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ABSTRACT 

This paper discusses the classical Lamb problem for the elastic wave 

equation. The motivation, for the authors, is to be able to conveniently 

construct Green’s functions (matrices) for later use in formulating and 

solving various inverse problems. For example, we will want to be able to 

solve for perturbations from constant reference densities and Lamé 

parameters. Hence, Green's function for the homogeneous isotropic equation 

is discussed. Due to the scattering taking place in inverse problems it is 

usually impossible to retain the P-SV and SH decoupling; hence, we do not 

pursue this decoupling in the formation of the Green’s functions herein. 

While nothing conceptually new is presented here, the approach is a bit 

different and, we believe, is helpful in isolating some important issues. 

The approach is algebraic in nature and makes heavy use of several simple 

facts from linear algebra; for example, the spectral decomposition of 

special matrices. This approach facilitates some helpful decoupling, 

particularly in solving for reflection coefficients.



GLOSSARY 

generic vectors in R*. 

(various) 3 by 3 matrices. 

boundary operator at x, = 0 surface; equation (17). 

pressure and shear speeds; above equation (12). 

3 by 3 matrix used in constructing R; equation (28). 

determinants associated with reflection coefficients; 

equation (36). 

constant body force; equation (2). 

free space portion of Lamb Green's function; equation 

(18). 

arbitrary body force; equation (1). 

free space Green’s function; equation (11). 

portions of G; equation (12). 

vector associated with horizontal shear wave; 

equation (8b). 

Green's function for Lamb problem; equation (37). 

3 by 3 identity matrix; equation (5). 

= (k,,k,,k,;) spatial Fourier transform variables; 

equation (5). 

|x| ; below equation (5). 

k/k ; below equation (5). 

= (k,,k,) ; equation (18). 

basic differential operator in matrix form; equation 

(5).
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operator L(-) - pw’I ; equation (9). 

portions of M*; below equation (11). 

vector associated with pressure wave; equation (8a). 

reflection coefficients, subscripted with p, h, v; 

equation (32). 

reflection portion of the Lamb Green's function; 

equation (28). 

transpose of vector or matrix. 

displacement vector; equation (1). 

vector associated with vertical shear wave; equation 

(8c). 

(x,,x2,x,) Spatial coordinate; equation (1). 

(x,,x,); equation (18). 

Dirac delta function; equation (2). 

gradient operator; equation (2). 

Laplacian; equation (3). 

small positive number. 

Lamé parameters; equation (1). 

density; equation (1). 

eigenvalues; equation (7). 

frequency: equation (2).





INTRODUCTION 

The purpose here is to present a somewhat different point of view 

toward constructing Green's functions (matrices) for a variety of problems 

associated with the elastic wave equation. The primary interest of the 

authors is inverse problems for various acoustics and elastic experiments 

(e.g. Cohen et al [4] and Boyse and Keller [2]). In this regard a clear 

view of certain basic principles and a systematic approach to constructing 

Green's functions is particularly important. A convenient setting for such 

studies is the frequency domain, hence the emphasis below is in obtaining 

the corresponding Green’s functions. However, some mention is made 

regarding techniques for inverting to the time domain. 

The approach taken here is algebraic in nature, making repeated use of 

several very elementary properties of square matrices. Consequently, it is 

a bit more contemporary in style than that found in most sources and, we 

believe, a little more natural. There are of course many high quality 

studies of the classical problems discussed here (e.g. Aki and Richards [1], 

Cerveny and Ravindra [3] and Johnson [7]) and the authors lay no claim to 

the discovery of heretofore unknown phenomena, or even methods. The hope is 

that the general approach will be useful in attacking new problems in a more 

straight-forward fashion. 

Rather than attempt to discuss things in great generality, we choose to 

illustrate the approach on a well-known problem. In particular, our goal 

here will be the construction of the Green's function for (one statement of) 

the Lamb problem; a single traction-free reflecting surface at z = 0. 

