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Preface 

These notes were prepared to be used in conjunction with the textbook, 

Mathematical Methods for Wave Phenomena, Bleistein (1984), in a two week 

short course to be presented at the University of Trondheim, October 6-17, 

1986. The format will be half day lectures based on these notes and current 

papers and half day lectures based on the textbook. In this manner, we plan 

to cover both the necessary mathematical tools and their use in direct 

modeling and inversion, 

Material from Chapters 1, 2, 8, and 9 of the textbook will be covered. 

Thus, these notes either omit entirely or contain only brief discussions of 

the following topics: the method of stationary phase in one and higher 

dimensions; the ray method (geometrical optics and geometrical theory of 

diffraction), the eikonal equation and the transport equation; the Kirchhoff 

approximation; the singular function of a surface and mathematical imaging.
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1. Introduction 

For more than a decade, we have been engaged in research on inverse 

methods with application primarily to imaging the interior of the earth on 

length scales of interest in seismic exploration and seabed mapping. The 

methods we use are classical employing partial differential and integral 

equations, perturbation techniques, integral transforms, and asymptotic and 

numerical analysis to arrive at computer algorithms which produce a 

reflector map of the interior of the earth and also provide a means of 

estimating the change in medium parameters across the reflectors. 

Inverse Problems 

The mapping of the interior of the earth from observations on the 

surface of the earth, or in the ocean, is an inverse problem. For this type 

of inverse problem, the propagation of signals -- acoustic, elastic or 

electromagnetic -- into the earth is modeled by the appropriate equation or 

system of equations in which functions characterizing the interior 

(acoustic, elastic, or electromagnetic parameters) are left free. One or 

more signals consistent with the model are introduced at or near the surface 

of the earth in a region of interest. The “irregularities” of the interior 

of the earth produce a response to those signals. Observations of those 

responses are recorded. The objective of inverse methods is to determine 

the free coefficients in the modeling equations from knowledge of the input 

signal(s) and the response(s) and thereby "map” the interior, This type of 

problem is known as an inverse scattering problem. This contrasts with the 
  

more familiar direct scattering problem in which the parameters in the 
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equation(s) are known and the objective is to determine the response to a 

given source in some domain of interest. 

Migration and Inversion 

map is produced, with little concern or emphasis on parameter estimation. 

In that sense, migration is a partial inversion, namely, an inversion for 

structure alone. At the present time, the demarcation between migration and 

inversion is fuzzier, with the objectives of modern migration techniques 

being almost identical with those of inversion. Indeed, migration and 

inversion algorithms themselves are almost identical when they start from 

the same earth model and have the same objectives as regards reflector 

mapping and parameter estimation. The real difference would seem to be in 

approach and philosophy; migrators think primarily in terms of back 

projecting or downward propagating the ensemble of surface observations, 

while inverters think of “solving” some governing equation(s) for the 

unknown earth parameters. Then, migrators see reflectors as “events” in the 

back projected waves, while inverters see reflectors as discontinuity 

surfaces of the solutions of their governing equations. We believe that the 

researcher who understands both is better off, no matter which he/she favors 

for their own research and/or implementation. As mathematicians we tend to 

emphasize explicit statements of assumptions. This sometimes causes alarm - 

- but, afterall, the restrictions are the same whether one states or not! 

The Earth as a Fluid 
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Until quite recently, our research was concentrated on modeling the 

earth as a constant density fluid in which the objective was to determine an 

acoustic reflector map and estimate only the change in sound speed across 

the reflectors. On the one hand, this is an extremely primitive model of 

wave propagation in the earth. On the other hand, this primitive model has 

a long history in seismic exploration, both in direct scattering and inverse 

scattering or migration. 

There is good reason for this. First, in cases in which the source and 

receiver are relatively close together and a compressional source is used, 

the observed response is dominated by the compressional wave, which is well 

modeled by acoustic wave propagation for the frequencies and length scales 

of interest in seismic exploration. Hence, there is useful information 

about the earth's interior in the inversion of seismic data in accordance 

with the acoustic model. Second, when the range over which waves propagate 

is sufficently large (almost always true in seismic exploration) the 

compressional and shear modes propagating to the surface are well separated. 

From the point of view of arrival times of signals, the acoustic wave 

equation provides a good model of the propagation of shear waves. (That is, 

the phase fronts or wave crests propagate according to the same equation for 

either type of wave, with only the propagation speed differing in the two 

problems.) Third, there are the practical problems of gathering and 

processing three component data for full elastic wave equation inversion. 

Fourth, there is much to be learned about the harder elastic inverse problem 

from the simpler acoustic inverse problem. There are degrees of complexity 

of the inverse problem for which the harder elastic problem has a direct 

analog in the simpler acoustic problem (e.g., source/receiver configuration 

and a priori “knowledge” about the earth parameters). We treat these 

- 1.3 -



complexities in a hierarchical manner, from simpler to harder. We can best 

explain our philosophy about long term concern with addressing this 

hierarchy for the acoustic model via the rhetorical question, "If you can’t 

solve the easier (acoustic) problem, why are you trying to solve the harder 

(elastic) problem?” Indeed, it is only quite recently that we have felt 

ready to apply our methods to the two parameter acoustic model and the 

elastic model. Research on both of these models is now in progress in our 

group. 

The Nonlinearity of the Inverse Problem 
  

The inverse problem is nonlinear. The wave propagation model contains 

products of the unknown field in the interior of the earth with the unknown 

earth parameters. In almost all approaches to solution of the inverse 

problem, linearization is achieved by introducing reference values of the 

earth parameters and, in some sense, "back projecting” or "back propagating” 

the observed data into the earth with respect to these background values. 

One branch of the hierarchy mentioned above is characterized by the 

increasing complexity of the background parameters, from constant, to 

dependence on one spatial variable, then two, then three. One can think of 

the background as a zeroeth order estimate of the earth parameters and the 

output of the inversion as a correction to this estimate. One might then 

contemplate correcting the background and re-solving the inverse problem 

with this new background in an iterative or recursive manner. 

Source/Receiver Configurations 
  

- 1.4 -



The complexity of the source/receiver configuration provides another 

branch of the hierarchy of inverse problems we consider. There are two ways 

of viewing the configurations. First, there are the experiments as they are 

performed in the field. Second, there are the model configurations, which 

are designed to more closely model reality with increasing complexity. In 

practice, data is generated via an ensemble of common (or single) source 

experiments in which the data is observed at a finite array of receivers. 

The data can be re-ordered as common receiver data, common midpoint data or 

common offset data, etc. 

Conceptually, the simplest model experiment is a single common source 

experiment with receivers “everywhere” on the surface. The observed signal 

may be back projected into the earth with respect to the background 

propagation speed and reflectors are determined as events where the back 

projections of the observations coincide with the downward propagation from 

the source. 

In practice, the receiver array is not broad enough to allow for 

inversion from a single experiment alone. Hence, one must consider an 

ensemble of experiments. 

The simplest case of an ensemble to consider is the set of zero-offset 

or backscatter experiments. This model is not achieved in the field. 

(Again, if you can’t handle this problem ... .) However, data which 

approximates zero-offset data is obtained by application of various 

pre-processing techniques ("stacking"). 

In migration, it is assumed that such an ensemble of observations 

constitutes boundary values for a wave whose propagation is governed by the 

same wave equation, again with halved background propagation speed. There 

is overwhelming evidence of the validity of this assumption. It is also a 
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conclusion of the inversion approach to reflector mapping. 

Much of our inversion research has addressed this zero-offset 

configuration with increasing complexity of background propagation speed. 

With only data from this experiment, one maps reflectors as impedance 

discontinuities. If constant density is also assumed, then the inversion 

provides a means for estimating the jump in propagation speed, as well. 

A common offset data set leads to a more difficult inverse problem, but 

a single offset still leads to the estimation of a single parameter as 

above. Given data sets for two offsets, it is possible to invert for two 

parameters, sound speed and density, with the stability of the two estimates 

still a subject of research. In practice, one could use more offsets to 

improve the stability and accuracy of the estimates, 

As previously mentioned, field data is actually an ensemble of common 

source experiments, with a finite aperture of receivers recording data for 

each source. Each common offset data set of the previous inverse problem is 

extracted by reordering the data of this ensemble of experiments. Since the 

ensemble of common source experiments contains many common offset data sets, 

the same type of inversion is possible for this model as for the previous 

one. 

Two-and-one~half Dimensions 

Most seismic data sets are gathered over a line on the surface of the 

earth, rather than over an areal or surface array. In such a case, one 

cannot hope to invert for three dimensional variations in the earth 

parameters. Thus, we must create a model and establish an inverse problem 

with goals that are consistent with the data as gathered. We assume that 
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the parameters we seek vary only in two dimensions, namely, depth and along 

the line of observations, with no variations in the orthogonal transverse 

direction. However, we can nonetheless allow three dimensional propagation 

of the waves in the earth. We refer to this model in which we allow for 

three dimensional propagation over an earth with two dimensional variation 

as two-and-one-half dimensional or 2.5D. 

The Theory 

For the acoustic model, we will develop the theory for reflector 

mapping and estimation of sound speed and density variations across 

reflectors in 2.5D and 3D, with background parameters varying in complexity 

from constant to dependence on three spatial variables, for zero-offset, 

more general common offset, or common source or common receiver experiments. 

Computer Implementation 

The structure of computer codes to implement our theories all follow 

the same basic pattern, with modules of the overall code requiring * 

modification to account for increasing complexity of the model. These will 

be discussed in context.



2. The Born Integral Equation 

In this chapter we will derive a general integral equation for the 

fluctuations in acoustic impedance. The result is equation (2.15), the 

"Born integral equation.” We will also discuss the meaning and validity of 

the assumptions required for the derivation. The principle ones are: 

(1) The fields are adequately described by the scalar wave equation. 

(2) The sources are adequately described by 3-D point sources. 

(3) The velocity (or impedance) is adequately described by a known 

reference function plus “small” perturbations. 

2.1. The acoustic assumption and the point source model 
  

We will make the acoustic approximation. That is, we assume that the 

fields are governed by the scalar wave equation. Although we are beginning 

to see attempts to honor the elastic wave equation (e.g., Kuo and Dai, 1984; 

Boyse and Keller, 1986), most of the current migration and inversion 

literature still makes this assumption. 

To make things simpler, we will also assume a constant density model of 

the earth. In fact, if we retain density, then we would not have to modify 

our discussions of the location of reflectors, but we would have to modify 

the amplitude of our inversion operators and we would have to replace 

"reflection coefficient” by "impedance coefficient” throughout. It is 

pedagogically simpler to discuss the constant density case first and to 

introduce the question of density variations much later in the development. 

We model our sources as 3-D point sources -- Dirac delta functions. We



remark that the plane wave source was treated for a variety of cases in 

Cohen and Bleistein (1977). Generally speaking, the plane wave source is 

easier to treat. We adopt the point source model because it is closer to 

the geophysical exploration reality -- although, it too, is an idealization 

of the real world. With these two assumptions, we can state our governing 

equation as 

2 

ve - 4-2 | ott, x,2) = - (B(x - x) (2.1) 
v(x) at” 

  

Here, 

x = (x,y,z), x, = (xyeyss2s)> (2.2) 

where x denotes the field point, x, denotes a generic “source” point, and 

w=e9 49 49. (2.3)       

Note that we nominally start the source at a nominal time, t = 0. That 

is, we normalize each source to zero time, even though, in the field, each 

experiment is carried out at a different time. This normalization relies on 

the “time invariance” of the geophysical system on the exploration time 

scale. 

Usually we think of U as measuring the compressive wave. However, the 

above equation applies equally well to certain shear source surveys where 

the uncoupled shear mode is observed. On the other hand, it does not apply 

to the mode-converted PSSP waves sometimes observed at wide angle; to treat 
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this phenomenon, we must base our derivation on the elastic wave equation. 

It is usually more convenient to work in frequency domain, so we apply 

the temporal Fourier transform operator, 

a 

f(w) = | dt et "Rey , (2.4) 
0 

u(w,?.°) = | Ult,-.°) ott at, 

0 

to obtain the Helmholtz equation: 

2 3 

[ v + (w/c) ] u(w,x,x.) = — 6(x-x.) > (2.5) 

We remark that implicit in our definition of the Fourier transform, 

(2.4), is the assumption that we are dealing with “causal” functions, that 

is functions that are zero up to time zero (more generally, up to some 

finite time). This assumption implies certain properties in w of the 

functions we are considering. In particular, all of our functions are 

analytic for complex w in the upper half plane, Imw > 0. Furthermore, all 

of these functions must approach zero as Jo | >o in that domain. This 

observation provides a basis for picking certain complex valued functions of 

» which appear later in the development. That is, any solution to the wave 

equation that we consider cannot become unbounded for w in the upper half 

plane. 
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2.2. Perturbation assumption 
  

We assume that the unknown sound speed, v, can be accurately 

represented by a known reference sound speed, c, plus a “small” relative 

perturbation, a: 

    =~ [ita | - (2.6) 
v (x) oc (x) 

Define an "incident" acoustic field, that satisfies the equation with 

the known reference sound speed: 

2 2 [ v? + (wer? | gtw.x,2,) = - 8(x-x,) (2.7) 

We use the notation "g" because our incident field is so patently a "Green's 

function.” Indeed, given the equation, 

[ v* + (wrey* ] nlosz) = - £02), (2.8) 

with arbitrary source function, "ff", we have at once the "zero-state” 

solution for “h": 

h(w,x) = (| d°x'g(w,x',x)£(x') . (2.9) 

The representation of g (discussed later) simplifies somewhat when the 

background speed, c, is assumed continuous, and so we make this assumption 

as well. The discontinuous case is discussed in Cohen and Bleistein (1977), 
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Lahlou et al. (1983) and Bleistein et al. (1985). 

We introduce the “scattered” field, ug as 

ug(w,x.x ) = ulw,x,x ) - glw,x,x ) (2.10) 
-"=s ="=s§ ='=s§ 

and find that (2.1), (2.6) and (2.10) imply 

a(x) 
  | Vv + cre)*| u_(w, xx.) =- u(w,x,x.) . (2.11) 
c* (x) 

Exercise 2.1. Establish this result. 

Denoting a generic geophone (i.e., receiver) by Xe we identify 

ug(w,x,x) = Uug(w,z,,x,) (2.12) 
g 

with the field observed at the geophones. This identification is another 

facet of the perturbation assumption. Indeed, its accuracy depends on the 

Green's function, g, being a good approximation to the actual incident 

field. In turn this approximation is accurate only if the reference 

velocity, c, is close to the actual velocity, v, which is just the 

perturbation assumption. 

Since (2.11) is a special case of (2.8), we can apply (2.9) to obtain 

  

a(x) 
u_(w,x',x ) = w” | dx B(w,x',x) = u(w,x,x) . (2.13) 

sors ce (x) 

In applying (2.9), x, is just a parameter that “comes along for the ride.”



That is, (2.9) is applied for each value of this parameter. 

2.3. The Born approximation 
  

Since a is "small", and since ug has a source term proportional to a, 

it is reasonable to think that ug is small (of order a). If we accept this, 

then on splitting up u in the source term into its constituents, 

au = a(g + u,), (2.14) 

we see that the second term is of second order in a and hence is small 

compared to the first term. 

