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ABSTRACT

Signals cannot always be sampled at their full desired resolution. In this tu-
torial, we explore the benefits of randomly subsampling a signal’s frequency
spectrum. Whereas uniform subsampling would introduce structural artifacts
in the time series, random subsampling introduces a type of noise whose be-
havior we quantify. This analysis gives insight into the reasons why random
sampling is employed in more sophisticated processing techniques such as com-
pressive sensing. The signal processing codes and data used in this work can be
downloaded from https://mines.edu/∼mwakin/software.
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1 INTRODUCTION

Signals must be digitized if they are to be stored or processed with computers. Commonly, one does this by collecting

and storing samples of a function f(t) at discrete times tj . The resulting time series might be a recording of music,

a telecommunication signal, or the output from any type of continuous measurement. An example is shown by the

black line in Figure 1 which represents the air pressure recorded on a volcano. This time series consists of a set of

discrete measurements that are sampled with a time interval of 0.025s. As we discuss in Section 2, using the discrete

Fourier transform (DFT), one can alternatively represent such a time series in the frequency domain, i.e., as a sum

of sinusoids having various frequencies, amplitudes, and phases.

The default assumption in signal processing is that one has access to a full collection of N uniform samples in time,

or equivalently, a full collection of N frequency components (DFT coefficients). In practical applications, however,

it may be useful to violate this assumption in order to reduce the burden of data acquisition, data transmission,

or storage. A measurement system may only have access to certain time samples (or frequency components) of a

signal, or one may choose to discard certain time (or frequency) samples in order to store less data. When only

M < N samples are available in the time or frequency domain, we say that a signal is undersampled. One might

think that undersampling is best done by leaving out samples at regular intervals, but in this tutorial we give insight

into why random undersampling, where one undersamples with random intervals, in general is superior to regular

undersampling.

Random or irregular sampling has been exploited in a broad variety of applications. In seismic surveys there are

advantages to recording seismic wavefields at random space intervals rather than at regular intervals (Herrmann, 2010).

In order to make seismic surveys at sea more efficient, one often uses multiple seismic sources. Firing the different

seismic sources at irregular intervals, a process descriptively called popcorn shooting, produces clearer seismic images

than when the sources fire at regular intervals (Abma & Foster, 2020; Abma & Ross, 2013). In Magnetic Resonance

Imaging (MRI), one can accelerate the data acquisition process by collecting incomplete, irregular samples in the

frequency domain (Lustig et al., 2008). Other examples of random undersampling in the time or frequency domain

have arisen in the context of numerical integration (Caflisch, 1998), compressive sensing (Candès & Wakin, 2008;

Foucart & Rauhut, 2013), matched filtering (Eftekhari et al., 2013), and power spectrum estimation (Ariananda &

Leus, 2012).

The above examples vary widely in the mechanisms for data acquisition, the steps for processing the available
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Figure 1. Pressure recorded at Arenal after tapering and adding zeros at both ends (black). The pressure after periodic

subsampling in the frequency domain with a factor of 2 (red). The pressure after random subsampling in the frequency domain
with a factor of 2 (blue).

samples, and the specific theoretical justifications for random undersampling. In this article, we focus on the problem

of reconstructing a signal in the time domain using undersampled frequency components. (We merely omit the missing

components from the inverse DFT equation.) While simple, this framework gives a good platform for observing and

understanding the benefits of random undersampling compared to regular undersampling. As we discuss in Section 6,

the intuitions carry over to more sophisticated processing methods such as those used in compressive sensing.

We illustrate the benefits of random undersampling with an example of the air pressure recorded at Arenal, a

volcano in Costa Rica. This volcano has frequent explosions that occur at regular intervals in time. A short sequence

of the air pressure fluctuations caused by these explosions is shown by the black time series in Figure 1. This is part of

a longer pressure recording that was used by Snieder & Hagerty (2004) to retrieve the elastic response of the volcano

to a single explosion. For illustrative purposes we add 50s with zero air pressure at the beginning and end of the time

series.

We decompose the pressure signal into its frequency components via the DFT (see Section 2) and use two methods

to subsample the data in the frequency domain. The red time series in Figure 1 is obtained by throwing away every

other frequency component. This means that the data are subsampled periodically in the frequency domain by a

factor of 2, and only M = N/2 DFT coefficients are used to reconstruct the time series. Note that the red time series

does not resemble the original time series at all. Additional pressure spikes are present in the red time series that do

not appear in the original time series. For example, pressure spikes appear in the first and last 50s of the red time

series, where the original time series was equal to zero in these intervals. In contrast, the blue time series in Figure 1

is obtained by randomly selecting M = N/2 of the frequency components, while discarding the other N/2 frequency

components, and by taking the real part of the resulting time series. The pressure spikes in the blue time series thus

obtained agree well with the pressure spikes in the original time series. The only difference from the original time

series is that random noise is present. In summary, we see in this example that periodic subsampling in the frequency

domain leads to a structural distortion, while random subsampling in the frequency domain leads to the addition of

a type of incoherent random noise. We explain both of these phenomena in this article.