Along the way the "free space” Green's function will be obtained. In order 

to exploit the convenient algebraic properties we tend to Fourier transform



as much as possible at each stage. By making use of a simple algebraic 

decomposition of a constant matrix (associated with P, SV and SH modes) 

valuable insight is gained and a certain amount of desirable decoupling is 

facilitated. For example, the nine reflection coefficients are rather 

naturally found by solving three 3 by 3 linear systems (instead of one 9 by 

9 system).



SOME PRELIMINARIES 

The linear equations of elasticity in an isotropic, inhomogeneous media 

are given in terms of the displacement vector u = u(x,t) as 

pay a= V(AVeu) + VX (nV Xu) + 2(VepV)u + glx.t) , 

(1) 

= > x (x,.x,>x,) , t 20 . 

In particular, we seek various solutions when g(x,t) = 8(x-y)8(t)f where f£ 

is a constant vector or, later, a constant matrix. Hence, we seek various 

Green's functions for this equation. We Fourier transform in time 

(t >o, u(x,t) > u(x,w)) producing 

VAVen) + VX (uv Xa) + 2(VepV)a + pou = -8(x-y)f (2) 

Our attention will focus on the homogeneous, isotropic case in which 4, 

n and p are constants. Then (2) becomes 

(Atp)V(Veu) + pAu + pu u = -8(x-y)f . (3) 

We use the following notation: 

1. wu, x, etc. will denote column vectors. When a row vector is 

needed, we write e.g. al, where T denotes transpose. 

2. The inner product of two vectors is denoted by uly or uv. The 

outer (or tensor) product is denoted by uy? and is of course a 3 

by 3 matrix. 

a a 
3. k, etc. will denote unit vectors» k = k/|k|. Moreover, k denotes 

[x |.



4. k’, x’, etc. will denote the first two components of k, x; 

e.g. k' = (k,.k,). 

5. Fourier transform is defined by 

iwt £(t) >] at er® ect), 

g(x) >f dx e ‘= 2 g(x) , x eR orR . 

(Note the difference in definition for time and spatial 

transforms. This facilitates the notion of “outgoing” below.) 

Some elementary facts from linear algebra are now stated. These facts 

are established in about any standard text (e.g. Strang [9], Hoffman and 

Kunze [6], or Mostow and Sampson [8]), and can be easily verified by the 

reader. 

1. Let a be a unit vector. The matrix P = aal is a (orthogonal) 

projection matrix (i.e. P?x = P(Px) = Px; moreover, if x is 

orthogonal to a then Px = 0). Clearly Px = aalx = ca, c = a*x; so 

P projects R® orthogonally onto the line spanned by a. 

2. Suppose a, b and c are unit vectors and mutually orthogonal. Then 

the identity matrix can be decomposed into the three projections; 

Ty pp! + ec!. (This is easily verified by applying both I= aa 

sides to an arbitrary vector x). 

3. Suppose A is a 3 by 3 matrix with orthonormal eigenvectors a, b, c¢ 

and eigenvalues o,, 6,, 6;, respectively. Then A has the spectral 

decomposition



A=o aan +o bot +o cot . 
1-- 3-— 3-- 

(This is verified by applying both sides to an arbitrary vector 

a,a + a,b + a,c). Finally, if the oj # 0 then A is invertible x = 

~1 : : 
and A has the convenient expression 

at = + aah + 1 ys 1? . (4) 
a, 77 o.-- 3, -~ 

(This is verified by multiplying AA~* and using fact 2. above). 

4. For vectors in R*, the following is easily verified: 

T 
a 

[u.vew] | b | = ua + yb) tye 
T 

c 

5. Suppose Ab = ob, then observe that 

(A + eI)b = (o+e)b , 

i.e. the eigenvalues of A + eI are those of A_ shifted by 

e, and the eigenvectors are unchanged. 

Returning to the elastic equations (3), we next Fourier transform the 

spatial variables (x +k) thus reducing our problem to an algebraic one (at 

least temporarily). The resulting equation can be written 

(L(k)-pw I) u(k,w) =e EY , (5) 

where



L(k) = (atu) kk? + pk?Z 

Ty yk? 1 (A+p) k kk 

A + pk*I 

Formally, therefore, if no boundary conditions are imposed, the "free" 

solution in the transform variables can be expressed 

2 ~ -ike 

u(k,w) = (L(k)-pw I)7* e #8 Y¢ (6) 

In the next section we invert this (k x) in the simplist possible context, 

obtaining the "free space” Green's function. This will make good use of the 

above algebraic observations and will set the stage for the subsequent 

section where the Lamb problem is considered.



