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Ch. 1 - Sec. 1

1. GREEN’'S FUNCTIONS

In this chapter we discuss those properties of scalar Green's functions
which make them useful as sources by themselves and as adjunct elemental
sources in finding field distributions for more complicated problems
involving surfaces and volumes. We begin with the Green’s functions for the
wave equation in n=1,2,3 spatial dimensions and 1 temporal dimension. Using
different boundary conditions we show that in (n,1) dimensions there are
five possible Green's functions and, using their interrelationships, only
three independent omes. Each one has various uses depending on the problem
at hand. Integration over time yields the corresponding Green's functions
for the Helmholtz equation again in n=1,2,3 spatial dimensions. We also
treat separately, and briefly, the causal Greem’s function for the parabolic
wave equation.

Fourier transform representations of these Helmholtz Green’s functions
are often useful, as are additional integral representations formed by
integration over one or two of the Fourier transform variables. This leads
to integral representations associated with the names Weyl, Sommerfeld, and
Weyrich. These are all spectral representations of some kind, the Weyl
representation being a two-dimensional integral over the transverse
wavenumber components, the Sommerfeld representation a one-dimensional
representation over the (radial) transverse wavenumber, and the Weyrich
representation a one—dimensional representation over the vertical wavenumber
component. Both the latter use cylindrical symmetry properties. Plane wave
spectral decompositions are also treated as are their interrelations with
the above representations. An example is discussed of the use of the
representations in the half-plane.

For complicated geometries the most straightforward approach to solving



Ch. 1 - Sec. 1

boundary value problems is to use integral equations. To develop surface
integral equations using Green'’s functions as elemental sources, or their
derivatives as dipole sources, it is necessary to know their analytic
properties. In particular spatial singularities must be treated in such a
way that the resulting integral equations may be solved using classical
techniques. This is <called regularization, and we demonstrate the
regularization of the first and second vector derivatives of the Helmholtz
Green's function.

Finally we discuss the Green's function in one-dimension wusing
conventional methods here generalized to inhomogeneous media. We treat a
general method of finding profiles for which the one-dimensional Helmholtz

equation is solvable in terms of known classical functions.

1.1 GREEN’'S FUNCTION FOR THE WAVE EQUATION

1.1.1  (3,1)-DIMENSIONS

The Green’'s function is defined as

(3,1)

6 (x,x'st,t) (1.1)

in three spatial and one temporal dimensions. It satisfies the wave

equation given by (c is the wave speed)

[V - o0l ] P mxtrten) = -sxnse-t (1.2)

where the Laplacian is defined by



vV-a +a +a . (1.3)
x y z

It is convenient to do many of the manipulations in four-vector notation

x = (f’xo) x, =ct , (1.4)

with the scalar product defined by

>0 space—-like
x+x=x-g-x [=0 1ight-like (1.5)
<0 time-like .

Using this notation the Green’'s function satisfies
(”1) [} — [ —_—
Js (x,x") = 8(x-x') = -B(x-g')8(x,~x}) . (1.6)

where we have defined the d’Alembertian operator

H3 —-2_2 2 2
O-=9-c =v-o, . (1.7)
Since we have 5(10—1;) = ¢ *8(t-t’) we see from (1.2) and (1.6) that our

Green's functions are related by
6 gzt t) = ¢ 607 (x,x) . (1.8)

Since the delta function source temm is a function of the difference
between the space—time source point (x’) and receiver point (x), and the
coefficients of the differential operators in the d'Alembertian are
constants (homogeneous medium), the Green’s function omnly depends

functionally on the difference x-x’'. For convenience we write it as a



function of this difference, and introduce the Fourier transform in the

difference argument
¢ = 2o [fferetinn 8V wa'x (1.9)

with notation (w is circular frequency)

kex = k'x -k x 3 ko = w/c

a'x = ax &, . (1.10)

Apply ing the d’'Alembertian operator to (1.9) we see that (1.6) is satisfied

provided

s w -« - 1SS IET S : (1.11)
We note that the four-dimensional delta function is written as

8(x) = (2n)"j]]]éxp(ik-x)d‘k . (1.12)

Using (1.11) and defining wp=|k| we can write (1.9) as

(s,2) 1 exp(ik*x) 4
G (x) = - dk . (1.13)
(zn)‘ H” (k - mk)(ko+ "’k)

To evaluate (1.13) we must first evaluate the k, integral

© exp(—ikoxo)

dk_ . (1.14)
e E T ey e

I =



To do this we must define how to treat the pole terms at k°=imk in the
integrand. There are two equivalent ways to do this. The first is

(a) Fix the poles — offset the contour

There are five ways to do this illustrated below:

1.2 N3\ 5> R: retarded

Here the integration contour is written as semicircles above

the two poles at imk. It is called the retarded contour for

reasons which will be clear later.

2. ——)—W—A: advanced

Here the integration contour is written as semicirlces below

the two poles at u.

3. —— x| x |—>—P: principal value

Here the poles are evaluated using the Cauchy principal value

definition of the integral.

4. —-)—\x/—)—/x\-)—D: Dy son

Here the integration coantour is written using semicircles,

one below the pole at -w, and one above the pole at +uwy. The
name arises from F. Dyson in his work on quantum field

theory.



5.———"x M x ;9 C: causal

Here the semicircles are reversed from the Dyson contour.

The second method is to:

(b) Fix the contour - offset the poles

For this method we fix the contour along the real k, axis from -«

to », and shift the poles. The above five become

S
1. x X > R: retarded
2. x x > A: advanced
3. X >4 > P: principal value
4, x D: Dyson

r

x

5. x C: causal

P

x

Each method makes clear that we will treat (1.14) as an integral im the
complex plane. We use method (b), i.e. we shift the poles by an amount is

and consider the results in the limit as &> 0. That is we shift them into



the imaginary part of the complex ko, plane. We thus have

(ko— mk)(k°+ wk) —)[ko— (mk+ iae)][k°+ w - iBe] , (1.15)

where a,B=1, 0 depending on the shift. For the five cases we have that

C: a=1,p=-1 ., (1.16)

To evaluate the poles, use the Dirac-Plemelj relations for distributions (we

assume the limit g—> 0)

1

1
= P id .
-;—1_—1? y ¥ nm (Y)

(1.17)

That is, we express the poles at y * ie in temms of principal value (P)
distributions and half-residue terms from the semicircles. (Ref. 1.4, p.

476.) We thus have for one pole

1 1
= =P + ani 6(k - v ) , (1.18)
k [mk + iae]' k,— g o 'k
and for the product of two poles
1

(k- o, - iae) (ko+ o - iBg)

= P 1 + i a 8(k - w ) - p 8(k + ) (1.19)
3 2 20 [ 0 k 0 k ] . °
ko - wk k



e 1 — DE€C, L

Substituting (1.19) into (1.13) we can thus write all of our examples in

terms of two integrals as

63 (x) = -(21:)"'[11(:) + (ni/2) [a I (x,-x,) - B I,(i"o)]] » (1.20)

where the integrals are defimed by
1,00 = pff[f sRikx) 4
h § 2 2
k ~w
° k

and

exp[l(k-x tox )] "

sy = ff

“x

(1.21)

(1.22)

To evaluate I, nse the following distributional relation

P-%-= - ;-J; exp(iat) TET da ,

which can be easily proved as follows

-0 [

= (-]
e—0
]
= lim i + i
e—~>0 T + ie T - is
. 1

where the latter step follows from the relations (1.17).

I exp(iazt) 1%T da = I exp(iat)da - I exp(iat)da

lim I exp[ialt + iel]da - I expf[ialt - ie]]da]

(1.23)

I, can thus be



written as

I(x) =~ %-lha 1%T IIII exp(-iak-k + ik-x)d'x .

(1.24)

Completing the square in the four—dimensional integral and introducing the

change of variables

K =k - (2a) x
and the integrals

©

I dp exp(?iapz) = [ﬂ/(iia)JI/’ ,

we can evaluvate the four-dimensional integral to get
I (x) = (ﬂ3/2)jha a exp[ii-x(4a)_1] .
The further change of variables a=(4a)™' then yields
I(x) = -4n° 8(x))
which can also be written as
I(x) = -4n’(2r)"[s(r + x,) + 8(r - xo)] .
The latter follows from the gemeral distributional result

8(f(x)) = % 8(x - xi)/lf'(xi)l
i

where f(xi)=o,

We evaluate I, using spherical coordinates with

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)



dx = wz

e doy d(cos 6)dg

kex = w, T cos 6 r = |

The angular integrals are straightforward, and we get

(1.31)

Iz(f’xo) = (2n/ir)l; [exp[imk(xo + r)] - exp[iwk(xo- r)]]dwk . (1.32)

Introduce a small convergence factor

I (x,x ) = (2n/ir) 1lim exp[iv, (x_+ r + ie)
3'~"" e 0 ]; [ [ ko ]
- exp[imk(xo— r+ ie)]]dmk
. 1 _ 1
= (2n/x) 1:?0[ x,tr+ ie x, - r+ ie ] .

If we use (1.17) and combine the tems we get

2
I(x,x) =dnpl_ 4201
a'~""o 22 T

By substituting -x, for x, and rewriting we get that

1,(x.7x,) = [1,0x)]

3
2% i
T

4n P-l- -
3
X

[S(xo- r) - 8(x°+ r)] .

[S(xo— r) - 8(x°+ r)]

(1.33)

(1.34)

(1.35)

We thus have all the necessary integrals from (1.29), (1.34) and (1.35) and

can evaluate our Green’'s functions from (1.20). The results are:

- 10 -



Eg. 1. RETARDED GREEN’S FUNCTION (a=p=-1)

G;”l)(x) = (4no) ™" Blx - 1) . (1.36)

This result means that after a time t, a pulse in three-dimensions is

concentrated on the surface of a sphere of radius r=xo,=ct (i.e. it is an

outgoing spherical wave). Also we note that since
8(x - r) = 8lct - 1) = ¢t st - t/e)
we have that following (1.8)
O e I A A S I

In addition this is called a retarded Green's function since any field u can

be expressed as an integral over a source function f as

u(x) = uw(x,x)) = Ilfdg'lax; G;"l)(x-x')f(f'.xo) .

Substituting the Green's function from (1.36) and evaluating the x;

integration yields
u(x) = III&;'(4nr)-1 f(x',x,— ) ,

where r=|;—5'|. The latter is an integral over a source function f

evaluated at a retarded time.

- 11 -



~are & Mwwve =

Bg. 2. ADVANCED GREEN’'S FUNCTION (a=p=1)

We have that

G;”I)(x) = (4n)™* 8(x, + 1) (1.37)

This is an incoming spherical pulse concentrated on a sphere of radius r=-
ct. Thus for a real pulse it must exist for negative times. It is called
an advanced Green’s function since any field can be written as the spatial
integral over a source function f evaluated at an advanced time x +r in

analogy to the previous discussion.

Bg. 3. PRINCIPAL VALUE GREEN’S FUNCTION (a=p=0)

From (1.20) this is directly related to I, so that
68N = (w7 st : (1.38) -

We also note that it can be writtem as a linear combination of (1.36) and

(1.37)

6 0 = 3 [ol P 0+ 6] (1.39)
so that another representation is

G;"l)(x) = (8nr)—1[6(xo— r) + 8(x + r)] , (1.40)

)

which also follows from (1.29) and (1.30). In a sense it is a standing wave

Green's function since it balances both incoming and outgoing wave Green's

functions.

_12_



Eg. 4. DYSON GREEN’S FUNCTION (a=-1, B=1)

By relating the I, integral to the principal value term (1.38) we get

that
6V =6V + Lpl (1.41)
D P 4n x

Eg. 5. CAUSAL GREEN'S FUNCTION (a=1, p=-1)

This is just the complex conjugate of the Dyson function

(1.42)

2

(3,2) _ al3,1) _ i 1
GC (x) = GP (x) P = -
4n x

Finally we can easily conclude either from the explicit forms of the

five functions (1.36), (1.37), (1.38), (1.41) and (1.42) or from the

definitions (1.16) and (1.20) that we have the relations

Gl(,s'i)(x) =_;_ [Gl(;'l)(x) + G‘(:'l)(x)] )

and

6V =3 68V @ v 6l V] (1.43)

so that only three of the five functions are linearly independent. In

addition we also note that the difference of amy two of these Green's

for example

functions is a solution of the homogeneous equation, i.e.

(3,1) _ g(2,2) (1.44)

g8 = G A

satisfies
(1.45)

- 13 -



1.1.2  (2,1)-DINENSIONS

Here we compute the Green’s functions in two spatial and one temporal
dimension. We do this by identifying one spatial coordinate and integrating
the (3,1) Green’'s functions over this coordinate. We choose the z-direction

as our direction of integration and write the radius r as

[p’+ (z - z')’lllz : (1.46)

2]
"

where

p-p' 1 g=I(xy) ., (1.47)

1 4a-}
n

will be the remaining two-dimensional vector. The Green’s functions we

define all satisfy the equation
(@ + 0. - ¢ 0} 6> (p,v) = -s(v)B(R) . (1.48)

Eg. 1. RETARDED GREEN’S FUNCTION

We define Gé"l) as the spatial integral over Gé"l) given by (1.36)

’ -
where r=|x-x'| and v=x,-x,. It is

6{** e, = !; 68" (x,xnaz (1.49)
_ 1 ® 8(r - ©) ,
- ?E'j, 2 4 .

We define

- 14 ~



so that

{=12-z al = -dz’
r3=P3+t_3

at/r = ar/t

dr(rz— Pz)_llz ,

<o

(2,1)
6g (P,7)

° (rz_ Pz):./z

and, evaluating the 8—functjomn, we get

This illustrates the fact that,

1 6(x - P)
77'(72_ Pz)1/z

(3,1) =
6g (B,z) =

1 I 6§(r - t)dr
n

in two dimensions,

(1.50)

(1.51)

the effect of an impulse

after a (scaled) time t has elapsed has spread over a region of spatial

extent P<{x.

given point has a tail.

A line source in three dimensions produces a field which at any

We can analogously define the other Green'’s functions as integrals over

the corresponding (3,1) dimensional Green’s functions.

(1.41) and (1.42) we get

Ex. 2.

ADVANCED GREEN’S FUNCTION

(2,12) _ 1 o(-<-P)
Sa (B.,%) = 73'(12_Pz)1/z

_15_

From (1.37), (1.40),

(1.52)



Eg. 3. PRINCIPAL VALUE GREEN’S FUNCTION

Gl(,z,l)(g.t) = %’T < 13 1/3 [o(-c—P) + 9("7—P)] . (1-53)
(z"-P")
Eg. 4. DYSON GREEN’'S FUNCTION
6(301)(P'.‘) = G(z'l)(P’t) + Lo(ili.lz_ . (1.54)
D ~ P ~ 4n [Pz""tz]z/z

and finally

Eg. 5. CAUSAL GREEN’S FONCTION

(201) = (391) - _i-e(P' T )
GC (P,<) GP (P, %) P T;;:{;{;7; . (1.55)

1.1.3 (1,1)-DIMENSIONS

The Green’s function in one spatial and one temporal dimension is

defined as

e“""(g,e) E=x-x' 3 ©=x-x =oclt-t') , (1.56)
and satisfies the equation

@2 - 02 6 (g,0) = -8(2) 8(r) . (1.57)

We can compute the five Green’s functions either by integrating over the y—

coordinate results G(z'l)(g.t) from Sec. 1.1.2, or by using pole shifting
and complex integration techniques as we used im Sec. 1.1.1. We choose the

latter. Introduce the Fourier transform

- 16 -



6(1'1)(§.t) = (2n)-zjj;xP[i(kx§ - kot)la(l’l)(kX’ko)dkxdk° '(1.58)

and apply the differential operator in (1.57) to it. We can thus solve for

the Fourier transform and write (1.58) as

(2 exp(-ik <)

G '1)(.‘:.‘5) = —(Zﬂ)'zjexp(xk &)dk I_-T)-_ dv . (1.59)
k
° x

Shift the poles of the integrand as in Sec. 1.1.1. That is we have that

1 1
i) EFTEY ~ E-k - iae)(EF k- ife)
[ b 4 o x o x ] b 4

=P 21 3
ko~ k_

+ ni
2k
X

lask,- x) - poek,+ k)] o (1.60)
where we have used (1.,17). The result for (1.59) is

6(1'1)(§.r) = -(2n)_’[11(§,t) + (niIZ)[a I,(&-t) -B Iz(ﬁ.t)]] , (1.61)
in analogy to (1.20) where here

of]

exp[i(k E-k t)]

1, (¢,7) ak_dx, (1.62)

and

» exp[ikx(c + 1:)] "
k x °

——QD x

(1.63)

Iz(g.t)

_17_



The values a and B are given by (1.16).

