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ABSTRACT
We study the transition from ballistic to diffusive wave propagation in scattering media
using the radiative transfer equations. To solve these equations we first transform them
into integral equations for the specific intensities, and then construct a time stepping
algorithm with which we evolve the specific intensities numerically in time. We handle
the advection of energy analytically to avoid numerical dispersion. With this algorithm
we are able to model various initial conditions for the intensity field, non-isotropic
scattering, and non-uniform scatterer density. We test this algorithm for an isotropic
initial condition, isotropic scattering and uniform scattering density, and find good
agreement with analytical solutions. We use this algorithm to numerically investigate
the transition from ballistic to diffusive wave propagation over space and time, for
two different initial conditions. The first one corresponds to an isotropic Gaussian
distribution and the second one to a plane wave segment. We find that equipartitioning
and diffusion must be treated as local rather than global concepts. We also show
numerically that an energy field which is nearly equipartitioned is not necessarily
diffuse. We provide a discussion about the implications that equipartitioning, as a local
process, has for Green’s functions reconstructions.
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1 INTRODUCTION

As waves propagate through a scattering medium they lose (or gain) energy due to scattering to (or from) other directions. In the
absence of anelastic attenuation, this phenomenon obeys energy conservation, which one may mathematically describe using the
radiative transfer equations (RTE). The RTE consist of a coupled system of integro-differential equations where one solves for the
wave intensity as a function of space, time and angular direction, assuming one knows the scattering mean free path l, the angular
dependence of scattering, and the speed of energy propagation v. Due to its usefulness RTE has been employed in several scientific
fields. In astrophysics RTE has been used to analyze radiation transport across cosmic dust in a wide range of astrophysical objects
(Steinacker et al., 2002; Narayanan et al., 2021; Wolf, 2003); in atmospheric sciences researchers use RTE to model solar radiation
across clouds to better understand the evolution of sea surface temperatures (Evans and Stephens, 1995; Aumann et al., 2018;
Manners et al., 2009); in optics RTE has been used to develop novel optical tomographic imaging algorithms which allow diagnosis
and treatment of biological tissues (Klose et al., 2002; Abdoulaev, 2003; Ren et al., 2004; Yodh and Chance, 1995); in acoustics
RTE has been used for modeling the interaction of acoustic waves with the ocean bottom (Quijano and Zurk, 2009), modeling of
forest acoustics (Ostashev et al., 2017), and modeling of acoustical diffractions by obstacles (Reboul et al., 2005); in geophysics
RTE has been used to study infrared radiation across volcanic ash clouds (Prata, 1989; Francis et al., 2012; Lee et al., 2014),
modeling of heat transfer in the mantle (Hofmeister, 2005), and computation of scattering kernels in coda wave interferometry
(Margerin et al., 2016; Duran et al., 2020; Dinther et al., 2021; Obermann et al., 2016).

Despite its usefulness in describing energy transport, RTE is complicated and numerically demanding due to its dependence
on not only space and time, but also on the directions of wave propagation. In 2 dimensions the radiative transfer solution depends
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on 4 variables (time, two space variables, and one angle). In 3 dimensions it depends on 6 variables (time, three space variables,
and two angles). Numerical techniques that have been used to solve the RTE include

• the discontinuous Galerkin finite element method, which has a high order accuracy in space and time but requires one to add
numerical viscosity in order to avoid nonphysical oscillations in the numerical solution and is computationally expensive (Clarke
et al., 2019; Han et al., 2010).
• Markov Chain Monte Carlo techniques, which are quite accurate and applicable to complicated media but are computationally

expensive and rely on using enough phonons to sample the intensity field as a function of space, time, and propagation directions
(Iwabuchi, 2006; Xu et al., 2011; Camps and Baes, 2018; Noebauer and Sim, 2019; Przybilla and Korn, 2008; Yoshimoto, 2000).
• Finite Difference techniques, which suffer from numerical dispersion in space and time due to the discretization of spatial and

temporal derivatives and may produce negative intensities which are nonphysical (Klose and Hielscher, 1999).
• and Wave Equation modeling, whereby one exploits the connection between the acoustic (or elastic) wave equation and the

scalar (or elastic) RTE (Przybilla et al., 2006; Kanu and Snieder, 2015; Snieder et al., 2019; Duran et al., 2020). One solves the
wave equation for several realization of a medium and computes a statistical average of the intensity field to suppress statistical
fluctuations of the intensity field. However, the wave field must be averaged over enough realizations of the medium and one must
locally decompose the calculated wave field into different propagation directions to properly account for the directionality of the
wave energy transport.

In addition to these numerical techniques there have been analytical approximations to RTE such as assuming diffusive wave
propagation which is only valid at times much larger than the transport mean free time (Rossetto et al., 2011; Planès et al.,
2014); assuming a point-like, isotropic, impulsive source of intensity in a statistically homogeneous medium (Margerin et al.,
2016); expanding the intensity and scattering function into a finite sum of Legendre polynomial and then solving a finite system of
equations for the unknown coefficients appearing in a truncated expansion (Roberge, 1983); decomposing the specific intensities
into a sum of partial intensities and then solving the RTE for each partial intensity assuming angle-independent scattering (Paasschens,
1997); assuming a steady-state intensity field (Fan et al., 2019; Le Hardy et al., 2016); or assuming azimuthal symmetry (Baes and
Dejonghe, 2001; de Abreu, 2004). In search of an efficient and accurate numerical method that overcomes some of the limitations
mentioned above we propose a novel numerical scheme to compute the numerical intensities which solve the scalar RTE. Our
approach is based on transforming the RTE into an integral equation for the specific intensities and then solving this integral
equation as a time-stepping algorithm. Contrary to standard finite difference (FD) or discontinuous Galerkin finite element (DGFE)
methods we handle the advection of energy analytically. This means that our numerical procedure for computing the wave energy
transport does not introduce the numerical dispersion appearing in such numerical schemes. Further, since the time discretization
depends on the transport mean free time, instead of the frequency of the waves, the space and time discretization in the numerical
modeling of the radiative transfer equation can be much coarser than it is for wave field modeling.

