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ABSTRACT

A brief description of amn inversion formalism for acoustic data imn a
variable soundspeed and variable density medium is presented. An imversion
operator is introduced and applied to Kirchhoff approximate data for a
single reflector. By asymptotic analysis of the output, a number of
conclusions are drawn. First, the operator produces a bandlimited singular
function of the reflecting surface. The singular function constitutes a
mathematical image of the reflector and its pictorial representation does
indeed depict the reflector. Second, each singular function is scaled by a
slowly varying function of spatial coordinates. At the peak of the
bandlimited singular function, this scale becomes the geometrical optics
reflection coefficient at some (as yet unknown) incidence angle. Since the
peak value of the singular function is known, this reflection coefficient is
determined, as well, By introducing a second inversion operator, differing
from the first in only a minor way, I can determine that incidence angle.
At this point, in a constant demsity medium, the soundspeed below the
reflector can be determined from the known values of (i) the soundspeed
above, (ii) the reflection coefficient, and (iii) the incidence angle. When
the density varies, as well, a second experiment must be carried out. This
second experiment must differ from the first sufficiently to provide the
reflection coefficient at a different incidence angle. From the two
experiments, sufficient information is available to determine the values of
soundspeed and density below the reflector in terms of the values above the
reflector.

This method applies to common source, common receiver or common offset
experiments in which the soundspeed and density above the reflector are
known functions of all three spatial variables. The density variations
across the reflector need not be small. However, the "known" background
must be close to the true values in order for proper location of the
reflector and proper determimation of the soundspeed and density below the
reflector. Also, multiples from reflectors above the one being analyzed
must be sufficiently negligible so as mnot to contaminate the response from
the given reflector.

This inversion is partially based on the theory proposed by Beylkin
[1985a]. That theory arises from a Born approximation of the upward
scattered field. The results here demonstrate that his imversion, as well
as the modification proposed here, apply much more broadly than their basis
in the Born approximation would suggest.






GLOSSARY

c(x)
c+(;)
D(gnm)

F(w)

$x,x',x,x.)

[dg o]

v(x)

Yp(x)

h(x,¢)

R(E'.gs)

Amplitude of ray-theoretic or WEKBJ Greemn's function for

background sound speed with source at _x_s and observation

point x.

Soundspeed above the reflector 8.

Soundspeed below the reflector S.

Observed data, upward scattered wave from S.

Filtered (smoothed and tapered) source function in the

Fourier domain.

Phase of inversion operator applied to Kirchhoff-approximate
field data.

Hessian matrix of the phase of the inversiom operator.

First fundamental form of differential geometry evaluated on

the reflector S. X
Singular function of the surface S.

Bandl imited version of y(x).

Determinant arising in the inversion operator.

Approximate Fourier variable of the inversion theory.

Upward normal vector on the reflector S.

Geometrical optics reflection coefficient.
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p(x) Density above the reflector S.

pylx) Density below the reflector S.

S Reflector in Kirchhoff representation of upward propagating
wave,

S, Observation surface.

Sg Domain of integration in f-variables.

o = (64,0;) Parameters used to define a reflecting surface.

1(5,35) Ray-theoretic travel time between x and x,.

6 Angle between the normal to a surface at the point x’ and the

ray from xg or x. to x', under the stationarity conditionms.
Opening angle between these rays and normal subject to

Snell’s law of reflection.

Point at which the output of inversion operator applied to

; D(¢,0) is to be evaluated.

x' = x'"(g) Point on reflecting surface.

L P Source and receiver coordinates, respectively.

& = (&1,83) Parameters labelling source and/or receiver points; i. e.,

xg = xg(£) and/or xp = x4 (g).
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INTRODUCTION

The Kirchhoff approximation applied to the Kirchhoff integral
representation of a field on one side of a reflecting surface provides an
accurate high frequency approximation to the fields reflected by that
surface [Hilterman, 1970]. Thus, it would seem reasorable that omne might
attempt to use this representation of the upward propagating wave for the
purposes of migration and inversion. Indeed, Schneider [1978] demonstrated
the utility of this approach for migration. In a series of papers in which
I was involved [Bleistein, 1976, Bleistein and Cohen, 1980, Cohen and
Bleistein, 1979a), inversion based on the Kirchhoff approximation was
employed. The results in those papers paralleled our work in Born inversion
[Cohen and Bleistein 1977, 1979b, 1981, Bleistein and Cohen, 1979]; that is,
the work was zero offset, constant background soundspeed and constant
density inversion. However, all of the Kirchhoff based imnversions except
for Cohen and Bleistein [1981] also used the far field approximation.