The integrals can be easily evaluated wusing complex variable

techniques. The results are

I (&%) = —(n°/2) sgn tlsgn(f + ©) - sgn(E - V] , (1.64)
or
2
I,(¢,%) = -n [8(x - |&] + 8(= - |EP] (1.65)
and
Iz(t.t) = ni sgn(E + ) . (1.66)

We combine these results using (1.64)-(1.66) and (1.16) in (1.61) to get the

results:

Eg. 1. RETARDED GREEN’S FUNCTION

(1,1) 1
G " &%) =50 - | - (1.67)

Bg. 2. ADVANCED GREEN'S FUNCTION

(
6, (z,) = 3o - g . (1.68)

Eg. 3. PRINCIPAL VALUE GREEN’'S FUNCTION

6" (2,0 = 180z - Je + 0(— - |5 . (1.69)

- 18 -



Bg. 4. DYSON GREEN’S FUNCTION

el‘)"*’(g.c) =- 7 [O(t)sgn(t—t) + e(—r)sgn(§+r>] . (1.70)

and

Bg. 5. CAUSAL GREENS FUNCTION

Gél’l)(t.t) =%— [9(1:)sgn(§+1:) + 9(-‘088!1(5“")] . (1.711)
Other compact values can also be derived, for example

(1,1) 1

Gy (&,°) = -7 sgn[§ - I‘rl] , (1.72)
and

(2, 1
6¢" (€, = senfe + 1<) - (1.73)

-19 -



1.2 GREEN’S FUNCTIONS FOR THE HELMHOLTZ EQUATION

1.2.1 (3)-DIMENSIONS

We can define the Green's functions for the Helmholtz equation as the
temporal Fourier transform of the Green’'s functions for the wave equation

derived in Sec. 1. Using the four—-dimensional fomulation we have

6z = [ 6P xn emplixmar (2.1)

where 1:=x°-x;. They satisfy the Helmholtz equation given by the same

Fourier transform operating on (1.6). It is
o+ ey = sx-xn (2.2)

where k =w/c and w is circular frequency. We compute each of the Green's

functions corresponding to the pole shifts in Sec. 1.

Eg. 1. RETARDED GREEN’S FUNCTION

From (1.36) we have that for a difference of arguments (r=|g—x'|)
68V x) = 6" x -2 = ) Tste -0 . (2.3)
Substitute this in (2.1) to get
68 (. x) = (n) explirgn) (2.4)

which is an outgoing spherical wave, i.e. for harmonic time dependence
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exp(-iwt) = exp(—ikoxo) ’ (2.5)

the wave travels in a positive radial direction and satisfies an outgoing

radiation condition of the form

1lim d _ . (3) _ -2
rém [a—i- 1k°] GR = 0(1' ) . (206)

It expresses the field at the receiver point x due to a point source located

at g’ in a homogeneous medium,

Eg. 2. ADVANCED GREEN'S FUNCTION

From (1.37) we have that
6V x,x) = Gno) stz + 1) (2.7)
which when substituted into (2.1) yields

G;s)(i,sv) = (41!1')—1 exp(-ikor) . '(2.8)

For harmonic time dependence this is an incoming radial wave satisfying the

radiation condition

lim 3 (3) _ -3
r—)w[.5;-+ ik°] GA = 0(cr ) . (2.9)
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Cile 4 — DOCCes &

Eg. 3. PRINCIPAL VALUE GREEN'S FUNCTION

This can be computed either directly from (1.40) using a difference of
argoments or from (1.39) represented here as half the sum of (2.3) and

(2.8). The result is
G;’)(g.g') = (4no)? cos(k r) , (2.10)

which for harmonic time dependence represents a standing wave. Note also
that in contrast to the retarded and advanced functions, the principal value

Green's function is real.

Eg. 4. DYSON AND CAUSAL GREEN’S FUNCTIONS

From (1.41) and (1.42) we have that

6% (x,x) = G(”l)(x.x’) + 2 p ! . (2.11)

D, C P 4n’ (x - x')z

We substitute this into (2.1) and use (2.10) for the evaluation of the
principal value term. The remaining integral can be evaluated using residue

calculus methods. The result is
() 5.x") = “*leos(k r) * i (2.12)
GD, c(ln‘ ) = (4nr) cosik r) = i sgn (ko) s1n(kor) ’ .

which can be rewritten as

6'*) (x,x") k >0
R ~~ °
G;’)(f’f') =
6¢*) (x,x") k<0 , (2.13)
A ~ ~ °

and
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6" (x.x") k, >0
G(C’)(E.z') =
(3) ]
Gy’ (x,x") k<0 . (2.14)

Because the Dyson and Causal Green’s functions mix representations and do
not satisfy either a well-defined radiation condition or a standing wave
interpretation except for positive or negative frequency separately, they
are not useful for our purposes. In addition negative frequency results are
usually folded into positive frequency omnes in applications, and neither the
Dyson or Causal functions yield new results over and above those found from
the retarded, advanced, and principal value functions. We do not compute

them for (2) and (1) dimensionms.

1.2.2 (2)-DIMNENSIONS

The two-dimensional Helmholtz Green's functions are the temporal
Fourier transforms of the Green's functions for the two—dimensional wave
equation in Sec. 1.1.2., They are defined as

(2,1)

G(’)(g.g') = I G (P,t) explik v)dT , (2.15)

and satisfy the Helmholtz equation given by the corresponding transfomm of

(1.48) which becomes

(3)

(82 + a; + kD6 (gp') = -Blx -x")bly - y') . (2.16)
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vare - v we =

Bg. 1. RETARDED GREEN’'S FUNCTION

For this case we substitute (1.51) in (2.15) to get

o exp(ik <)
6 (poeh = I ey e LI (2.17)
P (" -P7)

If we make the substitution
t = P cosh¢ : dv = P sinhg d¢ .
the integral becomes

Gé’)(g.g') = %7‘-[ exp(ik Pcoshg)dg (2.18)

-0

written from -« to = since the imtegrand is an even function of 9. The

integral (2.18) is a representation of the Hankel function
() _ i gpl(2)
GR (p.p') = ?-Ho (koP) ’ (2.19)
which is an outgoing cylindrical wave, i.e. asymptotically
(2) . 1/3 .
B (kP) ~ (2/n1k°P) exp(xkoP) . (2.20)

which spreads like a cylindrical wave with amplitude factor /3,

Eg. 2. ADVANCED GREEN’S FUNCTION

Substitute (1.52) into (2.15). The integration can be performed as
above with an additional sign change in tv. The result is the incoming

Hankel function

- 24 -



(2) oo i op(2)
GA (p.P ) = T Bo (kOP) » (2.21)

which represents a cylindrical wave propagating in the direction of

decreasing r.

Eg. 3. PRINCIPAL VALUE GREEN’S FUNCTION

This can be computed either directly by substituting (1.53) in (2.15)
or as half the sum of (2.19) and (2.21). The result is
(3) o1
6 (p.,p') = z—No(koP) ’ (2.22)

P

where N, is the Neumann function.

1.2.3  (1)-DIMENSION

We define the one—-dimensional Helmholtz Green's function as the
temporal Fourier transform of the one—dimensional Green's functions for the

wave equation in Sec. 1.1.3. It is

6 (x,x") = I 6(1'1)(§.t)exp(ikot)dt , (2,23)

where E=x-x’'. Fourier transformation of the differential equation (1.57)

yields the ordinary differential equation

2

[ d _ . ] 6 (x,x*) = - 8(x-x') ., (2.24)
2 ]

dx

which is the ome-dimensional version of the Helmholtz equation satisfied by

all the one-dimensional Green's functions below.
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Eg. 1. RETARDED GREEN’'S FUNCTION

Substitute (1.67) in (2.23). Evaluation of the step function yields

Gl(;)(x.x') = % ‘[| lexp(ikot)dt . (2.25)
<

Recall that this Green’s function for the wave equation was computed with k,
shifted to k, . We can then directly evaluvate the imtegral in (2.25) since

the contribution at o vanishes. The result is
(2 -
GR )(xpx') = -(Ziko) * exp(ik° lx—x'l) » (2.26)

which is a one—dimensional wave which travels to the right.

Eg. 2. ADVANCED GREEN'S FUNCTION

Substitute (1.69) in (2.23). The integral evaluation proceeds in the
same manner as the previous example except that here we note that the
advanced Green’s function is computed with k, shifted to k,_. The result is

2 (xx0) = ik Texpl-ik, lxt ) (2.27)

which for harmonic time dependence is a one—dimensional wave travelling to

the left.

Eg. 3. PRINCIPAL VALUE GREEN'S FUNCTION

This can be computed either directly from (1.69) or by combining half

the sum of (2.26) and (2.27) to give
G;l)(x.x') = -(4k°)_1 sin(k°|x—x'|) , (2.28)

which represents a standing wave.
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Chc 1 - Sec~ 3

1.3 CAUSAL PARABOLIC GREEN’S FUNCTION

The causal Green's function which satisfies the parabolic wave equation
V2 slx.x'st,t)) - 2y 9B = —g(x-x")8(t-t') (3.1)
x ~ ~ ’ -5{ ~ ~

which contains only the first derivative im time and where y is a comnstant
can be computed as follows. Causality means that there is no measurable
effect until the source turms on, i.e. g must vanish for times t less than

the source turn—-on time t’'. This is

glx,x'st, t') =0 t <t . (3.2)
Introduce the Fourier transform in x
sk, x"st, t’) = j]];xp(—ik°5)g(5.5':t.t')dg , (3.3)
and correspondingly Fourier transform (3.1) to get
a8

2 Y _éT + kzz = exp(—ik‘}_')&(t't') » (3.4

where k is the Fourier transform variable and k’=k-§. We still require the

condition (3.2) and the one—dimensional equation (3.4) has solution given by
Bexhte) = 007 emfoapr - K-t 2]ty L (3.5)

where the step function defines causality. The inverse transform is
glx,x"st, t') = (Zu)—sj]];xp(ig°5);(g.5'zt.t')dg , (3.6)

and if we substitute (3.5) into (3.6) we note that the result is the Fourier
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Ch. 1 - Sec. 3

transform of a Gaussian. The latter may be treated by cartesian coordinates

to yield

3/a 1/2 Ix-x’|
S(Sng'itpt') = 1 3 1 (27) 2 expl— l—_——'—— o(t-t’) . (3.7)
(27) -t/ 2 tt

It can be shown that this result can be gemeralized to n—spatial dimensions

to yield
3
/3 Iz-x’|
(n) . o1 1 2yn ]n _y EE o 8
g (E,E 3t't ) n Y t_t, exp 2 t"t' e(t t ) » (3- )
(2n)
where for
n=1 x = (x)
n =2 x = (x,y)
n=3 x = (x,y,2)
n x = (11’ X seees xn) .
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1.4 _REPRESENTATIONS

There are several useful integral representations of the Green's
function for the Helmholtz equation. The latter is a spherical wave and the
representations amount to expanding a spherical wave into either plane waves

(spectral integrals) or cylindrical waves (Sommerfeld and Weyrich

representations).

1.4.1 WEYL REPRESENTATION

The first representation is an expansion of a spherical wave into plane

waves. The Helmholtz Green's function in  three dimensions satisfies the

differential equation
@ + &) 6Pz xn = sxx . (4.1)

Fourier transform this equation with respect to x, i.e. multiply the

equation by

j]];xp[-i(kxx + kyy + kzz)]dxdydz ’ (4.2)
to get the mixed representation

E(s)(g.g') = exp(ig-g')(kz—k:)_l , (4.3)
where

32 2 2 2 3 2 2
ko= |kl =k + k vk, =k +tk (4.4)
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and kX jis the Fourier transform variable. Note that in (4.4), by defining
the transverse part of the wavenumber

ko= +x)* (4.5)
t x y

we have essentially picked out the z—-direction as special. Of course we

could do this with any of the three directions. Using (4.3) the inverse

Fourier transform is thus

G(’)(;.g') = (2n)—’II];xp[i(kxx + kyy + kzz)]a(g.g')dg (4.6)
explifk (x~x') + k (y-y') + k (z-2')
__ 1 [ [ x 'y z ]] dk dk dk
(20)° (kz - K)(kz + K) Xy z
(4.7)
where
K= (x} - k:)”’ , (4.8)

and where we have distingnished the poles in the integrand of (4.7) as poles

in k,. We evaluate (4.7) cylindrically, i.e. we do the k, integral first
using complex variables. We shift the poles by adding a small positive

imaginary part to k, and hence to K. That is

z -— ’
*K z-2'>0 Fig. 1.1

-K * j z-2z'<0
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We evaluate the kz—integral in (4.7) by closing the contour in the upper

half plane (z-z’'>0) or in the lower half plame (z-z'<0). The result is

l;xp[ikz(z—z')] ni )
R A R o explik|z—z' |1 . (4.9)

Using this in (4.7) and writing the remaining two integrals using the two-

dimensional vectors

Et = (kx:ky) JJ ’x"t = (x:y) » . (4.10)
we get
. exp |[ik -(x - x!) + iK |z—z'|]
G(’)(g.y)= bR ” t ~t xt * dx, . (4.11)
(2n) +

where ImK>0.

Equation (4.11) is the two—~dimensional plane-wave spectral

representation or Weyl representation. In deriving it we have singled out
the z-—direction as sbecial. This is appropriate if the z—direction in the
application is special, for example if there is a discontimuity in z or if
the variability in the medium is in the z—direction. We treat this further
in the next section. Also notice that here we shifted both poles by +ie, so
that effectivey one shifted above the axis and one below. For the retarded
Green’s function is Sec. 1 we shifted both w, poles down. This is equivalent

to what we have done here since we had

k - wk -9k° - (wk ~ ig)

k + ieg -~ o
[} o

k »

ko + wk -9k° + (wk + ie) ko + ie + mk .



In both terms we give a positive shift to the k, term. By shifting the
poles in the manner above we have derived the Weyl representation for the
retarded Green's function. Other pole shifts can be done to form a Weyl
representation for the advanded or principal value Green’'s functions for

example.

1.4.2 SOMMERFELD REPRESENTATION

For this case we expand the spherical wave in cylindrical waves. The
expansion is essentially over the horizontal wave number. We begin by
representing the Weyl representation (4.11) in cylindrical polar coordinates

defined about x-x’' and y-y’. We have that
» N - [} = .
explik, (Et gt)] exp(lktp cos®) , (4.12)

where

1/2
p = [(x—x')z + (y—y')zl = x4 gil » (4.13)

and 6 is the angle between k; and St'l;' Using the cylindrical differential

area element

dk, =k _dk_do , (4.14)

and the definition of the Bessel function (cylindrical wave)
Izﬂ
1,00 = (207 Texplik,p cos0)ao (4.15)

we evaluate the O—integral as above to get from (4.11)
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... 3 2. 1/2
@ J (k. plexplilk,, - kt) |z-z'|] .

G(S)(E’Er) =_1_I YD ¢

(4.16)
n (ky,- k)

dk

t »

where we have explicitly written out the square root K. The result (4.16)
is a one—~dimensional integral representation of a spherical wave in terms of

cylindrical waves called the Sommerfeld representation. It is an integral

written over the horizontal wavenumber k;. and is only useful for problems

which contain an analogous horizontal symmetry (i.e. a parametric
independence of 8).

Alternatively, we can write (4.16) in terms of the Hankel function.
The Bessel function J, can be written in tems of Hankel functions Hsl) and

ng) as

)
(ktr)] ) (4.17)

. (2) (2
3,00 = 1/2[88 (x,p) + B

Substitute this into (4.16), and use, in the Hsz) integral, the result

(2)

(3) _ ni
Ho (ktr) = Bo (e 'k, r) , (4.18)

t
and, in this integral rotate the contour by defining a mnew variable

k= Mg, (4.19)

so that the limits of integration go from (0,») to (0,we®i)=(0,-»). The

result is an integral over only ﬂgl) given by
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1

]2
1) L2 3 ,
H: (ktp)exp[x [k0+_kt |z-z |]

2 2J1/2
[k°+' kt]

Since Hé") behaves like an outgoing wave asymptotically, the representation

(3) S |
6 “(x,x') = g= ktdl:t . (4.20)

(4.20) is useful in problems which contain this type of geometry, e.g. the
exterior problem of scattering from a bounded object. Equation (4.16) on
the other hand is useful for an interior representation, i.e. omne which

contains standing waves rather than outgoing waves.

1.4.3 EXPLICIT EVALUATION oF ¢*}

We mentioned that our representations were for the retarded Green's

function. We can explicitly exhibit this by evaluating all the integrals in

6(2). From (4.7) we have that

exp[ik-(x-x')
6 (g,x7) = 2 [[[ [ l ax (4.21)

(27)° k- k)

Using spherical polar coordinates defined as in Fig. 1.2

o

Fig. 1.2

we have that
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]

R

(x - x') =k|g - x'|cos® = kr cos® ,

H

(4.22)

dk = k'dk sin® dodg .

The ¢-integral just yields 2n. The O-integral is

n
Iexp(ikr c0s9)sin0d0 = [exp(ikr) - exp(—ikr)](ikr)_l . (4.23)
]

We evaluate the positive exponential integral using complex variables and

pole shifts to k,*ie to get (close in uhp)

€0

k exp(ikr) - .
[ (k-—ko+) (k+k°ﬁ:§ ni exp(lkor) . (4.24)

The negative exponential is evalumated by closing in the lower half plane

with the same pole shifts (k,, +ie) to yield

k exp(-ikr) _
[ (k—kH) (k+k°+) = -xi exp(ikor) . (4.25)

Combining all these results we get
(3) '
6 (x,x') = exp(ikor)/4ﬂr » (4.26)

which was the same result as we found using the retarded comtour in Sec. 2.

1.4.4 VEYRICH REPRESENTATION

An alternative represemtation of spherical waves expanded in

cylindrical waves can be found by expanding in the vertical (kz) wav enumber

_35_



rather than the horizontal wavenumber as in the Sommerfeld representation.

