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ABSTRACT

Wavefield migration and tomography are considered to be state-of-the-art methodologies

used for subsurface geological characterization. Seismic tomography produces accurate ve-

locity models that commonly serve as input into seismic migration algorithms that produce

high-quality passive-source (e.g., microseismic) images or structural images of geological in-

terfaces constructed using controlled-source energy (e.g., vibroseis truck or dynamite). Most

existing wavefield migration and tomography techniques employed in the oil and gas indus-

try are well-developed under the acoustic assumption. One of the main shortcomings of this

assumption is that conventional acoustic imaging algorithms generally use single-component

P-wave data and thus do not account for multicomponent elastic (P- and S-mode) data that

can provide additional subsurface information such as fracture distributions and elastic prop-

erties. To account for more accurate wave physics in passive and active seismic scenarios, I

propose a suite of novel full-wavefield methods for imaging and multiparameter (i.e., P- and

S-wave) model estimation in elastic media.

Passive-style image-domain elastic tomography operates with multicomponent P- and S-

wave first-arrival waveforms of a microseismic event and optimizes the background velocity

model by improving the quality of source images constructed by a procedure called time-

reverse imaging (TRI). To formulate a robust image-domain inversion framework, I develop

a 3D extended imaging condition for surface-recorded microseismic data based on the cor-

relation of individual P- and S-wavefield energy as well as the energy norm. The proposed

PS energy imaging condition not only effectively locates microseismic events for complex

isotropic/anisotropic models but also provides useful information about P- and S-wave ve-

locity model as well as anisotropy parameter [ε, δ, γ] accuracy.

Based on the kinetic energy term of the PS energy imaging condition, I propose an image-

domain elastic wavefield tomography framework to build plausible P- and S-wave velocity
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models that improve the quality of microseismic event images. I present synthetic numer-

ical experiments to demonstrate that the estimated model parameters result in enhanced

source images, which greatly reduce event mispositioning errors. Finally, I apply the devel-

oped image-domain elastic inversion method on an active-source distributed acoustic sensing

3D vertical seismic profiling data set acquired in the North Slope of Alaska to investigate

potential methane gas hydrate reservoirs. I exploit source-receiver reciprocity to create an

acquisition configuration that resembles passive-seismic surface monitoring scenarios. I first

validate the accuracy of the inverted elastic velocity models using a TRI-based source lo-

cation analysis. Next, I construct numerous 3D structural images of the area of interest

through elastic reverse time migration (RTM). The elastic RTM results exhibit coherent

reflectivity associated with a complex near-surface ice-bearing permafrost zone, as well as

two gas hydrate reservoirs that satisfactorily match the existing log data in well-ties due to

the improved velocity model estimates.
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CHAPTER 1

INTRODUCTION

Exploration seismology deals with physical observations regarding the interior of the

Earth’s crust to search for economic deposits of, e.g., hydrocarbons or minerals. To serve

this purpose, seismic imaging methods commonly are used to investigate variations and dis-

continuities in the elastic properties of the subsurface (e.g., reflectivity and seismic wave

speed). To infer such material properties, one can use seismic waves generated with active

(e.g., vibroseis and dynamite) or passive (e.g., earthquakes) sources depending on the type

of project. For the latter category, various unconventional subsurface projects, such as hy-

draulic fracturing, enhanced oil/gas recovery, CO2 sequestration, and wastewater disposal,

may include high-pressure fluid injection activities that can induce stress changes in geologic

structures (Maxwell and Urbancic, 2001). As a result of such activities, (micro-) earthquakes

or so-called microseismic events (usually Mw � 1) may occur, which pose potential project

risks and thus need to be mitigated for environmental safety purposes (Maxwell, 2014; Wein-

garten et al., 2015). Monitoring the spatial and temporal distribution of induced seismicity

is not only crucial for understanding how the geologic formations respond to fluid injection

(e.g., fracture distribution) and/or optimizing the production, but also critical for hazard

assessment and risk mitigation (Dziewonski et al., 1981).

In conventional passive monitoring of potential fluid-induced seismicity, a group of seis-

mometers is deployed in boreholes (Warpinski et al., 1998) and/or at the surface (Duncan and

Eisner, 2010) to measure microseismic events as a function of ground motion. Whereas bore-

hole monitoring has the advantage of recording events closer to the source points with higher

signal-to-noise ratio (S/N), it requires expensive drilling operations. Surface monitoring typ-

ically provides better receiver coverage than borehole scenarios. However, surface-recorded

microseismic data exhibit lower S/N due to anthropogenic noise generated at the surface and
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increased distance from the event location. Surface monitoring costs, though, are usually

more economic relative to borehole acquisitions.

A key challenge to passive monitoring experiments is the substantial ambiguity with re-

gard to the event location and origin time. The limited control over such event properties

can directly affect the success of monitoring programs (Maxwell, 2014). There are several

methods developed to estimate event locations. Traditional earthquake detection methods

require often subjective picking of first arrivals, which may be a difficult task especially for

microseismic data exhibiting low S/N that generally lead to large event location uncertainty.

Therefore, Kirchhoff-based and wave-equation seismic migration approaches are now com-

monly used to infer the location of microseismic events because these methods do not require

arrival-time picking and are typically less sensitive to low-quality data (Artman et al., 2010;

Kao and Shan, 2004). Time-reverse imaging (TRI) is a migration procedure that effectively

maps the recorded microseismic data to a source image that can be used to infer the event lo-

cation. TRI typically involves propagating microseismic waveforms in reverse time using an

adjoint wave equation (McMechan, 1982) and evaluating an imaging condition (Claerbout,

1971) to ideally produce a well-focused event image as a function of space. The success of

TRI-based approaches, though, is mainly dependent on the accuracy of the velocity model

(Gajewski and Tessmer, 2005). Thus, building reliable velocity models with passive seismic

data remains a highly challenging problem particularly for complex geologic settings.

A number of different approaches including traveltime tomography (TTT) and full wave-

form inversion (FWI) have been developed to tackle the passive velocity model building

problem (Grechka and Yaskevich, 2014; Sun et al., 2016); however, in the case of highly

noisy data (e.g., S/N < 1) neither method may perform satisfactorily. This is because TTT

deals with often subjectively picked arrivals that are contaminated by noise (Rawlinson

and Sambridge, 2003) while FWI tends to fit forward-modeled data to noisy observations

(Tarantola, 1984), both of which can lead to inaccurate velocity inversion results. There-

fore, image-domain tomographic model building methods such as migration velocity analysis
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(MVA) may be preferred in such rough scenarios as they are formulated directly based on

stacked image metrics (Shen and Symes, 2008; Symes and Carazzone, 1991).

Existing passive seismic imaging and velocity model building techniques are well-developed

under the acoustic-media assumption (i.e., the solid rock units are treated like fluids meaning

that only compressional (P) waves exist); however, one can also exploit shear (S) waves by

accounting for more realistic physical elastic phenomena (Shabelansky et al., 2015; Witten

and Shragge, 2017a). An elastic parameterization can allow for more accurate subsurface

characterization because S waves contain complementary material property and structural

information. Moreover, given that most unconventional projects occur in massive anisotropic

shale formations (Vernik and Nur, 1992), accurately handling anisotropy (i.e., directionally

dependent wave propagation) in wave propagation likely yields solutions that are physically

more plausible compared to simplistic isotropic elasticity assumptions (Li et al., 2016).

Apart from surface microseismic monitoring investigations, there has recently been a

growing interest in downhole acquisition using active-source vertical seismic profiling (VSP)

technology coupled with distributed acoustic sensing (DAS) optical fibers installed in wells to

monitor numerous seismic activities such as CO2 sequestration and unconventional produc-

tion (Mateeva et al., 2013; Mestayer et al., 2011). One of the main advantages of DAS VSP

data sets is that they can provide complementary information about near-well structures

because these data commonly contain higher-frequency information due to shorter travel

paths and decreased seismic attenuation relative to conventional surface geophone data. To

fully benefit from high-quality active-source DAS VSP data, one can use full-wavefield imag-

ing algorithms such as elastic reverse time migration (RTM) that offer a robust approach

for imaging subsurface geologic structure. However, similar to wavefield-based microseismic

imaging studies, constructing accurate velocity models is essential to the success of such 3D

VSP imaging techniques (Egorov et al., 2018b; Li et al., 2015).

Another similarity between the active-source VSP acquisition and the aforementioned

passive surface-monitoring scenarios is that the sources and receivers are not located on the
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same surface, which opens up the possibility of using similar approaches for imaging and

inversion problems. For example, Figure 1.1 depicts two typical acquisition configurations

for passive surface monitoring and active-source DAS 3D VSP surveying. By exploiting the

principle of reciprocity, one can exchange the source and receiver locations in an active-source

DAS 3D VSP scenario to create an acquisition design similar to passive-seismic surface mon-

itoring configurations. Such a reciprocal adjustment can enable one to apply passive-style

imaging and inversion methods on active-source DAS 3D VSP data sets. Furthermore, DAS

3D VSP data acquired on land exhibit highly elastic behaviour, which generates complemen-

tary information about subsurface properties for reservoir characterization (e.g., methane gas

hydrates).
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Figure 1.1 Acquisition scenarios for (a) passive surface monitoring and (b) active-source
DAS VSP surveying. Note that one can exploit source-receiver reciprocity to turn the
active-source VSP acquisition in (b) into the passive-style surface acquisition in (a).

The main goal of this thesis is to develop an image-domain elastic wavefield tomography

framework designed to reconstruct accurate P- and S-wave velocity models that improve the

quality of source locations from surface-recorded microseismic and active-source DAS 3D

VSP data. To achieve this goal, I first develop a suitable imaging condition that accurately

produces elastic source images in isotropic and anisotropic media, as well as exhibit suffi-

cient sensitivity to perturbations in velocity and anisotropy parameters for image-domain
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tomography algorithms. Using the developed imaging condition, I then propose an image-

domain elastic transmission tomography framework that can be used to invert for VP and VS

models from surface-recorded microseismic or active-source DAS 3D VSP data. I also apply

the proposed imaging and inversion methodologies to a DAS 3D VSP data set acquired in

the North Slope of Alaska. Finally, I verify the field data inversion results by conducting a

well-tie analysis between elastic RTM images and petrophysical data.

1.1 Thesis outline

The thesis is structured into chapters, three of which have been published in peer-reviewed

journals, and two of which will be submitted for publication. As the student first author

of the following technical chapters, I developed the theory and performed the numerical

computations. As the thesis advisor and second author, Dr. Jeffrey Shragge supervised the

analytical and numerical findings. Both authors discussed the results and equally contributed

to writing the manuscripts and documenting the research work.

In Chapter 2, entitled “PS Energy Imaging Condition for Microseismic Data - Part 1:

Theory and Applications in 3D Isotropic Media”, I present a novel extended PS energy

imaging condition that operates under the TRI concept to effectively image microseismic

events. I also study the influence of the VP and VS models on the zero-lag and extended

source images in 3D isotropic media. This analysis demonstrates that the proposed imaging

algorithm shows decent sensitivity to model errors, which may make it a favorable candidate

for migration velocity analysis. This chapter was published in Geophysics :

• Oren, C. and J. Shragge, 2021, PS energy imaging condition for microseismic data -

Part 1: theory and applications in 3D isotropic media: Geophysics, 86, no. 2, KS37–

KS48, doi: 10.1190/geo2020-0476.1.

In Chapter 3, entitled “PS Energy Imaging Condition for Microseismic Data - Part 2:

Sensitivity Analysis in 3D Anisotropic Media”, I present an extension of the PS energy imag-

ing condition to 3D anisotropic media, wherein I analyze the sensitivity of the imaged events
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to the Thomsen (1986) anisotropy parameters (ε, δ, and γ) for three types of TI symmetries:

VTI (transversely isotropic with a vertical symmetry axis), HTI (transversely isotropic with

a horizontal symmetry axis), and ORT (orthorhombic). This sensitivity analysis shows that

the moveout patterns of misfocused energy on the event images are mainly controlled by

the distorted Thomsen parameters ε and δ, whereas the γ parameters have rather negli-

gible influence on source images. This chapter was presented at a Society of Exploration

Geophysicists (SEG) Annual Meeting and was published in Geophysics :

• Oren, C. and J. Shragge, 2019, 3D anisotropic elastic time-reverse imaging of surface-

recorded microseismic data: Proceedings of the 89th Annual International Meeting,

Society of Exploration Geophysicists, 3076-3080.

• Oren, C. and J. Shragge, 2021, PS energy imaging condition for microseismic data -

Part 2: sensitivity analysis in 3D anisotropic media: Geophysics, 86, no. 2, KS49–

KS62, doi: 10.1190/geo2020-0477.1.

In Chapter 4, entitled “Passive-Seismic Image-Domain Elastic Wavefield Tomography”,

I propose an image-domain elastic wavefield tomography methodology for multicomponent

passive data to invert for VP and VS models in isotropic media. I define a multiterm objective

function designed to optimize the focusing of auto/crosscorrelation source images, which are

formed based on the kinetic energy term of the PS energy imaging condition described in

Chapter 1 as the kinetic term tends to provide sufficient information when forming isotropic

model gradients. The inversion results suggest that the image misfocusing as well as the

location errors are significantly reduced by means of the recovered velocity models. The

outcomes of this chapter were presented at an SEG Annual Meeting, at an European As-

sociation of Geoscientists and Engineers (EAGE) Annual Meeting, and were published in

Geophysical Journal International :

• Oren, C. and J. Shragge, 2020, Image-domain elastic wavefield tomography for passive

data: Proceedings of the 90th Annual International Meeting, Society of Exploration
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Geophysicists, 3669-3673.

• Oren, C. and J. Shragge, 2021, 3D microseismic image-domain elastic velocity inver-

sion: Proceedings of the 82nd Annual International Meeting, European Association of

Geoscientists and Engineers.

• Oren, C. and J. Shragge, 2022, Passive-seismic image-domain elastic wavefield tomogra-

phy: Geophysical Journal International, 228(3), 1512–1529, doi: 10.1093/gji/ggab415.

In Chapter 5, entitled “3D Image-Domain DAS-VSP Elastic Transmission Tomography”,

I present an implementation of the passive-style inversion framework presented in Chapter

4 on active-source DAS 3D VSP data. To create a suitable inversion setup, I exploit the

principle of reciprocity by exchanging the locations of sources and receivers to mimic a

passive-seismic surface monitoring scenario, for which the inversion procedure is successfully

validated in the previous chapter. I illustrate the efficacy of the tomography method using

a DAS 3D VSP data set acquired in the North Slope of Alaska. Using the inverted elastic

models in the TRI procedure leads to a reduction of 70% and 92% in the total and vertical

RMS mispositioning errors, respectively, as well as a considerable improved image focusing.

To further verify the inversion results, I also compute elastic RTM images that better match

the existing petrophysical log data in well-ties when using the estimated velocity models.

I submitted the field data inversion results presented in this chapter for peer review in

Geophysical Journal International. Moreover, I co-authored a recently submitted manuscript

that investigates the same Alaskan North Slope gas hydrates deposits from acoustic RTM

near-well imaging optimized with a VP model constructed using the proposed image-domain

elastic inversion framework:

• Oren, C. and J. Shragge, 2022, 3D image-domain DAS-VSP elastic transmission to-

mography: Geophysical Journal International (submitted).

• Young, C., J. Shragge, W. Schultz, S. Haines, C. Oren, J. Simmons and T. Collett, 2022,

Advanced distributed acoustic sensing vertical seismic profile imaging of an Alaska
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North Slope gas hydrate field: Energy and Fuels (submitted).

I will also prepare another manuscript that focuses on the DAS VSP elastic RTM imaging

aspect of this chapter. I will submit these outcomes to a peer-reviewed journal:

• Oren, C. and J. Shragge, 2022, 3D full-wavefield multi-mode elastic imaging of DAS

VSP data: Geophysical Journal International (to be submitted).

Chapter 6 presents the general conclusions of the thesis along with a discussion of future

recommendations on various applications of the presented methods at different scales.
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CHAPTER 2

PS ENERGY IMAGING CONDITION FOR MICROSEISMIC DATA - PART 1:

THEORY AND APPLICATIONS IN 3D ISOTROPIC MEDIA

A paper published1 in Geophysics

Can Oren2,3,4, Jeffrey Shragge4

Accurately estimating event locations is of significant importance in microseismic in-

vestigations because this information greatly contributes to the overall success of hydraulic

fracturing monitoring programs. Full-wavefield time-reverse imaging (TRI) using one or

more wave-equation imaging conditions offers an effective methodology for locating surface-

recorded microseismic events. To be most beneficial in microseismic monitoring programs,

though, the TRI procedure requires using accurate subsurface models that account for elas-

tic media effects. We develop a novel microseismic (extended) PS energy imaging condi-

tion that explicitly incorporates the stiffness tensor and exhibits heightened sensitivity to

isotropic elastic model perturbations compared to existing imaging conditions. Numerical

experiments demonstrate the sensitivity of microseismic TRI results to perturbations in P-

and S-wave velocity models. Zero-lag and extended microseismic source images computed

at selected subsurface locations yields useful information about 3D P- and S-wave velocity

model accuracy. Thus, we assert that these image volumes potentially can serve as the input

into microseismic elastic velocity model building algorithms.

2.1 Introduction

Subsurface monitoring using microseismic data is an important tool for evaluating sub-

surface fluid-injection programs (Maxwell, 2014). The monitoring process enables one to

1Reprinted with permission of Geophysics, Vol. 86, No. 2, (March-April 2021), p. KS37––KS48
2Primary researcher and author.
3Author for correspondence
4Graduate student and Associate Professor, respectively, Center for Wave Phenomena, Colorado School of
Mines, Golden, Colorado, USA.
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characterize the properties of microseismic events caused by hydraulic fracturing, such as

source location, origin time, magnitude, and fracture type and orientation (Dziewonski et al.,

1981), thereby allowing for an assessment of fluid-injection operations. Accurate and timely

determination of such geophysical observations is important when making engineering de-

cisions ranging from optimizing production to evaluating and/or mitigating potential risks

related to induced seismicity.

Over the past few decades, time-reverse imaging (TRI) of surface-recorded microseismic

data has received increasing interest (Artman et al., 2010; Gajewski and Tessmer, 2005;

McMechan, 1982; Nakata and Beroza, 2016; Witten and Shragge, 2015). A key reason

is that full-wavefield methods can produce more accurate simulated wavefield results than

ray-based approaches in complex Earth models. Implementing full-wavefield TRI generally

involves backpropagating recorded P- and S-wavefield data using an adjoint acoustic or

elastic wave equation and applying an imaging condition that stacks wavefield energy over

the full wavelet, ideally obtaining a well-focused microseismic event image at the true source

coordinates. TRI effectively migrates surface-recorded microseismic events exhibiting low

signal-to-noise ratios (S/Ns) (Witten and Shragge, 2017a); however, the success of the TRI

methodology primarily depends on the accuracy of the subsurface model (i.e., velocity and

anisotropy parameters), which can be challenging to constrain with minimal well control of

the subsurface velocity profiles in many field investigations.

An important consideration in successful applications of TRI is the choice of imaging

condition used to generate the final event images. The conventional (zero-lag) imaging

condition is based on the point-wise correlation between two wavefields (Claerbout, 1971).

A conventional pseudo-acoustic imaging condition enables one to generate converted-wave

images (i.e., PS) associated with P- and S-wave modes (Rosales et al., 2008; Sava and

Fomel, 2005). An extended imaging condition (EIC) is a more general approach that outputs

a multidimensional wavefield correlation gather computed at a number of nonzero spatial

and/or temporal lags (Rickett and Sava, 2002; Sava and Fomel, 2006).
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In passive-style microseismic monitoring applications, wavefield-based migration images

carry not only valuable information about the source location and mechanism, but also can

reveal velocity model inaccuracy that leads to both event mislocation and misfocusing in zero-

lag images and EIC gathers (Witten and Shragge, 2015). In particular, passive EIC gathers

resulting from the correlation between temporarily and/or spatially shifted microseismic

wavefields can be used to update velocity models based on image misfocusing criteria, as

is commonly done in reflection seismology through image-domain tomography (Shen and

Symes, 2008; Symes and Carazzone, 1991). Moreover, combining extended wavefield imaging

and adjoint-state tomography (Plessix, 2006) leads to an effective passive seismic approach

for automatically updating 3D isotropic P- and S-wave velocity models using an elastic

(Shabelansky et al., 2015) or a pseudo-acoustic (Witten and Shragge, 2017a,b) formulation.