More recently, our inversion research [Bleistein, 1986a, Bleistein and
Gray, 1985, Bleistein, Cohen and Hagin, 1986, Cohen, Bleistein and Hagin,
1986, Cohen and Hagin, 1985], as well as the work by others, especially
Beylkin and associates [Beylkin, 1984, 1985a, 1985b, Beylkin, Oristaglio and
Miller, 1985), addresses the problem of two and three dimensiomal inversion
for soundspeed in a variable background medium, depending on omne, two or
three spatial variables. Except for Bleistein [1986al, all of these results
are based on the Born approximation of the upward scattered wave. The
inversion in that reference is based on the Kirchhoff approximation.

Beylkin [1985a)] is a particularly noteworthy paper, in that a method is

presented for a gemeral source/receiver configuration and arbitrary



soundspeed variation, with the viability of the experimental set-up
characterized by the nonvanishing of a certain Jacobi determinant. The
method proposed is a high frequency inversion of seismic data which produces
the discontinuity surfaces of the perturbation in the propagation speed
(which might even be the mode converted speed from acoustic to shear or vice
!3532). The justification of the inversion is based on pseudo-differential
operator theory. The relationship between the output of the operator and
the location of soundspeed variations or their magnitude are not stated by
Beylkin,

The major advantage of Beylkin’'s approach is that it treats a wide
variety of source/receiver configurations of interest in inversion
experiments in seismic exploration and in other fields. Before this paper
apeared, we had developed in our own group an approach to these general
problems which, though systematic, required a separate analysis for each
source/receiver configuration. (See Cohen and Hagin, [1985], and Sullivan
and Cohen, [1985].) The inversion formulas that were derived were expressed
in terms of the determinant of a certain Hessian matrix of a phase function
which is the sum of travel times from source to output poimt to receiver.
Beylkin’s method provides a general expression for these various Hessian's
which subsumes all of our separate results. Equation (23) below is
essentially a statement of the relationship between these two determimants
expressions.

In Bleistein [1986al, I proposed a modification of Beylkin’'s inversion
operator which produces a singular function for each discontinuity surface
of the soundspeed. The singular function is a Dirac delta function whose
argument is arclength measured on any family of curves mnormal to the

surface. Consequently, the support of the singular function is the




discontinuity surface or reflector. Thus, determination of the singular

function constitutes mathematical imagipair is unknown. However, by a
slight modification of the inversion operator, it is possible to determine
this critical incidence angle at each point. Once the angle is determined,
the reflection coefficient can be unraveled to produce the soundspeed below
the reflector as a function of that incidence angle and the soundspeed above
the reflector.

These results were derived by applying the inversion operator which I
proposed to Kirchhoff-approximate data from a single reflector. Thus,
al though Beylkin's inversion operator was motivated by analysis of the Borm
approximation of the upward scattered wave, the analysis of my paper
demonstrated that the increment in soundspeed across the reflector used for
the test data need not be small, thus extending the wvalidity of both
Beylkin’s inversion operator and mine. On the other hand, the soundspeed
above the reflector must, of necessity, not deviate too much from the "true”
soundspeed of the medium in order that both location of the reflector and
computation of the soundspeed below the reflector be accurate. Furthermore,
it is mnecessary that multiple reflections from other reflectors above the
test reflector be sufficiently small so that the data for the particular
reflector in gquestion is mnot too badly contaminated by this multiple
reflection data. Thus, this method does mnot completely dispense with the
need for small variations in soundspeed.

On the other hand, given that the method allows for arbitrary
soundspeed variations, one could contemplate recursive application of the
algorithm. In this application, onme would invert data down through the
first major reflector, use the information gained to define a soundspeed

deeper into the earth and then invert down to the next major reflector, and




so0 on. This would tend to diminish the first problem of the previous
paragraph, but not the second. While the inversion method proposed here
could in theory be extended to deal with multiples, I do not believe that
the subsurface structure would ever be known to sufficient accuracy to make
that a viable technique.