This paper is organized as follows: In section 2 we discuss the scalar RTE and derive a localized time-stepping algorithm.
In section 3 we show numerical simulations for isotropic scattering and compare the computed intensities to exact solutions. We
also show how our algorithm handles arbitrary source distributions and angle-dependent scattering and discuss the transition from
ballistic to diffusive wave propagation. To quantify this transition we introduce the equipartitioning index, a quantity which ranges
from 0 (full equipartitioning) to 1 (uni-directional wave propagation), and emphasize that the transition from ballistic to diffuse
waves occurs locally rather than globally. We also show numerically that when an intensity field is nearly equipartitioned, it is
not necessarily diffusive, since an additional condition must be satisfied (van Rossum and Nieuwenhuizen, 1999). We conclude
section 3 with numerical simulations for a medium with non-uniform scattering properties. In section 4 we discuss the implications
that local equipartitioning has for the reconstruction of Green’s functions using noise fields. Typically, it is assumed that the field
fluctuations with which the Green’s functions are to be retrieved have no preferred propagation direction, which is not always the
case. In section 5 we discuss the algortihm that we develop, equiparitioning as a local process, the implications that this has for
Green’s function retrieval, and that almost equipartioning does not necessarily imply that the energy propagation is diffusive.

2 THEORY

2.1 Description of the Scalar Radiative Transfer Equations

The radiative transfer equations (RTE) are a system of coupled integro-differential equations which describe the distribution of
energy in a scattering medium as a function of space, time, and direction n̂ of wave propagation (Chandrasekhar, 1960; Turner
and Weaver, 1994; Ryzhik et al., 1996). For late times, when the wave propagation is almost independent of direction, and is
nearly stationary in time, the equation of radiative transfer leads to diffusive wave transport (van Rossum and Nieuwenhuizen,
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1999). The radiative transfer equations follow from the ladder approximation to the Bethe-Salpeter equation (van Rossum and
Nieuwenhuizen, 1999) and accurately describe wave transport at both early and late times, as well as the transition from ballistic
wave propagation to weak scattering to strong multiple scattering (Paasschens, 1997). In the derivation of the radiative transfer
equations one assumes that scattered waves have uncorrelated random phases, resulting in the description of scattering processes
in terms of average intensities rather than in terms of stress or material displacement (Turner and Weaver, 1994). To derive the
radiative transfer equations one may either make use of energy balance in an infinitesimal volume containing scatterers, or directly
derive these equations from the wave equations by estimating the ensemble average of the covariance of the Green’s function in a
random medium (Turner and Weaver, 1994). For a thorough description of the radiative transfer (transport) equations in random
media we refer the reader to Ryzhik et al. (1996).

Assuming a uniform speed of transport and ignoring intrinsic attenuation the scalar radiative transfer equation in 2 dimensions
for an intensity field reads (Wu, 1985)

∂I(r, n̂, t)

∂t
+ vn̂ · ∇I(r, n̂, t) = − 1

τs
I(r, n̂, t) +

1

τs

∮
f(n̂, n̂′)I(r, n̂′, t)d2n̂′, (1)

where the scattering function f(n̂, n̂′) is assumed to be independent of frequency, which holds for band-limited wavefields. In
equation 1 the variable I(r, n̂, t) is the intensity of waves at a location r and time t propagating in the direction n̂. In the literature
of radiative transfer the variable I(r, n̂, t) is referred to as the specific intensity (Chandrasekhar, 1960). The advection of the
energy, propagating with a wave velocity v, is described by the term vn̂ · ∇I(r, n̂, t). The parameter τs is the scattering mean free
time which describes the average time between scattering events. The term −I(r, n̂, t)/τs accounts for the energy that is lost to
other directions in the scattering process. The term

∮
f(n̂, n̂′)I(r, n̂′, t)d2n̂′/τs describes the gain due to energy scattered from

other directions. The scattering function f(n̂, n̂′) relates the incident intensity to scattered intensity. This function is normalized,
assuming that there is no absorption (van Rossum and Nieuwenhuizen, 1999), such that∮

f(n̂, n̂′)d2n̂′ = 1. (2)

This normalization follows by analyzing eqn. 1 for a homogeneous and time-independent intensity.

2.2 Formulation of the Numerical Algorithm

We solve the 2-D scalar RTE

∂tI(r, n̂, t) + vn̂ · ∇I(r, n̂, t) = −I(r, n̂, t)/τs +

∮
f(n̂, n̂′)I(r, n̂′, t)d2n̂′/τs, for t > t0 (3)

subject to the initial condition I0(r, n̂) at an initial time t0

I(r, n̂, t = t0) = I0(r, n̂). (4)

In eqn. 3 n̂ = (cos θ, sin θ) indicates the direction of propagation, with θ the counter-clockwise angle relative to the horizontal
direction (x-axis). We assume that the computational boundaries are far enough from the source such that the intensities can be
assumed to vanish at the boundary.

