on the 

rhs we get a sign change in the latter term. The result is 

22.66 (x' ~ x) =-=R 
mjR ~ (x ~ x) mj 

2 
_ a +8 a re . + = sgn(z z)(& as jo Ot x,) 

(5.70) 
jo°mt 
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1.6 ONE-DINENSIONAL PROBLEMS 

1.6.1 GREEN’S FUNCTION IN 2—-DINENSION 

We begin with a general second order linear differential equation with 

a delta function source term 

  

2 

: g + p(z) ae a(z)g = -&(z-z’) (6.1) 

Zz 

The function p is thus the Green’s function for this one-dimensional 

problem. The source point z’ is singled out and we have different solutions 

in the regions z>z’ and z<z'. Thus the source point can be interpreted as 

introducing another. boundary layer into the problem. We thus have two 

solutions and must say how they match at the layer interface. We assume 

that 

(a) 9 is continuous across the layer 

(b) dg/dz has a discontinuity across the layer. 

We use the continuity property to find the discontinuity as follows. First 

rewrite (6.1) in the fom 

  

2 

of + S p(zdg] + Catz) - pi(adig(z) = 0. (6.2) 
2 

dz 

Next integrate (6.2) across the layer from z’-e to z’t+te where e is small and 

shrinks to zero. For the second derivative term in (6.2) we get 

’ ’ - 

Lim [taf er (6.3) 
@>0 “zl-e dz dz z’-e dz dz 

where we have defined 
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t 

lim a9 (Cn tte) -4 | (6.4) 
€ 0 dz dz 

The second term on the lhs of (6.2) becomes 

‘te a zite 

f ae [p(2)9(2) Jaz = p(z)¢(z) >0 , 
z’-e z'-e 

which vanishes as e +0 since is continuous and we assume p is also 

continuous. It is not necessary to assume the latter in which case our 

result is 

(p= p) gz") 
where 

+ 

p = lim p(z’ te) . 
e -—0 

The third term on the ihs of (6.2) is 

‘te 

{ [q(z) - p'(z)] g(z)dz , 
z'-e 

which vanishes in the limit as ¢ 0 unless q(z) or p’(z) are discontinuous. 

If q(z) is discontinuous it becomes 

+ _ 

(qa- aq) gz") 

where 

t 
q = lim a(z'te) , 

e 30 

and if p is discontinuous so that 

p(z) = p, (z) O(z-z") + p, (2) O(z'-z) , 

where 6 is the step function 
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_.—1 x>0 
O(x) = [6 x0 ° 

we have that 

p’(z) = pe (2) O(z-z') + pi (z) @(z-z") 

+ p, (2) 8(z-z’) - p,(z) &(z-z") 

so that we get for the result 

z'te 

[ prtz)6(zdaz 
z’-8 

z’+e z'te 

- p(z) az . 
z's z’-& 

= p(z)¢(z) 
  

ag” dg > [p,(z') - plz") fpl2") - lp.ce dz Pa '2") as | oo 

+ 

The second term vanishes as e¢ 0 provided neither of dg /dz is singular. 

Essentially all of these discontinuous properties merely complicate our 

algebra and we drop them. That is, we assume p, p’, and q are continuous at 

the interface. The result is, from (6.3) 

9 _ 9 i (ge 2") , (6.5) 

where the -1 results from integrating the delta function. The continuity of 

? is expressed as 

+ - 

¢@-¢ =0 (z= 2") , (6.6) 

and it is these latter two equations we use in the analysis. Now we must 

define the field boundary value problem. We do two examples. 
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Eg- 1. INFINITE SPACE EXAMPLE 

Here the boundary layer is the only finite boundary. Above that 

boundary layer we have solutions of the homogeneous version of (6.1) (no 

delta function term). For wave like solutions asymptotically we choose the 

solution which satisfies an outgoing radiation condition. To insure these 

wave-like solutions p(z) and q(z) are required to have certain asymptotic 

properties. The simplest are that as z > 

p(z) 30 and q(z) constant 0 . 

Strictly speaking we also have to require that p(z) and q(z) are monotonic 

functions. If there are any kinks in these profiles, waves can be trapped, 

and we must effectively introduce further layers into the problem. For 

Simplicity we assume these properties are satisfied. 

Thus, in the upper Layer (0) where z>z’ the solution of the homogeneous 

version of (6.1) satisfying the outgoing radiation condition can be written 

as 

$y 2) = Au, (2) zz", (6.7) 

where A is an unknown constant. Similarly in the lower (L) region (z<z’) 

the solution satisfying the outgoing radiation condition is 

9, (2) = Bu _(z) zz’, (6.8) 

where B is an unknown constant. Our conditions (6.5) and (6.6) are then 

satisfied by (6.7) and (6.8) provided that at z= 2’ 
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A - Ba— =-1 , (6.9) 

and 

Au - Bu = 0. (6.10) 

These are coupled equations for A and B whose solution is 

A= -u(z')/W , B= a, (z')/W > (6.11) 

where W is the Wronskian 

W=n'u - uu’, (6.12) 

The full solution can thus be written as 

- u,(z)a_(2')/0 z>z’ 
g(z) = (6.13) 

~ u,(z')u_(2)/9 zz’ 

To specify the solution further we must know the eigenfunctions. As a 

simple example choose p = 0 and q = ke in (6.1). Then the eigenfunctions of 

2 
d +n g = 0, (6.14) 
dz 

  

are either exp(tik,z) or [cos k,z, sin k,z]. We choose the former set since 

they correspond to outgoing waves. We thus have that 

u(z) = etFo2 ; w (2) = @ 1Ko™ 5 We 2ik, , (6.15) 

so that 
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eiko(z-2') 
= e g(z) = dike Z>Z 

(6.16) 
e iko(z-z') 

, 

2ik, aint, 

or rewriting 

o(z) = - nk eikolz-z'] (6.17) 
° 

which is our standard retarded one-dimensional Green’s function. Note that 

we got the retarded Green’s function because we chose outgoing radiation 

solutions. 

Eg. 2. BOUNDARY EXAMPLE 
  

In this example we introduce upper and lower boundaries at a finite 

distance from the source plane. Geometrically we have that 

  

  

  

79 Upper Region 1 
z’¢<z2¢2z 

U 
z’ 

Lower Region 2 
ZF «{z¢ 2° 

21 

Now we must choose our solutions as 

) oy(z) = A, Ge) ea Pe), (6.18) 

including both linearly independent solutions uf?) in region 1, and in the 

lower region 2 

62) = BL a) (2) +B al (2), (6.19) 

also including both linearly independent solutions in this region uf?) , We 

have the same continuity and jump conditions at the interface as before. 

- 66 -



Equations (6.5) and (6.6) become at z=z’ 

dg, 49, 

a a@sutf 
(6.20) 

and 

fy - $r = 0 . (6.21) 

These are two conditions on the four constants A+ and By. In addition there 

are boundary conditions at zy and z;. Assume for simplicity that 

Py l2y) =O , (6.22) 

dé, 
dz (z)) = 0 . (6.23)   

Again our formalism can accommodate much more complicated impedance type 

boundary conditions at these surfaces. We again take our previous example 

where p = 0 and q = Ki in (6.1). Because of the form of the boundary 

conditions it is convenient (but not necessary) to choose our eigenfunctions 

as 

(1) sin k, (2-zp) 
u (z) = (6.24) 

+ cos k, (z-2)) > 

and 

sin k (z-z_) 

a) (2) = et (6.25) 
= cos k,(z-z,)) ° 

Using (6.18) and (6.22) yields A_=0. Using (6.19) and (6.23) yields B,=0. 

We thus have satisfied the boundary conditions with the fields 
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$y z) A, sin [k,(z-z)) J » 

and 

6p (2) = B_ cos [k, (z~z,) ] . 

We now must satisfy conditions (6.20) and (6.21) which become 

Ak, cos [k, (z'-zp) | + B_k) sin [k,(2'-2)) J = -1 

  

  

A, sin[k, (z'-z)) ] - BL cos(k, (z'-z))] =o , 

whose solution is 

af”) (2°) 
A, = cos [ky (z'~2y)] 1% > 

uf*) (2°) ; 
B = — sin[e,(z'—2,)]/" , 

where 

W= -k, cos [k, (z)-z ) | » 

so that 

g(z) = [ - sin[k, (z-z)) | cos [k,(z’-z,)] z>z! 

k, cos [k, (z)-z5) J 

- sin[k, (z’-z_) | cos [k, (z-z)) ] z<z! 

k, cos [k,(z)—z)) | , 

or 

g(z) = [ sin [k, (zg-2) ] cos[k, (z’—z,)] z>z!' 

k, cos Jk, (z)-25) | 
  

sinfk, (zy-2') | cos[k, (z~z))] z<z? 

k, cos [Eo ( 2-2) | 
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(6.26) 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

(6.33)



1.6.2 SOLVABLE PROFILES — INHOMOGENEOUS NEDIA 

The examples in the previous development in this section were for 

homogeneous media. Here we develop a general method to find the 

eigenfunctions for various one-dimensionally inhomogeneous media. In a 

sense we do an inverse problem, first choosing the eigenfunctions and then 

finding the medium index of refraction. 

We begin with a general linear second order differential equation 

dh <a + Pts) + qxda(x) = 0, (6.34) 
x 

whose solutions are assumed to be known in terms of special functions for 

example. Transform both independent and dependent variables as 

x = u(z) u’(z) # 0 (6.35) 

h(x) = w(z)¢(z) wiz) #0 , (6.36) 

so that the new equation on ¢ is given by 

2 

+ A(z) SE + Blz)g(z) = 0 (6.37) 
Zz 

where A and B are given by 

A(z) = 2 Be Plz), (6.38) 
w u 

and 

Biz) = +B [ur Pa) - 2 + (u')7Qz), (6.39) 

where we have defined 

P(z) = p(u(z)) 5 Q(z) = qlu(z)) . (6.40) 

To prove this note that 
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ee wwe + 

4a h(x) = % < [w(z)¢(z)] = 1 tw + w6'] 

  

dx u 

and 

a’ dz d f[ df 
a *) * ax dx la | 

x 

  

2 
i [- v [w'd + we’) + i [wd + 2w'd’ + v7) . 
a u 

(a’) 

Combining these in (6.34) yields 

[wo" + 2w'g’ + wg] wv” 

(a)? (a') 
  > (wp + w'g) 

P(z) 
+ a?   [wo’ + w'f] + Q(z)we =O . 

Multiplying by (u’)* yields 

wi" + 2w'g + w'd - = [we’ + w'g] 

+ P(z)u'[wd’ + wg] + Q(z) (u’)” we = 0 

Dividing by w yields 

The basic idea of this development is as follows: 

1. Choose p(x) and q(x) such that the differential equation (6.34) has 

known solutions in terms of special functions. 

2. Choose A(z) = 0 to find one of the functions u or w in terms of the 

other. 

3. Then B(z) is known in terms of one of the transformation functions from 

(6.38) and (6.39) as 
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B(z) 
w" 1 w 112 ——- 2 e| + [u'])” Q(z) 

(6.41) 

a [=] - fe} + tel ae, 

with say u known as a function of w from the condition A(z) = 0. 

4. Then choose the second transformation function, w say, so that B(z) is 

known. 

5. Write B(z) = k3 n*(z) where n(z) is the index of refraction in the 

inhomogeneous media described by the differential equation (A = 0 and B 

= k3n*(z) from (6.37)) as 

2 

aoe ing so . (6.42) 
dz 

0 which is We can integrate the equation A(z) 

e wn 

P(z) +2 =--—=0 , &
 

a In [u’] - 2 5 In [w] = uv’ Plz) , 

d u’ 

a ™ [| w 

However, rather than integrate the equation for a general P(z) we will find 

and 

vu’ P(z) . (6.43) 

that the differential form is most useful as we choose particular values of 

p(x) and hence P(z). 

Bg. 1. HYPERGEOMETRIC EQUATION 

We begin with our differential equation (6.34) where we choose 

_ e-Latb+1]}x _ mab 
p(x) = —~x(i-x) » q(x) = xCi-x) e (6.44) 

Here a,b and c are constants. For convenience we define a = atb+l. The 

result is a second order linear differential equation with three regular 
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singular points which is called the hypergeometric equation. Solutions can 

be found in the form of power series, convergent for jx |<. The two 

linearly independent solutions can be written as 

ho = Fla, b;c;x) » (6.45) 

and 

h = x ® Flati-c, btl-ce; 2-c; x) , (6.46) 

where the notation for the hypergeometric function is (Ref. 1.1) 

2 (a) (b) 
nn n 

Fla, bycsx) = 1 + ) “yar % ° (6.47) 
n=1 n 

with 

(a). = a(atl) (a+2) +++ (atn-1) n21 (6.48) 

(a), =1 . 

Note that the series are finite for negative integers or zero. 

From (6.40) we have that 

c-au(z) ~ab (6.49) 
P(z) = ulz) Li-ut(z)) z)li-ulz » Q(z) = ulz)Ti-ulz)) z)li-ulz » 

so that (6.43) can be written as 

tin fe] «woe 
az s ul(l-u) . 

u’ a’ 
c— - (a-c) ia 

u 

S
,
 

Soa h®a-w] , 

which can be integrated to yield a relation between w and u 

- 72 -



Ch. 1 - Sec. 6 

u’ 

w'(z) =D) ——~___ (6.50) 
u° (1-n)* © 

where D, is an integration constant. Alternatively we could write from 

(6.38) with A(z) =0 

w’ _1 f[uv" _ ua’ (c-au(z)) 
wv i u(1-u) , (6.51) 

so that our representation for B(z) from (6.41) is 

B(z) = 5 =| - fer} - abfatl , (6.52) 

which, using (6.51), expresses B entirely in terms of u(z), which we now 

choose. 

To motivate a choice of u(z), note that from (6.52) we would like a 

constant background term in the index of refraction. The differential 

equation 

2 

(u')  _ ag? stieay = AE (6.53) 

where f is a constant, has the solution 

u(z) = sin (fz +g) , (6.54) 

where g is an integration constant. From (6.50) we get 

w'(z) = 2D flsin(fz + g)]” "° [cos(tz + g)}7 °°", (6.55) 

so that 
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xe z [1-26 ctn(fzt+tg) - (1+2c-2a) tan(f2+g)| ’ 

and hence 

’ 
2 

= (“| = -- [(1-26) fese( f2+g)1” + (1420-24) [see fztg)) | , 

and 

2 a 

fe] =i [(1-26)* Letm(e2+g)1° + (1-2c-2a) *[tan(fz+g)]” 

- 2(1-26)(1420-20) |, 

so that from (6.52) we get 

2) 1 B(x) = f [ } (1-26) (1420-20) - av] 
(6.56) 

(£7/2) [(1-26)Lese(ez+g))” + (1420-24) [sec(f2tg)] "| 

(£774) [(1-26)*feem( tats)” + (1420-20) "Itan(tz+g)1 "| . 

An alternate version of this expression is 

  

2 a, a, 
B(z) =f s + ; + 3 ’ (6.57) 

[sin(fz+g)] [cos(fz+g)] 

where 

2 

a, = (a-b) » (6.58) 

a, = -—(c-1/2)(c-3/3) (6.59) 

and 

a. = 2/4 - (c-a-b)” (6.60) 
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Some simple properties of the profile (6.57) are: 

(a) 

(b) 

(c) 

(d) 

All the coefficients, hence the profile, are positive if we require 

atb, 1/2 < c¢ 3/2, and -1/2 <c-a-b¢< 1/2. 

The derivative of B vanishes at z= z, if 

[tan(fz,+e)]” = a, /%s . (6.61) 

An a priori choice of z, can be used to fix the other parameters. The 

values of the function and its second derivative at z = Zp» are 

B(z)) = f° a,ta,ta,+2fa,a, | ’ (6.62) 

and 

B"(z,) = st‘ [aj+a,+2fe,2, | = sf [B(2,) - a,f'| . (6.63) 

2 

A profile minimum occurs at z, if B"(z,)> 0 or if B(z,)> a,f which 

implies a,+a,+2[aja, > 0. A profile maximum occurs at z, if B°(z,)< 0 

or if at a,+2\a,a, < 0, in which case both a ,and a ,must be 

negative in order for the rhs of (6.61) to be positive. 

From (6.45) and (6.46) the solutions corresponding to the profile 

(6.57) are 

hl = F(a,b;c; sin (£2z+g)) > (6.64) 

and 
2(1-c) 5 

h, = [sin e2+8) | F(atl-c,b+l-c;2-c; sin (fztg)) . (6.65) 

Note that from (6.57) if we choose f = ky to cancel the k, texms in 

B(z) = k3 n*(z), the resulting profile n(z) is frequency dependent due 

to the remaining f texms in the denominator sine and cosine functions. 
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However, we can scale this out. See the remarks in Appendix 6A. 

Bg. la. 

As a simple example and check on the method, we should recover the 

solutions for a constant profile. Let c=1/2 and a=-b=1/2 in (6.57) then 

Biz) =k n'(z) =f . (6.66) 

The solutions are from (6.45) 

oe
 ll F(a/3,-2/231/23 sin (fz+g)) = cos(fztg) , (6.67) 

and 

sin(fztg) F(1,033/25 sin (fz+g)) = sin(fztg) , (6.68) — ut 

both evaluations of which can be found in Ref. 1.2, pg. 1040. 

Eg. lbo 

Suppose in the representation (6.56) we choose c=1/2, then we get 

B(z) = t*|-4ap - (1-a) [sec(£z+g)]> - (1-a)*Ttan(t2+g))°| ° 

For convenience let g=0 and choose f to be pure imaginary, f=if,, f, real. 

Then using cos(if,z)= cosh(f,z) and tan(if,z)= i tanh(f,z) we get 

B(z) = £2 [ dab + (1-a)Lsech(£,2))° ~ (1-0) "Ltanh(£,2)]°] (6.69) 

which bears a resemblance to the Epstein profile illustrated later. Here 

however, the eigenfunctions are 
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Fla, bscs — sinh (fz) » C= af/2a , >
 Ww 

and 

li sinh(f,z)] F(atl-c, btl-c; 2-c3 - sinh” (fz) . ig
 Wt 

For example, for a=b=c=1/2 we get (Ref. 1.2, pg. 1042) 

h= sech(f.z) , (6.70) 
1 a 

and 

h, = tanh(f,z) ’ (6.71) 
2 

0. This makes sense because a = 2 tt each of which is a solution of h"-fih 

and the only profile remaining is B(z) = fi. The minus sign in the equation 

results from rotating z to iz, or equivalently f ~if,. 

Eg. 1c. 

For this example we directly pick the transformation function w(z) as 

w(z) = eP? (6.72) ° 

Then from (6.50) we have that 

u’(z) > e2Bz a°(1-u) * © 

Let a = c and choose 

u(z) =e” . 

We have a solution provided 

Y= > = 2B + cy or B= (1-c) y/2 . 

Then from (6.52) we get 

- 771 -



2 a 
-. [| (-c)y _ ye B(z) [ = | ab er . 

If we want to shift the origin from z=0 define 

u(z) = eV (2-29) 

then the constraints are 

- evii-c)z, 
y = 2B + cy and ¥ D, 

with 

2 — 

2 ab ¥ et (2 20) 
B( ) = TT nel) ° 

2 B 1- eY (Z-Zo 

Eg. 1d. Epstein Profile 

Here we choose our transformation function as 

u(z) = 1/2(1 + tanh(z/2) , 

so that 

1 - u = 2/2(1 - tanh(z/2)) , 

and 

n(1-u) = 3/4 [sech(z/2)) , 

with the results 

u’(z) = afa sech (2/2) » 

u"(z) = - 1/4 sech (2/2) tanh(z/2) , 

wr) = ~tanh(2/2) 

u’(z) _ 1 sech (z/2) _ 1 1-tanh (2/2) 
  

u(z) 2 i+tanh(z/2) 2 1+tanh(z/2)_ 

= 5 (1-tanh(2/2)) » 
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(6.73) 

(6.74) 

(6.75) 
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and 

I-u 1/2f1-tanh(z/2)) 2 

nu’ af sech (2/2) = + (1+tanh(z/2)) 

We thus have from (6.51) that 

w' 1 fo oa _ | 
ae cl (c-a) 1-u 

= -+ [e - > + (1- > ) tanh(2/2)| ’ 

s [=] = - ; (1- r ) sech*(2/2) , 

and 

2 

[= | = q [(o-as2y” + 2(c-a/2)(1—-a/2) tanh(2z/2) 

2 2 

+ (1-0/2) * [tanh(2/2)} | , 

and if we replace 

[tanh(z/2)]. =1 - [sech(z/2)]> 

we have 

2 

[= | = | [te-a/2y” + (4-a/2)” 

+ 2(c-a/2)(1-a/2) tanh(z/2) 

2 2 

— (1-0/2) Esech(2/2)] | , 

We can thus write from (6.52) that 
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B(z) = B. + B [sech(z/2)]” +B, tanh(z/2) , (6.77) 

where 

B, = % [(e-a/2)* + (1-a/2)"] (6.78) 

Bo=-ZC-PeZa-gy-/F , (6.79) 

and 

- § (e-a/2) (1-0/2). (6.80) wo
 W 

Equation (6.77) has the fom of the Epstein profile (Ref. 1.3). Some 

properties of the profile are: 

(a) B(o) = ; (1-0/2)? - + (1-0/2) - a - + (c-a/2)? - ; (1-0/2) 

= -F [ 1- st ab + [c-a/2]” | 

= BY + BL , (6.81) 

2 3 

(b) B'(z) = - B,sech (z/2) tanh(z/2) + 2/2 B. sech (2/2) , 

B'(z) = [sech(z/2)] [2/2 B.- B, tanh(z/2)] , (6.82) 

so that B’(z)) = 0 if 

T= tanh(z\/2) = B,/2B, . (6.83) 

Since the tanh is positive for Zz, 0, B, and BL must have the same 

sign. 
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(c) BY(z) = [sech(z/2)]” [2B,[tanh(2/2)]” - 2 tanh(z/2) - B,] . (6.84) 

so that using (6.83) we get 

BY(z,) = BLseoh(z,/2)]° [r*- a] 

= -B, [sech(z,/2)]" , (6.85) 

so that Zo is a minimum if B,<0 and a maximum if B,> 0. 

Eg. 2. CONFLUENT BYPERGEONETRIC EQUATION 

As our second example we again start with (6.34) where we now choose 

p(x) = (e-x)/x , q(x) =a/x , (6.86) 

The resulting equation is the confluent hypergeometric equation with a and c 

constants. 

Eg. 2a. 

Choose both transformation functions as 

u(z) = Bz , wz) = z¥ 2 > (6.87) 

where from (6.43) we have the constraint 

w' u” 
2S rao P(z) 

” e td e 

gr ge (ew) = Gro et 

__¢ =-=+B , (6.88) 

with 
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wi = yz” eo? + 82" eo” = (b+ &) Ww, 

so that 

Y = - 
2(— + 8) = B — . 

and 

& = p/2 y=-c/2 . (6.89) 

We have that 

and 

  

2 

B(z) =o 2 frie a] - = 

  

22 4 z zZ Zz 

=-1 57 + pi -B 4 =. 
z z 4z 

B B 
= B toe 2 » (6.90) 

° Zz 2 
z 

where 

-_l ,? Bo=-7B » (6.91) 

B, = Blc/2 - B) (6.92) 

and 
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B = c/4 ’ (6.93) 
2 

and thus for an algebraic u(z) we get an algebraic profile. If we want a 

profile in a region including z=0 we must shift this origin away. 

Eg. 2b. 

As a second example we choose an exponential transformation function 

u(z) =e P* , (6.94) 

and from the constraint (6.43) 

2 = = 2 ~u' P(z) , 

we have that 

r = F (e-t-e *) , (6.95) 

so that B(z) from (6.41) can be written as 

B(z) = ata, e 1Bz +a, e 2bz ’ (6.96) 

where 

aj= 7B (c-1) ’ 

a= Bp (y-a) , (6.97) 

and 

a =-p/4 . (6.99) 

Thus for an exponential choice of transformation function we get an 

exponential profile. 

Eg. 3. BESSEL EQUATION 
  

As a third example, start with (6.34) with 
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p(x) = 1/x > q(x) = t-a /x- » (6.100) 

which is the Bessel differential equation with solutions Z,(x) where Z, 

represents the appropriate Bessel and Hankel function for a given boundary 

value problem. 

Eq. 3a. 

Choose the transformation function as 

u(z) = Bz , 

so that the constraint (6.43) is 

e vu” w , u” ov 
27 =or7 4 P(z) = ar-7 = 78 » 

and 

w(z) = eP2/2 ° 

The profile B(z) from (6.41) is 

2 
d w’ w! 1\2 

B(z) ae-{~] + (u’)” Q(z). 

32 

- f + B- + B (1-0 /p'z) . i 
tt 

a]
 w

o 

om I 

with solutions 

$= Z (Bz) . 

Eg. 3b, 
Choose an exponential transformation function 

~ 84 - 

(6.101) 

(6.102) 

(6.103) 

(6.104) 
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x = u(z) = e P2 > (6.106) 

and the constraint (6.43) is 

w’ ua” u’ 

ay Tar wT BT BHO, 

so that 

w(z) = Ww, = constant . (6.107) 

Thus from (6.41) 

B(z) u 

  

2 

(n’)” Q(z) = p? e 2bz | 1-2 (6.108) 
a 

p fea), 

so that the solutions of 

2 

  oP 4 Bing =0 , (6.109) 
dz 

are 

p= Z, te P*) , (6.110) 
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APPENDIX 1A. SCALING AND FREQUENCY INDEPENDENT n(z) 

In general we have that 

B(z) = k. n(z) = rhs , 

where the rhs contains various constants. We want n(z) to be frequency 

independent (i.e. independent of k,), as we previously remarked. We can’t 

do this for a direct choice of constants since the k, is buried in the 

functional dependence of the profile. We scale out this frequency 

dependence as follows: Our differential equation on ¢ is 

2 

oe, kya (z)¢=0 . 
dz 

Scale the z-coordinate to give 2 *=koZ so that 

2 

<fi+nX(2*)6=0 , 
dz 

so we are really finding B(z")=n2(z"). But this has the same functional 

dependence as n?7(z). So once we find n?(z*) simply replace z* by z (not by 

k,z) to get n(z). The correct scaling occurs in the solution since there we 

automatically replace z* by k,z. 
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APPENDIX 1B. Darboux Theorem 

Once we know one profile and its solution it is possible to find other 

profiles in a systematic way. 