The neglect of this term, aug, compared to the first term, ag, is known 

as the "Born approximation”. Obviously, its validity is still another 

aspect of the perturbation assumption. However, one cannot rigorously 

derive it from that assumption, because it isn’t always true! Think, for 

example, of wide angle high amplitude refraction arrivals. Nonetheless, if 

the perturbation assumption is accurate then most of the observed signal 

consists of weak reflections and the Born approximation is justified (see 

the next section and Exercise 2.4 below). 

2.3.1. Born approximation and high frequency 
  

It might appear that the Born approximation requires low frequency 

because of the w squared multiplier on the right side of (2.11). That is 

not quite the case. Indeed, in that equation, we see that the right side 

contains a product in which the frequency and a are “competing” to determine 

the ultimate magnitude of the source for Ug. However, the situation is far 
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from hopeless. 

First, let us suppose that the reference sound speed, c(x), were exact, 

down to some reflector. In that case, a(x) = 0 down to that reflector. It 

will become apparent as we proceed that proper location of reflectors 

depends directly on proper estimation of the propagation speed down to the 

reflector. Thus, in this case, we would expect that the location of the 

reflector -- and any errors in the inversion down to this reflector could 

only occur in linearized estimates of reflection strength at that reflector. 

As we will see below, it is possible to compensate for these. 

Furthermore, high frequency solutions of the wave equation tend to have 

the form u = Aexp{iwc}, with A being an inverse series in iw with each 

coefficient in the series and +, as well, depending only on the spatial 

variables. An overall multiplier of a power of w is possible, as well. 

Let us consider substituting such a form into (2.11) for ug and g. 

Then, except for that overall power, the leading order in w on both sides of 

(2.11) is O(w?). The Laplacian contributes such a term with coefficient 

~(Vr)?ug. We find, then, that the multiplier, w’*, divides out of this 

leading order term, leading to the conclusion that ug = O(a) at high 

frequency, independent of w. 

Unfortunately, this analysis does not prevail throughout the spatial 

domain, but only in a restricted region. However, that region is just where 

seismic data is collected! 

As an example of a region where this analysis does not apply, consider 

the forward scattering or downward propagating direction. In that 

direction, the wave denoted by g and defined by (2.7) accumulates a phase 

error relative to the “true” downward propagating wave, that error being 
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approximately iwfa/c7ds, where s denotes arclength along the geometrical 

optics rays or paths of propagation. With increasing propagation through 

the region of nonzero a, this integral will increase in magnitude, 

eventually attaining the value n. At such places, g and the true downward 

field are of opposite sign and the field we call ug will have to undo this 

error, which is order unity in a. Consequently, the downward propagating 

part of ug cannot be only O(a). 

On the other hand, at high frequency, the upward propagating part of ug 

arises from reflections at jump discontinuities of a. At normal incidence, 

such waves are scaled by a reflection coefficient proportional to the jump 

in a, hence, certainly O(a). For small offset angles between incidence and 

reflection, this remains the case, but as the offset angle increases towards 

critical, the reflection coefficient approaches one. For small jumps in a, 

that critical angle will be large; for larger jumps in a, that critical 

angle decreases. 

Now we have some idea where we can expect that the upward scattered 

field will be O(a). The offset angle between incidence and reflection 

should be relatively small compared to the critical angle. For the common 

source, common receiver and common offset experiments considered here, this 

is the case. 

Later we will show that the inversions based on the Born approximation 

for the upward scattered data actually have an even broader range of 

validity than their basis in the Born approximation gives us a right to 

expect. The way we will do this is to apply the inversion formulas to 

Kirchhoff approximate data for a single reflector. 

The Kirchhoff approximation has the feature that it is not constrained 

to small increments in sound speed across the reflector, nor to angles which



are small compared to the critical angle. We will find that applying the 

inversion operator to such data produces an ouput from which we can measure 

the increment in sound speed without linearization, that is, without the 

constraint that the increment be small. 

Thus, to a degree, we shall have removed the small perturbation 

constraint of the Born approximation. To properly locate the "test 

reflector,” it will still be necessary that the background or reference 

speed above the reflector be “close” in some sense to the true value. It 

will also be necessary that multiples from reflectors above the test 

reflector be small enough that they can be disregarded. In this sense, we 

shall not have completely dispensed with the smallness of a. However, this 

type of result anticipates a recursive application of these methods in which 

one uses information gained at each reflector to progressively improve the 

estimate of the background speed further into the subsurface, thereby 

properly locating the next reflector and estimating its reflection strength. 

In summary, then, the Born approximation is a vehicle for getting 

started. Its use in conjunction with high frequency is acceptable for the 

seismic experiments under consideration. Extension of the basis of validity 

of our inversion schemes will provide a means to overcome many of the 

constraints of the original derivation. 

2.3.2. Implementation of the Born approximation 
  

We now make the Born approximation -- i.e., neglect the term aug in 

(2.14) and evaluate Ug (2.13) on the observation datum to obtain the Born 

integral equation, 
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g(w,x_,x) g(w,x,x.) 
ug(wx, x.) = wo III dx ——8—__— * a(x) . (2.15) 

c* (x) 

Appealing to the symmetry property of Green’s functions, we obtain the 

alternate form: 

g(w,x,x ) g(w,x,x.) 
tg (wrx +2.) = o- i d’x a a(x) (2.16) 

c x 

for the unknown velocity perturbation a. We remark that we do not have the 

same symmetry for the variable density case and must use (2.15), instead, or 

make the appropriate adjustment in (2.16). 

Exercise 2.2. Show that the Green’s function has the indicated symmetry 

property which leads to (2.16). 

Exercise 2.3 Give an alternate derivation of the Born inversion integral 

equation based on applying Green’s theorem to g and ug. 

Exercise 2.4. Discuss the common practice of "muting” the early refraction 

arrivals before applying a standard migration algorithm. Is_ the 

perturbation assumption also required to justify the migration 

procedure? (See, e.g., Schultz and Sherwood, 1980; Bleistein and 

Cohen, 1979; Claerbout, 1976, 1985.) 

We have carried out the derivation of the Born integral equation as if 

the medium was free space. However, we can adapt the derivation to the half 
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space model, which is more appropriate to geophysics, by imposing the 

condition that a vanish “above” the geophones, Xe. It is also possible to 

repeat the derivation using a half space model from the start. In this 

case, one uses a homogeneous wave equation, excited by boundary impulsive 

sources. If the boundary source is defined appropriately, the same integral 

equation is obtained. 

We consider two types of specializations: 

(1) Spatial Dependence of Reference Velocity; 

(2) Source/Receiver Configurations. 

The spatial dependence can be: 

Constant reference speed, c = Constants (2.17) 

Stratified reference speed, c = c(z) (2.18) 

Laterally varying reference speed, c = c(x,z) (2.19) 

General 3-D reference speed, c = c(x,y,z) . (2.20) 

Recall that we have imposed a continuity constraint on the reference speed. 

This constraint is not essential, but it allows us to dispense with the 

bookkeeping involved in maintaining and propagating the family of 

reflection/transmission coefficients that would otherwise develop at built- 

in discontinuities. Also, we rarely have sufficient confidence in our 

a priori knowledge to want to build in abrupt changesat precise locations. 
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Usually a “ramp” transition function more accurately represents the state of 

our knowledge (or ignorance) about the subsurface across the region of 

change. 

Our basic theory encompasses curved observation surfaces. However, for 

the present we consider some special cases in which the sources and 

receivers are located on the flat datum z = 0. Consistent with the remarks 

above, we shall then assume that 

a(x) = 0, z <0. (2.21) 

If we then denote the location of a point on z = 0 by the two-vector, 

& = (&.n), (2.22) 

we can succinctly characterize the most important source-receiver 

configurations as follows: 

Common source gether, 

xz, = (£,,0) . x = (6,0) . &, fixed, (2.23) 

Common receiver gather, 

x = (§,0) , x =(& 0) , & fixed, (2.24) 

Common midpoint gather, 
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x, = (m- €,0) , x = (m+ £&,0) , m fixed, (2.25) 

Common offset gather, 

x= (€- 4,0) , x, = (€+h,O) , h fixed . (2.26) 

Note that only the first of these configurations corresponds to a 

physical experiment; all the rest are synthetic gathers obtained by 

rearranging the data. For the first part of this course, we consider a 

special case of the common offset configuration, the 

Zero offset gather: 

z,7 2,7 (€,0) . (2.27) 

This configuration is often well approximated by CMP “stacked” data, but 

there are times when the approximation fails completely. There is a good 

discussion of this issue in Schneider (1984). 

Intuitively, if we are to recover a subsurface image with three degrees 

of freedom, it seems that our input data set should also have three degrees 

of freedom, As in the above examples, two of these degrees come from the 

source/receiver configuration. The remaining degree of freedom must come 

from something analogous to depth--clearly this is the time dimension! 

Indeed, we observe for some number of seconds and the depth to which we can 

reconstruct the subsurface is directly related to the elapsed time over 

which we can observe useful signals. In our mathematical derivation, we 

have replaced the physical time dimension by its Fourier equivalent, the 
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frequency dimension. 

In the 3~-D problem, the sources can have up to two degrees of freedom-- 

a set of positions on the observation surface. Similarly, the receiver 

positions can have up to two degrees of freedom. However, this is more 

surface data than is required to do an inversion/migration and so we have, 

in each case, stated two restrictions on the source/receiver positions, 

leaving a net of two degrees of freedom. 

In cases where we have more than the minimal number of degrees of 

freedom in the source/receiver configuration, we can use the extra data to 

make our migrations/inversions more robust -- for example, by the use of 

least squares. We can also use this extra freedom to attempt an estimation 

of additional parameters. Clayton and Stolt (1981) pursue both of these 

themes. Coen (1981, 1982), Raz (1981a, 1981b) and Eiges and Raz (1985), 

Bleistein (1986) pursue multiparameter estimation. 

One should not become too enthusiastic about counting degrees of 

freedom. An appropriate number of degrees of freedom in the data set does 

not imply that inversion is possible. Such counting arguments merely serve 

to eliminate some cases in which the data set is clearly inadequate. 

Exercise 2.5. Specialize the above source/receiver configurations to the 

case of observation on a line. In this case, what is a reasonable 

migration/inversion goal? 

Exercise 2.6. What is a reasonable goal for a single source/receiver pair? 

(Ignore noise or assume that the experiment can be repeated many 

times.) 
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Exercise 2.7. Characterize one or more VSP source/receiver configurations 

-- obviously we have to abandon equation (2.22). 

Exercise 2.8. Characterize the common source configuration for a curved 

observation surface -- again we must abandon (2.22). 

Exercise 2.9. Can we use extra degrees of freedom in the source/receiver 

configuration to replace the time/frequency dimension? (See Coen, 

1981, for example.) 

2.5. __ Summary 

The main result of this chapter is equation (2.15), the Born integral 

equation. We have derived it for the acoustic wave equation and point 

sources using the perturbation assumption (2.6) that states that the total 

velocity field is accurately represented by small fluctuations from a known 

reference velocity. The Born integral equation has been derived for an 

arbitrary source/receiver configuration and arbitrary continuous reference 

velocity. We have pointed out several special cases of interest. 
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3. Theoretical and Physical Constraints 

In this chapter, we give some plausibility arguments about what can and 

cannot be expected from inversions based on the perturbation (Born) 

approximation. These observations have wide applicability. However, to 

avoid obscuring the main points, we use simple models as illustrations. In 

particular, we assume a constant reference velocity in these preliminary 

discussions, 

In this simple context, we will explore the effects of bandlimiting and 

linearization. We will also give a brief introduction to the effects of 

finite aperture and discretization in both time and space. 

A major conclusion is that the use of high frequency approximations is 

usually justified. Although our first inversion will be obtained without 

making this assumption, high frequency approximations are at the heart of 

recent inversion developments. 

3.1. The high frequency assumption 
  

Reai seismic data is inevitably bandlimited data. Roughly speaking, the 

loss of the low end of the spectrum entails degradation of the overall trend 

of the data, while the loss at the high end implies lowered resolution of 

reflectors. Although we have losses at both the high and low ends of the 

frequency spectrum, it happens that in most interpretable seismic data, the 

data resides in the high frequency portion of the spectrum. This may seem a 

dubious assertion in light of the fact that a typical seismic data set has a 

three octave spectrum from 6 Hz. to 48 Hz. Such numbers may not seem large 

in an absolute sense. However, we could certainly have expressed them as



6000-48000 milHz! Obviously we require a non-dimensional quantity before 

rendering a judgement: frequencies adequate to image an elephant will be 

inadequate for imaging a gnat. It will turn out that the appropriate non- 

dimensional quantity for migration/inversion is 

A= 4nfL/c . (3.1) 

Here f is conservatively estimated as the lowest frequency used, L denotes 

any of the length scales of the problem and c is a typical propagation 

speed. In many mathematical and physical problems it turns out a non- 

dimensional parameter is large enough to justify asymptotic (here “high 

frequency”) approximations when it exceeds 3. That is, parameter values 

greater than 3 typically incur errors of only a few percent. See Bleistein 

(1984) for examples and further discussion. 

Since our A has a factor of n, let us, for argument’s sake, take the 

high frequency regime to be 

Adan. (3.2) 

For f = 6 Hz and c = 2000 m/s, this restricts the “typical” length to be 

greater than 83 m (250 ft). What are some “typical” exploration length 

scales? Reflector depth is one -- reflector depths of interest are usually 

much greater than 80 meters. When we need to image shallower reflectors, 

nature cooperates: much higher frequencies can be recovered for near 

surface surveys (perhaps as high as 400 Hz). Another length scale is 

reflector curvature--again these are usually above our minimum. 

It is, of course, possible to come up with valid exploration 

counterexamples -- thin bed resolution being a primary instance. However, it 
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must be realized that when the high frequency limit is violated, all imaging 

methods fail, since the very notion of imaging involves the assumption of 

high frequency. Think, for example, of the use of “rays”, “wavefronts” and 

“reflectivities” (all high frequency notions) in various migration 

techniques. When the data does not contain the frequencies required for 

imaging, then no mathematical trickery can save us! On the other hand, we 

often do have high frequency information adequate to interpret many horizons 

of interest. 

As noted earlier, for the first simple inversion model we shall study, 

we can obtain a “wide-band” inversion. In particular, we need not assume 

that the data is high frequency. However, the high frequency assumption 

allows us to get a computationally more effective algorithm with no 

degradation of most real -- that is, bandlimited -- data sets. For more 

complex inversion models, we will use the high frequency assumption 

Once we limit ourselves to trying to obtain only the information 

available from high frequency data, we can exploit certain features of that 

type of data to sharpen the images of the reflectors we seek and to estimate 

the change in sound speed across each reflector. In the next two 

subsections, we describe these features of processing high frequency data. 

3.1.1. Edge sharpening 

The inversion quantity, a, ideally consists of Heaviside step functions 

across the interfaces. However, due to bandlimiting, the ideal sharp edge 

of the steps will be smeared, making it hard to accurately estimate the 
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interface locations. The problem of "edge sharpening” occurs in many 

imaging contexts and is usually handled by taking a spatial derivative of 

some sort. Furthermore, since derivatives are merely multiplications in 

(spatial) Fourier domain, the differentiation operation is usually carried 

out in this domain. 

In many geophysical contexts, the assumption of small dip is valid. In 

such cases, a z-derivative would do a passable job. However, this 

introduces a cosine of the dip into the output that later has to be “backed 

out” of the inversion if parameter estimation is desired. Also, large dips 

may be irrecoverably degraded by having their reflection strength diminished 

to near or below the noise level. 