We transform the initial value problem in equation 3 into an integral equation for the specific intensities (Paasschens, 1997)

I(x, y, n̂, t) = I(x− v(t− t0) cos(θ), y − v(t− t0) sin(θ), n̂, t0)e
−(t−t0)/τs

+
1

τs

∫ t

t0

∮
f(n̂, n̂′)I(x− v(t− t′) cos(θ), y − v(t− t′) sin(θ), n̂′, t′)e−(t−t′)/τsd2n̂′dt′. (5)

Paasschens (1997) analytically solves for the specific intensities in equation 5 for a medium with isotropic scattering and constant
scattering properties assuming that the initial condition for the specific intensity is isotropic. To do this, he decomposes the
specific intensities into a sum of partial intensities, where each partial intensity signifies a number of scattering events (i.e., direct
propagation, single scattering, double scattering, and so on). We show in the appendix that equation 5 solves the radiative transfer
equations 3 for the arbitrary initial condition 4 and angle-dependent scattering. In this paper we use equation 5 to integrate the
specific intensities numerically in time. This approach allows us to use non-isotropic initial conditions and non-isotropic scattering
radiation patterns.

In expression 5 the first term in the right hand side corresponds to the incident intensity which propagates and decays over time
due to scattering losses to other directions. The second term corresponds to the scattered intensity which accounts for the energy
gain due to scattering from all possible propagation directions. To develop an iterative algorithm which depends only on the current
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time t and the previous time step t−∆t we replace t0 by t−∆t to obtain

I(x, y, n̂, t) = I(x− v∆t cos(θ), y − v sin(θ), n̂, t−∆t)e−∆t/τs

+
1

τs

∫ t

t−∆t

∮
f(n̂, n̂′)I(x− v(t− t′) cos(θ), y − v(t− t′) sin(θ), n̂′, t′)e−(t−t′)/τsd2n̂′dt′. (6)

The contribution of the incident intensity at time t−∆t in equation 5 now becomes the first term in equation 6. The second term in
equation 6 corresponds to the scattered contributions at current and previous times. Through this iterative algorithm we compute the
advection and scattering of energy locally. We proceed by applying the discrete ordinate method (Chandrasekhar, 1960) whereby
one divides the angular integral into N equal segments. In two dimensions this method corresponds to setting d2n̂ → dθ and then
setting dθ = 2π/N in the angular integration

I(x, y, n̂, t) = I(x− v∆t cos(θ), y − v∆t sin(θ), n̂, t−∆t)e−∆t/τs

+
1

τs

∫ t

t−∆t

∑
n′

2π

N
f(n̂, n̂′)I(x− v(t− t′) cos(θ), y − v(t− t′) sin(θ), n̂′, t′)e−(t−t′)/τsdt′. (7)

We then discretize the remaining time integral using the two-point trapezoidal quadrature rule by which we obtain

I(x, y, n̂, t) = I(x− v∆t cos(θ), y − v∆t sin(θ), n̂, t−∆t)e−∆t/τs

+
1

τs

∑
n̂′

π

N
f(n̂, n̂′)I(x− v∆t cos(θ), y − v∆t sin(θ), n̂′, t−∆t)e−∆t/τs∆t

+
1

τs

∑
n̂′

π

N
f(n̂, n̂′)I(x, y, n̂′, t)∆t. (8)

Lastly, we arrange eqn. 8 to obtain

I(x, y, n̂, t)− 1

τs

∑
n̂′

π

N
f(n̂, n̂′)I(x, y, n̂′, t)∆t =

I(x− v∆t cos(θ), y − v∆t sin(θ), n̂, t−∆t)e−∆t/τs+

1

τs

∑
n̂′

π

N
f(n̂, n̂′)I(x− v∆t cos(θ), y − v∆t sin(θ), n̂′, t−∆t)e−∆t/τs∆t, (9)

where the right-hand side is a known quantity since it only depends on previous time t−∆t.
Eqn. 9 consists of a system of N equations, with N variables (the intensities at every discretization angle). For an arbitrary

number of N directions we write

AI⃗ = S⃗. (10)

The entries of the vector on the right-hand side of eqn. 10 correspond to the right-hand side of eqn. 9. For a given direction n̂i we
write

S(x, y, n̂i, t−∆t) = I(x− v∆t cos θ, y − v∆t sin θ, n̂i, t−∆t)e−∆t/τs

+
1

τs

∑
n̂′

π

N
f(n̂i, n̂

′)I(x− v∆t cos θ, y − v∆t sin θ, n̂′, t−∆t)e−∆t/τs∆t. (11)

The N ×N matrix on the left-hand side of eqn. 10 has entries Aij = δij − π∆t
Nτs

f(n̂i, n̂j). The indices are introduced to emphasize

that the scattering function f(n̂i, n̂j) depends on the incident and scattering angles. This matrix multiplies the intensity vector I⃗
that we solve for. The right hand-side of eqn. 10 corresponds to a source term with which we evolve the numerical solution, and
depends on the intensities at the previous time, given by eqn. 11.

2.3 Choice of Scattering Function and the Transport Mean Free Time

We use the Henyey-Greenstein (HG) scattering function in 2D to describe a medium with angle-dependent scattering (Margerin
et al., 2016).

f(n̂, n̂′) =
1

2π

1− g2

(1 + g2 − 2g(n̂ · n̂′))
. (12)

The variable g describes the level of angle-dependent scattering and it ranges from predominantly backward scattering (g = −1)
to isotropic scattering (g = 0) to predominantly forward scattering (g = 1). For practical purposes one considers the range
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Figure 1. Total intensity at t = 0. This initial condition is normalized such that the total energy equals unity.