Our treatment thus involves topics such as frequency analysis, aliasing, and convolution which are commonly
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encountered in undergraduate courses on signal processing or engineering mathematics. Meanwhile, we also draw

from concepts in probability and statistics which are rarely discussed at the undergraduate level in the context of

frequency analysis, aliasing, and convolution. Section 2 of this article begins by discussing the DFT, its properties,

and its connection to convolution. In Section 3, we review the time-domain aliasing effects associated with periodic

subsampling of the DFT. In Section 4, we analyze the mean and variance of the signal estimate based on random

subsampling of the DFT. We assume the frequency-domain samples are drawn randomly without replacement. Sec-

tion 5 then extends our treatment to the case of random sampling with replacement. We conclude in Section 6 with

a broader view of related problems where the benefits of random subsampling may emerge.

2 THE DISCRETE FOURIER TRANSFORM AND ITS PROPERTIES

The discrete Fourier transform (DFT) allows a length-N discrete-time signal to be represented as a sum of N complex

exponentials (Oppenheim & Schafer, 2010). Letting fj , j = 0, 1, . . . , N − 1 represent the time domain samples and

Fn, n = 0, 1, . . . , N − 1 represent the signal’s DFT coefficients, we have

fj =
1

N

N−1∑
n=0

Fne
i2πjn/N , (1)

with

Fn =

N−1∑
j=0

fje
−i2πjn/N , (2)

where i =
√
−1 denotes the imaginary unit. We assume throughout this article that N is even. The signal represented

by the Fourier expansion is periodic; this can be seen by evaluating expression (1) for sample j +N . In that case

fj+N =
1

N

N−1∑
n=0

Fne
i2πjn/Nei2πNn/N =

1

N

N−1∑
n=0

Fne
i2πjn/N = fj , (3)

where we used that ei2πNn/N = ei2πn = 1 for any integer n, and where we used equation (1) again in the last identity.

This means that fj repeats itself after N samples: fj+N = fj .

In our discussion, we will make use of an elementary signal known as the delta function

ej :=

{
1, j = 0,

0, j = 1, 2, . . . , N − 1.
(4)

Relatedly, we introduce notation for the Kronecker delta as

δj,k :=

{
1, j = k,

0, j 6= k,
(5)

and using this notation, we note that ej = δj,0.

Exercise 1. Show that all of the DFT coefficients of the delta function are equal: En = 1 for n = 0, 1, . . . , N − 1.

Finally, we introduce the notion of circular convolution, which arises in the context of filtering discrete-time

signals. The circular convolution of two discrete-time signals fj and hj is given by

gj =

N−1∑
`=0

h`f(j−`)modN = h0fj + h1f(j−1)modN + · · ·+ hN−1f(j−N+1)modN . (6)

We denote this process as gj = (h∗f)j for short. The notation f(j)modN indicates that for a given value of j multiples

of N are added or subtracted from j so that the result lies in the interval 0 ≤ (j) modN ≤ N − 1. In words, circular

convolution creates multiple circularly shifted copies of the signal fj , weights each copy by one entry of hj , and adds

everything. Circular convolution has an important connection with the DFT: convolution in time corresponds to

multiplication in frequency. In particular, for the signal gj defined in (6),

Gn = FnHn for n = 0, 1, . . . , N − 1. (7)
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Exercise 2. Show that circular convolution with the delta function ej leaves a signal unchanged, i.e., that fj = (f∗e)j .
This can be proved either in the time domain using (6) or in the frequency domain using (7).

3 PERIODIC SUBSAMPLING IN THE FREQUENCY DOMAIN

Now that we have the basic tools of the DFT, we explain why the red time series in Figure 1 differs so much from

the original time series shown in black. The red time series is obtained by periodic subsampling of the frequency

components. In the example of Figure 1 the periodic subsampling left out every other frequency component. We

denote the resulting time series by f̃j . Leaving out every other frequency component in expression (1) gives

f̃j =
2

N

N/2−1∑
n=0

F2ne
i2πj(2n)/N . (8)

Note that the summation index n is replaced by 2n to ensure that only the frequency components F0, F2, . . . , FN−2

contribute. The factor of 2 out front is added to compensate for the fact that only half the frequency components are

accounted for in this sum.

The frequency components are still given by expression (2), hence

f̃j =
2

N

N/2−1∑
n=0

N−1∑
k=0

fke
−i2πk(2n)/Nei2πj(2n)/N =

2

N

N−1∑
k=0

fk

N/2−1∑
n=0

ei2π(j−k)n/(N/2) , (9)

where the second equality is obtained by interchanging the double sums and writing 2n/N in the exponents as

n/(N/2). Expression (9) relates the original time series fk to the subsampled time series f̃j . Noting that ei2π(j−k)n/(N/2) =

ei2π((j−k)modN)n/(N/2), with a change of variables l = j − k we can rewrite (9) as

f̃j =

N−1∑
`=0

f(j−`)modN

 2

N

N/2−1∑
n=0

ei2π`n/(N/2)

 . (10)

Comparing the expression in parentheses in (10) to the inverse DFT equation (1), we recognize this expression as

the length-N/2 (rather than length-N) inverse DFT of a signal whose DFT coefficients are all 1. From Exercise 1,

we know that such a signal corresponds to a delta function in the time domain, and from the periodicity discussed

in (3), we know that such a signal repeats periodically with period N/2. Therefore, we have

f̃j =

N−1∑
`=0

f(j−`)modN (δ`,0 + δ`,N/2). (11)

In the sum over `, the first delta function only gives a nonzero contribution when ` = 0, and the second delta function

only gives a nonzero contribution when ` = N/2, hence

f̃j = fj + f(j−N/2)modN . (12)

This equation states that the time series obtained by only taking every other frequency component into account is the

superposition of original time series and the time series shifted to the right by half the total time interval. (Because

all time shifts are modulo N , the parts of the function that are shifted out of the interval come back on the other

side.)