If the general solution 

equation 

df 

dz 

  = [h + a(z)lf » 

is known for all values of h, 

equation for h=h,, i.e. 

2 

dv 

dz 

  

= (Ch, + a(z)lv ’ 

then the general solution of 

a. 

<8 = [a-a,+ v(z) 
dz” 

for h#h, is given by 

  

It goes like this: 

of the second order linear differential 

and v(z) is a particular solution of this 

2 

dz 
2 

g(z) = v(z) & Ei] 
dz {lv(z) 

Balle - 
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2. SOLUTION OF INITIAL AND BOUNDARY VALUE PROBLEMS 

In this chapter we study the initial and boundary value problems for 

the wave equation, Helmholtz equation, and the parabolic equation. We 

discuss the integral representations of the first two in detail. In 

addition we briefly mention the Ray lei gh-Sommerf ield integral 

representations, the extended boundary condition or extinction coefficient 

method, the T-matrix approach, and the Kirchhoff approximation. 

2.1 WAVE EQUATION 

We write the wave equation for the Green's function as 

  

2 

lr - + a | G(x, tex’, t’) = ~8(x-x')8(t-t’) ’ (1.1) 

c ét 

which is related to our four-dimensional formulation of the Green’s function 

by a factor c-*. We assume the Green’s function satisfies causality given 

by 

G(x, tsx',t’) = 0 t'>t . (1.2) 

That is, no signal is present for measurement times in the field, t, less 

than the initial time of the source, t’. We first prove reciprocity given 

by 

G(x, tyx’,t’) = G(x’,-t’sx,-t) > (1.3) 

which yields a relation between exchanging source and receiver positions and 

times, The proof goes as follows. Since we have a second derivative in 

time we can write an equation analogous to (1.1) in the form 

  

2 

ce ot 
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Next, multiply (1.1) by G(x,-tsx",-t”) and (1.4) by G(x,tsx’,t’) and 

subtract the resulting equations. Integrate the result over all space and 

time to yield 

I (x’,x"3t',t”) on (x',x"st’, t”) a°% °% 3 > 2 a°% °% 2 

= G(x", t"sx',t') - G(x’ s-t’sx",-t”) ’ (1.5) 

where I, and I, are defined as 

rGexrseren) = fae (ffax[otz-tex”-t7) Vets, 27.9 
(1.6) 

-G(x, tsx',t’) v'G(z,-tx",-t")| » 

and 

2 
T(x! ,x"st’,t”) = (ffax fae [ocx,—tsz”.-t”) S G(x, tsx’,t’) 

(1.7) 
2 

~-G(x, tex’, t’) a G(z,-tsx",-t")| ° 

ot 

We prove both integrals vanish, and reciprocity follows from (1.5). In I, 

use Green's theorem on the volume integral part to yield a surface integral 

of the form 

[fas [ocx ,,-tox”.-t") 55 Glx,, tog’ t") Br th dn Xs’ CS ” 
(1.8) 

-G(x atyx’,t’) a G(x tex", -t")| s 

where n is the outward normal over any bounded closed surfaces in the 

problem. The contribution from the surface at infinity vanishes because 

the functions satisfy the radiation condition. The surface is specified by 
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evaluating x on S, i.e. x,. If we assume that either G, its normal 

derivative, or a homogeneous linear combination of the two vanish on the 

surface, then (1.8) is identically zero. Next, write the temporal integral 

in I,, using the fact that the integrand is an exact differential, as 

eo 

{ dt se focz.-tex" -t 3 G(x, trx',t’) 

=e 
(1.9) 

~G(x, tex" to. G(x,-tox".-t")| . 

When integrated and evaluated at t= the tems vanish by causality. Thus 

both I, and I, vanish and reciprocity follows from (1.5). 

In order to derive the integral relation for the wave equation we begin 

with equations on the field function 9 (arising from a source §S) and the 

Green’s function as follows 

  

  

2 

vr 198 | geet) = Slt), (1.10) 
c at’ ~ ° 

2 

lr +: | G(x,tex'.t') = Olz-x)8(t-t') (1.11) 
c dt’ 

where (1.11) follows from (1.1) by interchanging variables, viz. 

  

2 

fr 1.3 | G(x’, t’»x,t) = -5(x~x')5(t-t') ° (1.12) 

c dt’ 

If we now let t->-t and t’>-t’ we get 

  

32 

3 

lr ae ° G(x',-t'sx,-t) = -B(x-z)8(t-t’) (1.13) 
c 3dt’ 

and, by reciprocity, (1.11) follows from this. Next, multiply (1.10) by 

G(x,tsx’,t") and (1.11) by 6(x’,t’) and subtract the resulting equations. 
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Integrate the results over all space and from t=0 to t= in time. The 

result is written as (t=0 is the initial time). 

(x,t) = fav: [[fox'stz, tex’ to scr.e9 

+ far ff fax: [ors tex’, t')V! g(x’, t’) 

—plx',t')V Glx, txt) 

’ 0 ’ 8 a e e = fffax’ fae gtx, tex’. t) 2 g(x") 

~P(x’,t') a gr G(x, tex! rt’ | . (1.14) 

In the second integral term in (1.14) we use the spatial Green's theorem as 

in (1.8), and we integrate the temporal part of the third integral whose 

integrand is an exact differential. The infinite surface contributions 

vanish by the radiation condition, and the infinite time contributions 

vanish using causality. The resulting integrals can be restricted using 

causality to give the final result 

t+ 

g(x,t) = fat’ (faxes, t»z" ot’ )S(x’,t’) 

+ far: (fos [ocx, tvz2-t") sor p(xo.t’) 

“olxe »t') sar G(x, tsxze, t’ | 

+ i. f dx' (ocx, t»x’,0) ser 9(x’,0) 
c 

—g (x! 0) oer ~ G(x, t3x’ or] (1.15) 

in terms of a surface integral over finite surfaces having an outward normal 

Be The result for the field function is that it is expressed as a 
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superposition of wavelets from the source S, the boundary surface (or 

surfaces), and the initial conditions $(x',0) and a¢(x’',0)/at’. Both 

initial conditions and one boundary condition specify the problem uniquely. 

We now want to examine the separate terms in (1.15). We choose for our 

Green's function the retarded Green's function in Ch. 1. It is written as 

G(x, tsx’,t’) c 60) (x, xr) 

_ ¢ &(t-r) _ 
~ Tae ct = c(t-t’), r= Ix-x'| 

1 1 
= Tar &(t-t’- c Ix-x’|) e (1.16) 

The first term in (1.15) is 

+ 

9, (x,t) = jae’ ff dx'G(x,tsx’,t’)S(x’,t’) , (1.17) 

which is an integral over the domain of the source function S. Recall that 

G was a retarded Green's function and yielded the representation 

f,(x,t) = ps §ffax: S(x',t-r/e) , (1.18) 

where we have used (1.16) in (1.17) and integrated over time. The result is 

a field 9, due to sources integrated over those spatial values such that its 

temporal values occur before the measurement time t, i.e. at retarded time 

values. 

We next discuss several examples. 
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Eg. 1. MOVING POINT SOURCE 

Although many applications relate to fixed sources, we can treat the 

signal received by a moving point source as follows. Choose 

8(x’,t’') = &(x’-R(t’)) (1.19) 

which is a point source moving on a path R(t’). See Fig. 2.1 below. 

= v(t.) Fig. 2.1 
  

  

Using (1.16) and (1.19) the result of (1.17) is 

1 
&(t-t!’- > |x-x’ > 

  

+ 

6, (x,t) = fac: {ffx —Tafg-x’T 5(x’-R(t’)) e (1.20) 

The volume integral can be easily evaluated to yield 

1 
+ 8(t-t'- = [x-pit") |) 

9, (x,t) = fdt an|z-Rte) | ° (1.21) 

To evaluate this final integral use the relation 

f b(t'-t) g(t) 

g(t')8(£(t'))dt’ = [g(t’) -y dt’ = ; » (1,22) 
j Jaf/at | Jaf/dt lee = t, 

where 

-1 

g(t’) = [+n lx-Rie) |] ’ (1.23) 

1 
f(t‘) = t- t' —= |z-pit |, (1.24) 

and ty is given by the solution f(t.) = 9 so that it satisfies 
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1 
t= t-S [zt] - (1.25) 

We also have the result 

dR [x-R(t’)] 
-1+— 

at’ c dt’ |g-R(t)| ° af 1 (1.26) 

To carry out the integral we require that O<t,<t. The result is the 

contribution from a moving point source 

O(t-t )O(t ) 
1 0 ° 
  ¢, (x,t) = an 7 1 Tak , (1.27) 

Jz-R(t)I- = Sere.” [x-R(t,)] 

which is called the Lienard-Wiechert potential. It can also be written as 

O(t-t ) O(t ) 
° o 

4x |x-R(t,) | 

ro
y 

. (1.28)   6, (x,t) = i i wa) a] 

For the special case Y=Q, the result of the spatial and temporal 

superposition of spherical waves is a pulse-like solution. Note that we 

have evaluated the last delta function in (1.21) assuming only one solution. 

For a homogeneous medium this is always true. The reason is that there is 

one arrival time and thus a minimum path for the signal. A signal along any 

other path would arrive at a later time. However, in an inhomogeneous 

medium this might not be true. Even though the distance may be longer for a 

second path, the point source speed v in an inhomogeneous medium might be 

faster than the wave speed c in the homogeneous region. The result could be 

the same arrival time for two waves, one which radiates solely into the 

homogeneous region to the receiver, the other where the source travels a 

distance in the inhomogeneous medium, then radiates into the homogeneous 

medium to the receiver. An example in electromagnetic theory is the 

Cerenkov effect, where the signal travels faster than the speed of light in 

the inhomogeneous medium. Note this is phase velocity. 
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Eg. 2. MOVING DIPOLE SOURCE 

As a second example, consider a moving dipole source term. For 

simplicity we write the dipole in only one direction, the x-direction, as 

S(x',t') = 8'(x'-R(t"))8ly")8(z") (1.29) 

in the x-direction. A sum of dipoles in the x, y, and z directions would 

correspond to an approximation of an explosive source. The moving dipole in 

a single direction could correspond to a very simple model of a fault or 

earthquake. The result for (1.21) is 

-
 

B(t-t'- = [x-x'|) + 

e e c ’ ee , e e 9.(x,t) = fo ( {fax BEET ORE BBG 

If we integrate by parts we get 

1 sie beer) 
é,(z.t) = - jac fffosr 3 3, ago B(x'-R(t")8(y")8(z")« 

(1.31) 

The integrand has two terms 

8(t-t')- + |x-z' |) e'(t-t'- = fx-g') 
a ¢ ISX - o iS % 1 (x-x') 

dx’ | Ix-x’| Ix-x’| ce |z-x'| 

,1 hy (27x) + &(t-t’- = ls-x J) ——; - (1.32) 

  

lx-x'| 

The first term can be written as 

é,(zt) = -fat’ ({ fax’ vor og bes a’ (ere!) 8(x'-R(t")) Bly") 8( 2") 

= - 4 fate srcece) gt) (1.33) 

where 
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f(t’) = ttl 2 |x-x'| 

1/3 (1.34) 
t-t'- 2 [tx-ecery? + y + 2 | , 

and 

g(t’) = 2 Rit") 1 . (1.35) 
° [x-R(t’)]* + y+ z° 

  

We can evaluate this integral using integration by parts 

fat’ Sor 8( £8") SE, fac 8'(£(t")) g(t’) 

- fac? 8(£(t! Ser [ete (1.36) i 

  

1 g(t’) | |. . 
‘Yat 7at’ le at? ft’ (t’) 

where t, arises from f(t,)=0 and hence solves (1.25). We thus have that 

  

"(t_) glt_) 41 1 fe of ° 7 
p(x.t) = 7 jf’ (t,)] [F°Cto? lett.) f a] : (1.37) 

To evaluate (1.37) define 

1/2 

D(t’) = [tx-eeeryy? ty + z'| . (1.38) 

Then we can write 

£(t’) 
1 —ph ae t-t c D(t') =, 

and 

2 g(t’) > fx-R(t")) p(t"), 

so that 
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1 R'(x-R) _ RY (x-R)-e D 
  

  

  

  

pets D 7 c D , 

m= ERY (eR) = © D) ERR 2D fancy yg g RUCxR) f” = [R’(x-R) cy EEE + ap [Rrtem) - 8" + D | 

_ RM(x-R) CRY)” ERM (x-R) 
e D ec D c D* 

and 

a= 2 (-R) D+ ER (pp PRD 

_ oR’ 2 RM xR) 
cD c D° 

Combining these we get 

2 

-—o RP ts 
@ 4m |Re(x-R) - c DI 

2 2 3 
. _ [RY (x-R) -2 (x-R) + R’ (x-R) , (1.39) 

R’ e D 2 3 
D e D 

where each term is evaluated at t’=t, with t, a solution to f(t,.)=0 or 

1 
t=t- = lz-R(e,)2| , (1.40) 

with D defined in (1.38). p, has the dimensions (length) ™*. 

The second term in (1.31) is defined as 

18 fear word ea 
fx) 8(x'-R(t")8ly")8(z") (1.41) 

Ix-x’ | 

Spatial integration yields 
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+ 
1 , ,_1 +yy [x-R(t’)] 

f, = — Wi jae &(t-t’- . D(t’)) Day) ’ (1.42) 

where D(t’) is defined in (1.38). To evaulate this use (1.22) to get 

_yEx-R(t,)) 1 

de aa b 4n [D(t,)1° df/dt t, 

, Clx-R(t,)} Dlt.) 1 

o 

  

x-R(t ) 
° 

  , (1.43) 

2
°
 

" p(t.) [R’(x-R) - ¢ DI 

which also has dimensions (length)~?. This can be rewritten as 

  

  

  

2 a 32 

g. = - c R’D ft’ (x-R) - c D) ma 
b 3 3 

4n|R'(x-R) - c D| ! cR’D 

-. s R’D (x-R) [pe *¢x-Ry? - 2 c D R’{x-R) + °. | 

m |R'(x-R) - c p|° | eR’ D 

_ o- R'D fe(x-R) Z 2(x-R)- + a tscay . (1.44) 

4 ipr(z-R) - ¢ DJ” | BP D° ce D 

Thus ¢, from (1.31) and (1.32) is 

6, = 6, + b, , 

and from (1.39) and (1.44) we get 
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2 
c R‘'D x-R 2 

2 4 JR’ (x-R) -¢ p|° cR'D 
  

  

The first term in the brackets in (1.45) is the far field tem and the 

second term a near-field term. 

As a simple check on this result, suppose the dipole is fixed at x’=0, 

i.e. let R(t’)=0. Then 

D = = (x + y +z 22/3 » 

and only the second term in (1.45) contributes. The result is 

nl --oe ke EL. 
which is the standard result for a fixed dipole source. 

Dipoles moving in other directions can easily be computed using the 

form (1.45). We relable the source in (1.29) indicating that it is in 

the x-direction as 

S (x’,t’) = 8" (x'-R (t’))S(y')8(z") . 
x ~ 2 

If we also define from (1.38) 

/3 

p= [eRe ry ta]. 

Then (1.45) is for a moving dipole in the x-direction 

3 R! x-R, D 
Dx c a2 

, Fc Reo 7 | 1 - are [R” (x-R,) +c | . 
a 4n )Ro (x-R,) -¢ pI CRi D, 

A moving dipole in the y-direction is 
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S(g'st!) = 8(x")8(y?-R, (t"))8( 2") 

and if we define 

t/a 

p(t") = [x + ty eter)? + 2 | 

the result analogous to (1.45) is 

Dy _ ce. Ry D, yk, e 2 
$, an 3 ~ RID [Ro(y Rk) ted] - 

|R: (y-R,) - ¢ D,| 22 

Similarly in the z-direction we have 

8 (xt) = 5(x')5Cy')5(z'-RB (t")) > 

and 

1/2 

Di(t’) = [x" + y + [z-r,(t")1"| » 

and the result we get is 

pe nts | 1- [R" (2-R.) + 1] 7 —_— OOO > -—TSS..- zZ—- ° 

* an JRo(z-R,) -c¢ byt oR, D, , , 

For the second term in (1.15) we write 

+ 

%, (x,t) = joes f as’ loca. esag-e” Sar Plaset!) 

- e ’ a , e P(xi.t’) Fn Oz» tox’ et | . (1.46) 

For the boundary condition we have either the Dirichlet boundary value 

probl em 

g(xit') =0 , (1.47) 

or the Neumann boundary value problem 
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sar p(xo,t’) = 0 . (1.48) 

If we choose the Green’s function such that it has the corresponding 

boundary value G(x, trx,.t') = 0 or aG(x, trx,,t’)/an’ = 0 then g, vanishes. 

The proviso with this convenient method is that one can find a Green's 

function which say vanishes on the boundary. It is usually only possible to 

find this image Green’s function for simple geometries involving flat 

planes, cylinders, and spheres for example. For an arbitrary boundary this 

in effect would amount to fully solving the problem. In any case we get one 

term to drop by our choice of boundary condition on ¢ or ag/dn’. To solve 

the problem we must write an integral equation on the remaining boundary 

value (either g or d¢/dn'). We do this in the next section for the 

Helmholtz equation. We also treat, in the next section, an example for a 

flat interface where we can find an image Green’s function. The result will 

be the Rayleigh-Sommerfeld diffraction formulae. 

The third term in (1.15) is 

¢.(x,t) = ~ [ffax’ [scx tsx’ 0) & g(x',0) 3°? . x z x» at’ x» 

~ (x0) 2, 6(x, tex’ 0) | (1.49) wr ate NS” , ° 

in terms of initial conditions on the field, i.e. 9(x’,0) and d¢(x',0)/at’. 

Again if we are able to choose the Green’s function such that its initial 

values matched those of 9, the term would vanish. Regardless of the choice 

of G, both initial values on g must be known, so once we specify the choice 

of G, this term is a known function. We specify the initial conditions on 

the retarded Green's function later in this section. 

To summarize, we have that 
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o(x,t) = O,(x,t) + oi (x,t) + ¢,(x%t) . (1.50) 

with », given by (1.17), $, by (1.46) and ¢, by (1.49). $1, is known if G 

and S are known. ¢, is only partially known since either o(x_et’) or 

O9(x.,t’)/an’ is known but not both. $, is known if G and both initial 

conditions ¢(x’,0) and a¢(x',0)/dt’ are known. 

2.1.1 FOLL (BOUNDARY) GREEN’S FUNCTION 

Rather than find the field function 9 due to a general source term S, 

we instead find the Green’s function f due to a point source, i.e. we want 

to solve for the function P, the full Green's function, which satisfies the 

equation 

  lr -i 2 | V(x", t'yx",t") = -B(x’-x")8(t-t") (1.51) 
Cc : 

This is the same as (1.10) if we replace ¢ by Y and S by the point source on 

the rhs of (1.51). Equation (1.15) then becomes 

P(x, tsx",t”) = G(x, tsx”,t”) 

* a + Jac: ffas: [oc tex'.t') 2 r(x ttsz*,t”) 
dn’ 

- F(x’,t’sx”,t”) a G(x, text. t") | 
~s ~ én’ ~~ S 

1 + AS [f fax: [ocx tex’.0y 2, etx 052", 2) 
c 

~ B(x',0yx",t")2— Bex, tox'.0)] (1.52) 

which is the integral representation for the full Green’s function of the 
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problem. Once we know its solution we can find the solution for any source 

S(x',t”) by multiplying (1.52) by S(x",t") and integrating over x” and t”. 

For example, the result due to a source S is just 

b(z.t) = fae ([fax” rez tex", t7)siz".t) (1.53) 

Our specification of the initial-boundary value problem is analogous to 

before. We assume G is known, and specify one boundary condition on either 

Y or its normal derivative, as well as both initial conditions on f. The 

full solution of the problem requires us to solve an integral equation on 

the remaining value evaluated on the surface. Note that if PF and G satisfy 

the same initial and boundary conditions, both integral terms vanish, and 

Y = G which is the complete solution of the problem. 

2.1.2 INITIAL CONDITIONS ON gi? +2) 
  

From Ch. 1, Eq. (1.12), we have a representation valid for any Green’s 

function solving the wave equation. It is written in terms of the pole 

shifts and is given by (x = (x,x,), O, = Ix) 

ik-x _ikere 

6x) = =) aa P §{{{-—*—— dk dk, 
Oy 

yg dh ni (({<— 3 “b ia, x, me) 
e - pe dk « (1,54) 

The initial condition on G‘*»*) is specified at X» = 0 so that 

- 103 -





[> flo   

6! +*) (x,0) = = 

(2) * 

ik-x 
+ mi (a-B) if a| . (1.55) 

We can evaluate the k, integral in the first term directly 

ak, | 1 1 P j = nil —— + ———~ = 0, (1.56) 
Ke wt 20, (20) 
  

so that it always vanishes. The second term vanishes if a = f, i.e. for the 

retarded (R), advanced (A), and principal value (P) Green’s functions. So 

we have the initial conditions 

6 (0) = 0 (R,A,P) (1.57) 

The time derivative of G'?**) is from (1.54) 

  
  

(3,2) ~ (- ik,) , te *o aca =- 1s |p (If = aa ay ak, 

ik-x 
~~ oN 

  #(ff 
Next set x, = 0. The first term vanishes identically because the integrand 

iw, x iw, x 

(14, fo re. pe * "|| » (1.58) 

of the k,~integral is an odd function. The second integral be come s 

x ars 3 
x (atp) (ff e dk = x (2n) (atB) &(x) , (1.59) 

so that 

a,6°°**)(x,0) = - 4 (asp) 6(x) (1.60) 
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For the retarded Green's function a = B = -1, for the advanced Green’s 

function a = 8 = 1, and for the principal value Green’s function a = f = 0, 

so we have 

a,6°7**)(x,0) = [1/2 B(x) (R) 

-1/2 8(x) (A) (1.61) 

0 (P) . 

By (1.16) we thus have that for t = t’ = 0 

G(x,053",0) = © GU?+*)(x-x",0) = 0 (1,62) 

and that 

2_ G(x, tsx",t") ~ o OR xx 
t t=t’=0 

= 2/2 5(x-x') . (1.63) 

Note that in our integral representation (1.15) the initial condition is set 

at t’ = 0 for the source. This was a matter of choice and led us to 

integrate the representation from 0 to ». The integration was reduced by 

causality. The initial condition on the field was thus at t = 0, expressed 

under the integral by $(x’,0) but on the field function as ¢(x,0) for 

example. 

We can derive these initial conditions another way. We have specific 

functional forms for the Green’s functions which enable us to derive these 

results directly. For example from Ch. 1 we have 

(1.64) e 
(3,2) 1) = d(r-t) 

6. (x,x ) ~ Thr 

where 
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x = (xx,), r= |x-x’]- and t= c(t-t’) . 
os 

Evaluating this function directly we have 

  

  
(3,2) , . dz) 

Gp (x,x’) <0 Anz > (1.65) 

and 

3 ge Diy x) _e 8'(r) (1.66) 
oR » c= 0 y ° ° 

  

If we evaluate these terms as distributions and integrate over all space we 

get for the rhs of (1.65) 

mr 

2 bie 

fF dr i sin cao| ag $2) = 0 , (1.67) 

and for the rhs of (1.66) 

ao 1 ’ 

f* dr j sin 040 [asl bt)   

=~ { r8'(r) dr = { S(r)dr = 3/3. (1.68) 

Note that if we wrote gf? +2) with a step function 0(t), the derivative 

contains 8(r)/4nxe which vanishes as a distribution in three dimensions. 

Hence as distributions 

(a) 68(r)/4nr is equivalent to zero in three dimensions and 

(b) -8'(r)/4nr is equivalent to 1/2 &(x) in three dimensions 

so that our result is for G 

G(x,0;x’,0) = 0 ’ 

d,.G(x,0:x'0) = 4/2 Blz-x') . 

as before. 
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2.2 HELMHOLTZ EQUATION 

In this section we construct the integral representation for the 

solution of the Helmholtz equation as well as the integral equations on a 

surface field valve necessary to solve the boundary value problem. We do it 

in a different way from the wave equation, by using index notation. We 

assume the field ¢ satisfies a Helmholtz equation with a source S 

2 

(8585 + kl) p(x’) = -S(x')  , (2.1) 

and the equation for the Green’s function satisfies the same equation but 

with a delta function source 

(3) (a'a' +k?) GS’ (x, x") = -8(x-x’) . (2.2) 
J J 0 ee te oe Fae 

Note that the differential operators in (2.2) operate on the source 

coordinate, which is explicitly permitted by reciprocity. 

We assume that 6) is a known function and that 9 satisfies certain 

boundary conditions which we specify later. Also here we assume that the 

differential equation (2.1) and source S are valid and exist only in a half- 

space. We assume perfectly reflecting boundary conditions on this hal f- 

space illustrated below. 

S(x’) : SOURCE 

Vi z=h(x.) : SURFACE 

Next cross multiply the equations to form 
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(3) e one a ’ Go" (CyB) (8585 + ko (x) 

a g6 x2) [aay = 6 (ex) 8(x") 

+ g(x')8(x-x’). (2.3) 

The k} terms cancel and the left hand side can be written as a divergence. 