In image processing, a “Laplacian” filter is often used to do edge 

sharpening. This operator has the virtue of being isotropic -- it does not 

favor any particular spatial direction as does the z-derivative. This 

desirable behavior is counterbalanced by the fact that in interpreting 

seismic sections, we wish to see sinc-like behavior with peaks at the 

reflectors. The Laplacian operator is a second derivative and (loosely) 

would convert the steps of a into doublets -- we really want a first 

derivative operator! This leads to the notion of using the square root of 

the Laplacian operator, which provides a first order isotropic operator. In 

Fourier domain, the Laplacian operator is given by the correspondence 

      

2 2 2 

1 2 x, 

vf? ,2.,4 fore == fea ee] ; (3.3) 

Employing the dispersion equation for the wave equation, 
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o= ck , (3.4) 

we obtain the isotropic first derivative operator in the form iw/c. It 

turns out that in the zero-offset, high frequency case, this operator 

corresponds to the upward normal derivative operator. 

geist, (3.5) 
c s\~

 

[Again, see Bleistein (1984) for the proof of this assertion.] We should 

view the use of 0/8n as symbolic here. After all, the normal direction is 

not globally defined in x, but only on the discontinuity surfaces. To be 

more precise, we should state that for a discontinuous function, such as 

a(x), muliplication of its Fourier transform by ‘tiw/c, before Fourier 

inverting, asymptotically produces an array of Dirac delta functions with 

support on the discontinuity surfaces and weights equal to the jumps in a(x) 

across those surfaces. The choice of sign is a matter of the direction in 

which the jump in a(x) is to be computed. This output is equivalent to the 

normal derivative when we know the surface, Thus, the symbolism is 

justified. 

Exercise 3.1. Show that the second derivative of the Heaviside step 

function is a doublet. 

Exercise 3.2. Apply the differential operator in equation (2.1) (with v 

being the constant c) to the "plane wave”, 
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oi EX, + kx, + kx, - wt/e) (3.6) 

to derive equation (3.4). 

Equations (3.4) and (3.5) which have been developed only for the 

constant c model hold as well for the variable background case if the data 

is zero-offset. The non-zero offset case requires a _ generalization 

involving the incident and reflected ray directions. We will discuss this 

extension later. 

[w
e 1.2. Extraction of information from bandlimited delta functions 

One occasionally sees statements to the effect that the loss of low 

(high) frequencies in seismic data sets precludes effective use of Fourier 

inversion methods -- or at least precludes “accurate” inversions. In this 

section, we will demonstrate that while, indeed, some information is lost, 

much useful information remains. 

We consider the simple model of a unit seismic pulse reflected from a 

horizontal layer at z= h. We ignore 3-D spreading, noise, attenuation, 

side swipe and many other effects in order to focus our attention on the 

single real world effect of bandlimiting. Later we will comment on the 

extension of these results to more realistic seismic models. 

If the pulse is launched from z = 0 at t = O and the average 

propagation speed to the layer is c, then in an ideal (1-D) world the 

returned signal would be recorded as



U(t) = R S(t -t,) . tt, = 2h/e . (3.7) 

Here, R denotes the reflection coefficient at the layer. 

We wish to analyze the effect of losing the high and low end of the 

frequency band. To do this, we must examine the signal in frequency 

(Fourier) domain. Using causality we can write 

elt Wt) at = | eit Tt) at (3.8) 
0 

U(t) >ulw) = | 
—O 

From our model data, we then obtain 

n(w) = | ft R B(t- t,) dt = Reto , (3.9) 
0 

with t, given by (3.7). 

Note that while the temporal quantity, t, is constrained to be positive 

by causality, the circular frequency, w = 2nf, can be negative. This “extra” 

information is merely a mathematical artifact, for since U is real in (3.7), 

it follows from (3.8) that 

u(-w) = u’(w) ’ (3.10) 

with (*) denoting complex conjugate. Hence, the negative frequency 

information is already determined by the positive frequency information. In 

filtering our seismic traces, we must take the negative frequencies into 

account in a manner consistent with (3.10). 
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The physical bandlimiting has four causes: 

(1) the “earth filter”, 

(2) the equipment generating the probing signal, and 

(3) the receiver array, 

(4) intermediate seismic processing or “preprocessing”. 

However, in processing the observed data, we need only empirically decide on 

the usable bandwidth in our data and design a suitable bandpass filter. 

(This decision can be made by studying the Fourier magnitude traces.) 

Thus, we model the net band-limiting effect as a bandpass filter 

applied to the seismic data. If we denote our real valued filter by F(w), 

then our filtered trace becomes 

up lo) = F(w) u(w) . (3.11) 

Here, we use the subscript, B, to stand for “bandlimited.” In order to keep 

our t-domain signal real, we impose the constraint (3.10) on the bandlimited 

trace. Since F is real, we find 

F(-w) = Flw) , (3.12) 

so that F is an even function. That is, we must select our bandpass filter, 

F, as a real, even function of w in order to ensure the proper extension to 

negative frequencies. 

Exercise 3.3. Establish (3.10). 
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Exercise 3.4. Establish (3.12). 

The simplest even bandpass filter is the “boxcar” filter: 

    

            

Figore 3.1. The Boxcar Filter 

Here, we have introduced the physical frequency f (Hz) in place of the 

circular frequency w. This is a slight abuse of notation in that the 

function previously denoted by F(w) has now been set equal to F(f) rather 

than to F(2nf). This will not play a crucial role in our analysis below. 

In actual data processing, one would taper the ends of the boxcar to 

diminish “ringing”, but for our present goal of illustrating basic ideas, 

the boxcar is adequate and provides analytic simplicity. In fact, if we 

choose F as the boxcar, and introduce a time delay, t, = 2h/c, through the 

equation 

T=t-t, =t- 2h/e, (3.13) 

we can readily transform ug back to time domain to obtain, 
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sin anf T - sin 2nf T 
  

or alternately, 

p(t) = 2R sin| nf, - fT l cos| n(f, + £,)T | (3.15) 

Exercise 3.5. Noting the definition (3.13), establish (3.14). 

Exercise 3.6. Establish (3.15). 

From these results, a number of facts follow. We state them as a series of 

exercises. 

Exercise 3.7. For the boxcar filter, show that Ug has a maximum at T = 0 

equal to 

Up(2h/c) = 2R | f, - f, | (3.16) 

Exercise 3.8. For the boxcar filter, show that the zeroes nearest the 

origin of Up are given by 

T = 1 (3.17) + __—____— , 

1 2(f + f,) 
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Exercise 3.9. Show that the next zeroes are given by 

1 3 T =+ a aot 2 > min E —f, °’ 3CE +f) 

  

1 “o (3.18) 

Exercise 3.10. Show that beyond T,, we have the bounds 

<2 U,ft) ‘ 
lu, (e) | ° of, ’ 0, (07 tn . (3.19) 

  

Equation (3.15) shows that we get a peak at a time equivalent to the 

correct reflector location. Thus, ideally, despite the loss of high and low 

frequencies, by graphing Ug, we image an isolated reflector at the correct 

location (relative to our reference profile). 

We now show that an estimate of the reflection strength can also be 

made from bandlimited data. First note that the cutoff frequencies, f, and 

f,, are picked by the analyst according to the actual frequency content of 

the data (we are still ignoring the fact that in practice the frequency 

window will be tapered to zero). Thus, in light of equation (3.16), we need 

only divide the recorded amplitude by the known quantity 2[f, - f,! to 

obtain the reflection strength, R. 

Exercise 3.11. Show that for non-box filters, this divisor is replaced by 

2A, where A is the area under the frequency filter, F(f) for 0 < f < @. 

We have concluded that, in our simple model, despite the loss of low 

and high frequencies, much useful information remains: we can estimate the 

relative location and strength of reflectors. There is no doubt that these 
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conclusions are tempered by the many factors ignored in our simple 

pedagogical model. Nonetheless, the concepts exposed do explain how it is 

that we can “see” reflectors on seismic sections despite the bandlimited 

nature of our data. Moreover, we are encouraged to think that amplitude 

information can help us to estimate earth parameters, 

The remaining issues in ideal 1-D bandlimited data extraction are: 

(1) wavelet compression, 

(2) wavelet sidelobe height, 

(3) long range fall-off (ringing) of the wavelet. 

Since this is not a treatise on either Fourier analysis or filtering, we 

will just state some rough results. None of them are very profound. 

Wavelets become more compressed as the center frequency of the band is 

increased. This corresponds to the obvious fact that the higher the 

frequencies, the better the resolution. Since there is always a high 

frequency limit on the band, there are always beds too thin to be resolved, 

curvatures too great to be accurately imaged, etc. Often the changes in 

character of the wavelet and the "big picture” provide warning that our 

bandlimited data extraction is not to be trusted. 

Decrease in wavelet sidelobe height is associated with increased 

percentage bandwidth (bandwidth relative to center frequency). This follows 

from (3.18, 19). If the band is too narrow we get the "picket fence” 

phenomenon which prevents us from distinguishing the main lobe from the side 

lobes. 

From equation (3.14), we see that the boxcar filter has a long range 
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fall-off factor of 1/T. In general, the smoother the wavelet, the more 

rapid the fall-off. For example, trapezoidal tapering gives a 1/T* fall- 

off, while smoothing the corners gives (at least) a 1/T® fall-off. A sine- 

squared taper (cubic fall-off) is a popular choice (Dale Stone, pers. comm.; 

Paul Stoffa, pers. comm.). 

Similar concepts can be used to analyze 3-D waves. Once again, 

bandlimited inversion gives sinc-like approximations to the ideal delta 

function with peak at the reflector location and strength in known 

proportion to the reflection strength. However, in three dimensions, the 

derivation of the results requires high frequency approximations. As 

explained earlier, this is not a serious restriction in the geophysical 

context. We postpone these matters until we have derived some actual 

inversion algorithms, also see Bleistein (1984) and Mager and Bleistein 

(1978). 

We remind the reader about the effect of the missing portions of the 

frequency spectrum. We have already indicated how the loss of high 

frequency information entails a loss of resolution. We now assert that the 

loss of the low frequency information implies a degradation of the over-all 

statistics of the data -- for example, that the overall mean or trend is 

lost. This can be seen at once by putting w equal to zero in the Fourier 

transform relation (3.8). Similarly, by differentiating (3.8), we can see 

that the "moments” (equivalently the variance, kurtosis, etc.) of U are 

degraded by the missing low frequency data. 

We caution the reader about the visual interpretation of output 

sections, The fact that there are missing high frequencies is apparent to 

the eye -- reflectors have sidelobes, etc. The fact that there are missing 

low frequencies is less apparent. The explanation is that the output 

- 3.13 -



section does contain low frequency information. Unfortunately, it is only 

the information that we have put in ourselves rather than additional 

information about the actual subsurface environment! Recall that our 

formulation requires specification of a reference profile. This profile 

contains low frequency information and this information is faithfully 

reproduced in the output section. In analyzing the output of our 

inversions, we must remember that the output trend information is nothing 

more than the reference velocity profile that we, ourselves, gave as input. 

Only the fluctuations around this trend constitute new (i.e. previously 

obscured) information. 

In processing for the fluctuations around the assumed trend, we feel 

strongly that one should not attempt to replace the missing frequencies by 

theoretical extrapolation from the observed data. We feel it is important 

to make a judgement about the extent of the usable bandwidth and then to 

avoid processing the recorded information outside this bandwidth. Inserting 

"pure noise” into a migration/inversion algorithm is a good way to cause 

instability in an otherwise robust procedure, see Clayton and Stolt (1981). 

In summary, then, we assert that for most of the length scales of 

interest in seismic exploration, seismic data is high frequency data. By 

exploiting the features of high frequency band limited functions, we can 

extract information about the discontinuity surfaces ~- the reflectors —- in 

the subsurface, such as their location and the increment in earth parameters 

across them. This extraction process is facilitated by increased center 

frequency, increased percentage bandwidth and tapering, standard for any 

Fourier domain processing. 

- 3.14 -



3.2. Effect of linearization 
  

Even within the constraints of the Born approximation, careful analysis 

of the output allows us to partially correct our parameter estimates for the 

effects of linearization. We will demonstrate that here. 

Once again, in order to present the salient points most clearly, we 

analyze a simple model: consider a suite of zero offset experiments done 

over a single horizontal reflector at depth h. Thus, the true velocity 

field can be written as 

v=ctAc H{z- hl] , (3.20) 

where Ac represents the jump in velocity across the reflector and H 

represents the Heaviside unit step function, 

We now suppose that we have solved the Born integral equation (2.16) 

for a in terms of the observed scattered field. A straightforward 

manipulation of the perturbation equation (2.6) leads to the following 

expression for @ in terms of Ac: 

2 

= oe es _ a | [tar] ifo h} . (3.21) 

When Ac takes on the value, -c, we see that the above expression becomes 

infinite! Of course, a value of Ac that is of the order of the background 

velocity c blatantly violates our perturbation assumption. The truth is, 

that after making the Born approximation, the naive use of equation (2.6) is 

no longer justified. Since we have linearized our integral equation, if we 
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wish to analyze the theoretical output of the algorithm then we should only 

use the linear approximation to (2.6). From either (3.21) or (2.6) itself, 

it is easy to derive the linear approximation, 

2Ac 

a =- - H{z- h] , (3.22)   

for the expected output from the linearized integral equation. We have 

placed the subscript, L, on Ac to acknowledge that the algorithm is not 

perfect. That is, Ac is the true velocity jump, while Ac; is the estimated 

jump from the algorithm. From (3.22), it follows at once that the estimated 

velocity jump is given in terms of the perturbation by: 

c he, = - LE (3.23) 

For the zero offset model, the input (which is not linearized!) is 

proportional to the normal incidence reflection coefficient, 

_ (ce + Ac) - ¢ Ac 
~ (e+ Ac) +c 2c + Ac ° (3.24) 

We may think of the algorithm linearizing this to 

Ac, 

Thus, to compensate for the effects of linearization, we equate Ry, to R: 
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Ac Ac, 

Be + Ae deo (3.26) 

On the one hand, this gives a correction to the "raw" Ac given by 

(2.24): 

1 -_i. , 3.2 Ac ii ( 7) 

Ac, 2c 

and on the other hand, 

a, = ~4R, A{z - h] (3.28) 

so that the expected output from the algorithm is four times the reflection 

coefficient -- at least to first order. 

Later, by applying our inversion operators to Kirchhoff approximate 

data, rather than to Born approximate data, we will see that, in fact, the 

ability to overcome the effects of linearization, as we have here, is not so 

surprising. We will find there that the output produces the fully nonlinear 

reflection coefficient, rather than just its linearized approximation as 

shown above. Of course, this requires that the background approximation 

above the reflector -- the surface where a jumps -- is close to the true 

sound speed and that multiples from reflectors above the one in question do 

not degrade the output near the given reflector. These requirements are 

equivalent to small perturbations above the test reflector. Thus, the Born 

approximation is not completely avoided. However, with these caveats in 

place, the estimate of sound speed variation on the given reflector will not 

be constrained to be small. For non-zero offset, determination of the 

- 3.17 -



reflection coefficient alone does not immediately lead to an estimate for 

Ac, but it is the crucial result needed to obtain such an estimate. 

Equation (3.28) is an important adjunct to the practical implementation 

of the zero offset Born algorithm. However, it relies on the data having 

the correct scale (usually estimated from a well understood horizon). 