−1 < g < 1 to avoid the singularities for g = ±1 when (n̂ · n̂′) = ±1. When scattering depends on angle the time scale at which
the scattering events occur is referred to as the transport mean free time τ∗, and it is related to the scattering mean free τs time
by τ∗ = τs/(1 − g) (van Rossum and Nieuwenhuizen, 1999). This relationship implies that if scattering is predominantly in the
forward direction τ∗ > τs, whereas when scattering is predominantly in the backward direction τ∗ < τs.

We normalize the scattering function using a discretized version of eqn 2∑
n̂′

1

CN

1− g2

(1 + g2 − 2g(n̂ · n̂′))
= 1, (13)

where the discrete sum is over N angles. C thus corresponds to a constant

C =
∑
n̂′

1

N

1− g2

(1 + g2 − 2g(n̂ · n̂′))
, (14)

which we introduce to satisfy the unity of the normalization condition 2 for the discretized scattering function. When g = 0 the
constant C = 1, and when g ̸= 0 the value of the constant C → 1 as N → ∞.

3 NUMERICAL SIMULATIONS

In the first example the initial condition for the intensity at t0 = 0 consists of a 2-D Gaussian placed at the middle of the
computational domain with a full width at half maximum of ≈ 2350 m, where at every point in space energy is emitted equally in
all directions. Fig. 1 shows this initial condition as well as the spatial coordinates of the computational domain. Both coordinates
range from −20000 m to 20000 m, with a grid spacing ∆x = ∆y = 200 m. We use a constant propagation velocity v = 1000 m/s
and scattering mean free time τs = 5 s. We integrate the intensities from t = 0 to 20 s with ∆t = 0.2 s, with the choice of temporal
discretization small enough (∆t ≪ τs) to capture the scattering interactions. We use N = 32 directions of propagation, equally
spaced in the range [0, 2π). To compute the advection terms which do not lie on grid points we perform linear interpolation, which
is a sufficiently good approximation provided that the initial condition is smooth. In our numerical experiments we find that ten
sample points for the full-width at half-maximum are enough to avoid interpolation artifacts. At the boundary we set the intensities
equal to zero, which does not affect the accuracy of our results for the distances and propagation times that we investigate.

3.1 Comparison of numerical and exact solutions for isotropic scattering

We compare the analytical and numerical specific intensities as derived by Paasschens (1997), rather than the total intensities, for
a medium with isotropic scattering. This comparison allows us to assess the accuracy of our algorithm in retrieving the individual
specific intensities since the total intensity may average out discrepancies between the numerical and analytical solutions of the
specific intensities.

Figure 2 shows the comparison between analytical and numerical solutions for the specific intensities at different angular
directions at a distance of 5000 m from the Gaussian peak in fig. 1. The direction aligned with the radial direction shows the
largest amplitude, and the magnitude of the specific intensity decreases with increasing angle θ relative to the radial direction.
The radial direction contains both incident and scattered energy, whereas off-radial directions contain only scattered energy. The
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Figure 2. Comparison of analytical and numerical specific intensities at a distance of 1 scattering mean free length (5000 m) for isotropic scattering
(g = 0). The three pannels from left to right show the specific intensities at an angle of 0, π/4, π/2 relative to the radial direction, respectively.

scattered energy decreases in amplitude with increasing angle relative to the radial direction, as shown by Paasschens (1997). Our
numerical solutions in fig. 2 agree within 3% with the exact solutions. The largest error arises near the coherent wave arrival for
the specific intensity along the radial direction. This mismatch occurs because of the limited number of angular directions, and the
error decreases if one uses more discretization angles. The fact that we match the exact solution well indicates that our algorithm is
able to model the specific intensities, rather than just the total intensity. Therefore, the algorithm that we are showing in this paper
is applicable for problems in which one wants to model the directionality of wave transport.

3.2 The spatial dependence of wave propagation

3.2.1 Isotropic scattering

As waves propagate through scattering media their wave propagation regime changes from ballistic to single scattering to multiple
scattering to diffusive. To study the spatial dependence of the propagation regime we consider a numerical experiment with a
Gaussian initial condition at the center of the computational domain, as in fig. 1, and isotropic scattering. The simulation parameters
are the same as for fig. 2. Fig. 3 shows cross-sections of the total intensity at y = 0 for different simulation times. At early times
(t ≪ τs) the energy is still concentrated near the source vicinity and little scattering has occurred. At later times (t = 1τs) there
is outgoing ballistic energy, with scattered energy in-between. This energy is generated by single and multiple scattering. At a later
time of t = 2τs the scattered energy starts to dominate over the ballistic energy. This corresponds to a transfer of energy from
incident to scattered waves. The scattering energy now contains single and multiple scattering energy, part of which has become
diffusive. This diffusive character produces a Gaussian shape between the ballistic peaks as one expects from the solution to the
diffusion equation (Sato et al., 2012). In this diffusive regime equipartitioning starts to occur, whereby the intensity wave field does
not have a preferred direction of propagation. However, as we will show later, equipartitioning is necessary but not sufficient for the
intensity field to be diffuse. On the panel in the lower right the scattered energy dominates, there is nearly no ballistic energy left,
and the propagation becomes diffusive, as indicated by the Gaussian shape. The rapid drop at the edges of the computational domain
occurs because of the vanishing boundary condition. At late times, after sufficiently many scattering events, one assumes that the
wave field is equipartitioned (i.e., no preferential propagation direction) and follows a random-walk-like behaviour. However, one
usually assumes that equipartitioning occurs when the condition t ≫ τ∗ is satisfied, rather than the condition t ≫ r/v+ τ∗. In this
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Figure 3. Cross-section of the total intensities for isotropic scattering. The red arrows indicate the outgoing ballistic energy.

expression r is the source-receiver distance, v is the speed of transport, and τ∗ is the transport mean free path, which for isotropic
scattering equals the scattering mean free time τs. The second condition is stricter because it accounts for the scattering events after
the ballistic arrival.