The result is 

o(x"6(x-2°) = 6) (x, 28x") + 84 Flee) (2.4) 

where 

_ g!) ' F 5 (z.3") = G (x.5'05 g(x’) - a5 G(x,x')|g(x’) . (2.5) 

If we multiply (2.4) by the step function 

Oz" — Wx), 

and integrate the result over x’, the result is restricted to V, in the 

figure by the step function, and we get 

#(x)0(z - h(z,)) = ifs 6!) (x,x')S(x")dx" 
2 

* 60) [a; Fj (x0x") [orn ~ b(xt))dx' 5 (2.6) 

where the source integral is restricted even further by its support (which 

must be in V,). The latter integral in (2.6) can be integrated by parts to 

give 
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Gf fe: F(x.z) fore" - h(x1))dz' 

-- fff Fj (xex") 05 Olz! - b(xi))dg (2.7) 

It can easily be seen that since the integral is over all space, each 

integrated term vanishes. For example the j=1 integrated term is 

x=to 

W o
 

e F(x, x')0(z!' - h(x/)) 
x '=-@ 

The step function derivative in (2.7) is 

a5 a(z' - h(x1)) = §(z’ - h(x’ ))n (xt) , (2.8) 
j 

where the delta function is the characteristic function of the surface and 

n- is 
J 

n (xi) = 857 a; bx) » (2.9) 

which is a vector in the direction of the surface normal (but not a wit 

vector) and the derivative terms for j=l and j=2 are 

= a , = a ° 
hi, = Out h(x;) » hy, = Dy" h(x+) s (2.10) 

which are the surface slopes. We assume the surface is differentiable. The 

result yields for (2.6) 

g(x)0(z - a(x) = 9 Mx) + 9°) (2.11) 

with the total field (on the lhs) given in terms of the incident field 
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p28 (x) = if 6° ig, 28x "az" , (2.12) 

2 

and the scattered field 

x) = - fff Fi (zoz"m (x 6l2" ~ RxD )az" (2.13) 

We can evaluate the delta function in (2.13) by setting the vector x’ on the 

surface, x= (xp h(x,))> to yield 

se 8 e ’ (x) = - ff Fi(zexiaj(xidzy (2.14) 

As an example, if S is a point source 

S(x') = 8(x' - x") , 

the incident field is that field due to the point source evaluated at the 

field point x. Since g!*) satisfies our outgoing radiation condition it is 

g(x) = on (x.x") ° 

In general we can write the integral representation for 9 with zeV, as (from 

(2.11), (2.13) and (2.5)) 

(3) o(x) = ™(x) + ff[y? @ez00GD - 6° (z.x0N(x1) fax? , (2.15) 

in texms of the normal derivative of the field evaluated on the surface 
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y= ° e N(x?) n (xa; p(x), (2.16) 

and the normal derivative of the Green’s function 

Ng et) = a (xrat G(x, x"). (2.17) 
~ ~s j ~t j ~'~s 

The representation (2.15) is called the Helmholtz—-Kirchhoff Representation 

of the field. Our boundary value problem consists in specifying either N or 

g on the surface and then constructing an integral equation on the remaining 

boundary value. There are several ways to do this which we now describe. 

Eg. 1. FIRST KIND EQUATION FOR N 

We assume that 9 satisfies a Dirichlet boundary condition on the 

surface, i.e. 

g(x.) = 0 (2.18) 

From (2.15) we thus have that in the limit as z>h(x,) (where zeV,) so that 

Xx, the lhs vanishes and we get 

ox) = ffeO cx oNanart (2.19) 

which is an integral equation of first kind for N. Both gi” and 6) are 

known, and, as we noted in Ch. 1, g() is continuous at the boundary. The 

square root term in its denominator is an integrable singularity. Once we 

solve (2.19) for N, we substitute the result into (2.15) using (2.18) to 

yield the field representation 
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g(x) = gx) - fo? rs NgDaxy (2.20) 

Eg. 2. SECOND KIND EQUATION FOR ¢ 

~satisfies the Neumann boundary condition on the surface, i.e. 

N(x) =O . (2.21) 

In the limit as z>h(x,), zx, the Ihs of (2.15) goes to ¢(x,)- To find 

the limit of the normal derivative of the Green's function in (2.15) we 

recall from Ch. 1 Sec. 5 that we can write 

are (x.xt) = - FR (eet) + 5 8,,sen(z"-h(xt))8(z,-1) 5 (2.22) 

which is analogous to Eq. (5.20) in Ch. 1 except that here we are 

differentiating on the source coordinate in g's) and we thus have an overall 

minus sign. The limit of the integral resulting from (2.15) thus yields 

1 in 1 ' , Foz) = 9 Mx) - 5 [fet ze axt 

or 

6(g.) = 29°.) - [fel zielzDaxt (2.23) 

where the function P is defined as 

P(x ,x’) = mn (x')R (x -x')  , (2.24) 
~s ~Ss ~t ~s ~S j j 

in terms of the regular part R;. The latter is defined in Eq. (5.21) in Ch. 

1. The result, (2.23), is an integral eguation of second kind for ¢. The 

result when solved is substituted back into (2.15) to give with (2.21) the 

resulting field expression for ¢ 
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p(x) = pix) + [ini zneivax (2.25) 

A Born approximation to (2.23) (i.e. neglecting the integral term) 

illustrates that for a vanishing normal derivative on the surface, the field 

on the surface is twice the incident field. This is also equivalent to a 

Kirchhoff approximation for a reflection coefficient equal to one. There is 

a well developed theory for solving integral equations of second kind. 

First kind equations are more difficult to solve in general. (Refs. 2.2, 

2.3 and 2.4.) 

We have found an integral equation of first kind for N for the 

Dirichlet problem, (2.19), and a second kind equation for » for the Neumann 

problem, (2.23). We can also find a second kind equation for N and a first 

kind equation for 9. To do this, differentiate (2.15) and multiply by the 

normal to get 

n(z,)8,0(z) = o,(z,)8,6 (x) 

+ (ffa,cz22,no? (x.xz5) (x0) 

—n,(x,)8,6 (xr) NCx2) faxt . (2.26) 

- 3. SECOND KIND EQUATION ON N ge 

Let 9 satisfy the Dirichlet boundary condition (2.18). Substitute the 

result in (2.26) and take the surface limit as x->x,- The normal derivative 

of Gf?) produces a regular part plus a jump discontinuity. Here the 

differentiation is on the field variable of G'*) and the result (5.20) 

applies. The resuting limit of (2.26) is 
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in & ’ s NQxg) = 2 Ng.) - [fPlz x NGDaxt (2.27) 

where N(x.) is defined by (2.16), Ni” is defined by 

in _ in 
N(x) = axa (xy). (2.28) 

and P differs from P in (2.24) in that the normal is a function of the 

exterior variable, i.e. 

P(x ,x’) = mn (x,)R (x -x’) , (2.29) 
~$ ~S m~t m~s ~sS 

defined in terms of the regular part R, in (5.20) in Ch. 1. The result 

(2.27) is an integral equation of second kind for N. Its Born approximation 

is that N on the surface is just twice the normal derivative of the incident 

field, and this is the same as the Kirchhoff approximation for a reflection 

coefficient equal to —1. 

Bg. 4. FIRST KIND EQUATION FOR ¢ 

For the Neumann boundary condition (2.21) the limit as xx, of the lhs 

of (2.26) vanishes as does the second term in the integral. Recall from Ch. 

1 that we can regularize the second derivative of 6") as 

aa76'?) (x,x") = RB .(x-x') 
n J we mj ~ m 

+ , (z-z')]5 8,, + &,,98 &(x,-x!) (2.30) 
Z $eakzz m3 jt j? mt ~t =t , ° 

where here we are differentiating once with respect to the source (primed) 

variable and once with respect to the field (unprimed) variable (see 

(2.16)). The regular part Raj is defined in (5.55) of Ch. 1. The resulting 
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limit of (2.26) becomes 

in e 9 e n'"¢x.) = ~ [facg,.z19(zt ax: 

1 e amy ? e e -¥ fle, pe), + Ga, 6a, 2 feapasy 
(2.31) 

where 

Q(x ,x’) = n_(x,)R (x -x’)n.(x') (2.32) 
~S ~S m~t mj ~s~s j ~t 

The delta function terms in (2.31) all vanish because they integrate to the 

normal derivative of the field evaluated on the surface and this is assumed 

to vanish. The final result is an integral equation of first kind on 9, 
  

-NM(x.) = (facz, s1o(z Daz? . . (2,33) 
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2.3 BAYLEIGH-SOMMERFELD DIFFRACTION FORNULAE 

From (2.15) if we assume that S=0 so ¢!"=0 (zero source condition), and 

that we have a problem with a flat geometry, it is possible to find a 

Green’s function using an image source which either vanishes on the (flat) 

boundary or whose normal (i.e.z) derivative vanishes. Our free-space 

retarded Green's function is 

G) ik, |x-x'| 
3 = e Ga (x.x") TeeT (3.1) 

Boundary Green's functions can be written as 

(3) (3) 
G,(x, x") = Ge (x,x’) t Gp (x, x4) , (3.2) 

where x=(x,y,z), x’=(x'’,y’,z'), and yuc(x'sy'o-2"). It is easily seen that 

on the z’=0 plane 

G_(x.z/) =0 , (3.3) 

and 

2g (x,x") = 0 (3.4) 
az! + NP At ° ° 

Similarly it can be shown that for z'=0 

, — (3) , Gi(xx1) = 260 (x.xt) (3.5) 

and 

° ’ *) = a ‘yas en a (3) e aj G_(x,x,)n (xp) = 557 Gx.x1) = -2 5G (xxi) > (3.6) 

where the latter relation in (3.6) is written in terms of differentiation on 

the field coordinate z. 

If we choose G‘?) = G, in (2.15) we get the result that, for the flat 
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boundary, (8G,/az’ = n(?) = 0) the field representation is 

= (3) e ’ ’ g(x) = -2 [fon Cn zDNGDax! (3.7) 

where 

nan = 2 ptr (3.8) Xe’ ~ FeO? > . 

If we choose g(*)=g_ in (2.15) so that on the flat surface g'*)=6 =9 and 

n(3) --9 agi?) /az we get the result 

(x.xte(xidxt (3.9) (x) = -2 55 Ifa 

Equations (3.7) and (3.9) are the Rayleigh-Sommerfeld diffraction formulae 

which yields the field value in terms of either boundary conditions on N or 

_@. Note that the formulae are not useful for Dirichlet or Neumann type 

problems. (Refs. 2.5 and 2.6.) 

One advantage these formulas have is that they are self-consistent, 

i.e. as xx, (20) the limit of the function #(x) in the field is equal to 

whatever is assumed for ¢g On the surface, and similarly for N. For example, 

the limit of the lhs of (3.9) is g(x,). The limit of the rhs can be found 

from our regularization of the derivative of of?) from (5.20). For j=3 it 

is 

a (3),___,, _ 1 _ _1 oe 
ar G. (x x) => Ro (x x,) x sgn(z)5(x, x) » 

where from (5.20) and (5.18) 
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2 
ike [x-x’ K 

Ri(x-x1) = 24 _ (fe * fst) Gt?) (x) of [a . 
we ~t 3 R k ~ 

(27) Zz 

In the limit of z=0, R,=0 since it is the integral of an odd function of k, 

Gf?) is an even function of k,, and the exponential is not a function of k,- 

The result is 

lim @ (3) yi. 1 -x! 
z~ 0 5z Sp (x-x!) = x 5(x x‘) , 

t ~t ~t 

which when substituted into (3.9) yields the self-consistent result that 

#(x,) = o (xp) Similarly, if we differentiate (3.7) with respect to z and 

take the limit as z>0 we get the self-consistent result N(x,) = N(x,). 

The Rayleigh-Sommerfeld formulae can be used for other geometries where 

it is possible to find image-type Green’s functions, i.e. geometries 

containing canonical shapes such as cylinders, spheres, etc. They are also 

a useful starting point for geometries where the shape is nearly canonical, 

i.e. where the shape can be defined in a perturbation sense as canonical 

plus a small correction. 

It can also be shown that the Rayleigh-Sommerfeld diffraction formulae 

are consistent with the Kirchhoff boundary conditions on 9 or N (see Sec. 6) 

except at the edge of an aperture. (Ref. 2.7.) 
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2.4 EXTENDED BOUNDARY CONDITION 

In (2.11) we established the integral relation for the field 

b(x)0(z - biz) = 8 ME) + 9D), (4.1) 

where 

nx) = [[fo° czy scx rax! , (4.2) 

4 

and 

sc _ (3) , ry — n&®) , , 
6x) = fff Oc zoean - 6 Gzonanfaxt . (4.3) 

The total field in V, is thus due to volume sources S, and to a layer of 

point and dipole sources on the surface h with source densities N(x.) and 

g(x.) respectively. 

If we assume that zeV,, the ihs of (4.1) is zero and the result is a 

volume boundary condition 

6*7(x) + g°° (x) =O xeV , (4.4) 
2 

called either the extended boundary condition (Ref. 2.8), the extinction 

coefficient (Ref. 2.9) or the null field equation (Ref. 2.10). It is just 

that boundary condition on the scattered field, hence on the point and 

dipole sources, necessary to extinguish the incident field everywhere in V,. 

Hence it is a volume and not a surface boundary condition. The induced 

surface fields extinguish the incident field everywhere below the surface, 

and directly incorporates into the solution of the problem the fact that the 

field in region V, must vanish identically. 
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2.5 T-MATRIX 

Our field representation from (2.11) is 

$(x) = $ (x) + o>" (x) xeV . (5.1) 

We choose the Dirichlet boundary condition (2.18) so that 

sc (3) , ' ' 
(x) = - Ifo Cx DNg Dax, (5.2) 

which follows from (2.15). Use the Weyl representation for gl?) =¢l9) from 

(4.11) in Ch. 1 where z’ is evaluated on the surface 

  

. exp [ik ° (x -x!)+iK |z - h(x!) | 
of?) (x, x!) = O ff [ tt zn > t ] dk, , (5.3) ws (an)? + t 

where K,=(k> ,-k2)*/?, Assume z is greater than the highest surface 

excursion so that the absolute value in (5.3) can be dropped. Substitute 

the result in (5.2) so that we can write 

g(x) = ff expfitk,-2, + RJT) ab, (5.4) 

where 

~Hi e e 9 e T(k,) = mE f oxp|-ifk,-z! - K,a(x))]| N(xi)axt (5.5) 

Thus ¥8° can be expressed as a sum (integral) of upgoing (propagating) or 

decaying (evanescent) waves in the positive z-direction. T is derived from 

the surface source density N and is called the T~matrix. It is directly 

related to the scattering cross section. 

- 120 -



In order to solve for N and hence T (by (5.5)) and hence the scattered 

field in V, (by (5.4)) we use the extended boundary condition (4.4). Then 

for xeV,, (5.2) becomes 

piM(x) = ff eo? asn N(xi) dzg. (5.6) 

Assume z is less than the lowest surface excursion so that the absolute 

value in (5.3) can be dropped. The result inserted in (5.6) yields 

3, ,,-2, vin : ’ ’ , (an)? (nak FREY = ff exp[-ikyezs + ikaCep|NaDax, 3.7) 

which is used to detexmine the surface density N in terms of the Fourier 

transform of the incident field. 

This method has been extended to scattering from a multi-layered single 

body and to multi-bodies. It is also possible to develop a way to find T 

directly in terms of quantities which do not directly involve the surface 

fields. (Ref. 2.11.) 
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2.6 KIRCHROFF APPROXIMATION 

The Helmholtz-Kirchhoff integral representation for the field is given 

by (2.15) as 

i ) ote) = sia) + [fn ce zee - 6 zona fax (6.1) 

The Kirchhoff approximation consists in assuming both the surface and normal 

surface derivative values of the fields, i.e. both riew) and N(xg)- To 

motivate the choice of boundary conditions we consider plane wave scattering 

from a flat interface. The total field is 

g(x) = 9 Ux) + Rg () , (6.2) 

where R is the reflection coefficient and gin and ¢g°° are incident and 

scattered plane waves, the latter of which is specular so that 

972(x) exp ik, fo,x + By - 7,2]| - (6.3) 

and 

g°°(x) exp |ik, [a,x + Boy + r2]| > (6.4) 

where a,, Bo, Yo are the direction cosines of the waves. On the surface z=0 

o(x,.0) = (1+ BP (x,,0) . (6.5) 

and 

a in 
Zz P(z,-0) = ~ik,y (1 - Rg (x,,0) - (6.6) 
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We assume the true interface is gently undulating so that we can 

replace the z-derivative by the normal derivative. Also we evaluate the 

terms On the true surface, not z=0. We thus have the approximate boundary 

conditions 

px) = (1+ Rg Me) MHz), (6.7) 

and 

N(x?) = - ik,y, (1 - Rg*™(xt) = N(x!) (6.8) 

Then the field is known from (6.1). 

Note that in the limit as xx, or z>h(x,) the result of (6.1) is 

using (6.7) and (6.8) 

in (3) , £ e e o(x.) = 9x.) - [fe Ge zon az? 

-} leaps par + dea . (6.9) 

so that we do not in general recover the assumed surface value i.e. 9(x,) is 

not necessarily 6°(x,)- Differentiating (6.1) using the normal derivative 

merely yields another equation (which is linearly dependent) and no recovery 

of surface field values which have been assumed. 

If we do take the normal derivative of (6.1), i.e. multiply by (x) Om 

and pass to the surface limit we get 

- 123 -



Nig.) = NMg) + ffatz..zt)6° (xt )dx! 

+ (Mo jep?), + mi ey An ola sp) |e pax, 

- a | (eeeese line sede 

+ 5 N(x.) . 

Integrating the delta function terms gives an additional term N° so that 

' ° , -135 9 ° ° ’ + (f[acz zs (x3) - 5 Pla ZN (x1) axe : 

where Q and P are defined in (2.32) and (2.29) respectively. Again we do 

not in general recover the assumed boundary condition. 

If however we do assume that we recover the boundary condition so that 

(6.9) becomes 

etsy = 20M - 2 fez Nizar 

- (fetzzpe° (x5 dxy » 

and we substitute in (6.7) and (6.8) we can solve for the reflection 

coefficient to get 

i i , (3) gee ry)aee p(x.) - ffecx 200i xrax: +2 ik, 7, { {6 (x 503t)¢ “x axe 
R= 

i i p"(x,) + [fez .. x09 znaxt +2 ix,y, [fo (x,.21)8 “(xQdz! 

which in theory should be independent of x,y and h. 
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Ch. 3 - Sec. 1 

3. ELASTICITY 
eases 

In this chapter we study the propagation and scattering of waves in 

elastic media. To do this we derive equations satisfied by the 

longitudinal and transverse displacement components, discuss the free-space 

elastic Green's function, and use it to construct integral representations 

for the full Green's function (or displacement) in tems of values of 

displacement and traction (stress) on the surrounding surfaces, and other 

sources which may be present. We illustrate how to find the inte gral 

equations for these surface values in terms of a regularized kernel. We 

further discuss the possible boundary conditions, the plane wave states 

convenient for layered media problems, and the representation of the 

displacement in terms of potentials. We also treat the scattering problem 

at a plane interface for various compressional and shear wave combinations. 
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Ch. 3 - Sec. 1 

3.1 PRELIMINARIES AND EQUATIONS 

Define the orthogonal Cartesian coordinate system Xj j=1,2,3, which is 

sometimes written in vector notation x = (x,, XxX,» x,)- We use the symbol 

uj(x.t) for the three components of elastic displacement. The (symmetric) 

strain tensor is given by 

_ 1 

e = 3958 + . . jk ou) (1.1) 
k 

The stress tensor tik is related to the strain by Hooke's law 

(1.2) 
*jx ~ “jxpm °pm 

where repeated indices are summed over (from 1 to 3) and where we have 

defined the elastic constants Ci kpm* Since each subscript runs from 1 to 3, 

there are in the most general case 81 inde pendent elastic constants. They 

are really only constant in a homo ge neous elastic medium, and we assume this 

here. For an inhomogeneous elastic medium, the elasticities are in general 

material functions of position. (See Appendix 3C.) 

We reduce the number of independent elastic constants further by using 

the following symmetry restrictions derived from infinitesimal stress-strain 

theory: 

(a) stress-strain symmetry given by 

t., =Tt and e =e ° (1.3) 

This implies 
C. =C., = C, . (1.4) 
jkpm kj pm j kmp 

If the indices are thus taken in pairs, eq. CC jk) (pm) then since each pair 

has 6 independent values (11,22,33,12,13,23) there exist a total of 6°6=36 
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Ch. 3 - Sec. 1 

independent elasticities for a body without material symmetry. 

(b) There: is a second definition of classical linear elasticity 

resting on the Postulate: The work done by the stress in a deformation 

depends only on the strain and is recoverable work. This implies an 

additional symmetry 

Ci kpm = C omjk . (1.5) 

Again thinking in terms of pairs of indices, the above imply a number of 

constraints given by the combinations of 6 things (independent pair values) 

taken 2 at a time or (8) =15 constraints. There are thus 36-15=21 

independent elasticities remaining. 

(c) A final large number of constraints is introduced by isotropy. 

For sufficient material symmetry of the body so that the body is an 

isotropic elastic material, the number of independent elasticities reduces 

to 2. We can write the remaining non-zero terms as 

C...,=At+ ap , (1.6) 

JJIJJ 

C.. =A’ , (1.7) 
jjkk 

= = ° 1, Cage im Cikj (1.8) 

in terms of the Lame modulus 2 and the shear modulus p. The latter are also 

often written in terms of Poisson’s ratio o and Young’s modulus E as 

A=2p0/(1-20) and p=E/2(1+0). The resulting elastic constants can be 

summarized as 

C = 245,,5 + pfS, 5 (1.9) 
JP 

: + 8. 8 ’ 
jkpm jk pm kn jm | 

which is the most general fourth-rank isotropic tensor with the above 
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Ch. 3 - Sec. 1 

symmetries, and Hooke’s law written as 

t.. = 208., + pfa.u, + au], (1.10) 
jk je” PPP Ge x"; 

in terms of the dilatation O=d ju;- 

EQUATIONS OF MOTION 

The basic equations of motion of the vector displacement are just 

Newton's law, F=ma. The force is the spatial divergence of the stress 

tensor. Using mass density p we can write the equations of motion as 

  a,t., = Pp ule (1.11) 

kik at? J 

If we let u; (x,t) = exp(—iwt)uj(x), i.e. we factor out a harmonic time 

dependence (so we essentially work in frequency space) we get 

2 2 2 : 
+ = = e e 2 OT ie K B; 0 , K w p (1.12) 

Substituting for the stress using Hooke’s law 

1 2 
a, Cc + au | +Ku,=0 . (1.13) 

mp J 2 “k “jkpm (7, 

For an inhomogeneous medium, the C's would be differentiated. For a 

homogeneous and anisotropic medium (eq. a crystal) we use the fact that the 

C's are constant and that Ci xpm= Cj kmp to write 

2 =o , 1.14 Com xe pm * KU; = 0 (1.14) 

which is the set of equations we work with. If we assume 
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Ch. 3 — Sec. 1 

0 

u.(x) = u, explikex) , j-~ j ae 

then the set of equations can be written as 

2 
(KS, -C., k 

m 

0 

. k ) = 0 . 
ju jk P “mn k 

o 

This is a set of three homogeneous equations of first degree for La 

Solutions exist if 

2 
|kK 8 im j kpm rk | = 0 

i.e. if the determinant of coefficients vanishes. This is a cubic equation 

in w*(or K”) and has three roots, w; (k). Now w is linear in k so that the 

wave velocities (group velocities) du/ dk; are independent of kj. Velocity 

of the wave is a function of its direction, not of its frequency. In 

general in anisotropic bodies we have three different velocities of 

propagation. 

For an isotropic body we will find only two different velocities of 

propagation. Substitute (1.9) into (1.14) to get 

uddu,+(A+p) 0.80 +Ku, = 0, (1.15) 
mm j jum j 

or in the notation of vector analysis 

pAut (A + p)grad Vu + K*u = 0. (1.16) 

Equivalently we could define the operator 
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Ch. 3 - Sec. 1 

A* =p A+ (A + up) grad div = (A + 2) grad div — » curl curl , (1.17) 

which plays the same role in elastic theory that the Laplacian A plays in 

harmonic function theory (e.g. for p=1=-A, A*=A). Our equation is thus 

(A*u). + Ku, =0. . (1.18) 
j ji od 

If we decompose the displacement into longitudinal (L) and transverse (T) 

parts 

u. = ot + ue (1.19) 

where the transverse part is divergenceless (solenoidal) and the 

longitudinal part curlless (irrotational) 

aur = 0 3; «. .@ a = 0, (1.20) 
3 J imj m j i 

then we can write the longitudinal displacement as the divergence of a 

scalar potential ¢ 

L 
u,=d,¢ » (1.21) 

J J 

and the transverse part as the curl of a vector potential Ap 

TL aA. (1.22) 
u,. €, 

J jmp mp 

We discuss these potentials later in this chapter. 

Substituting these results in (1.18) using (1.17) we get 
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Ch. 3 - Sec. 1 

(A + 2n) Wye u) - pYxVxu" + K* (ub + uw’) = 0. (1.23) 

If we take the curl of this equation we get an equation in only the 

transverse displacement 

~ yx|x*y"- pYx¥en"| = 90. (1.24) 

The divergence of the bracket in (1.24) also vanishes. Up to an additional 

scalar potential (the Laplacian of which vanishes) we can set the bracket to 

zero. Using (1.20) this is 

T 2 T 
Au. + . = 0. , (1.25) 

j Ky “5 j 

where kr = K7/p = w7p/p = w* fer is the square of the transverse wave number, 

and cy = (u/p)?/? the transverse wave speed. Similarly, taking the 

divergence of (1.23) we wind up setting another solenoidal and irrotational 

bracket to zero 

Kul + (A + 2p) Ve) = Oo, (1.26) 

and if we use the relation A = grad div - curlcurl we get 

7 = 0 , (1.27) L 
Au, + k . 

j Lj j 

where kr = K7/(A + 2p) = w7p/(A + 2p) w/o is the square of the 

longitudinal wave number, and co = CCA + 2u)/p)?/? is the longitudinal wave 

speed.