This behavior can be seen by comparing the red time series in Figure 1 with the original (black) time series.

The red time series is the sum of the black time series plus a version of this time series shifted to the right over half

the time interval. For example, the high amplitude peaks between 220s and 320s are shifted to 420s and 520s. These

times fall outside the time interval, which runs from 0s to 400s, and so the shifted high amplitude peaks show up in

the red time series between 20s and 120s.

The derivation in this section is standard, and we make two remarks here. (i) The phenomenon observed in (12)

is commonly known as aliasing of the signal fj in the time domain. Indeed, this form of aliasing arises any time

a signal is periodically subsampled in the frequency domain. When the roles of time and frequency are reversed,

aliasing occurs in the frequency domain when a signal is periodically subsampled in time (Oppenheim & Schafer,

2010). (ii) Comparing equation (11) with (6), we recognize f̃j as the circular convolution of fj with a sum of two delta

functions hj := δj,0 + δj,N/2. Indeed, we can interpret the process of zeroing out the spectrum of fj as multiplication

in the frequency domain by an alternating sequence of 0’s and 1’s (actually 0’s and 2’s due to our rescaling). Taking
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the inverse length-N DFT of this sequence of 0’s and 2’s, one obtains hj ; recall that multiplication in frequency

corresponds to circular convolution in time, and so (11) also follows from (7).

Exercise 3. Our analysis in this section can readily be generalized to the case when one subsamples not by a factor

of 2 but by an arbitrary positive integer η that divides N . In this case, show that the retrieved function f̃j is the

superposition of the original time series fj and copies of the time series that are shifted over by multiples of N/η.

We conclude from the theory in this section and the data example in Figure 1 that periodic subsampling in the

frequency domain leads to the superposition of the original time series and shifted versions of this time series. This

leads, in general, to severe distortions of the signal, which is undesirable if one wants the subsampled time series to

resemble the original time series.

4 STATISTICAL ANALYSIS OF RANDOM SUBSAMPLING IN THE FREQUENCY DOMAIN

The blue time series in Figure 1 suggests that random subsampling introduces a type of background noise on the

subsampled signal but leaves it otherwise intact. In this section we explain why this is the case. We consider the case

where the frequency components are randomly subsampled but no frequency component is used twice. This is called

subsampling without replacement. This type of subsampling is used in the example of figure 1. In Section 5 we relax

this constraint and consider the case where the frequencies are sampled independently.

4.1 The mean of the randomly subsampled time series

As shown in equation (1), the DFT allows a length-N discrete-time signal to be represented as a sum of N complex

exponentials with DFT coefficients indexed by n = 0, 1, . . . , N − 1. Let n1, n2, . . . , nM denote a random subset of

indices drawn without replacement from the set {0, 1, . . . , N − 1}. We consider using only these indices in the DFT

synthesis equation, yielding the subsampled signal

f̃j =
N

M
· 1

N

M∑
m=1

Fnme
i2πjnm/N =

1

M

M∑
m=1

Fnme
i2πjnm/N . (13)

The factor of N/M is introduced to compensate for the fact that only M out of N DFT coefficients are used in

the synthesis sum. Because (13) uses only M frequencies to synthesize f̃j , and because these frequencies are chosen

randomly, the effect of the subsampling should be analyzed statistically.

To gain some intuition for the effect of this subsampling, recall the delta function ej defined in (4). From Exercise

1, we know that this signal has DFT coefficients all equal to 1. The randomly subsampled version of the delta function

is thus given by

ẽj =
1

M

M∑
m=1

Enme
i2πjnm/N =

1

M

M∑
m=1

ei2πjnm/N , (14)

which is a sum of complex exponential signals with randomly chosen frequencies. For each time index j, ẽj is thus a

random variable. We can compute its expectation:

E(ẽj) = E

(
1

M

M∑
m=1

ei2πjnm/N

)
=

1

M

M∑
m=1

E(ei2πjnm/N ) , (15)

where the only random quantity inside the expectation is the random index nm. Although the random indices

n1, n2, . . . , nM are not independent (since repetitions are not allowed), we may assume they all have the same

marginal distribution, namely the uniform distribution over {0, 1, . . . , N − 1}. Therefore ei2πjnm/N takes the possible

values ei2πj0/N , ei2πj1/N , . . . , ei2πj(N−1)/N , each with probability 1/N . This is all that is required to compute the

expectation:

E
(
ei2πjnm/N

)
=

1

N

N−1∑
n=0

ei2πjn/N , (16)
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which merely equals ej thanks to (1) and Exercise 1. Inserting in to (15), we obtain

E (ẽj) =
1

M

M∑
m=1

E(ei2πjnm/N ) =
1

M

M∑
m=1

ej =
1

M
·M · ej = ej . (17)

The expectation value of the randomly subsampled time series ẽj is thus equal to the original time series ej . This

means that the random subsampling is unbiased—on average, random subsampling does not alter the time series.

Let us reflect on why there is no bias. The crux is expression (16) where the expectation value E
(
ei2πjnm/N

)
is

computed. Because the probability distribution of the random index nm is uniform, the expectation corresponds to

an unweighted sum over all frequency components, which yields the original function ej .