In this paper, I will briefly show how to extend the method of
Bleistein [1986a] to the case in which the demsity varies, as well as the
soundspeed. In that paper, the inversion operator applied to Kirchhoff data
was represented as a five fold integral over the surface of observationms,
the reflector surface, and frequency. The four fold spatial integration was
approximated by the method of stationary phase., The remaining frequency
domain integral was then recognized as the band limited singular function of
the reflecting surface. The stationary phase analysis remains the same in
this paper. There is a minor modification of the inversion operator which
leads to a modification of the interpretation of the output to account for
the density variations allowed here.

As described above for the constant demsity case, from ome experiment,
we obtain an estimate of the angularly dependent reflection coefficient and
an estimate of that angle. That is not enough to determimne both soundspeed
and density variations. To do so, requires a second experiment for which
the "dominant” source/receiver pair and opening angle asgsociated with each
subsurface point is different from what it was for the first experiment.
The reflection coefficient at two different opening angles provides two
equations in the two unknowns, the soundspeed and density below the test
reflector. Of course, the equations become "stiff” when the two opening
angles come too close together.

The typical seismic survey includes many common source experiments,




each of which provides partial coverage of the subsurface. Two nearby

experiments will provide the "double coverage” required for this method to
work. Alternatively, the data can be rearranged as two (or many) common
off set experiments., One narrow off set data set and another wide offset data
set to provide a pair of experiments for am imnversion in which the algebraic
equations for the new soundspeed and density are dwell conditioned.

This method is applied to prestack data. Furthermore, the upper
surface may be curved; it turns out that very little extra effort is
required to allow for a curved —— slowly varying on the scale of wavelengths
—- upper surface. Thus, the method dispenses with two preprocessing steps.

Clayton and Stolt [1981] proposed a Born-WKBJ inversion procedure.
Their method required that the entire upper surface be covered with sources
and receivers. The analogous theoretical model here requires only two
common source experiments with full coverage of receivers, or two common
receiver experiments with full coverage of sources, or common offset
coverage with only two offsets. Furthemrmore, their method is based on a
Born interpretation of the upward scattered wave. At reflectors, the Born
approximation degrades with opening angle. (At critical reflection, the
reflection coefficient is equal to wunity and the upward scattered wave is
not of the order of the perturbation!) Thus, the need for small opening
angle to keep the Born approximation accurate and the need for a large
opening angle for stable algebraic inversion of the equations for soundspeed
and density variations are in conflict. Those authors dealt with this
problem by applying least squares inversion at what is equivalent to "many”
opening angles. I believe that the method proposed here has superior
stability properties, although, in practice, I would expect that averaging

over many source/receiver pairs or a least squares méthod would still be




used to minimize the effects of noise.

Computationally, the method described here follows the pattern
described in Bleistein, Cohen and Hagin [1985]) and Bleistein and Gray
[1985]. Fourier transform (by FFT) is applied to the data; it is filtered,
inverse transformed and evaluated at a time equal to the travel time from
source to subsurface output point plus the travel time from the latter point
to the receiver point. The inverse Fourier transform is also done by FFT
and the evaluation at the specific times is dome by three point
interpolation. For each output point, a weighted spatial sum is computed,
taking account of such features as causality and anti-aliasing. For complex
background structure, a table of travel times and weights is created in
advance. The more complex the background —- z dependent; x,z dependent;
x,y,z dependent —— the more CPU intensive this table comnstruction can be.
The size of this table and the attendant CPU time can be dramatically
reduced by calculating the elements relatively sparsely and interpolating
intermediary wvalues. In practice, the background chosen 1is only
approximate. An interpolated background is only a slightly different
approximation of reality, thus, just as good. As an example, Docherty
[1985]) reported a CPU reduction via interpolation by more than a factor of
70 with imperceptible change in output. Indeed, in our group, it was
Docherty who proposed this method as a result of a collaboration with S. H.
Gray at AMOCO Research.