The assumption that the field is nearly equipartitioned is typically regarded as a sufficient condition for the diffusive approximation
to the scalar RTE, and it is common practice to use such approximation (Campillo, 2006; Obermann et al., 2013). However, for
equipartitioning to imply diffusion, the transport mean free time times the temporal rate of change of the local current density must
be much smaller than the local current density. See expression 52 and 53 in van Rossum and Nieuwenhuizen (1999) where they
outline the necessary conditions to derive the diffusive approximation to radiative transfer.

To quanitify the degree of equipartitioning we introduce the equipartitioning index

δ(r, t) =
σ(r, t)√
Nµ(r, t)

, (15)

where σ(r, t) is the standard deviation of the specific intensities along the angular directions defined with a division by N − 1

as σ2(r, t) = 1
N−1

∑N
i=1(I(r, t, n̂i) − µ(r, t))2. µ(r, t) = 1

N

∑N
i=1 I(r, t, n̂i) is the mean of the specific intensities along the

angular direction, and N is the number of angular directions. The quantity δ provides a measure of the variation of the specific
intensities along the angular directions as a function of space and time. We compute the standard deviation and the mean of the
specific intensities along the N propagation directions for a fixed point in space and time. The constant 1/

√
N is included so that

0 < δ < 1. Consider an uni-directional intensity field Ii = I0δi,1, where I0 is the intensity along the only non-zero direction and
δi,j is the kronecher delta. The mean for this intensity field is µ = I0/N . The standard deviation for the same intensity field is
σ = I0/

√
N , which gives σ/µ =

√
N . The equipartitioning index is 0 when the intensity field is fully equipartitioned (i.e., same

specific intensity along all directions) and 1 when the intensity field is unidirectional (i.e., all of the specific intensities but one are
equal to zero).

In the first numerical experiment we release the energy within the Gaussian equally along all directions, meaning that the field
is equipartitioned at t = 0. However, due to the nonzero gradient of the intensity field part of the intensity propagates away from
the initial Gaussian with a preferred propagation direction and equipartitioning breaks down (δ ̸= 0) due to the directionality of
the energy transport. Fig 4 shows δ for the same cross-section as fig. 3. The ballistic arrival shows the highest value of δ. Even at
very early times (t = 0.2τs) the intensity field is not equipartitioned anymore despite the initial condition being equipartitioned,
as explained above. The scattering energy in between the ballistic peaks starts to equipartition over time, with the lowest δ value at
x = 0. Even at late times the value of δ is only small (< 0.1) between −10000 and 10000 m, where more scattering events have
occurred relative to those events near the ballistic arrival. One should use the condition t ≫ r/v+ τ∗ for assessing equipartitioning
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Figure 4. Cross-section of equipartitioning index δ for the isotropic source experiment. The red arrows indicate outgoing ballistic energy.

to account for multiple scattering after the ballistic arrival. To see why this condition is necessary, consider the two terms at the
right hand side of the inequality. The first term r/v accounts for the travel time of the ballistic wave from the source to receiver
locations. The second term, τ∗, is the transport mean free path, which is a measure of the time scale over which scattering occurs.
Both of these terms together describe the time necessary for multiple scattering, and therefore equipartitioning, to develop after the
ballistic wave arrival. In particular, one can not generally say that the field is equipartitioned because the level of equipartitioning
depends on location.

3.2.2 Angle-dependent scattering

For realistic applications of the scalar RTE it is necessary to consider the effect of angle-dependent scattering. To this end, we
study the spatial dependence of wave propagation when the scattering function depends on angular direction. Here, we investigate a
medium in which forward scattering dominates. We initialize the intensities and set-up the computational domain as in the isotropic
simulation to provide a just comparison between the numerical experiments.

Fig. 5 shows a cross-section along the x-axis at y = 0 of the total intensity for different levels of angle-dependent scattering.
The scattering function is given by eqn. 12 with g = 0, 0.3, 0.5 for isotropic, weak, and medium forward scattering, respectively.
Overall, this numerical simulation shows the same behavior as for the isotropic case. However, as forward scattering becomes
stronger, it takes a longer time for the ballistic energy to become scattered. To see why this is the case consider a unidirectional
intensity source. As forward scattering becomes stronger the energy of the ballistic wave takes longer to scatter due to the preferred
propagation direction and the energy in-between the outgoing ballistic peaks takes a longer time to become diffusive. This behavior
occurs because as forward scattering increases so does the transport mean free path, the time scale over which scattering occurs.

These numerical simulations show that our algorithm is applicable to media with angle-dependent scattering. Our results are
in agreement with two physical principles. The first one is that with increasing forward scattering it takes more time for the energy
to be scattered away from the ballistic wave, and the second one is that as forward scattering increases, the intensity field takes a
longer time to become diffusive. As with the isotropic case there is a spatial dependence of the transition from ballistic to diffusive
waves. To explore the degree of equipartitioning when scattering depends on angle we compute the equipartitioning index δ for the
same cross-section as in fig. 4. Fig. 6 shows δ for this cross-section. Overall, the behavior is the same as for isotropic scattering.
As before, the ballistic arrival shows the highest δ, and the lowest δ is at x = 0, at the center of the computational domain. For all
degrees of angle-dependent scattering the equipartition index is nearly the same. This occurs because the field starts equipartitioned
at t = 0 so that different values of g do not affect the value of δ in-between the outgoing ballistic energy.
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Figure 5. Cross-section of the total intensities for different levels of angle-dependent scattering and simulation times. The black, blue, and green
curves correspond to τ∗ = 1, 1.43, 2τs , respectively. The red arrows indicate the outgoing ballistic energy.