THE FREE SPACE GREEN’S FUNCTION 

By the free space Green's function we mean the matrix solution to (3) 

with f = I. Perhaps the easiest way to invert (k > x) the expression for 

u(k,w) in (6) is to first perform the spectral decomposition of the matrix 

in (5). This turns out to be surprisingly easy and generally informative. 

First, note that it follows immediately from the facts noted above that 

the matrix A = L(k)-pk?I = (atp) kkE above is a projection operator (onto k); 

hence k is an eigenvector with associated eigenvalue (Atu)k”. Moreover, the 

only other eigenvalue is zero and the associated (2-dim) eigenspace must be 

orthogonal to k, It follows that L(k) = A + wk?I has the same eigenvectors 

and (shifted) eigenvalues 

(Atu)k? + pk™ = (At2p)k? , a u 

(7) 

o = uk? . 

For convenience we select and denote the eigenvectors as follows. 

Associated with o, we take 

p=£=k/ [| (8a) 

where p suggests pressure (or longitudinal) wave. For o, we can choose any 

two vectors orthogonal to p. We select 

_ 1 . J _ 
h ———eee———— (k.-k,.0) = k’ (k,, k,,0) (8b) 

k? + k? 
1 2 

- 1 _ 2 v= pyr (eR Rk [ee]. (8c)



Note that p, h, v form an orthonormal set. The symbol h suggests the 

horizontal component of the shear (or transverse) wave and v suggests the 

vertical component of shear. In particular, h is horizontal in the sense 

h-(0,0,1) = 0. In the homogeneous case (p, X and p constant and no body 

forces), the corresponding waves will remain orthogonal until encountering 

some form of inhomogeniety or boundary. 

We can now decompose the matrix L(k)-pw’ I using these eigenvectors and 

eigenvalues as follows 

M(k) = M(k3) @ L(k) - po I 

(o, - pw) pp! + (6) - pw) hh? + w"| . 

Note, once again, the eigenvalues for M have been shifted by pw” relative to 

those of L. Assuming o, - pw’ # 0 and o, - pw’ # 0, the inverse of M(k) is 

M(k)"* = —4— pp™ + —4~ [pn™ + wr] . (9) 
o,—pw o-pw 

Hence, the formal “free” solution to (3) (in (k,w) - space) is 

u(k,w) = M(k)? e tE'Z ¢ (10) 

where M(k)~* is given by (9). To complete the construction of the free 

space Green's matrix G(x,t;y) it remains to invert transform the matrix in 

(10), i.e. matrix 

1 
G(k,w;y) = e FEY ck)” (11) 

This inversion follows familiar procedures (e.g. see Aki and Richards [1]),



but is outlined here for sake of completeness. 

In (9) we replace hht + vv by I - pp! (algebra fact 2. above) and 

using (7) we have 

M(k) > = —_— pp. + a [x - pe’ | 
o~ pw op 

_ 41 1 . 1 T 
- 2 I+ | 2 2 PP 

o,-pu o,—pw o,-pw 

2 2 
c - ec 

= * 2 I +e | 2,2 - a 2 kk 

plc k -o ) (ck “wo (ck -w ) 

= NV (k) +N, (k) 

where 

ce = At2u , 

Pp p 

col , 
s p 

Hence in this notation, 

G(k,wiy) =e = [i cy + N, (x) | 

G (k,wsy) + G (k,wsy) 

The inversion (k x) of G, is standard and proceeds or follows: 

(12)



  

1 G (x,w,y) | dk 
77" (2n)* _o 

3 2 
(27) por 

This triple integral can be 

k >(r,0,9). 

after using » = pcg» is 

  

dk e = 22 

(13) 

evaluated by going to spherical coordinates 

These steps are outlined below in discussing G,. 