Exercise 3.12. Why does knowledge of the non-zero offset reflection 

coefficient not imply the value of the velocity jump? 

Exercise 3.13. Suppose that a set of seismic data has had a large scale 

factor inserted (this can happen, for example, when an integer FET 

routine is applied to the data and the compensating scale factor is 

omitted). Can we still rely on (3.27) to be more accurate than (3.23)? 

Recall that for the zero-offset, high frequency case, we process for 

the normal derivative of a instead of for a itself. Taking this normal 

upward and taking account of the two way time we can see that for our 

present simple model, introduction of the factor 

2iw _ iw 
"ss (3.29) 

[
R
P
 

in frequency domain produces the reflectivity function; that is, the 

singular function of the reflector scaled by its reflection coefficient. We 

denote this function by #6. In the high frequency regime, we see that it is 

related to a by the equation, 
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Note that in the zero-offset model, the observed data is recorded at the 

two-way traveltime. To compensate for this, we have replaced c by c/2 in 

adapting (3.5) for use in (3.29). 

Our present results generalize to the case of many non-planar layers 

for the zero-offset case. However, they are not valid for nonzero source- 

receiver offset. We will obtain the correct generalization later. 

3.3. Processing field data 

We now wish to explicitly acknowledge some of the real world factors 

that damage our estimates of location and parameter values. These factors 

must be firmly kept in mind, lest in our enthusiasm for the elegance of the 

mathematics, we forget the limitations of our methods. 

First of all, if the chosen reference velocity has serious errors, then 

the locations of the interfaces will be wrong. In turn, this will degrade 

the parameter estimates. We feel that naive iteration of the linear (Born) 

theory is not profitable. Real improvements come from a knowledgeable 

interpreter revising the estimate of the reference velocity by comparing the 

time section with the migrated inverted section. 

Secondly, our analysis of the linearization effect only treated the 

case of an isolated reflector. Any strong “multiples” surviving the 

deconvolution of the data will appear on the migrated/inverted section as 

additional reflectors. This is an inevitable and unhappy result of 

linearizing an inherently nonlinear problem. 
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We have already acknowledged the resolution and trend problems arising 

from the band-limiting. In addition, we must recognize that weak reflectors 

will be lost in the noise. Finally, any model we adopt is a simplification 

of nature. For example, the model of reflection at abrupt layers is not 

accurate; the acoustic theory doesn’t treat mode converted waves or the 

frequency dependent attenuation, etc. and etc. 

We should not be unduly daunted by all these real world problems -- 

successful interpretations are made despite them —-- but neither should we 

disregard them. Note that these issues affect all migration and inversion 

methods in the same way. In fact, many of them apply to the interpretation 

of unmigrated time sections as well, 

3.4. The effects of finite aperture and discretization 
  

When an approximate solution to the Born integral equation can be 

derived, it consists of a integral over the source/receiver array (in the 

notation of Chapter 2, an integral over &). Since this array is both 

discrete and finite in extent, we must deal with these restrictions in the 

implementation of our algorithms. Furthermore, the input to the algorithm 

also demonstrates discretization (digital recording) and limited aperture 

(finite length time records). Here, we wish to briefly explain how one 

deals with these four data restrictions, Full details are more conveniently 

given in terms of specific cases. Here we provide a brief (and unavoidably 

vague) introduction to these issues. 

The finite length of the time records implies that we only have 

information about the subsurface down to finite depths. Furthermore, our 

reference velocity field allows us to make the (approximate) conversion of 
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time bounds to depth bounds explicitly. Thus, in the application of the 

inversion algorithm, we impose a "causality condition” to prevent wasting 

effort in an attempt to image deeper than we have information. Note that 

field time records are usually longer than the time records we process. The 

causality condition should be applied to the latter time! 

The finite length of the ensemble of sources and receivers entails a 

degradation of information near the edges of the data set. The abrupt 

termination of reflectors causes “smiles.” To avoid these diffraction-like 

artifacts, it is advisable to taper the first few and last few traces in the 

data set to zero (and perhaps the bottom of the trace, as well). 

Another effect of the finite spatial aperture is the windowing problem: 

portions of the reflectors can not be imaged because their response occurs 

outside the window and is not recorded. In the implementation of the 

integration over the source/receiver parameter, €, the finite aperture is 

honored by merely truncating the theoretical infinite integral to a finite 

integral, In the "interior" of the section, this causes no problem because 

to produce a good image of a reflector segment, our recording array only has 

to “see” the region around the “specular” ray from this segment. We can 

often take advantage of this fact (making a virtue of necessity) to save 

computational effort. That is, in imaging a particular field point, it is 

desirable to limit the range of integration to the minimum necessary 

aperture for that point. However, such a notion requires a bound on the 

reflector dip -~- otherwise speculars can emerge at arbitrarily distant 

offsets from the field point. But often, the time sections or other data 

provide (depth dependent) bounds on the maximum dip. In this case, we can 

limit the range of integration to a "little bit more” than the maximum 

specular offset. Empirically, the “little bit more” turns out to be a few 
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Fresnel zones (Sheriff, 1980 gives a brief, lucid treatment of the Fresnel 

zone concept). To determine the Fresnel zone for inversion, we must 

anticipate the abstract form of the inversion integral. For simplicity, we 

here treat only the linear array case (i.e. data collected only for yn = 0 

and inversion computed for y = 0). In this case, the form of the inversion 

integral is 

-iwg(x,z,§) 
B(x,z) = ff A(x,z,&,u) e d&dw . (3.31) 

A Fresnel zone for € is defined as the differential value that produces a 

n/2 increment in phase: 

w dg =n/2 . (3.32) 

On switching to frequency in Hertz and re-arranging: 

1 dé =——___ - (3.33) 
LT] 4f_ DE 

Here, f_, is a nominal low frequency in the band (e.g., the middle point of 

the left end taper of the filter F discussed above). The derivative in 

(3.33) is evaluated at the output point, (x,z), and the & corresponding to 

the maximum dip specular from this point. That is, given a maximum dip at 

(x,z), determine by tracing geometrical optics rays the value of & where 

reflection data from that dip will emerge at the upper surface. We find 

empirically that extension of the domain of summation by two Fresnel zones 

is adequate for numerical accuracy while extension by one is not. Thus, at 

that €-point, increment &€ by 2d& with d& defined by (3.33). This defines 
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the limit of integration consistent with Fresnel zone considerations. 

Exercise 3.14. In the next chapter, we will show that for the case of 

constant background sound speed and zero-offset source/receiver 

configuration, ¢ is given by the two-way traveltime: 

- 2 2 3 _ = | ~ eran? , (3.34) 

For the constant background (c = 1800 m/s), zero-offset case, derive 

the minimum adequate integration range in &€ at output depth 600 m, if 

we are given that the magnitude of the maximum dip is 30° and that the 

data has been band passed filter with a 6-12-48-60 Hz filter. Here, 

the first two numbers define the range over which the filter rises from 

zero to full value and the last two define the range over which the 

filter decays from full value to Zero. Answer: 

le - x] = 200(1 + 23) = 893 meters. 

We turn from consideration of the finite aperture restrictions to the 

discretization effects. The discretization in time implies that there is a 

limit on the highest usable frequency -- the Nyquist limit: 

f (3.35) 
1 

+ ‘ 2At 

Here At denotes the sampling rate and f,; is a nominal high frequency (e.g. 

the middle point of the right end taper of the band pass filter F). 

Frequencies higher than the Nyquist limit are "“aliased” onto lower 

frequencies. Fortunately, aliased frequencies are rejected in the field by 
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“anti-aliasing” filters, so we need not consider this restriction further. 

On the other hand, the discretization in space provides a _ real 

challenge to the data processor. It turns out that even when there is no 

temporal aliasing (i.e. equation (3.35) is satisfied), there can easily be 

“spatial” aliasing. If we continue to assume that the inversion solution 

has the form of equation (3.31), the basic facts are easily derived. First, 

because of the sampling in the horizontal space dimension, we have the 

(spatial) Nyquist limit: 

Ke 1 

az TAE (3.36) 

where AE is the spatial sampling rate and ke is the corresponding spatial 

wave number. This wave number can be expressed in terms of the phase in 

(3.31) as: 

ky = aE (3.37) 

Combining the last two equations leads to the condition: 

Ag ¢ — tL _ (3.38) 
2 98 ¢ 

a& + 

In the inversion process, the most convenient way to impose equation (3.38) 

is as a restriction on allowable dip or equivalently, allowable offset at 

given depth. In bad cases, this can conflict with the Fresnel zone 

requirement for successful imaging. 

Exercise 3.15. Under the conditions of the previous exercise, compute the 
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maximum allowable spatial aperture for a CMP spacing of 15 meters. 

Given adequate observation apertures, can we successfully image under 

these conditions? Answer: Just barely. The maximum dip allowed at 

600 m is 33.8° 

3.5. Summary 

In this chapter, we have discussed the major issues arising from the 

constraints of the real world. We introduced the important theme of 

treating seismic records as high pass filtered data. We have also 

discussed: 

(1) The extraction of information from bandlimited data. 

(2) The estimation of parameters from the linearized theory. 

(3) The effects of finite aperture: the concept of causality with respect 

to the time dimension and the concept of Fresnel zone with respect to 

the lateral spatial dimension. 

(4) The effects of discretization: the concepts of temporal and spatial 

aliasing. 
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4. Zero-offset Constant Reference Inversion 

In this chapter, we study the derivation of the inversion algorithm 

first presented in the 1979 Geophysics paper, "Velocity inversion procedure 

for acoustic waves”, by the authors of this monograph. Two later references 

that give further information are "Computational and asymptotic aspects of 

velocity inversion”, Bleistein et al. (1985) and the text, “Mathematical 

Methods for Wave Phenomena”, Bleistein (1984). 

The model we study here is very simple and yet it is still the basis 

for much of the routine migration processing of seismic data. In addition 

to the general constraints discussed in the previous chapter, we here assume 

the background velocity field and the source/receiver configuration to be as 

simple as possible -~ we assume that: 

(1) the background is a constant velocity and 

(2) the data is collected at zero-offset. 

As remarked earlier, in actuality, CMP data is used to simulate zero- 

offset data. 

It is interesting to note that two of the classic papers on migration 

were roughly contemporaneous with the work on velocity inversion described 

in this chapter: Schneider's “Integral formulation for migration in two and 

three dimensions”, and Stolt’s “Migration by Fourier transform", having 

appeared in the previous year. Although it was hardly apparent in 1979, in 

the ensuing years it has been shown that the three algorithms have much in 

common, see Cohen and Bleistein (1982), Cheng and Coen (1983) and Bleistein 

et al. (1985).



4.1. Three dimensional algorithm 
  

In this section, we will derive the Born inversion formula for zero 

offset data in a constant background sound speed and constant density 

medium. We begin from the Born integral equation (2.16) which we repeat 

here for the readers’ convenience: 

2 , 8x, x) glo xx ) 
Ug(w,x,+x4) = | dx BS a(x) (4.1) 

e (x) 

Since we treat the case of zero-offset, we have 

x, = x, =x = (§,0) = (b-8,-0) . (4.2) 

In addition, since the background sound speed is assumed to be constant, 

c(x) = c¢ = constant , (4.3) 

we can write down an explicit representation for the Green’s function: 

ior/c 

g(w,x,x,) = hr’ r= |x - x, ° (4.4) 

Exercise 4,1. Establish the above expression for g by Fourier methods. Some 

may find it easier to establish the time domain representation, 

&(t = t/c) (4 5) 

G(t,x,x)) = 4nz 

With this result, we can write the simplified Born equation (4.1) as:



ezivr/e 
|| a°x © a(x) = le] ug(w.8) (4.6) 

(4nr)” 

Here, we have shortened our notation for the zero-offset data vector, by 

writing, 

u,(w,€) a u,(w,§,0,8,0) ° (4.7) 

We remind the reader that although the integral in (4.6) is formally written 

as being over all space, we have assumed that a vanishes in the non-physical 

(air) region z< 0. Hence we can alternatively consider the region of 

integration as being over the half space representing the subsurface of the 

earth, 

Exercise 4.2. In equation (4.6), the data, ug, is written in frequency 

domain. This data arises from a function assumed to vanish identically 

for t < 0. It can be shown that this and finite energy implies that ug 

is analytic in the upper half of the w plane and decays to zero there 

as |w| > (even exponentially in Im w as Im w» ©) in this half plane. 

Assuming these properties, prove the converse: Ug vanishes for t ¢ 0. 

The integral in (4.6) is a convolution in the transverse spatial 

variables, x and y. Thus, a transverse Fourier transform is indicated. 

Unfortunately, in order to do this transform explicitly, we require the two- 

dimensional transform of the square of the Green's function: 
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oxp|-iK-p + [2iw/cl p” +2" 
    

  

1 2 
h_ (w,K,z) = d°p 

an 16x” p +2" 

(4.8) 

K = (k » «K ) » pe (x,y) ’ >. = x + y ° 
x Y 

Alas, the transform, h is not known (to us, at least) in closed form. a’ 

However, if we differentiate with respect to w, the required integral 

becomes the transform of the Green's function, itself -- but with c replaced 

by c/2. The appearance of the halved speed is quite natural. In the zero- 

offset model, the “specular” rays travel back and forth on the same path. 

Thus we can equivalently consider either “two way time” with the actual 

speed or "one way time” with halved speed. It is gratifying that the 

mathematics so closely mirrors the "exploding reflector” model used in 

migration, see Loewenthal, et al. (1976). 

On carrying out the w differentiation, our inversion integral equation 

becomes 

2iwr/c u, (w,&) 
{Il d°x 2 g(x) = ~2nic? a ° (4.9) 

4nr = aw 2 

We now define the 2-D Fourier transform, 

#(K) = ff a°p eAtE-P tcp) (4.10) 

Here p and K are as above, but note that we have inserted a factor of 2 in 

the exponent of the transform kernel. This factor is not essential, but it 

makes the subsequent formulas a bit nicer. We note that in inverting a 
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transform with the 2 factor in the exponent, we have a 1/n factor outside 

the inversion integral instead of the usual 1/2n factor. Thus, 

£(p) = + | a*x e 23K'2 F(x) . (4.11) 
Tt 

Exercise 4.3. Establish the inversion formulas for both the 1-D and 2-D 

Fourier transforms when a 2 factor is inserted in the exponent as in 

(4.10). The 2-D result should agree with (4.11). 

On applying the indicated transform to (4.9), we obtain: 

| dz 8, (w,K,z) a(K,z) = d(w,K) (4.12) 

0 

Here the kernel, g,, is given by 

1 , exP lasx-p + [2iw/c] lo” +2” 
dp - (4.13) g, (wo, K,z) .   

4n ; 3 

p +z 

and the “data”, d, by 

a 

39 u,(w,K) 
d(w,K) = - 2nie —— | —~—— . (4.14) 

aw rf) 

The kernel, g, can be evaluated explicitly as 
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i 2ik,2 g (w,K,z) = —— @6 Zz > (4.15) 

a 4k 

where the vertical wave number (technically half the vertical wavenumber), 

ky is defined as 

2 
sgn(w) | w/o -K , Jo] 2 cK, 

i | K- w/o , Jo] < cK. 

It will be observed that in the remainder of the derivation only the regime, 

k 
Zz (4.16) 

Joo | > cK, will be required. The reason is that a(x) can be reconstructed 

from its Fourier transform &(k) over real values of the k-vector, only. 

This is important because data in the “evanescent” region, Jo | < cK is 

physically unattainable. 