Starting with (4.21) we don’t do the k,-integral. Instead do the k; and ky

integrals using cylindrical symmetry. Using the definitiom
Kk = (x>-xH?* (4.27)
z o z

(4.21) is written as

e ik +(x -x')
1 ; [ exp[ik, (z-2") Jak, [I [k, (220 dk _dx .

6(3)(5.5') = 5 3
(2n) kt- Kz

(4.28)

The latter two integrals can be evaluated using the cylindrical coordimate
and Bessel function definitions in (4.12)-(4.15)., The O-integral again

yields a Bessel function so that we have

(k r)
6z, x = 2 [exp[ik (z-2') Jak -E—:—E—«n . (4.29)
(2n) z 2 k.- K

We use (4.17) for the Bessel function and in the integral for Hsz) we again
rotate the contour (k¢ - kt) so that nusing (4.18) we again have an

integral only over le). We get

* (2 )(k p)
(3) 1 to t
G (5’5') = e exp ik (z—z ) dk l————dk . (4.30)
2(2m)° I [, ] ox-xl O F

We have shifted our poles so that Isz>0. We evaluate the k —integral using
complex variables and closing the contour in the uhp. Explicitly writing

out K, we get
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(-]

(3) i () [r2 _ 397"
G (5.;')=-8-’T]exp[ikz(z—z')]ﬂo [[k°+— K] p]dkz. (4.31)

which is Weyrich's formula, a one-dimensional integral representation in

terms of the vertical wavenumber k, . The result (4.31) is often quoted

using (4.26) as

(. 1/3
=% o102 ﬂil)[p(k:- a) ]da , (4.32)

e xp iko(pz+ zz)l/’]

(pz+ zz):l/z

where p,z are real, r=(p*+z2)*/? and 0¢ arg (k:—a’)’/’<n.

1.4.5 PLANE-WAVE DECOMPOSITION OF 6¢*’

It is possible to derive two Weyl-type representations for the
Helmholtz Green’s function in two dimensions. In two dimemsions the latter

satisfies the Helmholtz equation

(2)

(V, + k)6 (x,x!) = -8(x,x) . (4.33)

~t’~t

We Fourier transform the equation by multiplying by

I];xp(—ixt-zt)dgt ’

where k. =(ky,k;) is the Fourier transform variable. The result is the mixed

representation
~(2) _ . , 3 __32,-1
6" (k,,xp) = exp(-ik -x 1) (k, k) . (4.34)

The inverse transform thus becomes
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|
[y
]

(3) ’ . '“(") ’
G (xt.xt) = &xp(1xt'5t)6 (k,.x)dk, (4.35)

= (2m)* §

1 'rexp[ist'(ft_5£)]dk

, (4.36)
(2:0)% ) (kx_ xy)(kx+ x&) ~t

where

Kk = (- )Y . (4.37)
y y

We expressed the integrand of (4.36) in such a way as to do the k.-

integration using complex variable techniques just as we did the k;~

integration in (4.9). The result is

exp[ik_(y-y') + iK_[x-x’|
6 (x,x) = M [ [ty T L . (4.38)
(2n) 3, y
Alternatively we could define
K = (- ), (4.39)
X o X

so that the denomimator of (4.36) becomes
(k - K )(k + K ) »
y X y X

and the obvious choice is to carry out the ky-integration. The result is

(2) ni [
G (x,,x!) =
SRt an?

exp[ikx(x—x’) + inly-y'll o

K
x

. (4.40)

The representations (4.38) and (4.40) are both Weyl-type representations for
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the two~dimensional Green’'s function. Their use depends on exploiting the

geometry of the particular application.

1.4.6__EXPLICIT EVALUATION OF G(*)

Using (4.34) and (4.35) we can explicitly evaluate 6(*)  using

cylindrical coordinates and complex integration. We have

explik *(x - x!)
G(z)(gt.gé) -1 [[ L t ]dk dk_ . (4.41)
(2n) - K xy

o+ 9|e+

In cylindrical coordinates we have that

kelx,-x1) =k |z~ zilcos 0 = k;r cos 0 , (4.42)

dkxdky = ktdktdo .

The O-integration yields 2an Jo(k.r), and we replace J, Uusing (4.17). The

integral involving Hsz) is rewritten using (4.18) so that we only have an

integral over Hsl). It is

(1)
B (k)
(3) O | ° t
G (ztpzt) = z‘; [?-_—k—’-— ktdkt . (4.43)
t ]

Since H$1) behaves like an outgoing wave, we evaluate (4.43) using complex
integration by closing the contour in the upper half plane. The poles are

shifted by ko—>k,tie. The result is the cylindrical Green's function
6 (x.x = (/4 B D p) . (4.44)
~t ~t ° °

It is most usefvl for problems in cylindrical coordinates which have no

angular dependence.
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1.4.7 EXPLICIT RELATION BETWEEN G¢*) apg g¢*)

In three dimensions we have that

exp [ik- (x-x')
6*) (x,x") =—1—?l” [z : ]dkxdkydkz . (4.45)
(2n) kK -k

Break up these three integrals into a k,—integral and a two-dimensional

transverse integral as

G(’)(;.;') = %? lexp[ikz(z—z')]dkz°

explik (x - x’)
1 ” z[“t e ]dk ax . (4.46)
(2n) k- [ko- k] *y

z

The latter two integrals are just (4.41) but with k; replaced by K;=kj-kj.

Using (4.44) we thus have that

. 1/3
6 (z,x - L l exp [ik, (z-2") Jug ™) [[x:- ;] o, . waam

which is just Weyrich's formula (4.31).

1.4.8 THREE-DIMENSIONAL REPRESENTATIONS IN THE HALF-PLANE

In the previous sections we presented several integral representations
for the Green’'s functioms. We placed no restrictions on the regions of
validity of these representations, and consequently they are valid in all

space. Here we treat representations valid in one or the other half space.
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We have singled out the z-direction as special, and we define the half-

planes using this. The Weyl representation for the retarded Green's

function is from (4.11)

. exp ik *(x - x!) + iK_|z-z'|
G[(;)(g.g')= ub ” [ % % hd ngt . (4.48)

(2n)° K,

If we restrict the region to z-z'20 so that the absolute value can be
dropped we write the result as a three-dimensional integral as (the + sign

indicates the region z-2'20).

[61(13)‘5’5"]+ = (zn)"[” Ag(Klexp[ik- (x-x")]dk . (4.49)
where the amplitude function is defined by
Ap(k) = (ni/K)8(k -K) . (4.50)

The advantage of this representation is in a three-dimensional problem where
however the boundary is planmar.

Similarly, a representation for z-z'£0 can be written as

[G:;)(z.g')]_ = (zn)"[” Ag(Kexp[ik-(z-x)]dk . (4.51)
where the amplitude is defined by
Ag(k) = (ni/K)8(k + K) . (4.52)

We can combine the two representations (4.49) and (4.51) to yield a quasi-

three~dimensional Fourier representation where however the amplitude is
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spatially dependent viz.

L]

6

R (x,x’)

(2ﬂ)_$l]];R(z-z',k)exp[i§~(5—5')]dk , (4.53)

and is given by

Ap(z-z',k) = O(z—z')A;(g) + 0(z'—z)A;(§)

(ni/K) [O(z-z')S(kz—K) + 0(z' -8k x)] . (4.54)

We could also derive a Weyl-representation for the advanced Green's

function. It is

K ~t

s exp ik - (x - x!) - iK_|z-2z'|
(3) (5,50) = 2N - ” (220 20 ]dk . (4.55)
with analogous representations for z-z'20 and z-z'%0 given by

- +
[st)(z‘s')]t = (2n) ’l]];a(g)exp[ik'(5"5')]d5 , (4.56)
where
+
Aa(g) = —(ni/K)S(kzi K) , (4.57)

with the full three-dimensional representation given by
6;3)(3-5') = (2ﬂ)—3l]];a(z-z',g)exp[is-(5-5')]d§ ’ (4.58)

where the amplitude is
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A (z-z',k) = —(ni/K)[B(z—z')S(k + K) + 6(z+z2')6(k —K)] . (4.59)
a z z

From these representations we can also compute the representation for

the principal value using

( (3 3
o5 gz = 126l (mx) + 6 mxn] (4.60)
so that
GL’)(E,EO) = (2")—’[[[AP(Z—Z"k)em[is'(f—s')]dk s (4.61)
where
AP(z-z'.L) = 1/2[AR(z—z',g) + Aa(z—z',g)] (4.62)
- (ni/2sgntz-20) s B - s ] - (4.63)
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1.5 ANALYTIC PROPERTIES OF THE GREEN’S FUNCTIONS

1.5.1 ANALYTIC PROPERTIES OF Gp'®)

We discuss the properties of Gé’) using distributions. We have that

exp ik, |x - s'l]

. (5.1)
dnfx - z']

6y (x.x) =

We begin with the Weyl representation presented in Sec. 4. Here we have

3 2 2 2 2 .
= - = + -
K [ko kt_' and kt kx ky It is

. exp |ik *(x - x!) + iK |z—z'|]
al II L2k ik * dk, ., (5.2)

K,

where x’ is the source point and x the receiver point. We keep the

representation as a difference in these coordinates. We use the term
K, = K + ie to distinguish the square root having a positive imaginary part.

The properties are as follows:

PROPERTY 1. Gn(') (z - x°) is continuous as z - z'-0.

The proof is obvious. There are two cases, whem z — z’' > 0 and

z - z' <0, Both limits are the same. They are

(3) NO)

lim G, "(x - x') = lim _ (x - x') ,
z—z'—)0+ R z-2'—20 R

and equating the limits of (5.1) and (5.2) we get

1k°p

’ (5.3)

dx
e _ ni . - ! t
4np (2m)® _” exp[igt ('x-t st)] K+
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where p = I;t - ;'t|. Simply put the argument of the exponmential in (5.2)

vanishes independent of direction because of the absolute value.

PROPERTY 2. The first derivative in depth is discomtimunous.

To prove this differentiate (5.2) with respect to z

(3) _ sy _ —nsgn(z-z') Lo o . ’
2, 68 (x - xn) - etz ([ iy (x - x0) + 3K, Ja-a s,
(2n) (5.4)

Note that the factor K cancels in the integrand., In the limit as z - z’' -0
the exponent vanishes independent of direction but the antisymmetric signum

function remains., Also, the integral for z - z' = 0 is just the two

dimensional delta function multiplied by (2n)2. The result is

lim @ Géa)(f—f') = I 5 lim sgn (z-z')
z-z'>0 2 (2n) z-z'-0

° 3 . -— ’
II exp[1§t (Et Et) ) F

: () 4y -1 L [1 z - z2'->0%
z—i}E;O 9 _Gp (x-x') 7 O(x.- xt) 1 s - 2750~ ° (5.5)

Note that the 1limits are independent of k,» SO the same discontinuous

derivative behavior holds for static potential theory. Define:
. (3) 1y = [ (s) , ]
lim 9 6p "(x-x') a,6p "(x,.x3) .’ (5.6)

z-z'—> 0

so that the discontinuity is a distribution
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disc [azGé’)(g.g')] ., = [azeé’)]+— [azeéa)]_

zZ = 2Z

—8(5t— 5;) . (5.7)

We show later that this is analogous to the discontinuous behavior for one-
dimensional Green’'s functions. Here we also have an additional two-—
dimensional delta function.

PROPERTY 3. The transverse derivatives are continuous.

Def ine the transverse differential operator as

_ [ 3/9x
it a/dy

]

Cde Cudo

Differentiating (5.2) we get

k
(3) "y = B i . ’ : ' jt -

This again approaches a finite value in the limit z - z’—> 0 independent of

direction and is

k

. (s) -n . jt

lim 9.6 “(x,x') = explik, *(x - x')] dk, (5.9)
z-z'—0 jt R ~7= (Zn)’ l[ ~tott St x+ t

which can be evaluated directly by doing the integral or simply by noting

that we can interchange the derivative and the limiting process to yield

ikop

. (), e
lim 9.6 "(x-x') =9, (5.10)
z-2'=>0 J R ~~ jt 4dnp s p=|x - xt'l .

Next we want a representation for the full vector derivative. We will

need this later to find the normal derivative of the function. For reasons
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which will be clear later it is convenient to have this in three-dimensional
integral form which is regularized, i.e. which has no derivative

singularity, plus a singular term. Differentiate (5.2) (where j=1,3,3 and

3, = 3/a,)

(3),___»y - _mi . . o
ajGR (x-x') 2m)” [[[1kjt+ 18j3Kt sgn(z-z )] .

dk
. _ . ~t
exp[1_15t- (‘Et 5;) + 1K+|z—z' |] K:— . (5.11)

Now regularize the singularity in the z-derivative as follows:

ax
t
256 2 = 0 ” iy, om ik, (2, 2D + 1K fer ||

+ iSjs sgn(z-z') -

ni . ' L
.[ (2n)° I[ dk, expfiky" (2 5t)”"‘l"ix+|z z’ | 1]

¢ 1 3 (2u)’5(5t- 5{)] . (5.12)
(2n)

In the singular term we subtracted and added the term 1. This brought out
the 5 function explicitly. We could have subtracted any function of z - z’
which has the limit 1 as z - z'-> 0, as for example coslk,(z - z')].
Regularization is not unique, and this subtraction, or any appropriate
subtraction, is a regularization in the sense that the resulting integral is
not singular.

We next want to reintroduce the kz-integration in (5.12). Recall that

we eliminated this integration by evaluating it to derive the Weyl
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representation. In the first integral it is simple to recover the k,

integral. We use the result that (ko—ko, + ie, KK + ieg)

[« -3
. _ exp[ik (z - z')]
SRR & z dx . (5.13)
n I kz _x3
z +

In the second integral we use

explik (z—z')] 2
sgn(z - z') exp(iKlz-z'I)-l] = ’lt—1[ [ z p X

T3 o2 k
kz K+ z

dk , (5.14)
K4

which can also be derived using residue calculus methods. The integrand in
(5.14) has three poles, the one at k, = 0 evalvated using the principal

value (P), and the other two using the shifts ko, + ie or K + ie. The

result in (5.12) is, noting that k} - g* = k* - k]

explik- (x-x')
8J.G;’)(5.5') -1 ”[ ik [ ] dk

(2m)° it -l =
exp [i,ls-(g-z')] K’
+ is'a 3 2 P '3 ds
J k-k z
-1 sgn(z-z') 5(x - x') & . (5.15)
2 ~t ~t K

Noting that the Fourier transform of G&’) is

-1
6 w = -« . (5.16)

with ko>k, + ie, we can write (5.15) as
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Ch. 1 - Sec. 5

0, 6 ) (xx) = 7 L [l];xp ix- x| BV P wax

(2n)
- 1 &, sgn(z-z') 8(x - x!) (5.17)
2 j’ ~t ~t » .
where
g
PK) = 2ifk, + 5, P ]| - (5.18)

The integral temm is not singular. (In fact note that if we set z-z' = 0 in
the integral we get that the j = 3 term vanishes since the resulting
integrand is an odd function of kz-) It is a Cauchy principal value
integral. The subtraction of the term 1 has led to this. Subtraction of
another term will lead to an altermate principal value integral. The full

discontinuity is proportional to the j = 3 term, i.e.
(), _ ] _[ (), ] _ 3
[ajGR x| -foe x| = s skeEp (5.19)

where the + and - signs refer to the limits as z-z’ approaches zero from
positive or negative values respectively. An alternmative way of writing
(5.17) is

(s) .,y _ 1

p——y - 1 — ! —y !
J(5 x') 75j3 sgn(z-z )8(5t Et) ’ (5.20)

where

1 ~(3)
R ') i * ”~ ”~ ! 3 ’ *
j(x x 2m)” l[l exp[1k (x-x )]GR (x) PJ(k)dk (5.21)

is the regular part of the derivative term. We can thus set both vectors x
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and x' onto the surface in R; and have a well defined limit.