To understand the effect of random subsampling on fj , consider the following exercise which establishes a very

handy fact.

Exercise 4. Show that f̃j = (f ∗ ẽ)j ; that is, random subsampling of a time series fj is equivalent to convolution

with a randomly subsampled delta function. Hint: Recall Exercise 2 and use the fact that circular convolution in time

corresponds to multiplication in the frequency domain.

With the result of Exercise 4 in hand, it follows that

E(f̃j) = E((f ∗ ẽ)j) = (f ∗ E(ẽ))j = (f ∗ e)j = fj , (18)

where we have used (17) and again used the identity from Exercise 2. The fact that subsampling ej is unbiased thus

means that subsampling any time series fj is unbiased.

A comparison of the blue time series in Figure 1, obtained from random subsampling in the frequency domain

by a factor of 2, with the original time series shows that the pressure spikes in the original time series are indeed

maintained by the random subsampling. We show in expression (22) below that random subsampling does not change

the value of a delta function, hence spikes are preserved by random subsampling. However, as the blue time series

shows, the random subsampling also introduces background noise. We show in expression (23) below that this noise

is uncorrelated and derive the noise level in equation (24).

4.2 The covariance of the randomly subsampled delta function

In order to understand the introduction of the background noise due to random subsampling it does not suffice

to compute the mean of the subsampled function, because the mean is equal to the original function. Rather, to

quantify the noise we must also consider the variability of the subsampled time series. Here, we do this by evaluating

the covariance of the randomly subsampled delta function ẽj . This covariance is defined as

Cj,k = E ((ẽj − E(ẽj)) (ẽk − E(ẽk))∗) . (19)

In this expression the asterisk denotes complex conjugation. The complex conjugation is introduced because ẽj is, in

general, complex. For j = k the covariance denotes the variance (squared standard deviation) of ẽj , and the complex

conjugation ensures that the variance is real and nonnegative. The derivation of this covariance for the random

subsampling is somewhat lengthy, and we show in Section B of the appendix that

Cj,k =
(N −M)

(N − 1)

1

M
(δj,k − δj,0δk,0) , (20)

where N denotes the number of samples in the original time series and M the number of frequency components that

are taken into account in the subsampling.

When confronted with a seemingly complicated expression such as (20), it is useful to first consider limiting

cases where one knows the answer. For example, when M = N , the number of subsampled frequencies equals the

number of original frequencies. Since we assumed that all sampled frequency components are distinct, this means

that the subsampled frequencies cover all of the original frequencies; that is, there is no subsampling at all, and the

subsampled function must actually be equal to the original function. Consequently, there should be no variability in

the subsampled signal, and so the covariance should vanish. And indeed, when M = N , the covariance in (20) equals

zero.

Next we consider the case j = k = 0, so that Cj,k = C0,0 represents the variance of ẽ0. In this case δj,k = δ0,0 = 1
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Figure 2. The real part (blue) and imaginary part (red) of a delta function that is randomly subsampled in frequency without

replacement by a factor 3. There are N = 600 points in the time series.

and δj,0 = δk,0 = δ0,0 = 1, so equation (20) gives

C0,0 = 0 . (21)

Does the variance of ẽ0 truly equal zero? According to equation (14),

ẽ0 =
1

M

M∑
m=1

ei2π0nm/N =
1

M

M∑
m=1

e0 =
1

M

M∑
m=1

1 =
1

M
·M = 1. (22)

Hence the value of ẽ0 does not depend on the random sampling of the frequencies, and thus the variance of ẽ0 vanishes,

as predicted by expression (21).

As an illustration, we show in Figure 2 an example of a randomly subsampled delta function ẽj . In this example

the time series consist of N = 600 samples, and one third (M = 200) of the frequencies are used in the random

subsampling. Since the subsampled function is complex, both the real and imaginary parts are shown in Figure 2.

Although it is not visible to the eye, the real part of the subsampled function for j = 0 is exactly equal to 1 and the

imaginary part vanishes. This confirms that the variance at the time of the spike at j = 0 indeed vanishes.

Next we consider Cj,k when j 6= k. When j 6= k, δj,k = 0 and δj,0δk,0 = 0 as well because δj,0δk,0 is only nonzero

when both j and k equal zero, but this cannot be satisfied when j 6= k. Inserting into expression (20), it follows that

Cj,k = 0 for j 6= k . (23)

Indeed, the covariance for different values of the subsampled time series vanishes, which means that these different

sampling points are uncorrelated. The example of the randomly subsampled delta function in Figure 2 shows that

away from the spike at j = 0, the variations behave like random noise.

The amplitude of the noise that is generated by the random subsampling follows by considering the covariance (20)

for k = j 6= 0. The covariance then reduces to the variance σ2
j , which is given by

σ2
j = Cj,j =

(N −M)

(N − 1)

1

M
for j 6= 0 . (24)

We restrict ourselves to the case j 6= 0 because according expression (21), the variance vanishes for j = 0. According

to expression (24), the variance σ2
j does not depend on j; this can also be seen in Figure 2 where the noise level is

roughly constant across time. Taking the derivative of expression (24) with respect to M gives

dσ2
j

dM
= − N

M2(N − 1)
< 0 . (25)
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This means that the variance decreases when M , the number of frequency component that are taken into account,

increases.