Thus, the CPU is dominated by the last weighted spatial sum over the
traces. The CPU time is linear in the number of output points and linear in
the average number of traces over which one must integrate for each output
point,

In his talk at the Workshop, Beylkin described this type of inversion




as a statially varying frequency domain filter, which is a terminology used
in the electrical engineering 1literature. Alternatively, the weighted
spatial sum is exactly of the form of a Kirchhoff migration, except for the
details of the weighting factors. Indeed, this type of inversion may be
thought of as a Kirchhoff migration with careful attention to amplitude (an
observation made by Ken Larner after my presentation at the Workshop, but
also suggested by discussions in Bleistein and Cohen, [1982), and Bleistein,
Cohen and Hagin, [1985]).

Thus, there are two reasons to call this a Kirchhoff inversion. First,
the inversion really looks like Schneider’'s Kirchhoff migration. Second,
the argument for the validity of this approach is based on application of
the inversion formula to Kirchhoff approximate data from a single reflector.

My own personal view is that this type of inversion and migration
differ more in philosophy than in detail of implementation. I think of the
migrator as viewing the problem as one of downward (or backward) continuing
the ensemble of observations subject to an imaging principle. On the other
hand, the inverter defines an unknown (or unknowns) to be determined, writes
down a governing equation (or equations) relating that unknown (unknowns) to
the observations and proceeds to solve the equation(s), at least
approximately, with perhaps some imaging type filtering thrown in.

This paper proceeds as follows. In the mnext section, I introduce the
main ideas underlying the singular function theory. After that, I introduce
the first inversion operator. Then I describe the results of applying that
operator to Kirchhoff data and introduce the second inversion operator. I

then show how the use of both operators provides two equations for the two

unknowns, c, (x) and p,(x).




THE SINGULAR FUNCTION OF A SURFACE

In many inversion problems, the solution is determined omnly through
aperture limited information about its Fourier transform. The aperture has
the property that the angles of the transform variable, k, are limited as
well as its magnitude, k = |k|. Typically, k is proportionmal to the
temporal frequency variable, ®w, in such a manner that the data can be
characterized as high frequency data; i. e., that the length scales of the
spatial variables are at least three wave lengths.

Information about trend or slow variation of a function is contained in
the 1low frequency part of the spectrum, while information about
discontinuities of a function is contained in the high frequency portion of
the spectrum. Fortunately, reflectors in the earth can be characterized as
surfaces where the earth parameters —- soundspeed, shear speed, demsity --
are discontinuous.

In its simplest form, a discontinuity may be thought of as a step
function, It is well known that step functions are not easily detected from
high frequency data. The singular function provides a means to facilitate
the detection and analysis of steps or discontinuities from high frequency
data,

The singular function of a surface is a Dirac delta function whose
support lies on the surface. Thus, determinmation of the singular function
constitutes mathematical imaging of a surface. (See Fig. 1.) In contrast
to bandlimited step functions, delta functions are relatively easily
recognized from bandlimited data. For example, in the simplest case in one
dimension in which the band limited data is just two "boxes” symmetrically

placed around the axis, the inverse transform is a difference of sinc




functions whose height is just the area under the boxes divided by some

constant which depends on the normalization of the Fourier transform,

Let us suppose now that a(x) is a piecewise smooth function with a
discontinuity surface S across which it has a discontinuity [e]l. Denote by
v(x) the singular function of the surface S. Then asymptotically for large

k, the Fourier transforms, &(k) and ¥(k), are related as follows:

[aly(k) ~ iksgnk a(k) ;

a(k) = [ alx) o 1E°X gy (1)

[Cohen and Bleistein, 1979a, Bleistein, 1984]. I can now say more precisely
that [a] is the difference between the value at higher z minus the value at
lower z across 8.

In applications,

k = const |u|/c, sgnk = sgno;

(2)

ksgnk = const w/c .

By constant, I mean a function of anything except w or k.

This multiplication in the Fourier domain is very close to a standard
image processing technique in which |Va(x)| is plotted rather than a(x),
itself, To do this, one would compute three transforms, with multipliers of
ik,, ik, and ik,, on a(k), then take the magnitude of the sum. The
experience in my own group is that the single multiplication discussed above
is adequate and, as will be seen below, has certain advantages as regards
relevance of amplitude.

The surface is imaged by its bandlimited delta function as in Fig 1.




The peak amplitude of the output is proportional to the area under the
filter in the k-domain. By dividing out the known proportionality factors,
one is left with an estimate of [al. Thus, while the singular function of
the surface contains no more data than was available in the original Fourier
transform A(k), it certainly facilitates the detection of discontinuity
surfaces and estiﬁiation of the size of the discontinuity.