Ch. 3 - Sec 2 

3.2 FREE-SPACE ELASTIC GREEN'S FUNCTION 

The free-space elastic Green's function is the tensor solution to the 

point source generalization of (1.18) which is 

* 0 2.0 

[a G (2) | + KG..(x,x') = 8,,8(x-x') , (2.1) 

and is explicity given by (see Appendix 3B) 

6 (xx") +o aa,[ot x - hte] . (2.2) 6° (xx!) = 28 
ij 

Where G! and G" are the scalar free space Green's function with wave number s 

ky and ky respectively. That is they are 

exp(iky , lz-z' |) 
' = (x.x') tn fx-x (2.3) 

We choose the solution satisfying the outgoing radiation condition, i.e. the 

retarded solution. Note that OF is regular in the sense of the 

c! is regular, and the second 
singularities we discussed in (Ch. 1. 

derivative of G! contains the same singular terms as the second derivative 

of cl, i.e. the singularities are independent of wavenumber and thus cancel. 

The derivative of (2.2) will occur in later integral equations we derive, 

and this is regularized in App. 3A. 

To prove that G° is a solution of (2.1) substitute it and use the 

definition of A* in (1.17) to get 
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i 

o 0 

it 98 n ij + (A + 2) 8,0 G [ate tx.x)| 
nim . im nj 

ij 

T -1 -2 T_ Lb 
i a, b,;6 +K 0,a,(6 - 6 | 

-1 T -2 T L 
+ (A + 09, [u a ,6 + K 8 590? nS G | . 

Use the differential equations satisfied by 6! and gL, viz. 

2 T,L 1) = -Rleex! 
(2, kr i] G’ “(x,x') S(x-x') 

and the wave number valves kr = K*/p and kr = K*/(1 + 2p) to get 

* 0 ' —— T aly _ 2. _ et 
[a*e° «x.x |, a,0,(6- Gh) - 5,476" 858-21) 

which can be written as (2.1), i.e. 

[ate cx. 2 | = -K°G° (x,x') — 8. .8(x-x") 

We can also derive the divergence and curl of (2.2) as 

96° (x.x') = (+ 2p) a Getz’), 
mmp~ ~ 

Pp a kN 

and 

e.. 0.6 (xx!) =p e., 8.6%(x.x") . 
ijm j mp ~’* ijpj ~~ 

(2.4) 

(2.5) 

(2.6) 

Note that just as in the scalar case Gi jeez”) is a homogeneous function of 

its arguments and can be written as Gir). 
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3.3 SURFACE INTEGRAL EQUATIONS 

We derive the surface integral equation satisfied by the full elastic 

tensor Green's function G3; which satisfies the same differential equation 

(2.1) as oF and in addition certain boundary conditions which we specify 

later. The development is analogous to that in the scalar case. Gi; 

satisfies the equation 

[atocz.er)] + KG, Gant) = 8, ,8(x-2") (3.1) 

and we write the equation (2.1) on Gi j but here differentiate on the source 

variable 

[ate ez | + KG! (x',x) = -8,,8(x'-z) . (3.2) 

By cross multiplication we form the quantity 

oh tztsg)[a*o(z.2)] [a*e° x" 2) | 6, (xe) (3.3) 
*J in ij 

Next write (3.3) in two ways which we then equate. The first way is 

(a) 6 (zx -~ x6. (x,x") - 8, 8(x-x") | 
ij~’~ in ~’* in ~*~ 

- [ - KG: (x',x) - 8, 8(x'-2) |s, (x,x") 
ij~’~ ij ~ ~jJain*’* ~ 

G. (x,x")8(x'-x) - G° (x',x)8(x-x") (3.4) 
jo~~” ~ ™ jno~ *~ ~_™ 

where we have used the symmetry of G° as
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6. = & (3.5) 

to write the last term in (3.4). The second way is to use the specific 

definition of the differential operator given by (1.17) to write 

* xx") + 0+ wd 9G (xx ) (b) = os, (x’ +x) [ua a6. ( 
14j ~*~ ™ nmin ™ ~ 

°o 0 
~ e 

’ nw 

[n2,2,65, x) + (A+ 1d 36 (x =| G, (2x ») . (3.6) 

Next factor a divergence term out of this as 

0 
= e ” + « 

(b) oF (x 122, [us (x,x") + pd dG eee ) aG, 
pm m in 

+ 28. 0 G x2") | 
ip m mn ~’~ 

0 o 

- @ [ps aG,.(x',x) + p8 a.G__,(x',x) 
pL pm m ij ~ '~ pm i mj ~~ 

+28. 8 @ (x'.x)[s, (x,x") , (3.7) 
ipmmj ~ ’* in'~’~ 

and finally note that we can factor the divergence out of the full term 
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(b) = 9 este» Bs dG. (x,x") + p8 0,G (x,x") 
Pp ij .~ ’ pm m in ~ ~ pm imn~ ~ 

+ 28.0 G (x.x")] 
ip m ~ nn ~ 

- [us a 6°. (x',x) + p68 a.G..(x',x) 
pn mij ~ ~ minj~ ~ 

+ a8. a f(z". x) fo, nl] 
ip mmj ~ °* in'*’* 

- [a of (zt x) | [x8 dG. (x,x") + pd 9.6 (x,x") 
pij~’* pm m in pm i mo ~ 

+ Ab p? G (zz) 
m nn! atm 

+ [us a G. .(x',x) + 18 a. 6. .(x',x) 
mm ij iomj ~ 

~ +28. 8 6° (z'.x) 0 G. (x.x"). (3.8) 
ipmmj ~ ’~}pin~ ~ 

It can easily be seen that the last six tems all cancel so that (b) is the 

divergence of a triple index object. We write it as 

(b) = aa [e'-z-2" loin , (3.9) 

where we define the symbol 

[s"-z-2"| : = oF (x'og) [T6(z.2")| . 
~ °A'S Ipjn ij = ’* a’~ "Ipin 

ty
 -[re°¢ x" 2) | 6. (x x") (3.10) 

~ 'S |pij in’~ 

with the operator T defined as
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. : : (x,x") + 48, 8G (x,x") . (3.11) 
pin p in *’* i-pn‘~’* ip m mn ~ 

which will be related to the traction of G across the surface. The 

definition (3.11) follows from the first set of terms in (3.8). 

Analogously, for the free space Green's function we have 

[rotated] og = va yOtj(atoxd + 0,08, (x'ox) + 28,9465; (27x) (3-12) 
pij ip m nj 

Note that the differential operators in (3.11) act on the “field” coordinate 

x, and in (3.12) act on the “source” coordinate x of the function. Also 

note that (3.11) and (3.12) are symmetric in p and i. We could also use 

(2.5) to simplify the last term in (3.12). Equating (3.4) and (3.9) we get 

- 

finally 

G. (x,x")8(x'-x) = G° (x’,x)5(x-x") + 9 | . (3.13) 
pjn 

From this basic identity we are able to start forming integral equations for 

many different problems. 

Eg. 1. TRACTION FREE SURFACE 
  

We specify the surface z=h(x,) and we want to find the field above this 

surface. Multiply (3.13) by the step function @(z-h(x,)) and integrate over 

all space Lffax. The result is 
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G. (x',x")O(z' — h(x!)) 
jn o~ ~t 

= 6° (x',x")@(z" - h(x")) 
jn ~ ~e ~t 

* (ii ale es" loin O(z - h(z,))dx - (3.14) 

The field tem on the ihs of (3.14) thus exists provided z’>h(xt)> i+: 

assuming the vector field position x’ is above the surface. The source term 

exists provided z">h(x,"), i.e. provided the source point x” is above the 

surface. For the integral term we integrate by parts. Surface terms at 

infinity vanish either because of the step function or because of the 

radiation condition, and if we use the fact that 

a, O(z - h(x) = &(z - h(x, ))n (zy) , (3.15) 

where 

n (Sy) = 6 3 - 8 et lz,) , (3.16) 

is a vector in the direction of the surface nomal (not a unit vector) we 

get that for x’ and x" above the surface 

G. (x',x") = G2 (x',x") - ({ n_(x ) [etx z*| . dx, , (3.17) 
ja~ ~*~ jn~ ~ p~t’ [> ‘'<s’* Jpjn ~t 

where we have evaluated the delta function and x= (x, b(x,)) is a three- 

vector evaluated on the surface. Explicitly the symbol term in (3.17) is 

from (3.10)
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n (x_)|x',x .x"| : 
p ~t ~ ~s ~ pjn 

0 

= hz za (z(t G(x +x | pin 

~ atx.) [rt 6° (x's x 1:6 (xax"). (3.18) 
pij in *s’ 

If we assume a zero traction (or traction-free or just free) boundary 

condition given by 

n (x »|r G(x 12") | o , (3.19) 
p ~t ~s ~ pin in 

then (3.17) becomes 

Q
 

~
 

- 

2 
~
 tt a
 . ,_(x',x") 

+ ff a(x.) [2 e'(x20)| G. (x ,x")dx, » (3.20) 
pij in ~s 

which is our first result, the integral representation of the Green's 
  

function at the field point x ‘above the surface in terms of its “value” on 

the surface G; n(Zg°k") which however, is wnknown. To find an integral 

¢ 

equation for the surface value take the surface limit, i.e. let x’ x,» a 

point on the surface. As in the scalar cases we treated, we must regularize 

the kernel of the transform in (3.20). We do this in Appendix 3A, where 

from Eq. (A.31) we find that we can write 
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o 
a (z_)[T G sz} 

= K,,(x',x_) 

+ 1/2 sen(z'—h(x1))8(xi-x,) . 

= [5 895 ,ebe,) - N64? bz.) | ; (3.21) 

where Ki is the regular part and is given explicitly by (A.32) and 

A=a/(A+2p). Substituting this result in (3.20) and taking the surface limit 

“we get 

Q. .(x.")G. (x',x") = 6°, (x',x) + (fr, 5 
~t in~s ~ jn ~s ~ ji~ 

»x)G. (x ,x")dx, , (3.22) 
ji ~s in ~s ~ ~t 

' 

s 

n 

where the matrix Q55 is defined as 

Q, 2,0 = 1/2[o,, + 6.3% ney + Ns 5521 B(x, | , (3.23) 
~t 3 

Equation (3.22) is the integral equation for the value of the Green's 

function on the surface, G;,(x,.x")- The procedure is to solve these 

coupled integral equations (in general’ computationally, and in general 

difficult) for the surface values and then substitute them into the integral 

representation (3.20). An alternative integral equation can be formed if we 

define the surface Green’s function as the lhs of (3.22) 

GS (x',x") = Q..(x.)G, (x',x") . (3.24) 
jn~s ~ ji ~t in~s~ 

Using the inverse matrix to Q given by
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Q. (x.')0) (x,') = 6, ’ (3.25) 
jm ~t mp ~t jp 

we can write 

G (x‘',x") = 0 (x')G°* (x',x")  , (3.26) 
mn~s ~ mp ~t pn ~s ~ 

so that (3.22) becomes 

6° (x',x") = 6. (x',x") + (fe, (etx )0, (x.)G> (x ,x")dx, . (3.27) 
jn~s ~ ju ~s ~ ji~s~s ip ~t pn~s ~ ~t 

Explicitly we have, in matrix notion 

1 0 a h(x,) 

1 
Q(x.) = 0 1 0 h(x)) ’ (3.28) 

A b(x,) A h(x) 1 

and 

2 

1-Afa h(x.) ] Mh, (x,)8 h(x) ~d,A(x,) 

= 2 - 2 - U(x.) = Ap ha iy Ad h(x, a, h(x.) 1 Afe h(x) J a, h(x,) 

t ~t 
“AB h(x) “AB, n(x) 1 

(3.29) 

and the field representation (3.20) can be written as 

G. (x',x") = G. (x',x") 

oy Ss ” 
+ (fo,,¢x,) |r G (x 5) Ini @ip Ze? Son Es dx, - (3.30) 
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Bg. 2. VOLUME SOURCES - TRACTION FREE SURFACE 

The source terms in (3.20), (3.22), (3.27) or (3.30) are all due to the 

free space Green's function 6°. If instead we want to solve for an 

arbitrary tensor field a; (x) due to the tensor sources Sin (x) i.e. when we 

have the differential equation 

[a*acx | + Ka. (x) = -S. (x), (3.31) 
~ in in ~ in ~ 

we multiply (3.20), (3.22), (3.27), or (3.30) from the right by Saqiz” and 

integrate over x", From (3.27) for example we have that 

u. (x') = u(x!) + ff K. .(x',x _)U, (x yu® (x )dx , (3.32) 
jn ~s jn ~s ji~s s ip ~t pn~s ~t 

where 

ue (x!) = (fos (x',x") S_ (x")dx” , (3.33) 

jnu~s jm ~s ~ mn ~ ~ 

and the incident field is 

in 9 e a ” ww ny n(ks) = [fora eZ SyalZ4E" + (3.34) 

The function evaluated at a point in the field, x’. i.e. off the surface, is 

defined via 

wilh?) = [J fojn(2*-2” Sink ox" - (3.35) 

For a vector equation, for example, for the displacement u; we have
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that including vector source terms 

(A*a(x)), + K'u.(x) = -S.(x) (3.36) 
wn" i i~ 

the field representation can be found from (3.20) by multiplying from the 

right by S, 4x") and integrating over x”. Using the definition 

uj(2') = [ffe, (x72) Scxrdaxr (3.37) 

ry . in,_, o,, 
u; (x') = u; (x') + fa, (x, [x G (x 55) bpp ®i(Bs) oe , (3.38) 

where the incident field is analogous to (3.34) if we simply drop the 

n-index. The surface integral equation can be found from (3.22) for example 
  

by the same procedure. It is 

in ’ e Qj (eae = 07D + [fe tx e daz, (3.39) 

Eg. 3. TWO ELASTIC MEDIA 
  

The traction free boundary in examples 1 and 2 was essentially a 

perfectly reflecting boundary condition. If instead we have two different 

elastic media joined at our rough interface z = h(x,) as in Fig. 3.1 

(2) (2) (1) 

pL ge Fig. 3.1 

we can still use our identity (3.13) but now must apply it twice. First, 
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multiply by 6(z-h(x,)) and integrate over all space x» We get essentially 

the results of Eg. 1 except that the traction is not zero and all the fields 

and parameters have superscript (1). We assume, of course, that the source 

is in region (1). The field representation in region (1) is thus for the 

displacement vector in analogy to (3.38) 

(2) 
(1),_,, _ in, _, o,, (1) 

u; (x') = wi (x') + fo, cx, [2 G (x'.x.) pijti (x dz, 

_ (2), (2) 
(Is; 5 (x'oz,) Ty (z)dx, + (3.40) 

where we have abbreviated the traction as 

(2) 
(1) 

T; (x,) = a, (z_) |r ue) . (3.41) 

The field in region (1) is thus given once its surface values and the 

surface values of its traction are known. An integral equation for the 

surface values can be found by letting x’ +x, from above the surface. This 

is exactly the result we had before with the addition of the surface 

o(1) 
traction term. No regularization of G is required since it is not 

singular. The result is 

(3), 20,4) pony = yp imeye (1), _, 
Q5 (x pa; (x%) = U5 (x9) + (lk; % (xiox.du; (x,)dx, 

- (for? Gates yr (x ax, (3.42) 
ji ~s'~s i ~s t 

where the Q-matrix follows from (3.23) if we replace the elastic parameters 

by 2.) and pi), 

In region (2) we multiply (3.13) by @(h(x,)-z) and integrate over all
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space. There is no source term now since we assumed it to be in region (1) 

and the field representation in region (2) is thus 

(2) ley EK (2), 
a; (x!) = -{ fn, (x pire G (x',x oh i (E592 

0(2),_, (2) +({ors (xox) Ty (x dx, (3.43) 

in terms of surface displacements and tractions which result as we take the 

limit from region (2). The additional minus sign on the rhs of (3.43) 

results from the fact that when we integrate the divergence term by parts 

and differentiate the step function, it has the negative of the argument it 

had in region (1). The surface integral equation follows analogously by 

taking the limit x’ ~+ x, as z' > h(x,') from below. We thus get an 

additional minus sign from the singular tems since the signum function is 

negative. The resulting surface integral equation is 

(2) (ery of fe) (2) a cepal GD = (fe; 3 (xt.z,duy (z,)4x, 

o(3),, — a2) +{( Hi ett dz, (3.44) 

‘ 

where the Q-matrix here follows from (3.23) by replacing the elastic 

paramters by a?) and a '?), 

We thus have two vector integral equation (3.42) and (3.44) with four 

unknown vector quantities on the surface. We require two additional vector 

boundary conditions, actually continuity conditions, at the boundary 

interface. They are the continuity of vector displacement and traction 

(stress) given by 
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v2) (x )= uf?) (x ) , (3.45) 
m *~s m “~s 

(3) _ pl?) T= TG) - (3.46) 

The resulting equations (3.42) and (3.44) are thus two coupled equations for 

surface displacements and tractions. These are solved and the results used 

to find the fields in the upper region using (3.40) and in the lower re gion 

using (3.43). 

Eg. 4. ELASTIC LAYER 

For an elastic layer sandwiched between two rough surfaces h, (x;) and 

hi(x,) as in Fig. 3.2 

z 

eer’, 00 h, (xy) Fig. 3.2 

we can again use the identity (3.13). Now however, we multiply it with the 

product of two step functions 

6(b, (x ,)-2) O(z-h (x1) > (3.47) 

and integrate on x over all space. The result is for x‘ and x" in the layer 

+ (fa, fete 2" yj ns Ee? ~ Oz ~ ble DD de, 
(3.48) 

which is written in terms of the symbol defined in (3.10). Integration by 

parts of this integral produces the derivative of the product of step
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functions which is given by 

a O(h (x )-z)O(z-h (x,)) 
Pp a -t 2 ~t 

— (4) 2 _ =) (x )8(z h(x, ))0(z h(x,)) 

(2) 
nn’ (x )8(z-h (x.))O(h (x,)-z) (3.49) 

p +t ant 1 >t 

where the normal vectors are defined as in (3.16) with the superscript 

indicating either h, or h,- Evaluating the step functions in (3.49) at the 

value of the delta function we see that each is equal to 1 since h,>h,. The 

result is that the Green’s tensor in (3.48) in the layer is given by 

contibutions from two surface integrals 

¢ a“ = ° e a _ (2) e (2) a” 

6, a(z'ox) = G5 aCx'ox) ~ (fag Ca) [z"z5 2" Iag alte 

(1) , 2), + (fa, (x,) [z Eo °k Jmj n4t , (3.50) 

where the symbol terms are 

(p) , op) 
nm, (x_) [z'+X, "lain 

= 2!P (x fee x?) frocx? x") . 
m “~t ij ~ ~ min 

- [re°cx* 2?) ],. 8 oqC20-22| , (3.51) 
mij in ~s 

th for the p surface. 

If for simplicity we again choose both surfaces to be traction free 

then using (3.19) the symbol tezms reduce to 
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(p) | , () os 
no (x) [zx +k Taj 

oP) cx) fre? xt xi?) Gi y(Sgr ez) (3.52) 
nij in‘ ~s 

so that (3.50) reduces to 

G. (x',x") = G. (x',x") 
jn jn '* 

(2) f o, , | (2) _, 

+ [fn ap Pe eee fmagSinlZs 72745 

(1) [ o,, (3) ] (1) _, 
(fos? cx,r fre? cere. > JassSinFs FG (3.53) 

which expresses the value of the field in the waveguide in terms of its 

values on the two surfaces. 

To generate the two coupled integral equations for these surf ace 

values, first let xix, 7). Since this approach is from above the surface 

(z' dh, (x,")) the signum function in the regularized term (A.31) is positive, 

and the result is 

+ (fe, epee 06, (x0?) x" )ax 
ji xs ~Ss in ~s ~ ~t 

_¢f.@) o,_,(2) x) Jes39 (a), 
(fal? ce, [r6 (xt aiSinZs ZR, © 3-54) 

which is a surface integral equation for the two surface values. Note that 

the second integral in (3.54) does not have a singular kernel since hy#hp. 

’ « . 

To fom the second integral equation, let xt). This approach is
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from below the surface (2 <hy (xp) so the signum function in the regularized 

term (A.31) is negative, and the result is 

al) (x1)6 cx) gy 
jp ~t pn~s ~ 

= G. (xt) xm) 
jn ~s ~ 

~ Gf; cas? 6, e anag '~s§ in'*s “t 

(2) o,_,(2) (2) (2) 
+ (fag (x,) [26 (xo ok huis Sin(¥s ox")dz, > (3.55) 

which is our second integral equation for the two surface values. The 

procedure is thus to solve (3.54) and (3.55) for the surface values, and 

then to substitute the results into (3.53) to find the value of the field in 

the waveguide. In addition, if desired, the matrices Q@ can be inverted, and 

the results written in terms of what we called the surface values in Eg. 1. 

Eg. 5. FLAT SURFACE AT ZERO TRACTION 

From example 2 we have from (3.39) the integral equation for the vector 

displacement values on the arbitrary surf ace h(x,). For h=0 we have that 

ry 1 
Qs a Ze) = 7 ein > (3.56) 

and 

K (x',x) OK (xtux.) (3.58) 
ji~s~s ji ~t ~t 

where from (A.32) and (A.29) we get 
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’ = ’ Ke Cee) mi (ee Rog Seeks? 

= ‘ 
R34 Ze Se? 

-2 . T 
=k e - _ 

T [3 552i x,) 5a Et z,)| 

sr 5 [oP ee + 8s Rieree 

(ala + wi arg]. HAD S| Ae Ft 

and from (A.23) and (A.21) we have that 

o(x'-x_) 
i ae Ee F727 OTL 
eee 7 oF (ffx Gre )Ps jk) 

and 

piel 4 1 
P3 43 % (k) = 2i [x,, Ej Epi 55° 5RrPfe| 

2 

* iskiet 5 aki!) . 

(3.59) 

(3.60) 

(3.61) 

The exponential in (3.60) is independent of k, because of the flat surface 

limit and G!L(y) are even functions of k,, so the principal value term in 

(3.61) vanishes because it is an odd function of k,- We have that
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ete) ~ or [flax eg 

. aCe) [8s je + Bskid - (3.62) 

The k, -integral can be evaluated 

fax,@" "G0 = ni/Ky ys (3.63) 

so that we have 

R31 jE -z,) = cz Sake ° St EEE ey! BigKiy) 

(3.64) 

From (A.7) and (A.8) we have that 

Reign) = eke EEE oT Heh hay, (3.65) 
j ~t~t ji * 

where 

poet) = ilk, , + 8 Yn rl|I . (3.66) 

Again we can evaluate the k,-integral since tems odd in k, vanish. The 

result is 

k(x) 
T,L a _ ~1 ~t t ~t ReaD a (fax, © nL (3.67)   

Using (3.64) and (3.67) in (3.59) we get the result 

-~ 151 -
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ik +(x!~ ki Grirg,) 
KI (xt-x,) — (fax, e mo) ck, ; (3.68) 

(2x) J 

where 

(0) _ [ -2 1 7 | 
Mia (ky) = 83k it ky (Ky. kK) x Xe 

+ 8.,k fy? +) -ig*a/a 2 »| (3.69) 
a3"jet*t “rT “L’ 2 L B ° . 

This form appears somewhat unsymmetric. It can be rewritten. The 

coefficient in the first term is 

-2 1 _ a0 _ +? 2 

ky (Ky-Ky) x Ky = (Ky 2K kK, k)/2k Ky ’ (3.70) 

and, using the fact that 

2 2 2 

ACA + 2p) = (ky- 2k, ) sky ’ (3.71) 

the coefficient of the second term is 

-2 1 .-1 _ _ 2 2 

ky (Ky. kK) 7 (A/(A+ 2p)) = (2K, Ky Ki k )/2k Ky , (3.72) 

and (3.69) becomes 

(0) -1 -1 2 2 2 

= - - - 2 ° 73 Mi (x) (8 3k Ky SK SL ) (Ky 2K Ky k)/ ky (3.73) 

The resulting integral equations for the displacement on the surface is from 

(3.39)
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’ — in e (o) 

> u(x y= a (xi) + (faz, Kei (xi- £,)0,(%,) > (3.74) 

which are coupled convolution equations. They can be solved exactly. This 

is done in Sec. 13, after we first discuss the flat surface examples by more 

conventional means in Secs. 4-10. Once they are solved, the displacements 

in the field (i.e. off the surface) follow from (3.38) 

a (zp) = "Gp + [fax, [20° psy) ; (3.75) 
ij 

where the traction operator on the free-space Green’s tensor follows from 

(3.12) 

= G° s ° ’ 

[r6° (x',x oe [eas an G5 jl x) +4 0 5G, (x x) 

+2 5.,2 G sj 2| . (3.76) 
i3°m nj ~'1=0 

- 1423 -
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3.4 POTENTIALS AND PLANE WAVES 

We have been solving for either the Green's tensor G ij or the vector 

displacement 

u(x) = (fe, ;(2-28j(2ax" . (4.1) 
ay 

We now return to expressing this vector displacement in terms of potentials 

proviously mentioned in (1.19)-(1.22). We have that 

u.(x) = oe (x) + w(x) (4.2) 
i~ i-~ i’* 

=@d.p+e,. G.A , (4.3) 
i ijm j m 

The vector displacement has three independent components, and the scalar and 

vector potentials have four. We thus require a constraint on these 

potentials and it is usually written as 

0 A = 0 ’ 
(4.4) 

in analogy to the gauge condition in electromagnetic theory. As we noted in 

(1.25) and (1.27) we have that 

wer T(x) =0, , (4.5) L,T 2 
Au; (x) + kit i i 

and we can thus choose equations on the potentials as
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A g(x) + ky (x) =0 , (4.6) 

and 

2 
A A(x) + ky A (x) = 0 , (4.7) 

nm * m 

Both the potentials thus satisfy Helmholtz equations with the corresponding 

longitudinal and transverse wavenumbers and wave speeds c given by 

CA + 2u)/pi7!? (4.8) 

a u" w/e pr
 u 

and 

kp = ole, twp? . (4.9) 

Q u 

Far enough away from any source, a wave front from that source can be 

(at least locally) approximated as a plane wave. We thus study plane wave 

sollutions of (4.6) and (4.7) given by 

¢(x) = expli ‘. x] = expli ky x ’ (4.10) 

and 

. . 42 
A (x) = a expli k + x) = a_exp(ik x) , (4.11) 

mn ~ n ~ m nm 

where 

L T 
Ik |=, and Iel=k - (4.12) 

In each case the direction of propagation of the wave is xb and x 
  

respectively. The direction of the longitudinal displacement is given by 

the gradient of (4.10), i.e. 

ur(z) = i ky gl) (4.13) 
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propagation of the wave. The displacement of the shear potential is in the 

direction given by the vector a. Because of the gauge condition (4.4) we 

thus have 

x a =0 , (4.14) 
mn m 

orthogonal to the direction of its displacement. We thus have three 

independent potentials, ¢ for P-waves, and A, (with 8 Am) for two 

independent components of shear waves, called SV and SH waves, where the V 

and H notations are referred to as polarizations of the shear waves, again 

in analogy with electromagnetic theory. We thus have to choose these 

potentials to yield three wave shapes. It will turn out that we can choose 

two of them in a plane (but not orthogonal). These are the P and SV waves. 