We outline three alternate ways of deriving (4.15) in the following 

exercises. 

Exercise 4.4. Introduce polar coordinates, 

p = p (cos@,sin®), K = K (cos¢,sing) , (4.17) 

and argue that g is independent of g, Then show that the @ integration 

produces the Bessel function,



rt 

24 
| do o 7ikpcos® _ J (2Kp) (4.18) 
—t 

see Abramowitz and Segun (1965), equation 9.1.18. In the remaining p 

integral, make the substitution, 

u= Ip +2 (4.19) 

and observe that the resulting integral can be written as a linear 

combination of sine and cosine transforms, see Erdelyi, et al. (1953), 

equations 1.13(48) and 2.13(47). [Note: our editions have 

inadvertently omitted a square root symbol in the first of these 

results. ] 

Exercise 4.5. After completing the angular integral as above, alternatively 

evaluate the radial integral by use of Hankel transform tables, see 

Erdelyi, et al. (1953), equation 8.2(25). 

After carrying out either of the above two approaches and attaining a 

result as simple as (4.15), it is natural to ask if there is not a less 

tedious way of obtaining the result. Indeed there is. Since the kernel of 

(4.9) is the free space Green's function with speed c/2, it satisfies the 

wave equation with speed c/2 and source, 8(x)8(y)8(z). On carrying out the 

indicated transverse transforms on the wave equation, we find that g, (4.15) 

satisfies the equation for the 1-D Green’s function.



Exercise 4.6. Carry out the indicated reduction and solve the equation for 

1-D Green's function to obtain (4.15). 

Note: Integrals like this come up all the time. See Craig (1986) for a 

recent example. Can you do better than Craig using the method of the 

current exercise? 

Using (4.15) in (4.12), we reduce the inversion integral equation to the 

following a 1-D integral equation for the lateral transform of a: 

[ dz e7**2” O(K,2) = -4ik d(w,K) (4.20) 
0 

The remaining integral is almost a Fourier integral and, indeed, the 

following observations allow us to write it as such: 

(1) Since a(x) = 0 for z <0, so is &(K,z); hence we can extend the 

integral to -~, (It was convenient to reduce the interval to z > 0 to 

allow writing z instead of |z | as required in the transform results 

cited in Exercises 4.4-6.) 

(2) As w varies from ~~ to -cK and from cK to +, k, varies from -™ to +o, 

and is thus a suitable conjugate Fourier variable to z. 

(3) In the regime, |w| > cK, we can use (4.16) to write w as a function of 

k, and K: 

w = wo (K,k_) = oe sgn (k_) | Ko +k = sgn (k ) | k? + k* + k? (4.21) 
° Z Zz Zz Z x y Zz 

With these observations, we can invert (4.20) at once to obtain 
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a(K,z) = “| dk ke 2tkz%a(y x) (4.22) 
= ni Zz 2 o°= 

We have essentially solved our integral equation for a! All that 

remains to do is: 

(4) use (4.11) to invert the spatial transforms, thus writing a in spatial 

variables; 

(5) use (4.14) to write d in terms of fig(w,K); 

(6) use (2.20) to write the transform, fig(w,K), in terms of ug(w,£); 

(7) write ug(w,f) in terms of its inverse temporal transform, i.e., in 

terms of Ug(t,&). 

We follow this straightforward, but tedious, program in the following 

sequence of equations. First write a in spatial variables: 

a(x) = a(p,z) = — | dk | a’x 2! Fe - 7) x atom. (4.23) 
~ ~ ni 2 z° 

Then replace d: 

  3 2 De 3 (4.24) 
rt « 

3 a (w,K) 

az) = - 82 {| ae i] Be - bz), & eT 
  Oo oO, 

Here, we have combined the k, integral with the k,, k, (or k,,k,) integrals 

as a triple integral over a 3-D k. Next we undo the spatial transform of 

ug: 
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(4.25) 

. 2 E il2K:(p - &) - kz + ote (w8) 
dw wo” ® = W, 

and then the temporal transform, 

8 3 

a(x) = - {| a°t {| d°k k 
7 Z 

. (4.26) 
. iz | | dt oi l2K:(p -§) - kz + *ugce0| 

@ 0 o = oO) 

Finally, we note that 

a ES el = + fit - 2/0] ei” (4.27) 
2 2 

dw lw wo 

and obtain the inversion formula, 

3 

a(x) = So. | a*e (| a°k F(k) o21/K*(p ~ &) ~ Kz] 
ni 

(4.28) 

    

~ iw t 

| dt tU,(t,£) [ 1 + 24 | , 
2 wt 

0 wy o 

where once again, 
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w, = ck sen(k ) = ¢ [x + k sgen(k, ) . (4.29) 

Formula (4.28) provides a wide band inversion for the perturbation, a. 

Although we have never implemented this formula ourselves, it is apparent 

that its structure is similar to Stolt's 1978 k-f migration formula. 

Thus, starting from (4.6), the Born approximation of the upward 

scattered wave in a constant background soundspeed, constant density medium, 

we have derived a full bandwidth inversion formula (4.28) for a(x), The 

derivation relied on Fourier transform theory and the convolution theorem. 

4.2. High frequency approximations 

At this point, we wish to exploit the high frequency nature of ordinary 

seismic data to simplify the inversion processing. We return to equation 

(4.22) and before inverting the transform, we introduce the factor derived 

in equation (3.29) that provides edge sharpening and (for zero-offset data) 

converts a into the reflectivity function, 6. That is, in (4.22), we 

multiply on the right by iw/2c and replace & by B on the left. The resuit 

is 

oo a 20k 

[a e7ik,2 B(K,2) = ——% dw, KE). (4.30) 
0 

  

c 

We can now repeat the steps that led from (4.20) to (4.28). Alternatively, 

multiply by iw/2c on the right in (4.28) and replace a by B on the left. We 

then drop the lower order term in w -- 2i/w,t -- in (4.28) to obtain 
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k off ec ffer toler n 

(4.31) 

. | dt tU5(t, 8) et ckt sgn(k,) 

0 

Here, we have used (4.29) to eliminate Wy» 

Exercise 4.7. 

previous paragraph. 

Because of the relation (4.29), 

Establish (4.31) by following the outlined steps of the 

the bandlimiting in frequency is 

equivalent to bandlimiting in k -- the magnitude of the 3-vector, (K,k,). 

We introduce the polar coordinates, 

K = k(cos ¢, sin g) sin 6, k. = kcos@ 

and 

p-§€ = xr(cosd,sina )sinn, z= recom 

Thus, as in (4.29), 

r-VK +k? , 

and we also have, 

’ (4.32) 

. (4.33) 

(4.34) 
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r= |o-e] tz = (x- 8) + ly- Wee? (4.35) 

Carrying out stationary phase in the angular variables, with k (i.e., w) as 

the formal large parameter, we obtain 

Lr 

2 oo } 

B(x) ~ - 502 (fee | dt t Ug(t,£) | dkkF(k)sinfek{t ~ 2r/e}] . (4.36) 
0 0 

Here, we have introduced a filter analogous to that discussed earlier in 

Chapter 3 in order to make explicit the high pass nature of our data, Ug —- 

how else could we justify stationary phase? 

Exercise 4.8. Establish this result by the method of stationary phase. 

Exercise 4.9. What happens if you do not switch to polar coordinates and 

instead do stationary phase in the original K variables? 

Exercise 4.10. “Simplify” the above expression for B by doing the k 

integral explicitly (for a box car filter). 

For purposes of processing actual data with the FFI, it helps to write 

the sine function in (4.36) as 

sin{ck{t - 2r/c}] = Im eicklt ~ 2z/e) , (4.37) 

and then our algorithm becomes 
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2 oo 

B(x) ~ - 582 Im aa dk k F(k) @ 72 *F. 
r 

0 
(4.38) 

° i | dt tU.(t,8) © ckt 

0 

Finally we introduce the temporal frequency, 

Joo | ck 

tee (4.39) 
an 2n 

to obtain 

32 > ° 
B(x) _ Dane (|< Im | df f F(f) e 2nit(2r/c) 

c r? 
0 

(4.40) 
oe 

| at t Us(t,&) e 2nift 

0 

This form of the algorithm is suitable for processing 3-D (areal) data sets. 

The steps are: 

(1) Forward FFT over time of weighted data. 

(2) Inverse FFT of filtered data. 

(3) Quadrature over receiver array. 

All our algorithms will have this general structure. 

Exercise 4.11. Recognize that the factor of t in the time integral of the 

last equation can be replaced by a differentiation in f and do an 

integration by parts in f to obtain, 
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2 ‘© 

B(x) ~ - S4ne | ae Im | df £ F(£) eg 2nit(22/c) 

0 
c 

(4.41) 

0 

which is an alternate processing form of the inversion algorithm. 

Hints: Exploit the high frequency assumption and use the fact that the 

filter tapers smoothly to zero. 

We note that the two forms just stated for the processing algorithm 

differ only by trading a factor of t for the corresponding two-way 

traveltime, 2r/c. This trade-off makes intuitive sense in the high 

frequency regime. 

While the last two forms of the algorithm are suitable for computer 

implementation, they are not the most convenient form for theoretical work. 

Exercise 4.12. In (4.36) use Euler's formula for the sine function and the 

evenness of the filter function to show that 

2 oe eo 

p(x) ~ S42 [ze | duwwF(w) e 2ier/e | dt Ug(t,£) e°* (4.42) 
ne r 

=O 0 

Thus, starting from a full bandwidth inversion formula for a (4.28), we 

have derived an inversion formula for the reflectivity function, B. That 

formula uses only high frequency zero offset data gathered over a surface. 
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4.3. Two-and-one-half dimensional Limit 

Although 3-D surveys are becoming more common, the typical seismic data 

set is still a set of traces gathered along a line. In such a case it is 

not possible to obtain a full 3-D image of the subsurface. The self- 

consistent model for a linear survey is a subsurface that does not vary in 

the direction orthogonal to the survey. With a field data set, this 

assumption will not be true and reflections due to out-of-plane reflectors 

gives rise to the phenomenon known as “side swipe.” However, given only a 

line of data, we must make some assumption about the data that would have 

been collected on paraliel lines and the universal choice for that 

assumption is that every line would give the same data as the one observed. 

In some of the older migration work, the above “cylindrical earth” 

assumption was augmented by an assumption of line sources extending in the 

direction orthogonal to the survey line. This reduces the mathematical 

model to a two-dimensional one, but has the cost of replacing the actual 

quasi-spherical spreading of the signal by quasi-cylindrical spreading. 

Such a replacement obviously would have an adverse effect on the amplitude 

information in the signal and hence on the derived parameter estimates. For 

this reason, we retain our point source model of the actual 3-D sources. c We 

call this combination of 3-D wave propagation into a 2-D earth the 2.5-D 

wave model. The notion of "“two-and-one~half-dimensional” modeling is 

explicated in Bleistein (1986). Other authors who address this type of 

specialization are Cerveny, et al. (1977), Cerveny and Hron (1980), 

Ben-Menachem and Beydoun (1985), Cerveny and Ravrinda (1971), Kennett 

(1983), and Ursin (1983). Its use in inversion is made explicit in 

Bleistein, et al. (1985b), but it has, in fact, been used both by us and 
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others for many years. 

It turns out that in our inversion work, the 2.5-D model is no harder 

to treat that the less realistic 2-D (line source) model. Thus, we pay no 

penalty for adopting the better model. Alas, the same is not true 

universally in geophysics. In finite difference forward modeling, there is 

no question that 2-D is much less CPU intensive than 3-D modeling. However, 

the work of Bleistein (1986) may help in reducing the forward modeling 

penalty. 

The process of adapting our previously derived 3-D inversion formulas 

to the 2-D earth model to obtain the 2.5-D inversion formulas is simple. We 

observe that the 2-D earth assumption amounts to assuming that Ug is 

independent of the transverse coordinate, n. Thus, the only n dependence 

occurs in the phase, and so in (4.40) we can calculate the n integral, 

~4nifr/ec 4 a a s 
I= | dy oS —————  ,, r= (x - B72 + ly -)* +z (4.43) 

r 

in isolation. We once more exploit the high frequency assumption to do this 

integral by stationary phase. 

Exercise 4.13. Show that 

I~ 1-ifec 1 eo fnife/e (4.44) 
2 f rl? , 

where now (and henceforward in our 2.5-D work), 
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r= (x- &)* +27 . (4.45) 

Exercise 4.14. Show that for a complex number z, 

Im(1 - i)z = - (Rez —- Imz) , (4.46) 

and hence, for the 2.5-D model, the “processing” form of the inversion 

algorithm is 

B(x) ~ 20m2 | 2% (Re - Im) | at fF FCe) e nit (2r/e) 
Cc £ 0 

(4.47) 
| dt t U,(t 8) ernift 

0 

where now x is the 2-vector, (x,z), and r is as in (4.44) above. 

Exercise 4.15. Show that the “alternate processing” form of the 2.5- 

inversion algorithm analogous to (4.40) for 3-D inversion is 

  B(x) = 32nz | ge (Re - Im) | af ff FC) eg 2xif(2r/c) 
3/2 

c f= 
0 

(4.48) 

[ie Ue (tere mitt . 

0 

Exercise 4.16. Show that the “theory” form of the 2.5-D inversion algorithm 

analogous to (4.41) for the 3-D inversion is 
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B(x) ~ —82_ rd do fio oF? | at ugit.g) eM 
Yr YF Je 0 

fr - {leq °"”* sgn(w) 

Exercise 4.17. Make the 2.5-D assumption in the wide band formula and then 

(4.49) 

specialize your answer to the high frequency regime as a check. 

Exercise 4.18. Make the 2.5-D assumption just before the 2-D angular 

stationary phase calculation above and then do 1-D angular stationary 

phase to obtain an alternate derivation of the 2.5-D processing 

formula, 

Exercise 4.19. Examine the 1.5-D limit, that is, the case in which only one 

experiment is done and we adopt the model of a stratified earth. You 

can start either from the 3-D or the 2.5-D forms of the inversion 

algorithm. 

We have now provided formulas for constant background sound speed, 

constant density , zero offset 2.5-D inversion. These are the formulas used 

to process a single line of seismic data. 

4.4. Verification for model data 

We will develop some analytical checks on the inversion formulas we 

have derived. First, we will consider the case of a single planar reflector 

and then a more general curved reflector for which we use the Kirchhoff 
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approximation to represent the upward propagating wave. We note that 

neither check evokes the Born approximation -- that is, our checks do not 

assume that the reflector is weakly contrasting with the reference, 

4.4.1. Verification for a horizontal plane 

The zero-offset ("back scattered”) field due to a horizontal reflector 

at depth h is asymptotically given by 

U(t,f) = R 8(t - 2h/c) 
s 2 ”  Srh ° (4.50) 

The exact solution has a second term involving a step function. Thus, in 

the frequency domain we have retained a term which is 0(1) in w as jor| —o 

and neglected a term that is 0(1/ fw) as |wo| >. In this equation, c 

denotes the constant speed above the reflector and R denotes the reflection 

coefficient characterizing the medium below the reflector. More precisely, 

for our zero offset model, we may write 

(4.51) 

where c, and Ac respectively denote the speed below the reflector and the 

jump in speed across the reflector. On inserting the data (4.50) into the 

“theory” form of our 3-D algorithm (4.42), and exploiting the delta function 

in t, we obtain 
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2 _ 2iwh/o 
B(x) ~ 2 [1 | aoe F(w) e ter/e pe 

  

rc 

(4.52) 
-2iewr/c 

= at | swore e Ziuh/o | a? 
noch 

Exercise 4.20. Do stationary phase in the source/receiver locations & to 

show that the stationary point is — = x and hence 

B(x) ~ Be | dwF(w) @ 2ieCzb)/o (4.53) 

Hint: 

et n/2 sgn(w) = ~ i sgn(w) (4.54) 

If the filter, F, were absent from our integral, then the last integral 

would produce a delta function: 

B(x) = Fe nces(z - hh) = RB(z-h) . (4.55) 
- nch 

This would be the “correct” result! That is, our inversion formula would 

have reconstructed the surface and the reflection coefficient. 