  

  

The result, 

G (x,w;y) = exp es ex] I 
(14) 4nu |x x] c 

The more interesting step is the inversion of G, in (12), which we 

outline, 

o 
ce? _ ce? 

G,(x,wsy) = * 3 | dk otk: (x-y) 3.2 - , 2 3 kk” (27) p(c k - w )(ce k - w ) =—o2 
p Ss 

(15) 

ce’ - ¢” ° 
ike (x- 1 T ~ x . 22 | dk “7 2 z) 2 2, 2 2 2 2 kk 8x” pee (k" - w°/c*)(k?- w/o 7) Ss -o Pp s 

  

c= c. 
- 1 s p 

8x pe*c? 
s 

Note that the term in brackets is a matrix, 

- 10 - 

e ik: (x-y) 
dk ———___-_______ 
"(ke = w/e") (k? ~ w/e?) p s 

say B = (b53), with elements



o 

b.. =-- | dk ote) 
ij Ox Ox; ~ (k? = a? /08) (kK ~ w*/02) 
  

Observe that this integral is like the integral for G,, in (13), except for 

the additional poles at k = t w/¢g- In evaluating the integrals in (13) and 

(15) the usual procedure is as follows. Convert to spherical coordinates, 

k 3(r,0,9), with r = |k| and x-y serving as the “north pole.” The angular 

integrals are done routinely; then the rc integral is done by the residue 

theorem. As in Aki and Richards [1], one assumes Im(w) 2 0 which dictates 

that one take the residue integration path with Im(r) > 0. This results in 

+ w/c, contributing and gives the two poles at k = + w/cy and k 

1 1 (eivlz-y l/c, _ oielevl/ep)] . (16) 

4npu 

2 

a | 2 Ox dx, [x-y | 
G (x,o3y) = 

In some applications this form of G = G, + G, (i.e. in (x, w) domain) 

is desirable. If not, the inversion (w >t) proceeds as follows. Referring 

to (14) we have 

G(x,tiy) = | du e tt g (x,0,y) 

-« 

o 

- | dw @ 10t tales] exp [ o Iz-y| ] I 

1 
dapferyy] (to lezl/e,) I. 

Similarly inverting G,(x,w;y) in (16) leads to 

- 1l1-



G,(x,tcy) 

  

e 2 . 2 

= Z| do cise] 1 - a i (eiv|z-y|/c, _ eiw|z-y|/c,) 

a 4npw Ox ox, 

    

1 a? 1 ° e ivt [ iw |x- J/c iw|z- J/c 
dw € = y s-e = zy ] . 

4np Ox ,0x, | 2n|{x-y | [" © P 

Recognizing the w integral as the second integral (in t) of the delta 

functions 8(t-|x-y|/c,) and 8(t-|x-y|/cp), we have 

    

|x-y| |zx-y| 
)- Lit - c ) | ’ 

2 
1 a 1 | 

G »t; Se eee - 
»(% y) 4np dx.dx | [x-y] L(t c 

ij = p $s 

where, if H(t’-c) is the Heaviside function, 

t 0, tit 
L(t-c) = J W(t'-) at’ = 

Sate t-t, tot 

Note that if the two spatial derivatives were to be carried out on the L 

functions in G, one would obtain the delta function character similar to 

that in G,(x,t;y) above. Finally G(x,t;y) = G, + G, produces the free space 

Green’s function in (x,t) space. 

- 12 -



THE GREEN’S FUNCTION FOR THE LANB PROBLEN 

The traction-free boundary conditions at the x, = 0 plane can be 

expressed 

Hd, 0 nd, 

Bu(x,=0) | 0 nd, pd, u(x,,x,.x,) 0 =O , (17) 
x= 

M8, 48, = (AF2p)A, 

where a; = 9/dxj- We are now seeking solutions to equation (3) with f = I 

for x, 2 0 and satisfying (17). Because of the restriction (17), we cannot 

now fully transform (x — k) the problem. Hence we begin by inverting (k, ~ 

x,) the matrix G(k,w;y) given by (11) and (9); this will provide the free- 

space portion, F, of the Green’s function we seek in (k’,x, 0) space. Then 

we will work on the portion, R, defined below, that will cause (17) to be 

satisfied; and our final Green's function will be 

H=F -R. 