1.5.2 ANALYTIC PROPERTIES OF Gf*’

The full three-dimensional Fourier representation for G(')(z—s" is

given by

6(3)(5-x') =

exp ikz(z—z')]
~ (2’!)3 em[ist(zt-st)]d.k,t (kz_ i+) (kz+ K+j dkz 0 (5.22)

2
where K = [k: - k:]ll and k: = k; + k; . The retarded Green's function
was computed by shifting these poles using k,—>k,, or K>K;. The advanced
Green's function is computed using the shift k, 5k, -~ ie = kq_ or K =
K - ie = K_. The singularity structure in the complex kz"plane is thus

(k)
K +igt ’ z-z'>0

LSS f~—>
\ y e

We close the contour in the upper half plane for 2z-z'>0 and in the lower

Fig. 1.3

half plane for z-z'<0. The result is

exp [ikz( z-2' )] i
[ C-Daq 0 * T T oxp[-ik|z-z ] (5.23)

so that the Weyl representation for the advanced Green'’s function
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(3) exp(-ik r)
GA (5_5') =T, r = I;-"l » (5.24)
is given by
(’) ') P ni s ’ » dst
6, "(x-x') = n exp |ik - (x - x!) -ik_|z-z' | g— » (5.25)
(2n) -
where we distinguish the square root term using K_ = K-ie. Its properties
are
1. GX”(;—;') is continuwous as z-z' 0. The 1limits from ©both
directions are the same. Note that from the functional form the
limit is
—ikop ak
: = i n [[ exp[i§t°(5t- 5;)] —i;- , (5.26)
np (2n) -
with p = I5t'5t'|’ The square root distinguishes the contribution.
2. The first derivative in depth is discontinuous. Differentiating we
get from (5.25)
() _ vy - _, sgn(z-z’) s (e et . ]
8 6, '(x-x') = -n RELEE - Ml explik +(x -x1) + ik |z-z'|fak, . (5.27)
(2n)
which in the limit as z—-z' -0 from the two directions is
), 1 1 z-z' >0"
; - _ R
tn 0680 Gx) = - Fe x| Y Do (5.28)
z-z 0

which is the same discontinuity as the derivative of the retarded

Green's function in (5.5).
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3. The transverse derivatives are continuous. From (5.23) we have

that

1i 3,6 (xx) =2 ik - (x - x')] fif—-dk (5.29)
z_zvm_)o jt A =X (21!)’ oxp 1~t ~t ~t K ~t ° °

which from the functional form (5.24) equals

ajt[ exp(-ikop)/4up] . (5.30)

Hence we can write the full vector derivative as

(3) ! = -ni - —
56 ) - =i [[[ikjt i6,,K_ sga(s—z ]

dk
exp ist-tgt— 5;]-ix_lz—z'|] —%% . (5.31)

Now regularize in the z- derivative term. Rewrite (5.31) as

dk
(s),___,y _ -ni . [. le oy s o ]_;:g
3,6, (x-x') )’ ik,, exp ik +(x.- x1) iK_|z-z'|]| ¢

—isj3 sgn(z-z') -

‘ [ ::i)’ [[ e‘p[i5t°(5t- 5&] °‘p(’ix-'z'z'|"1] dk
. .

- (::), (2m* 8(z x| . (5.32)

Reintroduce the k - integration (here k, 9k,-ie and K 9K -ie = K_) using
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K ® exp ikz(z-z')]
exp[—iKIz—-z'l] = ﬂ—i—- dkz 2 2 » (5-33)

and

k

S z

méxp ik (z-z') 3
ssn(z—z')[exp[—iKIz—z'l]—l] - ;—i—[ ’[x: ] P[i—] dk, . (5.34)
- K_ z

Note the minus sign in front of (5.33) and the plus sign in front of (5.34).

The principal value term in (5.34) is an odd function. Using the Fourier

transform of GX’) which is

-1

~(3) 2 3
6, (k) = [k - ko_] . (5.35)

wvhere k, —k,~ie the result using (5.33) and (5.34) in (5.32) is

(3),___,y_1 1 ey |3(3)
9.6, "(x-x’) = E-(zu)’ [[[ exp[ig (x-x )]GA (k) Pj(h)dk

(5.36)

- = sgn(z-2')8 S(Et— 5;) .

js

Note that the result is similar to that for the retarded Green's function,
(5.17), except that here the Fourier transform of the advanced Green's

function is under the inmntegral. P& (k) is defined by (5.18).
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1.5.3 REGULARIZATION OF ajcl(,”

We have that

(3)

¢ x| . (5.37)

so that combining (5.17) and (5.36) we get

(s) w11 ieeny | @2
ajGP (x-x') = 7.[2n]’ [[[ exp[ig (x-x )] 6p (k)Pj(g)dg

1
- i-sgn(z—z') Sjss(gt—gé) ’ (5.38)
where
~(3) 2 2 -1
& w = el k] . (5.39)

retarded and advanced Green’s functions.

1.5.4 REGULARIZATION OF 3,3 ; 6°)

We begin with the Weyl representation for the retarded Green'’s function

in three dimensions

dk
() ni . . t
ko= (2m)° l [ Trost ¥ |] £
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Differentiate this representation to get

dk

(3) i’ . . ~t
ajGR (x) = — [l [kjt + Sj, sgn(z)K] exp lik -x + 1K+|z|] <
(2n) *(5.41)

and differentiate a second time to yield

(s) ni .
.G = 2iK 8(z) 6 _ & +
amaJ R (5) (2n)3 [I [ 1 + z j* ms3

kg, + 8K, s ][k, + 8 K sm]]
dk

. exp[i'l_gt'zt + iK+|z|] —iﬁ , (5.42)
+

which can be written as four terms

(3) ni . ]
9 8.6 "(x) = ——u I [ exp[ik -x +ik [z|] -

2
i’k x
[-—-%—t—l‘lt—Jr i” sgn(z) |k .6, +k
+

| mt 3 jtsmS]

.2 .
+ i K+8j,6m3 + 2i Sjssm,b(z) dk, - (5.43)

The first term is not singular, and using the relation

exp(iK+|z|) 1 exp(izk,)
K, Ty e 9k
’ k-k,
1 . =(3)
=T exp(1zkz) GR (k) dkz , (5.44)

we can write it as a three dimensional integral
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= 1 ) 1. ~(3)
I; - (2")3 [l-l i kjtkmtexp(l'lf E) GR (k) ds . (5.45)

The second term containing the sgn(z) function has a possible delta
function singularity in the limit as z - 0. We regularize it as follows.

First rewrite it as

= ni 3 ie .
L= (20" [[ i sgn(z)[ﬁntsj’+ kjtsmil exp(ik, X)

(5.46)

. [exp(iK+|z|) -1+ 1] k.
The term involving the +1 in the bracket can be written as the derivatives
of a two dimensional delta function. The remaining term can be written as a

three dimensional integral using the relation (5.14) as

1 ~(3) K,
sgn(z) exp(iK+|z|)_1] = 37 lexelik,z)6p (k) Pl —] 4k . (5.47)
z
The result is
I, =-2 5. 2 ]s( )
s =~ 7 ssnlz) 553 mt+ Sms jt I,
2
+ 1 [Ipi’[k 5.+ k.6 ]p[K—”]exp(ibx)G")(k)dk
(2m)® 3} mt j: jrml ) k) ~~ R ~ (5.48)
The third term in (5.43) is not singular. Using the relation
2
i ) = o Gik 2) ) (x)ax (5.49)
K+exp(1K+|z| = 71 |exelik 2) G , .

we can write it as a three dimensional integral
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= 1 -2 2 ~(3) .
I; = (21(): [[[ i K+ GR (x) exp(i‘ls E)ds 5j3 8m3 ’ (5.50)

which can be written using the idemtity

2 ~(3) _ 2 .2 2_ .2
K 8w = ) -k /- k)

[k:+—(k:+ k) + k:]/ (k*- k] )

4+ 8w (5.51)
z R

to yield

I =21 ”[ dk i’k: E(s)(k) em(is-z)sj’sm'+ F ssmsS(f-) . (5.52)

o’ R J

The fourth tem in (5.43) is a delta function. It is

_ ni . . . .
I, ree [” 2i8,,8,,8(z) exp[ik, -x .+ ik |2]] dk

js m3 ~
The result (5.43) is given by the sum of I, thru I, from (5.45), (5.48),
(5.52) and (5.53). The result can be written

2 a.6t%)

b § b 8
m® R (x) = -5 R (1) - ;-sgn(z)lﬁjiamt+ Smssjt]8(5t) , (5.54)

mj

where ij(;) is the regular part of this mixed second derivative given by

Rmd(g) =

. (3)
exp(ik-x) G "7 (k)P (k) dk , (5.55)
(2’ [” ~~ R mj ~
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and where

2
2 _ K 2
5 ij (k) = kmtkjt+ [kmtsj‘+ kjtsmsl P[k—z-] + kzsm’sj’ . (5.56)

Note that from this representation it is easy to show that

(3131*' azaz+ azas)Gé’)(f) == (2:;), l][ exp(isoi)ﬁé')(k)kzd_g » (5.57)

2 2 2 2
where k =k + k+ k. From the identity
x 'y ‘'z
3 2 .3 _ 2+(3)
E/(-k) = 1+ kG @,
we see that
2.(3) = - — 2 g(?)
A GR (x) = -8(x) ko GR (k) , (5.58)

which serves as a check on our results.
Some properties of this representation are obvious. The first is the

symmetry of the derivative operationmn

2 9 G(s)

n’j R (x) =9

(3)
RERgCIN. (5.59)

Since Gé’) is a homogeneous function we can exchange derivatives with

respect to field and source coordinates up to a minus sign so that
3 9. 68 (zx =09 64 (xx" . (5.60)
mj R &= mj R '~%

From (5.54) it is obvious that P is symmetric

P (k) =P_ (k) . (5.61)

Since m and j run from 1 to 3 we thus have at most six independent
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components. Evaluating terms we get

P =2k s P =2k, P =2
i1 X 22 y 33 z‘
P =2kk
i3 xy
2 2
- K _ K
P, = kaP[-k—J B, =2k Pl . (5.62)
z z

Other constraints are possible. Note that

PP =P (5.63)

and
2
[szle:] = Pu/Pzz . (5.64)

Finally, note that the jump discontinuity in the representation (5.54)
occurs only in the off-diagonal components. The discontinuity across the

surface is

.2, G;:)L S RN T LY ST IS PN CR )

Note also that if we spatially integrate these dipole temms by themselves

the result is zero. For example
I ajt 6(;t)d5t = 0jt ’ (5.66)
but with an additional term in the integral we get for example

([ £z 90805,) 4z, = <0 fE) |y L - (5.67)

Note that if we have the difference of arguments we get
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¢ ’ (’) ' =_i r -
a aj Gp (x x) - ij(5 x)
_1 L. ’ [ '
5 sgn(z Z)(sjiamt + Sm,ajt)s(gt Et) .
(5.68)
To differentiate on the second argument note that
G 85 Gé’)(g' -x) = amajGé')(g' -x) . (5.69)

by the homogeneity of the Green's function. Substituting this in (5.68) and
writing the partial derivatives in terms of the unprimed coordinate on the

rhs we get a sign change in the latter term. The result is

236" - x) =-=R

mj R ~ (5 - 5)

mj

b
d ' - +5 9 . - .
+ < sgn(z z) (8 s jt)S(ft Et)

(5.70)

j3amt
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1.6 ONE-DINMENSIONAL PROBLEMNS

1.6.1 GREEN'’S FUNCTION IN 1-DIMENSION

We begin with a general second order linear differential equation with

a delta function source term

2
j : + p(z) %:—+ qlz)g = -8(z-z') . (6.1)
z

The function ¢ is thus the Green’s function for this one—dimensional
problem. The source point z' is singled out and we have different solutionms
in the regions z>z'’ and z<z'. Thus the source point can be interpreted as
introducing another - boundary layer into the problem. We thus have two
solutions and must say how they match at the layer interface. We assume
that

(a) ¢ is continuous across the layer

(b) dg¢/dz has a discontinuity across the layer.
We use the continuity property to find the discontinunity as follows. First

rewrite (6.1) in the fomm

2
12+ & [p(aag) + La(a) - p'(2)1gla) = 0 . (6.2)

2

dz

Next integrate (6.2) across the layer from z’'-e to z'+e where & is small and

shrinks to zero. For the second derivative term in (6.2) we get

’ ’ -—
lim rwiiﬁdz=ﬂz+8 Jdet g (6.3)
e 30 Jz-g 4%z dz z'-e dz dz

where we have defined
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lim 92-(z'ie) -4 (6.4)
P 90 dz dz

The second term on the lhs of (6.2) becomes
'te d z'+e
jz e [p(z)¢(z)]dz = plz)¢g(z) -0 ,

z'-¢ z'-¢e

which vanishes as ¢ > 0 since p is continuwous and we assume p is also

continuous. It is not necessary to assume the latter in which case our

result is

(p'-p ) g(z"

where

+
p = lim plz' t ¢) .
e 20

The third term on the lhs of (6.2) is

'+8
lz [q(z) - p'(z)] ¢(z)dz ,

z'-¢
which vanishes in the limit as ¢ -0 unless q(z) or p’(z) are discontinuous.
If q(z) is discontinuous it becomes
+ -
(q - q) ¢(z')

where
: <
q = lim q(z't g) ,
e 20

and if p is discontinuous so that

p(z) = po(z) 0(z-z') + pl(z) 6(z'-z) ,

where © is the step function
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_T1 x>0
0(x) = [o x<0

we have that
p'(z) = p;(z) 0(z-z') + p;(z) 8(z-z')

+ po(z) 5(z-z') - pl(z) 5(z~-z') ,

so that we get for the result

z'te
[ e
z'-g
z'+e z'te
- I p(z) %%-dz .

z'-¢ z’'—¢

= p(z)g(z)

d¢+ d¢
2 [po(2') - p,(2") Jplz) - [Po(z') az - halz) E] ¢ o

+
The second term vanishes as &€ —>0 provided neither of d¢~/dz is singular.
Essentially all of these discontinuous properties merely complicate our
algebra and we drop them. That is, we assume p, p', and q are continuous at

the interface. The result is, from (6.3)

a4 _ 9 _ 4 (z=2) , (6.5)

where the -1 results from integrating the delta function. The continuity of

¢ is expressed as
+ -
¢ -9 =0 (z=12z2') , (6.6)

and it is these latter two equations we use in the analysis. Now we must

define the field boundary value problem. We do two examples.
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Eg. 1. INFINITE SPACE EXAMPLE

Here the boundary 1layer is the only finite boundary. Above that
boundary layer we have solutions of the homogeneous version of (6.1) (mo
delta function term). For wave like solutions asymptotically we choose the
solution which satisfies an outgoing radiation condition. To insure these
wave-like solutions p(z) and q(z) are required to have certain asymptotic

properties. The simplest are that as z 5

p(z) 50 and q(z) —>constant >0 .

Strictly speaking we also have to require that p(z) and q(z) are monotonic
functions. If there are any kinks in these profiles, waves can be trapped,
and we must effectively introduce further layers into the problem. For
simplicity we assume these properties are satisfied.

Thus, in the upper layer (U) where z)>z' the solution of the homogeneous
version of (6.1) satisfying the outgoing radiation condition can be written

as

¢U(z) = Au (2) z>z' |, (6.7)

where A is an unknown constant. Similarly in the lower (L) region (z<z')

the solution satisfying the outgoing radiation condition is

¢L(z) =B u_(z) z<z' , (6.8)

where B is an unknown constant. Our conditions (6.5) and (6.6) are then

satisfied by (6.7) and (6.8) provided that at z = 2z’
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At - Bo—e =-1 , (6.9)
and

Au. - Bu = 0 . (6.10)
The se are coupled equations for A and B whose solution is

A=-u (z")/W , B= —n+(z')/W , (6.11)

where W is the Wronskian

¥=19v'u —-uwu . (6.12)

The full solution can thus be written as

- u,(z)u_(z")/W z>z'
¢(z) = (6.13)

- u, (z)u_(2)/¥W z{z' .

To specify the solution further we must know the eigenfunctions. As a

simple example choose p= 0 and q = k: in (6.1). Then the eigenfunctions of

2
d
2r+xip = 0, (6.14)

dz

are either exp(}ik,z) or [cos k,z, sin k,z]l. We choose the former set since

they correspond to outgoing waves. We thus have that

u,(z) = 5% ; u (2) = o7HR® ;W= o2ix, (6.15)

so that
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eiko(z—z’)

- ’

¢(z) = 31k, zZ>2
(6.16)

e_iko(z-z')
’
2ik, 2¢zt
or rewriting
p(z) = - E%E' eikolz-z'| (6.17)
[]

which is our standard retarded one—dimensional Green’s function. Note that
we got the retarded Greem’'s function because we chose outgoing radiation

solutions.

Eg. 2. BOUNDARY EXAMPLE

In this example we introduce upper and lower boundaries at a finite

distance from the source plane. Geometrically we have that

%o Upper Region 1
z' <z <z
]
z'
Lower Region 2
zL < z < 2z’
i
Now we must choose our solutions as
)
#g(2) = A, oV +a_ P, (6.18)

including both linearly independent solutions uii) in region 1, and in the

lower region 2

b (0 =8 0@+ @ (6.19)

also including both linearly independent solutions in this region ué’). We

have the same continuity and jump conditions at the interface as before.
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Equations (6.5) and (6.6) become at z=2z'

dgy a9,

@ @& -t (6.20)
and

pu - ¢L = 0 . (6.21)

These are two conditions on the four constants A+ and Bx. In addition there

are boundary conditions at zpy and zj. Assume for simplicity that

pu(zu) =0 |, (6.22)
dé,
i (zL) =0 . (6.23)

Again our formalism can accommodate much more complicated impedance type
boundary conditions at these surfaces. We again take our previous example
where p = 0 and ¢ = k2 in (6.1). Because of the form of the boundary

conditions it is convenient (but not necessary) to choose our eigenfunctions

as
(1) sin ko(z—zU)
u (z) = (6.24)
t [ cos ko(z-zu) ,
and
sin k (z-z )
uiz)(z) = ° L (6.25)
z cos kb(z—zL) .

Using (6.18) and (6.22) yields A_=0. Using (6.19) and (6.23) yields B, =0.

We thus have satisfied the boundary conditions with the fields
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¢U(z) A, sin[ko(z—zu)} ’

and

#(z) = B_ cos[ko(z—zL)] .