The standard deviation of the noise follows by taking the square root of expression (24) and is given by

σno replacement
j =

√
N −M
N − 1

1√
M

. (26)

The first square root involves the ratio of the number of frequency components that are not taken into account

(N −M) relative to the total number of frequency components reduced by one (N − 1). The second square root

involves the number of frequency components that are taken into account. The 1/
√
M dependence in the standard

deviation is the same as for the average of M independent random numbers; for example, see equation (21.41) of

Snieder & van Wijk (2015).

The standard deviation of the fluctuations in Figure 2 can be estimated by evaluating σ2
estimated =

∑N−1
j=1 |ẽj |

2/(N−
1), where we left out the point j = 0 because it has zero variance (expression (20)). The estimated standard deviation

is given by σestimated = 0.057. In generating this figure, N = 600 and M = 200, and so equation (26) predicts for

these values that σj = 0.057, which matches the empirical value of the standard deviation.

4.3 Random subsampling for a general time series

In the previous subsection we analyzed the imprint of random subsampling without replacement of the time series

ej . In this subsection, we analyze the case where random subsampling without replacement is applied to a general

time series fj instead of the delta function ej . For more general signals fj , the behavior of the subsampled signal

f̃j defined in (13) can be derived from the treatment of the subsampled delta function. Recall that f̃j = (f ∗ ẽ)j as

derived in Exercise 4. The subsampled delta function ẽj is thus convolved with the signal fj to yield the subsampled

signal estimate f̃j .

As an example, we consider a Ricker wavelet which is defined as a the second derivative of a Gaussian

fj =
(
1− 2(tj/τ)2

)
exp

(
−(tj/τ)2

)
with τ = 10 s , (27)

where tj maps the sample index j to a time interval symmetric about 0. This time series is shown by the black line

in Figure 3.

We showed in expression (18) that the subsampled time series is unbiased, so we only need to investigate the

covariance of the subsampling noise. The real and imaginary parts of the Ricker wavelet that is randomly subsampled

by a factor of 3 are shown in Figure 3 by blue and red lines, respectively. Note that, as in Figure 2, the noise

introduced by the subsampling is constant in time. The level of the subsampling noise is, however, larger than is it

for the subsampled delta function, even though the number of samples and the subsampling used are identical.

We show in Section C of the appendix that the covariance of the subsampled time series f̃j is given by

C
(f)
j,k =

(
N −M
N − 1

1

M

)({N−1∑
p=0

fj−pf
∗
k−p

}
− fjf∗k

)
, (28)

where it is understood that the subscripts of f are evaluated modN , that is, integer multiples of N are added or

subtracted so that the index lies in the interval 0, 1, . . . , N − 1. According to expression (23) the subsampling noise

for a delta function is uncorrelated for different samples. This is, in general, not the case for an arbitrary time series;

expression (28) does not predict that the covariance between different samples in the subsampled time series vanishes.

The reason is that a general time series fj does not contain all frequencies, and because of this band-limitation, the

artifacts caused by subsampling are band-limited as well. This can be seen in Figure 3 where the subsampling noise

has the same frequency content as the Ricker wavelet.

The variance σ
(f)2
jj of the subsampled wavelet follows by setting k = j. In that case the sum in equation (28) is

given by
∑
p fj−pf

∗
j−p =

∑
p |fj−p|

2. Since the summation index p ranges from 0 to N − 1, it holds that
∑
p |fj−p|

2 =∑
p |fp|

2. Therefore, the variance is given by

σ
(f)2
jj =

(
N −M
N − 1

1

M

)({N−1∑
p=0

|fp|2
}
− |fj |2

)
. (29)

Exercise 5. Verify that when fj is given by a delta function (i.e., fj = ej), this variance equals the variance derived

in Section 4.2 in the sense that the variance vanishes for j = 0 and that it is given by equation (24) for j 6= 0.
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Figure 3. A Ricker wavelet with τ = 10 (black), and the real part (blue) and imaginary part (red) of the Ricker wavelet that

is subsampled in frequency without replacement by a factor of 3. There are N = 600 points in the time series with sampling
interval dt=1 s.

The sum
∑
p |fp|

2 gives the total energy in the time series. For the delta function fj = ej , the energy is contained

in the sample j = 0, but for a time series with a longer duration the total energy is much larger than the energy

|fj |2 of any single sample, hence we ignore the contribution |fj |2 in the expression above. In this approximation the

standard deviation of the undersampling noise is given by

σ
(f)
j ≈

√
N −M
N − 1

1√
M

√
E , (30)

where the total energy in the time series is given by

E =

N−1∑
p=0

|fp|2 . (31)

Note that the right hand side of expression (30) does not depend on j, this means that the subsampling noise is

spread out roughly homogeneously across the samples. This behavior is confirmed by the example in Figure 3 and

by the subsampled pressure shown by the blue line in Figure 1 where the subsampling noise level is for practical

purposes constant in time.

For the Ricker wavelet in expression (27), the energy is given by E = 9.3686, and for the number of samples and

subsamples used (N = 600 and M = 200), this leads to a standard deviation of the subsampling noise σ(f) = 0.18.

The standard deviation computed from the noise in Figure 3 is equal to σ ≈ 0.15, which agrees fairly well with the

standard deviation predicted by equation (30).