We define the free-space portion in (k’,x,)~space by 

wo 

1 ik 
F(k’,x,,wiy) = on J. dk, e'*3*3 G(k,wsy) 

(18) 

1” k ikey 1 1 T T 
=f au, ofksts HEEL | th ppt 4 [on™ + we 

-@ p (c k -w ) (c k -w ) 

Since the residue theorem is to be applied it is necessary to clearly 

identify the poles, relative to k,, for fixed k’ = (k,,k,). Consider the 

- 13 -



(reciprocal of) first term involving a pole above, 

  

   

2 

c’k = = 7 (k*- 2) = 6? (ck? + K'7- 2) 
P P 7 p ? Pd 

Pp P 

so (k-k ) , 
Pp 3 3p 

where 

Ky = sgn(w) (19) 

and similarly, 

ck -w =e (k -k ) , 
s s 3 35 

(20) 

* 2 = oO. . kK. = sgn(w) 7 

Cs 

The sgn(w) will be explained below. In this notation we have 

F(k',x wy) = 

(21) 

~ik'-y' ° 

s__ dk ——_1___ pp! + ——_1 __ hh? + vw" | . 
2np 3 44? _ kK? ,~ 2 4? _ .? y -- 

—7 Dp 3 3p CS 3 38 

It remains to select the proper integration paths for the application of the 

residue theorem. There are four poles, k, = + Ksp > tk, . (Since p = k/k 

and etc. for h and v, there is an apparent pole for k” = k’ 7 +k? =0. A 

little algebra shows that there is no pole there). Since we are seeking a 

- 14 -



free-space solution due to a point source (at x = y) we want our solution 

F(k',x,,wsy) to be “outgoing” or x, > + %. (By “outgoing” we mean the 

following. Should our F be inverse transformed (w ~ t) one would have a 

composition of wave forms like exp[-iwt t K3p(xs~ys)] ; and similarly for 

k, For all such forms to be outgoing, for t > 0, it is necessary that s° 

sgn(tk, ,(x,-y3)) = sgn(w) under all conditions). With the specification 

sgn(k, |) = sgen(k,.) = sgn(w) in (18) and (19), it remains to include in our 

integration path the poles in (21) by the rule: 

u om
 

* 

~
~
 for x, > Ye include poles Kk, 

(22) 

ul 1 we
 1 we
 

for x, < y,- include poles k, 

With the integration paths determined, the residue theorem is applied 

to (21) producing 

F(k', x ,w,y) = 

(23) 

i   + + 
2p ok? PP ok? == vy 

-4 e. ’ ‘ ~ 2 - 

P 3p s 3s 

where ff, bh, ¥ are the p, h, v vectors with k, evaluated at the proper pole. 

That is, 

~ 1 __\,T 
p= E (kok, +k, sen(x, y,)) 

~~ _1 _ T 
h ~ b ~ er (k,, k,,0) 

i<
7 wt 

1 pat 
Kk’ (kik, san(x,-y,) , kk, ,sen(x,-y,) , - |x | ) 

where k, = [(k.+e,,K3.) | and kp = [(ki oka ks) | ° Note that since 

~15 -



Kp #k,,, the p and ¥ vectors are not orthogonal. However, h remains 

orthogonal to PB and ¥. We will also use the notation 

1 T 
+= kK, # p= = k (Kk k kK, ») 

Pp 

vi = — 1 (+, k tee - fxr |?)? 
—~ k ok’ vena 3s ” 2-35 ’ ° 

The wave vectors with the + are associated with the upward moving waves 

(x; > y,) and those with the - with downward moving waves (x, < y,)- 

Next we apply the boundary operator B to F; however, we do this in 

(k’,x,) - space. Hence define the transform (x’ > k’) of B in (17) by 

ud, 0 ink, 

B(k’,x,) = 0 Hd, ink, , (24) 

idk, idk, (At2n)0, 

i.e, the operator in (17) with 0, > ik, , 98, > ik,- 

Before applying B to F, we will decide the general location of the 

source, i.e. y. We will assume that y, > 0 (source above the x, = 0 plane). 