The third one, the SH-wave, will be orthogonal to this plane. The wave 

number vectors xb and xT indicate the direction of propagation of the waves. 

Their components are the direction cosines. An alternative teminology often 

used in the seismic literature are the slowness vectors, related to the 

wavenumbers vectors as 

L,T aL,T 
8 =k ley . 

The x-component of either of these vectors is the same. It is just the ray 

parameter 

p= sin 8, /e = sin 6,/¢ (4.15) 
L T ° 

For S-waves we choose the propagation direction by choosing the vector
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xT in the x-z plane 

+ wk , (4.16) 

pe
e 

where 4 and are unit vectors along the x and z directions. The vector 

potential is thus 

A(x) = a explikix +i kz) =A (x2) , (4.17) 
n~ m x Zz m 

which is only a function of x and z. The gauge condition (4.4) yields 

a 
ax AG oz 4s = 9 . (4.18) 

For the SV-polarization we assume in addition that the y-component of 

wese, 0A =o -— =O. (4.19) 

The result of (4.18) and (4.19) is that A, andf A, satisfy Cauchy— Riemann 

equations, and thus that A,+iA, is an analytic function of xtiz which is 

analytic everywhere. In addition, for A, expressible as a plane wave, the 

complex function A,+iA, is bounded. Liouville’s theorem states that a 

function which is everywhere analytic and bounded is a constant. Since only 

gradients of A, and A, are used to calculate a physically measurable 

quantity such as displacement, the constant doesn’t matter, and we can 

choose it to be zero. Thus A,=A,=0 and the vector potential has only one 

component
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A= (0,A,0) , (4.20) 

whose divergence vanishes by (4.4). This latter is true if A is not 4a 

function of y. Thus the displacement for SV-waves can be written as 

oe Vee 2) e,, 0.A (x,z) 
i ijm j m 

(2 atx, 0, 2 atx), (4.21) 
z ox 

which has components in x and z directions only. By (4.7) A satisfies the 

differential equation 

A A(x,z) + ke Alx,z) =0 , (4.22) 

nese 

where the Laplacian is only in x and z. Note that we not only have Kl A = 0 

but also that 

r al? SV = 0 , (4.23) 
~ k 

explicitly illustrating that SV shear displacements are orthogonal to the 

propagation direction. 

to SV, i.e. that it has no components in the x-z plane. We can write this 

displacement as 

uy (x2) = (0, v(x,z),0) (4.24) 

which thus only has a y-component. The reason that v is not a function of y 

is that we must have
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(4.25) 

= 0 and again we drop any as we previously noted. This implies dv/dy 

or absorb it into the other functional dependence. In addition 
constant, 

from (4.5) we have that 

(A + kp) v(x, 2) =o . (4.26) 

there is no displacement in the y- For the P-wave, in the x-z plane, 

direction so that 

L,P _ a¢ _ _ 
us = oy" O and ¢ = g(x,z) .« (4.27) 

We thus have that 

(4.28) 
u(x, z) = Ge ¢(x, z), 0, < o(x, z)) ° 

Notice from (4.21), (4.24) and (4.28), P and SV waves decouple from SH 

waves. 

For the Green's tensor we defined the operator T as in (3.11). Dotting 

this with the normal we get the traction 

td = Cd 

a (,) [T6(a-x | 08 Mm (24) 88 55 ae x ) 

+ G (x,x" p n fe 85 mj°z x") 

(4.29) +r2n.(x.)d G (x,x"). 
i~t mmj ~~ 

If we integrate this equation over x” and a vector source S5(x"), we get 

that the Green's function becomes the displacement and we can define the
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(vector) stress as 

Tit ny {k,) [ros |. 

= n (x4) 9 2 5 (x) + wo n(x.) 958 {®) + n(x.) u(x) » (4.30) 

the first term of which is a nommal derivative, and the third term is a 

diver gence. Its three components correspond to normal (i=3=z) and 

tangential (i=1,2=x,y) stresses. (The additional stress components which 

arise by replacing z on the Ihs of (4.30) by x or y only act in the plane, 

and do not act across a boundary either nommally or tangentially.) We can 

explicitly write the displacement as 

T 
u. (x, z) w(x, 2) + u.(x,z) 

i i i 

6 uy (x2) + 6 v(x, z) + 5 343 (xz) , (4.31) 

where, from (4.21) and (4.28) we have that 

ag _ 3A (4.32) u, (x, z) 

and 

a > 

n(x, 2) -#, (4.33) 

oe
 

4 

. 

From (4.30) the stress becomes
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TH a (x4), [85 4%4 (x. 2) + 6 v(x, 2) + 8,44 (x2) | 

+p 1 (x49; [Bag (x2) + & Vix 2) + 8 gts (x2) | 

+2 n ,(z,)2, [6,40 (22) + 5 Vie 2) + 81403 (x2) | . (4.34) 

Since we have discussed plane waves by themselves (i.e. no 

superposition of plane waves) and these are appropriate for planar iterf ace 

problems, we write the stress components for a flat interface (0- 

superscript) where n(x.) = 5,,- These are easily seen to be from (4.34) 

  

° aA aA a7¢ 
Toa = 1}; | + 2h 3raz s (4.35) 

Ox dz 

0 ov 
v2 = Dz ’ 

(4.36) 

and 

0 aga 2 
t3 = nfs + ra - x k¢ e 

(4.37) 

We can further reduce these stresses by quoting the results for the various 

polarizations separately as 

  = m2%-4 a (4.38)
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2 2 2 
_ aA_aA _ _n0A 

v1 | 2 | » T72 * O + T3 = 2u zox °C. (4.39) 
Ox az 

and 

SH-wave 

_ _ _ ov 

These latter three equations are only useful provided the waves do not mix.
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3.5 BOUNDARY CONDITIONS 

At the interface between two elastic media (illustrated in Fig. 3.3 

bel ow) 

(1) Aw Hye Py 

OL 
nt h(x, y) 

(2) AW Hos P, 

Fig. 3.3 

we can have several types of boundary conditions. 

(a) Rigid Contact 

For this case both displacements a; and stresses T2j are continuous. 

That is we have six conditions (j = 1, 2, 3) 

ww) = wa), (5.1) 
js j ~s 

and 

ox) Muy, (5.2) 
zj ~s zj ~s 

where x, = (x,y,h) is a position vector on the surface, and the superscript 

symbols (1) and (2) indicate the displacement or stress in the particular 

region as evaluated on the boundary. 

(b) Free Contact 

For this case the stresses are continuous, but the displacements are 

discontinuous. 

(c) Free Surface 

For this case we have that the stresses vanish on the surface
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ct (x) =0, , (5.3) 
zj ~S J 

and the displacements are not specified. The latter can be easily computed 

for a flat interface and we do so in the next several sections. This 

boundary condition is also called the zero stress or zero traction or 

traction free condition. 

ee eee ee 

For this case, the displacements vanish on the surface, i.e. 

u(x) = 0. . (5.4) 
j ~S J 

The stresses are not specified a priori, but can be computed. 

FLUID-ELASTIC BOUNDARY 

At a fluid-fluid interface we know that we have the continuity of 

pressure and normal velocity. The question is how do we pass from the 

continuity conditions at an elastic-elastic interface to those at a fluid- 

elastic interface. 

(a) Continuity of Normal Velocity 

For an elastic-elastic interface we have continuity of displacements as 

in (5.1). In general the displacement is time dependent, and the time 

derivative of displacement is velocity. Since we have time-harmonic 

problems we can work directly with displacements. In a fluid, the 

tangential displacements are zero, i.e.
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u(x) = u(x) = 0 , (5.5) 
~s 2~s 

and the normal displacements (equivalently normal velocities) are continuous 

wa) = wa). (5.6) 
3 ~s 3 ~s 

(b) Continuity of Pressure 
  

In a fluid the shear modulus vanishes, » = 0. The shear wave speed 

also vanishes, cp = 0, and the Lame’ modulus is expressible in terms of the 

longitudinal (compressional) speed cy, 4s A = pcy, where p is density. We 

have continuity of stress, Eq. (5.2), and in a fluid the stress is using 

(4.30) and p = 0 

c. = An,du . (5.7) 
zj jmm 

In a fluid, the time-derivative of the time-dependent displacement is just 

the velocity, which can be represented as the gradient of the scalar 

velocity potential §, i.e. 

[
>
 

u.(x,t) = 0,4 . (5.8) 

Jj ~ J @
 t 

For harmonic time-dependence exp(-iwt) we have 

u(x) = (i/o) F a(x). (5.9) 

The divergence of this can be written as
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d.u(x) = (i/a)a.8.6(x) = -(i/o)k-d, (5.10) 
Jj” j33 ” e 

where ky = w/cy» and where the latter tezm on the rhs of (5.10) follows 

since § satisfies the acoustic Helmholtz equation. Substituting (5.10) into 

(5.7) using k, and A definitions we get 

t_. = n,(-iwp#) . (5.11) 
ZJ J 

The pressure can be written in terms of the velocity potentials 

Pp = pr = iwpd , (5.12) 

so that, in a fluid, 

v = -n,p . (5.13) 

For a flat interface, aj = 5 js and the stress results are 

prt, OF ty OF By (5.14) 

In general for an arbitrary surface the boundary conditions are 

expressed as the continuity of normal velocity 

Q 
nV; = ae (45%; ’ (5.15) 

the continuity of nomal stress
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(5.16) 

(5.17) 

where L; and vj are orthogonal vectors in the local tangent plane. 

ELECTROMAGNETIC THEORY 
  

As an aside we note that we can recover the results of electromagnetic 

theory from those of elasticity. The equation for dispalcement is (using 

vector analysis notation) from (1.16) 

um Apt (A +4) grad(¥en) + Kp =O . (1.16) 

where A = grad div-curilcurl. From the Maxwell equations on the electric E 

and magnetic At fields 

VxE = ikH 5» YxH = —- ikE , (5.18) 

we derive, by taking the curl of the first equation, an equation on E 

VxVxE-kE = 0, (5.19) 

or



Ch. 3 - Sec. 5 

AR +k E- grad(V-E) = 0 , (5.20) 

If we make the make the formal interchanges 

Bou 3 ko = K/p = ky, (5.21) 

and set A + 2h = 0 (ey 0), then (5.20 is just (1.16). Note that the 

electromagnetic wave number k becomes the transverse (shear) wavenumber ky, 

whereas in the fluid the acoustic wavenumber k, became k,. the longitudinal 

(compressional) wavenumber.
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3.6 P-WAVE INCIDENCE ON A FREE SURFACE 

We noted in Sec. 4 that P and SV waves couple and SH waves decouple 

from these. A flat interface does not alter this property, and here we 

consider P-wave incidence on a free (zero-traction) flat boundary located at 

z = 0. From (5.3) we thus have three boundary conditions 

t = 0 j =1,2,3 , (6.1) 

but from (4.36) the j = 2 condition is automatically satisfied since we have 

no SH waves. From (4.35) and (4.37) we can thus write the two boundary 

conditions as 

  
    ee = 0, (6.2) 
ax az xez 

and 

a" aA 2 
2p [fee ee] a ge = 0 , (6.3) 

Oz 0xdz 

where the potentials g and A are evaluated at z = 0. 

Assume the P-wave has incident (A,,i) and reflected (B,r) plane wave 

components 

¢(x,z) = Alexp facets * - eva] + B exp fiake* + Ka) » (6.4) 

and the SV wave only a reflected component
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A(x,z) = C exp [i (kr *x + 2) ’ (6.5) 

where the wavenumber components satisfy the dispersion relations from (4.6), 

(4.7) and (4.20) 

2 2 + cert)? (6.6) I ~
 (bry? yg (gleiy? 2 (gle?) 

x Zz x 

and 

2 (ket)? 4 cP F)* = ke, (6.7) 
x z 

We have two boundary conditions but three unknown constants A,, B, and C and 

we solve for the ratios R, = B/A, = Rpy p, the reflection coefficient 

(amplitude ratio) for scattering to P-waves with a P-wave incident field, 

and R, = C/A, = Rpysy- the reflection coefficient for scattering from P to 

SV waves. Note these are reflection coefficients for potentials. 

Substituting (6.4) and (6.5) into (6.2) and (6.3) we get the equations 

T,r ik’ *x ix” x ix ty 
a Re -a Re =-a e > (6.8) 
112 4121 12 

and 

T ’ ’ 
ik’ *x ik, * ik *s 

a8, e +a, Rie = aj, e ’ (6.9) 

where
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aay = (al *)? 7 (Kr)? » (6.10) 

a,c 2K RT, (6.11) 
2 x Zz 

T,c ,T,2r 
a. 2p ky kT , (6.12) 

and 

L,xr,2 2 
a. au (x) ) +A ky . (6.13) 

Since we have plane wave incidence, the solution of (6.8) and (6.9) should 

be independent of x. Any point of incidence will do, no preferred value of 

x is possible, or equivalently, the equations must be translationally 

invariant in x. This is true in (6.8) and (6.9) provided 

Lei 1 yber _ ter (6.14) 

The lhs of this equation is true if 

. _ . : 6.1 
k sin o5 k, sin o. ( 5) 

where the angles are defined in Fig. 3.4 later in this section.. The latter 

is true if the angle of incidence and the angle of reflection (of the 

P-wave) are equal, 0); = 9,;- The right hand equality in (6.14) is true 

provided 

ko sin ar = ky sin or , (6.16)
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so that the sin of the angle of the reflected shear wave is 

sin 6, = (k, /ky) sin 85 = (c,/e, ) sin OG . (6.17) 

expressed in terms of the ray parameter (4.15). Using these results the 

equations (6.8) and (6.9) reduce to 

a R-a R =-a ’ (6.18) 
212 4121 12 

and 

a, ik, + a, ik, = “al, ’ (6.19) 

which have the solution 

R, = Rap = ( 12°22 22 22)/A , (6.20) 

and 

R. = Ray sy = -2 a,a,,/A ’ (6.21) 

where 

A = a a_+aa . (6.22) 
12 21 11 22 

Noting that 

Tyr _ Tr | . 
x = ky cos or, 3 KS = ky sin oT. ’ (6.23) 

and 

L,r _ Lr _ : 
ky = kr cos e 3 k = kr sin Sri ’ (6.24) 

we can write the aij coefficients in many ways, viz.



12 

where p is the 

and 

12 

21 

22 

2 2 _ 2 
= ky (cos on sin er.) 

2 _ 2 
= k,(1-2 sin a) 

2 2.2 
= ky (1-2(c,/e, ) sin @ 

Li? 

2 2 2 

= ky (1-2p cy) ’ 

ray parameter from (4.15) and 

2 t sin 8, ,0°8 oi 

2 22/2 

“L 
2 

2 ke Pp c, (1-p 

2 . * 

2u ky sin 67,008 °F 

2 . 2 .,2 1/2 
2 kr (c,/e,) sin 0, j [t-Ceg/eg) sin 0, | 

2.3/2 
2p ke P Cy (1-p' ep) 

3 2 2.1/2 
P Cy (1-p cy) , 

2 

T 
2pk 

2 2 
k, (2n cos O85 + 2) 

2 _ 2 
ky [2m +A) - 2p sin | 

2 2 2 . 2 
kK ple, - 2c, sin 8.) 

2 2 2 2 
pk cy (1-2p cy) . 
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(6.25) 

(6.26) 

(6.27) 

(6.28)
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Using these forms we can write the reflection coefficients in various ways. 

We list two for each 

  

4p?e? (1-p707) 2/7 (1-p207) 2!” - ¢ (1-2p'c.)* 
B t L t L t 

AS ~ Roy p ~ 4 2 ¢4- 2 2y2/2 (4 2 2ya/2 + (1-2 2 252 ’ (6.29) 

PoehirP P% Cpt en eR Oe 

or, using the fact that 

9. = (1-p?o?)*/? os 0. = (1-p2c2)*/? (6.30) cos 85 = Pc s cos OL Pc, ’ . 

we get 

2 ~2 2.2 

. - 4p (cos 8, ;/e,) (cos 8./ep) - (co, - 2p ) (6.31) 

PP ~ 2 
-2 2.2 . ° 

4p (cos 8, ,/e,) (cos 07 /ey) + (cy - 2p ) 

  

Similarly we can derive 

  

  

- 4p 62 (1-p207) 1/7 (1-2p7 0.) 
C T L T 
= = R = , (6.32) 
A P-— SV 2 3 2 2.1/2 22 2 2,2 

o 4p ce, (1-p c,) (1-p a) + c, (1-2p cy) 

or 

-4p(cos 8, ./c Ye. - 2p) 

R = hi tt (6.33) 
P- SV ° ° 

2 -2 2.2 

4p (cos 8, ,/e, (cos 6 fey) + (cy - 2p) 

The conventional representation of this scattering process is 

illustrated in Fig. 3.4.
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Rrr 

  

P Fig. 3.4 
x ky ke feo 

The straight lines indicate the direction of propagation and the arrows 

indicate the direction of displacement of the wave. All the x-components of 

the wave vectors are equal from translational invariance in the x-direction. 

Note that the P-wave displacements 

u. = 0.6 5, (6.34) 

are along the direction of propagation, whereas the SV-wave displacements 

dA + oA 

OF 85592 * ofa ir : e, @A , (6.35) 
J jmp m p 

are orthogonal to the propagation direction. 

As ne Os Pag Pd Os Ps Prat Pog 

(proof) Find the displacements of the SV-wave 

A(x,z) = C exp [i(k?" 7 + a) . 

The z-component of displacement on the z = 0 surface is
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a . lr . «let 
az A(x,0) = ik, C expli k x) . 

Since we are using phasors we have to take the real part of this to get the 

physical displacement 

’ T, 
Re 2 a(x,0) = = x ¥ sin(k x) c . 

ox x x 

The x-component of displacement is 

R [- a Ac 0) | = eT cintk’’*x) € e 5z A(x = x sin(k, x ’ 

which is positive. Thus the z-component of displacement is negative, as we 

have illustrated in the figure. 

Pt Pb PE Pb Pat Od Pd Pad Pad Od ed Pd Ponds Pod 

CONVENTIONS 

As we remarked, the terms Rp.» p and Rp_y sy we have calculated are the 

reflection coefficients for the potentials. What are often quoted are 

reflection coefficients for displacements. There are several possible 

definitions for these. We have that the di splacement for the incident 

P-wave is aje*%, for the scattered P-wave a °°, and for the SV waves given 

by (6.35). The reflection coefficient for the z-component of P-wave 

displacement is
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SC 
RZ _ 9¢ /az _ _8B 
PP agi®yaz Ay 

z=0 

and for the x-component of P-wave displacement 

R= - ago “sax - 
P+ P agi? /ax ° 

z=0 

>|
 

The reflection coefficient for the z-componemt of SV-waves due to P-wave 

incidence is 

  
  

wet peri 

RZ = GA/ox = x Cc = x co = tan Q co 

P— SV agi" /az _ pli A, pli A, Li A, 

z=0 zZ A 

and for the x-component 

wt 

Rx -- dA/adz - __2 Cc tan 0 C 

P- SV in L,i A_ tr A ° 
ag” /ax 2 ky 0 o 

In addition, if one deals with displacement amplitudes which are angle 

independent, the way to find the reflection coefficients is to replace A,, 

B, and C by 

A,r, A, * Bk, B , Cok c , 

which define the reflection coefficients
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k_B 
R = - B 
P- SV KA, ay , 

and 

_ kc cP c R = = — . 

Pp sv KA, r x, 

In addition Aki and Richards (Ref. 3.3) use a convention whereby 

& Cc 

QA’ Rey sv 

presumably because the z-component of displacement of the SV wave on the 

boundary is in the negative z-direction. 

DISPLACEMENTS 

Since we have calculated the reflection coefficients for this zero- 

traction surface it is useful to evaluate the displacements on the boundary 

also. Since v=0, a, =0 identically. The other displacements can be found 

from (4.32) and (4.33) to be 

u(x, 0) = &¢ (x,0) - &* (x,0) , (6.36) 

and 

uj(x0) = 8 (x,0) +4 (x0 . (6.37) 

Substituting (6.4) and (6.5) into (6.36) and (6.37) we get
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ixt? i, 

u(x,0) = iA [ete *ca +B, - wer S| e , (6.38) 
1 ot x Ay Zz A, 

and 

L,i 
ik x 

_ oso: L,i B _ rer Cc x 
aj(x,0) = i A,r aQ- pe ale ; (6.39) 

which can be further evaluated using (6.29), (6.31), (6.32) or (6.33). 

ZEROES OF Rp-» sy 

There is no conversion of P to SV waves when Rp, gy vanishes. From 

(6.32) or (6.33) this can be seem to occur for three cases. The first is 

when p=0 or 8, ;=0, i.e. for normal incidence. The second is when p-1/c, or 

6, 4="/2, i.e. for grazing incidence, and the third is when a2 */4¢,- or 

Oy,=/4. In each case energy is conserved since Rpyp equals -1, -1, and +1 

for the respective cases.
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3.7 SV-WAVE INCIDENCE ON A FREE SURFACE 

The additional coupled case to the problem in Sec. 6 is that of SV-wave 

incidence on a flat, free surface. The scattered field has both P and SV 

components as illustrated in Fig. 3.5. 

  
    

The potentials ¢ and A satisfy the same boundary conditions as (6.2) and 

(6.3) but are here given by 

9(x,z) = B exp |i (ky x + KF) ’ . (7.1) 

which contains only a scattered field, and 

_ wgplei_ _ ,T.i 
A(x,z) = A, exp fick x kD 2) | 

+c exp) i(k? Tx + er) | , (7.2)
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containing both incident (A,) and scattered (C) fields. Substituting these 

results into (6.2) and (6.3) and again using the translational invariance in 

x given by (6.14) we get the set of equations for R,=B/A,=Roy_yp and 

R,=C/A,=Roy-» sy given by 

a R -a R = -a ’ (7.3) 
12 2 421 a2 

a R +a R (7.4) 
212 a3 4 22 

where the 8ij are given by (6.10)-(6.13). Note the fom of the equations 

(7.3) and (7.4) is the same as (6.18) and (6.19) except for the new 

interpretations of R, and R, and the fact that the right hand sides of the 

two equations are different. The latter occurs because the incident wave 

has changed from P in Sec. 6 to SV here. 

The equations have the solutions 

B oy) SV “ (a3833 ~ a ,8,,)/A ’ 
(7.5) 

and 

= 2a a /A , (7.6) 

where A is the same denominator as in Sec. 6, given by (6.22). Using the 

properties of the 8 ij given in (6.25)-(6.28) we get 

  

4p7c2(1-pr0?) 2!” (1-p?o2) 7!” -c (1-2p ¢.)” 
R _ T L T L T (7.7) 
sv> sv 4 2 34 2 22/204 2 23/2 + (1 2 ae ; . 

Pp cp(1-p oy —P Cp c, (1-p ep 

which appears similar to the result in (6.29) but here note that 

are “dete
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2 2 1/3 

(1-p cy) = cos oY , (7.8) 

and 

2 2.3/2 _ 
(1-p cr) = cos On; . (7.9) 

Using these results we can also write (7.7) as 

4p (cos FS 8, [ey - (on - 2p)’ 
  

  

  

R « (7.10) 
SV- SV 2 -2 2.3 

4p (cos 0, -/ep) (eos O7,/e_) + (cy - 2p ) 

We can also write the other reflection coefficient as 

4p c,c (1-p702) */*(41-2p702) 
LT T T 

R = , (7.11) 

SV->P 4p? 3¢4- 2 23/34 2 23/2 + (1-2 2 22 

PCphiP OL P Cy Oph eP Ce 

or as 

4p(cos 9,./c )(c.-2p") 

R = mit (7.12) 
SVP 2 ° 2 -2 2 

4p (cos 6, /ep) (eos 8, /ey) + (cy -~ 2p) 

Note that Roy»p vanishes when 

(a) p=0 (8, = 0 , nommal incidence) 

—-a 

(b) p= cy (O55 =n/2 , grazing incidence) 

and 

(c) p=2/*er* (Op.= n/a), 

and in these cases we get no conversion of SV to P waves. Again also note, 

as in Sec. 6., these are reflection coefficients for the potentials.
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In addition we can also compute the values of displacement on the z=0 

surface from (6.35) and (6.36). These are given by 

ik x 
— . Lr B T,i _ Cc x 

u, (x,0) = 1 A, Kk. A, +k (1 | e , (7.13) 

and 

ik x 
xr B ’ 

u, (x,0) Ss i a, [xt r x, + ra ivy + | e x ° (7.14) 

where k, stands for any of the x components of wave number.
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3.8 SH-WAVE INCIDENCE 
  

We consider the three possible cases of SH-wave incidence on a flat 

boundary. As we have already noted for this type of problem, the SH waves 

decouple from the P-SV waves. The first two cases are illustrated in Fig. 