To honor the bandlimited nature of our data and of our result, we write 

instead, 
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B(x) ~ R 6, (2 - h) (4.56) 

where the subscript B denotes bandlimited. By this notation, we mean that 

the result is a sinc-like function that peaks on the reflector. The peak 

value is proportional to the reflection coefficient. In fact, the 

proportionality factor can be evaluated in terms of the filter function and 

thus the reflection coefficient may be estimated. 

Exercise 4.21. Suppose that F(f) is a nonnegative, even filter function and, 

that 5p(2(z-h)/c) is its inverse transform. Show that the peak value 

of this function at z = h is just 2A, where A is the area under the 

F(f) for f positive and that this bandlimited delta function has the 

dimension (time)~*, 

Exercise 4.22. Carry out the analogous check for the 2.5-D case. That is, 

insert the solution (4.49) into the inversion formula (4.48) and obtain 

the result (4.54). 

We have now checked that for a single flat plane, the inversion formula 

asymptotically yields a bandlimited delta function scaled by the exact 

(nonlinear in Ac) reflection coefficient. The inversion formula has 

converted the arrival time of the impulse from the reflector into a depth 

consistent with two way traveltime at the background sound speed, c. 
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4.4.2. Kirchhoff scattering data 
  

We now consider a single more general curved reflector, S. We use the 

Kirchhoff approximation (Bleistein, 1986) to approximate this data. We 

emphasize that the Born approximation of weak contrast is not made in 

deriving this formula: 

ug(wrx +x.) ~ iw | dS R lr. + Coal g(w,x,x,) g(w,x,x.) . (4.57) 

s 

where the g's denote the WKBJ approximations, 

iwt(x,x_) 
~ ~g g(w,x,x ) ~ A(x,x ) e Xx, x+k, 

(4.58) 

g(w,x,x.) ~ A(x,x)) eo iOt(xe x.) 

with the t’s being conoidal solutions of the eikonal equation and the A’s 

satisfying the first transport equation. Moreover, we have used the 

notations, 

Ton 7 At Velx.x.) 5 Tn = i. Ve(x.x,) , (4.59) 

with ff the upward normal on S. We also introduce Ten the normal derivative 

2 1 
Th, 7 Sen (von) vn + EF] . (4.60) 

Here the brackets denote the jump across the surface (value below minus 
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value above). With this notation we can conveniently express the reflection 

coefficient, R, in (4.57) as 

Ree (4.61) 

Exercise 4.23. Specialize the Kirchhoff scattering data formula to the case 

of backscatter with constant reference speed to obtain 

  

  

Ae? 
n(wg) ~—2. | as R—— e2tur/e (4.62) 

8x c r* 
S 

Here 

r=(x-&y-n, 2), : =r/r, (4.63) 

and, as above, 

reV(x-8? 4+ly-qee?. (4.64) 

Exercise 4.24. Suppose that the surface S is cylindrical; that is the 

surface is defined by a curve in x,z and lines parallel to the y axis, 

so that 

x = x(o), z = 2(o) dS = {v doay, Y= az]? + ez |* . (4.65) 

Carry out the stationary phase in y in (4.62) to obtain the 2.5-D 

Kirchhoff approximation. Show that the stationary point is at y = y 

~ 4.24 -



and 

3ni/4 sgnw 2iw/c 
{lef e Re aa 

w(w,8) ~ —j ae \’ do , (4.66) 
8n2/? fe r/? 

c 

with y = n in the definition of r, (4.64). 

4.4.3. Verification for a general single surface 

In this subsection, we will apply our inversion algorithm in 3-D to an 

arbitrary single surface. We use the coordinates depicted in Figure 4.1. 

That is, the generic field point is denoted by 

x = (x,y,z) > (4.67) 

the generic point on the surface by 

x’ = (x',y'’,z’) (4.68) 

and the generic geophone on the observation surface by 

x, = (&,0). (4.69) 

It is further convenient to define vectors relative to the geophones: 
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Figure 4.1. Backscatter Reflector Geometry 

rex-x, re | r[, = 2/r, (4.70) 

and 

prt]. Bo = 2'/e' . (4.71) In
 Nt 

in
 ! 8 u 

On inserting the Kirchhoff scattering data from equation (4.62) into the 

“theory” form of our 3-D aigorithm (4.42), and recalling the temporal 

transform definition, 

© 

t us(w,g) = | dt Ud(t,£) etvt (4.72) 
0 

we obtain 

    

Rog! 1. 

B(x) ~ - —2 | w F(w) | dt | do {re eriw(e’ — r/o (4 43) 
(nc) rr’ 

Here we have replaced the generic surface element, dS, by an explicit 

parametrization, o,, o,» and have correspondingly introduced the notation, 
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\y, for the first fundamental form of differential geometry, which is 

required to express the surface area element in terms of the coordinates, o: 

x 
do, do, 

» jk = 1,2. (4.74)     

dx’ dx’ dx’ = dx’ 

rs Wet | do, ° doy       

We now wish to do four dimensional stationary phase with respect to the 

surface parameters and the geophone parameters. To save some writing, we 

introduce the alternate notations, 

gy 

ui 

w
r
 

. f
t
 

» 

i 

3 be
 U ta u 

Sq
 

.
 ™ W N 

(4.75) 

i 

<
 m i N 

Before embarking on this somewhat formidable calculation, we pause to 

once more emphasize the conditions under which the stationary phase 

calculation is valid. The formal large parameter is proportional to w. 

However, the actual large parameter must be a dimensionless quantity which 

measures the other length scales of the problem in terms of the wave length 

{cf. (3.1)]: 

A= 2tel po ftp ya , (4.76) 

Here, the conservative choice of f is some nominal lowest frequency in the 

observation band -- we recommend taking it as the midpoint of the smooth 

ramp ascending from zero filter values to unit filter values. The quantity 

L represents the generic length scale of the problem and, as mentioned 

earlier, this restricts the validity of the asymptotics. The candidates for 

L are 
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(1) The distance from the upper surface to the reflector, say,the average 

of r’; 

(2) similarly, the distance from the upper surface to the output point, the 

average value of r; 

(3) the radii of curvature of the reflector. 

In fact, all three of these distances must be many (at least three) wave 

lengths. It is extremely difficult to see precisely why A must be large for 

these length scales to justify the fourfold stationary phase being carried 

out here. However, it is possible to draw this conclusion by examining 

simpler problems, such as the direct Kirchhoff modeling integral computed by 

stationary phase (2.5-D is even easier!) and the 2.5-D inversion operator. 

It is fairly straightforward to explain these requirements on physical 

grounds. The first is necessary so that the propagation down to the 

reflector really be wave-like. That is, the response to the point source 

cannot be identified as being wave-like unless there is sufficient range for 

the wave structure to occur. Similarly, the output point is a candidate 

point on the reflector. Thus, the response from that point must also 

propagate over sufficient range to be identifiable as a wave. Finally, it 

is only for reflectors "sufficiently flat” on the scale of the wave length 

that the reflected wave behaves like a slight modification of the reflection 

of plane waves by plane boundaries. It is the latter type of wave that is 

predicted by asymptotics. 

Thus, without redefining dimensionless variables in (4.72), we use the 

formal large parameter 

A= 2 Jol (4.77) 
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Then, from equation (4.72), the phase to which we will apply the method of 

stationary phase is 

g=r'-fr. (4.78) 

The first derivatives of our phase function are 

a¢ ox’ a 
—~ame ’ foe = 6. ' = do Vir de, r t i » i 1,2 2 (4.79) 

and 

6b, OG 
a = r 7 = rz ° i = 1, 2 ° (4.80)   

In the first of these, we have introduced the surface tangents, 

t] = dx'/doy, 1 = 1,2. 
The stationary point(s) is (are) determined by setting these latter 

derivatives equal to zero. The first pair of conditions yield 

ret! = 0 , i1=1,2. (4.81) 

This shows that 2’ is orthogonal to both surface tangents, i.e., is normal 

to the surface to within a plus or minus sign. From Figure 4.1 we see that 

the minus sign should be chosen. Thus, 

a e thea’, (4.82) 
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at the stationary point. This can readily be interpreted to mean that x’ is 

a "specular" ray. This is to be expected: at backscatter the principal 

contributing ray is normal to the surface. We note that this condition 

implies that the angle-dependent reflection coefficient reduces to _ the 

normal reflection coefficient, 

R=R = (4.83) 

where c is the speed above the reflector and c, is the speed below the 

reflector. 

Exercise 4.25. Establish this result. 

On setting the second pair of derivatives to zero, we have: 

e.- Xx; &é.-x 

“iis i i | ieay . (4.84) 
r r 

On taking the magnitude of this equation, we see that the sine of the angle 

between x and the vertical is equal to the corresponding sine for x’. Since 

these angles are confined to the interval, (-1/2,7/2), where the sine 

function is monotonic, the angles are equal, hence their cosines are equal: 

z’ Zz 
—=>= . (4.85) 
© r 

Combining the last two equations, we can state the stationary point 

conditions as: 
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r’ syree n' . 
(4.86) 

Thus, at the stationary point, r and r’ are collinear and in the (anti) 

normal direction. That is, the main contributions come from field points 

that lie on the specular, see Figure 4.2. 

  

  

Figure 4.2. Geometry at the Stationary Point 

Exercise 4.26. Take magnitudes in the second stationary condition and show 

that 

(4.87) 

thus providing a purely algebraic derivation of the collinearity 

condition. 

We can now formally state the stationary phase result as: 
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zR 1 ’ 

B(x) ~ n - | dw F(w) eziw(r - r')/e + in/4 [Psgn(w)] (4.88) 
mo 

Here, D and P respectively denote the determinant and signature of the four 

by four second derivative Hessian matrix of the phase, 

ee 
0€ 08, E80, (4.89) 

lr. = : , i,j = 1,2, D= act |p, ]- P = sig|s,,|- 

96,90, 90,30, 

subject to the stationary phase conditions. 

In order to avoid distraction with technical details, we state and 

postpone the proof of the following 

Lemma: For x in a neighborhood of the reflector S, P = 0 at the stationary 

point. 

Now whenever P = 0 at the stationary point, the remaining integral on w 

yields a band-limited delta function with argument, r - r’'. Moreover, since 

x, x' and x, are collinear at the stationary point, this argument is 

identical to the normal arclength measured from the reflector -- that is, 

the singular function of the surface. More precisely, 

wz J dw oPole = FTC 2 ance - er) /o) = Ble ~ £1) = Bs) , (4.90) 
re 

where s, measures distance normal to the reflector. The fact that r—- r' 
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measures distance normal to S follows from the stationarity conditions. Now 

we set 

b,(s_) = i f dw F(w) e2ie(e ~ r')/e_, (4.91) 
n nc 

and rewrite (4.87) as 

B(x) | a | ToT Ba Sp2q) > (4.92) 

subject to the stationary conditions. 

  

Thus, under the assumption of the above lemma, we see that the 

application of our inversion formula to Kirchhoff data does, indeed, yield a 

scaled singular function of the reflecting surface whenever the stationarity 

conditions are satisfied. Geometrically, these conditions require that 

there be some zero-offset point on the data surface for which the normal 

incidence (specular) ray from that point to the reflector is incident on the 

reflector at the point being imaged. When there is no such specular ray, 

the point simply will not be imaged. In terms of our asymptotic analysis, 

no band limited delta function will be produced for such points on S. This 

is the effect of limited spatial aperture. 

Our asymptotic assumption is that the surface changes gradually. Thus, 

the neighborhood extends “far from” the reflector (at tleast three 

wavelengths). Thus, our conclusion (4.90) holds except (possibly) when P 

changes value “far away” from the surface. It can be shown that the 

contributions from such far away "caustics" are negligible, see Armstrong 

and Bleistein (1978). After the possible changes in sign occurs, P will 

have one of the values, +2, -2, +4, -4. The results in Cohen and Bleistein 
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(1983) imply that in the first two cases, the w integral is of asymptotic 

order, 

c 
e (4.93) 

2u|r - r’| 

But since r is "far from the surface”, this is negligible. Similarly, when 

P is +4 or -4, we obtain a result proportional to a band-limited delta 

function of r- r£' which is small "far from the surface”. Hence, (4.90) 

holds in a neighborhood of S large enough that when it no longer holds, the 

output is negligible compared to its magnitude near S. 

Exercise 4.27. Show that the peak value of 5p(s,) defined by (4.91) is 

equal to 2A/nc, where A is the area under the filter in positive wo. 

Suppose instead that the units in frequency domain are Hz, denote by f, 

with filter, F(f). Then show that the peak value is 4A/c, with units 

equal to (length)~*. Reconcile this result with the result of Exercise 

4.21. 

Since we now know the peak value of the band limited singular function 

in (4.92), it only remains to determine the peak value of the scale factor. 

That is, we consider (4.92) when x is on S. In this case, 

rer (4.94) 

and, 
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x=x’ , (4.95) 

That is, the field point coincides with the specular point -- the main 

contribution at the geophone x, comes from the specular (if any) field 

point(s). 

We now evaluate D subject to the stationary conditions and to r= r'. 

The second derivatives with respect to the geophone coordinates are: 

  

3? _fa. 1]s - (§; - xi, - x;) . (g; - x,)(8; - x;) 

0558; reoulr J ij r’ r 

(4.96) 

i,j = 1,2. 

Now use the stationary phase condition (4.83) and further evaluate at 

r= r', since we are doing only the peak value computation. We conclude 

from (4.54-5) that 

2 

9$ =0, i,j = 1,2. (4.97) aE 8; 

Hence, in computing D for x on S, we do not need to evaluate the second 

partials ino, since D reduces to the square of the determinant of the mixed 

partials, 

a 2 

p= | det 22— , d=1,2 , (4.98) 
9058; 

The mixed partials can be calculated from (4.79) or (4.80): 
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ag 1 ar a 1 
sae eae tite [S)e , d= 1,2, (4.99) 

90,08, r FF i 98; r i 

The second term vanishes as a consequence of the stationary phase conditions 

(4,80); thus, making obvious simplifications in the first term, we have 

aye 1, 
00 588 soo Fey ° t3 > i= 1,2 ° (4.100) 

Letting 3, f, & denote the standard cartesian unit vectors, we find: 

a a 2 

i-t! j-t! 

p=. ._ . (4.101) 
eo pats det 

Using the vector identity, 

(axb)-(cxd) = (a-c)(b-d) - (bec)(a-d) , (4.102) 

we find 
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1 r a a 

See ° e ’ D x | CAXG) Ce Xt) 

1 PF aR A , 2 

=—7 [Een lesxer | | vk 

-if¢.t yy => [er fests | | (4.103) 
r 

-i[2 I Sliel. 
2 

_ 2 
=a 

r 

Here in the second line we have used the fact that @ and fi are anti- 

collinear; in the third line we have used (4.73). Thus, at the stationary 

point and with x on S (the action point of the band-limited delta function), 

  
{PT ==, xonS, (4,104) 

and so the asymptotic evaluation of (4.92) with x on S becomes: 

B(x) ~ Ro 6s) » x on S, (4.105) 

Thus, subject to establishing our lemma, we have completed the 

verification of our inversion algorithm. Since we know the peak value of dp 

on S, we can compute the value of the normal reflection coefficient. Since 

we know the sound speed above the reflector, we can compute the value below 

the reflector by using (4.82). This is true for any size of the increment 

Ac in the sound speed across the reflector. 