For microseismic elastic TRI, conventional imaging conditions generally rely on the au-

to/crosscorrelation between the distinct wave modes (i.e., P and S waves). When using an

accurate Earth model for time-reverse propagation, sufficient (surface) wavefield sampling,

and microseismic data exhibiting high S/N levels, the resulting correlation images will yield

peak amplitudes at the true source location. The quality of these results depends on the

accuracy of wave-mode decomposition applied during the backpropagation step, which is

straightforward to compute for isotropic Earth models. However, for 3D anisotropic elastic

Earth models, wave-mode decomposition in the wavefield domain is significantly more com-

putationally expensive (Dellinger and Etgen, 1990; Yan and Sava, 2011). To mitigate this

drawback, Rocha et al. (2019) develop and apply a 3D energy imaging condition for passive

elastic TRI that involves the stress, strain, and displacement variables along with the model

stiffness tensor components. This imaging condition requires no wave-mode separation and

is applicable to any type of medium anisotropy. Moreover, it has a number of additional ad-

vantages over its counterparts because it naturally attenuates low-wavenumber artifacts and

enhances the correlation between distinct wave modes. Rocha et al. (2019) also introduce

the passive EIC gather version of the energy imaging condition.
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In this study, we present a novel (extended) PS energy imaging condition that inherits

the advantages of the extended energy imaging condition of Rocha et al. (2019), but also

exhibits an increased sensitivity to velocity [∆VP ,∆VS] model perturbations. This increased

sensitivity can be exploited to refine velocity models (e.g., through tomographic updating)

to more accurately and consistently image microseismic events in contrast to lower sensitive

imaging conditions that can lead to a wavefield focus at incorrect location. To demonstrate

this, we investigate the sensitivity of zero-lag images and EIC gathers formed by the energy

and the proposed PS energy imaging conditions to [∆VP ,∆VS] model perturbations.

We begin by reviewing the theory of elastodynamics on which we base our 3D elastic for-

ward and time-reverse (adjoint) propagation operators. We present the zero-lag conventional

and energy imaging conditions as well as their extended-domain generalizations. We then

introduce the PS energy imaging condition, and demonstrate through 3D passive imaging

experiments involving a complex Earth model that the associated zero-lag images and EIC

gathers have greater sensitivity to velocity model perturbations than those formed by the

conventional approaches. We also present a methodology to attenuate imaging-related arti-

facts. The paper concludes with a discussion on the sensitivity results as well as our thoughts

on the further use of the PS energy imaging condition in an image-domain adjoint-state in-

version framework with a potential extension to anisotropic elastic media applications, a

sensitivity analysis of which is presented in Oren and Shragge (2021b).

2.2 Theory

2.2.1 3D elastic wave equation

Derivation of the Cartesian 3D elastic wave equation begins with the equation of conser-

vation of linear momentum given by

ρ üi = ∂jσij, i, j = 1, 2, 3, (2.1)

where ui(x, t) represents the displacement field as a function of space x and time t, ρ(x) is the

medium density, σij(x, t) is the stress tensor, two superscript dots denote the second-order
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temporal derivative, and ∂j is the spatial derivative in the jth direction. Here and throughout

we use summation notation over repeated indices (e.g., ∂jσij = ∂1σi1 + ∂2σi2 + ∂3σi3).

Assuming linear elasticity, stress tensor σij(x, t) may be related to strain tensor εkl(x, t)

according to a constitutive relation

σij = cijkl εkl +mij, (2.2)

where cijkl(x) is the fourth-rank stiffness tensor, and mij(x, t) is introduced as the seismic

moment tensor source acting as a stress perturbation (Backus and Mulcahy, 1976a,b; Moczo

et al., 2014). Accordingly, the equation of motion, rewritten as a function of the strain

tensor, is given by

ρ üi = ∂j(cijkl εkl +mij). (2.3)

Assuming small displacements (‖ε‖ � 1), the linear relationship between displacement field

ui(x, t) and strain tensor εkl(x, t) is given by

εkl =
1

2

(
∂kul + ∂luk

)
. (2.4)

Consequently, we rewrite equation 2.3 as a generally anisotropic 3D elastic wave equation

using the material symmetry of the Cartesian stiffness tensor

ρ üi = ∂j(cijkl∂kul +mij). (2.5)

Numerical elastic wavefield solutions computed via equation 2.5 can be extrapolated forward

and backward in time given the spatial distribution of the stiffness tensor cijkl(x).

2.2.2 Review of extended imaging conditions (EICs)

Elastic TRI involves backpropagating injected surface-recorded multicomponent micro-

seismic data throughout a subsurface Earth model. One can then use correlation-based

imaging conditions that exploit the wavefield focusing exhibited by the time-reversed elastic

wavefield. To form more clearly focused microseismic source images that have reduced cross-

mode contamination (i.e., crosstalk between the unseparated wave modes), one can use

Helmholtz decomposition during backpropagation to separate P- and S-wave modes from
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displacement field ui(x, t) (Dellinger and Etgen, 1990; Yan and Sava, 2009),

P = ∂iui (2.6)

and

Si = εijk∂juk, (2.7)

where P = P (x, t) and Si = Si(x, t) are the scalar compressional and vector transverse

wave modes, respectively. A vector extended imaging condition (EIC) can be formed by

correlating P - and Si-wave modes that are symmetrically shifted in space (Rickett and Sava,

2002; Sava and Vasconcelos, 2011; Witten and Shragge, 2015):

IPSi (x,λλλ) =

∫ T

0

P (x + λλλ, t)Si(x− λλλ, t) dt, (2.8)

where λλλ = (λx, λy, λz) is the vector space-lag extension, and the integral evaluation in theory

starts from the maximum time of the data window (t = T s) and progresses in reverse

time back to the window origin time (t = 0 s). Because Si(x, t) is a vector containing

three components after 3D Helmholtz decomposition, the imaging condition in equation

8 results in three images where the P -wave mode is correlated with each Si-wave vector

component. We note that while extended images also may be described as functions of time

shifts (Sava and Fomel, 2006), herein we only examine spatial lags because they are sufficient

for constraining the moveout sensitivity to velocity model perturbations. In addition, a 3D

space-lag extended image typically ranges over a volume of (2Nλx + 1, 2Nλy + 1, 2Nλz + 1)

evaluation points, where Nλi is the number of positive lag shifts in the ith direction. Finally,

the zero-lag imaging condition is a special case of the extended imaging condition where

(Nλx , Nλy , Nλz) = (0, 0, 0).

Because a scalar image is preferable for interpretation relative to vector images, one can

use the S-wave energy density (ES) of the decomposed S wavefield (Artman et al., 2010;
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Morse and Feshbach, 1953; Rocha et al., 2019; Yang and Zhu, 2019) given by

ES(x, t) ≡ µ(SiSi)
1/2, (2.9)

where µ(x) is the shear-modulus parameter. This definition allows for the specification of a

scalar extended PS image (Rocha et al., 2019):

IPS(x,λλλ) =

∫ T

0

P (x + λλλ, t)ES(x− λλλ, t) dt. (2.10)

Although 3D Helmholtz decomposition is relatively straightforward for isotropic media,

for anisotropic media applications, one needs to compute computationally expensive solu-

tions of the Christoffel equation (Tsvankin, 2012) to correctly decompose the wavefield into

different wave-mode components. To address this issue, Rocha et al. (2019) introduce an

extended energy imaging condition that results in a scalar image:

IEN+/−(x,λλλ) =

∫ T

0

(
ρ(x + λλλ) u̇i(x + λλλ, t) u̇i(x− λλλ, t)

± cijkl(x + λλλ, t) εkl(x + λλλ, t) εij(x− λλλ, t)
)

dt.

(2.11)

Because the contraction of cijkl(x +λλλ, t) εkl(x +λλλ, t) is identical to σij(x +λλλ, t) without the

mij(x, t) term, equation 2.11 may be rewritten as

IEN+/−(x,λλλ) =

∫ T

0

(
ρ(x + λλλ) u̇i(x + λλλ, t) u̇i(x− λλλ, t)± σij(x + λλλ, t) εij(x− λλλ, t)

)
dt. (2.12)

Equation 2.12 corresponds to the Hamiltonian (Lagrangian) operators defined as the sum-

mation (difference) between the wavefield kinetic and potential energy terms (Ben-Menahem

and Singh, 1981; Rocha et al., 2019). The Hamiltonian operator measures the total wavefield

energy and produces images with strong low-wavenumber patterns, whereas the Lagrangian

operator measures the differential wavefield energy that suppresses the low-wavenumber ar-

tifacts caused by two wavefields sharing the same polarization and propagation direction

(Rocha et al., 2019). Therefore, though equation 2.12 involves the autocorrelation of parti-

cle velocities u̇i(x, t), the extended energy imaging condition with the Lagrangian operator

produces images with attenuated low-wavenumber artifacts due to the subtraction operation.
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Further advantages include requiring no wave-mode separation during backpropagation prior

to the imaging condition evaluation, and handling arbitrary anisotropy due to the explicit

introduction of cijkl. However, as we demonstrate and discuss the possible reasons in the

following numerical experiments, the energy imaging condition is somewhat insensitive to

model perturbations, which motivates us to explore related alternatives.

2.2.3 Extended PS energy imaging condition

Based on the advantages of the extended energy imaging condition discussed in Rocha

et al. (2019), we propose the extended PS energy imaging condition:

Iαβ+/−(x,λλλ) =

∫ T

0

(
2ρ(x + λλλ) u̇αi (x + λλλ, t) u̇βi (x− λλλ, t)

± σαij(x + λλλ, t) εβij(x− λλλ, t)± σ
β
ij(x + λλλ, t) εαij(x− λλλ, t)

)
dt, α, β = P, S,

(2.13)

where one injects wave modes separated beforehand in the data domain through preprocess-

ing, rather than the full multicomponent wavefield. While α and β can represent P- or S-wave

data in equation 2.13, herein we use different wave modes for α and β (i.e., α 6= β) in the

ensuing numerical experiments. Data-domain separation of individual wave modes is usually

a straightforward procedure for surface-recorded microseismic data due to traveltime separa-

tion and can be carried out using user-specified or, ideally, automatically chosen hyperbolic

time mute functions. We note that this imaging condition is also applicable to conventional

PS imaging of seismic reflection data in a converted wave sense; however, herein we are using

it exclusively to image the forward-propagated P- and S-wave contributions from individual

microseismic events.

Equation 2.13 respectively takes the form of the Hamiltonian (Lagrangian) operator based

on the summation (subtraction) operation between the kinetic and potential terms. How-

ever, due to the crosscorrelation of now wave-mode separated particle velocities u̇αi (x, t) and

u̇βi (x, t), the Hamiltonian operator no longer produces images with low-wavenumber artifacts;

rather, it yields more symmetric and stronger focused events relative to the Lagrangian op-

16



erator. We validate this inference with realistic examples in the following section. The main

advantage of the proposed PS energy imaging condition in equation 2.13 is its greater sensi-

tivity to velocity [∆VP ,∆VS] model perturbations than that of the energy imaging condition

in equation 2.12. We demonstrate this assertion in the section below.

2.3 Numerical examples

We undertake a number of synthetic numerical experiments using complex models along

with realistic acquisition configuration in 3D isotropic elastic media. We begin by investigat-

ing the PS energy and energy images exhibiting the estimated microseismic source location

for correct velocity models. We then discuss an efficient methodology for attenuating arti-

facts present in the resulting zero-lag source images. Subsequently, we highlight the different

sensitivities of the zero-lag images and EIC gather volumes to velocity model perturbations

to examine the benefits of the proposed (extended) PS energy imaging condition.

Figure 2.1 P-wave velocity component from the SEG/EAEG 3D Overthrust model. The
3C multicomponent receivers, denoted by the white dots, are deployed at the surface.

17



2.3.1 3D forward/adjoint elastic propagators

We perform 3D isotropic elastic forward and adjoint (time-reverse) propagation using a

stress-displacement formulation on a singly staggered grid (SSG). We use a graphics pro-

cessing unit (GPU)-based finite-difference time-domain (FDTD) solver with second-order

temporal and eighth-order spatial accuracy stencil (Weiss and Shragge, 2013).

Figure 2.1 depicts the SEG/EAEG 3D Overthrust P-wave velocity model (Aminzadeh

et al., 1994) along with the multicomponent (3C) receivers (white dots) used in the following

numerical tests. This experimental setup offers a realistic test that mimics field-like acqui-

sition conditions. We define an S-wave velocity model by assuming VS = VP/
√

3 along with

an accompanying density model (not shown) that ranges between ρ = 2.0− 3.0 g/cm3. Both

model components share the same structural complexity with the illustrated VP model. A

slightly smoothed version of these models are used during the forward modeling and imaging

stages to reduce the scattering effects caused by sharp boundaries.

Our surface receiver array consists of 192 non-uniformly distributed 3C receivers covering

an approximately 6×6 km2 area. The receiver geometry is extracted from a field experiment

(Witten and Shragge, 2017b). We simulate a microseismic source located at [x, y, z] =

[3.0, 3.0, 2.0] km using a stress-source mechanism (mij in equation 2.3) oriented at 45o with

respect to the horizontal axis (i.e., non-zero stress components of mxx=−1 and mzz=1) with

a 15 Hz Ricker wavelet. We forward model synthetic elastic 3C microseismic data using a

3D computational domain of dimension [Nx, Ny, Nz] = [248, 248, 128], Nt = 2400 time steps,

temporal and spatial sampling intervals of ∆t = 1 ms, and ∆x = ∆y = ∆z = 0.025 km with

no free-surface boundary condition applied. The simulation time for this 3D isotropic elastic

forward modeling takes about 50 s on a single NVIDIA V100 GPU card.

Figure 2.2a and Figure 2.2b shows the forward-modeled vertical uz and horizontal ux

component data associated with a single microseismic event propagated through the isotropic

Earth model shown in Figure 2.1. The PS energy imaging condition uses P- and S-wave

modes that require separation on all three components prior to time reversal. Here, we use
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data-domain hyperbolic mute functions as shown by the blue curves in Figure 2.2 to perform

the separation. We note that this represents an additional processing step compared to the

energy imaging condition, which uses the full recorded waveforms as input. To improve the

S/N of imaged events, we mute waveforms arriving later and earlier than the hyperbolic

mute function to better isolate the P- and S-wave modes, respectively.

(a)

(b)

Figure 2.2 Simulated (a) uz and (b) ux components of 3C microseismic data (uy not
shown). P- and S-wave modes are separated in the data domain using the hyperbolic time
mute functions like the ones denoted by the blue curves.
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2.3.2 Experiment 1: TRI with correct velocity models

Our first numerical experiment examines the TRI results generated by applying the (ex-

tended) PS energy and energy imaging conditions. Because we use the correct velocity

models in this scenario, we expect the resulting zero-lag and extended image volumes to

exhibit energy that is well-focused at the true source location and about zero lag in all di-

mensions, respectively. We note that this holds even when applied to an event recorded with

a sparse geometry and backpropagated through a complex model. Figure 2.3a-Figure 2.3c

presents the zero-lag Hamiltonian PS energy, Lagrangian PS energy, and energy images,

respectively, constructed using the adjoint propagation operator applied to the elastic data

shown in Figure 2.2. Using their correct respective models, all imaging conditions yield

strong coherent focusing at the true source location, which is indicated by the intersecting

cross-hair lines on the 3D image panels. We also note that the PS energy images exhibit a

positive peak amplitude at the correct source location whereas the energy image produces

a negative peak amplitude. Compared to its Lagrangian counterpart, the Hamiltonian PS

energy image exhibits a more symmetric and relatively stronger focused event. The Hamil-

tonian and Lagrangian PS energy images arguably show a better resolved event focus than

the energy image. However, all images in the upper row of Figure 2.3 exhibit artifacts at

shallow depths mainly due to elastic wavefield extrapolation effects of using a sparse and

spatially limited surface acquisition aperture and fictitious modes (Rocha et al., 2019; Yan

and Sava, 2009).

Figure 2.4 presents the 3D EIC gathers computed with the Hamiltonian PS energy,

Lagrangian PS energy, and energy imaging conditions in the same layout as Figure 2.3. All

images exhibit energy well-focused at zero lag due to the correct velocity models. Similar to

their zero-lag versions, the extended Hamiltonian PS energy image shows a more symmetric

focused energy and contains fewer tail artifacts near zero lag compared to its Lagrangian

counterpart. The PS energy and energy EIC gathers are respectively evaluated at a single

spatial point that is associated with the maximum and minimum peak amplitude (i.e., true
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source location) of the corresponding zero-lag source image. The minimum peak amplitude in

the zero-lag energy images occurs due to the subtraction operation applied to attenuate the

low-wavenumber artifacts in the formulation of equation 2.12. Because the peak amplitude

point is usually determined automatically for extended imaging evaluation, it is critical to

minimize the spurious imaging artifacts on zero-lag images. Selecting an irrelevant spatial

point for (extended) imaging condition evaluation could result in incorrect interpretation of

microseismic event locations.

(a) (b) (c)

(d) (e) (f)

Figure 2.3 3D elastic zero-lag images obtained using (a) the Hamiltonian PS energy (Iαβ+

in equation 2.13), (b) Lagrangian PS energy (Iαβ− in equation 2.13), and (c) energy (IEN− in
equation 2.12) imaging conditions along with their zoomed sections in (d)-(f). The
intersecting cross-hair lines indicate the true source location, which corresponds to the
maximum image focus for all cases.
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(a) (b) (c)

Figure 2.4 3D space-lag (a) Hamiltonian PS energy (Iαβ+ in equation 2.13), (b) Lagrangian

PS energy (Iαβ− in equation 2.13), and (c) energy (IEN− in equation 2.12) EIC gathers. We
respectively evaluate the PS energy and energy EIC gathers at the maximum and
minimum amplitude point, which corresponds to the true source location for both cases.
The energy is well-focused at zero lag for all extended images due to the correct velocity
models used in the imaging.

2.3.3 Experiment 2: Attenuation of imaging artifacts

In our second experiment, we investigate a method for attenuating artifacts otherwise

present in the resulting zero-lag source images. For microseismic field data, wavefield-based

imaging conditions involve summation over time (e.g., equation 2.13) because the origin time

of the events is unknown. During the backpropagation of receiver wavefields, spurious ex-

trapolation artifacts arise from the sparse and spatially limited surface acquisition aperture

as well as from the fictitious P- and S-wave modes generated due to the elastic wavefield

injection (Rocha et al., 2019; Yan and Sava, 2008). The correlation of extrapolation-related

artifacts with true P- and S-wave modes can degrade the overall image quality and/or in-

crease the uncertainty of source location estimates. Furthermore, such artifacts in zero-lag

source images can yield abnormally high amplitudes, which can effectively prevent a suc-

cessful extended imaging evaluation based on a source location estimate. To mitigate these

artifacts, we apply the imaging condition and stack over a time window narrower than the

window length of the input microseismic data. Ideally, such a narrower time window closely
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brackets the source origin time. By using the proposed approach, one can improve image-

focusing quality by excluding irrelevant partial image contributions for time steps that are

equivalent to the early stages of time-reverse propagation when near-surface spurious corre-

lations dominate the source image.

(a) (b)

(c) (d)

Figure 2.5 3D elastic zero-lag images obtained using the (a) PS energy and (b) energy
imaging conditions along with their zoomed sections in (c) and (d). Comparing these
results with those in Figure 2.3 illustrates how applying imaging conditions with designated
time window [tmin, tmax] = [0, 0.15] s attenuates the artifacts and enhances image focusing.

Here and hereafter we only compute the PS energy images based on the Hamiltonian

operator (i.e., IPS+ ) due to its aforementioned advantages over the Lagrangian operator.

Figure 2.5 shows the zero-lag PS energy and energy images computed in the time window

[tmin, tmax] = [0, 0.15] s. Note how the partial stacking approach helps attenuate image

artifacts in the top 1.5 km depth (Figure 2.3a-Figure 2.3c) relative to those computed for
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the entire time record [tmin, tmax] = [0, 2.4] s. We also apply a 40-sample cosine taper function

to the partial images that correspond to the edges of the time window, which demonstrably

improves the S/N of the stacked image. Because the origin time is known for this synthetic

example, only tmax is reduced when we design the time window. Currently, we identify the

optimal tmax through trial and error based on evaluating the quality of the image focusing.

Generally, as the user-defined time window broadens, the S/N of the resulting image is

reduced. Although residual artifacts still exist, particularly in the PS energy image at the

shallow depths (down to 0.5 km depth), the attenuation procedure significantly improves the

image S/N, which is clearly observed in the zoomed sections presented in Figure 2.5.