When a(x) has many discontinuities, the inmversion of iksgnk,%(k)

yields a sum of singular functions, each appropriately scaled.
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THE INVERSION OPERATOR

Consider a seismic experiment as shown schematically im Fig. 2.
Sources and receivers are arrayed on a surface, S,- Ihe source/receiver
pairs on S8, are parametrized by & = (&;,¢;). For example, a common source
experiment would have xg equal to a constant vector while ;r(ﬁ) would be a
paramatric representation of the observation surface. Other source/receiver
configurations are similarly defined. The parameter { Tranges over its own

two dimensional domain s§ to sweep out the array of source/receiver pairs.

A wave propagates into the subsurface and reflects from a surface S.
The soundspeed and density above S are known. However, it is not known
where these background values end —-- that is, where S is -— and new values
begin,

The wave propagation is governed by the acoustic wave equation,

2
pV*['%-Vu ] +-9; u=-8(x- Es). (3)
c

In this equation, V is the gradient operator, w is frequency, u(x.,w) is the
pressure, c(x) is the soundspeed and p(x) is the density. For each
source/receiver pair —— for each £ -- the upward scattered data, D(ﬁ:m)v is
observed. The values of the soundspeed and density below S will be denoted
by c4(x) and p,(x). The objective is to find § and these values from the
observed data.

Motivated by Beylkin [1985al, I propose the following inversion

operator for the determination of these unknowns:
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1 plz,) LYERY

5(5) ~ = d ¢ !
8n g | plx ) Alx,x)A(x,x) |Vt(§,gs) + Volx,z)
§
(4)
; iw do F(w) exp{-iolv(z,xzy) + ©(x,x.)]} D(£,0) .
In this equation,
p(x)
glx,x ) = - Az, x.) eiwt(;.gs) 5
) p(xg)

is the WEB Green's function for (3). The phase and amplitude of the Green's
function satisfy the eikonal equation and the transport equation,

respectively,
3 2 2
(Vz) = 1/¢c (x) ; 2Vz-VA+ AV<x =0, (6)

subject to the conditions,

©(z ,x,) =0, Alx,x ) |x - x| >1/4n, as Iz - = | 0. n

and similarly for the functions which depend on X

The determinant h(x,g) is definmed by
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V[t(;,xs) + t(x.xr)]

/ s

0
h(x,£) = det = Vliv(z,x ) + ©(x,x_)] .
& 8§1 g r

?

m V[‘U(;.!s) + "(Ss!t)] 1

This determinant is of fundamendal importance to both Beylkin'’s theory and
successful computer implementation of the inversion formula. It is assumed
throughout that h(x,{) # 0. The reader is referred to the cited papers by
that author for interpretations of this assumption.

The function, F(w), is a smoothed version of the wave shape of the
original signal. Actually, the right side of (3) should have had some
factor to represent the signal shape. However, that would require the
introduction of a function which would be eliminated at this step. Instead,
I simply introduce F(w) at this final step to take account of both signal
and smoothing. I assume that the inversion of this function is a
bandlimited Delta function.

I arrived at this inversion operator in the following manner. First, I
rewrote Beylkin [1985al, eq. 4 in terms of the data in the temporal Fourier
domain, Note that Beylkin’'s formula provides an asymptotic inversion of a
perturbation in a function characterizing the soundspeed (through the
inverse square slowness function). Thus, motivated by the singular functionmn
theory, I introduced an extra factor of iw in the integrand to image
discontinuity surfaces of the slowness, instead. The spatial multiplier

arises from identification of the relationship between frequency and the

wave vector k, defined by Beylkin,

k=olVeix,x) + ¥(zx,x )] . (9)
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APPLICATION TO KIRCHHOFF DATA

The inversion operator (4) is to be applied to the upward scattered
response from a single reflector, S, as definmed by the Kirchhoff
approximation. This representation can be found in many sources, including

Bleistein [1986b], eq. (74). In the notation used here the result is

pl(x_) ~
D(§,0) ~ iw «BTZET R(z',x)A(x’,x Az x,) n-[V'elxr,z) + V'elx’,x))

8 §s

(10)
s exp {iw[t(g'.;s) + t(;',gr)]] as’ .