3.6 below. z 

|», 
ot — 

“~ | ~     “ ~    
  BP X 

Fig. 3.6 

Here the lines indicate the direction of propagation of the waves, and the 

circles with dots (the tips of arrows pointing out from the paper) indicate 

the direction of the displacements of the waves. 

CASE (a): Free Flat Surface 

For this case the displacement is 

vizvz) = Ajexpficetts - a 42] +B explicit + ar") | . (8.2) 
x zZ x z 

written in terms of incident (amplitude A) and reflected (amplitude B) 

waves. For both cases we have that
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(eTeiy? 4 (ated)? Ty? 4 et)? = we, (8.2) 
x z x Z T 

The boundary condition at z=0 is 

dv 
= — = . 8.3 TO LO 0 ( ) 

k = ia sin ®,. = k = x sin 0 > (8.4) 
x i r 

so that the angle of reflection equals the angle of incidence. Further to 

satisfy the boundary condition, we require B/A,=1. 

CASE (b): Rigid Flat Surface 

For this case the displacement is again given by (8.1), and (8.2) is 

satisfied. The boundary condition is now 

v(z,0) = 0 . (8.5) 

Again we get 6;=6, but now B/A,=-1. 

CASE (c): Elastic Interface 

For this case we have a flat surface separating two elastic media, (1), with 

elastic parameters p,, A,» kp,» Ky,» Py» and (2), with parameters p,, A,» 

kro» kp» and p,- Part of this case corresponding to incidence in region
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(1) is illustrated in Fig. 3.7 below. 

Oi 6, 
a | N 

    

    

   

(1) 

(2) 
pe X 

Fig. 3.7 

The angles 95; correspond to scattering from region i to region j. The 

displacements for both regions can be written as 

v, (xz) = A exp|i(ky’ i, - wi.) +B exp [i(k)’ *x + «7 2)| » (8.6) 

and 

v,(x,z) = C exppi(ai x - ry , _, (8.7) 

in terms of incident (i) and reflected (r) fields in region (1), and 

transmitted (t2) field in region (2). We have the dispersion relations 

(eTety? gg (eTety? = CTF)? 4 T)* = key”, (8.8) 
x z x Zz Tz 

and 

(ate t2y? 4 (g Te #2)? = (k )” . (8.9) 

x Zz T2 

The continuity conditions at z=0 in terms of stress and displacement are 

—~ 18 —
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cf) x,0) = oo x,0) (8.10) 
Z2 Z2 

and 

a4 (x,0) = ul?) (x,0) . (8.11) 

Written in terms of v these become respectively 

dv. dv. 

Hy x, Cfe) = wy an (x,0) , (8.12) 

and 

v (x,0) = v_(x,0) . (8.13) 
1 2 

Substituting (8.6) and (8.7) in (8.12), and using the translational 

invariance in x given by 

gle = qiet = wl? t? , (8.14) 

x x x 

which imply 

6 = 0 » k_ sin ® = k_ sin 8 , (8.15) 
i a1 Ta aa T2 12 

(angle of incidence equals angle of reflection, and Snell's Law) yields the 

result 

A-B = aC , (8.16) 

where



Ch. 3 - Sec. 8 

a= ugk yy ne , (8.17) 

with x = K’™ from (8.14). Using the results 

T, t2 _ T,i = 
x = kp, cos eos ’ x ky cos O. , (8.18) 

and the definitions 

ho Bo/u, 3 K = kK » (8.19) 

we can write a, using Snell's Law as 

a= w(K - sin’ 0.) /*/eos eo. (8.20) 

Substituting (8.6) and (8.7) in the second equation, (8.13), yields the 

result 

A+B = C , (8.21) 

where we have used (8.14). Simultaneous solution of (8.16) and (8.21) 

yields two components of our scattering matrix S S,,=B/A,, the reflection ij’ 

coefficient from region (1) to region (1'), and S,,=C/A,» the scattering 

(transmission) coefficient from region (1) to region (2). They are 

cos 8 - u(K> ~ sin 0 y2/? 
ai a1 5 = , (8.22) 

a2 2 a’ 1/2 
cos en + o(K sin ®. 

  

and
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2 cos 8 

S = ** . (8.23) 
12 2 , 2 1/2 

cos 8. + w(K” - sin 8.) 

  

Using Snell's Law these can also be written as 

wn
 it (cos @,, - pK cos 0,,) (cos 6, + uK cos 6, ) ’ (8.24) 

a1 1 

and 

-1 

2 cos 8 feos 6, + HK cos 6.) ’ (8.25) w~
 " 

12 

or, expressing everything in terms of 8,, as 

(1 - K?sin?o)?!” - pK cos 0, 
S = ’ (8.26)   

  

a1 2.2 1/2 
(1 - K sin 6..) + pK cos 8,, 

and 

2(1 - K*sin’o)*/” | 
S = z z aja . (8.27) 
12 (1 - K sin 6,,) + wK cos 8.) 

The other two components of the scattering matrix S,, and S,, 

correspond to incidence from region (2) as illustrated in Fig. 3.8 below. 

A= 6 
~ 

x 

XN 

  

  Fig. 3.8 
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We can find these components from (8.26) and (8.27) using the following 

interchange 

n Op , &k. Ok , ©. 70 , (8.28) 
2 2 2 12 21 

or equivalently 

1 
uoi/p , K > 1/K , 8 738 . (8.29) 

12 2 

Using (8.29) in (8.26) we find S,, given by 

pt (K’ - sin 0 yr! - cos 8 
21 21 

s.. 7 72 , (8.30) 
2 , 2 

np (K” - sin 6.) + cos e.. 

  

and using (8.29) in (8.27) we find 

2 _ 3 1/2 
2p(K - sin 0. 

s. 7 ; ; 73 . (8.31) 

p(K - sin 6) + cos 9 
21 2 

  

1 

By Snell's Law, we have the same set of angles in Figs. (3.7) and (3.8), so 

6,,=0,,- Comparing (8.30) with (8.22) we see that 

Ss = -§ . (8.32) 

Other representations for S,, and S,, can be found by doing this 2@ 1 

interchange in the pairs of equations (8.24) and (8.25), and in (8.22) and 

(8.23). 

—- 70nN —
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3.9 ELASTIC INTERFACE (RIGID CONTACT) 

In Sec. 8, Case (c), we treated the case of an SH-wave incident on & 

flat surface separating two elastic media with different elastic parameters 

and in rigid contact. Here we treat the same geometry for the remaining two 

cases, those of P-wave incidence and SV-wave incidence. 

CASE (a): P-wave Incidence 

The geometry for this case is illustrated in Fig. 3.9 below. 

(1) 

(2) 
  

Fig. 3.9 

  

  
We have a P-wave incident at angle 8;, reflected and transmitted P-waves at 

angles 0, and 6, respectively, and reflected and transmitted SV-waves at 

angles Or, and @7, respectively. Our potentials can be written in Region 1 

4° (x2) = 28x, 2) + goo (x, 2) ’ (9.1) 

where
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in 
P e s 

¢@ (x,z) A, exp |i cect ty - ey +29] , i 

and 

ox, z) B exp |i(ky” "x + Kv 2) | , 

and for the A potential 

aS) (x,2) = C exp[i(k!* + x2) . 

Also in Region 1 the displacement and stress components are written 

z=0 surface as 

  

  

aoe (a) in 

a!) ¢,0) = 29 (2,0) - 9A (2,0) + 26 (x0), 
1 ox oz ox 

sc (2) in 

uf) (x,0) = 2 (x,0) + SA (x,0) + 38 (x0), 

  

  

2,(1) 2,(1) 2 SC 

eM ,0) = p A 2,0) - 24 — (2,0) + 2 24 0) 
za 1 2 

ox dz 0x0z 

2 in 
a9 

+ 2u, dxaz (x, 0) ® 

and 

2 SC 2,(3) 
(1) _ aA 

Ts (x,0) = 2n, o$— (x0) + nan 0} - a, a (0) 

"(x,0) . 
2° in 

+ 2p, Sf (2,0) - a ‘oe 
az 

(9.2) 

(9.3) 

(9.4) 

on the 

(9.5) 

(9.6) 

(9.7) 

(9.8)
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In Region 2 the scalar potentials for the transmitted P and SV waves 

are 

g (2,2) = D exp fi(kyx ~ x72) , (9.9) 

and 

A (x,2) = £ exp |i ar? - x2] . (9.10) 
xz Zz 

Simarly the displacement and stress components expressed in terms of these 

potentials are given by (on the z=0 surface) 

  

(2 a a wl?) (x0) = 9. 9! (x,0) - Fal (xo), (9.11) 

(2) _ @ (2) a (2) 
a (x,0) = oz 9 (x,0) + ax A (x,0) 2 (9.12) 

2 2 

o7)(x,0) = 4 Es A’) (x,0) - 2. scx] 
zi 2 2 2 

Ox dz 

2 

a (2) 
+ 2y, Ox0z p (x,0) . (9.13) 

and 

2 2 

oo) (x,0) = an, fe yo) (x.0) + Se 1,0) 
dz 

- 4, k, go (x,0) (9.14) 

The boundary conditions for two elastic media in rigid contact are the 

continuity of displacements and stresses at the z=0 interface. The 

conditions are given by
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ui?) (x,0) = un?) (x,0) » (9.15) 

wt) (x,0) = uf? (x,0) , (9.16) 

cf (x,0) = c! (2,0), (9.17) 
zi zi 

and 

a) (2,0) = 7) ¢x,0). (9.18) 
Z3 z3 

Substituting (9.5)-(9.8) and (9.11)-(9.14) into (9.15)-(9.18) and writing 

the results in terms of the incident field on the right hand side we get 

(all fields are evaluated at (x,0)) 

SC (1) (2) (2) in ag = iA CC aa‘*’ ag oe ay ae + = x ’ (9.19) 

SC (1) (2) (2) in 
ag aA ag oA _ _ 3 
a2 * Ox oz ax az , (9.20) 

    

aa fea” _ iT 
a 

  
  

2 axdz x? a2? 

2 (2) 2. (2) 2 (2) 2 in 

- a¢ _ aa _ dA 8 a¢ 

7H, dxdz » fe 322 = -2u, 35x307 °° (9.21) 

and 

- 194 -
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2 SC 2, (1) 
a 2 SC aA 

2H, a ay ky # 2H, dxdz 

a (3) 2, (2) 
a 2 (2) aA 

~ 2n, 3 2 + A, KR $ ~ By dxdz 
z 

3? in 2 in 

= -2n, a2 +A, ka ¢ . (9,22) 

Z 

All the z-components of the phases in each of the waves vanish since we 

evaluate at z=0. By translational invariance all the x components of the 

wave numbers are equal. Expressing these in tems of the angles in Fig. 9.1 

we have 

L,i _ : Lr _ . T2 _ . 
ke kia sin 6. ’ xk. = k, Sin Q. s k = kr, sin Ors 

L2 _ : T2 _ : 
ke = k, sia 6. , Kk = kr, sin 872 . (9.23) 

Equating these we get the laws of reflection (8,=6;) for P-waves and 

ky, sin 0;-ky, sin 7, for SV-waves, and the laws of refraction for P-waves 

(ky, sin 0;=kp, sin 6,) and SV-waves (ky, sin O7,=ky, sin O7,). In addition 

we could express all these equal k,~components in terms of the ray 

parameter, i.e. kK,=wp. Further the z~components of wave number can be 

written as 

pei yber og = k coso, , (9.24) 
Zz Zz La La i 

T1 
ko = Kr, = kes cos 874 , (9.25) 

L2 
k = Kr, = k 008 8) , (9.26) 

and



x = Kr, = ky. cos 8F. . 
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(9.27) 

Substituting the wave forms and the above results into (9.19)-(9.22) we get 

the linear equations (Zoeppritz Equations) 

m S tm S +m T +m T 
aa i 12 2 13 #41 14 #2 

+ + + 
m,,5, m,,5, m,,T, mow, 

m S +m S +m T +m T 
32 61 32 2 33 #1 3 2 4 

m,,5, + m,,5, + m,,!, + m,,7, 

in terms of the two components of the 

P 
s = B/AL 5 S, = C/A, . 

, P P 
T, = D/A, » T, = B/A. , 

Po 
1 

Pp, 
2 

Po 
3 

Po 

(9.28) 

(9.29) 

(9.30) 

(9.31) 

scattering and transmission matrices 

(9.32) 

(9.33) 

and the four tems P; related to the incident P-wave field occurring on the 

right hand sides of (9.19)-(9.22). The matrix elements mi; are given by 

ik, ~ik,, 

ik, ik, 

2 2 

~2y,k Ky, p, (Kp,- k,) 

2 2 -2u,Ky,-A, ky, -2u,k Ky, 

~ik 
x 

ik, 

-2u,k Ky, 

2 2 

2n,K 4+ AK 

and the elements for the incident field are 

- 196 - 

~iky, 

-ik 

* (9.34) 
2 2 

ny (k ~ Ky) 

~2p,k Kr, ,
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P —-m -ik 
a aa x 

P, Moa ika 

= = (9.35) 

P, Mea “2p kK 

2 2 
P, “My 2n,K 47 AK . 

Note how the incident field elements are related to the first column of the 

m-matrix, i.e. that column corresponding to the P-waves. 

The solution is found once the inverse of the matrix m is known, i.e. 

s P, 

s P, 
- a (9.36) 

T P 
a 3 

T P, 

The matrix elements of the inverse can be written as 

rey
 

we
 

» 

-1 te"), = 0 la | (9.37) 

where the Dia are the cofactors of the matrix m and A is its determinant. 

For example, the reflection coefficients can be explicitly written as 

4 

S = A ) DP. , (9.38) 

and 

Ag
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(9.39) 

There are thus a total of eight cofactors to evaluate, and the determinant 

can be written in terms of these as 

D » (9.40) A = m OD +m OD +m D + m 
a1 oii 21 21 31 31 41 41 

as an expansion in the first column of m. The specific form of the matrix 

elements in (9.34) enable us to write 

Mia mis ae Mis 

m _ 
moa mia 23 Mia 

n = (9.41) 

mea 32 mss M54 

Mas 42 My; M4 

The cofactors are 

- 198 -
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CASE (b): SV-wave incidence 

The geometry for this case is illustrated in Fig. 3.10. 

() 

(2) 
  

Fig. 3.10 

  

We have an SV-wave incident at angle 9;, reflected and transmitted P-waves 
’ 

at angles 0: and 92 respectively, and reflected and transmitted SV-waves at 

angles 67, and O@7, respectively. We retain much of the notation of CASE 

(a). The potentials in Region 1 are 

96) (x,2) = B exp fick’ "x + Kt) | , (9.50) 

which is the same as the scattered field (9.3). The B amplitude will now 

represent a different reflection coefficient but it is convenient to keep 

the same notation. The A-potential now has incident and scattered parts 

Af) ox,z) = AMM(x,z) + a°@(x, 2) (9.51) 

where 

A*™(x,z) = AY exp fice? ts - xr ty] , (9.52) 

and 

- 200 -
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Ae °(x,z) = C exp [i(k.’ *x + x42 , (9.53) 

the latter of which agrees with (9.4) with the same proviso on the 

reflection coefficient C. 

The displacement and stress components on the z=0 surface are given by 

(2) a) (1 a ,se _ 8 ,in 
au (x,0) = 3x fp ).,0) - da A (x,0) Bz A (x,0) , (9.54) 

(1) _@ (1) a ,sc a in 
a, (x,0) = 32 ¢ (x,0) + 3x A~”(x,0) + ox A’ (x,0)  , (9.55) 

  

(1) a a ys aa) 
Tz, (x0) = ,| 5 AP (0) - SS AP (x0) + 2 Soa wh (x0) ox dz 

2 . 2 . 

+ 1 | Baixo - 2— a*%(x,0) | , (9.56) 
ox dz 

and 

2 

(2) a (4) (0 9) 4 2 
Ts (x,0) = 2n,]| —> ¢ (x,0) + 5 

sc 2 (4) 
1 De Dzdx A (x,0) - 4,54? (x,0) 

2 

a in 
+ 2H, Wad A (x,0) ° (9.57) 

In Region 2 the potentials for the transmitted P- and SV-waves are 

analogous to (9.9) and (9.10) 

9) (2,2) =D expi(kex - x2] ’ (9.58) 

and 

A’) (x, 2) = E exp fick’ - x2) | , (9.59) 

- ont —
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and the displacement and stress components at z=0 given by 

(2) _9 (3) _@d@ (3) 
a, (x,0) ox ¢ (x,0) az A (x,0) ’ (9 .60) 

(2) _ 9 (2) a (2) 
uy (x,0) = oz ¢ (x,0) + res A (x,0) , (9.61) 

2 2 

c7)(x,0) = 4p EE a‘) ¢x,0) - 2 a) (x,0) 
zi 2 2 3 

Ox oz 

(2) (9.62) 

and 

2 2 

(2) _ a (2) a (2) vs (x,0) | a ¢ °(x,0) + ax3e A’ * (x,0)   

  

3 . 
-2 xg!) (x,0) . (9.63) 

2 

analogous to (9.11)~-(9.14). The boundary conditions of continuity of 

displacements and stresses are given by (9.15)-(9.18). Substituting (9.54)- 

(9.57) and (9.60)-(9.63) into these equations and writing the incident field 

on the rhs as in (9.19)-(9.22) we get (all fields evaluated at (x,0)) 

(1) sc (2) (2) in ag’*) aS? ag aa??? saa 
Je te (ox the ~ te ° (9.64) 

(2) sc (2) (2) in a¢g aA” sg _ OA _ _ OA 
dz Ox COB ax x Ct (9.65) 
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1 > ag! ) . a7ase - a7ase 

Hy Oxdz Ba 2 id 

  
  

  
  

  

  

  

0x Oz 

- a7g!?) - 7a?) - g7a'?) __ g7aiB 7 9 7ain 

"3 dxdz Ma ax. az Ma ax az 

(9.66) 

and 

a7g'*) 2 (3) a7ac° 

au, —y OT AK Ot FHL Qxaz 
Oz 

2 (2) 2, (2) 2,in 
ag 2 (2) _ aA __ aA 

we tae 7 zag Ma Beer (9-67) 

Again all the z~components of the phases of the waveforms in these equations 

vanish, and, by translational invariance all the x-components are equal. 

The only difference in the forms from (9.23) is that the incident P-wave 

xh. i component is replaced by 

T,i . 
k kr, sin e. . (9.68) 

Equating this to the appropriate remaining components in (9.23) we get the 

usual laws of reflection and refraction. Substituting the wave forms into 

(9.64) to (9.67) we get the Zoeppritz equations for this problem 

m S$ tm S +m T +m T = V_, (9.69) 
11 3 12 44 413 3 14 #4 1 

m S +m S +m T +m T = V » (9.70) 
24°3 224 23°3 244 2 

m S +m S +m T +m T = V. , (9.71) 
aa°3 32°4 3303 3404 3 

m S +m S +m T +m T = V ; (9.72) 
4273 42°46 43° 3 4a04 4 

in terms of the two components of the scattering and transmission matrices 

Ana
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for the SV-incidence problem 

v _ v S, = B/A, ’ Ss. = C/A, (9.73) 

v _ Vv T, = D/A, ’ T = B/A , (9.74) 

and the four tems V; related to the incident SV-wave field. The matrix 
—a_e Seer ees 

components m;; are the same as those for the P-wave incidence problem and 

are defined in (9.34). The Vj tems replace the Pj tems for the P-wave 

incidence and are given by 

1 ~i key M13 

Vv. -i x. a. 

= (9.75) 

2. 2 im 

Vv. n, (Ka, k,) a3 

V, -2 nk Ka Mo , 

which are related to the second column of the mmatrix in (9.34) 

corresponding to SV-waves. 

The set of equations (9.69)-(9.72) is the same as (9.18)-(9.31) and the 

solution is in terms of m‘* which was previously treated. It is, for the 

reflection coefficients given by 

4 

~1 

S = J , 76 , 7a) OLY, (9.76) 

jra 
and ‘ 

s =a*?\ dv, (9.77) 
4 Z Jj 2 j 

j= 

in analogy with (9.38) and (9.39). In general we have 
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Ss Vv 
3 2 

5, 1 vy, 

= mn (9.78) 

T V; 
3 

T, V, . 

The cofactors are defined in (9.42)-(9.49). 

Note finally that all the reflection and transmission coefficients for 

both P- and SV-wave incidence have the same denominator A defined in (9.40). 

SURFACE DISPLACRMENTS AND STRESSES 

We can easily compute the surface values of the displacements and 

stresses for P- and SV-wave problems using results in this section, and for 

SH-incidence using the results in Sec. 8. 

P-WAVES 

From (9.5)-(9.8) we get (dropping the superscript because of the 

continuity conditions) 

: P 
u,(x,0) = ift, (s,+ 1) - KS, |4, exp(ik,x) . (9.79) 

(x,0) = i P exp(i uj(x,0) = if, (8-1) + 4,8, ]A, explikzs) (9.80) 

(x,0) =  - kk. P Tah = n free, (S, -1)+ (Ky.~ Ks, |g exp (ik, x) » (9.81) 

and 

ann
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2 2 P . 
c_y(x0) = -[(2u, Rr, + ayy) (S,4 DD + 2u,k,Ky,8,]Ap exp(ik x). 

(9.82) 

SV-WAVES 

From (9.54)-(9.57) we get 

u,(x,0) = ilx,s, + Kp, (1 - s,) av exp(ik x) ’ (9.83) 

u,(x,0) = ilk,.s,+ kK +8,)]4 exp(ik x). (9.84) 

tya(t00) = py [-2k 8,4 (Kpy- k,)(8,+ 1) ]Ay explik x), (9.85) 

and 

> > AVY (ik x) t2,(x,0) = -[ue.+ Akp,)8,+ 2n,k Ky, (S,- 1)| 9 exPGGk 2) 

SH-WAVES 

From the results in (8.6) and (8.22) (or (8.24) or (8.26)) 

o (x,0) = wv (x,0) = (14 8__)A8 explik x) (9.87) 
2 ’ , 41 o p x. . . 

and 

ay’?) . H 
tT ,(%-90) = W455 (x,0) = “ik, - SAS exp (ik, x) (9.88) 

  

The result is that each of the displacements and stresses evaluated on 

the surface can be related to its incident plane wave field on the surface 

times factors involving the five plane wave reflection coefficients Sj, 

j=l,...4, and Sy, from (9.32) or (9.38) and (9.39), (9.73) or (9.76) and 

(9.77), and (8.22) or (8.24) or (8.26) respectively. 
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3.10 KLASTIC LAYER — P-WAVE INCIDENCE 

In this section we briefly discuss the problem of P-wave incidence on a 

flat elastic layer, a three region problem. Each of the regions is assumed 

to have different elastic properties. The geometry is illustrated in Fig. 

3.11. | 

| cn 

WE 
| 
| (3) 

| 

  

  

Fig. 3.11 

Region (1) has incident and reflected P-waves (with the angles of incidence 

and reflection equal, and a reflected SV-wave at a relected angle found via 

(6.17). Region (2) has both up-and down-going P~ and SV-waves (or 

equivalently standing waves). Region (3) has down going P- and SV-waves. 

No coupling to SH-waves occurs because of the planar P-wave incidence and 

the flat geometries. 

We thus have eight wave coefficents to solve for, all expressed as a 

ratio with the amplitude of the incident field. They are the reflection 

coefficients: 

an



  
    

  

Region (1): Roy p ’ Roy sy ’ (10.1) 

Region (2): P- , SV- 3s Pt 5 SV+ , (10.2) 

Region (3): P- ;, SV- , (10.3) 

where the + and - symbols refer to up- and down-going waves. There are a 

total of eight continuity conditions. For i=1,3 they are 

a) 5g?) (z=2) . (10.4) 
i i 2 

o(?) = o?? (z=2.) , (10.5) 
zi zi 2 

of) 2 a (an) , (10.6) 
i i 2 

and 

e) 2 gf) (z=2) . (10.7) 
zi zi 2 

In each region, we have the representations 

= 3¢ _ dA 
a ox az’ (10.8) 

_ o¢ 0A 
u xt ax (10.9) 

aA aA a¢ 
va | 2 2 | + 2p dxdz ” (10.10) 

Ox dz 

and 

a¢,aa 2 
tl, = | ae, Ind | Ak, ¢ . (10.11) 

dz 

Again, we are able to retain the potential representation for each of these 
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quantities since we have a planar problem in 2 dimensions, x and 2. 

Applying the boundary conditions we are also able to retain the overall 

coservation of horizontal wave number k,- The translational invariance is 

maintained. We are thus able to write the potential wave shapes in each 

region as 

REGION (1): 

aP exp [i(k x - K.7)| +B exp [i(k + K,.2| » (10.12) 9) (x, 2) 

and 

(2) . A (x, z) Cc expfitk x + K,,2) | ’ (10.13) 

and to apply the boundary conditions we need to find 

v2) (xyz ), a!) (x,2 »), wt (x,z) andt (x,z ) . 
1 2 3 2 zi 1 z3 1 

REGION (2): 

9 ¢x,2) 6_exp]i(k,x - K,.2)| + exp i(k, + Kc, .7)| » (10.14) 

and 

A’) (x, 2) V_exp} i(k, x - K-32) | + V,exp i(k, + K,,2) | » (10.15) 

and to apply the boundary conditions we med to find a, (7) (x,2,), 

us !?) (x,24)> 62) (x, 24) and ef2) (x, 24) at the upper boundary, and 

( ( ul?) (x,2,), ul?) (x,2,), 62) (x, 24) and oh 2) (x,z,) at the lower boundary. 