2.3.4 Experiment 3: Sensitivity to velocity model perturbations

The third experiment compares the PS energy and energy imaging condition results when

we perform TRI using P- and S-wave velocity model combinations that are globally perturbed

by ±10%. Figure 2.6 and Figure 2.7 show the zero-lag PS energy and energy images where

the top, middle and bottom rows correspond to −10%, 0%, +10% perturbations in the

P-wave velocity, and the left, middle and right columns correspond to −10%, 0%, +10%

perturbations in the S-wave velocity. The PS energy images (Figure 2.6) exhibit a higher

degree of misfocusing and moveout patterns that are more observable than those of the

energy images (Figure 2.7). Additionally, the depth slices of the PS energy images show a

radial “halo” at large offsets from the true microseismic event location. These diagnostic

halo effects represent an imprint of model errors and are thus an indicator of velocity model

inaccuracy. The energy images, however, do not include these radial patterns and exhibit

deteriorated energy focusing on the depth slices. These results suggest increased sensitivity of

the PS energy imaging condition to velocity model inaccuracy relative to the energy imaging

condition.

The reason for the limited sensitivity of the energy imaging condition is that during

the subtraction operation, the kinetic energy term appears to dominate the resulting event

focusing that resembles an autocorrelation-like image, which can still lead to a wavefield

24



focus at incorrect source location when using inaccurate velocities. However, due to the

individual P- and S-wave modes separated beforehand in the data domain, the proposed PS

energy imaging condition yields a crosscorrelation-like image that typically tends to be more

sensitive to velocity errors. We again stress that this sensitivity information is important for

evaluating and validating model accuracy using an elastic TRI process.

Figure 2.8 and Figure 2.9 depict the corresponding EIC gathers computed with the PS

energy and energy imaging conditions, respectively. For plotting purposes, the nine subfig-

ures in these figures follow the same P- and S-wave velocity perturbation layout as presented

in Figure 2.6 and Figure 2.7. We evaluate these PS energy and energy EIC gathers at a single

spatial point located at the maximum and minimum amplitude of the corresponding zero-

lag image, respectively. Similar to the zero-lag TRI results, the extended PS energy images

(Figure 2.8) arguably show more characteristic moveout patterns than the extended energy

images (Figure 2.9) and are more indicative of the directions of the required P- and S-wave ve-

locity updates. We also note that the PS energy EIC gathers exhibit greater sensitivity with

respect to the model perturbations only in the S-wave velocity (Figure 2.8d and Figure 2.8f)

compared to only P-wave velocity model perturbations (Figure 2.8b and Figure 2.8h). Thus,

the two images may provide complementary information for elastic image-domain tomog-

raphy updating of model parameters (Shabelansky et al., 2015). The increased sensitivity

with respect to S-wave velocity inaccuracy is mainly due to the double-couple stress source

mechanism radiating stronger S-wave energy that dominates the resulting source images.

2.4 Discussion

The numerical experiments demonstrate that space-lag EIC gathers computed with the

PS energy imaging condition provide valuable insight into P- and S-wave velocity model accu-

racy. Using accurate Earth models, the energy in the resulting EIC gathers is well-focused at

zero lag in the absence of wavefield sampling or illumination issues. Conversely, EIC gathers

exhibit poor focusing quality about zero lag when using inaccurate velocity models. As high-

lighted in Rocha et al. (2019), the energy imaging condition offers a number of advantages
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over its counterparts (e.g., crosscorrelation imaging condition of the individual wave modes)

because it: (1) accounts for the effects of the source radiation pattern during backpropaga-

tion due to the elastic formulation; (2) yields a peak amplitude at the source location; and

(3) obviates the need for wave-mode decomposition during backpropagation. However, this

imaging method exhibits lower sensitivity to model errors, which could decrease its applica-

bility for use in elastic image-domain inversion. The sensitivity (i.e., smeared energy and/or

focus shifted away from zero lag on extended images) with respect to velocity inaccuracy

can be effectively used for determining relative P- and S-wave velocity updates to improve

the focusing of the extended images. The proposed PS energy imaging condition inherits all

the aforementioned advantages of the energy imaging condition. Additionally, it produces

images that exhibit improved sensitivity to P- and S-wave velocity model perturbations.

Therefore, PS energy EIC gathers are more likely to be useful for elastic migration velocity

analysis of microseismic data to update P- and S-wave velocity models (Witten and Shragge,

2017a,b).

In practice, one can efficiently calculate the traveltimes of direct P- and S-wave modes

by tracing rays from a selected point in the hydraulic stimulated volume to each surface

receiver. The selected point is ideally expected to represent the approximate event location.

Based on this traveltime information, one can obtain mute functions that possibly result

in a more accurate separation of the individual wave modes. Using such an approach, one

could better eliminate the undesirable portion of the data (i.e., converted waves and/or

noise), and thereby enhance image quality. The further benefits of the proposed approach

involve determining time windows that closely brackets the approximate source origin time

as discussed in Experiment 2, which has the potential to preclude the possible failures caused

by a trial and error analysis.

It is also worth noting that the wave-mode separation procedure becomes more challeng-

ing in the presence of extremely low S/N and/or overlapping P- and S-wave arrivals recorded

from multiple events initiated at nearby event locations and times. PS energy images con-
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structed with imperfectly separated P and S wavefields can still produce reasonably focused

event images, but this inaccurate data separation would reduce the resulting S/N. Thus, the

method does not completely fail, and appears to hold no strict requirements in data separa-

tion process. Additionally, in image-domain tomography algorithms, the proposed imaging

condition can be exploited by selecting microseismic events that are suitable for separation

and/or exhibit relatively high S/N as demonstrated in Witten and Shragge (2017b).

The primary drawback of the proposed method is that its computational cost is nearly

1.85× more expensive than that of the energy imaging condition due to the elastic backprop-

agation of the separated wave modes. However, both imaging methods can be implemented

in a reasonable time frame using GPU computing resources. Using the previously introduced

experimental setup in the TRI process, computing both 3D zero-lag and extended images

related to a single microseismic event takes about 70 s and 130 s when using the energy and

PS energy imaging conditions, respectively, on a single NVIDIA V100 GPU card. The ex-

tended images presented in the numerical examples include (2Nλx + 1, 2Nλy + 1, 2Nλz + 1) =

(57, 57, 57) samples, a number of which is another factor affecting the overall run time. How-

ever, because the extended images are constructed at a single spatial point (i.e., estimated

source location), their computational cost is generally insignificant. Moreover, the general

computational expense can be further reduced using a domain-decomposition strategy across

multiple GPU devices.

Finally, the proposed extended PS energy imaging condition can be conveniently for-

mulated for any type of (visco)elastic medium anisotropy because the formulation handles

arbitrary anisotropy due to the explicit introduction of stiffness tensor cijkl in equation 2.11.

This straightforward extension can be implemented by incorporating additional required

anisotropy parameters and stiffness coefficients into the adjoint propagation operator. We il-

lustrate this supposition by conducting a detailed sensitivity analysis of the proposed imaging

method for 3D anisotropic media (e.g., transversely isotropic with a vertical and horizontal

symmetry axes as well as orthorhombic) in Oren and Shragge (2021b).
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2.5 Conclusions

We introduce a novel (extended) PS energy imaging condition that is applicable for lo-

cating microseismic events in 3D elastic media. By conducting realistic synthetic numerical

experiments of three different cases, we demonstrate that the proposed PS energy imaging

condition exhibits improved sensitivity to the P- and S-wave velocity model perturbations.

These benefits come at the marginal cost of performing a straightforward data-domain sep-

aration of P- and S-wave modes prior to time-reverse propagation. The PS energy imaging

condition represents a theoretical extension of the energy imaging condition and thus inher-

its all of its useful characteristics. The improved sensitivity of extended PS energy images

likely will be useful in a future microseismic migration velocity analysis framework aimed at

updating elastic velocity models based on optimizing the focusing of the EIC gathers.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.6 Zero-lag PS energy images with incorrect velocities. Top, middle and bottom
rows correspond to -10%, 0%, +10% perturbations in the P-wave velocity. Left, middle and
right columns correspond to -10%, 0%, +10% perturbations in the S-wave velocity. Note
the unfocused events with respect to the focused energy in (e), which is obtained with the
correct P- and S-wave velocity models.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.7 Zero-lag energy images with incorrect velocities. Top, middle and bottom rows
correspond to -10%, 0%, +10% perturbations in the P-wave velocity. Left, middle and
right columns correspond to -10%, 0%, +10% perturbations in the S-wave velocity. Note
the unfocused events with respect to the focused energy in (e), which is obtained with the
correct P- and S-wave velocity models.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.8 PS energy EIC gathers corresponding to the subpanel image layout used in
Figure 2.6. PS energy EIC gathers are evaluated at the maximum amplitude point of the
corresponding zero-lag PS energy images in Figure 2.6.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.9 Energy EIC gathers corresponding to the subpanel image layout used in
Figure 2.7. Energy EIC gathers are evaluated at the minimum amplitude point of the
related zero-lag energy images in Figure 2.7.
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CHAPTER 3

PS ENERGY IMAGING CONDITION FOR MICROSEISMIC DATA - PART 2:

SENSITIVITY ANALYSIS IN 3D ANISOTROPIC MEDIA

A paper published1 in Geophysics

Can Oren2,3,4, Jeffrey Shragge4

In microseismic monitoring, obtaining reliable information about the event properties,

such as the location, origin time, and moment tensor components, is critical for evaluating

the success of the fluid injection programs. Elastic wavefield-based migration approaches

can robustly image microseismic sources by extrapolating data through an earth model and

evaluating an imaging condition. The success of these imaging methods, though, primar-

ily depends on the elastic model accuracy. The previously developed extended PS energy

imaging condition can provide valuable information about the accuracy of the elastic model

parameters including vertical P- and S-wave velocities as well as anisotropy coefficients.

Using the SEAM Barrett Unconventional model, we assess the influence of errors in the

anisotropy parameters by conducting a sensitivity analysis in three types of 3D models: VTI

(transversely isotropic with a vertical symmetry axis), HTI (transversely isotropic with a

horizontal symmetry axis), and ORT (orthorhombic) media. Our analysis on zero-lag and

extended PS energy images computed with perturbed anisotropy models shows that event

images exhibit different moveout patterns of misfocused energy with respect to the distorted

Thomsen parameters ε and δ; however, for this model, the γ parameters have almost no

influence on images regardless of the applied perturbations, which are reflected in minimal

traveltime differences in the data. The dependence of microseismic source images on these

1Reprinted with permission of Geophysics, Vol. 86, No. 2, (March-April 2021), p. KS49––KS62
2Primary researcher and author.
3Author for correspondence
4Graduate student and Associate Professor, respectively, Center for Wave Phenomena, Colorado School of
Mines, Golden, Colorado, USA.
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parameters provides essential insights into anisotropic model accuracy, and suggests that

misfocused energy on extended image gathers may be used as a criterion for updating earth

models through anisotropic elastic image-domain inversion.

3.1 Introduction

In most hydraulic fracturing applications, the difficult task of building an earth model

sufficiently accurate for determining microseismic event locations is made further challenging

when unconventional reservoirs are situated in massive shale formations known to exhibit

moderate-to-strong anisotropy (Vernik and Liu, 1997; Vernik and Nur, 1992). For this reason,

incorporating an anisotropic parameterization is an important consideration when design-

ing a joint model-building and event-location inversion framework (Maxwell et al., 2010).

While a number of investigations have examined anisotropic model building using borehole

microseismic data (Grechka et al., 2011; Grechka and Yaskevich, 2014; Jarillo Michel and

Tsvankin, 2017), few studies using surface-based microseismic monitoring methods exist in

the literature. The closest investigation may be Witten and Shragge (2017b), which presents

a case study from Marcellus Shale that simultaneously updates isotropic P- and S-wave ve-

locity (VP and VS) models along with event locations using a pseudo-acoustic image-domain

inversion framework.

Time-reverse imaging (TRI) of microseismic data recorded at surface or borehole receivers

have gained interest due to its accuracy in handling wave propagation in complex subsurface

structures by using the full waveform information (Artman et al., 2010; Gajewski and Tess-

mer, 2005; Oren and Shragge, 2019; Rocha et al., 2019; Saenger, 2011; Witten and Shragge,

2015; Yang and Zhu, 2019). Implementing TRI in elastic media typically involves backpropa-

gating P- and S-wave arrivals using an adjoint elastic wave equation and applying some form

of imaging condition that effectively stacks over the full microseismic waveform to generate

an ideally well-focused microseismic source image. When using sufficiently accurate mod-

els, the maximum amplitude of the imaged event corresponds to the true source location;

otherwise, inaccurate models can lead to image misfocusing as well as severe location er-
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rors inferred from displaced peak image amplitudes. Therefore, using accurate (anisotropic)

models in elastic TRI is essential for successful event location applications.

To investigate the effects of anisotropy in the 3D image domain, one must use a 3D imag-

ing condition that is sensitive to variations in the associated anisotropy parameters. The

sensitivity information is essential because imaging conditions exhibiting limited sensitivity

can produce a wavefield focus at incorrect coordinates, which could lead to misleading event

location estimates as well as suboptimal interpretations and engineering decisions derived

therefrom. Moreover, image sensitivity can be utilized to refine anisotropic models through

image-domain tomography methods to achieve improved accuracy of imaged events and more

accurate location estimates. For example, gathers generated from an extended imaging con-

dition (EIC) are known to be sensitive to the presence and magnitude of anisotropy even

when using accurate isotropic background P-wave velocities in the acoustic imaging proce-

dure (Li et al., 2016; Sava and Alkhalifah, 2015). For reflection imaging, Sava and Alkhalifah

(2015) demonstrate that ignoring anisotropy during acoustic wavefield extrapolation yields

different image-domain signatures than those due to purely inaccurate velocity model effects.

Similarly, Li et al. (2016) examine the influence of errors in the Thomsen (1986) anisotropy

parameters η (Alkhalifah and Tsvankin, 1995) and δ on both acoustic reverse time migration

(RTM) extended and angle gathers for VTI (transversely isotropic with a vertical symmetry

axis) media and show that errors in η models have a dip-dependent signature while laterally

varying δ model errors lead to EIC gather defocusing.

For the elastic TRI of surface-recorded multicomponent microseismic data, Rocha et al.

(2019) introduce the extended energy imaging condition, perform a number of sensitivity

tests to P- and S-wave velocities, and show its advantages over auto/crosscorrelation imaging

conditions. Oren and Shragge (2019) develop the extended PS energy imaging condition that

inherits all of the advantages of the energy imaging condition while additionally exhibiting

enhanced sensitivity to velocity model perturbations, which makes this imaging condition a

candidate for image-domain model building. Oren and Shragge (2021a) present a thorough
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description of the PS energy imaging condition and demonstrate its improved sensitivity

to velocity model perturbations in 3D isotropic media. However, none of these studies

investigate anisotropic scenarios.

In this study, we extend the work of Oren and Shragge (2021a) to demonstrate that

the PS energy imaging condition handles arbitrary transversely isotropic (TI) media and

exhibits increased sensitivity to perturbations in anisotropy parameters compared to the en-

ergy imaging condition. We begin by summarizing the 3D anisotropic elastic wave equation

along with the extended imaging conditions used in the TRI step. Next, we briefly present

the key characteristics of the 3D SEAM Barrett Unconventional model (Regone et al., 2017)

used in our sensitivity analysis. We then show how these imaging conditions can handle var-

ious TI symmetries, including VTI, HTI (transversely isotropic with a horizontal symmetry

axis), and ORT (orthorhombic) when imaging microseismic events with accurate models.

We present a detailed analysis to demonstrate the sensitivity of the image volumes to per-

turbations in anisotropy parameters. We also discuss the error in location estimates inferred

from imaged events for different TI symmetries to highlight the potential consequences of

ignoring anisotropy during elastic TRI. By doing so, we show that PS energy images ex-

hibit increased sensitivity to anisotropy parameter variations compared to energy images, an

observation with important implications for multiparameter image-domain model building.

Finally, we discuss the prospectus of undertaking such an analysis in terms of a microseismic

image-domain anisotropic tomography considering the sensitivity of each parameter.

3.2 Theory

This section presents the elastic wave equations used in TRI, as well as various passive

imaging methods including the extended energy (Rocha et al., 2019) and PS energy (Oren

and Shragge, 2021a) imaging conditions applied for extracting the event location using mul-

ticomponent microseismic data. Readers unfamiliar with the TRI process or who seek more

detailed information are also referred to existing literature (Artman et al., 2010; Gajewski

and Tessmer, 2005; Nakata and Beroza, 2016; Oren and Shragge, 2021a; Witten and Shragge,
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2015).

3.3 3D elastic wave equation

Assuming linear elasticity, we consider the 3D anisotropic elastic wave equation

ρ üi = ∂j(cijkl∂kul +mij), (3.1)

where ui(x, t) is the displacement field as a function of space x and time t, ρ(x) is the medium

density, cijkl(x) is the fourth-rank stiffness tensor, and mij(x, t) is the seismic moment tensor

source acting as a stress perturbation (Backus and Mulcahy, 1976a,b; Moczo et al., 2014).

The two superscript dots on üi(x, t) indicate second-order time differentiation, and ∂j is the

spatial derivative in the jth direction. We assume Cartesian geometry in which the x−, y−,

and z−axes are respectively expressed by indices i = 1, 2, 3, and we use summation notation

for repeated indices.

A displacement field ui(x, t) computed via numerical implementation of equation 3.1 can

be extrapolated forward and backward in time between the window start and end times,

t = [0, T ] s, given the spatial distribution of the stiffness tensor cijkl(x). In this paper, we

represent the earth model in terms of Thomsen (1986) parameters. In the ensuing numerical

experiments, we use a moment-tensor source mij to create realistic source configurations.

Equation 3.1 is derived from two key relationships. The first is a linear constitutive

relation describing the elastic material properties through the stiffness tensor cijkl(x)

σij = cijkl εkl +mij, (3.2)

which relates the strain tensor εkl(x, t) to the Cauchy stress tensor σij(x, t). The second is

infinitesimal displacements (‖ε‖ � 1), which leads to a linear relationship between displace-

ment field ui(x, t) and strain tensor εkl(x, t)

εkl =
1

2

(
∂kul + ∂luk

)
. (3.3)
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3.3.1 Extended energy imaging condition

To address a number of issues noted by numerous authors about the conventional cross-

correlation imaging condition (e.g., wave-mode decomposition, generation of nodal planes

at estimated source locations), Rocha et al. (2019) introduce two extended energy imaging

conditions that result in scalar images:

IEN+/−(x,λλλ) =

∫ tmax

tmin

(
ρ(x + λλλ) u̇i(x + λλλ, t) u̇i(x− λλλ, t)± σij(x + λλλ, t) εij(x− λλλ, t)

)
dt,

(3.4)

where λλλ = (λx, λy, λz) is the vector space-lag extension. A zero-lag imaging condition is thus

a special case of the extended imaging condition where images are only computed at λλλ =

(0, 0, 0) m. A 3D space-lag extended image generally ranges over a volume of (2Nλx+1, 2Nλy+

1, 2Nλz + 1) spatial points, where Nλi is the number of positive lag shifts in the ith direction.

As described by Oren and Shragge (2021a), one may mitigate further imaging artifacts (i.e.,

spurious wave-mode correlations) that contaminate zero-lag images by applying an imaging

condition within a time window t = [tmin, tmax] that brackets the true event initiation time,

which is narrower than the original window length of the input microseismic data. Therefore,

a practical implementation of the integral evaluation in equation 3.4 starts from a designated

maximum time (tmax < T s) and progresses backward in time to a designated minimum time

(tmin > 0 s).

Energy image IEN+ corresponds to the temporal integration of the total energy of the

wavefield kinetic and potential energy terms (Hamiltonian operator), whereas IEN− is related

to a differential energy measure (Lagrangian operator) (Ben-Menahem and Singh, 1981).

The subtraction operation between the kinetic and potential terms enables one to attenuate

low-wavenumber artifacts in the resulting energy images (Rocha et al., 2019).
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3.3.2 Extended PS energy imaging condition

Due to the minimal sensitivity of the extended energy imaging condition to the model

errors, Oren and Shragge (2021a) propose two related extended PS energy imaging condi-

tions:

Iαβ+/−(x,λλλ) =

∫ tmax

tmin

(
2ρ(x + λλλ) u̇αi (x + λλλ, t) u̇βi (x− λλλ, t)

± σαij(x + λλλ, t) εβij(x− λλλ, t)± σ
β
ij(x + λλλ, t) εαij(x− λλλ, t)

)
dt, α, β = P, S,

(3.5)

where one injects the direct P- and S-wave arrivals separated beforehand through a straight-

forward hyperbolic time muting in the data domain. This procedure is followed by the

individual backpropagation of separated P- and S-wave modes using the elastic wave equa-

tion (equation 3.1). Although α and β generally respectively represent P- and/or S-wave

modes, we use different wave modes for α and β (i.e., α 6= β) to form PS energy images for

the remainder of the paper.