5 RANDOM SUBSAMPLING WITH REPLACEMENT

We next consider the case where the random frequency-domain indices n1, n2, . . . , nM are drawn independently (with

replacement) from the set {0, 1, . . . , N − 1}. In this case, a frequency may be sampled more than once; we refer to

this as subsampling with replacement. We again consider the subsampled signal defined in (13), but we note that the

summation may include duplicate terms. Despite the possible duplications, the mean of the subsampled time series

is again given by (18); that is, random subsampling with replacement is again unbiased.

What does change in the case of subsampling with replacement is the covariance analysis; indeed it is easier than
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original undersampled

Figure 4. Spine image before (left) and after (right) random undersampling by a factor of 3 in the wavenumber domain.

in the case of subsampling without replacement due to the independence of the sample indices. We show in Section D

of the appendix that when the indices n1, n2, . . . , nM are drawn independently, the covariance of the subsampled

delta function ẽj is given by

Cj,k =
1

M
(δj,k − δj,0δk,0) . (32)

This expression contains the same combination of delta functions as expression (20) for the covariance where the

chosen frequencies are all different. The only difference is that the factor that multiplies the deltas is different. This

means that nearly all of the conclusions listed in Section 4.2 also apply to the case where the frequencies are chosen

independently.

Exercise 6. One conclusion that differs from that in Section 4.2 is that when M = N (the number of random indices

equals the number of original frequency coefficients), the covariance Cj,k in (32) is no longer zero. Why?

The resulting standard deviation of the noise is given by

σwith replacement
j =

1√
M

. (33)

A comparison of expressions (26) and (33) for the standard deviation of the noise introduced by subsampling without

and with replacement shows that

σno replacement
j =

√
N −M
N − 1

σwith replacement
j < σwith replacement

j , (34)

when M > 1. When frequencies are drawn independently, the amplitude of the noise introduced by the subsampling

thus increases compared to the case of random sampling without replacement. The reason for this is that when

frequencies are sampled only once, the noise is caused by the absence of frequencies that are not sampled. But when

the frequencies are chosen independently, not only are some frequencies missing in the subsampled time series, but

also some frequencies are sampled more than once. This introduces an additional source of error that increases the

noise level of the subsampled time series.

The arguments used in Section 4.3 for a general time series that is subsampled without replacement apply equally

well when subsampling with replacement is used. The only difference is that in expressions (28) through (30) the

factor (N −M)/(N − 1) is replaced by 1.
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6 CONCLUSION

This tutorial gives insight into why random undersampling, where one undersamples with random intervals, in general

is superior to regular undersampling. Whereas regular undersampling in the frequency domain leads to aliasing in the

time domain where multiple signal copies periodically overlap with one another, random sampling in the frequency

domain tends to introduce noise in the time domain. Increasing the number of frequency samples merely decreases

the variance of this noise and allows more and more signal features to stand out above this noise. Alternatively, it

is instructive to view the random undersampling process as the convolution of the original signal with a randomly

undersampled (thus noisy) delta function.

It is worth noting that, given an undersampled set of a signal’s DFT coefficients, the zero-padded inverse DFT (13)

is not the only way that one might attempt to estimate the original signal. Indeed, in the field of compressive sensing,

the goal is actually to recover a signal’s missing coefficients by exploiting the assumption that the signal is sparse

in a complementary domain (Candès & Wakin, 2008; Barranca et al., 2016; Khosravy et al., 2020). In the context

of our article, when fj is sparse (containing few spikes) in the time domain, it is possible to recover its missing

DFT coefficients. We omit the details here but note that the behavior of the randomly undersampled delta function,

ẽj , plays an important role in compressive sensing theory. In particular, its maximum value away from the origin,

maxj 6=0 |ẽj |, is known as the coherence (Candès & Wakin, 2008; Foucart & Rauhut, 2013) of the sampling pattern.

In general, lower coherence is better.

The reader may have noted that although we have demonstrated random subsampling exclusively using real-

valued time series fj , the resulting time series f̃j have been complex-valued. For real-valued signals, one could modify

the random subsampling procedure in the frequency domain to exclusively produce real-valued estimates, for example

by drawing the coefficients in complex-conjugate pairs. Due to complex-conjugate symmetry in the DFT coefficients

of a real-valued signal (Oppenheim & Schafer, 2010), once a coefficient Fn is known, its companion FN−n = F ∗n is

also known; this effectively halves the number of frequency samples required to characterize a real signal, which is

beneficial for data compression. However, we also note that merely taking the real part of the estimator considered

in this paper, Re(f̃j), is unbiased. Moreover, its variance is bounded by that of f̃j : Var(Re(f̃j)) ≤ Var(f̃j). Indeed,

Figure 1 shows only the real part of the complex-valued estimate f̃j .

The conclusions in this paper carry over naturally if one exchanges the roles of time and frequency, that is, if one

samples a signal randomly in time and attempts to estimate its frequency spectrum from the partial time samples.

The time (frequency) domain can naturally be replaced with the space (wavenumber) domain for problems involving

spatial-domain signals rather than time series. More sophisticated analysis appears in contexts such as power spectrum

estimation (Ariananda & Leus, 2012), where one assumes a stochastic model for the randomly observed signal.