REGION (3): 

(ey " 12) = 9, expfi(k,x - K, 2) | , (10.16) ? 

and 

A“) (x, 2) A, exfitkx - kp,2)] (10.17)
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and to use the boundary conditions we need 

a (x,2 ), a (x, ), cP (x,2 ) and cx ). 
a 2 3 2 zi 2 z3 2 

Note that in general we will be left with exponentials involving both 

Z, and z2. We can set one interface at zero, but not both. 
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3.11 MULTILAYERS 

In this section we briefly describe the systematics of notation, etc., 

involved in setting up the scattering problem for a planer multilayer 

structure with no variability in the y-direction. We thus maintain the 

decoupling between P-SV-waves and SH-waves. The displacements and stresses 

are written as usual for any layer in terms of ¢g and A potentials as (i = 

    

  
  

1,3) 

-5__ [28 - [ee + 24 a (x, z) ba as ca + 8.415, * ox} °° (11.1) 

and 

2 2 2 

vt .(x,z) = pS, jee eh +2 ss | 
zi it 2 2 dxdz 

Ox dz 

a°¢ 2 7A 

+ 8 - ce z au k? + 2p ‘2 . (11.2) 
dz 

At the mth interface, 2 = Zp» between layers m and mtl, we have the 

continuity conditions 

om ye a Miz) " (11.3) 
1 1 m 

and 

yim) (x,z_) = oo (x,2 ) . (11.4) 
Zi m Zi m 

Also at each interface we have up- and down- going waves from each layer. 

The geometry is illustrated in Fig. 3.12. The potentials can be de compo sed 

Zz 
(m) wo\ ws am > /7 

Zz 

" (m+2) oo “Te rN 

in terms of down- and up- going waves in each layer. In the (mth layer we 

Fig. 3.12   
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can write 

(m) (m)  (m) (m)  (m) 
u ¢ (x,z) =d $4 (x,z) tu ¢ (x,z) , (11.5) 

where aim) is a downward traveling plane wave with amplitude afm) and g(a) 

upward traveling with amplitude u(™, Kor the A-potential we have an 

analogous expression 

a’™ (2,2) = po al (x, 2) eva (xn) (11.6) 

The wave shapes have the general form 

(m) (m) 
*a (x,z) = exp [i(k _x F x 2)| ’ (11.7) 

and 

(m) = : (m) 
‘4 (x,z) = exp i(k x ¥ Ky 2) . (11.8) 

Using these up- and down- going wave representations we can write the 

displacements and stresses in each region in terms of an up- and down- going 

h 
wave decomposition. In the nt region we have 

ay” (x, 2) = al™™ 2) + amd (x, x), (11.9) 

and 

oo (x, 2) = ee, + oom) (2) . (11.10) 
Zi Z1 zZ1 

At z= 2, the displacement continuity condition is 
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™ Wie z,) + aim) cy, z) = aime) (x, z) + uimard) (y, z) ° 

(11.11) 

and the stress continuity is 

~im emt y 2 )+ gima dd cy 
zi m zi Z1 

z) . 
im 

(11.12) 

x,z) + im Die ) 
im zi 

There are various way to rewrite the above equations. One possible way 

is to treat them in analogy with the incident and scattered wave 

interpretation in Secs. 6-9. Here the "“incident’ waves are those whose 

propagation is directed towards the interface, and the “scattered” waves 

those directed away from it. For example, the displacements in (11.11) 

would be written as 

al(M™ OB) (y 7 )- 
n 

almt.d) (y 7 ) = ame (yy )- a™D (yg ) ; i i * . 
(11.13) 

where the "incident" waves are on the rhs, and the “scattered” waves on the 

lhs. An analogous equation can be written for stresses, and from the 

resulting four equations we can write a matrix equation for the unknown 

(here the "scattered”) coefficients in tems of the known ("incident") 

coefficients as 

(m) (m+1) 
u u 

(m) (m+2) 

wim) 10 - my (11.14) 
aim?) qi™ 

pia?) pi™ . 

- 213 -



Ch. 3 - Sec. 11 

in terms of matrices M and N for each interface. These involve the wave 

shapes evaluated on the interface. The x-variability cancels due to 

translational invariance. 

Alternatively the coefficients of the mth region may be known, and it 

is desired to find the coefficients in the next layer. The se can be 

determined from (11.11) and (11.12) in terms of a propagation matrix p(m) 

which “propagates” the coefficients from one layer to the next, viz. 

(ort 2) (m) 
a u 

(mt1) (m) 
0 = pim 0 (11.15) 

(mt?) ae™ 

(m+) (m) 
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3.12 SURFACE WAVES 

In this section we give a brief description of the types of waves which 

can arise at a free surface or a fluid-elastic interface and which in 

general propagate along the interface and decay away from it. The results 

are related to the free surface problems in Secs. 6 and 7. We consider only 

two-dimensional problems. 

(a) FREE SURFACE 

We search for zeroes of the denominator of any of the reflection 

coefficients in Secs. 6 or 7, for example the denominator appearing in 

(6.28). It is convenient to multiply this denominator by (cy ep)" and to 

parameterize the ray parameter in tems of a wave speed as p = -ia/e. This 

Rayleigh denominator then becomes 

; 2 ; 2 21/2 ¢ 2 ; 2413/2 ° 2.23 

R c c cr c c 

and we want solutions of the secular equation 

Dd. =0 (12.2) 

for the unknown wave speed c (or the ray parameter). It turns out that 

there is a real root c = Cp where 

Occ. Co, <e . (12.3) 

At this value of c, the vertical components of wave number Kr and Ky become 
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x = ivy s 

(12.4) 
Ky = iyp - 

where 

2 - _ y= 0 fe, - e | , (12.5) 

and 

2 2f- - tp = 0 cn - cr. , (12.6) 

so that the full time-dependent wave shapes for the potentials in the 

elastic material are 

$(x,2) = 6, expf-r,2] exp|ife,x - ot]] (12.7) 

and 

A(x, z) A, exp (-1_2] exp |i fk, - ot] . (12.8) 

These waves are: 

(a) mnon-dispersive (independent of frequency) since (12.2) is 

independent of frequency 

(b) undamped in the direction of propagation (x) 

(c) damped nomal to the boundary (z) 

(d) a coupled compressional-shear system 

The wave is called a Rayleigh wave. It is schematically illustrated in Fig. 

3.13. The solid lines represent the decay of intensity away from the 

boundary in the positive z-direction. 

z 
ELASTIC SOLID CR 
VACUO —e- x 

Fig. 3.13 
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(b) LIQUID-SOLID INTERFACE 

1. GENERALIZED RAYLEIGH WAVES 

For this case we also have a Rayleigh wave, but in addition energy 

leaks into the liquid, so the Rayleigh wave becomes damped in the direction 

of motion, and is called a generalized Rayleigh wave. The secular equation 

is given by 

2 2 1/2 

De = - [Eerr’e) — F'*h , (12.9) 

. *s lfex//eu} ~ [ex//e] 

where py, and p, are the densities of the liquid and solid respectively, and 

cy is the sound speed in the liquid. Note that as (py/p,) 90, the root 

c cp the Rayleigh root. The root of (12.9) is complex and the wave 

decays as it travels along the surface. If cp, is the real part of the 

velocity then 

ce, €c', ¢ c. ¢ crs (12.10) 

Its decay into the liquid categorizes it as a leaky wave. It also turns out 

that most of the energy in the wave is in the solid, and it is launched at a 

specific angle given by sin 9p, = co /cp:. 

2. STONELEY WAVE 

(12.11) 

called a Stoneley wave. It propagates paralled to the boundary without 
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attenuation along x. It is exponentially damped in both directions away 

from the surface, and doesn’t always exist at a solid-solid interface. For 

Py/p, << 1, most of the energy is in the liquid. 
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3.13 FREE FLAT SURFACE USING INTEGRAL EQUATIONS 

In Secs. 6-8 we studied the scattering from a free flat elastic surface 

using conventional methods involving potentials and plane waves. In 

particular we noted that the P- and SV-waves decoupled from the SH-waves. 

We also calculated in Sec. 3 the coupled integral equations for the 

displacement components for scattering from a free surface which however was 

not flat, but arbitrarily rough. We compute in Sec. 14, using perturbation 

theory, that this roughness induces a coupling between the P-, SV-, and SH- 

waves, i.e. a polarization change occurs in the scattering from a rough 

surface. Our perturbation theory will be about the flat surface Limit of 

the equations in Sec. 3 and we must show that this flat surface limit yields 

the same results for the total displacement on the surface as those found 

conventionally in Secs. 6-8. We begin by solving the convol ution equation 

(3.74) and projecting the results on the x-z plane in order to compare with 

the conventional results (Ref. 3.8). 

Equation (3.74) for the (flat) surface values of displacement on a free 

surface is a convolution equation and can be solved using Fourier 

transforms. Introduce the two-dimensional transform 

’ - ~2 tex? sand e ’ . 

uj (xj) = (20) ff exm(ikt-xp) Tp (kpan (13.1) 

Using (13.1) and (3.68) in (3.74) we get the result 

1/2 3a) = we) — WORDED, (13.2) 
j ~t j ~t ji ~t i-~t 

which can also be written as 

- 21Q0 ~~



mS ’ _ ~in,., [,,¢2 Pap) aap 287 ap . 

Note that the matrix on the lhs of (13.3) has components 

ream?) = |, 0 aul?) 

0 1 2M. uo) 

a6? Mee) 
2M 32 2M 32 1 . 

Define a matrix L as the following inverse 

bay [5,4 + 24, EP) = oa 

which is explicity given by 

(0) (0) (o) (0) 
1-4 Mes MK. 4 ML, M, 

(°) (9) (e) (0) 
L = A +14 Mes Mes 1-4 4, Ms 

uf?) (°) 
~2 MSs -2 M,, 

where the denominator determinant is given by 

aaa ~ awl) yl? — gu le? ho? 

Multiply (13.3) by bj and the result is the solution 

a (ki) = 2 L) jhe a “key, t 

m~t 
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oe, 
-2 M, 

(0) -2 Me 

1 

(13.3) 

(13 .4) 

(13 .5) 

(13.6) 

(13.7) 

(13 .8) 

for the Fourier transform of the total surface field values in terms of the 
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Fourier transform of the incident field. The spatial value is found by 

Fourier transforming (13.8) to yield 

= oo in 

Uy (St) ~ 2ff a (x x,t; (x ax, , 
(13.9) 

where L is the Fourier transfom of (13.6) given by 

ik’ -(x' - x,) 
Pa 1. _ -2 ~t ~t “t ' ’ Etsy 7 ay) = Gm {[e Leake > (13.10) 

with L,; given by (13.6). Since no components of L vanish, . (13.9) 

components are related to all the incident field components. For example, 

an SH-incident component a,” couples to the P-SV components u, and u, Of 

the surface. Equation (13.9) is the limit of arbitrary incidence (a three- 

dimensional plane-wave for example) so all displacement components couple. 

This is not yet the cases we discussed in Secs. 6-8 since we have not 

projected our results onto the x-z plane. We do this now. 

Assume the incident displacement field on the surface is independent of 

y» ice. let 

ws) = wt) . (13.11) 

This now corresponds to the incident fields evaluated on the surface z=0 in 

Secs. 6-8. Here what it means is that we can carry out the y-integration in 

(13.9). That is using (13.10) we get 

. 4 ik’ (x'-x) 

fay Ej(st ~ &) = On) fax: Lay (ky+0) e » (13.12) 

which is independent of y'. Further we note from (3.73) that for k,=0 we 
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have that 

mo (nr0) = MOCK) = 0 , (13.13) 
23 x 32 x 

(¢) t =~ al e 2 - e ri ~ 1? 2 e MOS) (Ke ,0) = kt (ky - QReK) - 2k!°)/2kIRE (13.14) 

and 

(¢) t —_ a (0) ¢ ¢ ? MOO? (ero) = MES? (kt ,0) KE /KL (13.15) 

/3 2 2.1/2 _ 2 2.41 
where here Kr = (ky - k’ ) and Ky = (ky kt ) » and from (13.7) 

A= 1 - 4M (er,0) MOO Cee,0) (13.16) 
13 x 31 x 

The resulting matrix L is given from (13.6) and (13.13) 

1 0 -2m?) (a? ,0) 
-1 

L(ki,0) = A |o A } (13.17) 

-2ns*) (k1 ,0) 0 1 

with A from (13.16). The resulting surface field values can be written 

using (13.9) and (13.12) as 
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dk’ L (ki ,0) e us (ky,0) (13.18) 

4 , e -4 ik;x ~in 

n 
x “nj 

u (x',0) = 
m 

in terms of the Fourier transform of the incident displacement on the 

surface. Now because of the form of the projected value of L in (13.17), 

(13.18) illustrates the fact that the 1- and 3- components of total 

displacement P and SV only couple to the 1- and 3- components of incident 

displacement, and both decouple from the 2~ component (SH) of displacement. 

This corresponds to our examples in Secs. 6-8. 

Note that the cross-coupling between P-SV and SH waves was destroyed by 

projecting onto the y=0 plane (x,z plane). This was accomplished by 

choosing the incident field to be a function of only x and z, with the 

corresponding value of the incident field on the z=0 surface to be only a 

function of x. We must still show however that the results in (13.18) 

reduce to our results in Secs. 6-8. We do two cases, the first for SH waves 

which is easy, and the second for P-wave incidence which is more involved. 

CASE 1 — SH-WAVE INCIDENCE 

From Sec. 8 we know that on the surface z=0 the incident displacement 

is 

ui "(x,0) = aa exp(ik!’ 4x) . (13.19) 
Qo x 

Its Fourier transform is 

T,i 
sito) = an AH ce - kt), (13.20) 

2 x 0 x x 

and the total displacement on the surface is with B=A 
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u(x',0) = v(x',0) = 2 AY exp(ixtrize) . (13.21) 
2 o x 

From the integral equation (13.18) we get that 

u,(x',0) = rox exp(ik'x’) u?™(k’,0) , (13.22) 
2 x x j x 

since L,,=1 from (13.17). Substituting (13.20) in (13.22) we again recover 

(13.21). Thus for SH-wave incidence on a free flat surface (in one 

dimension), the integral equation produces the result found in Sec. 8. 

CASE 2. — P-WAVE INCIDENCE 

From (6.37) the first component of displacement on the surface is given 

by 

ik x 

u,(x,0) = i a, [x(a + B/A,) - K,(c/A,) Je x ’ (13.23) 

where all k, components are equal and where kl TaKy. From (6.30) and (6.32) 

it is possible to write 

B/A, = (L- R)/(L+ R) 5 C/A, = Q/(L+R) , (13.24) 

where 

L = 4p (cos @ ,/e,)(cos Op Jez) (13.25) 

R = (ey - 2p)” , (13.26) 

and 

Q = -4p(cos 8, fe, ley 2p). (13.27) 
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Note the additional symmetry restriction 

Q/2R = ( 2L/Q) (K, /K,) . (13.28) 

From (13.23) we can thus define 

a = kG + B/A,) - K,(C/A,) ° (13.29) 

Using (13.24) it becomes 

a = (28k - @ KL) /(L +R) , (13.30) 
x 

or 

a= (L+ Rn) *|[x,8p’ (cos 8, ,/ez) (cos By, /cy) + 4p Ky (cos @, ,/op) (eq - 2p’) ° 

(13 .31) 

Similarly from (6.38) the third component of displacement on the 

surface is given by 

u,(x,0) = -iA, fr, c ~ B/A,) - k, cia,Je , (13 .32) 

and if we define 

B=K (1 - B/A,) ~k C/A, . (13.33) 

we can write it using (13.24) as 

B= (28 K,- Qk )/(L +B) . (13.34) 

Similarly we can write 
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B - 20K, = (-2L K,- Qk) /(L +R , (13.35) 
L 

or substituting for the numerator from (13.25) and (13.27) 

, 2 2 
B - 2K, = (L + RB) [- K 8p (cos @, ,/e4) feos 0 /ey) 

+ K,Apleos 6, ,/ep)(eq - 2p )] (13.36) 

Dividing (13.36) by (13.31) and using 

k. = sin 8 /ey , Ky = w cos 87 3/¢, 5 K,= w cos aS » (13.37) 

we get 

(Bp - 2K) 4pley - 2p )(sin 8, 4/¢L) - 8p (cos 07, /ey) (cos 9, j/ey) 

  

  

° apo - 2p’) (cos 67 /ep) + 8p (cos 07, /e_) (sin 0, ,/ey) 

(13.38) 

We will use these results to simplify the matrix elements from the integral 

equation approach below. 

fe now compute the values u,(x,0) and u,(x,0) from the inte gral 

equation approach. For P-wave incidence we have that on the surface the 

incident displacement is 

ik x 
in x 

a; (x, 0) i A (kb, KS 5.) e ’ (13.39) 

and its Fourier transform is 
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~in 
a, (k) 0) = dni Ay (ks, - £8 5) d(ki- kr) . (13.40) 

Lj 

Substituting this in (13.18) we have that 

ik x 
= x 

a (x,0) = 2i Ay fits (e,0) - bas (k,1+0) Je ° (13.41) 

Evaluating the matrix elements from (13.17) and defining 

po = MOK 0) , (13.42) 
13 x 

so that from (13.15) 

ue 10) = -0K/ (13.43) 
a3 x’ K Ky , ° 

we get for m=1 

ik x 

u,(2,0) = 2i A (k + 3K,0)(1 + 40°K /K,)"e x, (13.44) 

and for m=3 

a 4 ik x 

u(x,0) = -2i ALK, (1 ~ 2k, 0/K)(1 + 40 K, /Ky)e . (13.45) 

Comparing these results to (13.23) with (13.29) and (13.22) with (13.33) we 

get agreement of the displacement components provided 

a 2 - 
2(k + 25, 5) (1 + 40 K, /E,) = @ >, (13.46) 

and 
3 -1 

2K, (1 - 2k O/E,) (1 + 40 K, /Ky) = gp. (13.47) 

Dividing (13.46) and (13.47) and solving the result for V we get 
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Ky pk ~ OAL 

L x” 1 

We next use the definition of U0 to write it in another form involving a and 

B, and show the comparison of the result with (13.48) is an identity. 

From (13.42) and the definition (13.14) we have 

3.-3 -3 
0 = ~(k/2E C1 - 2k ky - 2K,X kr ») . (13.49) 

Using the definition of the ray parameter we can write Kk, =p*cy” and 

using (13.37) U0 becomes 

_— k. ler - 2p) - 2(cos 0, ./cx) (cos 0, 3/ey) 

aK, 
L (c 

  » (13 . 50) 
. 2p) + 2p- 

where we have divided by eT and added and subtracted a term in the 

denominator. Multiplying numerator and denominator using the identity 

  

  

2 cos 0, /c cos 8 3 
4p. ir tT . Tr 4p , (13.51) 
4p? cos On,/ ey pcp 4p cos 6y,/ey 

we get 

a 3 3 3 

b= - ko cos oo. [= (c,. - 2p ) - 8p cos 67.008 8, ene, | 

2K, por 4pley - 2p ) (cos 67, /¢ep) + 8p (cos O7,/¢y) 

Using p=sin ®, ,/cy in one power of p in the left hand term in the numerator 

of the bracket term, we see that the bracket term is just (13.38). 

Substituting for the remainder of the coefficients in V we get finally 
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e 
(13.53) 

  

This is the expression for 0 directly from the matrix element definition. 

Comparing it to (13.48) from the integral equation we must prove that 

=-1 m1 

(Bk - ak, ) (ak, + BK.) = (fp 2K, a » (13.54) 

is true. Cross multipication of (13.54) yields the relation 

Ka + K,6 = 3K, (ka + Kyp) 

This is easily proved to be an identity by substituting (13.30) for a and 

(13.34) for B. 

We have thus shown that the value of the matrix element U necessary for 

the integral equation to agree with the standard result (13.48) is the same 

as its definition (13.53). The integral equation results are thus the same 

as the standard results for P-wave incidence. 
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3.14 HORIZONTAL VARIABILITY AND POLARIZATION CHANGE 

In Sec. 3 we presented the surface integral equations and field 

representations for displacements a; for the case of a rough surface h. 

These were exact but formal expressions for the coupling of the displacement 

components due to the horizontal variability induced by h. In particular it 

was at least formally illustrated how the incident displacement field 

polarization (i.e. its particular vector value) coupled to all the total 

surface displacement field values, and correspondingly to all the 

displacement values off the surface. We also computed the flat surface 

limit in Sec. 3 and showed in Sec. 13 that this flat surface limit agreed 

with our standard results using potentials in Secs. 6-8. 

In this section we are more explicit. We show how the polarization 

changes for the case of a free surface (Sec. 3, Ex. 2) for a deterministic 

surface h which is small, i.e. in the sense that the problem can be treated 

in a perturbation theory expansion in powers of h. From (3.39) we had the 

integral equation for displacements on the surface given by 

Q; (apa, Ug) = ia y+ ff K, (2) 1z,) ,(z,)dz, (14.2) 

where, from (3.23), we had 

1s (1),_, 
i fz! ) = x 8 ii + Qs (x)) , (14.2) 

where 

(1),_,, _ 1 ' aap =F [ B24 ,Bzi) + MB, ,0 BED) | (14.3) 

is first order in the height h. Further, from (A.32) we had 
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Ky (aged,) = n (x) K ij Zs 2s) ’ (14.4) 

where 

nS _) = os Bott Ee) , (14.5) 

and, from (A.32), 

Kaj (Be) = (20) (ff oxp ik: (x! -x »| Mj dPak (14.6) 

with ®pij defined using (A.29), (A.23) and (A.7) as 

_y-afet., oF _ sh) ob 
mj) = [ ace) Pesce) - Baw PP, | 

1 ~T T ~T T ~L L 

r [5,870 Pha + 88a Piao + 6, Go je | . 

T : : 

Here the Pail terms are defined in (A.21) with Pea defined by (A.21) if ky 

is replaced by k,, and the P; terms defined by (5.18) in Ch. 1 with the 

appropriate wavenumber ky or ky 

We next expand each of the terms in (14.1) to first order in h. We 

have 

uj (xo) = ay (xt ') + n(xt day (x! yoo (14.8) 

in, ., _ ry 62) 
a, (x9) = a; "(zt ) + h(x w’; (xe ) , (14.9) 

and to first order 
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Kj (agedg) = Ky glag-ay) + [ h(x) )-h(x,) ] Bee de) 

- 8 ote ze? K pij 2t -X) (14.10) 

where Kji is defined in (3.59) and 

. = -3 ° ' ; B, (gt-z,) = (2a) (ff ex[ ix Czi-z. | ik My yyan - 42D) 

The terms zeroth-order in h on the right and left hand sides of (14.1) form 

the flat surface limit discussed in Secs. 3 and 13. Equating the first 

order terms, we can write a convolution equation for the quantity 

= a’? W(x) = h(x,) 2 j (x, ») , (14.12) 

which is given by 

1 ’ = ’ ° e zy) = b (zp) + ff Rj isis) apes, - (14.13) 

where the Born term is known and given by 

e = e (2) e - (a) ? in , 

b (xy) h(x)) 5 (x . ar (x) a, (xp) 

1\_ 1. ia 
+ f [ h(x?) h(x.) ] Boyt x,) as (x,)dz, 

in 
- ff, a phx, ) Kay 2 t zt? as (x, dz, . (14.14) 

Equation (14.13) can be solved by Fourier transfom techniques. In fact we 

have already solved the equation since it is the same as (3.74) if we 

replace the incident displacement on the surface by bj: The solution of 

(14.13) is given in analogy with (13.9) as 
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wip = 2 SPE (epa,) dja ax, (14.15) 

where the matrix L is defined in (13.6). To first order the full solution 

of the surface displacement is, using (14.8) and (14.12) 

oft) = ale + WE) (14.16) 

where ui”) is given by (13.9), i.e. the total displacement field at a flat 

surface where we have as yet not projected the incident field onto the x-z 

plane. We explicitly showed how this projection reduced uf?) to the 

standard results for SH-wave incidence in (13.22) and for P-wave incidence 

from (13.44) and (13.45) (with the subsequent proof of an identity.) As we 

remarked, the coupling of all P-, SV-, and SH-waves for this case was due 

solely to the non-planar nature of the incident displacement. The coupling 

in the W; , term however arises both from this non-planar incident 

displacement as well as the height and slope variability of the surface. 

Combining (13.9) and (14.15) we can write to first order approximation in 

surface height that the total displacement field as the surface is 

'y = ~ 1 in uj(e) = 2 (PE, (spay [ via.) + by (zy) | 4s, - (14.17) 

The displacement components off the surface (i.e. at a field point) can be 

evaluated using (14.17) in (3.38). 
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3.15 KIRCHHOFF APPROXIMATION 

For the scalar case, Ch. 2 Sec. 6, we found approximate expressions for 

the surface values of the total (velocity potential) field 9 and its normal 

derivative N in terms of the reflection coefficient R and the incident field 

giD_ These were 

s(x) = (+ Rg Mx) (15.1) 

and 

Ne) = (1 - Be (x ag Me). (15.2) 
~s m~t n ~s 

These were three-dimensional approximations in the sense that the evaluation 

was on a surface h(x,) which was a function of two variables. The incident 

field in general had a component out of the x-z plane. Surface slope terms 

appeared in the normal n,- Also, of course, the reflection coefficient R 

was given for the full transmission problem into another medium with 

different parameters. The results also reduced to the cases where we had 

perfect reflection, R=1 (Neumann boundary condition) and R=-1 (Dirichlet 

boundary condition). Only a single scalar field was incident on the 

surface, and the terms involving the reflection coefficients (1¢R) were 

coordinate-inde pendent. . 

For the elastic case we have three possible incident fields, P, SV, and 

SH, so the factoring out of the incident field becomes a problem. We also 

must use the reflection coefficients for the full transmission problem as in 

Secs. 8 and 9. It is not enough to choose the reflection coefficients for 

the free or perfectly rigid surface since these do not include energy loss 

in the lower medium. In addition there are a total of five reflection 

coefficients to consider, S5. j=1, ...» 4, from Sec. 9 and S,, from Sec. 8. 

We computed the flat surface values of total displacement and stress at the 
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Before discussing the Kirchhoff approximation we consider some remarks: 

1. We have expressed the displacements and stresses in terms of 

potentials », A, and v. All were assumed independent of y, 

and this is why the P and SV potentials decoupled from the SH 

potential. Indeed, this is why we were able to make the 

Cauchy-Riemann argument in Sec. 4 which led to only a single 

component for the vector potential A. The development of 

these potential arguments was fundamentally based not only on 

flat surface but also on two-dimensional (x and z) behavior. 