In the following numerical examples, we compute Hamiltonian PS energy images Iαβ+ that

exhibit enhanced focusing relative to its Lagrangian counterpart Iαβ− (Oren and Shragge,

2021a). For (extended) energy images, though, we use the Lagrangian energy images IEN−

that are free of low-wavenumber artifacts and generate superior event image focusing relative

to the Hamiltonian formulation (Rocha et al., 2019).

3.4 The Barrett unconventional model

The Barrett unconventional model was designed to represent shale reservoirs in a North

America midcontinent basin during SEG Advanced Modeling (SEAM) Phase II (Regone

et al., 2017). The Barrett model represents a land seismic scenario constructed based on

the geology of the Arkoma Basin, which covers a number of shale plays and expands from

eastern Arkansas to western Oklahoma (Houseknecht et al., 2014). The reservoir region of

the model is located approximately between 2.5 - 3.3 km in depth and consists of two shale

layers detached by thick chalk units. The geology of the upper and lower shale reservoir layers
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represent the Woodford and Eagle Ford plays in Oklahoma and Texas, respectively, while

the thick chalk layers in between these shale units are characteristic of the Austin Chalk

and Buda Limestone formations (Regone et al., 2017). The model also includes complex

geologic features such as meandering stream channels and faults. Our parameterization

of TI symmetries uses Thomsen (1986) notation [VP0, VS0, ε, δ, γ]. Figure 3.1a-Figure 3.1c

depicts the vertical P- and S-wave velocities along with the density model [VP0, VS0, ρ] as

the background medium parameters where all of the complex aforementioned geological

structures can be observed.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.1 The Barrett Unconventional model: Vertical (a) P- and (b) S-wave velocity,
and (c) density model components; anisotropy coefficients (d) ε(1), (e) δ(1), and (f) γ(1)

along the [y, z]-symmetry plane for VTI media, and (g) ε(2), (h) δ(2), and (i) γ(2) along the
[x, z]-symmetry plane for HTI media. The azimuthal angle defined for the original HTI
model is set to 0◦ in our numerical experiments.

The Barrett model was designed to let users choose from two types of transverse isotropy,

VTI and HTI, where the combination of these two models leads to ORT anisotropy (Regone
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et al., 2017). The anisotropy coefficients [ε(1), δ(1), γ(1)] for VTI media are described with

linear trends with depth (Figure 3.1d-Figure 3.1f) while the anisotropy coefficients [ε(2), δ(2),

γ(2)] for HTI media are set to constant values for outside the shale reservoirs and are specified

independently within the two shale layers (Figure 3.1d-Figure 3.1f). The azimuthal angle,

set to 0◦ in our numerical experiments, is the HTI model parameter specifying the spatial

orientation of the symmetry axis. We also increase the magnitude of the HTI anisotropy

model parameters by scaling the original parameters by a factor of two to make them com-

parable with the VTI parameters. Note that Figure 3.1d-Figure 3.1f presents the scaled HTI

model. Finally, combining the VTI and HTI models creates an ORT model that uses six

anisotropy coefficients [ε(1), δ(1), γ(1), ε(2), δ(2), γ(2)] in addition to [VP0, VS0] (Tsvankin, 1997,

2012). (We note that δ(3) is not included in the SEAM Barrett model.) In the following

numerical experiments, we independently use the VTI, HTI, and ORT models in the imaging

tests to examine the sensitivity of the TRI procedure and the resulting images to the various

anisotropy parameters.

3.5 Numerical examples

In our numerical experiments, we use 3D anisotropic elastic forward and adjoint (time-

reverse) propagators designed using a stress-displacement formulation on a singly staggered

grid (SSG). The propagators are based on finite-difference time-domain (FDTD) solutions

of the elastic wave equation with a second-order temporal and an eighth-order spatial accu-

racy stencil that use a graphics processing unit (GPU)-based architecture to accelerate the

computation (Weiss and Shragge, 2013).

The original dimensions of the Barrett model are [Nx, Ny, Nz] = [400, 400, 600] grid points

at spatial increments of [∆x,∆y,∆z] = [0.025, 0.025, 0.00625] km. Forward-modeled micro-

seismic data are recorded at a surface acquisition geometry extracted from a field exper-

iment (Witten and Shragge, 2017b). The receiver array includes 192 non-uniformly dis-

tributed 3C multicomponent receivers covering an approximately 6 × 6 km2 area with a

390 m nominal inline and crossline spacing (see Figure 3.2). To make our receiver configura-
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tion consistent with the Barrett model, we reduce the size of the original model by selecting

every other sample and interpolating it in the lateral spatial dimensions. After this mod-

ification, the model has [Nx, Ny, Nz] = [200, 200, 300] grid points at spatial increments of

[∆x,∆y,∆z] = [0.03, 0.03, 0.0125] km.

Figure 3.2 Illustration of receiver geometry employed in the numerical experiments. The
red dots indicate the locations of the multicomponent receivers deployed at the surface.

We generate a hypothetical microseismic source located at the lower reservoir level

[x, y, z] = [3.0, 3.0, 3.2] km using a 25 Hz Ricker wavelet and a ∆t = 1 ms time sampling.

We use a moment tensor source (mij in equation 3.1) oriented at 45o with respect to the

horizontal axis with nonzero stress components of mxx=−1 and mzz=1. With this numeri-

cal setup, we perform 3D forward modeling using Nt=2400 time steps with no free-surface

boundary condition applied. The runtime for the 3D anisotropic elastic forward modeling is

about 60 s on a single NVIDIA V100 GPU card.

3.5.1 Experiment 1: Anisotropic TRI for different model parameterizations

Our first numerical experiment investigates the anisotropic TRI results generated by

applying the (extended) PS energy and energy imaging conditions (equations 3.5 and 3.4)

to confirm that they generate well-focused event images in anisotropic media under correct

conditions. We first perform 3D elastic forward modeling to generate the microseismic data

42



on the sparse receiver grid. This step is followed by injecting and backpropagating the

recorded data as well as evaluating the imaging conditions given in equations 3.4 and 3.5

at each time step. As previously indicated, the following anisotropic TRI experiments are

conducted in VTI, HTI, and ORT media that are respectively characterized by the anisotropy

parameters [VP0, VS0, ε
(1), δ(1), γ(1)], [VP0, VS0, ε

(2), δ(2), γ(2)], and [VP0, VS0, ε
(1), δ(1), γ(1), ε(2),

δ(2), γ(2)] shown in Figure 3.1.

Figure 3.3 presents the zero-lag PS energy and energy images constructed in VTI, HTI,

and ORT media. For improved visualization, we display close-up sections from the original

image volumes. Using the correct models in the TRI procedure, both imaging conditions

accurately handle the existing anisotropy and yield strong coherently focused energy at the

true source location, which is indicated by the intersecting cross-hair lines on the 3D image

panels. The results show that while the PS energy images produce a positive peak amplitude

at the correct source location, the energy images generate a negative peak amplitude. The

energy images exhibit a negative peak amplitude at the true source coordinates as a result of

the subtraction procedure in equation 3.4 applied to attenuate the low-wavenumber artifacts.

For HTI and ORT media, we also note that the elastic TRI procedure using either imaging

condition accounts for the complex S-wave splitting phenomena after time-reversing the

wavefield through accurate anisotropy models (Alford, 1986; Crampin, 1985). Because the

source initiation time is known for these synthetic examples, we compute the zero-lag images

in the time window [tmin, tmax] = [0, 0.15] s. We also apply a 40-sample cosine taper to the

partial images along the edges of the time window to further enhance the S/N of the resulting

stacked image.

Figure 3.4 shows the 3D EIC gathers computed with the PS energy and energy imag-

ing conditions. Each EIC gather is evaluated at the true source location that respectively

corresponds to the maximum and minimum amplitude points of the zero-lag PS energy and

energy images shown in the corresponding panels of Figure 3.3. Because the TRI procedure

in this experiment uses the correct anisotropic models, the EIC gathers exhibit energy that

43



is well-focused at zero lag, though with slightly differing amplitudes.

This experiment illustrates that both the PS energy and energy imaging conditions can

handle anisotropy due to the explicit dependence on cijkl in the formulations. Because of the

challenges of robustly estimating anisotropic model parameters, though, TRI is routinely

performed by simply making an isotropic media assumption. Hence, it is important to

examine the effects of such erroneous model assumptions on the resulting event images.

(a) (b) (c)

(d) (e) (f)

Figure 3.3 Close-up sections of the 3D elastic zero-lag (a)-(c) PS energy and (d)-(f) energy
images computed in (a) and (d) VTI, (b) and (e) HTI, and (c) and (f) ORT media. The
intersecting cross-hair lines denote the true source location, which corresponds to the
maximum image focus for all cases. Both imaging conditions accurately handle the existing
anisotropy and produce a focused peak at the correct source location.
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(a) (b) (c)

(d) (e) (f)

Figure 3.4 3D space-lag (a)-(c) PS energy and (d)-(f) energy EIC gathers for (a) and (d)
VTI, (b) and (e) HTI, and (c) and (f) ORT media. We evaluate the EIC gathers at the
maximum amplitude point, which corresponds to the true source location for all cases. The
energy is well-focused at zero lag for all extended images due to the correct models used in
the elastic TRI process.

3.5.2 Experiment 2: Isotropic TRI of anisotropic microseismic data

This experiment analyzes the consequences of using an isotropic TRI operator for the

anisotropic 3C microseismic data forward modeled in VTI, HTI, and ORT media, with the

goal of understanding the characteristic moveout and sensitivity of imaged events when

ignoring anisotropy during the TRI process. For the isotropic TRI, we use the vertical P-

and S-wave velocity and density models [VP0, VS0, ρ] shown in Figure 3.1a-Figure 3.1c as the

background isotropic medium parameters [VP , VS, ρ].
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We begin by investigating the sensitivity of the PS energy and energy imaging results to

the isotropic TRI of the VTI microseismic data. Figure 3.5a and Figure 3.5d respectively

present the zero-lag PS energy and energy images. The zero-lag PS energy image exhibits

increased sensitivity (i.e., greater defocusing and event mislocation) to the erroneous isotropic

TRI operator compared to the relatively better focused zero-lag energy image. Similarly,

the corresponding PS energy EIC gather (Figure 3.6a) evaluated at the maximum amplitude

point of the zero-lag image shows greater sensitivity to the incorrect isotropic TRI operator

compared to the corresponding energy EIC gather volume (Figure 3.6d) that we evaluate

at the negative peak amplitude point of the zero-lag energy image. In particular, the focal

maximum of the extended PS energy image separates from zero lag in the λz-axis while

the energy about zero lag of the energy EIC gather slightly spreads out along the λz- and

λy-axes. In contrast to less sensitive imaging conditions that can yield a wavefield focus at

an incorrect event location, this increased sensitivity of the PS energy imaging condition

can be exploited to generate refined anisotropic models through image-domain inversion and

thereby reduce the event location uncertainty present due to model-induced misfocusing and

associated event location errors.

We also examine the sensitivity of both imaging conditions to the isotropic TRI of the HTI

microseismic data. Similar to the isotropic imaging of the VTI data experiment, the focusing

of the zero-lag and extended PS energy images (Figure 3.5b and Figure 3.6b) appears to be

distorted more dramatically than the energy images (Figure 3.5e and Figure 3.6e). Because

the magnitude of the anisotropy of the HTI model is slightly stronger than that of the VTI

model for the most part, we observe that PS energy images inherently exhibit a higher degree

of misfocusing.

Lastly, we conduct the same experiment for ORT media where the resulting zero-lag PS

energy and energy images (Figure 3.5c and Figure 3.5f) appear quite distorted and behave

similarly with respect to an inaccurate isotropic assumption during the TRI step. Again,

the PS energy EIC gather (Figure 3.6c) shows a result similar to the energy EIC gather
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(Figure 3.6f), with energy highly distorted throughout the image volumes. As one may

expect, the isotropic imaging of ORT data produces more distorted results compared to the

VTI and HTI models due to its more complex parameterization and compounded effects of

the two anisotropy models.

(a) (b) (c)

(d) (e) (f)

Figure 3.5 3D zero-lag images constructed using the (a)-(c) PS energy and (d)-(f) energy
imaging conditions. The source images are obtained by the isotropic TRI of the (a) and (d)
VTI, (b) and (e) HTI, and (c) and (f) ORT microseismic data. Compared to the energy
images, the PS energy images have increased sensitivity with respect to the incorrect
isotropic TRI operator.

The PS energy image in Figure 3.5a is less noisy compared to those presented in Fig-

ure 3.5b and Figure 3.5c, which we attribute to the time-reversal accuracy of the backprop-

agated VTI data being mostly controlled by the true vertical velocities used in the TRI

process. The anisotropy coefficients [ε(1), δ(1), γ(1)] neglected in the isotropic migration of the

VTI data, though, lead to a bulk shift of the imaged event from the true source location.

47



Furthermore, despite ignoring the [ε(2), δ(2), γ(2)] anisotropy parameters in the HTI imaging

process, the energy image in Figure 3.5e exhibits a clear focus at the source location. Thus,

this image seems to be the most ideal among the other energy images in Figure 3.5d and

Figure 3.5f, which we attribute to imaging with the correct models in the HTI isotropy plane.

(a) (b) (c)

(d) (e) (f)

Figure 3.6 3D EIC gathers constructed through the (a)-(c) PS energy and (d)-(f) energy
imaging conditions. The EIC gathers are obtained by the isotropic TRI of the (a) and (d)
VTI, (b) and (e) HTI, and (c) and (f) ORT microseismic data and are evaluated at the
maximum and minimum amplitude points of the zero-lag PS energy and energy images in
Figure 3.5, respectively. The PS energy EIC gathers exhibit more interpretable moveout
patterns as opposed to the energy EIC gathers showing minimal sensitivity particularly for
VTI and HTI media.

This experiment shows that the incorrect isotropic media assumption in the TRI process

leads to visible distortions on the imaged events. Also, both imaging conditions exhibit

complementary sensitivity attributes for different types of TI symmetries. However, using

48



the enhanced sensitivity of PS energy images, quantifying the location errors of estimated

source locations can provide further insights into the anisotropic effects of different TI media

on the microseismic imaging process.

3.5.3 Experiment 3: Event location errors when ignoring anisotropy

Our third experiment examines the event location errors estimated from the zero-lag PS

energy images when using the correct and incorrect models for microseismic data modeled

in VTI, HTI, and ORT media. The event location estimations are calculated based on the

peak positive amplitude of imaged events. As in Experiment 2, when building the incorrect

model, we assume isotropic media for TRI and examine the misposition error based on the

Euclidean distance metric between the estimated and true source positions. The experiment

involves 16 microseismic events covering a uniform 4× 4 spatial grid at the reservoir interval

(z=3.2 km). The events are located at a starting point of [x, y, z] = [1.5, 1.5, 3.2] km with a

1 km incremental grid spacing in the x− and y− directions.

Figure 3.7 displays a crossplot of event location errors estimated by elastic TRI of VTI,

HTI, and ORT data when using the correct and incorrect models as shown on the hor-

izontal and vertical axes, respectively. Due to the relatively coarse model grid spacing,

[∆x,∆y,∆z] = [0.03, 0.03, 0.0125] km, and irregular and sparse surface acquisition, the

source locations estimated using the correct models can deviate from the true locations

by up to 50 m, which corresponds to a few image pixels. Except for the two location er-

rors greater than 500 m, the errors computed when using the isotropic model to image the

HTI data are scattered around 100 m and appear to be the least affected by the incorrect

model assumption among the three cases due to using the correct parameters for waves

propagating within the HTI model isotropy plane. The errors calculated in VTI media fall

between 130− 180 m and are slightly less accurate than the HTI media results. Finally, due

to the combined distortions in parameters [ε(1), δ(1), ε(2), δ(2)], the location errors in ORT

media are typically 500 − 750 m, which represents a substantial degradation compared to

the VTI and HTI media results. (The sensitivity to γ parameter perturbations is examined
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in the following experiment.) This suggests that even though the VTI parameters of the

formation are well constrained, the presence of HTI anisotropy (i.e., vertical fractures) could

cause significant event mispositioning errors, even for models with relatively straightforward

geological structures.

This experiment illustrates the sensitivity of zero-lag PS energy images by examining

event location errors that vary depending on the type and magnitude of TI anisotropy.

Overall, the highlighted sensitivity of PS energy images motivates us to perform further

analysis. In particular, we investigate whether this imaging approach has sufficient sensitivity

with respect to perturbations in anisotropy parameters that may be useful for anisotropic

model quality control as well as computing accurate tomographic updates through image-

domain inversion.

Figure 3.7 Crossplot of event location errors estimated by elastic TRI using the PS energy
imaging condition with respect to (wrt) the correct and incorrect (isotropic media
assumption) models for microseismic data modeled in VTI (red stars), HTI (blue stars),
and ORT (green stars) media. The combination of VTI and HTI model errors generates
significantly more location errors in the ORT scenario than those caused by VTI and HTI
model errors alone.
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3.5.4 Experiment 4: Sensitivity to errors in anisotropy parameters

The final experiment investigates the sensitivity of the PS energy images to the erroneous

VTI and HTI model parameters. We create the incorrect models by globally increasing or

decreasing the original anisotropy coefficients [ε(1), δ(1)] and [ε(2), δ(2)] by ±50% for the VTI

and HTI media experiments, respectively. This creates nine different model scenarios, only

one of which is correct. In addition, because Oren and Shragge (2021a) already perform a

detailed sensitivity analysis for TRI results with respect to velocity inaccuracy, we do not

perturb the P- and S-wave vertical velocities [VP0, VS0] in this experiment.

Figure 3.8 displays the zero-lag PS energy images computed with the perturbed anisotropy

parameters [ε(1), δ(1)] in VTI media. In general, the TRI results show that the erroneous ε(1)

models lead to greater amount of misfocused energy on the PS energy images relative to

the erroneous δ(1) scenarios. Similarly, the corresponding extended PS energy images in

Figure 3.9 exhibit noticeable defocusing along with interpretable moveout patterns due to

the errors in [ε(1), δ(1)].

Figure 3.10 shows the zero-lag PS energy images calculated using the perturbed anisotropy

coefficients [ε(2), δ(2)] in HTI media. Similar to the previous analysis in VTI media, pertur-

bations in ε(2) typically lead to more noticeable defocusing in the TRI results compared to

those in δ(2). Figure 3.11 depicts the associated extended PS energy images generally fea-

turing more distinguishable over- and under-migration tails about zero lag compared to the

VTI results in Figure 3.9.

We also demonstrate that zero-lag and extended PS energy images show almost no sen-

sitivity to perturbations in [γ(1), γ(2)] in VTI and HTI media for the Barrett model. Similar

to the previous analyses, we create incorrect models by globally increasing or decreasing

the original γ(1) and γ(2) parameters by ±50% for the VTI and HTI experiments, respec-

tively. Prior to presenting the imaging results, we first analyze the forward modeled data

generated with the true and perturbed models. Because [γ(1), γ(2)] are mainly responsible for

the S-wave kinematic signatures, we pick the S-wave arrival times based on their maximum
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amplitudes on the x-component. Figure 3.12a presents the modeling results for VTI media

where the difference between the picked arrival times at near offsets is negligible, whereas

relatively minor time shifts occur and tend to gradually increase from mid-to-far offsets due

to the perturbed γ(1). Thus, because there are minimal traveltime differences in the data,

one should expect limited sensitivity in the image domain. Moreover, Figure 3.12b shows the

S-wave arrival times calculated in HTI media where the kinematic signatures observed are

mostly identical, and exhibit less variation at mid-to-far offsets compared to the VTI case.

We attribute this to the γ(2) model (Figure 3.1i) exhibiting lower magnitude of anisotropy

relative to γ(1) (Figure 3.1f).

Figure 3.13a and Figure 3.13b shows the zero-lag PS energy images computed with the

±50% perturbed γ(1) parameter in VTI media. Despite being considerable perturbations,

the resulting images still preserve the focusing at the true event location. The PS energy

EIC gathers in Figure 3.13e and Figure 3.13f similarly feature energy well-focused at zero

lag. Figure 3.13c and Figure 3.13d display the zero-lag PS energy images constructed using

the ±50% perturbed γ(2) parameter in HTI media. Similar to the VTI experiment, the

errors in γ(2) appear to not influence the energy focusing at the correct source location.