We now must satisfy conditions (6.20) and (6.21) which become

Ak, cos[ko(z'—zn)] + B_k sin [ko(z’—zL)] =-1

A, sin[ko(z'—zu)] - B_ cos[ko(z’-zL)] =0 ,
whose solution is
u(Z)(z')
A+ = = = cos[ko(z'—zL)]//W ,
uil)(z') )
B = — = s1n[ko(z'—zu)]/w ’
where
W= -k cos[ko(zL-zn)J ’
so that
p(z) = [ - sin[ko(z-zu)] cos[ko(z'—zL)] z>z'
k, cos[ko(zL-zU)]
- sin[ko(z'—zu)] cos[ko(z-—zL)] z<z'
k cos[ko(zL—zu)] ’
or

p(z) = [ sin [ko(zu—z)] cOs[ko(z'-zL)] z)>z’
k, cos[ko(zL-205]

sin[ko(zu—z')] cos[ko(z-zL)] z<z’

k, cos [ko ( zL-zU)]
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1.6.2 SOLVABLE PROFILES — INHOMOGENEOUS MEDIA

The examples in the previous development in this section were for
homogeneous media. Here we develop a general method to find the
eigenfunctions for various one-dimensionally inhomogeneous media. In a
sense we do an inverse problem, first choosing the eigenfunctions and then
finding the medium index of refraction.

We begin with a general linear second order differential equation

a’n

= e S+ gon) =0, (6.34)
X

whose solutions are assumed to be known in terms of special functions for

example. Transform both independent and dependent variables as

x = u(z) u’(z) #0 (6.35)

h(x) = w(z)g(2z) wiz) #0 , (6.36)

so that the new equation on ¢ is given by

2
i_z+ Az) $2 4+ Bla)g(m) =0, (6.37)
z

where A and B are given by

Az) =2 -5 4 wp(a) (6.38)
w u
and
B(z) =X+ 2 o p(2) - %"] + (w9 ’alz) (6.39)

where we have defined
P(z) = p(u(z)) ; Q(z) = q(u(z)) . (6.40)

To prove this note that
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—aav - —— e o~

4a h(x) = g;~%; [w(z)g(z)] = 1-7-[w'¢ + wp'l

dx u
and

a’ dz d [ daf

R P [ ]

X

%T [_ u” ; [W'¢ + w"] + _:;_' [W'¢ + 2w0¢0 + w¢n]] .

(u’)
Combining these in (6.34) yields

[wg® + 2w'g’ + w'g] _wu”
(w)? (u')

- (wp’ + w'gp)

P(z)

+ o7

[wg’' + w'¢l + Qlz)wg =0 .
Multiplying by (u’)? yields
we' + 2w'g + w'¢ -~ :—',' [wg’' + w'g)

+ P(z)u'lwg’ + w'¢) + Q(z)(n')z wg =0

Dividing by w yields

The basic idea of this development is as follows:

1. Choose p(x) and q(x) such that the differential equation (6.34) has
known solutions in terms of special functioms.

2. Choose A(z) = 0 to find one of the functions uw or w in terms of the
other.

3. Then B(z) is known in terms of one of the transformation functions from

(6.38) and (6.39) as
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B(z)

w" N
w 013
w—'—z w—] + [u] Q(z)
(6.41)

4 [5—] - [5—]3 ¢ ) At

with say u known as a function of w from the condition A(z) = 0.
4, Then choose the second transformation function, w say, so that B(z) is

known.
5. Write B(z) = k: n2(z) where n(z) is the index of refraction in the

inhomogeneous media described by the differential equation (A = 0 and B

= k:n’(z) from (6.37)) as

3
48,k n'(adg=0 . (6.42)
dz

0 which is

We can integrate the equation A(z)

’ ”
p(z)+z§-—%,-=o ,

“‘

v 3 in [u’] - 2-%; in [w] = u’ P(z) ,

d u’
&
w

However, rather than integrate the equation for a gemeral P(z) we will find

and

v P(z) . (6.43)

that the differential form is most useful as we choose particular values of
p(x) and hence P(z).

Bg. 1. HYPERGEOMETRIC EQUATION

We begin with our differential equation (6.34) where we choose

_ c-[a+b+1]x _ -ab
p(x) = —TITXS— » q(x) = ;-(—ljx-y . (6.44)

Here a,b and ¢ are constants. For convenience we define a = atb+l. The

result is a second order linear differential equation with three regular
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singular points which is called the hypergeometric equation. Solutions can

be found in the form of power series, convergent for |x|<1. The two

linearly independent solutions can be written as

h1 = F(apb;c;x) » (6-45)

and

hz= x'7C F(a+l-¢c, b+l-¢c; 2-¢; x) , (6.46)

where the notation for the hypergeometric function is (Ref. 1.1)

3 (a)n(b)n n
F(a,bycsx) =1 + =T * (6.47)
n=1 ¢ nn
with
(a)n = ala+l) (a+2) -+« (a+tn-1) n21 (6.48)
(a)o =1 .
Note that the series are finite for negative integers or zero.
From (6.40) we have that
P(z) = —ooonlz) alz) = ——2b (6.49)

w(z) [1—u(z)] °* v(z) [1-u(z)] °

so that (6.43) can be written as

d u’ c—aun
a“‘[;:] ¥ W .

u’ u’
€5 - (a—c) i

& 1 L°a-we]

which can be integrated to yield a relation between w and u
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u'

Wi (2) =D ——— (6.50)
w’(1-u)®"°

where D, is an integration constant. Alternatively we could write from

(6.38) with A(z) =0

w' 1 Ju* _ u’(c—au(z))
w 7'[37 u(1-u) ’ (6.51)

so that our representation for B(z) from (6.41) is

B(z) = & 51] - [51]2 - 23%%;%; , (6.52)

which, using (6.51), expresses B entirely in terms of u(z), which we now
choose.

To motivate a choice of u(z), note that from (6.52) we would like a
constant background term in the index of refraction, The differential

equation

2
(u’)  _ L2
—G=7 = 4 (6.53)

where £ is a constant, has the solution

u(z) = sin (fz + g) (6.54)

where g is an integration constant. From (6.50) we get

w(z) =2 D flsin(fz + g))"°° [cos(fz + g)) 72°7°% | (6.55)

so that
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%:-= ;-[(I—Zc) ctn(fz+g) - (1+2¢c-2a) tan(fz+g)] ’

and hence

’

2
il E}J = —-%— [(1-2c)[csc(fz+g)]3 + (1+2c-2a)[sec(£z+g)]z] ’

and

2 a
E&J =-§— [(I-Zc)z[ctn(fz+g)]3 + (1—2c-2a)3[tan(fz+g)]z
- 2(1—2c)(1+20~2a)] ,

so that from (6.52) we get

a1
B(z) = £ [-E-(l—zc)(1+2c—2a) - 4ab]

(6.56)

(£2/12) [(1-20)[csc(fz+g)]z + (1+2c—2a)[sec(fz+g)]3]

(£/4) [(1-zc)’[ctn(fz+g)1’ - (1+zc—za)’[tan(fz+g>1’] i

An alternate version of this expressionm is

3 a8, 8,
B(z) = f [a1 + .y + Py ] » (6.57)
[sin(fz+g)] [cos(fz+g)]
where
2

a, = (a-b) , (6.58)

a, = —(c-1/3)(c-3/3) , (6.59)
and

a. = 1/¢ - (c-a-b)* . (6.60)
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Some simple properties of the profile (6.57) are:

(a)

(b)

(¢)

(d)

All the coefficients, hence the profile, are positive if we require
atb, 1/3 ¢ ¢¢ 3/2, and -1/2 {c-a-b{ 12/32.

The derivative of B vanishes at z = z, if

[tan(fzo+g)]‘ = a’//a, . (6.61)

An a priori choice of z, can be used to fix the other parameters. The

values of the function and its second derivative at z = z, are

B(zo) = £ a1+az+a3+2Jaza3 ] , (6.62)

and

B"(zo) = 8f‘[a’+a’+24a3a3 ] = sz[B(zo) - a1f2] . (6.63)

2
A profile minimum occurs at z, if B*(z )> O or if B(z))> a;f which
implies a,+a,+2fa a_ > 0. A profile maximum occurs at z  if B*(z )< 0

or if a,+ a,+2¢aza3 <0, in which case both a ,and a  must be

negative in order for the rhs of (6.61) to be positive.

From (6.45) and (6.46) the solutions corresponding to the profile

(6.57) are
h = F(a,b;c; sinz(fz+g)) » (6.64)
and
2(1-¢c) .
h, = [sin(fz+g)] F(atl-c,b+l-c;2-c; sin (fz+g)) . (6.65)

Note that from (6.57) if we choose f = k, to cancel the k, tems in
B(z) = k} n?(z), the resulting profile n(z) is frequency dependent due

to the remaining f terms in the denominator sine and cosine functions.
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However, we can scale this out. See the remarks in Appendix 6A.

Bg. 1a.

As a simple example and check on the method, we should recover the

solutions for a constant profile. Let c=1/3 and a=-b=1/2 in (6.57) then
B(z) =k, n'(2) = £ . (6.66)

The solutions are from (6.45)

-2
[

F(1/3,-2/3;1/3, sinz(fz+g)) = cos(fz+g) , (6.67)

and

sin(fz+g) F(1,0,3/3, sin_z(fz+g)) = sin(fz+g) , (6.68)

B
it

both evaluations of which can be found in Ref. 1.2, pg. 1040,

Bg. 1b,

Suppose in the representation (6.56) we choose c=1/3, then we get

B(z) = fz[-4ab - (1-a)[sec(fz+g)]’ - (l-a)z[tan(fz+g)]z] .

For convenience let g=0 and choose f to be pure imagimary, f=if ,, f, real.

Then using cos(if,z)= cosh(f,z) and tan(if,z)= i tanh(f,z) we get
B(2) = £ [ 4ab + (1-a)[sechig,2)1” - (1-o) *[tamn(£,221°] . (6.69)

which bears a resemblance to the Epstein profile illustrated later. Here

however, the eigenfunctions are
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F(a,bycy - sinhz(flz)) ,» €= 1/3

[i sinh(flz)] F(a+l-¢c, b+l-¢cy 2-cy - sinhz(flz)) .

for a=b=c=1/3 we get (Ref. 1.2, pg. 1042)

h = sech(f_z) , (6.70)
1 1

and

h, = tanh(f z) , (6.71)
each of which is a solution of h"-f}h = 0. This makes sense because a = 2
and the only profile remaining is B(z) = f:. The minus sign in the equation
results from rotating z to iz, or equivalently f —if, .
Eg. 1c.

For this example we directly pick the transformation function w(z) as

wiz) = P | (6.72)
Then from (6.50) we have that

u’(z) =-%— eZBz w(1-) ¥ .

]

Let a = ¢ and choose

ulz) = ¢** .
We have a solution provided

1
Y=p-=2+cy or p= (1-¢c) y/2 .
]

Then from (6.52) we get
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2 2
- . [ Q-c)y _ y e ¥?
B(z) [ — ] ab ————l_eyz .

If we want to shift the origin from z=0 define
u(z) = ey(z-z°)
then the constraints are

Yy =28 + cy and ¥ D

with

Bg. 1d. Epstein Profile

Here we choose our transformation function as

u(z) = 1/2(1 + tanh(z/2) ,
so that

1 -u=1/3(1 - tanh(2/2)) ,
and

ull-u) = 1/4 [sech(z/2)]

with the results

v'(z) = 1/a sechz(z/Z) ,

a"(z) = - 1/a sech’(z/2) tanh(z/2) |,
2 - —tanh(2/2)

w'(z) 1 sech” (z/2) _ 1 1-tanh’ (z/2)
ulz) 2 T+tanh(z/2) 2 1+tanh(z/2)

= %-[l—tanh(z/Z)] ’
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(6.73)

(6.74)

(6.75)

(6.76)



and

I-u  1/3[1-tanh(z/2)] 2

w1/ sechz(Z/Z) = 1 (1+tann(z/2))

We thus have from (6.51) that

w' 1Ty  w _, . u
== 7-[-—— ¢ — (c-a) I:;-]

= —% [c - ;— + (1- 12"- ) tanh(z/z)] ’

el [1'] = - %— (1- -2‘5 ) sech®(z/2) ,

and

2

['EL J = %-[(c-a/Z)’ + 2(c-a/2)(1-a/2) tanh(z/2)

2 2
+ (1-a/2)*[tanh(z/2)] ] ,

and if we replace

[tanh(z/2)]1” =1 - [sech(z/2)]"

we have

2
[-5— ] = [te-ar® + (-arny”
+ 2(c—-a/2)(1-a/2) tanh(z/2)

2 b3
—~ (1-a/2)[sech(z/2)] ] :

We can thus write from (6.52) that
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B(z) = B, + B_[sech(z/2)]* + B_ tamh(z/2) , (6.77)
where

B, = [(c-a/” + (1-ar2)?] , (6.78)

B=-FU-Priu-£ -2, (6.79)
and

- 3 (c-a/2) (1-a/2) . (6.80)

-]
]

BEquation (6.77) has the fom of the Epstein profile (Ref. 1.3). Some

properties of the profile are:

(a) B(o) = % (1-a/2)? - % (1-a/2) - :—" - % (c-al2)® - % (1-a/2)®
= -'% [ 1- §.+ ab + [c-a/Z]z ]
= Bo + B1 . (6.81)
2 3
(b) B'(z) = - B_sech (z/2) tanh(z/2) + 1/a Bz sech (z/2) ,
B'(z) = [sech(z/2)1 [1/3 B~ B_ tanh(z/2)] , (6.82)

so that B'(zo) = 0 if
T= tanh(z°/2) = Bz/ZB1 . (6.83)

Since the tanh is positive for zo) 0, B3 and B1 must have the same

sign.
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(c) B"(2) = [sech(2/2)1" [2B,[tanh(z/2)]" - -:i tanh(z/2) - B,] . (6.84)
so that using (6.83) we get
B*(z,) = B,[sech(z,/2)]" [1'- 1]
= -B_ [sech(z /21" , (6.85)

so that z, is a minimum if BI(O and a maximum if B1> 0.

Bg. 2. CONFLUENT BYPERGEOMETRIC EQUATION

As our second example we again start with (6.34) where we now choose
p(x) = (e—x)/x , ql(x) =al/x , (6.86)

The resulting equation is the confluent hypergeometric equation with a and ¢

constants.

Bg. 2a.

Choose both transformation functions as

w(z) =Bz , w(z) = zYesz ’ (6.87)

where from (6.43) we have the constraint

w' u”

2w—=?-u' P(Z)
» 14 » ’
sarm g (e sgr et
__ ¢
=--+B . (6.88)

with
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w' = sz—l eSz + 827 esz = (%-+ 8) w ,

so that
Y - -
2(-; + 8) = B — »

and
5 =B/2 vy = -cl2 . (6.89)

We have that

and

2
B(z) =L—l[ﬂz—m+c—z]—.ﬂ_.

22 4 z z z
=-1g p_—L+ °3
z Z 4z
B B
= B +—1+-_’ » (6-90)
[} z 2
z
where
= -1 .3
B,=-78 . (6.91)
B, = Blc/2 - B) (6.92)
and
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B = 0/4 ] (6093)

2

and thus for an algebraic u(z) we get an algebraic profile. If we want a

profile in a region including z=0 we must shift this origin away.

Bg. 2b.

As a second example we choose an exponential transformation function

alz) = e P2, (6.94)

and from the constraint (6.43)

2-§i - -E; - u P(z) ,
we have that
'Ei = g“°'1‘°_ﬂz’ , (6.95)

so that B(z) from (6.41) can be written as

B(z) = at a e—lﬂz ta, e_sz , (6.96)
where

a = - z—Bz (c—-1) ’

a, = iz -a) , (6.97)
and

a_ = B 14 . (6.99)

Thus for an exponential choice of transformation function we get an

exponential profile.

Bg. 3. BESSEL EQUATION

As a third example, start with (6.34) with
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p(x) = 1/x , alx) = 1-a /x (6.100)

which is the Bessel differential equation with solutions Za(x) where za
represents the appropriate Bessel and Hankel function for a given boundary

value problem.

Eq. 3a.

Choose the transformation function as

u(z) = gz , (6.101)

so that the constraint (6.43) is

’ n'

w , u” LY
2 w—. = .u_' -u P(z) = F -— u— = —ﬁ » (6.102)
and
wiz) = P2/2 (6.103)
The profile B(z) from (6.41) is
d w' v q? Y
- w 14
B(Z)"ET"[;‘] + (u')” Q(z) .
2 2 2 2 2
=-8 + 8" + pta-a’sp%i? . (6.104)
_ 3 2 - az
=g B 2,
z
with solutions
$ = Za(Bz) . (6.105)

Eq. 3b,

Choose an exponential transformation function
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x = ulz) = e—Bz , (6.106)

and the constraint (6.43) is

w' u” u’
2y cw e - BrE=0 .,
so that
w(z) = w = constant . (6.107)

Thus from (6.41)

B(z)

]

2
(u')? Q(z) = p* e 2P2 [ 1 - -2 J (6.108)
e-2ﬁz

P [ o’ ],

so that the solutions of

3

22+ Bz)g =0 , (6.109)
dz

are
$ =2 (e P%) . (6.110)
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APPENDIX 1A. SCALING AND FREQUENCY INDEPENDENT n(z)

In general we have that
B(z) = k: n’(z) = rhs ,

where the rhs contains various constants. We want n(z) to be frequency
independent (i.e. independent of k,), as we previously remarked. We can't
do this for a direct choice of constants since the k, is buried in the
functional dependence of the profile. We scale out this frequency
dependence as follows: Our differential equation on ¢ is

3
-d—;+ kon (z)¢ =0 .
dz

Scale the z-coordinate to give z.=koz so that

2

24 +n’zMp=0 ,
dz

so we are really finding B(z*)=n?(2z*). But this has the same functional
dependence as n*(z). So once we find n*(z*) simply replace z* by z (not by
koz) to get n(z). The correct scaling occurs in the solution since there we

automatically replace z° by k,z.
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APPENDIX 1B. Darboux Theorem

Once we know onme profile and its solution it is possible to find other
profiles in a systematic way. It goes like this:
If the genmeral solution of the second order 1linear differential

equation

d f

dz

= [h+ a(z)]f »

is known for all values of h, and v(z) is a particular solution of this
equation for bh=h,, j. e.