In this equation, V' demotes a gradient with respect to the x' variables and

R(E"Es) is the geometrical optics reflection coefficient,

1 |oc(x’,z) 1 1 1 ov(x’,x ) ]2
- - +
Ry s - p(x’) fon p,x) | ez o'z  lam Yo
-k 1 feu(x’.z) 1 1 1 EHOENE
+ - +
p(x’) |an p+(g') \ c:(x') cz(x') [3n J

The unit normal % points upward and 8/dn = n.V', This result is substituted

into (4) to obtain the following multi-fold integral representation of the

output B(x) when applied to this synthetic data:
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1 |h(z.8) | a
B(z) ~ - - a’e w® do F(w)

8n Alx,x)A(x,x.) [Ve(z,5) + Velz,x) |

(12)

° R(S'nls) A(!'nxs) A(!'v!r) exp {in Q(!';,’;S'!t)}
°S

2 [Vie(z,z) + V'elz',z, )] d8' .
In this equation

Uz, x', x5 = vlx'.xy) + v(x'x,) - [vlz,xg) + ©lx,x.)] (13)

is the difference of travel times, source point to input point to receiver
point minus source point to output point to receiver point. The surface §

is described parametrically in terms of two parameters, (64,0;)» by an

equation of the form

x' = x'(g), g = (0,,0,). (14)

In terms of these parameters,

s’ = Jg do,do,, (15)

with g the first fundamental form of differential geometry for S,
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2

, k,m=1,2 . (16)

do o do

ax’ dx'
8=
1 2

dx' dx’'
det do ’ do
m

k

Here X denotes the vector cross product.

The method of stationary phase is applied to (12) in the four variables
(£,g). The phase & is a function of these variables through the dependence

of x' on g and the dependence of x, and x. on §. The conditions that the

r
phase be staionary are given by
dx dxp
Vs[ 'r:(;'.;s) - t(;.xs) ] " qE + ‘Vr[ t(;'.xr) - t(;.xr) ] “qE 0 ;
(17)
dx’

v'[ T-'(!'u!s) + 1(;'.!1.) ] ° a?‘ s, = 1.2.

In this equation, V4 (V,) is a gradient with respect to the variables !s(ér)‘

In Bleistein [1986al, I discuss the conditions under which & is
stationary. I show that, for x on the surface S and h(x,§) # 0, there is a
unique statiomary triple, x', x  and x., with z' = x. An important feature
of this stationary point for x on S is that the value of ¢ determined by
(17) is the ome for which the geometrical optics rays associated with the
travel times from x, and x, to x satisfy Snell’s law at x. That is, they
make equal angles with the normal to S at x, This is shown for the
following source/receiver configurations of practical interest: common
source, common receiver and common offset. Although I have only considered
here the fully three dimensional problem, this analysis specializes to the
cases of 2,50 inversion. (In 2.5D, it is assumed that a line of data is
gathered over a medium with no out-of-plane variation. Thus, 2.5D connotes

three dimensional propagation over a medium with two dimensional parameter

- 16 -



variations.)
I will proceed below by focusing attention on this stationmary triple
when x is in the neighborhood of S. That is, this is the stationary point

which has limit x' = x and x  and x, as described above, as x approaches S.

If there were no source/receiver pair in the seismic survey under
consideration which included the particular x, and x  needed to complete the

stationary triple, then the asymptotic contribution for that point x Would

be of lower order in w and almost always of smaller magnitude after the o
integration than the result I state below. Thus, I proceed under the

assumption that such a stationmary triple has been determined and that the

corresponding values of g and § are interior points of their respective
domains of integration.
The result of applying the method of stationmary phase to (12) is the

following:

B(x) = Blx)yp(x) . ' (18)

In this equation, yB(!) is the bandlimited singular function of the

reflector, S and H(x) is a slowly varying function (on the length scale of

the wave lengths in 73(3) or on the scale of the length of the main lobe of

vg(x)). The function H(x) is given by

Az, x) Alx',x.) In(x.8) |

HB(x) = - R(x',x) 173 3
Alx,z) Alx,x) |det[§&c]| [Velx,5.) + Vo(x,5) |

(19)
FEIVEELg) ¢ Ve i

with [,Cc] the 4X4 matrix
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X 2’d
IR IR
[‘Igo] - , 2 , i.j =1,2: (20)
0 d 04
agiaoj aciaoj

The vectors x’, Xg and x, are determined here as functions of x by the
stationarity conditions (17), so that the entire result is a function of x-
The funoction P(x) images the reflector through its dependence on the
function yB(;). It only remains to determine the peak amplitude of this
result when x jg on the reflector.