The corresponding PS energy EIC gathers in Figure 3.13g and Figure 3.13h still exhibit

focused energy at zero lag. Overall, the forward modeling and imaging results are inherently

correlated and consistent with the interpretation of minimal sensitivity to the γ parameters.

Unlike the sensitivity results with respect to the parameters [ε(1), δ(1), ε(2), δ(2)] presented

earlier in this section, the insensitivity to perturbations in [γ(1), γ(2)] for VTI and HTI media

suggests that they are not useful as a diagnostic for model error and would be inappropriate

to include in an anisotropy parameterization for image-domain anisotropic model building.

However, it is critical to highlight that these observations of insensitivity may be specific to

the Barrett Unconventional model and the surface modeling parameters (e.g., magnitude of

anisotropy, source and receiver configuration, and aperture angles) used in this numerical

study to generate the sensitivity results.
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3.6 Discussion

Determining the time window parameters [tmin, tmax] through trial and error based on

the image focusing quality could be problematic particularly for field investigations due to

the unknown origin time of real events. However, for both synthetic and field investigations,

one can consider at least two different approaches (other than trial and error) for designing

the time windows. First, one could apply the imaging condition only after injecting the

earliest arrival of energy from a microseismic event. This is because there is no benefit

in evaluating the imaging condition before all of the energy associated with the event has

been injected. One could further hold off applying the imaging condition until the apex

of the time-reversed P-wavefield energy has reached a user-defined minimum depth. Thus,

examining the earliest arrival time of an event could be a useful step to reduce the uncertainty

of window lengths. Second, one could investigate the time interval when the backpropagated

P and/or S wavefields collapse back to and exit from a focus. One could stop the time-reverse

simulation, start moving forward in time, and begin applying the imaging condition over the

temporal range of focusing.

The numerical experiments presented herein demonstrate that one may infer information

about the anisotropy model parameter accuracy using the PS energy imaging condition.

The sensitivity analysis results show that the focusing in the (extended) PS energy images

is not only influenced by the vertical P- and S-wave velocities (Oren and Shragge, 2021a),

but also by the anisotropy coefficients [ε, δ] in different TI symmetries. The Barrett model

results demonstrate that the moveout sensitivity of ε on microseismic event images is slightly

greater than that of δ, while the combination of ε and δ errors can lead to the more complex

defocusing patterns observed in Figure 3.9 and Figure 3.11. In addition, it is likely judicious

to consider excluding γ in an inversion model parameterization due to the lack of sensitivity

to this parameter in the TRI process. However, the influence of γ may be more significant

than the presented analysis results based on the Barrett model depending on a particular

model’s degree of anisotropy, source and receiver configuration, and resulting aperture angles.
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Overall, the extended PS energy imaging condition appears as a suitable candidate for

anisotropic inversion algorithms to generate accurate 3D anisotropic models. Our anisotropic

sensitivity analysis provides a qualitative measure in terms of determining a prospectus for

inversion parameterization. Such an inversion procedure can lead to more robust model

parameter recovery, which in turn could yield more accurate source location estimates from

TRI analyses.

3.7 Conclusions

We present a sensitivity analysis study of the anisotropy signature in zero-lag and ex-

tended PS energy and energy images for VTI, HTI, and ORT models. Using the realistic

SEAM Barrett Unconventional model, we analyze the two imaging conditions using the ac-

curate and inaccurate models to test their sensitivity to anisotropy parameters. The TRI

results show that the PS energy imaging condition generates results that exhibit greater

sensitivity to anisotropy model parameters relative to its energy imaging condition counter-

part. The PS energy images feature a range of complementary moveout patterns caused by

different perturbations to anisotropy parameters. The event images typically are influenced

by errors in [ε, δ], but exhibit almost no sensitivity to γ. We also quantify event location

errors for the aforementioned TI symmetries by making an isotropic media assumption in

imaging. While we observe similar event location errors in the Barrett model for VTI and

HTI media, these errors are more significant for ORT media. We assert that the sensi-

tivity observed on the extended PS energy images is useful for evaluating the accuracy of

the anisotropy model accuracy within the concept of 3D image-domain anisotropic elastic

inversion of passive seismic data.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.8 Zero-lag PS energy images with incorrect anisotropy parameters in VTI media.
Top, middle and bottom rows correspond to -50%, 0%, +50% global perturbations in the
ε(1) parameter. Left, middle and right columns correspond to -50%, 0%, +50% global
perturbations in the δ(1) parameter. Note the unfocused events with respect to the focused
energy in (e), which is obtained with the correct anisotropy parameters.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.9 PS Energy EIC gathers corresponding to those presented in Figure 3.8. PS
Energy EIC gathers are evaluated at the maximum amplitude point of the related zero-lag
energy images in Figure 3.8.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.10 Zero-lag PS energy images with incorrect anisotropy parameters in HTI
media. Top, middle and bottom rows correspond to -50%, 0%, +50% global perturbations
in the ε(2) parameter. Left, middle and right columns correspond to -50%, 0%, +50%
global perturbations in the δ(2) parameter. Note the unfocused events with respect to the
focused energy in (e), which is obtained with the correct anisotropy parameters.

58



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.11 PS Energy EIC gathers corresponding to those presented in Figure 3.10. PS
Energy EIC gathers are evaluated at the maximum amplitude point of the related zero-lag
energy images in Figure 3.10.
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(a)

(b)

Figure 3.12 S-wave arrival times picked from the simulated ux component of 3C
microseismic data for (a) VTI and (b) HTI media. Blue curves denote the arrival times
calculated using the original [γ(1), γ(2)] while red and green curves show the arrival times
computed with −50% and +50% perturbed [γ(1), γ(2)], respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.13 (a)-(d) 3D zero-lag and (e)-(h) extended PS energy images constructed with
±50% global perturbations in [γ(1), γ(2)] for VTI and HTI media. The images in (a) and (e)
and (b) and (f) respectively correspond to −50% and +50% perturbed γ(1) parameter in
VTI media whereas the images in (c) and (g) and (d) and (h) respectively correspond to
the −50% and +50% perturbed γ(2) parameter in HTI media. A comparison between these
images with those in Figure 3.3a and Figure 3.3b and Figure 3.4a and Figure 3.4b
illustrates that PS energy images exhibit almost no sensitivity to [γ(1), γ(2)] model errors.
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CHAPTER 4

PASSIVE-SEISMIC IMAGE-DOMAIN ELASTIC WAVEFIELD TOMOGRAPHY

A paper published1 in Geophysical Journal International

Can Oren2,3,4, Jeffrey Shragge4

Elastic time-reverse imaging offers a robust wavefield-based approach for locating mi-

croseismic events; however, event location accuracy greatly depends on the veracity of the

elastic velocity models (i.e., VP and VS) used for wave propagation. In this study, we propose

a methodology for microseismic image-domain wavefield tomography using the elastic wave

equation and zero-lag and extended source images, the focusing of which is used as a quality

control metric for velocity models. The objective function is designed to measure the focusing

of time-reversed microseismic energy in zero-lag and extended event images. The function

applies penalty operators to source images to highlight poorly focused residual energy caused

by backpropagation through erroneous velocity models. Minimizing the objective function

leads to a model optimization problem aimed at improving the image-focusing quality. P-

and S-wave velocity model updates are computed using the adjoint-state method and build

on the zero-lag and extended image residuals that satisfy the differential semblance optimiza-

tion criterion. Synthetic experiments demonstrate that one can construct accurate elastic

velocity models using the proposed method, which can significantly improve the focusing of

imaged events leading to, e.g., enhanced fluid-injection programs.

4.1 Introduction

Understanding the distribution and properties of passive sources is one of the main ob-

jectives in seismic monitoring at a variety of different scales. In unconventional oil and gas

1Reprinted with permission of Geophysical Journal International, 2022, 228(3), 1512–1529
2Primary researcher and author.
3Author for correspondence
4Graduate student and Associate Professor, respectively, Center for Wave Phenomena, Colorado School of
Mines, Golden, Colorado, USA.

62



fields, inferring the locations and mechanisms of (micro-) earthquakes caused by induced or

triggered seismicity is crucial for evaluating the success and safety of fluid injection programs

such as hydraulic fracturing and waste-water disposal (Maxwell and Urbancic, 2001). Ac-

curate event locations provide useful information when characterizing fracture lengths and

heights for hydraulic stimulation as well as analyzing reservoir stress change and potential

hazards (Maxwell, 2014; Weingarten et al., 2015). Similarly, at regional and global scales, ac-

curately determining event hypocenters is of particular interest to many geoscientists looking

to gain better insight into the spatio-temporal characteristics of faults and their potentially

devastating effects (Kiser and Ishii, 2017).

A traditional approach for locating (micro-) earthquakes is based on picking the P- and

S-wave arrivals. Given VP and VS velocity models, the arrival picks can then be inverted

to estimate the spatial location of the recorded event. However, the arrival time informa-

tion can also be used for tomographic updates to improve velocity models. For instance, the

double-difference method commonly used in earthquake seismology relies on traveltime differ-

ences between pairs of events or stations to find optimal velocity models and event locations

(Waldhauser and Ellsworth, 2000; Zhang and Thurber, 2003). In microseismic monitoring,

first-break traveltime tomography is commonly used to calibrate isotropic/anisotropic veloc-

ity models along raypaths between perforation shots with known spatial and temporal origin

and downhole receiver arrays (Bardainne and Gaucher, 2010; Grechka and Yaskevich, 2013).

The success of these phase-based picking approaches is, though, heavily dependent on the

robustness of arrival picking process, which is a challenging task for low signal-to-noise ratio

(S/N) data.

Alternatively, migration-based event location algorithms have been widely used for pas-

sive source scenarios. Like pick-based methods, Kirchhoff-migration techniques require com-

puting ray-traced traveltimes from each candidate event location in the velocity model to

each receiver (Baker et al., 2005; Kao and Shan, 2004). The data are then stacked across

traveltime trajectories and over source origin times within a moving Gaussian window to
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find the maximum stack power, which is assumed to represent the event location. Although

Kirchhoff techniques are computationally efficient, they struggle for noisy data scenarios,

which can affect the accuracy of the stack power by shifting the maximum stack in time

and/or space analogous to the aforementioned methods. Moreover, ray-based methods typ-

ically rely on simplifying assumptions (e.g., infinite frequency approximation) and thereby

have limited ability to handle complex subsurface models (e.g., neglecting multipathing).

Full-wavefield time-reverse imaging (TRI) techniques are a second type of migration ap-

proach that recently have gained popularity (Artman et al., 2010; Chambers et al., 2014;

Douma and Snieder, 2015; Gajewski and Tessmer, 2005; Nakata and Beroza, 2016; Oren and

Shragge, 2021a; Rocha et al., 2019; Witten and Shragge, 2015). By solving the acoustic or

elastic wave equation, this class of imaging methods accurately handles wave propagation

through complex models, and offers numerous imaging conditions that stack wavefield en-

ergy over the time axis, ideally obtaining a well-focused event image. However, TRI methods

require computationally expensive wavefield extrapolation as well as accurate velocity mod-

els to obtain reliable event location estimates. In most cases, though, such information is

not available at monitoring sites due to limited well information (e.g., well logs, perf shots)

or other direct or indirect subsurface constraints. This lack of knowledge can lead to inac-

curate velocity models that significantly degrade the accuracy of event location estimates.

Possible failures in such geophysical observations (e.g., inaccurate location estimates) may

comprehensively affect the process of assessing and derisking fluid-injection programs as well

as understanding the cause of seismicity.

In TRI applications, the full-wavefield migration-based imaging process typically involves

two steps: (1) extrapolating recorded microseismic event data in reverse time through sub-

surface velocity models (McMechan, 1982), and (2) evaluating an imaging condition (i.e.,

zero-lag auto/crosscorrelation) that generates a zero-lag image (Artman et al., 2010). If

the subsurface model is satisfactorily accurate and judicious preprocessing is applied to the

recorded event data (e.g., source radiation pattern mitigation windowing and/or noise elim-
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ination), the peak amplitude of the resulting zero-lag image can be inferred as the correct

spatial event location. In such ideal conditions, one can produce complementary PP, SS, and

PS zero-lag images by autocorrelating and crosscorrelating the extrapolated P and S wave-

fields reconstructed from (multicomponent) event data. When these conditions are not met,

though, the zero-lag images exhibit erroneous misfocusing energy at incorrect locations. In

these instances, a notable shortcoming of zero-lag images is that they rarely provide sufficient

information about how to overcome model inaccuracy through velocity updating.

To address the limited sensitivity of zero-lag images to velocity errors, different types of

extended imaging conditions have been proposed that may be useful for updating migration

velocities for passive seismic scenarios (Oren and Shragge, 2021a; Rocha et al., 2019; Witten

and Shragge, 2015). Extended images are an extension of zero-lag images and are calcu-

lated by shifting the extrapolated wavefields in space and/or time relative to each other. In

microseismic context, extended images are typically calculated at the estimated event loca-

tion. Velocity accuracy information can be directly extracted from extended image volumes

by examining whether energy focuses at or away from spatial/temporal zero correlation lag

(Rickett and Sava, 2002; Sava and Fomel, 2006; Sava and Vasconcelos, 2011; Witten and

Shragge, 2015). Given sufficiently accurate elastic velocity models, extended images should

focus at zero lag and the complementary PP, SS, and PS zero-lag images should produce a

focal maximum at the same spatial location due to a self-consistency principle (Witten and

Shragge, 2015). For scenarios where inaccurate models are used, zero-lag images will focus

at an incorrect spatial location, which would yield energy focused at non-zero lags in the

extended domain.

Extended images are successfully used as a quality control tool to update velocity mod-

els using image misfocusing criteria for active and passive seismic surveys (Burdick et al.,

2013; Oren and Shragge, 2020; Shabelansky et al., 2015; Shen and Symes, 2008; Witten and

Shragge, 2017a; Yang and Sava, 2015). Velocity updating can be achieved by differential

semblance optimization (DSO) (Symes and Carazzone, 1991), which is one of the most com-
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mon migration velocity analysis (MVA) model building approaches in exploration seismology.

The principle of DSO is to minimize differences between neighboring lags or angles associated

with a given reflection (Shen and Symes, 2008). In reflection seismology, common-image-

point space- and time-lag gathers are effective at reconstructing P-wave velocity models for

complex geologic structures (Dı́az and Sava, 2017; Yang and Sava, 2015). Similarly, space-

lag common-image-gathers can be constructed through a crosscorrelation-based converted-

phase imaging condition to perform elastic MVA to jointly update P- and S-wave models

(Shabelansky et al., 2015). For microseismic data, Witten and Shragge (2017a) develop a

pseudo-acoustic image-domain inversion method to invert for P- and S-wave velocity models

and successfully apply it to a 3D field data set (Witten and Shragge, 2017b).

There are several advantages of full-wavefield microseismic image-domain tomography

methods. They require neither first-arrival picking nor the origin time of events, which can

be problematic to determine for surface-recorded data exhibiting low S/N. Also, unlike the

recently published full waveform inversion (FWI) approaches (Sun et al., 2016; Wang and

Alkhalifah, 2018), image-domain inversion methods hold less stringent requirements for ini-

tial velocity model accuracy to achieve a successful optimization, and thereby is typically

less sensitive to the well-known FWI cycle-skipping problem. Moreover, image-domain to-

mography methods tend to be less sensitive to noise relative to data-domain methods due to

the enhanced signal-to-noise achieved by effectively stacking the wavefield energy over the

full wavelet and the sensing array through the migration procedure.

In this paper, we present a methodology for computing the isotropic elastic model gra-

dients of an image-domain objective function for surface-recorded microseismic data. To

achieve this goal, we first use the kinetic energy term of the PS energy imaging condition

(Oren and Shragge, 2021a) to form zero-lag and extended source images. We apply several

penalty operators to these images to generate image-domain residuals, which form the basis

of a multiterm objective function. Finally, we use the adjoint-state formalism to form the

gradients and simultaneously invert for P- and S-wave velocity model parameters. Distinct
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from the pseudo-acoustic approach proposed by Witten and Shragge (2017a), our methodol-

ogy is fully elastic and explicitly generalizes to multiparameter anisotropic inversion, though

this extension is not explored here. Compared to its pseudo-acoustic counterpart, the elastic

implementation allows for a more theoretically accurate handling of multicomponent elastic

data and does not require the removal of source radiation pattern as a preprocessing step.

We begin by presenting the imaging condition along with the image-domain penalty

functions, the combination of which forms the multiterm objective function to be mini-

mized. Next, we derive expressions for the elastic model gradients through adjoint-state

tomography (Plessix, 2006). To demonstrate the effectiveness of our inversion methodology,

we present a number of synthetic numerical examples. We first highlight the key ingredients

of the proposed method by estimating smooth background perturbations on 2D velocity

models. We then present a 3D example using a structurally complex earth model with a

realistic source and receiver geometry as a more challenging and “semi-realistic” setting for

estimating elastic model updates. Finally, we conclude with a discussion of the advantages

and shortcomings of the proposed inversion methodology as well as its possible applica-

tions across scales from time-lapse monitoring programs (e.g., carbon capture and storage

projects) to regional/global tomography.

4.2 Theory

The image-domain adjoint-state elastic inversion of microseismic data presented herein

is comprised of an iterative application of the following steps: (1) inject and individually

backpropagate separated multicomponent P- and S-wave data of a single event to recon-

struct the wavefields (state variables) using the elastic wave equation (EWE); (2) apply an

appropriate elastic imaging condition using the backpropagated P and S wavefields to gen-

erate zero-lag and extended source images; (3) evaluate the objective function by summing

the image-domain residuals formed by applying penalty operators to annihilate energy con-

sistently focused amongst the zero-lag images and in the vicinity of zero lag in extended

images; (4) calculate the adjoint-state variable using the residual energy; (5) form the gra-
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dients by correlating the state and adjoint-state variables; (6) use a line-search method to

find an optimal step length to scale the model gradients and determine the magnitude of

the multiparameter model updates; and (7) update the model parameters. We detail each

inversion process step below.

4.2.1 Steps 1 & 2: Elastic time-reverse propagation and imaging

We consider the source-free EWE in a slowly varying isotropic medium in an unbounded

domain:

ü = α̂∇(∇ · u)− β̂∇× (∇× u), (4.1)

where u(x, t) is the displacement field as a function of space (x) and time (t); α̂(x) and β̂(x)

are defined through the P- and S-wave velocities (i.e., VP and VS) as α̂ = V 2
P = (λ+2µ)/ρ and

β̂ = V 2
S = µ/ρ; λ(x), µ(x), and ρ(x) are the two Lamé parameters and density, respectively;

∇, ∇·, and ∇× are the gradient, divergence, and curl operators; and two superscript dots

on the displacement field u denote second-order time differentiation.

To generate microseismic source images from which we derive event location estimates,

we use an elastic TRI procedure involving backpropagating injected P- and S-wave data

components separated beforehand through data-domain preprocessing (Oren and Shragge,

2021a) and applying an imaging condition. Because we consider isotropic elastic inversion in

this study, we find it sufficient to compute zero-lag and extended source images using only

the kinetic energy term of the PS energy imaging condition (Oren and Shragge, 2021a) to

derive the gradient terms:

Iαβ(x,λλλ, e) =

∫ tmax

tmin

ρ(x + λλλ) u̇†α(x + λλλ, t, e) · u̇†β(x− λλλ, t, e) dt, (4.2)

where u̇†α(x, t, e) and u̇†β(x, t, e) approximately represent P- and S-wave particle velocity

fields where the † symbol denotes adjoint; λλλ = (λx, λy, λz) is the vector space-lag exten-

sion (Sava and Vasconcelos, 2011); and e is the event index. The extended imaging con-

dition is described in a generic form and reduces to the zero-lag imaging condition when

68



(λx, λy, λz) = (0, 0, 0) m. Due to the unknown source origin time, the imaging condition in-

volves a summation over time to marginalize the temporal dependence. While equation 4.2

is specific for computing PS crosscorrelation zero-lag and extended images; it can also be

used to generate zero-lag PP and SS autocorrelation images
(

i.e,. Iαα(x, e) and Iββ(x, e)
)

by calculating the dot product of the corresponding adjoint particle velocity field with itself

and summing over time.