Finally, the lessons of this article also carry over to multidimensional data. In Figure 4, we show an image of

a spine before and after random undersampling without replacement by a factor of 3 in the two-dimensional DFT

domain. (For the image with N = 256 × 256 = 65536 pixels, a total of M = 21845 sampling indices were drawn

uniformly from among all two-dimensional pairs (m,n) in the wavenumber domain; the real part of the estimated

image is displayed.) Although artifacts are again introduced, the prominent features are still visible. For a related

discussion of the multidimensional case, we refer the reader to Naghizadeh & Sacchi (2010).
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APPENDIX A: THE COVARIANCE OF THE RANDOMLY SUBSAMPLED DELTA FUNCTION

Here we derive expressions for the covariance of a randomly subsampled delta function. The original delta function

is given by

ej =
1

N

N−1∑
n=0

ei2πjn/N = δj,0 . (A1)

According to expression (14) of the main text, the randomly subsampled delta function is given by

ẽj =
1

M

M∑
m=1

ei2πjnm/N , (A2)

where n1, n2, . . . , nM denote a random subset of indices drawn without replacement from the set {0, 1, . . . , N − 1}.
The covariance of the randomly sampled delta function ẽj is given by:

Cj,k = E ((ẽj − E(ẽj)) (ẽk − E(ẽk))∗) . (A3)

In Sections B and C, we consider the case where distinct frequency components are used, i.e., random sampling

without replacement. In Section D, we consider the case of random frequency sampling with replacement. In this

analysis we will use the fact that the randomly sampled delta function is unbiased, that is, as described in equation

(17) of the main text,

E (ẽj) = ej , (A4)

so that the covariance (A3) is equal to

Cj,k = E ((ẽj − ej) (ẽk − ek)∗) . (A5)

The expectation value is not a random variable, hence taking the expectation value again does not change the value:

E(E(ẽj)) = E(ẽj). Using this property and expanding the product in expression (A5) gives

Cj,k = E (ẽj ẽ
∗
k)− E(ẽj)E(ẽ∗k) . (A6)

Using expression (A4) gives

Cj,k = E (ẽj ẽ
∗
k)− ejek , (A7)

where we used that according to (A1), ek is real, hence e∗k = ek.
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APPENDIX B: THE COVARIANCE FOR RANDOM SAMPLING WITHOUT REPLACEMENT

To compute the covariance we need to specify the joint probability of nm and nm′ . In the randomly sampled data

only M frequencies are chosen out of the total of N possible frequencies. In this section we consider the case where

these no frequency is used twice, hence

nm 6= nm′ for m 6= m′ . (B1)

In the following we need the joint probability distribution of two random indices nm and nm′ . According to (B1),

for any α ∈ {0, 1, . . . , N − 1}, the joint probability that nm = nm′ = α is zero. Meanwhile, there are N(N − 1) pairs

of nonequal indices drawn from the set {0, 1, . . . , N − 1}, and each pair is equally likely. Thus, the joint probability

distribution of (nm, nm′) is uniform over these pairs; that is, each nonequal pair occurs with probability 1/N(N − 1).

In summary, for m 6= m′,

Pr(nm = α, nm′ = β) =

{
0, α = β,

1
N(N−1)

, α 6= β.
(B2)

To compute the covariance in expression (A7) we need to evaluate E (ẽj ẽ
∗
k). Using equation (A2) this expectation

value is given by

E (ẽj ẽ
∗
k) =

1

M2

M∑
m=1

M∑
m′=1

E
(
ei2πjnm/Ne−i2πknm′/N

)
. (B3)

The double sum can be decomposed into terms m = m′ and m 6= m′:
∑
m,m′ =

∑
m=m′ +

∑
m 6=m′ , hence

E (ẽj ẽ
∗
k) =

1

M2

M∑
m=1

E
(
ei2π(j−k)nm/N

)
+

1

M2

∑
m 6=m′

E
(
ei2πjnm/Ne−i2πknm′/N

)
. (B4)

For the first term in the right hand side we use expression (17) of the main text and equation (A1) of the appendix

to give

E
(
ei2π(j−k)nm/N

)
= δj−k,0 = δj,k . (B5)

This expectation value does not depend on m, hence the sum over m in the first term in the right hand side of

equation (B4) amounts to a multiplication with M , hence

M∑
m=1

E
(
ei2π(j−k)nm/N

)
= Mδj,k . (B6)

For the second term in the right hand side of equation (B4) we compute the expectation using the joint probability

distribution of nm and nm′ given in (B2): when m 6= m′,

E
(
ei2πjnm/Ne−i2πknm′/N

)
=
∑
α6=β

ei2πjα/Ne−i2πkβ/N · Pr(nm = α, nm′ = β)

=
1

N(N − 1)

∑
α6=β

ei2πjα/Ne−i2πkβ/N . (B7)

If all values α, β were included in the sum, we could factorize the sum and write

∑
α,β

ei2πjα/Ne−i2πkβ/N =

(
N−1∑
α=0

ei2πjα/N
)N−1∑

β=0

ei2πkβ/N

∗ = N2δj,0δk,0 , (B8)

where expression (A1) is used in the last identity. In order to rewrite the double sum in equation (B7) in the form of

equation (B8) we use that
∑
α 6=β =

∑
α,β −

∑
α=β , so that expression (B7) can be written as

E
(
ei2πjnm/Ne−i2πknm′/N

)
=

1

N(N − 1)

∑
α,β

ei2πjα/Ne−i2πkβ/N − 1

N(N − 1)

N−1∑
α=0

ei2π(j−k)α/N . (B9)

The double sum is given by equation (B8), while according to expression (A1) the single sum is equal to Nδj−k,0 =