2

dv

dzz

= [h1 + a(Z)]v »

then the general solution of
2

3
8. |p- LI I -
dzz [h hl + V(Z) dzz [V(Z)]] g »

for hth, is given by

_ d [£(z)
8(z) = vlz) T [v(z)] i
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2. SOLUTION OF INITIAL AND BOUNDARY VALUE PROBLENS

In this chapter we study the initial and boundary value problems for
the wave equation, Helmholtz equation, and the parabolic equation. We
discuss the integral representations of the first two in detail. In
addition we briefly mention the Rayleigh—-Sommerfield integral
representations, the extended boundary condition or extinction coefficient

method, the T-matrix approach, and the Kirchhoff approximation.

2.1 WAVE EQUATION

We write the wave equation for the Green's function as

2
[Va - 1—3 J 3] G(Evtli"t') = "8(5—5,)6(t—t') » (1'1)
c ot

which is related to our four—dimensional formulation of the Green's function

by a factor ¢c”'. We assume the Green's function satisfies causality given

by

G(x, tsx',t’) =0 t' >t . (1.2)

That is, mno signal is present for measurement times in the field, t, 1less
than the initial time of the source, t’. We first prove reciprocity given

by

G(£'t$£'nt') = G(E':"t"!p-t) » (1-3)

which yields a relation between exchanging source and receiver positions and
times, The proof goes as follows. Since we have a second derivative in

time we can write an equation analogous to (1.1) in the form

3
¢ ot
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Next, multiply (1.1) by G6(x,-tyx",-t”) and (1.4) by G(x,t>x',t’) and
subtract the resulting equations. Integrate the result over all space and

time to yield
I (x',x"s3t’,t") -}—I (x',x"st’, t")
3\ XX 1 » 2 2 X X »
= G(E.vt.’E":t') - 6(5' :‘t"{’p—t") » (1.5)
where I, and I, are defined as

1 xxmsen,en = fae [[faxsz-tixm -t Ve bx e
(1.6)

-G(x, tsx',t’) VzG(g.—t:g'.—t")] ’

and

2
Iz(g'.g"lt'.t") = IIIdEIdt[G(E‘-t’E"—t") %t—z» G(x, tyx’,t')
(1.7)
2

-G(x, t:g',t') 2——2 G(E."t;g",—t')] .
ot

We prove both integrals vanish, and reciprocity follows from (1.5). 1In I,

use Green’'s theorem on the volume integral part to yield a surface integral
of the form
ffasocag-toxm.mtm 3z 6lx g taxtse0)
Bgr—L3Z 9n  ~st R

(1.8)
_G(x ot‘!'pt') 9—' G(x .-t;x'.-t")] »

where n is the outward normal over any bounded closed surfaces in the
problem. The contribution from the surface at infinity vanishes because

the functions satisfy the radiation condition. The surface is specified by
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evaluating X on S, i.e. g4, If we assume that either G, its normal

derivative, or a homogeneous linear combination of the two vanish on the
surface, then (1.8) is identically zero. Next, write the temporal integral

in I,, using the fact that the integrand is an exact differential, as

[ -]
I dt g—t- [G(E,“t}i"u—t")—g? G(Eo t"{'nt')
2o (1.9)

-G(x, tsg'.t')%; G(g.-tsg".—t")] .

When integrated and evaluated at *» the temms vanish by causality. Thus

both I, and I, vanish and reciprocity follows from (1.5).

In order to derive the integral relation for the wave equation we begin
with equations on the field function ¢ (arising from a source S) and the

Green’s function as follows

_ 2
V'z- 1—3‘ a 2 ¢(5'1t') = —s(i'pt’) » (1010)
c dt’ J
vnz 1 az ’ ') = _5 ’ ') 1
- = -] G(x, tsx’,t") = B(x-x")(t-t , (1.11)
c ot’ |

where (1.11) follows from (1.1) by interchanging variables, viz.

2
[V"— }7 3 z] G(z‘.t'ng.t) = -8(5—5')8(t-t') . (1.12)
c odt’

If we now let t—>-t and t'2-t' we get

3

3
[V'z’ l? 2 ] G(x',~t'3x,~t) = -B(x-x’)d(t-t") , (1.13)
c odt’

and, by reciprocity, (1.11) follows from this. Next, multiply (1.10) by

G(x,tsx’,t') and (1.11) by ¢(x’,t') and subtract the resulting equations.
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Integrate the results over all space and from t=0 to t=« in time. The

result is written as (t=0 is the initial time).

¢(x,t) = ‘!'dt'_”j-dg'G(g,t:g'.t')S(g'.t')

¥ jdt'“-“-d;'[G(f, tix’, t) 7 glx’,t’)
~p(x’ )V 6z, iz’ t) |
- i? ” d;'jdt' g—t, [6(5. tyx’, t’) g—t,¢(5'.t')
—p(x’,t’") g—t,G(g.tsg'.t')] . (1.14)

In the second integral term in (1.14) we use the spatial Green’'s theorem as
in (1.8), and we integrate the temporal part of the third integral whose
integrand is an exact differential. The infinite surface contributions
vanish by the radiation condition, and the infinite time contributions
vanish using causality. The resulting integrals can be restricted using

causality to give the final result

t+
Pz, t) = Jdt'_”_‘-d;'G(;,tsg'.t')s(g'.t')

t+
)
+ Jdt'_”dS' [G(;.ts,;;.t') 357 P(Eg-t’)
0
"‘¢(§'s.t') ¥ Il G(so t:;;. t')]
+ 20 [ffax [otz 02000 Gor sz
[+

4.0 S Sln g 0| (1.15)

in terms of a surface integral over finite surfaces having an outward normal

B - The result for the field function is that it is expressed as a
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superposition of wavelets from the source S, the boundary surface (or

surfaces), and the initial conditions ¢(x’,0) and d¢(x',0)/dt’. Both

initial conditions and one boundary condition specify the problem uniquely.
We now want to examine the separate terms in (1.15). We choose for our

Green’'s function the retarded Green’s function in Ch. 1. It is written as

G(x,tyx’,t’) c Gé”l)(x.x')

_ ¢ d(t-r) _

e P s Tt = cl(t-t’), r= I‘—;'l
1 1
= m S(t"'t'- ? ';“‘g'l) . (1.16)

The first term in (1.15) is

4
9. (x,t) = j&t'[f dx’G(x, tsx’',t')S(x’',t’') , (1.17)

which is an integral over the domain of the source function S. Recall that

G was a retarded Green’s function and yielded the representation

p (x,t) = 1%;-[[]h;' S(x',t-z/c) , (1.18)

where we have used (1.16) in (1.17) and integrated over time. The result is

a field ¢, due to sources integrated over those spatial values such that its
temporal values occur before the measurement time t, i.e. at retarded time
values.

We next discuss several examples.
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Eg. 1. NOVING POINT SOURCE

Although many applications relate to fixed sources, we can treat the

signal received by a moving point source as follows. Choose

8(x',t') = 8(x'-R(t’)) , (1.19)

which is a point source moving on a path R(t’). See Fig. 2.1 below.

= y(t,) Fig. 2.1
t
1]
Using (1.16) and (1.19) the result of (1.17) is
1
+ S5(t-t'- — IE—E'I)
$.(x.t) = Iat'”[dy e 8(x'-R(t") . (1.20)

The volume integral can be easily evaluated to yield

1
# Blt-t'- — Ix-R(t"H P
¢, (x,t) = lat TR (ED] . (1.21)

To evaluate this final integral use the relatiom

f 8(t’'-t ) g(t )
g(t*)8(£(t’))de’ = |g(t’) — dt’ = - , (1.22)
I [af7de"| Jag7at'T,, _ t,
where
-1
g(t’) = [4n |5—§(t')|] , (1.23)
1
££) =t -t - = |x-R(e")]| (1.24)

and t, is given by the solution f(t,) = 0 so that it satisfies
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_, 1
t, =t - = xRt )] - (1.25)

We also have the result

as 1 dr [x-R(t’)]

M-l T (1.26)

To carry out the integral we require that 0<t,<t. The result is the

contribution from a moving point source

o(t-t )o(t )
1 [ °

¢1(53t) = H 1 1 4R » (1.27)
I=-R(t )1~ < -&g—,-]to- [x-R(t )]

which is called the Lienard-Wiechert potential. It can also be written as

o(t-t ) o(t )
] [ ]
4n |x-R(t )]

[y

. (1.28)

¢, (x,t) = I % g(to)-‘ﬁ(to)'
For the special case v =0, the result of the spatial and temporal
superposition of spherical waves is a pulse-like solution. Note that we
have evaluated the last delta function in (1.21) assuming only one solution.
For a homogeneous medium this is always true. The reason is that there is
one arrival time and thus a minimum path for the signal, A signal along any
other path would arrive at a later time. However, in an inhomogeneous
medium this might not be true. Even though the distance may be longer for a
second path, the point source speed v in an inhomogeneous medium might be
faster than the wave speed ¢ in the homogeneous region. The result could be
the same arrival time for two waves, omne which radiates solely into the
homogeneous region to the receiver, the other where the source travels a
distance in the inhomogeneous medium, then radiates into the homogeneous
medium to the receiver. An example in electromagnetic theory is the
Cerenkov effect, where the signal travels faster than the speed of light in

the inhomogeneous medium. Note this is phase velocity.
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Eg. 2. MOVING DIPOLE SOURCE

As a second example, consider a moving dipole source term. For

simplicity we write the dipole in only one direction, the x-direction, as

S(x’,t') = 8'(x'-R(£"))8(y")6(z") . (1.29)

in the x-direction. A sum of dipoles in the x, y, and z directions would
correspond to an approximation of an explosive source. The moving dipole in
a single direction could correspond to a very simple model of a fault or

earthquake. The result for (1.21) is

j+ S(t—t'—% Iz-x'D
(x,t) = fat’ ||]ax’ ' 5'(x'-R(t'))6(y")8(z') .
Pl ® Iffe- dnlxx’l ’ T Qa0

If we integrate by parts we get

1
+ 8(t-t'- = |x-x'|)
’ , 0 c '~ o~ ' ’ ’ '
¢, (x,t) = - j‘“ [ﬁd; =[] 8(x'-R(t')8(y")6(z") .
(1.31)

The integrand has two temms

1 1
2 [S(t-t')" Y l=-x' D - 8'(t-t'~ — Iz’ D 1 (x-x')
ox’ | Iz-x'1| l=='1 ¢ lz—x'l

p——y
8lttr- o g B L a2
lz-x’ |

The first term can be written as

8'(t-t'-% Ix=-x'|)

$ylzt) = -[dt'”[dz' , “‘:" 5(x'~R(t'))8(y')8(z")
4n |x-x’ |
- -1 j ' e (E(e :
= =gy jatt 81 (£(e)) gty (1.33)
where
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f(t’') = t-t'--i— I;—;'l

1/a (1.34)
t-t'- %-[[x—R(t')]z + yz + zz] ’

and

g(er) = xRt 1 X (1.35)

© [x-R(t")1” + y’+ z®

We can evaluate this integral using integration by parts

Idt' %?,-S(f(t'))m-f—rg(t')t

jht' 5'(£(t*))g(t")

Idt' 5(£(t’ ))ﬁ-r [‘;(ft; (1.36)

]

1 g(t’) ] l
~ Tat7ae |t dt' £ (")

where t, arises from f(t,)=0 and hence solves (1.25). We thus have that

'(t ) glt)
1 1 f“ ol 0 "
P (x.t) = 4= [,y lf'(t") [f'(to)]’ f (t.)] . (1.37)
To evaluate (1.37) define
1/3
D(t’) = [[x-x(t')l’ vy z’] . (1.38)

Then we can write

£(t’)

1
—p e o
t-t P D(t') ,

and

2

g(t?) %-[x—R(t')] p 2ty

so that
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1 R'(x-R) _ R'(x-R)-c D

f' = —1 + c D bl c D »
g = [R*(x-R) - ¢ D) LRIR® L fpuiep) — (r)* 4 c521%151]
¢ D
_R"G-R) _ (R [R7(x-R)1”
c D c D c D’ !
and
vy 1 o0y 02, xR -3 [-R’ (x-R)
g = ;'( R') D + e (-2)Db [————B———] .
_-R L2 RGBT
c D3 c D‘
Combining these we get
2
_ ¢c R D .
8 4n|R*(x-R) - ¢ D|
2 3 3
. 1 - 5_ (X"'R) -2 (x—R) + R (X"R) , (1.39)
R’ ¢cD D’ c D’

where each term is evaluated at t'=t, with t, a solution to £f(t,)=0 or

1
t, = t- ;-|5-R(to)3| , (1.40)

with D defined in (1.38). p, has the dimensions (length) .

The second term in (1.31) is defimed as

2 el e e

iiifll? S(x'-R(t')6(y')6(z') . (1.41)
lx-x' |

Spatial integration yields
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+
1 , , 1 vyy [x-R(t?)]
’b == Ii'jat S(t-t'- ;-D(t )) —I;?:T;;?- ’ (1.42)

where D(t’) is definmed in (1.38). To evaulate this umse (1.22) to get

[x-R(t )]
p =—_1. e 1
b 4n [D(to)ls Idf/dt'lto

1 clx-R(t )] D(t ) 1
4n  [RTGR) - ¢ D] [py;?
(]

x-R(t )
°

’ (1.43)

310

"p*(t,) |R*(x-R) - c D

which also has dimensions (length)™2?. This can be rewritten as

3 . 3
9. = - c R'D [[R'(x—R) - ¢ D] (x—R)]
b 3 3
4n|R'(x-R) - ¢ D l cR’'D
- %: R’'D (x-R) Ik'z(x-k)z -2c¢ DR'(x-R) + ¢ Dz]
g |IR*(x-R) - ¢ Dl3 l c Rk D
_ 2:_ R'D [c(x-R) - 2(x-R) + R'(x—R)’] . (1.44)
" lrrz-r) - ¢ p|’ | D D’ ¢’

Thus ¢, from (1.31) and (1.32) is
¢1=¢a+¢b ’

and from (1.39) and (1.44) we get
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2
c R'D x-R 3
$. = — 1 - ——— [R"(x-R) + ¢ 1] . (1.45)
1 4 |R'(X—R) -c D" cR D

The first term in the brackets in (1.45) is the far field tem and the
second term a near—field term.

As a simple check on this result, suppose the dipole is fixed at x’'=0,

i.e. let R(t’)=0. Then

D= (x + y + z )1/3 s

and only the second term in (1.45) contributes. The result is

Ny |

which is the standard result for a fixed dipole source.
Dipoles moving in other directions can easily be computed using the
form (1.45). We relable the source in (1.29) indicating that it is in

the x—direction as

S (x',t’') =86'(x'-R (t*))d(y")d(z') .
x~ 1
If we also define from (1.38)
/3
p,t) = [k cenn® + 57+ 27

Then (1.45) is for a moving dipole in the x—direction

2 R! D x—R
Dx _ ¢ 11
b " an IR'(x_R ) —¢D I’ [ T CR3D,y [R” (R, v ]] ’
1 1 1

A moving dipole in the y-direction is
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S,(xt") = 8(x")B(y'~R, (£))8(2")

and if we define

1/3
Dt = [&* + [yr(e1” + 27

the result analogous to (1.45) is

Dy _ c2 R'z Dz rRz " 2
% T 3 " orp. [RI(R) + e )p .
IR; (y-R,) - cD,| 372

Similarly in the z-direction we have
Sz(f'.t') = ﬁ(x')s(y')ﬁ(z'-Rs(t')) ,
and

1/3
D (t’) = [xz + yz + [z—R,(t')]z] ’

and the result we get is

% - o i [ 1ot [R" (z-R ) + c’J]
= o - ——— z- .
* An |R;(z-R,) -c Dal3 cR;D, ? ?

For the second term in (1,15) we write
- 3
¢, (1. t) = jht'[]hS'l%(;.tazg.t’) 75 Pl L)
- ' ’ a__ ’ [
plx ., t’) an,G(g.t’gs.t )] . (1.46)

For the boundary condition we have either the Dirichlet boundary value

problem

g(x,t') =0 , (1.47)

or the Neumann boundary value problem
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g—n—. plx!.t’) =0 . (1.48)

If we choose the Green’s function such that it has the corresponding
boundary value G(g.t:g;,t') = 0 or aG(;.t:;;,t')/an' = 0 then ¢, vanishes.
The proviso with this convenient method is that ome can find a Green's
function which say vanishes on the boundary. It is usually only possible to
find this image Green’'s function for simple geometries involving flat
planes, cylinders, and spheres for example. For an arbitrary boundary this
in effect would amount to fully solving the problem. In any case we get ome
term to drop by our choice of boundary condition on ¢ or 9¢/dn’. To solve
the problem we must write an integral equation on the remaining boundary
value (either ¢ or 9d¢g/dn’'). We do this in the next section for the
Helmholtz equation. We also treat, in the next section, an example for a
flat interface where we can find an image Green's function. The result will
be the Rayleigh—Sommerfeld diffraction formulae.