To attenuate imaging artifacts (i.e., nonphysical fake modes generated due to incomplete

acquisition of stress components in the injected data and/or truncation wavefronts that are

correlated with the true wave modes (Rocha et al., 2019; Yan and Sava, 2008)) that arise due

to elastic time-reversal wavefield extrapolation, we apply the imaging condition within a time

window t = [tmin, tmax] that is narrower than the original data window t = [0, T ] (Oren and

Shragge, 2021a). Therefore, the integral evaluation in equation 4.2 in practice starts from a

maximum time (tmax < T s) and progresses in reverse time back to a minimum time (tmin ≥

0 s) using the adjoint isotropic EWE operator. Finally, this imaging condition precludes the

costly wave-mode decomposition during backpropagation, which offers an advantage over

its crosscorrelation counterpart outlined in Shabelansky et al. (2015). In the elastic TRI

procedure, we first compute the zero-lag PP, SS, and PS image volumes using the current

velocity models for each event. Because the zero-lag PS image produces higher resolution

results compared to its autocorrelation counterparts, we base our event location estimates

on the spatial location of maximum absolute amplitude of the PS image. The TRI process

is finalized by computing the extended image at the estimated event location. We exclude

the negative values in the extended images, which degrade the image residuals as well as the

gradient computation procedure in practical implementations.
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4.2.2 Step 3: Image-domain residuals and objective function evaluation

For the inversion procedure, we define our multiterm objective function J over all selected

events to be minimized as

J =
1

2

∑
e

∫ [
ε1

∫ λλλ

−λλλ
P 2
λ (λλλ) I2αβ(x,λλλ, e) dλλλ +P 2

αβ(x, e)
(
ε2 I

2
αα(x, e)+ε3 I

2
ββ(x, e)

) ]
dx, (4.3)

where ε1, ε2, and ε3 are scalar weights that determine the relative contribution of each term

in the objective function, and Pλ(λλλ) and Pαβ(x, e) are to-be-specified extended and zero-lag

image-domain penalty operators. These operators are designed to respectively annihilate

the focal energy at and about zero lag and at the estimated event location; whatever energy

remains is considered to be the image-domain residual. A number of different extended

penalty operators have been proposed to serve this purpose (Dı́az and Sava, 2017; Shragge

et al., 2013; Yang and Sava, 2015), but herein we use a Gaussian function centered at zero

lag to penalize the extended image volumes:

Pλ(λλλ) = 1− exp

(
− λ2x

2σ2
x

−
λ2y
2σ2

y

− λ2z
2σ2

z

)
, (4.4)

where σσσ = (σx, σy, σz) controls the variances of the Gaussian function in the shift dimensions.

Because Iαβ(x, e) produces the highest resolution among all the zero-lag images due to the P

and S wavefields backpropagating at different velocities and coexisting over a narrower zone

in space and time, we create the zero-lag penalty operator Pαβ(x, e) based upon Iαβ(x, e) to

measure the inconsistency in the zero-lag autocorrelation images (Shragge et al., 2013):

Pαβ(x, e) = sech

[
w Iαβ(x, e)

max
(
Iαβ(x, e)

)], (4.5)

where w is a dimensionless parameter used to adjust the penalty width. This multiplicative

penalty operator removes the maximum focal energy where the PS and PP or SS zero-lag

images are consistent, and tends to unity elsewhere. The energy remaining in the penalized

images forms the zero-lag image-domain residuals.
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4.2.3 Steps 4 & 5: Adjoint-state variables and gradient computation

We calculate the gradients (sensitivity kernels) of the objective function in equation 4.3

with respect to model parameters α̂ and β̂ (see equation 4.1) by using the perturbation

theory with the goal of obtaining an expression like

δJ =

∫ (
δα̂Kα̂(x) + δβ̂Kβ̂(x)

)
dx, (4.6)

where Kα̂(x) and Kβ̂(x) are the gradients of the objective function, which is perturbed with

respect to the model parameters α̂ and β̂, respectively. Following the adjoint-state method

(Plessix, 2006), we obtain the gradient terms as

Kα̂(x) = −
∑
e

∫ T

0

u†α(x, t, e) · υυυα(x, t, e) dt (4.7)

and

Kβ̂(x) =
∑
e

∫ T

0

u†β(x, t, e) · υυυβ(x, t, e) dt, (4.8)

where υυυα(x, t, e) and υυυβ(x, t, e) denote the P- and S-wave adjoint-state variables, respectively.

As seen in equations 4.7 and 4.8, the gradients are computed by correlating the state and

adjoint-state variables that are calculated using the forward propagation of an adjoint source,

which is a function of backpropagated P- and S-wavefield energy and the penalized zero-lag

and extended images. Appendix A presents the full derivation and definitions of the adjoint-

state variables as well as the gradient terms. In practice, after calculating the individual

gradients for each event, we apply illumination compensation (Warner et al., 2013; Yang

et al., 2013) leading to more accurate results by reducing the artifacts at and around source

locations. This approach requires dividing the gradient by a stabilized measure of the total

adjoint-state wavefield energy. This procedure is followed by the application of a smoothing

operator in both vertical and horizontal directions to the individual gradients, which are

then summed over the selected events.
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4.2.4 Steps 6 & 7: Step length determination and velocity model updating

After calculating the gradients, we determine the final step length through a multiparam-

eter line-search approach (Tang and Ayeni, 2015) based on the gradient-descent optimization

scheme (Nocedal and Wright, 2006). We first search for individual P- and S-wave step lengths

and then perform a second line search along a 2D vector whose components are defined by

the determined individual P- and S-wave step lengths (Witten and Shragge, 2017a). We

then scale the negative of gradients by the final step length to determine the magnitude of

the update and add it to the current velocity model:

mk
i+1 = mk

i − hiKki , k = α̂, β̂, (4.9)

where m is the velocity model, h is the step length, and i is the iteration number. We iterate

the given steps until reaching convergence or meeting a stopping criterion. In the ensuing

numerical experiments, we stop the inversion procedure when the gradient of the objective

function becomes zero or turns positive.

4.3 Numerical Experiments

This section describes two synthetic numerical experiments that illustrate the ability of

the developed method to reconstruct velocity models leading to improved location estimates.

The first numerical experiment presents a 2D example, in which we use elastic velocity mod-

els consisting of a smooth 1D gradient background with Gaussian low and high velocity

anomalies that represent the inversion targets. The second experiment presents a more real-

istic example that includes complex 3D subsurface models with sparse acquisition geometry.

In our experiments, we model microseismic sources using an Ormsby wavelet specified by

the four corner frequencies [f1, f2, f3, f4] = [2, 3, 20, 25] Hz (experiment 1) and a 15 Hz Ricker

wavelet (experiment 2) with events characterized by a moment-tensor stress-source mecha-

nism. In forward modeling, we use a graphics processing unit (GPU)-based finite-difference

time-domain (FDTD) solver with the second-order temporal and eighth-order spatial accu-

racy stencil (Weiss and Shragge, 2013). Our numerical simulations use boundary conditions
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comprised of two cascading operators: the absorbing boundary conditions derived from a

one-way wave equation (Clayton and Enquist, 1977) and an exponential-damping sponge

layer (Cerjan et al., 1985) with no free-surface boundary condition applied.

Using the true velocity models, we first forward model synthetic elastic multicomponent

microseismic data. We run separate simulations to generate the events using double-couple

sources (e.g., non-zero stress components of mxx=−1 and mzz=1) excited at various depths.

Prior to imaging, we separate the direct P- and S-wave arrivals by applying hyperbolic mute

functions to the data (Oren and Shragge, 2021a). We then individually image all events by

following the elastic TRI strategy (equation 4.2) using the inaccurate initial velocity models.

This step is followed by calculating the model gradients for each event and stacking over

all sources to obtain the final results (equations 4.7 and 4.8). Finally, using the iterative

approach described above, we update the velocity models, which are then used in the TRI

procedure to obtain enhanced event locations. To stabilize the gradient computation and

balance the resolution of the resulting gradients, we apply a low-pass filter below 9 Hz and

6 Hz to the P- and S-wave mode data, respectively, prior to the forward and adjoint wavefield

propagations.

4.3.1 Experiment 1: Gradient background model

In the first numerical experiment, we illustrate our method using the P- and S-wave

velocity models shown in Figure 4.1. The models share the same kinematics and include

smooth background P- and S-wave velocities (VP (z) = 3 + z/2 km/s and VS(z) =
√

3 + z/2

km/s shown in Figure 4.1c and Figure 4.1d) along with two Gaussian low and high velocity

variations with maximum and minimum perturbations of ∆VP = ∆VS = ±0.3 km/s visible

in Figure 4.1a and Figure 4.1b. We also use a constant density model of ρ = 2.0 g/cm3.

The numerical setup consists of a computational domain of dimension [Nx, Nz] = [608, 224],

Nt = 5001 time steps, temporal and spatial sampling intervals of ∆t = 0.5 ms and ∆x =

∆z = 0.01 km, respectively. The simulated data are recorded at multicomponent (vertical

and horizontal motions) receivers placed on the surface at each computation grid point
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(∆r = 0.01 km).

(a) (b)

(c) (d)

Figure 4.1 True (a) P- and (b) S-wave velocity models with two Gaussian anomalies in
homogeneous background gradients. Background (c) VP and (d) VS model overlain with
the true (black dots) and initial estimated (white dots) event locations.

Figure 4.2a and Figure 4.2b respectively displays the vertical and horizontal components

of the surface-recorded 2D elastic data simulated from a single event at [x, z] = [2.50, 1.91] km

using the true velocity models in Figure 4.1. To enhance the S/N of the imaging condition

results, we apply a mask around the direct P- and S-wave arrivals in the data domain prior to

injection. The wave-mode separation procedure (completed using hyperbolic mute operators)

is repeated for all events. This operation is followed by the individual backpropagation of

the separated wave modes (Figure 4.2c and Figure 4.2d) using the EWE operator (Step 1),

and evaluating the imaging condition in equation 4.2 (Step 2).

As shown in Figure 4.1c and Figure 4.1d, we generate the initial velocity models by simply

removing the two Gaussian anomalies from the background linear gradient trends. This

experiment uses nine irregularly distributed microseismic sources centered about 1.85 km

depth, the true locations of which are denoted by black dots in Figure 4.1d. Using the initial
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models, we construct the zero-lag images for each event to estimate the event locations as the

maximum value in each image. To attenuate the imaging artifacts discussed in the previous

section, we generate the zero-lag images computed in the time window [tmin, tmax] = [0, 0.4] s,

which is designed through trial and error based on evaluating the quality of the artifact

reduction.

(a) (b) (c) (d)

Figure 4.2 Simulated (a) uz and (b) ux components of 2D microseismic data associated
with a single event located at [x, z] = [2.50, 1.91] km computed using the true velocity
models in Figure 4.1. (c) P- and (d) S-wave modes in the ux component separated in the
data domain using hyperbolic time muting. Although not shown here, the corresponding
wave modes in the uz component are similarly separated.

Figure 4.3a and Figure 4.3b respectively shows the zero-lag images calculated using the

true and initial velocity models for the multicomponent data shown in Figure 4.2. The

energy (red dot) in Figure 4.3a is collapsed at the true source location (larger green dot),

which is expected when imaging with the correct velocity models, whereas Figure 4.3b shows

a focus (smaller red dot) smeared due to the inaccurate imaging velocities. We also compute

the corresponding extended images constructed for [ |λx|, |λz| ] ≤ 0.2 km at the estimated

event locations (i.e., maximum amplitude points) in the zero-lag images (Figure 4.3a and

Figure 4.3b) using the true and background velocity models for evaluating their sensitivity to

velocity inaccuracy. As observed in Figure 4.3c, the extended image is well-focused around

zero lag due to the correct velocities while the extended image in Figure 4.3d exhibits energy

75



shifted away from zero lag due to the inaccurate velocities. The extended image in Figure 4.3d

also reveals the directions of the required velocity updates. Moreover, the event locations

estimated from the zero-lag images generated using the initial models are shown as white

dots in Figure 4.1d, and have a mean spatial root-mean-square (RMS) error of 128 m.

(a) (b)

(c) (d)

Figure 4.3 (a)-(b) Zero-lag and (c)-(d) space-lag extended images computed using the true
(left column) and background (right column) velocity models. The larger green and smaller
red dots respectively denote the true and estimated source locations. The blue crosshairs in
the extended images highlight the zero lag. Extended images are evaluated only at the
estimated source locations, which correspond to the zero-lag image maxima indicated by
the red dots.

For the inversion parameterization, we choose the weight parameters that adjust the

contribution of each term in the objective function as [ε1, ε2, ε3] = [1.0, 0.01, 0.0001]; the

broadness of the zero-lag and extended penalty functions that effectively remove the well-
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focused energy in the images are w = 5.0 and [σx, σz] = [0.05, 0.05], respectively, determined

through trial and error. The values for ε2 and ε3 balance the influence of the zero-lag terms as

well as decrease their contributions one order of magnitude compared to the extended term,

whose optimization is the primary focus of the inversion procedure due to its highest velocity

sensitivity amongst the images. Moreover, because the magnitude of the backpropagated S

wavefield u̇†β is typically higher than that of the P wavefield u̇†α, we downweight the image

Iββ more strongly to equalize their relative energy in the waveform.

(a)

(b)

Figure 4.4 Inverted (a) VP and (b) VS model overlain with the true (black dots) and final
estimated (white dots) event locations.

Figure 4.4 depicts the VP and VS velocity models recovered after 12 iterations of the

adjoint-state tomography framework described above. Both the inverted VP and VS models

show the target Gaussian perturbations with different spatial resolutions. Considering the

shorter wavelength of S waves relative to P waves, the inverted VS model typically features

a higher-resolution recovery compared to the inverted VP model. The inversion results also
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show that the velocity updates are quite smooth due to the low spatial wavenumbers of

the images and forward-scattering nature of the microseismic direct-wave image-domain

tomography problem. The white dots in Figure 4.4b indicate the imaged event locations

obtained using the inverted models, which are now closer to the true event locations denoted

by the black dots. Figure 4.5 shows the zero-lag and extended images computed using the

inverted models for the multicomponent data shown in Figure 4.2. When compared with the

initial imaging results shown in Figure 4.3b and Figure 4.3d, the optimized zero-lag image

is better focused and at the correct location while the extended image exhibits energy more

tightly focused around zero lag. Finally, Figure 4.6 presents a crossplot between the initial

and final RMS location errors for all events. The dashed line implies no change in location,

while points falling below or above the dashed line indicate decrease or increase in location

errors, respectively. These results demonstrate that the inversion procedure has reasonably

improved the event location estimates and has reduced the average spatial RMS error from

128 m to 52 m or about a 60% reduction in misposition error.

(a) (b)

Figure 4.5 (a) Zero-lag and (b) space-lag extended images computed using the recovered
velocity models. The green and red dots respectively show the true and estimated source
locations. The extended image is calculated only at the estimated source location, which
corresponds to the zero-lag image maximum indicated by the red dot. Note how the image
focusing in (a) is improved and the energy in (b) is shifted towards zero lag after using the
inverted models compared to the imaging results (Figure 4.3b and Figure 4.3d) obtained
using the initial models.
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Figure 4.6 Crossplot of the initial and final RMS location errors of nine forward-modeled
events. Points falling along the dashed line indicates no change in error whereas those
below the line indicate improved event location estimates. The results show an
approximately 60% decrease in location errors on average over all events.

4.3.2 Experiment 2: SEG/EAGE 3D Overthrust model

The second numerical experiment applies our proposed inversion method to a more com-

plex velocity model – SEG/EAGE 3D Overthrust model (Aminzadeh et al., 1994) displayed

in Figure 4.7a. Because the original 3D Overthrust model includes only the P-wave velocity,

we define an S-wave velocity model by assuming an oscillatory PS velocity ratio as a function

of depth (Figure 4.7b) as well as an accompanying density model (not shown) that ranges be-

tween ρ = 2.0− 3.0 g/cm3. We place 12 microseismic events (larger blue dots in Figure 4.7c)

with an irregular distribution at depths ranging between z = 2.40 km and z = 2.55 km. Our

surface receiver geometry is extracted from a field experiment (Witten and Shragge, 2017b)

and consists of 192 non-uniformly distributed three-component (3C) receivers (smaller red

dots in Figure 4.7c) covering an approximately 3.0 × 3.0 km2 area. Using the true models

for each event, we forward model synthetic elastic 3C microseismic data using a 3D compu-

tational domain of dimension [Nx, Ny, Nz] = [140, 140, 140], Nt = 2100 time steps, temporal

and spatial sampling intervals of ∆t = 1 ms, and ∆x = ∆y = ∆z = 0.025 km.
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(a) (b) (c)

Figure 4.7 (a) True P-wave velocity from the 3D Overthrust model and (b) VP/VS ratio
used to generate the true S-wave velocity model. (c) Illustration of source and receiver
geometry employed in the 3D inversion experiment. The larger blue dots indicate the
projected source coordinates while the smaller red dots indicate the locations of the 3C
receivers deployed at the surface.

Our initial model building strategy follows a scenario where we heavily smooth the true

VP model along all the spatial axes to generate an initial VP model as shown in Figure 4.8a.

Using this information, we also assume an erroneous VP/VS ratio of
√

3 when constructing

the initial VS model. Figure 4.8b and Figure 4.8c respectively depicts the true percentage VP

and VS model perturbations (i.e., the difference between the true and initial models), which

are the targets of the inversion process.

Following a similar strategy to the previous 2D inversion experiment, we choose εi values

as [ε1, ε2, ε3] = [1.0, 0.001, 0.0001] to favor the optimization of the extended term while bal-

ancing the relative contributions of the zero-lag terms in the objective function. Moreover,

through trial and error, we select the zero-lag and extended penalty parameterizations to be

w = 5.0 and [σx, σy, σz] = [0.1, 0.1, 0.1], respectively, to adequately penalize the well-focused

energy in images.

Figure 4.9 shows the inverted VP and VS models as well as the percentage velocity change

after applying ten iterations of the proposed tomography formalism. Most of the update is
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applied to increase the velocities in both models and corresponds to the smooth part of the

high-velocity thrust structure present in the true models. The VS model updates appear to be

more significant compared to those in the VP model likely due to our double-couple stress-

source mechanism radiating stronger S-wave energy that dominates the resulting imaged

events (Oren and Shragge, 2021a). Furthermore, because of the events that are relatively

deep (i.e., z = 2.40 − 2.55 km) compared to the array width and are laterally restricted in

the model, the updates are likely affected by this narrow aperture angle between sources and

receivers.

Figure 4.10a displays a stacked bar graph including the normalized objective function

along with the contributions of each term. The total convergence curve exhibits a reduction of

∼ 60% after ten iterations, beyond which point it becomes flat and little-to-no improvement

is achieved in the model updates. We observe that the largest improvement comes from the

extended image Iαβ (term 1) with a reduction of ∼ 65% whereas the zero-lag images Iαα and

Iββ (terms 2 and 3) exhibits a reduction of ∼ 15% and ∼ 45%, respectively. Figure 4.10b

shows a crossplot of the initial and final RMS location errors calculated based upon the

maximum amplitude of the Iαβ images for all sources. We observe a considerable decrease

(∼ 60%) in error with the events plotting closer to the horizontal axis.

The zero-lag and extended images constructed using the initial, inverted, and true VP and

VS models are displayed in Figure 4.11 where the crosshairs in the zero-lag panels indicate

the true location of a single event at [x, y, z] = [1.26, 2.18, 2.47] km. We construct the

zero-lag images in the time window [tmin, tmax] = [0, 0.3] s to suppress the imaging artifacts

and evaluate the extended image gathers for [ |λx|, |λy|, |λz| ] ≤ 0.25 km. Comparing these

results, we note defocused energy in the initial image shifted away from the correct event

location, whereas the final image exhibits relatively better focused energy with a positive

peak amplitude as shown in white centralized around the true location, which is a similar

pattern to the image obtained with the true models. Similarly, the final extended image

volume extracted at the maximum location of the relative zero-lag image exhibits a lower
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degree of moveout pattern in comparison with the initial extended imaging result.

4.4 Discussion

The proposed inversion methodology is typically less prone to the well-known cycle-

skipping problem of FWI, but generally produces lower-resolution inversion results relative

to FWI (Shabelansky et al., 2015; Witten and Shragge, 2017a). However, our inversion

results demonstrate that generating model updates that exhibit relatively lower resolution

can still produce sufficiently accurate event locations. Additionally, because stacking-based

migration methods enhance the S/N of microseismic data, image-domain inversion generally

does not suffer from low S/N data as severely as data-domain methods. We also point

out that windowing about arrivals tends to increase the S/N of injected data; however, we

caution that narrow windowing, if inappropriately applied, can remove weak signals for low

S/N scenarios.