It remains to establish our lemma. 
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Lemma: For x in a neighborhood of S, P = 0 at the stationary point. 

First observe that for x on S, D is positive by (4.103) as long as the 

parametrization of the surface by o is well behaved and y #0. We choose a 

parametrization for which y is bounded away from zero for all points on S&S. 

However, D is a continuous function of x, defined through its explicit 

dependence on x plus the conditions of stationarity which make x’ and & 

functions of x at the stationary point. Thus, D is different from zero in 

some neighborhood of S. (In fact, the neighborhood of S where D is nonzero 

depends on the curvature of the surface S -- i. e., on the principal radii 

of curvature at each point on S. We choose those to be “many” -- at least 

three -~- wavelengths long. As we have discussed earlier, effects far from 

the reflector contribute negligibly compared to the peak on the reflector.) 

When the signature changes value, an eigenvalue of the matrix vanishes. But 

that, in turn, entails the determinant vanishing. Hence the signature never 

changes value under the stated conditions -- the signature is a constant at 

the stationary point in a neighborhood of the reflector S. 

We will simplify the computation of this constant by specializing a 

problem in a manner that will not effect the result. Again, examining 

(4.103), we see that the eigenvalues do not pass through zero as a function 

of the principal radii of curvature of the reflecting surface. Thus, we 

might as well take the reflector to be flat for the purpose of this 

computation. Furthermore, the eigenvalues will not pass through zero for 

any choice of fi', so long as this vector does not become :horizontal, that 

is, as long the reflector does not become vertical. Consequently, for the 

purpose of computing the signature, we might as well take the reflector to 
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be a horizontal plane. In this case, o, and o, can be taken to be the 

cartesian coordinates on the reflector and €, and &, can be taken to be the 

cartesian coordinates on the observation surface. In this case, (4.100) 

becomes 

a & 

= i , t = j > 
(4 -106) 

so that the mixed derivative submatrix in the upper left and lower right in 

(4.89) becomes diagonalized: 

8 
ge - il, i,j=1,2. (4.107) 

We already know that the second derivative submatrix in — in (4,89) vanishes 

at the stationary point when that point is on S, so it only remains to 

compute the second derivative submatrix in the o's: 

  

s ¢ 

ae a = tea E 

00,00 do r’ —2 00.00 
ij j ij 

or a°r 

wiser eh [ht] ee a as . (4.108) 
r o; 7 r o; o, 

Here, in the second line, we have suppressed the primes since x = x’, 

Furthermore, the middle term is zero since r is orthogonal to the surface 

tangents according to (4.81). To evaluate the first and third term, first 

note that 
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00 06 da - j j i 3 

so that we obtain 

a 9 1 a a x’ 

a fit; = 6 ae ee (4.110) 

90,00, r 90,00, 

Our specialized coordinates now play a crucial role in simplifying this set 

of terms. We use (4.106) to simply the first term. For the second term, we 

exploit another special feature of our “locally orthogonal arc length 

coordinate system”, namely that the off-diagonal terms are equal to zero and 

the diagonal terms are + the principle radii of curvature. The choice, +, 

depends on whether the curve is concave up (+) or concave down (-). In the 

first case the second derivative and R are collinear, in the second case, 

they are anti-collinear. We denote those radii of curvature by r, and r, 

and we denote the choice of sign (11) by np, and yp, respectively. In terms 

of these variables, we write 

2 1 wl 

ag  . _+ 
96,00, Ba E * r, (4.111) 

so that the full four by four second derivative matrix is 
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0 oO -_i 0 
£ 

0 0 0 -i 
r 

M = (4.112) 

1 1 y 
-— 0 -~+— 0 

r r tr, 

1 1 i 

0 -— 0 —+— 
r r r, | 

Exercise 4.28. Show that 

1 M, 1 1 Hy 1 
det(M - 41) = ap -s-s]-4 app-s-t]-5 , (4,113) 

rf, 2? ror, 2 

with roots, 

1 v 1 wp, f2 1 
Mad _+ 2+ —~+4] +—|, 3 =1,2. (4.114) 

r r. r *j r’ 

It can be seen here that two of the roots are always positive (+), and two 

are always negative (-). Consequently, the signature P of the matrix M is 

equal to zero, which is what we were to prove. As stated above, by 

continuity, the signature must be zero in some neighborhood of S, as well. 

This result is a special case of the more general result of the 

following exercise. We will need the generalization in the next chapter. 
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Exercise 4.29. Establish the following signature lemma: If the symmetric 

4x4 matrix M has the form 

M = (4.115) 

b, 0 ay 0 

0 a’, 0 as 

then 

2 2 
det M = [ nN - ae | [ no BS | (4.116) 

and moreover if each of the factors, n? - as and n? - BS is positive 

then 

sig M= 0 (4.117) 

In particular, note that if Bia, = a,a, = 0 then 

det M= nn” , sig M=0 , (a.a' = aa’ =0) . (4.118) 
12 2 2 

Apply these results to the matrix in equation (4.113) thus giving an 

alternate proof that its signature is equal to zero. 

This completes our analysis of Kirchhoff data. We have seen here that 

for a single reflector, our inversion formula applied to Kirchhoff 

approximate data yields a reflector map and an estimate of the sound speed 

below the reflector in terms of the output and the sound speed above the 
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reflector. This result did not require small change in sound speed, despite 

the basis of the inversion in the Born approximation, that is, in small 

perturbation in sound speed. 

On the other hand, in application, if the constant background were not 

“close” to the “true” propagation speed above the given reflector, then the 

location would be in error. Furthermore, if the true medium had multiple 

reflections of significant magnitude from reflectors above the "test” 

reflector, then the response from the given reflector would be contaminated 

and the estimate of reflection strength would be inaccurate. Thus, we 

cannot dispense completely with the small perturbation assumption of the 

underlying Born-motivated formulation of the inverse problem. 

Given these caveats, we might consider using this constant background 

algorithm locally, applying a “best guess” constant background in different 

regions. We might also anticipate correcting the background progressively 

deeper in the earth as more information is generated. This is admittedly 

more attractive when the theory is no longer limited to a constant. We will 

see such applications in the Chapter six. 

4.5. Implementation and examples 
  

The paper, Bleistein, et. al. (1985), describes the computer 

implementation of the constant background inversion formulas in 2.5-D and 3- 

D, including the interpretation of the peak amplitude in the context of the 

analytical output of the inversions applied to Kirchhoff data. Examples of 

constant background inversion can be found in Bleistein and Cohen (1982). 

We can describe the basic idea of the computer implementation in the 

context of the formula (4.40). Fast Fourier transform (FFT) is applied to 
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each trace to transform the data to the frequency domain. 

The indicated filter, fF(f) is applied and the data is inverse 

transformed, again by FFT, to yield a new data set, say W(t,&) on a uniform 

temporal grid. In carrying out the sum over geophones, (integral d7&), we 

need W(2r/c,&). We use three point interpolation in our table of W(t,£) 

values. 

The spatial integration must be computed for each x point for which we 

seek output. The domain of integration is limited by a number of 

constraints. In Chapter 3, we discussed these constraints and their 

implementation. We briefly repeat those ideas here, 

The first constraint to be imposed is causality. We cannot integrate 

over & values for which 2r/c is greater than the maximum time on the trace. 

It also makes no sense to seek output at points so deep that only one or two 

traces contribute to this last sum. 

The second constraint is spatial aliasing. Let us consider a wave 

which propagates from the output point x to a surface point &. Associated 

with this wave is the set of wave numbers in the bandwidth of the data, For 

each wave number, there is a wave vector whose magnitude is given by the 

wave number. The transverse component of this wave vector defines a wave 

which must be sampled at the discrete sample points € of the seismic 

experiment. This transverse wave vector must be constrained with respect to 

the transverse sampling rate by an anti-aliasing (Nyquist) condition. For a 

given wave number, the transverse component of the wave vector increases as 

the wave travels in directions further inclined to the vertical. Thus, for 

a bandwidth containing sufficiently high frequencies, this transverse wave 

vector may have a magnitude which exceeds the spatial Nyquist limit for 

waves moving more horizontally. Limiting such waves is equivalent to 
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limiting the spatial domain of integration. 

We have seen in the previous section that we image reflectors when 

there exists a normal incidence ray from the reflector to the domain of the 

traces on the surface. We can turn that idea around and state that if we 

know an a priori limit on the angles of inclination of the reflectors in the 

subsurface, we can limit the domain of integration to include reflectors 

only up to those angles of inclination. 

In practice, we impose all of these constraints. 

4.6. Summary 

In this chapter we have specialized our integral equation for zero 

offset constant density wave propagation to the case of constant background 

sound speed. Under this last assumption, we were able to solve the integral 

equation in closed form for full bandwidth data. However, seismic data is 

generally high frequency data for most of the length scales of the earth 

environment and the propagating frequencies of the seismic experiment. We 

presented arguments based on Fourier analysis of discontinuous functions to 

modify our solution in order that the high frequency nature of the data 

could be exploited to yield a reflector map of the interior of the earth and 

an estimate of the reflection strength. We then applied this solution to 

data representing the response to a single reflector. That data was modeled 

by using the Kirchhoff approximation for the upward scattered wave. By 

asymptotic analysis, we showed that our inversion formula applied to this 

data asymptotically yields the reflectivity function of the surface. This 

function is a scaled singular function. The singular function is a Dirac 

delta function which peaks on the surface, thereby providing an image of the 
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reflector. The scale factor turned out to be a known multiple of the normal 

reflection coefficient when evaluated at the peak value of the band limited 

singular function. This result provides a means of estimating the sound 

speed below the reflector in terms of the computed output and the sound 

speed above the reflector. This determination is not limited to small 

changes in sound speed, even though the original algorithm was motivated by 

perturbation theory. 
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5. Towards a High Frequency Inversion Formalism 

In this chapter, we will expose the principle ideas behind the 

development of high frequency inversion algorithms for complex media. All 

too often mathematical derivations are presented in a manner that completely 

hides the struggle to produce the results. We will take the opportunity in 

this chapter to present some of the intellectual history of our education. 

Since it would not help anyone to follow us down every blind alley we 

investigated, the development we present here is not an actual temporal 

history. In fact, although the actual evolution of our ideas largely took 

place in the context of inversion with a variable stratified medium, we will 

present our history -- a history of ideas ~- in the context of the simpler 

constant background inversion problem already solved in the last chapter. 

As is so often the case in science, at the same time as we were groping 

our way towards a new formalism for high frequency inversion, a parallel 

development was going on elsewhere. In early 1985, a brilliant paper by 

Gregory Beylkin appeared, presenting a powerful view of the inversion 

problem based on the notions of Radon transforms and pseudo-differential 

operators. The final approach described here is a blend of the work of 

Beylkin and his colleagues at Schlumberger (Beylkin, 1984, 1985a, 1985bs 

Beylkin and Oristaglio, 1985; Beylkin, et al., 1985) and our own (Bleistein 

1984, Bleistein and Gray, 1985; Cohen and Hagin 1985; Cohen, et al., 19863 

Bleistein, et al., 1985b; Bleistein, 1985, 1986).



5.1. Deducing the Inversion Kernel from Kirchhoff Data 

The inversion operator (4.42) contains certain features that are common 

to all such integral inversion operators. Reading that equation from right 

to left, we see first that each data trace is transformed to the frequency 

domain, filtered and then transformed back to the time domain, with the 

temporal evaluation now taking place at 2r/c. We remind the reader that for 

the upward scattered field represented either by Kirchhoff approximate data, 

(4.62) or Born approximate data, (4.6), this travel time simply complements 

the propagation time of the model data, namely, 2r'/c. One may view this as 

matched filtering, or as adding up data over the diffraction curve 

associated with a point scatterer at x in a medium with constant propagation 

speed c. 

With either insight, or with the inversion formula (4.42) as a guide, 

one might conjecture that the kernel of the inversion operator should always 

have a phase which is just the travel time from source point x, to output 

point x to geophone point, x. For our prototype of zero offset, constant 
8g 

background inversion, this does, indeed, reduce to 2r/c. 

It only remains, then, to determine the amplitude of the inversion 

operator, In the previous chapter, we applied our inversion operator to 

Kirchhoff approximate data and found that the output could be interpreted in 

terms of the geometrical optics reflection coefficient, which depends 

nonlinearly on the increment in sound speed across a reflector. We propose 

now to use that as a criterion for determining the amplitude of the 

inversion operator. That is, we will require that any inversion operator we 

set down should produce the singular function of a reflecting surface 

multiplied by the geometrical optics reflection coefficient of that surface. 
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We begin by restating the zero offset, constant reference Kirchhoff 

integral relation (4.62): 

  

+ | “ 2iwr'/c 
2 

2 u,(w,E) ~ ——e ydo, dS= ly da, (5.1) 
8 8n'c S r'* ‘i iv 

with y defined by (4.74). Here we consider this relation as an integral 

equation for an unknown reflector S, with unknown reflection coefficient, R. 

In checking our inversion operator in Chapter 4, we used the method of 

stationary phase, whose only w dependence was a power of Jo| in the combined 

operation of inversion integral applied to data integral. Thus, we 

conjecture that the amplitude we seek depends on w only through a 

multiplicative power. Using the insight that each dimension of stationary 

phase produces a factor of one over the square root of Jol, we can 

anticipate the power of w required in the inversion operator. Let us denote 

the inversion operator by W and set 

-2iwr/c Wlag(w,£)] = ff ae [dw (-i0) F(w) AEsx) e ng(w8) (5.2) 

Here, A is to be determined. We use (5.1) for ug on the right and obtain 

  

vio 2iw(r' - r)/ edge tv [fe ena an ree 
s (5.3) 

Our objective now is to evaluate the integral on the right asymptotically 

and insist that the result be the reflectivity function B(x). Fortunately, 

for this case, we need do no computations to do this analysis, because the 

integral is of exactly the same form as (4.73), whose asymptotic analysis 
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was the main result of Section 4.4.2. However, the asymptotic analysis of 

(4.73) did, indeed, lead to the result we seek here. That is, if we choose 

A(x,&) so that the two integrands agree, then Wlug] will be B(x). Thus, we 

set 

8z 
. (5.4) 

2 
nme © 

A=-   

If we now write out Wlug] from (5.2) explicitly with this value of A, we 

have a Kirchhoff-based inversion formula: 

dt U(t.e) of. (5.5)   

3 a 

B(x) ~ us || ag | dw w F(w) e 2iur/c | 
nc 0 

We see that this result agrees with (4.42), the constant reference, 

zero offset inversion formula. The Kirchhoff formulation seems to have the 

advantage of dispensing with the perturbation assumption, but this is only 

partly true. Indeed, our derivation does not require this assumption for 

the single surface case treated thus far. But how can we apply the result 

to the case of a variable sound speed with many layers? The answer is that 

we must assume that (i) the constant background we choose is “close” to the 

true background in some sense and (ii) the layers act independently (that 

is, we must ignore multiples). Any multiples that leak through the 

preprocessing stage (e.g. stacking) can only be ignored by assuming that 

they are small. This two assumptions are tantamount to the Born- 

perturbation assumption in the medium above the reflector being imaged. On 

the other hand, when these assumptions are satisfied, the estimate of Ry at 

the reflector in question is not constrained by a small perturbation 

assumption. This has been verified in many synthetic tests.