In the common y, = 0 situation, our point of view will be that y,; > 0 first 

and then one lets y,; ->0. Hence as we apply boundary operator B to F, at x; 

= 0, we use the expression of F in (23) with x, < y;. This results in p = 

p » etc. and produces 

- 16 -



BF (x =0) = B(k’,x,) F(k', x ,wiy) 

  x,=0 

  

=-—itkleg? -j - ie ik’ ° aE; y,_ T 

= Bk x) 2 2,2 Pe 
p ek 

Pp 3p 

-ik (x -y_) 
+ ots (nat + wy ly (25) 

es 3s x =0 

. 7k’ sy’ ik. y 
= 78 oP? B(k',-k |) pop 

2p ok? 3p 

p 3P 

ik. y 
+ 238"? Bek, ) (hh? + vow) 

ck s 
S35 

where B(k,-k, 5) is B(k’,x,) with the 9, replaced by the appropriate value of 

ik,; i.e. ~ik,,, in the first case in (25); similarly for B(k’,-k,.). 
3s 

Since F accommodates the forcing term (5(x-y)5(t)I in (x,t)-space) and 

has BF(x,=0) given by (25), it remains to find matrix R satisfying the 

homogeneous equation with boundary conditions BR(x,=0) = BF(x,=0). 

Moreover, as discussed above for F, we want R to be “outgoing” as xX, > +2, 

The homogeneous vector equation in (k',x,) space appears 

(L(k',x,) - pw'I) u = 0 (26) 

where L(k’,x,) is L(k) with ik, replaced by 8,. Equation (26) represents a 

Sixth order ordinary differential equation in that it consists of three 

second order equations in x,- Its general solution consists of linear 

combinations of six vector solutions; however, all outgoing solutions (as 

- 17 -



x, — ©) consists of combinations of the following three vector solutions 

ik, x, + 
g,(xjsk') =e Pp 

ik, x, 

g,(xjk’) =e “Sb (27) 

ik 
g, (x sk’) =e *s 3 vt 

That these g; solve (26) follows from earlier work on F; however, it is easy 

to verify this directly. For example, putting u = g, in (26) we have 

ik, x 
(L(k',x )-pw'I) e *P * pt 

ik, .*, + 2+ 
e ?P (L(k’.k, P -pw p ) 

saps ((A42n) kp *-pu’p”) 

ik, x, 2,3 2 + 
e “P "> (ook -w ) p 0, 

where we used equations (7) and (20); and in the last two lines 

k? = k'*+k})- The key step in this verification is the first one, in which 

L(k',x,)exp(ik, ,) = exp (ik, ))L(k'.k ). This is a routine calculation. In 
3 P 

the same manner ¢, and ¢, also solve (26). The other three solutions are 

the “incoming” (for x, > 0) solutions obtained by using p , v, -k,, and - 
3p 

k,, in (26). Since these are of no interest to us, we can express each 

column of R(k’,x,;y) as a linear combination of $,, g, and g,. Thus, in 

matrix form we have 

- 18 -



R(k’,x,,wsy) S(x ik’) Cc 

(28) 

[9,.¢,-,1¢ , 

where C = C(k’,w;y) is a “constant” matrix (relative to x;). Our remaining 

task is to find the nine elements of C so that BR(x,=0) = BF(x,=0). Of 

course one wants to avoid solving a system of nine equations for the Cijz» so 

we proceed with some care. We return briefy to BF(x,=0) in (25) and rewrite 

BF(x,-0) = a B'(-k, Jee) + a.Bi(-k,,) [ bhe + vy | - (29) 

where 

B'(k ) 
3 

WW B(k’,k,) 

-ik'ey' ik y 
ae ie e *p 3 

Pp ck 
p 3P 

(30) 

-ik’+y’ ik, J, 

_ ie e 
ais 2.2 

c 
s 38S 

Referring to (27) and (28) we have 

BR(x_=0) = | B'(k. )p', B'(k._)h, B'(k._)v | C (31) 
3 ap PB’ 3s -’ 3s - ° 

We now anticipate equating BF(x,=0), in (29), to BR(x,=0) and work on matrix 

C. Write 

- 19 ~



T -T -~T 
+ r h + ec, aT op Pp a ( hp * TV vy 

= T = -T 4 + - T c c, oT on 2 aot aay . (32) 

T ar Tear hte v-yt 
—2 p pv = s hv - vv - 

This is possible since p, h, y are independent vectors. (The Ap as were 

inserted as a convenience, i.e. to cancel shortly with those in (29) above.) 