The proposed inversion approach can be extended to anisotropic media by incorporat-

ing the potential wavefield energy term in the PS energy imaging condition as described

by Oren and Shragge (2021b). Perturbing the stiffness tensor present in the potential

energy term with respect to anisotropy parameters can allow for such an extension. To

determine a prospectus for image-domain anisotropic elastic inversion, Oren and Shragge

(2021b) present a 3D sensitivity analysis of the PS energy imaging condition to the Thomsen

(1986) anisotropy parameters for various transversely isotropic symmetries (e.g., transversely

isotropic with a vertical and horizontal symmetry axes as well as orthorhombic). Their anal-

ysis demonstrates that the imaged events mostly are affected by errors in ε and δ, but show

almost no sensitivity to γ for the SEG Advanced Modeling (SEAM) Barrett Unconventional

model (Regone et al., 2017).

Because the developed inversion method relies on the forward and adjoint numerical so-

lutions of the EWE for each seismic event, the associated computational cost remains the

primary drawback, particularly for 3D applications. Each imaging step requires contempora-

neous P- and S-wave propagations to construct zero-lag and extended images. The number
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of space lags used to build extended images is one of the main factors affecting the com-

putational expense. To increase the computational efficiency, we compute the zero-lag and

extended images during a single imaging experiment. We first independently propagate the

P and S wavefields backward in time within the original data window (i.e., t = [0, T ]) to

form the zero-lag image between tmin and tmax, which is then used to extract the maximum

amplitude point for extended imaging. This step is followed by propagating the P and S

wavefields at t = 0 forward in time until t = tmax and evaluating the extended imaging con-

dition at the maximum zero-lag image point between tmin and tmax. By doing so, we avoid

two extra P- and S-wave propagations for extended image construction, which represents

a substantial increase in efficiency considering the high computational expense of iterative

inversion process. The gradient computation requires four elastic propagations (i.e., two

backward propagations for calculating P- and S-wave adjoint sources and two forward prop-

agations for calculating P- and S-wave adjoint-state wavefields). The computational cost

also depends on the number of spatial locations at which the extended images are calculated

for the adjoint source computation (see equations 4.26 and 4.35). For extended image calcu-

lation, we use the same number of spatial locations and space lags per event in our numerical

experiments. Finally, the 2D step length determination process requires three imaging steps

(i.e., six propagations for P- and S-wave data) for each event, but we opt to perform the

first objective function evaluation within the first imaging step to reduce this requirement

to two imaging steps. Therefore, we must compute ten elastic wavefield propagations for a

single iteration, which, for instance, takes approximately two hours for the 12 events in the

previously presented 3D synthetic example when using a single device on a NVIDIA V100

GPU card. However, the aforementioned computational cost can be further reduced using a

data parallelism or domain-decomposition strategy across multiple GPU nodes.

The image-domain tomography approach presented herein could be applied for a variety

of different (time-lapse) monitoring programs (e.g., gas hydrates, geothermal, and CO2 se-

questration projects) (Deichmann and Giardini, 2009; Kim et al., 2018; Kumar et al., 2018)
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using active-/passive-source vertical seismic profiling (VSP) measurements. The active-

source VSP acquisition configuration allows one to exploit the principle of reciprocity by

exchanging the locations of sources and receivers to set up a computationally efficient imag-

ing and tomography problem with the sources and receivers located at the borehole and

surface, respectively. This configuration mimics a conventional surface microseismic moni-

toring investigation, which is a very similar scenario to the one we have successfully validated

our imaging and inversion algorithms. The proposed inversion method may have practical

applications not only in exploration seismology, but also in crustal or earthquake seismology

to obtain regional or global tomographic models, which could be helpful to further reduce

the uncertainty associated with the Earth’s heterogeneous structure and dynamics.

4.5 Conclusions

We develop a semi-automatic adjoint-state wavefield tomography method for multicom-

ponent passive data to jointly reconstruct elastic velocity models. We employ an elastic TRI

procedure to generate the microseismic source images, which are used to estimate the event

locations. We define a multiterm objective function that optimizes the focusing of differ-

ent types of event images. We conduct 2D and 3D synthetic numerical experiments that

gradually present more complex models along with more realistic source and receiver con-

figurations. The numerical experiments show that one can generate accurate elastic models

that result in location errors considerably reduced relative to the initial model estimates. In

addition to microseismic monitoring, the proposed inversion technique could be applied in

other fields including regional/global-scale seismology as well as gas hydrates, geothermal,

and CO2 sequestration monitoring projects.
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4.7 Appendix A - Gradient derivation

To derive the P- and S-wave model gradients Kα̂(x) and Kβ̂(x) in equations 4.7 and 4.8,

we perturb each term in the objective function (equation 4.3) with respect to the image for

a single event e. We separately present the derivations for the extended and zero-lag terms

of the objective functional in the subsections below.

4.7.1 Term 1: Extended image

We introduce J1 as the extended term of equation 4.3

J1 =
ε1
2

∫ ∫
P 2
λ (λλλ) I2αβ(x,λλλ) dλλλ dx, (4.10)

and perturb equation 4.10 with respect to the state variables u†α and u†β to obtain

δJ1 = ε1

∫ ∫
δIαβ(x,λλλ)R(x,λλλ) dλλλ dx, (4.11)

where R(x,λλλ) = P 2
λ (λλλ) Iαβ(x,λλλ) and

δIαβ(x,λλλ) =

∫
ρ(x +λλλ)

(
δu̇†α(x +λλλ, t) · u̇†β(x−λλλ, t) + u̇†α(x +λλλ, t) · δu̇†β(x−λλλ, t)

)
dt. (4.12)

Substituting equation 4.12 into equation 4.11 obtains

δJ1 := δJ α̂
1 + δJ β̂

1 , (4.13)

where

δJ α̂
1 := ε1

∫ ∫ ∫ (
ρ(x + λλλ) δu̇†α(x + λλλ, t) · u̇†β(x− λλλ, t)R(x,λλλ)

)
dt dλλλ dx (4.14)

and

δJ β̂
1 := ε1

∫ ∫ ∫ (
ρ(x + λλλ) u̇†α(x + λλλ, t) · δu̇†β(x− λλλ, t)R(x,λλλ)

)
dt dλλλ dx. (4.15)
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To find δu̇†α and δu̇†β in equations 4.14 and 4.15, we rewrite the isotropic EWE (equa-

tion 4.1) using linear operator notation (Shabelansky et al., 2015):

L† u†α = dα, (4.16)

where dα is the separated P-wave data vector and L† is the adjoint isotropic EWE operator:

L† = α̂∇∇ · − β̂∇×∇×− ∂tt. (4.17)

We perturb equation 4.16 with respect to the model parameter α̂ and obtain

δL† u†α + L† δu†α = 0, (4.18)

and solve for δu†α

δu†α = −(L†)−1δL† u†α, (4.19)

where

δL† = δα̂∇∇ · − δβ̂∇×∇× . (4.20)

Introducing δL† into equation 4.19 yields

δu†α = −(L†)−1(δα̂∇∇ · − δβ̂∇×∇×) u†α. (4.21)

Because the adjoint displacement vector field u†α is curl-free in isotropic elastic media

and if we take the first-order time derivative of each side, equation 4.21 becomes

δu̇†α = −∂t
(

(L†)−1δα̂∇∇ · u†α
)
. (4.22)

If we substitute this expression into equation 4.14

δJ α̂
1 = − ε1

∫ ∫ ∫
ρ(x+λλλ) ∂t

(
(L†)−1δα̂∇∇·u†α(x+λλλ, t)

)
·u̇†β(x−λλλ, t)R(x,λλλ)dt dλλλ dx. (4.23)

We recognize an inner product and rearrange the integral in equation 4.23 using the inner

product rule

[
i.e.,

〈
ρ ∂t (L†)−1∇∇ · u†α , u̇†β R

〉
=
〈

u†α , ∇∇ · L−1 ∂t ρ u̇†β R
〉 ]

to remove
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the operator dependence on δα̂ (Shabelansky et al., 2015; Witten and Shragge, 2017a):

δJ α̂
1 = − ε1

∫
δα̂

∫ ∫
u†α(x + λλλ, t) ·

(
∇∇ · L−1ρ(x + λλλ) ü†β(x− λλλ, t)R(x,λλλ) dλλλ

)
dt dx, (4.24)

where L−1 is the inverse of the forward isotropic EWE operator. To further simplify the

calculation of equation 4.24, we apply a shift in the spatial coordinates (Shen and Symes,

2008) and rearrange the terms as the following:

δJ α̂
1 = − ε1

∫
δα̂

∫
u†α(x, t) ·

(
∇∇ · L−1

∫
ρ(x) ü†β(x− 2λλλ, t)R(x− λλλ,λλλ) dλλλ

)
dt dx

= − ε1
∫
δα̂

∫
u†α(x, t) · υυυα1 (x, t) dt dx (4.25)

=

∫
δα̂Kα̂1 (x) dx,

where

υυυα1 (x, t) = ε1∇∇ · L−1
∫
ρ(x) ü†β(x− 2λλλ, t)R(x− λλλ,λλλ) dλλλ, (4.26)

is the P-wave adjoint wavefield.

The spatial shift that we apply to the residual extended image R(x,λλλ) suggests that we

compute numerous extended images in the vicinity of the estimated event location x, which

are then used in the calculation of the adjoint source υυυα1 (x, t).

Similarly, we rewrite the isotropic EWE (equation 4.1) using linear operator notation to

find u̇†β in equation 4.15:

L† u†β = dβ, (4.27)

where dβ is the separated S-wave data vector. We perturb equation 4.27 with respect to the

model parameter β̂ and obtain

δL† u†β + L† δu†β = 0, (4.28)

and solve for δu†β

δu†β = −(L†)−1δL† u†β. (4.29)
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Introducing δL† in equation 4.20 into equation 4.29 obtains

δu†β = −(L†)−1(δα̂∇∇ · − δβ̂∇×∇×) u†β. (4.30)

Because the adjoint S wavefield u†β is divergence-free in isotropic elastic media, if we take

the first-order time derivative of each side equation 4.30 becomes

δu̇†β = ∂t

(
(L†)−1δβ̂∇×∇× u†β

)
. (4.31)

Substituting this expression into equation 4.15 gives

δJ β̂
1 = ε1

∫ ∫ ∫ (
ρ(x +λλλ) u̇†α(x +λλλ, t) · ∂t

(
(L†)−1δβ̂∇×∇× u†β(x−λλλ, t)

)
R(x,λλλ)

)
dt dλλλ dx.

(4.32)

Using the inner product rule, we remove the operator dependence on δβ̂:

δJ β̂
1 = ε1

∫ ∫ ∫ (
∇×∇×L−1ρ(x +λλλ) ü†α(x +λλλ, t) · δβ̂ u†β(x−λλλ, t)R(x,λλλ)

)
dt dλλλ dx. (4.33)

To further simplify the calculation of equation 4.33, we similarly apply a shift in the

spatial coordinates and rearrange the terms as the following:

δJ β̂
1 = ε1

∫ ∫ (
∇×∇×L−1

∫
ρ(x + 2λλλ) ü†α(x + 2λλλ, t)R(x + λλλ,λλλ) dλλλ

)
· δβ̂ u†β(x, t)dt dx

= ε1

∫
δβ̂

∫
u†β(x, t) · υυυβ1 (x, t) dt dx (4.34)

=

∫
δβ̂Kβ̂1 (x) dx,

where

υυυβ1 (x, t) = ε1∇×∇×L−1
∫
ρ(x + 2λλλ) ü†α(x + 2λλλ, t)R(x + λλλ,λλλ) dλλλ, (4.35)

is the S-wave adjoint wavefield.
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4.7.2 Terms 2 and 3: Zero-lag autocorrelation images penalized by crosscorre-
lation image

We derive the adjoint-state variables for the zero-lag autocorrelation images Iαα(x) and

Iββ(x) penalized by the zero-lag crosscorrelation image Iαβ(x) by perturbing

J2 =
ε2
2

∫
P 2
αβ(x) I2αα(x)dx, (4.36)

to obtain

δJ2 = ε2

∫ (
P 2
αβ(x) Iαα(x) δIαα(x) + Pαβ(x) δPαβ(x) I2αα(x)

)
dx, (4.37)

where

δPαβ(x) = −wPαβ(x)Tαβ(x) δIαβ(x), (4.38)

where δIαβ(x) is defined in equation 4.12 with (λx, λy, λz) = (0, 0, 0) m, and Tαβ(x) =

tanh
(
w Iαβ(x)

)
. Based on the imaging condition in equation 4.2, one can form the PP

autocorrelation image using

Iαα(x) =

∫
ρ(x) u̇†α(x, t) · u̇†α(x, t) dt, (4.39)

to obtain

δIαα(x) = 2

∫
ρ(x) u̇†α(x, t) · δu̇†α(x, t) dt. (4.40)

If we substitute δPαβ(x) and δIαα(x) into equation 4.37, and separate J2 into component

functions δu̇†α(x, t) and δu̇†β(x, t), we find

δJ α̂
2 = 2 ε2

∫ (
P 2
αβ(x) Iαα(x)

∫
ρ(x) u̇†α(x, t) · δu̇†α(x, t) dt

− wP 2
αβ(x)Tαβ(x) I2αα(x)

∫
ρ(x) δu̇†α(x, t) · u̇†β(x, t) dt

)
dx, (4.41)

and

δJ β̂
2 = − ε2w

∫
P 2
αβ(x)Tαβ(x) I2αα(x)

∫
ρ(x) u̇†α(x, t) · δu̇†β(x, t) dt dx. (4.42)
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If we substitute δu̇†α(x, t) (equation 4.21) and δu̇†β(x, t) (equation 4.31) into equations 4.41

and 4.42 and rearrange the terms as done in equations 4.26 and 4.35, we find

δJ α̂
2 = ε2

∫
δα̂

∫
u†α(x, t) · υυυα2 (x, t) dt dx

=

∫
δα̂Kα̂2 (x) dx, (4.43)

and

δJ β̂
2 = ε2

∫
δβ̂

∫
u†β(x, t) · υυυβ2 (x, t) dt dx

=

∫
δβ̂Kβ̂2 (x) dx, (4.44)

where the adjoint-state variable contributions for this term are as the following:

υυυα̂2 (x, t) = ε2∇∇ · L−1
(
− 2P 2

αβ(x) Iαα(x) ρ(x)

∫
ü†α(x, t) dt

+ wP 2
αβ(x)Tαβ(x) I2αα(x) ρ(x)

∫
ü†β(x, t) dt

)
, (4.45)

and

υυυβ̂2 (x, t) = −ε2w∇×∇×L−1
(
P 2
αβ(x)Tαβ(x) I2αα(x) ρ(x)

∫
ü†α(x, t) dt

)
. (4.46)

Following a similar strategy used in the derivation for term 2, we find the expressions for

term 3
(
J3 = ε3

2

∫
P 2
αβ(x) I2ββ(x)dx

)
to be

δJ α̂
3 = ε3

∫
δα̂

∫
u†α(x, t) · υυυα3 (x, t) dt dx

=

∫
δα̂Kα̂3 (x) dx, (4.47)

and
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δJ β̂
3 = ε3

∫
δβ̂

∫
u†β(x, t) · υυυβ3 (x, t) dt dx

=

∫
δβ̂Kβ̂3 (x) dx, (4.48)

where the adjoint-state variables are defined as

υυυα̂3 (x, t) = ε3w∇∇ · L−1
(
P 2
αβ(x)Tαβ(x) I2ββ(x) ρ(x)

∫
ü†β(x, t) dt

)
, (4.49)

and

υυυβ̂3 (x, t) = ε3∇×∇×L−1
(

2P 2
αβ(x) Iββ(x) ρ(x)

∫
ü†β(x, t) dt

− wP 2
αβ(x)Tαβ(x) I2ββ(x) ρ(x)

∫
ü†α(x, t) dt

)
. (4.50)

4.7.3 Total gradient

We form the total perturbation of the objective functional using the terms above

δJ = δJ α̂ + δJ β̂, (4.51)

where

δJ α̂ =

∫
δα̂Kα̂(x) dx

=

∫
δα̂

∫
u†α(x, t) ·

3∑
i=1

υυυαi (x, t) dt dx, (4.52)

and

δJ β̂ =

∫
δβ̂Kβ̂(x) dx

=

∫
δβ̂

∫
u†β(x, t) ·

3∑
i=1

υυυβi (x, t) dt dx, (4.53)

where υυυα(x, t) and υυυβ(x, t) are the adjoint-state variables constructed by forward propagating

the summation of the individual adjoint sources derived in the previous subsections. For
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consistency, we inject the final adjoint source within the same time window t = [tmin, tmax]

as used in the imaging condition. The final adjoint-state variables in equations 4.52 and 4.53

can be written as

υυυα(x, t) = ∇∇ · L−1
[
ε1

∫
ρ(x) ü†β(x− 2λλλ, t)R(x− λλλ,λλλ) dλλλ

+ ε2

(
− 2P 2

αβ(x) Iαα(x) ρ(x)

∫
ü†α(x, t) dt+ wP 2

αβ(x)Tαβ(x) I2αα(x) ρ(x)

∫
ü†β(x, t) dt

)
+ ε3wP

2
αβ(x)Tαβ(x) I2ββ(x) ρ(x)

∫
ü†β(x, t) dt

]
, (4.54)

and

υυυβ(x, t) = ∇×∇×L−1
[
ε1

∫
ρ(x + 2λλλ) ü†α(x + 2λλλ, t)R(x + λλλ,λλλ) dλλλ

− ε2wP
2
αβ(x)Tαβ(x) I2αα(x) ρ(x)

∫
ü†α(x, t) dt (4.55)

+ ε3

(
2P 2

αβ(x) Iββ(x) ρ(x)

∫
ü†β(x, t) dt− wP 2

αβ(x)Tαβ(x) I2ββ(x) ρ(x)

∫
ü†α(x, t) dt

)]
.
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(a) (b)

(c) (d)

Figure 4.8 Initial (a) VP and (b) VS models along with the true model perturbations for
the (c) VP and (d) VS models, which are the targets of the inversion. The initial VS model
in (b) is constructed by assuming VS = VP/

√
3.
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(a) (b)

(c) (d)

Figure 4.9 Inverted (a) VP and (b) VS models, which exhibit the main high-velocity thrust
structure. Percentage change in the (a) VP and (b) VS models from the inversion procedure.
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Figure 4.10 (a) Normalized objective function as a stacked bar graph of each term in
equation 4.3 and (b) crossplot of the initial and final RMS location errors of 12
forward-modeled events.
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(a) (b) (c)

(d) (e) (f)

Figure 4.11 Close-up zero-lag image volumes associated with a single event located at
[x, y, z] = [1.26, 2.18, 2.47] km computed using the (a) initial, (b) recovered, and (c) true
models. The blue crosshairs in the zero-lag images denote the true source location. Note
how the maximum positive image amplitude shown in white in (b) gets closer to the true
event location. The extended image volumes extracted at the corresponding zero-lag image
maxima calculated with the (d) initial, (e) recovered, and (f) true models. Note how the
final extended image in (e) shows less moveout relative to (d).
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CHAPTER 5

3D IMAGE-DOMAIN DAS-VSP ELASTIC TRANSMISSION TOMOGRAPHY

A paper submitted to Geophysical Journal International

Can Oren1,2,3, Jeffrey Shragge3

Full-wavefield elastic imaging of active-source seismic data acquired by downhole receivers

commonly offers higher-resolution subsurface images in the vicinity of a borehole compared

to conventional surface seismic data sets, which can lack higher-frequency wavefield compo-

nents due to longer travel paths and increased attenuation. An increasingly used approach

for downhole acquisition is vertical seismic profiling (VSP), which has become more attrac-

tive when coupled with distributed acoustic sensing (DAS) using optical fibers installed in

wells. The main difficulty for generating high-quality images with full-wavefield imaging

tools for DAS VSP data, though, is the need for an accurate velocity model. To build

plausible velocity models using active-source DAS VSP data, we adopt a 3D image-domain

elastic transmission tomography technique, originally developed for surface-recorded passive

(microseismic) data, by exchanging the source and receiver positions (i.e., reciprocity) to

mimic a passive-seismic surface monitoring scenario. The inversion approach exploits var-

ious images for each source constructed through time-reverse imaging (TRI) of downgoing

P- and S-wave first-arrival waveforms. The TRI process uses the kinetic term of the (ex-

tended) PS energy imaging condition that exhibits sufficient sensitivity to velocity model

errors. The method automatically updates the P- and S-wave velocity models to optimize

image focusing via adjoint-state inversion. We illustrate the efficacy of the adopted elastic

inversion technique using an active-source DAS 3D VSP field data set acquired in the North

1Primary researcher and author.
2Author for correspondence
3Graduate student and Associate Professor, respectively, Center for Wave Phenomena, Colorado School of
Mines, Golden, Colorado, USA.
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Slope of Alaska. The numerical experiments demonstrate that the inverted velocity models

improve the quality of subsurface images constructed through full-wavefield elastic reverse

time migration algorithms.