The third term in (1.15) is
¢.(x,t) = l—-III&x'[G(x tx’ 0)«2— é¢(x’',0)
3 ~’ cz > ~' ~ » at' ~ »
- $(x’,0) L 6(x, tsx’ o)] (1.49)
A T ’ ’

in terms of initial conditions on the field, i.e. p(x’,0) and 3d(x’,0)/0t’.
Again if we are able to choose the Green's function such that its inmnitial
values matched those of p, the term would vanish. Regardless of the choice
of G, both initial values on ¢ must be known, so once we specify the choice
of G, this term is a known function., We specify the initial conditions om
the retarded Green's function later in this section.

To summarize, we have that
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$(x,t) = ¢, (x,t) + ¢,(z,t) + ¢,(x,t) , (1.50)

with o  given by (1.17), ¢, by (1.46) and ¢, by (1.49). ¢, is known if G
and S are known., ¢, is only partially known since either ¢(L;.t') or
d9(x,,t')/dn’ is known but mnot both. $, is known if G and both initial

conditions ¢(x’,0) and 3g(x’',0)/9t’ are known.

2.1.1 FOLL (BOUNDARY) GREEN’S FUNCTION

Rather than find the field function p due to a gemeral source term S,
we instead find the Green’s function ¥ due to a point source, i.e. we want
to solve for the function ¥, the full Green’s function, which satisfies the

equation

[v" -1 2 3] P(x',t'yx", t") = -8(x'~x")8(t-t") . (1.51)
[+ .

This is the same as (1.10) if we replace ¢ by T and S by the point source on

the rhs of (1.51). Equation (1.15) then becomes

r(spt‘s.pt”) = G(E,t’s”.tn)
* 2
+ jdt'IIdS'[G(g. txl.t) S r ezt en)

on’

- F(x',t"yx",t") 9__ G(x.tyx'.t')]
~s ~ on’ '~ ~s

1
+ = [[fox: [otz trxr.00 2 20xr 0027, 1)
Cc

- Mz, 0t Glx 0] L (1us2)

which is the integral representation for the full Green's function of the
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problem. Once we know its solution we can find the solution for any source

S(x’,t") by multiplying (1.52) by S(x”,t"”) and integrating over x" and t".

For example, the result due to a source S is just

¢G5 t) = farr[ffax" Pz tixr,tmsxm, 0 . (1.53)

OQur specification of the initial-boundary value problem is amnalogous to
before. We assume G is known, and specify one boundary condition on either
T or its normal derivative, as well as both initial conditions on ¥. The
full solution of the problem requires us to solve an integral equation on
the remaining value evalunated on the surface. Note that if ¥ and G satisfy
the same initial and boundary conditions, both integral terms vanish, and

Y = G which is the complete solution of the problem.

2.1.2 INITIAL CONDITIONS ON G(”I)

From Ch. 1, Eq. (1.,12), we have a representation valid for any Green's
function solving the wave equation. It is writtem in temms of the pole

shifts and is given by (x = (x,x,), wg = 's')

ik-x —ikoxo
(3,2) -1 e e
' (x) =R —— | P dk dkx
(2m)* IIII k: - 0y °
" eil"i‘- ~io x, iw x,
+ 5 “‘-“IT a e -Be dk . (1.54)

The initial condition on G(®s) jis specified at x, = 0 so that
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[ i o

G(s'l)(E,O) -
(2m)*

ik-x
+ %1_ (a-p) “IO_T dE] . (1.55)

We can evaluate the k, integral in the first term directly

dk, [ 1 1
pj = ni + -0 , (1.56)
k:- w; Zwk (—Zwk)

so that it always vanishes. The second term vanishes if a = B, i.e. for the
retarded (R), advanced (A), and principal value (P) Green’s functions. So

we have the initial conditions

6 (z,00 = 0 (R,AP) . (1.57)

The time derivative of G(®*) is from (1.54)

(3,1) ~ (- ik ) e-ik %o
5,60 - - o [ g 01— o ax ax,

ikex
~ o~

3 i3

Next set x, = 0. The first term vanishes identically because the integrand

iw, x iw, x
[-imk][ae K® e E °]d;5] . (1.58)

of the k,—integral is an odd function. The second integral be come s

. ixx ,
7 (a+p) III e dk = %-(Zn) (a+p) 8(x) , (1.59)
so that

2,67V (2.00 = - L (ap) 800 . (1.60)
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For the retarded Green's function @ = 8 = -1, for the advanced Green's

function a = p =1, and for the principal value Green’s function ¢« = g = 0,

so we have

3,6 (£,0) = [ 1/2 8(x) (R)
~1/2 8(g) (A) (1.61)
0 r) .

By (1.16) we thus have that for t = t’ =0
6(z,052°,0) = ¢ 687 (xx7,0) = 0 (1.62)
and that
%_WG(E't’E"t') - o R /x>
t t=t'=0
= 1/2 8(x-x') . (1.63)

Note that in our integral representation (1.15) the initial condition is set
at t' = 0 for the source. This was a matter of choice and led us to
integrate the representation from 0 to ». The integration was reduced by
causality. The initial condition on the field was thus at t = 0, expressed
under the integral by ¢(x’,0) but on the field function as ¢(x,0) for
example.

We can derive these initial conditions another way. We have specific

functional forms for the Green’s functions which enable us to derive these

results directly. For example from Ch. 1 we have

(1.64)

H4

(s,1) 0y = O(r-t)
GR (x.x ) -1?

where
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x = (gx,), r=|gx'|, and T =clt-t’) .

~

Evaluating this function directly we have

(3,1) , - 6(r)
Gg (x,x') =0 yp ’ (1.65)
and
a 642 (x,x") - - z——s'(” (1.66)
o R » c = 0 o . .

If we evaluate these terms as distributions and integrate over all space we

get for the rhs of (1.65)

nr

@ T
Jr’ dr ] sin edoj ap =) - o, (1.67)

and for the rhs of (1.66)

@ n ’
Ir’ dr 3 sin 040 j«w[— 2;”

- - J £8'(z) dr = J 8(r)dr = 1/3 . (1.68)

Note that if we wrote Gé”l) with a step function O(t), the derivative
contains &6(r)/4nr which vanishes as a distribution in three dimensions.

Hence as distributions

(a) &8(r)/4nr is equivalent to zero in three dimensions and
(b) -8'(r)/4nr is equivalent to 3/2 5(x) in three dimensions

so that our result is for G
G(EIO‘E'DO) = 0 »

3,,6(x,0;°0) = 1/» 8(x-x") .

as before.
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2.2 HELNHOLTZ EQUATION

In this section we construct the integral representation for the
solution of the Helmholtz equation as well as the integral equations on a
surface field value necessary to solve the boundary value problem. We do it
in a different way from the wave equation, by using index notation. We

assume the field ¢ satisfies a Helmholtz equation with a source S
2
(6583 + k) #(x’) = -S(z') , (2.1)

and the equation for the Green’'s function satisfies the same equation but

with a delta function source

(3)

(390’ + &) 6 (x,x") = -6(x-x*) . (2.2)
J J o i) e e

Note that the differential operators in (2.2) operate on the source
coordinate, which is explicitly permitted by reciprocity.

We assume that G(') is a known function and that p safisfies certain
boundary conditions which we specify later. Also here we assume that the
differential equation (2.1) and source S are valid and exist only in a half-
space. We assume perfectly reflecting boundary conditions on this half-

space illustrated below.

S(x’) : SOURCE

V1 z=h(x ) : SURFACE

Next cross multiply the equations to form

- 107 -



(3) ’ 'a 2 ’
6 (zx) i) + k )p(x’)

[y + 06 () |pan) = 6 xS

+ o(x’)8(x-x') . (2.3)

The k: terms cancel and the left hand side can be writtem as a divergence.

The result is

#x8Gx) = 67 (128G + 3} Fonx) (2.4)
where
_ ¢ '
Fj(g.g') = G (5.5')83 g(x’) - 83 G(x,x') |g(x’) . (2.5)

If we multiply (2.4) by the step function

e(z' - n(x})

and integrate the result over x’, the result is restricted to V, in the

figure by the step function, and we get

#(x)6(z - h(z,) = IJI 6 (x,x)8(x")ax’
1

* III [33 Fj(5’5')]e(z' - h(x!)dx' ,  (2.6)

where the source integral is restricted even further by its support (which
must be in V,). The latter integral im (2.6) can be integrated by parts to

give
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III[33 Fj(g.g')]e(z' - h(g{))d;’

- - {{f Fy(x.5') 9] 0(z' - h(z)))dg’ . (2.7)

It can easily be seen that since the integral is over all space, each

integrated term vanishes. For example the j=1 integrated term is

x=+cw

[
(]
L]

Fl(g.g')e(z' - h(sé)) '
x'=—c

The step function derivative in (2.7) is

85 e(z' - h(z;)) = §(z' - h(sé))n (5{) ’ (2.8)

3

where the delta function is the characteristic function of the surface and

n. is
J

nj(fé) = Sjs— ajth(gé) ’ (2.9)

which is a vector in the direction of the surface normal (but mot a wmit

vector) and the derivative terms for j=1 and j=2 are

= d ’ = d ’
hx, = a—xr h({t) » hy' = a—y,' h('!t) » (2.10)

which are the surface slopes. We assume the surface is differentiable., The

result yields for (2.6)
#(x)0(z - b(z)) = ¢ () + ¢°°(0) (2.11)

with the total field (on the lhs) given in terms of the incident field
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Pin(g) = Ill G(s)(g.;’)S(;')d;' , (2.12)
1

and the scattered field
o = - [f[ Fi(xx)n, (80" - h(xp)ax’ (2.13)

We can evaluate the delta function im (2.13) by setting the vector x’ on the

surface, 5;=(5t'h(5t))‘ to yield
sc ’ ’ r
@ = - ([ Fi(zx)n (5))dx; (2.14)

As an example, if S is a point source

S(x') = 8(x' - x")

the incident field is that field due to the point source evaluated at the

field point x. Since G(’) satisfies our outgoing radiation condition it is

¢in(5) = G(R’)(zosn) .

In general we can write the integral representation for ¢ with zeV, as (from

(2.11), (2.13) and (2.5))

(3)

p(x) = p'%(x) + [[[ﬁ"’(s.g')¢(x;) - 6" (5.5;)N(5;)]d;£ , (2.15)

in terms of the nommal derivative of the field evaluated on the surface
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"y - ’ ’
N(x ') nj(gt)aj p(x) (2.16)
and the normal derivative of the Green’s function
(5»5;) . (2.17)

N(’)(x.x') =n,(x')3’' G
~'~g J ~t J

The representation (2.15) is called the Helmholtz—-Kirchhoff Representation

of the field. Our boundary value problem consists in specifying either N or

¢ on the surface and then constructing an integral equation on the remaining

boundary value. There are several ways to do this which we now describe.

Eg. 1. FIRST KIND EQUATION FOR N

We assume that ¢ satisfies a Dirichlet boundary condition on the

surface, i.e.

p(x ) =0 . (2.18)

From (2.15) we thus have that in the limit as z—>h(x,) (where zeV,) so that

x>xg the lhs vanishes and we get
%5 = [[6' xxNG e (2.19)

which is an integral equation of first kind for N. Both ¢if and 6(*) are

known, and, as we noted in Ch. 1, 6(?) is continuons at the boundary. The
square root term in its denominator is an integrable singularity. Once we
solve (2.19) for N, we substitute the result into (2.15) using (2.18) to

yield the field representation
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oo = #1% - [f6' eapnGag; . (2.20)

Eg. 2. SECOND KIND EQUATION FOR ¢

psatisfies the Neumann boundary condition on the surface, i.e.

N(gs) =0 . (2.21)

In the limit as z-> h(x,), x> x, the lhs of (2.15) goes to ¢(53)' To find

the limit of the normal derivative of the Green's function in (2.15) we

recall from Ch. 1 Sec. 5 that we can write

916 (2,27 = - 7 R (x-x)) + 3 8, smn(a-h(x)B(z X)) , (2.22)

which is analogous to Eq. (5.20) in Ch. 1 except that here we are
differentiating on the source coordinate inmn G(’) and we thus have an overall

minus sign. The limit of the integral resulting from (2.15) thus yields

1 in 1 , ,
78 =9 - 7 [Pz xnea dax;
or

#x) =265 - [Pz xDexDax; (2.23)

where the function P is defined as

P(x ,x’') = n (x")R,.(x —x') (2.24)
~g ~S ~t ~s ~§

3 J

in terms of the regular part R;. The latter is defined in Eq. (5.21) in Ch.

1, The result, (2.23), is an integral equation of second kind for ¢. The

result when solved is substituted back into (2.15) to give with (2.21) the

resulting field expression for ¢
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s = #1% + [N mrnsana . (2.25)

A Born approximation to (2.23) (i.e. neglecting the integral term)
illustrates that for a vanishing normal derivative on the surface, the field
on the surface is twice the incident field. This is also equivalent to a
Kirchhoff approximation for a reflection coefficient equal to one. There is
a well developed theory for solving integral equations of second kind,
First kind equations are more difficult to solve in general. (Refs. 2.2,
2.3 and 2.4.)

We have found an integral equation of first kind for N for the
Dirichlet problem, (2.19), and a second kind equation for p for the Neumann
problem, (2.23). We can also find a second kind equation for N and a first
kind equation for p, To do this, differentiate (2.15) and multiply by the
normal to get

n (x,)3 ¢(x) = n_(x,)9.¢" (x)

+ _“[nm(_gt)amN(") (5.5;)¢(5;)

-nm(;t)ams(”(5.5;)N(5;)]d5; . (2.26)

. 3. SECOND KIND EQUATION ON N

&

Let ¢ satisfy the Dirichlet boundary condition (2.18). Substitute the
result in (2.26) and take the surface limit as x—>x - The nomal derivative
of 6(?) produces a regular part plus a jump discontinuity. Here the
differentiation is on the field variable of G{®) and the result (5.20)

applies. The resuting limit of (2.26) is
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in ’ 1 ’
NGzg) =2 NGz - [Pl zNGax; (2.27)

where N(x_) is defined by (2.16), Ni® is defimed by

in _ in
Nz ) = (x)8 9" () . (2.28)

and P differs from P in (2.24) in that the normal is a function of the

exterior variable, i.e.
P(x ,x') = n (x.)R (x ~x') , (2.29)
~8 ~s m~t m~s ~s

defined in terms of the regular part Rm in (5.20) in Ch. 1. The result

(2.27) is an integral equation of second kind for N. Its Born approximation

is that N on the surface is just twice the normal derivative of the incidenat
field, and this is the same as the Kirchhoff approximation for a reflection

coefficient equal to -1,

Eg. 4. FIRST KIND EQUATION FOR p

For the Neumann boundary condition (2.21) the limit as x—>xg of the lhs

of (2.26) vanishes as does the second term in the integral. Recall from Ch.

1 that we can regularize the second derivative of 6(*) as
3 306" (x,x) = B_ (x-x")
m J ~ o~ nu ~
+ . (z-z')|8_ 9. + 6.0 8(x, -x!') (2.30)
7 sentzmz m3" jt j3 mt ~t ~t ’ *

where here we are differentiating once with respect to the source (primed)
variable and once with respect to the field (unprimed) variable (see

(2.16)). The regular part Rmd is defined in (5.55) of Ch. 1. The resulting
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limit of (2.26) becomes

in ’ ’ .
N g = - [fazzeax;
1 ’ pa— ’ .
-3 [[]en; o xpay, + o, 080,20 [ptsas;
(2.31)
where
Q(x ,x') =n (x, )R .(x ~x')n_(x') . (2.32)
~s ~s m~t mj ~s ~s j ~t

The delta function terms in (2,31) all vanish because they integrate to the
normal derivative of the field evaluated on the surface and this is assumed

to vanish. The final result is an integral egqumation of first kind on ¢,

-Nx ) = [Q(;s.;;m(;;)dgt' . _ (2.33)
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2.3 RAYLEIGH-SOMMERFELD DIFFRACTION FORNULAE

From (2.15) if we assume that S=0 so #10=0 (zero source condition), and
that we have a problem with a flat geometry, it is possible to find a
Green's function using an image source which either vanishes on the (flat)

boundary or whose normal (i.e.z) derivative vanishes. Our free-space

retarded Green's function is

o ik |x-x'|
3 _ e
GR (505') = n 5_5, L] (3-1)
Boundary Green’s functions can be written as
(3) (3)
Gi(E'E') = GR (5:5') * GR (Los'i) » (302)

vhere x=(x,y,z), gz'=(x',y’,z'), and ;;=(x'.y'.—z'). It is easily seen that

on the z’=0 plane

G_(g,gé) =0 , (3.3)
and

2 6.(x,x") =0 (3.4)

9z' "+ ~°St * :

Similarly it can be shown that for z’'=0

’ — (’) ’
6, (x,x1) = 26p "(x,x1) (3.5)
and
’ ' "y — 0 0y = _ '] (3) .
aj G-(5'5t)nj(5t) =357 6.(x.x)) = -2 53— Gp "(x,x)) (3.6)

where the latter relation in (3.6) is written in terms of differentiation on
the field coordinate z.