Note that with this form of C we obtain, using (27) and (28), 

ik, x, ik, .%, ik, ¥*s + 

R(k’,x,,w;y) as G(k',x, sy) C= e P p*, e h, e v Cc 

(33) 

ik, ts + T 

= e@ “~+al(r hte =v) | 
| “p pp © s hp - vp - 

ik, .%, T 
- 4 h+ - 

te a| OT oh Pp a(n h T Oh v) ] 

ik x T 

te *S? v*| ar pt+a(r htr vw) ] ' 
- Pp pv s hv - vv - 

where a, and a, are defined in (30) above. This follows from the algebra 
s 

fact 4. above. 

It remains to calculate the nine reflection coefficents. The 

computational advantage to the form in (33) is that it expedites the 

evaluation of the unknown r’s. We now refer to BR(x,=0) in (31) where C is 

defined in (32) and equate the result to BF(x,=0) in (29). In particular, 

equating coefficients of pl, ni, vi leads to these three 3 by 3 linear 

systems: 
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B'(-k pv = cB’ (k_)pt + BY(k [ + ] ( ape TOD ( ap P ( as) Toh h + T ov Vv (34a) 

(2 a: ' + ' + Bi(-k, Jh =r, Bre, Yet + Bk) [a ht, Y | (340) 

fn ome ' + ' + B' ( kv TP (k, ie + B’(k.) ro, ht ty ¥ | . (34c) 

Note in particular that the three systems (34) can each be_ solved 

independently for the unknowns (e.g. for op’ ph’ ‘pv in (34a)). Also note 

that the three systems have the same 3 by 3 matrix of coefficients, 

’ + ’ ’ + as [prc ppt > Bre, oh. Br(k, Dy ] - (35) 

This fact can of course be used in solving for the r's by, e.g., inverting A 

and multiplying the left sides of (34) by A’*. The terms in A come from 

evaluating the matrices B'(-) = B(k’,-) and vectors p* and v* at the values 

of Kip and k,, given by (19) and (20). Similarly the quantities in the 

left sides of (34) are evaluated at -k, and -k,.. 

When the three systems in (34) are solved we obtain 

k k'k 

r=-D'/D, r.=0, 2c = -4—~P§ (4” -K'*)yp, 
PP ph pv k, 3S 

Tap =0, hh -1, ty Oo, (36) 

_ 4k k, x 2 12 
r = (k -k )/D, r,=0, r =-D'/D, 
vp k, 3S vh vv 

where 

D=4k k k’’ + (k’ -k'")” =, 
3p 3s 3s 

D' = 4k k kl - (ke -kt”)” 
3p 3s 3S 

- 21 -



Notice in (36) the various aspects of decoupling that takes place in the 

reflection matrix R. For example, the middle three equations in (36) state 

the well known fact that an incidence h (i.e. SH) wave gives rise (in this 

setting) only to a reflected h wave. And similarly, incident p and v waves 

only produce p and v components. 

In summary, in (k’,x,,)-space, the Green’s function for the Lamb 

problem can be expressed 

H(k’,x, ,wsy) = F(k',x,,wiy) - R(k',x, ,wiy) (37) 

where F is given by (23) and R by (33). In some applications this form of H 

is adequate, while on other occasions it is preferred to have H in 

(x,t)space. Unfortunately, a complete closed form inversion back to (x,t) 

has not been accomplished. Perhaps the most successful attempt has been the 

ingenious methods due to Cagniard and deHoop [5], in which the inversion 

(k' +x’) can be reduced to a single (finite) integral representation for 

H(x,t;sy). Illustrations of this technique can be found, e.g., in Aki and 

Richards [1]. 
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