We will not pursue the Kirchhoff integral technique further, but we 

note that this technique has been successfully applied to the case of pre- 

stack inversion of common offset gathers in both 2.5 and 3-D, see Sullivan 

and Cohen (1985). It can also be applied to any of the cases treated by the 

more general methods to be introduced below. 

5.2. Deducing the inversion kernel by the asymptotic completeness principle 

We now present an inversion principle for the Born integral equation 

that does not require the use of analytic synthetic data. The reader will 

note the similarity to the theory of generalized Fourier inversion. 

We once more begin from the zero offset Born equation for a constant 

reference speed, i.e., equation (4.6), with slightly altered notation: 

2iwr’/c 

ug(w.k) = [4 I || d’x’ a2) (5.6) 

Once again we postulate an inversion formula of the form 

a(x) ~ ff ae v(x.g) f do Fw) 0 749*/° gow d) (5.7) 

where b denotes an inversion amplitude to be determined. We now note that if 

this latter formula is correct, than the composite of the last two equations 

must provide a mapping from a(x’) to a(x). Indeed, the composite of these 

relations has the form



a(x) ~ ify d’x'I(x,0,83x") a(x’) (5.8) 

If this equation is to hold, then of necessity, we must have the 

following asymptotic completeness relation: 

I(x,w,€,x') ~ (x - x’) (5.9) 

From equations (5.6) and (5.7), we can state the asymptotic completeness 

relation explicitly for the case of zero offset and constant reference as 

b(x,&) i. 
1 | ave —_—_- | dw wo F(w) eZiwle r/o, 8(x - x’) . (5.10) 
(4nc) r! 

We regard this as an equation for the inversion amplitude b. 

We have written an asymptotic equality and remind the reader that this 

is a result which is to be true at "high frequency”. However, we have 

integrated over the frequency ». More precisely, we mean that this result 

is true as long as the range of integration in w [the support of F(w)] may 

be viewed as high frequency. As usual, we construct a dimensionless 

parameter, 

A= 2eL/c, (5.11) 

with L representing the "typical length scales” of the integrand, and 

require that this parameter be large. Associated with this large parameter 

is a wave number, 2|w|/c. We can think of (5.10) as being required for 

large values of this wave number. This suggests that we might view (5.10) 

as an asymptotic equality in the Fourier domain that must be valid for large 
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values of the magnitude of the transform vector. Indeed, we will adopt that 

point of view, transform to the wave vector domain, and insist on asymptotic 

equality there, Introducing the Fourier transform, 

° -2ikex',3 f(k) = f(x’) e “= =dx’, (5.12) 

we rewrite (5.10) as an equation in the Fourier domain 

, b(x,&) or (| a’gt en 2iE 2 | ag 
(4nc) x’ 

. | dw wF(w) eziw(r’ ~ r)/c . 

(5.13) 

We will evaluate the integral on the right for large values of k = Ik]. To 

do so, it will prove convenient to rewrite the integrand in such a manner as 

to make k a multiplicative factor of the phase. Thus, we set 

k = kB, w/c = ky (5.14) 

and rewrite (5.13) as 

(5.15) 

° | dy n F(ckn) o2ikb(x.x’ Been) 

In this equation, the phase function, §, is defined by



@(x,x',B.E,n) = Anlr’ -— cr) - Bex’. (5.16) 

We remind the reader that r and r’ are as defined by (4.63, 69, 71). 

We will apply the method of multidimensional stationary phase to the 

integral in (5.15), with respect to the six variables n, &, and x’. The 

six first derivatives which must be set equal to zero are 

0¢ oF &€, - x} &,-x 
w= rli-or, — elit i i i 4-12, 

an 0& r' r 
i 

(5.17) 
0g xj - Sj a a Qa 

— =) - P, = nt) ~ P, » g =1,2,3 . 

ax! r’ 

Here we introduce &, = 0 to preserve the symmetry of the last equation. 

Setting the derivatives 0$/dxj equal to zero leads to the conclusion that 

the unit vectors, f’ and $, must be collinear or anti-collinear and that y 

must have magnitude one; that is, 

a a aa a 
ne’ =p,n=*1= rip, r' = itp, (5.18) 

with the order of plus and minus being the same in both equalities. 

Setting 04/3; equal to zero leads to the conclusion that the vector g 

must be collinear with 2’, hence (5.18) is also true when 2?’ is replaced by 

#. Setting 84/an equal to zero leads to the conclusion that r= r’, 

However, since r and r’ have the same direction and the same initial point, 

we conclude that at the stationary point



=x, r'=r, (5.19) 

Given a value of x and k, we choose x’ as in (5.19) and draw the ray 

through x with direction given by k (or $). The intersection of this ray 

with the upper surface determines —. Furthermore, we must choose |n| = 1. 

Thus, in order for there to be a stationary point, k must be in the 

bandwidth defined by the filter, F(w) and the €-domain of integration must 

contain the direction = which is collinear or anti-collinear with p. When 

at least one of these conditions fails, there is no stationary point and the 

integral is asymptotically lower order in Jw | or k. We proceed under the 

assumption that there is, indeed, a stationary point, for it is only in such 

a case that we will require that the asymptotic equality (5.15) hold. 

We must now compute the determinant of the 6X6 Hessian matrix of second 

derivatives with respect to the variables n, €,, E., Xa» Xg» X3- This 

calculation is much like the calculation of the determinant of the 44 

determinant in Section 4.4.2. We will outline the calculation in a series 

of exercises. 

Exercise 5.1. Denote the Hessian matrix for @ evaluated at the stationary 

point by $33- Show that $3; has a 3X3 upper left hand corner of 

zeroes. Hence conclude that det [€3;] is the square of the determinant 

of the upper right hand 3X3 matrix whose rows are of the form, 

+8, (F1/r,0,0) + £,8, (0,41/r,0) + £8. 

(The actual values of f, and f, are not important.) Use row 

elimination to simplify the determinant of the 3X3 matrix and conclude



that 

2 
Zz =: (5.20) 
r 

o
 

Ww 

det (8,,) = |
 

~s 
a 

Exercise 5.2. We now proceed to compute the signature of 4j;. First, 

conclude from (5.20) that 95; has no zero eigenvalue for any point x in 

the subsurface; hence, we can determine the signature for a simple 

special case. Choose the special case for which $8, = 8, = 0, $8, =1 

and r= 1. Show that there are two triple eigenvalues of the form 

a= Os + 11/2, [-5 * 11/2, 

with the choice of (+) again following the order in (5.18). Since the 

first expression here is always positive and the second expression is 

always negative, the same is true of each triple of eigenvalues. Thus, 

sig (8, ij! = 0. (5.21) 

We are now prepared to evaluate the integral (5.15) by the method of 

stationary phase. The result is 

—-2ik¢x nor -2ik*x 
e =—— ~ Iéz b(x,&) e = R(t, k) . (5.22) 

The filter function F is a smoothed Fourier transform of an impulse function 

or one dimensional delta function. Clearly, we can only hope for the right 

side to be the Fourier transform of a delta function when the function F is 

equal to the Fourier transform of a delta function, that is, when F=1. In 
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that case, we can determine the value of b(x,&) by requiring the amplitude 

on the right to be equal to unity whenever F is. Thus, 

_ 162 
b(x,&) Her. e (5.23) 

and our inversion formula (5.5) becomes 

2 

a(x) ~ 162 (fe | dw F(w) e 2iur/e ug(w,§) . (5.24) 
= nc r 

On introducing the factor, iw/2c, we obtain the reflectivity function, 

2 © 

p(x) ~ S32 (J | dw w F e Ziur/c [is Ue(t.z) ew. (5.25) 
nC r 0 

which agrees with the result (4.42). 

Exercise 5.3. As an alternate to this derivation, proceed by applying the 

method of stationary phase in €& directly to (5.10). Obtain an 

w-integral which can be recognized as a bandlimited one dimensional 

delta function in r’ - r divided by the square of the same difference. 

Argue on the basis of distributions in polar coordinates that this one 

dimensional delta function is, indeed, equivalent to 5(x’ - x). This 

is the approach in Cohen and Hagin (1985). 

5.3 Toward a Generalization of the Completeness Relation Approach 

Having struggled with a six fold stationary phase calculation, we would 
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be poised to pursue this type of derivation for inversion in more complex 

cases. However, as indicated earlier, work by Beylkin (1985a) suggests a 

more elegant solution of the asymptotic completeness relation. Moreover, 

this approach generalizes at once to cover most of the cases of interest in 

seismic exploration without requiring as much computation. 

We return to the asymptotic completeness relation (5.8): 

a(x) ~ [ff a?x Ix.0.g:x") ale) (5.26) 

Realizing that if this equation has a solution, then the left side must be a 

delta function, we expand the phase and amplitude about the singular point 

to obtain 

D 

ros |x t+ (x’ - r)| = Je + (x’ - x) | Be t+ re(x’ - x). (5.27) 

and 

1 1 oF > . (5.28) 

On introducing these results into the asymptotic completeness relation we 

have 

a 

2iwre(r' - xr) 
ff d°é b(x,&) | dw w Fw) e ~ (4ner)> &8(x - x’) . (5.29) 

Following Beylkin (1985a), we now convert this equation to the form of 

the classical Fourier completeness theorem by introducing the change of 

variables, 
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k = 2wr/c . (5.30) 

Exercise 5.4. Show that the jacobian of this transformation is given by 

a 

r 

a 

oer O(k,.K,ok,) 93 | 98, | 9? 
SS eee SS ees wee ° (5.31) 

8(w, 8) c 3 a . : 

ae r 

With the result of the previous exercise and the classical result 

[ffee thE 729 =m? we- 2), (5.32) 

we readily deduce that the choice 

16z 
b(x, &) = her (5.33) 

will satisfy the asymptotic completeness relation. Since this agrees with 

(5.23), we see that once again we are led to the correct inversion formulas 

for a and B. 

Exercise 5.5. Obtain the analogous inversion for the 2-D problem (i.e. line 
  

sources) by the methods of this subsection. 
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5.4. Test case: inclusion of field statics 
  

It is now long past time to obtain a new inversion result! As a 

prelude to a discussion of our recent (1984-1986) papers on this subject, we 

begin with a modest extension--the accounting for field statics. To 

incorporate field statics into our inversion, we must allow the observation 

surface to be curved. We retain our assumptions of zero offset data and a 

constant reference speed. 

The curvatures of the observation surface provides another length scale 

that must be relatively large in order for our asymptotic methods to apply. 

Thus, we assume that these curvatures are moderate. In particular, we 

exclude folds and other violent changes in the topography of the observation 

surface. 

Inversion before (or including) statics has a certain practical appeal, 

since the static corrections introduce a degree of non-linear amplitude 

distortion. However, our primary purpose is pedagogical, and we have no 

intention of claiming to have solved the very difficult statics problem in 

seismic exploration, For one thing, field statics is the least of the 

static correction problem -- residual statics correction to compensate for 

the near surface weathered zone is often much more taxing. To apply our 

methods to the total statics correction, we would have to assume that the 

total statics correction gave an equivalent observation datum and that 

instead of carrying out the statics, we used this surface in the inversion 

procedure. 

Our derivation of the Born integral equation (2.16) admits a curved 

observation surface. We need merely to allow the source/receiver functions, 

X, and Xe to be general functions of the surface parameters, &» instead of 
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just being the cartesians themselves as in the examples we gave in equations 

(2.23-27). 

Again, we expose our ideas in the context of (i) constant reference 

speed and (ii) zero offset observations. Specializing the Born integral 

equation (2.16) to this case, we obtain 

» 1a ; e2iur'/c 
ug(w,£) = [a | a's S—— ax") (5.34) 

with 

rh=|[x'-x(e) |. (5.35) 

These equations are formally the same as equations (4.6) and (4.7) for the 

flat datum case, but now x, is a general function of €& instead of 

specifically being (€,0). 

As in the previous section, we postulate an inversion formula of the 

form 

a(x) ~ ff ae b(x,2) [ a Flo) oF! gwd). (5.36) 
§ 

g 

Here, Se denotes the range of values in € which define the observation 

surface over which x, varies. Proceeding as in the previous section by 

substituting (5.34) on the right side of (5.35) we deduce an asymptotic 

completeness relation: 

- 5.15 -



b(x,&) eo 
—_i_ | a*g | dw w® F(w) e22@(F' ~ FI/0 gg ty, (5.37) 

r’ 

On approximating the phase and amplitude by the power series expansions 

introduced in the previous section, we deduce the following expression for 

the inversion amplitude b: 

    

2 a(k_,k_,k_) 2 2 | d(k_,k.,k.) 

b(x,g) = (Aner) wR Bee PAS (5.38) 
(27) 0(w,E,.€,) nw CS a         

Thus we see that the formalism of the previous section goes over without 

change except for the evaluation of the jacobian of Beylkin’s 

transformation, 

Exercise 5.6. Introduce the surface tangents 

= i = 1,2, (5.39)   

and show that 

a * 1 . ae, 7 Afe,- cep: | »i= 1,2. (5.40) 

Exercise 5.7. Use the differential geometry result, 
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t, Xt, - ea - (5.41) 

Here, Vz denotes the differential surface element (defined for the 

parametrization by € as y is defined by (4.74) for the parametrization 

g) and ng denotes the downward normal from the observation surface. 

Show that the transformation jacobian evaluates to 

  

& 

a(k) Bu a, 
ie. |7 3 {% a (5.42) 

  

The previous exercises show that b is determined as 

_ 16 
b= ae VE Be r e (5.43) 

We note that for a flat datum, the dot product in the previous equation 

reduces to z/r and Ye = 1. Hence, we recover the now familiar result of the 

previous section. The inversion results for the curved datum case are thus 

& 

a(x) ~ s ff ae {% mtr [ ao F(w) e 2iut/e f dt Ug(t, &) givt (5.44) 

and 

a 

p(x) ~ Si | as fy at | w F(w) 6 2380/6 | « Ue(t.£) en . (5.45) 
tc 

In these formulas, the normal is defined by the parameterization of the 
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observation datum by equations (5.39) and (5.41). 

§.5. Generalizations 
  

The lectures will continue with discussions of recent papers. Any of 

the methods of the last three sections lead to the same inversion algorithm, 

that is, they produce the same amplitude and phase of the inversion 

integral. 

The theory allows for variable background propagation speed and 

variable background density, common source, common receiver and common 

offset between sources and receivers. The simple travel time, 2r/c, is 

replaced by the geometrical optics travel time and the amplitude involves 

the geometrical optics amplitude and the generalization of the jacobian, 

(5.31). The most general formulas simplify somewhat when specialized to 

2.5D and/or to c(z) [and p(z)] background. 

5.6. Summary 
  

Via consideration of the simple case of the zero offset constant 

background sound speed, we have described here three formalisms for 

determining inversion operators. Each of these three formalisms extends to 

variable background, sound speed and density variation and to common offset, 

common source or common reciever experiments. They also allow for a 

variable upper surface. 
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