The analysis of the peak value is facilitated by introducing certain
intermediary results established in Bleistein [1986al. I first introduce
the acute angle O between the upward nommal to the surface and the incident
and reflected rays o; the surface. Note that the downward gradients
Vie(x’',xg) and V't(z’,x,) make angles of n-8 with this nommal and make an

angle of 20 with one anmother. Therefore,

~ 2 0
n-[V't(;'.;s) + V't(;'.;r)] == 3%2;7— ’ (21)

velx,z) + Ve | - —2 _[1+cos20] = %‘l(‘;i,;l]’ . (22)
[+]

*(x1)

Finally, in Appendix D to Bleistein [1986a), I show that
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In(x,8) |

|det[§§6]|

L ) 2 cos
e fe = IVex) + W) = —03@—- . xonS§. (23)

By inserting the results (21-23) into (19), omne obtains the following

result for B(x) at its peak; that is for x on S:

Blx) ~ R(x'.x,) vg(x), 5 on S. (24)

This confirms my original claim about the inversion operator defimed by (4).
That is, when applied to Kirchhoff approximate data and evaluated
asymptotically, the operator produces a bandlimited singular function of the
reflecting surface multiplied by the geometrical . optics reflection
coefficient evaluated for some particular choice of incident angle (through
its dependence on dt/dn).

As noted in the introduction, this incidemce angle is not known @8
priori and we require some means for determining this angle from the

processed output. This is discussed below.
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DETERMINATION OF 0, c, and p,

In order to determine the values of 0, ¢, and p,, I require ome other

intermediary result from Bleistein [1986a], namely,

2c0s 6 1
YB(E) ~ —c-(—iy—-'f’? IF(@) do , X on S. (25)

Substitution of this result into (24) yields

Blx) ~ 3%‘{-273 R(x,x,) ,1; I F(w) dw , x on S. (26)

That is, the actual numerical value at the peak depends on the area under
the filter in the frequency domain, the opening angle @ between the normal
and each of the rays from x, and x, to x on S, and the reflection
coefficient at that opening angle. We know the filter and, hence, the area
under the filter, but the separate elements, ©, c; and p, remain coupled in
this equation,

As a first step, I address the determination of 8. From (23), it can
be seen that the first fraction in (26) arises from the evaluation of
|Vf(§'§s) + 7(!'§r| at the stationary point. This factor appears in the
denominator in the inversion operator defimed by (4). By changing the power
of this factor in that inversion operator, it is possible to change the
power of the multiplicative factor, 2c0s8/c(x), at the peak of the output of
the inversion operator. Therefore, in addition to processing the data with
the inversion operator (4), I propose that the data be process with the

operator
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1 To(x ) |ntx, ¢
B, (x) ~ — a’e 2 -
8n plz.) A(;.gs)A(;.;r) |Vt(;.;s) + Vt(;.&r)

(27)

. io do F(u) exp{-iole(z,x) + v(x,x )1} D(E,0) .

Since it is mnecessary to calculate |Vt(§,xs) + -c(;,;r| anyway,
simul tanecous computation of this second inversion operator imposes no severe
burden on computer time. The asymptotic amnalysis of the output £,(x)
applied to Kirchhoff data is readily determined from the results for B(x)-
This function also produces the band limited singular functiom, vg(x),
scaled by a different factor. At the peak, that scale factor differs from
the scale for f(x) by |¥e(x,x ) +-|:(;,gr|":l evaluated at the stationmary

point on S, given by (23). That is,

51(5) ~ R(;.xs) -21;'- IF(w) de , x on S, (28)

and

B(x) 2cos 0O

BT " S v O s. (29)

Thus, when both inversion operators are applied to the data, the
locations of the peaks of either of them determine the reflector and then
the ratio of the peak values determine cos®. With O determined, either peak
amplitude provides a single equation for the two unknowns, ¢, (x) and p.(x).