Consider the bottom left panel in fig. 6. Between −5000 and 5000 m, δ < 0.1. This implies that for these distances the
intensity fields are close to being equipartitioned. The bottom left panel of fig. 4 shows that for the same range only the isotropic
curve is diffuse. This comparison shows that even if a field is equipartitioned it is not necessarily diffuse because equipartitioning
is a necessary but not sufficient condition for the intensity to be diffuse.

van Rossum and Nieuwenhuizen (1999) derive a diffusion equation from the 3-D version of equation 1. To this end they make
two assumptions. The first assumption is that the intensity distribution is almost isotropic so that the energy current J is much
smaller than the energy density I tot. With this assumption they expand the specific intensities as

I(r, n̂, t) ≈ I tot(r, t) + 3vn̂ · J(r, t), (16)

where they ignore the higher order terms since these terms become negligible. The variables I tot and J are the local radiation and
current densities, respectively. They then assume that the intensity field satisfies∣∣∣∣τ∗∂tJ

∣∣∣∣ ≪ ∣∣∣∣J∣∣∣∣, (17)

with which they obtain the diffusive approximation to the scalar RTE.
To estimate the necessary condition for diffusion we rewrite the condition 17 as

ϵ =

∣∣∣∣τ∗∂tI
tot

I tot

∣∣∣∣ ≪ 1, (18)

where we have replaced the local current density J by the local radiation density I tot.
Recall that in fig. 5 the diffuse character of the scattered waves only starts to appear at a time t = 2τs. Fig. 7 shows ϵ from

equation 18 for the bottom left and right panels, respectively, of fig. 5, with the x-axis now ranging from −6000 to 6000 m to
focus on the diffuse character of the scattered waves. The left panel of fig. 7 shows the lowest value of ϵ for isotropic scattering,
and it increases as forward scattering becomes stronger. This reflects that energy that scatters isotropically reaches a diffuse state
more rapidly than when forward scattering dominates, as we showed in fig. 5. The left panel of fig. 7 also shows that, as with
equipartitioning, ϵ changes locally. The smallest value of ϵ is near x = 0 and increases away from this location. This local behavior
is more evident with stronger forward scattering (g = 0.5). The right panel of fig. 7 also shows higher ϵ for stronger forward
scattering. It also shows that ϵ decreases with time because the scattered waves start to become diffuse. As before, this diffuse
behavior changes locally, but with less variations than for earlier times.
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Figure 6. Cross-section of equipartitioning index δ for the isotropic source experiment. The red arrows indicate outgoing ballistic energy.

Figure 7. Diffusion condition 18 for the bottom left and bottom right panels in fig. 5, with the x-axis now ranging from −6000 to 6000 m.

3.2.3 Directional source and angle-dependent scattering

So far we have explored the spatial dependence on wave propagation due to the scattering properties of the medium. We extend our
numerical study by considering a segement of a plane-wave which propagates from left to right. As before, we test for isotropic,
weak forward, and medium forward scattering (g = 0.0, 0.3, 0.5), which correspond to transport mean free times τ∗ = 1, 1.43, 2τs,
respectively. Fig. 8 shows the initial condition and computational domain for this numerical test. We place the plane wave segment
around the origin with the x-coordinate ranging from −20000 to 20000 m and the y-coordinate ranging from −20000 to 20000 m.
The only non-zero specific intensity at time t = 0 corresponds to θ = 0. We taper the plane-wave segment along both horizontal
(−1000 to 1000 m) and vertical (−2500 to 2500 m) directions so that the numerical interpolation is accurate. Fig. 9 shows a cross-
section at the middle of the computational domain along the x-axis for the plane wave segment simulation. As with the isotropic
initial condition, when time progresses the intensity with stronger forward scattering has more energy concentrated along the
ballistic arrival and less trailing scattered energy. A secondary ”ballistic” wave, caused by waves that are backscattered immediately
after the plane wave segment is launched, is indicated by the orange arrow and propagates towards the left of the computational
domain. This secondary arrival has a negligible amplitude. Fig. 10 shows the equipartitioning index δ for the intensity cross-section
in Fig. 9. The ballistic arrival shows the highest equipartitioning indexδ, as in the previous simulations. The secondary ”ballistic”
arirval that arises early in the simulation shows up as a secondary peak on the left side of fig. 10, but the intensity corresponding to
this peak is negligible. The scattering energy directly behind the peak propagating to the right shows the lowest δ. The directionality
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Figure 8. Normalized initial condition for the specific intensity of a plane-wave segment aligned with the positive x-axis, all other specific intensities
are set equal to zero. The red arrow indicates the initial direction of wave propagation.

Figure 9. Cross-section of the total intensities for different levels of angle-dependent scattering and simulation times. The black, blue, and green
curves correspond to τ∗ = 1, 1.43, 2τs, respectively. The red arrow indicates the right-going ballistic wave, the orange arrow indicates a secondary
”ballistic” arrival which arises due to backscattering.

in wave propagation occurs because the initial condition has a preferred propagation direction. For this type of initial condition one
should also use the condition t ≫ r/v+ τ∗ to account for both the primary ballistic arrival (propagating from left to right) and the
secondary wave (propagating to the left). Fig. 10 also shows scattered energy with higher δ as forward scattering increases, which is
most prominent at later times. This occurs because for this numerical test the initial condition has a preferred propagation direction
so that g plays a role in determining equipartitioning.