Nδj,k, so that

E
(
ei2πjnm/Ne−i2πknm′/N

)
=

N

N − 1
δj,0δk,0 −

1

N − 1
δj,k . (B10)
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This expression is independent of m and m′, so that the double sum
∑
m 6=m′ in equation (B4) corresponds to a

multiplication with M(M − 1), hence∑
m 6=m′

E
(
ei2πjnm/Ne−i2πknm′/N

)
= M(M − 1)

(
N

N − 1
δj,0δk,0 −

1

N − 1
δj,k

)
. (B11)

Inserting expressions (B6) and (B11) into equation (B4) gives

E (ẽj ẽ
∗
k) =

N −M
M(N − 1)

δj,k +
N(M − 1)

M(N − 1)
δj,0δk,0 . (B12)

Using this in equation (A7), and using expression (A1) for ej and ek, gives, after a rearrangement of terms

Cj,k =
(N −M)

(N − 1)

1

M
(δj,k − δj,0δk,0) , (B13)

APPENDIX C: THE COVARIANCE FOR RANDOM SAMPLING WITHOUT REPLACEMENT

FOR A GENERAL TIME SERIES

In this section we derive the covariance matrix for a subsampled time series from the covariance of a subsampled

delta function. The covariance of f̃ is defined as

C
(f)
j,k = E

((
f̃j − E(f̃j)

)(
f̃k − E(f̃k)

)∗)
(C1)

We first use that the time series fj does not depend on the subsampling, but the subsampled delta function ẽj does

depend on the subsampling. This means that using expression (18) of the main text, the subsampled time series f̃j
satisfies

E
(
f̃j f̃
∗
k

)
= E

(∑
p,q

ẽpfj−pẽ
∗
qf
∗
k−q

)
=
∑
p,q

fj−pf
∗
k−qE

(
ẽpẽ
∗
q

)
, (C2)

where it is understood in this section that the convolutions are cyclical, i.e., integer multiples of N are added

or subtracted to the subscripts of f so that the index lies in the interval 0, 1, . . . , N − 1. The second identity in

equation (C2) is due to the fact that fj is not a statistical variable, but ẽj is, hence the original time series fj is just

a multiplicative constant as far as the expectation value is concerned.

The expectation value of the expectation value satisfies E(E(f̃j)) = E(f̃j), hence the covariance C
(f)
j,k of the

subsampled time series satisfies C
(f)
j,k = E(f̃j f̃

∗
k )−E(f̃j)E(f̃∗k ). Using expression (C2) and using that f̃ is the convolution

of fj with the subsampled delta function ẽj , so that f̃j =
∑
p ẽpfj−p, and it follows that

C
(f)
j,k =

∑
p,q

fj−pf
∗
k−q

{
E(ẽpẽ

∗
q)− E(ẽp)E(ẽ∗q))

}
. (C3)

Following expression (A6) the quantity between curly brackets is the covariance Cp,q is the subsampled delta function,

hence

C
(f)
j,k =

∑
p,q

fj−pf
∗
k−qCp,q . (C4)

The covariance of any subsampled time series thus follows from the covariance of the subsampled delta function. The

covariance of the delta function Cp,q is given by equation (20) of the main text. The first delta functions in expression

(20) of the main text gives a contribution
∑
p,q fj−pf

∗
k−qδp,q =

∑
p fj−pf

∗
k−p. The second group of delta functions in

equation (20) of the main text gives a contribution
∑
p,q fj−pf

∗
k−qδp,qδp,0δq,0 = fjf

∗
k . Using this in (C4) gives

C
(f)
j,k =

(
N −M
N − 1

1

M

)({N−1∑
p=0

fj−pf
∗
k−p

}
− fjf∗k

)
. (C5)

APPENDIX D: THE COVARIANCE FOR RANDOM SAMPLING WITH REPLACEMENT

We next consider the case where the M indices n1, n2, . . . , nM are chosen independently from the uniform distribution

on {0, 1, . . . , N − 1}. Consequently, a frequency may be selected more than once. In this case the treatment of
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Sections A and B is unchanged up to equation (B6), with the exception that the joint probability distribution of

(nm, nm′) (assuming m 6= m′) is given by

Pr(nm = α, nm′ = β) = Pr(nm = α) Pr(nm′ = β) =
1

N2
(D1)

for any α, β ∈ {0, 1, . . . , N − 1}.
The fact that the indices nm are chosen independently simplifies the derivation. Indeed, since the expectation of

a product of independent random variables equals the product of expectations (Hogg & Craig, 1978), the expectation

in the second term in the right hand side of equation (B4) simplifies to

E
(
ei2πjnm/Ne−i2πknm′/N

)
= E

(
ei2πjnm/N

)
E
(
e−i2πknm′/N

)
= δj,0δk,0. (D2)

This expectation value does not depend on m and m′. Since there are M(M − 1) terms in the sum
∑
m 6=m′ the

summation over m and m′ leads to a multiplication with M(M − 1), hence∑
m 6=m′

E
(
ei2πjnm/Ne−i2πknm′/N

)
= M(M − 1)δj,0δk,0 . (D3)

Inserting expressions (B6) and (D3) into equation (B4) gives

E (ẽj ẽ
∗
k) =

1

M
δj,k +

M − 1

M
δj,0δk,0 . (D4)

Using this in the covariance (A7) and using equation (A1) gives

Cj,k =
1

M
(δj,k − δj,0δk,0) . (D5)