Of ten, density variations are sufficiently small that they may be
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neglected; that is, ps(x) = p(x). In this case, the peak amplitude, with
cosd known, provides a single equation for the unknown, c,(x). Solution of
this equation provides an estimate of c,(x) consistent with the geometrical
optics reflection coefficient and not constrained to small values of the
difference, c4(x) - c(x).

When both parameters vary across the reflector, more information is
necessary if both are to be determined. I propose two experiments. That
is, if the experiment in question is a common source experiment with an
array of geophones, then a second common source experiment is carried out
with the source moved to another location. In this case, it is certain that
the stationary value of 0 is different for the second experiment, The

reason is that 6 must be the angle between the ray from x_to the output x

s
and the upward nommal to S at x. Moving xg changes the ray and changes this
angle. A similar argument holds for two different common receiver
experiments, If the data were gemerated by an array of common offset
experiments, thenm a second array of common offset experiments at different
off set distance will produce a different stationary value of @, Thus, in
each case, two data sets provide two equations for c,(x) and p,(x) through
determination of the reflection coefficient at x 2t two different (known)
values of 0,

To see how this works out in detail, first rewrite the reflection

coefficient in (11) in terms of © and x’ = g, on S. Note first that from

the statiomarity conditions

a-c(;,xs) cos@
= . (30)

on c(x)

Now, with a slight abuse of notation, that is, replacing R(z,xg) by R(x.9),

- 22 -



(11) can be rewritten as follows:

cos® _ 1 1 __un%
3 2
P(x) c(x) p (x) § c () c (z)
R(x,0) = achiecill, Mo . (31)
cos® , 1 1 _ sin’0

2 2
Plx) c(x)  pulx) | ey(x) o (@)

Let us assume that two sets of experiments have been carried out. For
each, both inversion operators, (4) and (27) were applied to the data, so
that the two values of O, say, O, and 6,, were determined, along with the
reflection coefficents, R, = R(x,6,) and R, = R(x,6,). These values are
then uwsed in (31) to determine ¢, (x) and p,(x). The results of that

calculation are

cos’01sin’92 . . sinze1 - sinzO’
2 ¢ PLEP 2 2 2 2 -(32)
cos 91 chOs 92 - PlcOs 91

P’cosze sin’e - P
2 2 b §

LIS

2 2
c chos 92 - P

In these results, P, and P, are given in tems of the observed reflection

coefficients by

1 - Rj
Pj=T_"-'Tj_. j=132. (33)

This completes the determination of ¢, and p,.
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CONCLUSIONNS

I have introduced here an inversion operator for acoustic data in a
variable soundspeed and density medium. By applying the operator to
Kirchhoff approximate data from a single reflector, I drew certain
conclusions about the output of this operator. First, the operator produces
a (an array of) bandlimited singular function(s) of the reflecting
surface(s) in the interior of the earth. The singular function constitutes
a mathematical image of the reflector and its pictorial representation does
indeed depict the reflector. Second, each singular function is scaled by a
slowly varying function of spatial coordinates. At the peak of the
bandlimited singular function, this scale becomes the geometrical optics
reflection coefficient at some (as yet unknown) incidence angle. Since the
peak value of the singular function is known, this reflection coefficient is
determined, as well., By introducing a second inversion operator, differing
from the first in only a minor way, I can determine that incidence angle.
At this point, in a constant density medium, the soundspeed below the
reflector can be determined from (i) the known values of the soundspeed
above, (ii) the reflection coefficient, and (iii) the incidence angle. When
the density varies, as well, a second experiment must be carried out. This
second experiment must differ from the first sufficiently to provide the
reflection coefficient at a different incidence angle. From the two
experiments, sufficient information is available to determine the values of
soundspeed and density below the reflector im terms of the values above the
reflector.

This method applies to common source, common receiver or common off set

experiments in which the soundspeed and density above the reflector are
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known functions of all three spatial variables. The density variations
across the reflector need not be small., However, the "known" background
must be close to the true values in order for proper location of the
reflector and proper determination of the soundspeed and density below the
reflector. Also, multiples from reflectors above the ome being analyzed
must be sufficiently negligible so as not to contaminate the response from

the given reflector.
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FIGURE CAPTIONS

Figure 1: The singular function of a surface.

Figure 2: Schematic of the seismic experiment.
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