3.3 Non-uniform scattering

To extend the capability of our algorithm we consider media with non-uniform scattering mean free time, while keeping the speed
of transport constant. This scenario corresponds to a scatterer density that depends on location in a background medium of constant
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Figure 10. Cross-section of equipartitioning index δ for the plane source experiment. The red arrow indicates the right-going ballistic wave, the
orange arrow indicates a secondary ”ballistic” arrival which arises due to backscattering.

velocity. When the scattering mean free time varies non-uniformly over space we replace the integral equation 5 by

I(r, n̂, t) = I(r− v(t− t0)n̂, n̂, t0)exp

(
−

∫
lc

1

vτs(s′)
ds′

)
+

∫ t

t0

1

τs(r− v(t− t′)n̂)

∮
f(n̂, n̂′)I(r− v(t− t′)n̂, n̂′, t′)exp

(
−

∫
ld

1

vτs(s′)
ds′

)
d2n̂′dt′, (19)

where lc is the direct path from r − v(t − t0)n̂ to r and ld is the direct path from r − v(t − t′)n̂ to r. The approach to show
that the integral equation 19 satisfies the radiative transfer equations 3 is similar to the one shown in the appendix. The rest of the
formulation follows the procedure outlined in section 2. To compute the integral appearing in the exponential we use a weighted
average between neighboring points.

We show numerical experiments for two different media with isotropic scattering: A medium with constant scattering mean
free time τs = 5 s, and a medium which consists of three layers where the first and third layer have a scattering mean free time
of 5 s while the middle layer has a scattering mean free time of 2.5 s. Fig. 11 shows the layered medium in the corresponding
computational domain. We initialize the intensities with a plane wave segment that propagates upward. Fig. 12 shows this initial
condition along with the computational domain that we use. The x-axis now ranges from −10000 to 10000 m, the temporal, spatial
and angular sampling is the same as in the previous section. We taper the plane wave from −2500 to 2500 m in the horizontal
direction and −9000 to −7000 m in the vertical direction. Fig. 13 shows cross-sections of the total intensity along the y-axis at
x = 0 for media with variable and constant scattering mean free time. At early times (t = 2 s), before the waves reach the boundary
at y = −5000 m, the total intensities are the same since the ballistic peak has not sampled the variation in scattering properties. At
intermediate times (t = 5 s and t = 7 s) the ballistic peak and the scattered energy for the total intensity with variable scattering
becomes less than that for constant scattering. This occurs because the effective scattering mean free time for the intensity with
variable scattering is less than that for constant scattering. At late times (t = 10 s) the intensity for variable scattering is much lower
than that with constant scattering since the wave spends most of its propagation time in a medium with a scattering mean free time
which is half of the one for constant scattering.

4 IMPLICATIONS FOR GREEN’S FUNCTION RECONSTRUCTION

Weaver and Lobkis (2001) proposed to reconstruct Green’s functions in an ultrasonic experiment using thermal field fluctuations,
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Figure 11. Scattering model that we use in the experiments for non-uniform scattering media. The grey scale bar shows the scattering mean free
time in seconds.

Figure 12. Initial condition of an upward propagating plane wave segment. The red arrow indicates the initial direction of wave propagation.

Figure 13. Total intensity along the y-axis at x = 0 for different times.
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assuming that such field is equipartitioned. In the field of acoustics and seismology, this work inspired the development of seismic
interferometry (Curtis et al., 2006; Roux et al., 2005; Snieder and Larose, 2013). In this technique one retrieves the causal and anti-
causal Green’s functions between receiver locations A and B, by cross-correlating the wave fields recorded at such locations due
to an even distribution of sources, assuming that the wave field has no preferred propagation direction (equipartitioning). Snieder
et al. (2010) showed that equipartitioning is necessary for Green’s function retrieval but not sufficient.

In practice this equipartitioning assumption does not always hold. Paul et al. (2005) computed field-field correlations of
Alaskan earthquakes to retrieve the causal and anti-causal Green’s functions. In theory, if the noise wave field were equipartitioned,
these Green’s functions should be symmetric in time. However, they found that the correlations they computed were asymmetric in
time, which they suggest is due to the preferred direction of energy flow of the coda waves that they use to compute the field-field
correlations. When they use late coda they find that this asymmetry remains, but to a lesser extent than when using earlier coda.
Stehly et al. (2006) showed that the noise, which one may use to reconstruct Green’s functions near coastlines, radiates preferentially
away from storms at the oceans. This preferential directionality of the noise radiation affects the asymmetry of the Green’s function
that one retrieves, especially if the noise field that one uses is uni-directional and not evenly distributed.