If we choose G(®) = G, in (2.15) we get the result that, for the flat
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boundary, (3G, /3z' = N(?) = 0) the field representation is
— (3) ’ ’ ’
o = 2 [fog” xxpNGDax (3.7)
where
Nx!) =2 ptxn) (3.8)
) Tz flxy) - .

If we choose G(’)=G_ in (2.15) so that on the flat surface G(’)=G_=0 and

N(2) -2 aeé’)/az we get the result
(5.§£)¢(x‘)d5' . (3.9)

s = 2 55 [fo

Equations (3.7) and (3.9) are the Rayleigh-Sommerfeld diffraction formulae

which yields the field value in terms of either boundary conditions on N or
" ¢. Note that the formulae are not useful for Dirichlet or Neumann type
problems. (Refs. 2.5 and 2.6.)

One advantage these fomrmulas have is that they are self-consistent,
i.e. as x>z, (z50) the limit of the function #(x) in the field is equal to
whatever is assumed for ¢ on the surface, and similarly for N. For example,
the limit of the 1lhs of (3.9) is p(x,). The limit of the rhs can be found
from our regunlarization of the derivative of Gé’) from (5.20). For j=3 it

is

) (), __,y 1 _ _1 o
Y GR (x Et) =3 R (x 5t) ¥ sgn(z)&(;t gt) ’

where from (5.20) and (5.18)
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2
ike fx~x’ K
R, (xx!) =21 _ _[”e =Bl 53 () P[-i]dk .
~ ~t 3 R k ~
(2n) z
In the limit of 2=0, R,=0 since it is the integral of an odd function of k,
ﬁé” is an even function of k,, and the exponential is not a function of k,.

The result is

lim @ (3)

iy = - 1 —!
2> 0 -EGR (5"‘5)— -2-8(! x) ’

t ~t ~t

which when substituted into (3.9) yields the self-consistent result that
$(x) = ¢(5t)' Similarly, if we differentiate (3.7) with respect to z and
take the limit as z—0 we get the self-consistent result N(gt) = N(xy).

The Rayleigh-Sommerfeld fomulae can be used for other geometries where
it is possible to find image—type Green’'s functions, i.e. geometries
containing canonical shapes such as cylinders, spheres, etc. They are also
a useful starting point for geometries where the shape is nearly canonmnical,
i.e. where the shape can be defimed in a perturbation sense as canomnical
plus a small correction.

It can also be shown that the Rayleigh-Sommerfeld diffraction fommulae
are consistent with the Kirchhoff boundary conditions on ¢ or N (see Sec. 6)

except at the edge of an aperture. (Ref. 2.7.)
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2.4 EXTENDED BOUNDARY CONDITION

In (2.11) we established the integral relation for the field

$(8(z - h(x)) = ¢ %) + ¢°°x) (4.1)
where
¢in(5) = Ij‘ﬁ(’)(g.gé)S(g')dg' ’ (4.2)
8
and
s¢C _ (3) , o (3) , '
@ = ([N @xnei - 6 NG o (4.3)

The total field in V, is thus due to volume sources S, and to a layer of
point and dipole sources on the surface h with source demsities N(x;) and
¢(5;) respectively.

If we assume that zeV,, the lhs of (4.1) is zero and the result is a
volume boundary condition

¢in(5) + ¢sc(5) =0 xeV, , (4.4)

3

called either the extended boundary condition (Ref. 2.8), the extinction
coefficient (Ref. 2.9) or the null field equation (Ref. 2.10). It is just
that boundary condition on the scattered field, hence omn the point and
dipole sources, necessary to extinguish the incident field everywhere in V,.
Hence it is a volume and not a surface boundary condition. The induced
surface fields extinguish the incident field everywhere below the surface,
and directly incorporates into the solution of the problem the fact that the

field in region V, must vanish identically.
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2.5 T-NATRIX

Our field representation from (2.11) is
$(x) = ¢1n(§) + ¢sc(5) xeV . (5.1)

We choose the Dirichlet boundary condition (2.18) so that

sc (3) (2 Ly N(x")da?
0 = - [[6" mxonGa (5.2)

which follows from (2.15). Use the Weyl representation for G(’)=Gé’) from

(4.11) in Ch. 1 where z’ is evaluated on the surface

) exp [ik *(x -x')+iK_|z - h(x!) |
Gé’)(x.x') = 11 II [ t ~t ft hd t ] ae,. , (5.3)
~*Zg (z0)° + t

where K+=(k:+-k:)1/’. Assume 2z is greater than the highest surface
excursion so that the absolute value inm (5.3) can be dropped. Substitute

the result in (5.2) so that we can write

#°°0) = [[ exp[itk, x, + K] ag, . (5.4)
where
—ni ’ ? ’ [4
T(k,) = Go'E “ exp[—i[§t°5t - x+h(5t)j_| N(x?)ax! . (5.5)

Thus #5¢ can be expressed as a sum (integral) of upgoing (propagating) or
decaying (evanescent) waves in the positive z-direction. T is derived from
the surface source density N and is called the T-matrix., It is directly

related to the scattering cross section.
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In order to solve for N and hence T (by (5.5)) and hence the scattered

field in V, (by (5.4)) we use the extended boundary condition (4.4). Then

for xeV,, (5.2) becomes
pi%(x) = ”G(’)(;.z;) N(xl) dzf . (5.6)

Assume z is less tham the lowest surface excursion so that the absolute

value in (5.3) can be dropped. The result inserted in (5.6) yields
3, =1 ~in . ’ ’ ’
0’ )k §0%ky) = [[ em[-ix,x ¢ impapNapa; 6o

which is used to determine the surface density N in terms of the Fourier
transform of the incident field.

This method has been extended to scattering from a multi-layered single
body and to multi-bodies. It is also possible to develop a way to find T
directly in temms of quantities which do not directly involve the surface

fields. (Ref. 2.11.)
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2.6 KIRCHHOFF APPROXIMATION

The Helmholtz-Kirchhoff integral representation for the field is given

by (2.15) as

- )
pm = s + ([N s - 6PNy e (6.1)

The Kirchhoff approximation consists in assuming both the surface and normal

surface derivative values of the fields, i.e. both ¢(g;) and N(zg). To

motivate the choice of boundary conditions we consider plane wave scattering

from a flat interface. The total field is
$(x) = ¢ (x) + R ¢, (6.2)

where R is the reflection coefficient and ¢in and ¢5°¢ are incident and

scattered plane waves, the latter of which is specular so that

pi%(x)

exp[ik, [o,x + B,y - 7,2]] - (6.3)

and

¢s°(5) exp[ikl[uox + By *+ 702]] ’ (6.4)

where a,, B,, vy, are the direction cosines of the waves. On the surface z=0

$(x,,0) = (1 + RI$ "(x,,0) . (6.5)
and

) in

37 #(x,,0) = -ik v, (1 - R)¢" (x,,0) . (6.6)
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We assume the true interface is gently undulating so that we can
replace the z-derivative by the normal derivative. Also we evaluate the
terms on the true surface, not z=0. We thus have the approximate boundary

conditions

plx)) = (1+R) ¢'M(z2) = ' () (6.7)

and

N(x!) = - ik v, (1 - Rg'%(g2) = N'(z)) . (6.8)

Then the field is known from (6.1).
Note that in the limit as x> x, or z—> h(x;) the result of (6.1) is

wsing (6.7) and (6.8)

in (3) ’ 2 ’ ’
px) = 0%z - [z xN xagy

B %’j]b‘ls'5;’¢°‘£;)ds; * %—p°(ss) , (6.9)

so that we do not in general recover the assumed surface value i.e. P(x.) is
not necessarily ¢°(5s). Differentiatiné (6.1) using the nommal derivative
merely yields another equation (which is linearly dependent) and no recovery
of surface field values which have been assumed.

If we do take the normal derivative of (6.1), i.e. multiply by nm(it)am

and pass to the surface limit we get
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Nz = N + [[ate . z)6° (x2)ax;
+'% II[(njt(5{)ajt LTS LA LD M 5£)1¢°(5;)d5t
_ %.I]F(gs,gg)n°(5;)d5;
+ -;- No(gs) .

Integrating the delta function terms gives an additional term N° so that

! ° ’ "l- ’ 0 ’ ’
+ II[Q(55.58)¢ (x!) - 3 Pz, x)N (ss)]dzt ,

where Q and P are definmed in (2.32) and (2.29) respectively. Again we do
not in general recover the assumed boundary condition.

If however we do assume that we recover the boundary comdition so that

(6.9) becomes
CREER NI | D ORI
- IP(E‘S’!‘;)¢° (5;)(15;: »

and we substitute in (6.7) and (6.8) we can solve for the reflection

coefficient to get

i i ' (3) S S PR
p M (x,) - j]b(58,5;)¢‘“(5;)d5t +2 ik1y°j]b (x .59 "z )dx!

R =
i 1
p " (x,) + j]b(gs.gg)¢i”(;;)d5£ +2 iklyol]b(s)(gs.g;)¢ “xax!

which in theory should be independent of x,y and h.
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Ch, 3 - Sec. 1

3. ELASTICITY

In this chapter we study the propagation and scattering of waves in
elastic media. To do this we derive equations satisfied by the
longitudinal and transverse displacement components, discuss the free—space
elastic Green's function, and use it to construct integral representations
for the full Green's function (or displacement) in tems of values of
displacement and traction (stress) on the surrounding surfaces, and other
sources which may be present. We illustrate how to find the integral
equations for these surface values in terms of a regularized kernel. We
further discuss the possible boundary conditions, the plane wave states
convenient for layered media problems, and the representation of the
displacement in temms of potentials. We also treat the scattering problem

at a plane interface for various compressional and shear wave combinations.
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Ch. 3 - Sec. 1

3.1 PRELIMINARIES AND EQUATIONS

Define the orthogonal Cartesian coordinate system X j=1,2,3, which is
sometimes written in vector notation x = (x,, x,, x;). We use the symbol
“j(f’t) for the three components of elastic displacement. The (symmetric)

strain temsor is given by

_ 1
e = ;(aju

+ . .
ik akuj) (1.1)

k
The stress tensor Tik is related to the strain by Hooke's law

(1.2)

tjk - Cjkpm epm
where repeated indices are summed over (from 1 to 3) and where we have
defined the elastic constants cjkpm' Since each subscript runs from 1 to 3,
there are in the most general case 81 indéBendent elastic constants. They
are really only constant in a homogeneous elastic medium, and we assume this
here. For an inhomogeneous elastic medium, the elasticities are in general
material functions of position. (See Appendix 3C.)
We reduce the number of independent elastic constants further by using
the following symmetry restrictions derived from infinitesimal stress—strain
theory:

(a) stress-strain symmetry given by

tT.,, =T and e = e . (1.3)

This implies
C. = C, . = C, . (1.4)
jkpm kjpm jlamp

If the indices are thus takenm in pairs, eq. C(jk)(pm) then since each pair

has 6 independent values (11,22,33,12,13,23) there exist a total of 6-6=36
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Ch. 3 - Sec. 1

independent elasticities for a body without material symmetry.
(b) There is a second definition of classical linear elasticity
resting on the Postulate: The work dome by the stress in a deformation

depends only on the strain and is recoverable work. This implies an

additional symmetry

Cjkpm = Cpmjk . (1.5)

Again thinking in terms of pairs of indices, the above imply a number of
constraints given by the combinations of 6 things (independent pair values)
taken 2 at a time or (g)=15 constraints. There are thus 36-15=21
independent elasticities remaining.

(¢) A final large number of constraints is introduced by isotropy.
For sufficient material symmetry of the body so that the body is an
isotropic elastic material, the number of independent elasticities reduces

to 2. We can write the remaining non-zero temms as

C....= A +2p , (1.6)
J133
C.. = A , 1.7
jikk
= = » 1.
Cjkjk N Cjkkj (1.8)

in terms of the Lame modulus A and the shear modulus p. The latter are al so
often written in terms of Poisson’s ratio o and Young’'s modulus E as
A=2po/(1-26) and p=E/2(1+0). The resulting elastic constants can be

summarized as

C =25..6 + pfs. 5 (1.9)
jp

. . + 5,06 ,
jkpm jk pm km jm kp}

which is the most general fourth-rank isotropic tensor with the above
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Ch. 3 - Sec. 1

symme tries, and Hooke's law written as

vt . = A856,, + pufd.u,_ + 3 u.l ., (1.10)
ik ik "[J k kJ]

in terms of the dilatation 9=8juj.

EQUATIONS OF MOTION

The basic equations of motion of the vector displacement are just
Newton's law, F=ma. The force is the spatial divergence of the stress

tensor. Using mass density p we can write the equations of motion as

a.t., =p u, . (1.11)
kT gt
If we let uj(g.t) = exp(—iwt)uj(g). i.e. we factor out a harmonic time
dependence (so we essentially work in frequency space) we get
2 2 2 '
+ = = . - 2
aktjk K uj 0 , K wp (1.12)
Substituting for the stress using Hooke's law
1 2
9, C + 0 u ] + Ku, =0 . (1.13)
m p J

2 %k jkpm [apum

For an inhomogeneous medium, the C's would be differentiated. For a
homogeneous and anisotropic medium (eq. a crystal) we use the fact that the

C's are constant and that Cjkpm=cjkmp to write

2
=0 , 1.14
Ciron?i?pn * K 9 = O (1.14)

which is the set of equations we work with. If we assume
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Ch. 3 - Sec. 1

0
u.(x) = u, exp(ik-x) ,
jo~ j =X
then the set of equations can be written as

2
(K8, -C,. k
m

[ ]
. k) = 0 .
jm ~ Cjkpm kp 'm

k

]
This is a set of three homogeneous equations of first degree for u-

Solutions exist if

2
14 8:m ~ ikpm kkkp| =0

j.e. if the determinant of coefficients vanishes. This is a cubic equation

in o®*(or K*) and has three roots, mi(k). Now w is linear in k so that the

wave velocities (group velocities) Bmlakj are independent of kj' Velocity

of the wave is a function of its direction, not of its frequency. In

general in anisotropic bodies we have three different velocities of

propagation.

For an isotropic body we will find omnly two different velocities of

propagation. Substitute (1.9) into (1.14) to get

Wddu +(L+p ddu +EKu =0, (1.15)
mmj jmm j
or in the notation of vector analysis
pAu+ (A+ p)grad V-u + Kzg = 0 . (1.16)

Equivalently we could define the operator

- 129 -



Ch. 3 ~ Sec. 1

A* = p A+ (A + p) grad div = (A + 2p) grad div - p curl carl , (1.17)
which plays the same role in elastic theory that the Laplacian A plays in

harmonic function theory (e.g. for p=1=-}, A*=A). Our equation is thus

(A%w). + K'u, =0, . (1.18)
i i

If we decompose the displacement into longitudinal (L) and transverse (T)

parts

u, = uL + u? (1.19)

where the transverse part is divergenceless (solenoidal) and the

longitudinal part curlless (irrotatiomal)

a,n? =0 3 e, .0 u% = 0, (1.20)
i imj m j i

then we can write the longitudinal displacement as the divergence of a

scalar potential ¢

L
u, =190.¢ . (1.21)
J J

and the transverse part as the curl of a vector potential Ap

T a A . (1.22)

u. €.
J jmp m p

We discuss these potentials later in this chapter.

Substituting these results in (1.18) using (1.17) we get

- 130 -



Ch. 3 - Sec. 1

( + 2p)2(!°gL) - u!x!xET + Kz(gL + ET) = 0 . (1.23)

If we take the curl of this equation we get an equation in only the

transverse displacement

~~

!xﬁKzET— p!x!ng] = 0 . (1.24)

The divergence of the bracket in (1.24) also vanishes. Up to an additiomal
scalar potential (the Laplacian of which vanishes) we can set the bracket to

zero. Using (1.20) this is

T 2 T
Au, + . = 0. , (1.25)
j kp % j

where k% = K*/p = w’p/p = wz/c; is the square of the transverse wave number,

and cp = (p/p)llz the transverse wave speed. Similarly, taking the
divergence of (1.23) we wind up setting another solenoidal and irrotational

bracket to zero

g+ o+ 20 WVED) = 0, (1.26)

and if we use the relation A = grad div - curlcurl we get

a2 = 0 , (1.27)

L
Au, + k .
j Lj j

where ki = K}/ (h + 2p) = o'p/(h + 2p) wz/cL is the square of the
longitudinal wave number, and e = [(a + 2“)/;)]1/z is the longitudinal wave

speed.
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3.2 FREE-SPACE ELASTIC GREEN'S FUNCTION

The free—space elastic Green's function is the tensor solution to the
point source gemeralization of (1.18) which is

[A‘G°<x,x')] ¢ K6 .(x,x") = 5, 8(x-x) . (2.1)

and is explicity given by (see Appendix 3B)

e N (RCPU ] - e

6. (x,x') =15

ij

Where GT and GL are the scalar free space Green's function with wave numbers

kT and kj, respectively. That is they are

expliky  Jx-x'})
- T, L (2.3)

dnfx-x'|

We choose the solution satisfying the outgoing radiation condition, i.e. the

retarded solution. Note that G;j is regular in the sense of the
6T is regular, and the second
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