Nevertheless, we argue in this section that we can maintain 

the specific potential forms to find displacements and 

stresses on the boundary. 

Flat surface arguments also obscure the resulting wave shapes 

evaluated on the surface. If the z-dependent parts of the 

incident and scattered fields are exp(-ikz) and exp (ikz) 

respectively, setting z=0 makes them both equal one. However 

setting z=h makes them complex conjugate pairs (for real K), 

which are different wave shapes. This is actually true even 

in the scalar Kirchhoff approximation and is ignored. Note 

that this doesn’t affect the wave shape of the scattered 

field since it’s an integral over the surface values and is 

an outgoing wave. But its surface approximation arises from 

an incident (incoming) wave shape. 

Factorization of any one of the three incident wave shapes 

also skews the remaining wave shapes, and in general leads to 

overall coordinate dependent reflection coefficients as we 
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show. 

Lowest order (i.e. two-dimensional flat surface) coupling 

occurs between P- SV- and SH-waves if the incident field is 

assumed to have a component out of the x-z plane, or, 

equivalently, if it is a function of y. We discussed This 

in Sec. 13. 

Here we develop the Kirchhoff approximation by retaining the potential 

formalism. The displacements and stresses are defined in terms of the 

potentials g, A, and v as 

and 

zi 

z3 

z3 

  

  

d9 _ aA sk, (15.3) 

Vv» (15.4) 

a9 , oA stor (15.5) 

- yf 2-241 ay oe (15.6) 
"Lax? az? Moxdz " 

_ dv 
= #2 22 ° 

(15.7) 

ag.aa 3 
= 2p Rx —_ | -aAke . (15.8) 

These follow from Sec. 4. 

P-WAVES 

For P-wave incidence the p and A potentials aro found from (9.1)-(9.4). 

Substitute these forms into (15.3), (15.5), and (15.8), evaluate the results 

on the surface, and factor out the incident wave. For example for u, we 

have that 
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_ in sc : 
u, (x)) = ik ¢ (x,) + ik, (z,) - i Ky A(z.) » (15.9) 

which can be written as 

_ 3 sc in in in 
og) = afk, + Rp Cx /e Ma) - Ky Ala) 8 (seas 

: in = ife + Siu) - Kyw s,|9 (z,) > (15.10) 

where 

u = exp (2iK)h) > we oxp [ilk + Ka] > (15.11) 

and S, and S, are the reflection coefficients defined in (9.32). If we 

further write the incident P-wave on the surface as 

P 1 = 9g) = Ap ox(itex - mb] (15.12) 

a (x) = R I ’ (15.13) 

where 

R= if + sy - kw 8], (15.14) 
11 

is the overall spatially dependent reflection coefficient from a P-wave 

incident field to the first component of displacement. We also get that 

u(x) = RB I, (15.15) 
3 °~8§ 34°32 

where 
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R = -ifkya - Su) - kw s,| . (15.16) 
31 

Both displacement terms (15.13) and (15.15) are the first and third 

components of total displacement resulting from an incident P-wave. 

The stress components from (15.6) and (15.8) evaluated on the surface 

can be written as 

T(x) = t (x) = TI » (15.17) 
1 sg zi ~s aa 1 

and 

T(x) = T(E) = TI, (15.18) 

where 

3 2 
TT. n(K,. - ks, wt 2p kr - S 3) > (15.19) 

and 

2 2 
Ty. 7 ~(2pK, + ak, (1 + S 3) - 2pk K,S,W ’ (15.20) 

Here T,, and T,, are the overall traction reflection coefficients which take 

us from an incident P-wave field to the first and third components of 

traction on the surface which are due to the P-wave incidence. 

SV-WAVES 

For SV-wave incidence the » and A potentials are found from (9.50)- 

(9.53). If we define the incident field on the surface as 
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t, = AMa = AY exp[iteys - Ka] 
3 0 

and 

t = exp(2iK hb) ’ 

we can write the results using (15.3), (15.5), (15.6) and (15.8) as 

u(x) = R I , 
1 sg 43003 

u(x) = Rg I, ’ 

T(x) = T 1. , 
1 ~s§ 13 3 

and 

T(x) = T.. IT. , 
a 8 3308 

where 

B,, = afk. - se) + ks s,| 

R,, = ifr ca + St) + Kw s, | ’ 

tT = u(k2 -&')(1 +S t) - 2uk Kw 8S 
as Sté«CR MAS x at H x L we, ? 

and 

32 32 

T. 7 2uk KU - st) - (2pK, + AK) Ss, 

in terms of the reflection coefficients S, and S, defined in (9.73). 

SH- WAVES 

For SH-incidence we define the incident SH-wave evaluated 

surface from (8.6) as 
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(15.21) 

(15.22) 

(15.23) 

(15.24) 

(15.25) 

(15.26) 

(15.27) 

(15.28) 

(15.29) 

(15.30) 

on the



H I, = 4p expfick,x - Kb] (15.31) 

so that the components of displacement and stress are from (15.4) and (15.7) 

written as 

u(x.) = Ro I, » (15.32) 

and 

T (zy) = T,, I, ’ (15.33) 

where 

R = 1+S ¢t , (15.34) 
23 a3 

and 

TS = ~pK,(1 - S.4t) , (15.35) 

written in tems of the reflection coefficient S,, defined by (8.22). 

All these results can be combined in the matrix representations as the 

Kirchhoff approximation for displacements 

u(x) Ro 0 Rs I, 

u(x? . | gs 0 I, (15.36) 

u,(x,) Re 0 R,, 1 

and the Kirchhoff approximation for stresses or tractions 
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1'Z,) Tha 0 Ths ty 

T, (x,) = 0 Th 3 (15.37) 

T, (xy) Tha 0 T I 

An additional version more closely corresponding to the scalar case would 

o
 b=
 

have wew=t=1, in which case the Ri; and Tj; are spatially independent. Note 

also that this version of the Kirchhoff approximation doesn’t couple P- and 

SV-waves to SH-wave on the surface. The field values, however, are coupled 

through the integral relations. 
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APPENDIX 3A, REGULARIZATION OF TG” 

TG is defined by 

° _ ° = ° Poe ° - 

[rs (x 2 m1 6 mma jE x) +4 8 mi mE x) 

+28. 9G. (x’-x) . (A.1) 
ipmnjy ~ * 

G° is defined by 

G_.(x‘’-x) = yj (xt -e) + qk *a,a, [stx'-») ~ o(x'-2) | , (A.2) ° 

nj 

where GIl-L are the scalar free space Green's functions defined by (we choose 

the retarded Green’s functions) 

grel( yz) = exp [i [z'-z|]san| '-x| (A.3) 
~~ oy ky lz ~ x a ° 

From (A.2) we can compute the third term in (A.1) 

pa 
° _ 

aS (x x) F j 1 ; GT(x'-x) + Ka, [-k26"(x'-x) + e’Mx'-2)| 

(A+ 2y)*a G'(x'-x) , (A.4) 

where we have used the differential equation for the free-space Green’ s 

functions and the identity kr = K7/(A+2p). Osing (A.4) and (A.2) in (A.1) 

and the identity kr = K*/p we get 
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0 T 
[rs x'-2)| = (6,.0. + 8 .8,]@ (x'-x) 

pij (54 Pj il 

L 
+ fasca + 2n) ]8; 958 (x'-x) (A.5) 

2 Toe) - pepeee 
+ (2/80 0,2 jlo (x'-x) - G(x x)] 

We have already regularized the first derivative of the free-space 

retarded Green's function in Ch. 1, Sec. 5. Here we are differentiating on 

the source coordinate and we can write for example 

(x'-x) + 1 ggn(z'-z)8 8(x’-x,) (A.6) 
ms ~~ 2 j3 ~t ~t , . 

where 

ik: [z'-2 
T Rj (x'-x) = (2n)” "(fle ha (xP (kak , (A.7) 

and 

2 

Ti. a: Ky 
Pik) = 2ifky, + 843 El . (A.8) 

m1 

where Kr = kr - ky and res) = [k*- rs] . The result for the longitudinal 

Green’s function el requires the replacement ky > k;,. We can thus write 

(A.5) as 
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-F [5,8 (e'-») +8 Ri(x'-z) + 8, 10+ REx) | 
ijp~ ~ pj j~ * ap J ~ 3 

° 
~
~
 

La I »“
 
—
 

G
e
o
m
!
 

0 

+ F sen(z'-2)8(zi-z,) 

[5.4803 + 65°43 + [A/042u)18, 8,5 

+ 2,2,[e'-» - aiz'-2)| . (A.9) 2 
_ 

Thus (A.5) is partially regularized in (A.9). It remains to regularize the 

triple derivative terms. One is sufficient, the other will follow with the 

replacement ky @k,- 

REGULARIZATION OF 8p? ,2,67 

We begin with the Weyl representation 

  Gh(x'-x) = 
dk. ik, -[x’-x iK,.|z’-z | 

nd {lt et Eee] e rl . (A.10) 
{2n)° 

We take the triple derivative 0,9 593 of this. Break it up as 

97193 [? ot + 62721 Pit + 69 IP ie + 85592] = 

at? it Pt * Por? it 855 * 8 ete 8is * 9 it? jt°ps)?e 

+ fee t i2° js + 9548 55535 *aSoP Ds + 5, ;° joys? 

(A.11) 

For the z-derivatives we have 
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ik, |z'-2 | ik, |z'-z| 

e = -i K, sgn(z'-z) e , (A.12) 
Zz T 

iK,,|z'-z | iK,|z'-z| 

a, e T « [2ix,6(2'-2) - Kr] e I 

i |z’-z| 

= 2iK,8(2'-2) - Ke I , (A.13) 

and 

iK,.|z'-z | ik jz'-z| 

a: e T = -2iK,5 '(z'-z) + ik, sgn(z'-z) e T - (A.14) 

It is the z-derivative terms which determine whether or not we have a 

regular or singular representation. For example, (A.12) yields a singular 

result since it contains a single power of Ky- The first term in (A.13) and 

both terms in (A.14) also yield singular results. 

We can thus write the full result as 
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a 8.8.6) (x'-z) 

  

. ff ak, tk* [zi-z ik, |z’-2| 
= ni _t, “t [Fe a )(-ik, .)(-ik,,) e 

K pt it jt 
(2)? 

-— | . 
+ (? 7 it? 5s + 9 ot? jteis + 05 ea]! i)sgn(z'-z) . 

ik.-fx'-x,] i z'-z| 
ni [fore ~t [ze z,] e Ky 

(2n)° ~t 

  

+ ‘. ° [2 pedis * see pedjs tj eBishps]2t OC2'-2) 

an? hh te bead 
(2any’ JJ ~* 

* Poe? i® + 954505553 * 95455585) (-)) . 

  

(2x)? 

+8. 8.58 (-2i) &'(z'’-z) ° 
ps is j? 

ni {fs othe’ [Ee “2,] 

(2an)’ JJ ~* 
  

ik [2-3 } ik, |z’-2| 

+ 655535, 3 i sgn(z'-z) a5 [a kK ° e 

(A.15) 

The first term in (A.15) is not singular and can be integrated up to a 

three-dimensional integral. The second term must be regularized. The third 

and fifth terms have the singularities directly. The fourth term is not 

singular and the sixth term contains singularities which we recover. 
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@0.a G(x'-x) 
p * ~ ij 

ike _- 

1 {[fos . ["-] GP (k) fi Keekiekjel 
(2). 

  

itd ys * eget is * it j coped 

ik + fx'- ik, |z'- . 

| 0 [|e oe Bezel) , b otzy-2y| (2n)? 

+ (-i)sgn(z' ~2) {3 3 

  

8(z'-z) [bis® js? pt + 62° 5sFit * + 6, 52955954 ]o(%E- te? 

ae
 

(Bi js8pe * Spb jsPie * Sash psPae 

(2x) 

  

+8, 8 8 8'(z'-z)8(x'-x_). 
is j3 p3 ~t ~t 

+
 

. 1 
18515545) sgn(z'-z) . 

| m [es go ote Bese) al ly 
(2n)* “eT * 

  

ik, ° [x'-x sat fla gE] au 
(2n)° 

where we have used the relation 

dk e G(x) , (A.17) 

in the fourth term. We also use 
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a 

iK,.|z’-z | ik_(z'-2z)_ K 

sgn(z'-z) Le 1! -1] = 1 les, e 2 ur T | (A.18) 
Zz 

in the second and last terms in (A.16) to get 

G(x '-x) 

ike Go 

1 {fu . E TE ca fi, phyeky 
(20)? 

a 3.3 
pij 

  

is pt jt p? it i ° 

Lh fen PE tof 
1 me 

o. 

5 sen(z z) P52? pe%it + bee et + 6%: ty 2 f5(2t x,) 

+ (2) [552 eae +8, 2 +85 9.,8 

  

+ 

‘_ 

8(2'-2) [6.855254 + 6 a0 jsFitt 5 15959 je] ®(Zt z,) 

[5,.55s9pe + erat: + 55185195) . 

- —t. {{fos oF leet 
(22)? 

+ 8 8'(z'-z) 6(z -z,) 
is 5255s 

*Pas8 saps aay? {| en E Aaaoete[ 

1 3 ' 1 
-F 6555505 ky, sgn(z -z) 8(xi-z,) 

+
 

  

_1, 3 

5 i2°52555 sgn(z’-z) 0 8(xi-z,) . (A.19) 
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Carrying out the differentiations in the regular terms and combining the 

results we get 

T,_,. 08,98 (x'-z) 

: Gar? {|| oP Elta, 

- fixe k; t*it + if. etit 65,7 ekeis * ki ek; t eps]? ie 

  

2 
+ a ra + bo gakit * Boke /Er 

4ni1 
+ i § 5555553 cP le| | 

1 
x sgn(z! ~2) [B 5,8 pt? it mT LeTieT! + & p? Ot 852/82: -X,) 

+
 

8(z'-z) fP;35 jo°p + LILES #888, JOlxety) 

+ 645555555 8'(z'-z) 6(xi-z,) 

58, 25; ° * sgn(z! -2)8(x? te? 
255k r 

= 1 re 2 re x 5i555.555 sgn(z za, B(x) z,) , 
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which can be rewritten as 

aa a.6(x'-x) 

1 ({| df oP E's, GK ; 
(2x)? 

  u 

t
o
f
 

1 1 
+ x sen(z 2) [8 2 oetGt + 6 tA 7 5 395 £25 JO OZE- x) 

- &(2’ ~2) 6; ,6 +8 8, +6; ;° po94t) O'S x,) 
i3 je? pt p> j* dit ~t “Et 

e o— ‘_ + 6545 5,5,55 (z z) (x0 x.) 

i - x §,,5 j»°p , Epsealz’ -2z) 6(xi-z,) 

1 3 
- 7 5555.55 sgn(z ~z)8,5(x5-z,) ° (A.20) 

where the regular part is given by 

T 
Poij (k) = 2i]k ptkittit 

3 

+ (55s oeFit* 8s Foe Fe? cotati 

+ [Pines s¥oe + 5 poyskigt 84 & 3° aX je)*r 

4 1 
+ §45555553 xf] ° (A.21) 

Alternatively we can write (A.20) as the sum of a regular part plus singular 

terms where we can combine several singular tems 
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T e 874958 (x'~x) 

1 oT ,, 

1 
‘| 

+ t— + a $§ 0 = 

2 sgn(z 2) [5,2 a, 6, 8 9; $ 39; aie 653552555 5(x¢ Z,) 

8, .6 9, +8, 3° j2°p 
~ fBi,5 j3 Oot 6599539 :t* i? p3 jt" a, Jats x) 

1 e ¢(. -F r 76, ,6 } bos sgn(z ~2)6(x) z,) , (A.22) 

where the regular part is given by 

ike |x’-x 

eT (x'-z) = — dk e E Te xe! (kb). (A.23) 
pij~ ~ (2m)? ij 

  

As a check, we note that if we set p=i in (A.22) and sum so that we have 

- = ge - a = 

a» a 38 (x'-x) > ppj = x) 8 B(x" x) 

N
i
»
 

i 8, sgn(z'-z)5(x\-x,) ’ (A.24) 

and we use the result 

r T 
1 

Popi 2ifete, .* By aFeP off * Xr 8 Ky Pie - 

ifr, e sft] 

_ ipl 
= ky? ;(k) , (A.25) 
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(where PT(k) was defined in (5.18) of Ch. 1, so that 

3.T 
(gi-z) = kqR,(z'-2) (A.26) 

and we get the regularization of the first derivative of Gl as defined in 

Ch. 1. For example, we could write, using the results in Ch. 1, 

tT, T 
- 2.9 G (x‘-x) 0595? 58 (x‘-x) a; pp (x'-x 

3 T i. -_ en a, [-aqo"(z'-2) - 8(z z)| 

2f 1,7 aif-ta z 8; sgn(2!-2)8(x!-x,)] 
, 1 

(x -x) + x 85s 

- d ,8(x'-z) 

a1 pips) - r. = 7 Ryh (x x) 0 ,8(x x) 

1 3 i + ~ 7 ¥y5;,sealz 2) 5(x) z,) , 

which is the same es (A.24) using (A.26). 

Using (A.22) we can thus write 

059493 [o*¢x*-x) - etz'-2)| 

= 1 [pt rx) - '- 
= [epi ~ Byas 2» 

- + 2-228, 8.8 (n!-2)8(x?-x,) (A.27) F (ky ¥,)5,,6,,8, ,senlz’-2 Ez) . 

where Bey is analogous to (A.23) with GT and Pray replaced by GE and Pe ye 
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The latter follows from (A.21) by replacing Ky by Kp=(kp- K2)3/?, We thus 

have from (A.9) and (A.27) that 

[rs cx'-2) Jay = Kpay 2 ®? 

1 an . 
+ F sgn(z'—z)8(x) x,) 

bs + 8.8,,¢ [WO + w)s,,8,, 

2 32 -—2 
+ 2 (k, -ky) ky 5155085 » (A,28) 

where 

-3 1 = T 1 _ pl 1 E(B) = far sts) - Boas 2) | 

1 Tose Teo 
-F +, ,A0e x) + beat x) 

Loo 
5 LO + y) eit »| . (A.29) 

Using the definitions of k, and ky we can rewrite the singular part of 

(A.28) to yield 

0 

[re (x -s)foaj 7 Ki ij x) 

+ F sea(z'-2)6(x¢-x,) ° 

fost ay8ie * BA HP sa8s 

—2 (CA + w/OdX + 218,.8548 . (A.30) 
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In the integral equation it is (A.30) dotted into the normal vector 

Dy (4) 8p sO p gh (xe) which is important. The result from (A.30) is 

° 1 a (s,) [re tx*-z> 

=K ', + ji x) 

+ F sen(z'-2)8(x!-x,) . 
2 

. (s., - 65,95 ,hlz,) - Fale .8s h(x eo] - (A.31) 

where 

K(x’ ox) = 0 (x )K (x’-x) (A.32) 
j p~t pij 

which is not a function of the difference of coordinates. 
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APPENDIX 3B. DERIVATION OF THE F&ER-SPACE ELASTIC GREEN’S FONCTION 

a. Coordinate-space derivation 

The free-space elastic Green's function satisfies the differential 

equation 

2 0 2 0 

[a G (gz) Jas + K Gij (x,x') a - 6 j8(x-x') ’ (B.1) 

or, explicitly writing the operator A*® (from (1.17)) 

+ wa.aG. + 6" + (A + 1)0,9,5,5 ij 
2,0 

nV; =~ 6,,8(z-z") (B.2) 

where we have suppressed the coordinate dependence. The scalar free-space 

Green’s functions satisfy the equations 

cv + ep)Gh = - Blx-z") (B.3) 

and 

cv + Kn)GT = - Bizz) (B.4) 

where 

k= KE /(K + 2) kee /a (B.5) 

If the divergence term in (B.2) were absent we could solve the equation 

as a scalar equation, so we first solve for it by taking the divergence a; 

of (B.2) to get 
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2 ° 2 0 
(A + 2p) ¥ (8 655) +K (3 6; ;) =- 0, 5(x-z ») , (B.6) 

which can be rewritten as 

2 

k 

Wia.6.) +k(a.6).) = - “a &(x-x’) . (B.7) 
i ij Li ij tei” 

This has the solution 

2 

k 

ac = tac , (B.8) 
i ij gv J 

which follows from (B.3). Hence (B.2) can be rewritten as 

  

vot, + EgSiy = > 8, 8(z-z") - a baat . (B.9) 

From (B.4) we note that 

(? + 4) [+5,,07 } = - 7 8ij82” - (B.10) 

Subtract (B.10) from (B.9) to get 

(Vv? + kr) [si - 25,67] --- , = a 2 ot . (B.11) 

Next rewrite the rhs of (B.11) using 
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-1) , (B.12) 

so that (B.11) becomes 

2 2 

k k 
(vy? + x2) [ s' ~25. GT] = - $aja,o' + 3,00" (B.13) 

T ij ou ij gr ij gc ij 

For the second term on the rhs of (B.13) we substitute from (B.3) 

he = - yor - &(x-x') , (B.14) 

so that (B.13) becomes 

vex?) | o?- 26, 6b +t aach |--4a,a,8tx-x") , (B.15) 
T ij ij nc iJ ge iJ 

whose solution is 

e -is. ge +taach=+ta.a.c! , (B.16) 
ij om ij ij gp? 3243 ce i3 

which is just (2.2) quoted in the text. 

b. Fourier transform-space derivation 
  

The coefficients in (B.2) are constant so we introduce the Fourier 

transform 

Gy, (@) = ff G(x") exp [ ~ia-(x-x') | dx , (B.17) 
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where we use the homogeneity of the Green’s functions. The transform of 

(B.2) is thus 

ya. + (Atw)a,a 6. - KG) =8,. . (B.18) 
ij im mj ij ij 

Again we must first solve for the divergence term so multiply (B.18) by as 

so that the solution for 

g, =a @ (B.19) 

is given by 

&, = [ (A+2p)a -K Is, . (B. 20) 

Substituting (B.20) into the second term on the lLhs of (B.18) yields 

(na’-K’) C5 = bij - (Atp) [ (A+2p)a -K- 9, (B.21) 

This can be written using (B.5) and partial fractions as 

~o -1~T -3 ~L ~T 

G5, (a) = 6550 Gi (a) + a,a,K | G (a) - G (a) | (B.22) 

where 

arta) = (a°-KD (B. 23) 

It is easily seen that the Fourier inverse of (B.22) is just (2.2) in the 

text. 
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APPENDIX 3C. DIFFERENTIAL RELATIONS FOR INHOMOGENEOUS MEDIA 
SS 

In Section 3 we derived differential relations for the Green's 

functions and surface displacements for homogeneous media. We specified the 

resulting integral equations to surfaces and this illustrated the coupling 

of displacement components due to surface variability. Here we derive these 

differential relations for inhomogeneous media and this illustrates the 

coupling of displacement components due to volume variability. We begin 

with the equations of motion of the stress tensor, (1.12), written as 

2 

0.754%) + K u(x) = 0; . (C.1) 

The stress is given by 

t, (x) = pla jk j°k + ayn)? + 08 59 » (C.2) 

where now pp and 2 can be spatially dependent. We define the traction 

operator T as 

ct.. = T,. a ’ (C.3) 

so that it is explicitly given by 

T., = nS, 2 mip . +26..8 (C.4) 

jk jk p 
+ pb, 9 ck Pep’; 

For the scattered displacement components (C.1) can be written using 

(C.3) as 

*a8%(x) =O. (C.5) 
a.T u®°(x) + Ku, 

k jkp p 

The Green's function G for this equation is given by the solution of 
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a (x,x') + K G; rizez) -$, & R . . Ty xp Spr jx8¢B) (C.6) 

where 

R=x-x'; x’ = source position 

and where we have the same operator T, i.e. the same inhomogeneous \ and u 

as in (C.5). 

Next, cross multiply the solutions, i.e. form the quantity 

, sc , sc 

G(x") [ati eps (a) ] - [aytixpSpj'%2 fas” (c.7) 

Substituting in (C.5) and (C.6) as appropriate we can derive the relation 

ae = s¢ sc 

(9) = [64 Trot - Tix 9Sp5)94 | 

ao” sc 

+ (Ty 6 egos? - GT) - (c.8) 

Explicit evaluation of the latter two terms in (C.8) shows that they vanish. 

The result is that if the equations for G and u contain the same A and p» we 

get a pure divergence 

$°(x)8(R - a? aS°(x)8(R) = Typ 8p Be) (c.9) 
, [6,57 ikp” > ikp 

which is our first differential relation. 

To derive the second differential relation we start with the equation 

for the homogeneous Green’s function (2.1) written in terms of the traction 

operator T° 
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o 0 0,30 ae 
OT ip pr * + (K ) Gj riz 2 ) 6, OCB) , (C.10) 

where T° is given by 

0 Qo o 0 

ee ee ee a 
(C.11) 

jkp Yip k exp j jr p 

and we explicitly note that we have a constant background medium, i.¢. where 

wo, A®, and pe are constant. Next, cross multiply the solutions of (C.10) 

and (C.5) to form the quantity 

° ase e 0 sc 

BST ppt) - [iets] a (C.12) 

Substituting the solution forms we get the resoit 

° ° 

uy (x) 6(R) = +f05 oa? uo b'age*, "| 

+ per 

+ (TP. 6° yaar? - (a G° 8°) 
ikp pj ij (Tipp a (C.13) 

Evaluation of the latter three terms in (C.13) yields the second 

differential relation 

n° 9 ° sc 

°(x)8(R) = x |S4jTixpp ~ T1567, )95°| 

hd 
+0 *(p-p” G2 i 

_ a? ® sc sc 
(u-p (8,6; )(0,a; + d,u, ) 

~ ene ea) 20a 6h) (a 08%). (C14) 
j PP 

aft —



In addition to a divergence term which, when integrated, yields surface 

integrals, we also get pure volume terms proportional to the differences 

between the homogeneous (constant background) parameters and _ the 

inhomogeneous ones. 
a 
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