5 DISCUSSION

The numerical algorithm that we propose to solve the scalar RTE in a medium with uniform speed of transport, non-uniform
scattering mean free time, and arbitrary angle-dependent scattering allows us to compute the specific intensities, as opposed to just
the total intensities. This algorithm can be used in applications where one needs to resolve the angular distribution of the wave
energy transport. We can use our algorithm for an intensity with a sufficiently smooth initial condition (i.e., enough sampling points
in space so that the interpolation does not introduce numerical artifacts), as we showed through numerical experiments with isotropic
and plane wave segment initial conditions in a medium with angle-dependent scattering and varying scattering properties (Fig. 5, 9,
and 13). In our algorithm we discretize the angular integral and then handle the advection of energy analytically so that we do not
introduce the dispersion errors appearing in numerical techniques such as finite differences or discontinuous Galerkin finite element
methods. This numerical dispersion may cause negative intensities which are non-physical. Due to the limited number of angular
directions in the discrete ordinate method, our algorithm introduces a small error around the ballistic arrival. Fig. 2 shows that this
error does not affect the accuracy of the numerical scattered specific intensities, and one may reduce such error by increasing the
number of discretization angles. Since we compute the specific intensities, our algorithm is useful for testing and understanding
the equipartitioning of an intensity field. We quantify the extent of randomization of an intensity field through the equipartitioning
index. We find that, in general, the level of equipartitioning of an intensity field is a function of space and time. Figs. 6 and 10
show that the ballistic arrival has the highest equipartitioning index and that the trailing scattered energy becomes equipartitioned
over time but not at the same rate throughout the computational domain. The difference in the rate at which equipartitioning occurs
requires one to use the condition t ≫ r/v + τ∗ as a measure of equipartitioning to account for the scattering events following the
ballistic arrival. This condition indicates that the wave propagation regime varies spatially. Comparison of Figs. 6 and 10 shows that
for assessing equipartitioning one needs to consider the initial condition of the intensity field. In the plane wave segment simulation
the energy directly behind the right-going peak quickly randomizes, but as one moves closer to the secondary ”ballistic” wave
(left-going) the wave field has a preferred propagation direction due to backscattering early in the simulation. This again indicates
that the wave propagation regime depends on space. We also showed numerically that even though equipartitioning is necessary, it
is not sufficient for an intensity field to be diffuse. This is because the diffusive approximation requires the temporal derivative of
the energy flux to be small, as condition 17 shows. This condition implies that one must distiniguish between equipartitioning and
diffusion. Local equipartitioning has implications for Green’s functions retrieval. One particular example is seismic interferometry
where the extent of equipartitioning affects the accuracy of the Green’s functions that one recovers. Since equipartitioning changes
locally rather than globally, the accuracy of the Green’s function reconstruction may depend on space and time.
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Appendix: Integral equation 5 as a solution to the radiative transfer equations 3

We show that the integral equation 5 satisfies the radiative transfer equations 3 with the initial condition 4. Inserting t = t0 in
equation 5 gives the initial condition 4. To simplify the proof we align the x-axis with n̂ so that the integral equation 5 becomes

I(x, y = 0, n̂, t) = I(x− v(t− t0), y = 0, n̂, t0)e
−(t−t0)/τs

+
1

τs

∫ t

t0

∮
f(n̂, n̂′)I(x− v(t− t′), y = 0, n̂′, t′)e−(t−t′)/τsd2n̂′dt′, (20)

and the radiative transfer equations 3 become

∂tI(x, y = 0, n̂, t) + v∂xI(x, y = 0, n̂, t) = −I(x, y = 0, n̂, t)/τs +

∮
f(n̂, n̂′)I(x, y = 0, n̂′, t)d2n̂′/τs, (21)

for t > t0. Next, we take the derivative of equation 20 with respect to t

∂tI(x, y = 0, n̂, t) =− v∂xI
(
x− v(t− t0), y = 0, n̂, t0

)
e−(t−t0)/τs

− 1

τs
I
(
x− v(t− t0), y = 0, n̂, t0

)
e−(t−t0)/τs

+
1

τs

∮
f(n̂, n̂′)I

(
x, y = 0, n̂′, t

)
d2n̂′

1

τs

∫ t

t0

∮
f(n̂, n̂′)

(
− v∂xI

(
x− v(t− t′), y = 0, n̂′, t′

))
e−(t−t′)/τsd2n̂′dt′

− 1

τ2
s

∫ t

t0

∮
f(n̂, n̂′)I

(
x− v(t− t′), y = 0, n̂′, t′

)
e−(t−t′)/τsd2n̂′dt′, (22)

and the derivative with respect to x

∂xI(x, y, n̂, t) = ∂xI
(
x− v(t− t0), y = 0, n̂, t0

)
e−(t−t0)/τs

+
1

τs

∫ t

t0

∮
f(n̂, n̂′)∂xI

(
x− v(t− t′), y = 0, n̂′, t′

)
e−(t−t′)/τsd2n̂′dt′. (23)

Inserting equations 22 and 23 into the radiative transfer equations 21 gives

∂I(x, y = 0, n̂, t)

∂t
+v∂xI(x, y = 0, n̂, t) = − 1

τs

(
I(x− v(t− t0), y = 0, n̂, t0)e

−(t−t0)/τs

+
1

τs

∫ t

t0

∮
f(n̂, n̂′)I(x− v(t− t′), y = 0, n̂′, t′)e−(t−t′)/τsd2n̂′dt′

)
+

1

τs

∮
f(n̂, n̂′)I

(
x, y = 0, n̂′, t

)
d2n̂′. (24)

We note that the first and second terms on the right-hand side of equation 24 correspond to the right-hand side of the integral
equation 20 times τ−1

s . Equation 24 then becomes

∂I(x, y = 0, n̂, t)

∂t
+ v∂xI(x, y = 0, n̂, t) = − 1

τs
I
(
x, y = 0, n̂, t

)
+

1

τs

∮
f(n̂, n̂′)I

(
x, y = 0, n̂′, t

)
d2n̂′, (25)
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which generalizes to the radiative transfer equations 3 since the orientation of the x-axis is arbitrary.