5.1 Introduction

Building accurate velocity models is a key step for successfully imaging the Earth’s in-

terior. Unlike ray-based methods (Bishop et al., 1985; Cervenỳ, 2001), velocity analysis

tools based on wavefield solutions of governing wave equations can exploit the full wave-

form and bandwidth of seismic data as well as more accurately handle wave propagation in

complex geologic settings. Therefore, the associated full-wavefield tomographic approaches

usually provide robust solutions in the velocity updating process, as has been demonstrated

in numerous fields including exploration seismology (Pratt, 1999; Tarantola, 1984), global

seismology (Bozdağ et al., 2016), near-surface geophysics (Liu et al., 2020), medical imaging

(Guasch et al., 2020), and even planetary research (Sava and Asphaug, 2018).

Wavefield tomography represents a class of velocity estimation techniques that can be

formulated either in the data (Mora, 1988; Pratt, 1999; Sirgue and Pratt, 2004; Tarantola,

1984; Virieux and Operto, 2009) or the image (Albertin et al., 2006; Sava and Biondi, 2004;

Shen and Symes, 2008; Symes and Carazzone, 1991; Weibull and Arntsen, 2013) domain.

Data-domain methods are commonly referred to as full waveform inversion (FWI), which

produces model updates by means of an objective function whose gradient is simply com-

puted by zero-lag crosscorrelation of forward and adjoint wavefields. Though many different

residual metrics have been proposed, the adjoint wavefield is typically computed using the

data residual, which is commonly defined as the difference between observed and modeled

data. Image-domain methods, generally referred to as migration velocity analysis (MVA),

rely on the differential semblance optimization (DSO) principle (i.e., wavefields must pro-

duce imaged events well-focused at zero lag when extrapolated with the true velocity) (Symes

and Carazzone, 1991). MVA uses objective functions that are defined by image residuals

constructed with extended image gathers, which can be functions of surface or subsurface

98



offset, reflection angle or spatial/temporal lags (Rickett and Sava, 2002; Sava and Fomel,

2006; Sava and Vasconcelos, 2011).

Each aforementioned method has its own advantages and limitations. While FWI can

produce high-resolution velocity models, this approach commonly suffers from the well-

known cycle-skipping problem when the forward and adjoint wavefields are significantly

out of phase (i.e., the observed and modeled data difference is more than a half cycle) due to

inaccurate initial models and/or insufficiently low data frequencies. Thus, there is a strong

amplitude fidelity requirement both for measured data as well as modeled wavefield solutions.

Although MVA methods generally produce model updates exhibiting lower relative resolu-

tion due to the limited spatial frequency of migrated image gathers, they are significantly

more immune to cycle-skipping issues (Symes, 2008). Furthermore, achieving image gather

flatness/focusing is more straightforward using MVA techniques relative to FWI, wherein

matching data-domain amplitudes and phases can be a highly challenging task, particularly

for elastic multicomponent or DAS field data implementations.

Extended image gathers have been successfully used in active- and passive-seismic MVA

scenarios as a velocity quality-control tool because they are sensitive to velocity errors and

hence can be optimized through tomographic velocity updating (Burdick et al., 2013; Oren

and Shragge, 2022; Shabelansky et al., 2015; Shen and Symes, 2008; Witten and Shragge,

2017a; Yang and Sava, 2009). Common-image-point (CIP) gathers are a specific type of ex-

tended image gathers, and provide efficient solutions through reduced memory requirements

for active-source image-domain wavefield tomography (Yang and Sava, 2015). For active-

source scenarios, extended CIP gathers are sparsely constructed by correlating temporally

and/or spatially shifted source and receiver wavefields along estimated reflection surfaces

and thus can be incorporated into a DSO-type objective function for inversion (Dı́az and

Sava, 2017; Yang and Sava, 2015).

In passive seismology, extended CIP gathers can be constructed via a process called time-

reverse imaging (TRI), where one extrapolates the injected transmitted wavefield energy
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(i.e., the direct P- and/or S-wave data) in reverse time, and applies an imaging condition

to form an event image (Witten and Shragge, 2015). A passive-style elastic adjoint-state

tomography method can be formulated based upon the TRI approach by optimizing image-

space focusing for jointly locating surface-recorded seismic events and inverting for P- and S-

wave velocity models (Oren and Shragge, 2020, 2022; Witten and Shragge, 2017a). In passive

seismic investigations (e.g., microseismic), extended CIP gathers are typically calculated at

the estimated event location to highlight the spatial and temporal consistencies between

P and S wavefields and explore the resulting focusing characteristics (Oren and Shragge,

2021a,b; Rocha et al., 2019; Witten and Shragge, 2015). Accurate imaging velocities lead

to focused energy in the vicinity of zero lag of extended CIP gathers, whereas inaccurate

velocity models result in poorly focused energy away from zero lag.

Another common seismic survey geometry where sources and receivers do not share the

same surface is vertical seismic profiling (VSP). Over the past decade, VSP surveying has

seen somewhat of a resurgence due to the maturation of distributed acoustic sensing (DAS)

technology and the growing importance of seismic monitoring activities (e.g., production

monitoring, CO2 sequestration). Similarly, various DAS applications have gained consid-

erable popularity within subsurface industries especially for (long-term monitoring) VSP

surveys due to the flexibility of fiber optic cables deployments, which enable the acquisition

of high-quality and low-cost borehole seismic data with dense spatial sampling (i.e., 1.0 m

scale) compared to conventional geophone deployments (Mateeva et al., 2013; Mestayer et al.,

2011). DAS also has its own set of acquisition challenges including variable fiber-ground cou-

pling, sensitivity to fiber orientation, and the singular component measurements of the full

strain-rate tensor. Seismic energy recorded in DAS VSP surveys typically travels shorter

paths and thus is subject to reduced wavefield attenuation compared to conventional seismic

reflection data. Imaging and inversion applications using such data sets benefit from these

advantages when generating complementary higher-resolution near-well images in contrast

with surface-recorded geophone acquisition, which can suffer from the presence of complex
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near-surface velocity variations as well as strong wavefield attenuation. From DAS VSP

measurements, several velocity model building approaches have been proposed using travel-

time tomography (Li et al., 2015) and (anisotropic, time-lapse) elastic FWI (Egorov et al.,

2018a,b; Podgornova et al., 2017).

Considering the aforementioned challenges of the traveltime tomography and FWI ap-

proaches, in this study we use the image-domain elastic transmission tomography framework

originally proposed by Oren and Shragge (2022) for microseismic scenarios to build plau-

sible elastic velocity models for DAS VSP investigations. To achieve this goal, we exploit

the principle of reciprocity by exchanging the locations of sources and receivers to set up

a configuration where the sources and receivers are respectively located in the borehole

and on the surface. Such a reciprocal geometry mimics a surface microseismic monitoring

scenario where one can conveniently apply the aforementioned passive-style image-domain

elastic tomography analysis to DAS VSP data. As a result, velocity models constructed with

this full-wavefield methodology can be used in acoustic/elastic depth migration algorithms

such as reverse time migration (RTM) (Baysal et al., 1983; McMechan, 1983) to generate

high-quality subsurface structural images in the vicinity of the borehole.

We begin by reviewing the theoretical characteristics of the TRI approach along with

the image-domain adjoint-state elastic tomography framework. Next, we illustrate the ef-

fectiveness of the inversion method with a DAS 3D VSP field data experiment from the

North Slope of Alaska. The field data results demonstrate that we can reconstruct 3D P-

and S-wave velocity models that improve the source image quality and location estimates

even when using a limited number of sources in the presence of permafrost and associated

complex velocity inversions. We also show that the inverted velocity models lead to elastic

RTM images exhibiting highly accurate well-ties with petrophysical log data. The paper

concludes with a discussion of the advantages and shortcomings of the presented approach

as well as other possible applications.
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5.2 Theory

This section outlines the fundamentals of the image-domain elastic transmission tomog-

raphy framework proposed by Oren and Shragge (2022) that consists of the following steps:

(1) source imaging, (2) image-domain residual computation, (3) gradient calculation, (4)

step-length determination, and (5) velocity model updating. We briefly discuss each step

below.

5.2.1 Elastic wave equation

We consider the isotropic elastic wave equation (EWE) in a source-free unbounded do-

main:

ü = α̂∇(∇ · u)− β̂∇× (∇× u), (5.1)

where u(x, t) is the displacement field as a function of space (x) and time (t); model param-

eters α̂(x) = (λ+ 2µ)/ρ and β̂(x) = µ/ρ are squared P- and S-wave velocities, respectively,

where λ(x) and µ(x) are the Lamé parameters and ρ(x) is density; ∇, ∇·, and ∇× are the

gradient, divergence, and curl operators; and two superscript dots on u indicate second-order

time differentiation. Equation 5.1 assumes slowly varying Lamé parameters such that one

can neglect their spatial gradients (Aki and Richards, 2002).

5.2.2 Elastic time-reverse source imaging

We use an elastic TRI procedure that consists of two steps: (1) extrapolating the direct

P and S wavefields backward in time using an elastic wave equation; and (2) evaluating an

imaging condition. The elastic TRI process requires an upfront direct arrival separation using

a mute function in the data domain as proposed by Oren and Shragge (2021a). Following the

work of Oren and Shragge (2020, 2021a), we generate zero-lag and extended source images

using the following kinetic energy imaging condition:

Iαβ(x,λλλ, e) =

∫ tmax

0

ρ(x + λλλ) u̇†α(x + λλλ, t, e) · u̇†β(x− λλλ, t, e) dt, (5.2)
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where u̇†α(x, t, e) and u̇†β(x, t, e) denote separated P- and S-wave particle velocities; symbol †

represents adjoint; λλλ = (λx, λy, λz) is the vector space-lag extension (Sava and Vasconcelos,

2011); and e is the source index. When (λx, λy, λz) = (0, 0, 0) m, the extended imaging con-

dition reduces to the conventional zero-lag imaging condition. As indicated by equation 5.2,

we apply the imaging condition by starting the integral evaluation from a time (tmax) earlier

than the original maximum recording time and progressing back to the estimated origin (or

earliest) time, which suppresses most of the imaging artifacts arising due to the elastic wave-

field extrapolation (Oren and Shragge, 2021a; Rocha et al., 2019; Yan and Sava, 2008). In

addition to the PS crosscorrelation zero-lag Iαβ(x, e) and extended image gathers Iαβ(x,λλλ, e),

equation 5.2 also generates zero-lag PP and SS autocorrelation images, i.e., Iαα(x, e) and

Iββ(x, e), all of which collectively form the basis of our objective function.

5.2.3 Objective function and image-domain residual computation

Our inversion framework seeks to minimize the following multiterm objective function

J that measures the image incoherency occurring due to inaccurate P- and S-wave imaging

velocities:

J =
1

2

∑
e

∫ [
ε1

∫ λλλ

−λλλ
P 2
λ (λλλ) I2αβ(x,λλλ, e) dλλλ +P 2

αβ(x, e)
(
ε2 I

2
αα(x, e)+ε3 I

2
ββ(x, e)

) ]
dx, (5.3)

where Pλ(λλλ) and Pαβ(x, e) are DSO-type extended and zero-lag image-domain penalty func-

tions that penalize the well-focused energy in the vicinity of zero lag and source location,

and thus highlight poorly focused (i.e., residual) energy elsewhere caused by model error.

The relative importance of each term in the objective function is controlled by the scalar

weights [ε1, ε2, ε3].

To penalize the extended image gathers, a multidimensional Gaussian operator centered

at zero lag is expressed as

Pλ(λλλ) = 1− exp

(
− λ2x

2σ2
x

−
λ2y
2σ2

y

− λ2x
2σ2

x

)
, (5.4)
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where σσσ = (σx, σy, σz) independently adjusts the width of the Gaussian function along each

space-lag direction. Because a central goal is to minimize the inconsistency among the set

of three zero-lag images (i.e., PS, PP, and SS), we design a multiplicative zero-lag penalty

operator (Shragge et al., 2013):

Pαβ(x, e) = sech

[
w Iαβ(x, e)

max
(
Iαβ(x, e)

)], (5.5)

where w is a dimensionless parameter that determines the broadness of the penalty operator,

which is generated based on Iαβ(x, e) and annihilates energy that coexists between the PS,

PP and SS zero-lag images. Thus, only inconsistent energy among the respective zero-lag

image pairs remains, which we use for gradient calculation as discussed below.

5.2.4 Gradient calculation

We solve the optimization problem given in equation 5.3 by means of the adjoint-state

formalism (Plessix, 2006), which allows us to compute the P- and S-wave velocity model

gradients as

Kα̂(x) = −
∑
e

∫ T

0

u†α(x, t, e) · υυυα(x, t, e) dt (5.6)

and

Kβ̂(x) =
∑
e

∫ T

0

u†β(x, t, e) · υυυβ(x, t, e) dt, (5.7)

where the gradient terms are simply computed by taking the dot-product of the state(
u†α(x, t, e) and u†β(x, t, e)

)
and adjoint-state

(
υυυα(x, t, e) and υυυβ(x, t, e)

)
variables. We

calculate the latter by forward-propagating the adjoint sources, which are a function of P-

and S-wavefield energy. We refer readers to Oren and Shragge (2022) that includes a detailed

mathematical derivation and definitions of the adjoint-state variables.

The practical implementation involves an illumination compensation procedure (Warner

et al., 2013; Yang et al., 2013) applied on the each gradient to reduce the artifacts in the

vicinity of source locations. The illumination effect can be approximated by the total adjoint-
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state wavefield energy, which is largely accounted for in the gradients through a stabilized

normalization process. Finally, we apply short vertical and horizontal smoothing operators

to the individual gradients, which are then summed over the selected shots.

5.2.5 Iterative velocity model updating

The solution to the inverse problem is determined by iteratively minimizing the objective

function. In each iteration, the model updates are calculated by a multiparameter line-search

method (Tang and Ayeni, 2015) in the steepest-descent direction (Nocedal and Wright, 2006).

After searching for individual P- and S-wave step lengths, we conduct a final line search along

a 2D vector whose components are the calculated P- and S-wave search directions (Witten

and Shragge, 2017a). To find the magnitude of the update, we multiply the negative of

gradient by the optimal step length, which is then added to the current velocity model:

mk
i+1 = mk

i − hiKki , k = α̂, β̂, (5.8)

where m is the velocity model, h is the step length, and i is the iteration number. The

iterative inversion process is typically stopped when the gradient of the objective function

becomes zero or turns positive.

5.3 Field data experiment: A DAS 3D VSP data set from the North Slope of
Alaska

Gas hydrate is a naturally occurring material made up of an open lattice of water

molecules that traps molecules of numerous gases (most commonly methane) under spe-

cific pressure and temperature conditions (Sloan and Koh, 2007). As such hydrate deposits

can trap massive amounts of carbon, and they are studied as a potential energy resource

as well as an important part of the global climate cycle (Collett, 2002). Because existing

geological and geophysical studies confirm the wide-spread presence and relatively straight-

forward accessibility of large gas hydrate reservoirs on the Alaskan North Slope, the U.S.

Department of Energy (DOE) National Energy Technology Laboratory (NETL), Japan Oil,

Gas and Metals National Corporation (JOGMEC), and the U.S. Geological Survey (USGS)
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have been closely collaborating to develop a long-term hydrate test facility (Boswell et al.,

2020; Haines et al., 2020). As a result of this collaboration, the Hydrate-01 stratigraphic test

well was drilled in the Prudhoe Bay Unit on the North Slope of Alaska in 2018 to acquire

petrophysical and seismic data (Boswell et al., 2022). A DAS fiber optic cable was cemented

to the well casing during well completion. A large-scale active-source DAS 3D VSP data

set was subsequently acquired in 2019 at the Hydrate-01 well with the goal of generating a

high-resolution baseline subsurface seismic image to support the long-term production test-

ing of the hydrate reservoirs and future time-lapse seismic analyses (Fujimoto et al., 2021).

Young et al. (2022) present a comprehensive DAS 3D VSP data preprocessing and acoustic

prestack depth migration workflow for the same data set that uses a P-wave velocity model

estimated using the aforementioned approach to generate high-quality near-well images to

improve the understanding of the existing gas-hydrate systems.

(a)

x (km)0.0 0.5 1.0 1.5 2.0y (km) 0.00.51.01.52.0

z (km
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1.2

(b)

Figure 5.1 Acquisition geometry of the DAS 3D VSP data set. (a) The blue dots denote
the source locations while the red dots indicate the well trajectory. (b) The black dots
show the DAS cable whereas the red dots represent the “reciprocal” shots used in the
inversion experiment after the VSP data are sorted into a common-receiver configuration.
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The DAS 3D VSP survey includes a total of 1701 vibroseis source points exhibiting a

dense radial acquisition pattern centered around the well head with a 1.1 km maximum

source-well head offset. A pair of vibroseis trucks generated a sweep frequency between

2 − 200 Hz with multiple sweeps at each location. The total number of effective receiver

locations is 994 with an approximate 1.0 m sample spacing and a 3.0 m gauge length. The

top and bottom receiver measured depths are 0.014 km and 1.069 km, respectively. The total

record length is 2000 ms with a 1.0 ms sampling rate. Figure 5.1 displays the acquisition

geometry along with the reciprocal source positions in the borehole used in the following

inversion experiment.

5.3.1 Data conversion from strain rate into displacement

As indicated above, the image-domain tomography algorithm requires having displace-

ment data input. Because we are originally provided with the strain-rate DAS measurements,

a data conversion step to displacement is needed prior to imaging or inversion. To achieve

this goal, we follow a strategy discussed in Daley et al. (2016) and Lindsey et al. (2020),

which approximates the particle velocity field as:

U̇z(ω) = −

(
ω + ηω
kz + ηkz

)
Ezz(kz, ω), (5.9)

where Ezz(kz, ω) is the Fourier-transformed strain rate of the wavefield measured in the di-

rection of the fiber axis (i.e., typically vertical for VSP scenarios); kz is vertical wavenumber;

ω is angular frequency; ηω and ηkz are stability parameters to avoid dividing by small num-

bers; and U̇z(ω) is the resulting approximated frequency-domain vertical particle velocity

field. To estimate the displacement field, we apply half-order integration on the particle

velocities to recover Uz(ω). Figure 5.2 depicts a DAS 3D VSP shot gather example illus-

trating the original strain-rate measurements as well as the approximated displacement data

obtained by means of the conversion procedure shown in equation 5.9. Note how the high-

quality data in both formats are largely noise-free and clearly exhibit elastic full-wavefield

behavior. It is also worth pointing out that although the inversion algorithm used herein is
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originally formulated for multicomponent data (Oren and Shragge, 2022), we are restricted

to using single-component (vertical) DAS VSP recordings as the directivity of our optical

fiber measurements is mainly sensitive to the vertical particle motion (Hornman, 2017).

(a) (b)

Figure 5.2 A 3D DAS VSP shot gather showing (a) the original strain rate and (b) the
approximated displacement data obtained using the data conversion step presented in
equation 5.9. The vertical white dashed line indicates the base of the significant ice bearing
permafrost.

5.3.2 Data preconditioning and initial model building

We apply minimal preprocessing to the input data prior to inversion. After obtaining the

approximated displacement measurements as described above, we sort the shot gathers into

common-receiver gathers, which enables us to generate a reciprocal source and receiver geom-

etry (i.e., the sources and receivers are positioned at the borehole and surface, respectively).

This step is followed by applying a 25 Hz high-cut filter to condition the data specifically for

inversion, and separating the direct downgoing P- and S-wave arrivals by using linear mute

functions. We then select 15 reciprocal shots along the borehole between 0.3 km and 1.0 km
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in depth spaced at a 50 m interval, which are directly used in the image-domain inversion pro-

cess. Figure 5.3 shows a reciprocal shot gather extracted at [x, y, z] = [1.111, 1.072, 0.710] km

along with the isolated direct P- and S-wave data used in the TRI procedure.

Our starting model building strategy exploits a suite of petrophysical logs that were

acquired along the borehole (Figure 5.2) down to the 1.0 km termination depth during the

drilling operation with the goal of identifying the key lithological units within the area of

interest. The initial 1D P- and S-wave velocity profiles are constructed by heavily smoothing

the P- and S-wave sonic logs, and extrapolating these profiles throughout the 3D model

domain as shown in Figure 5.4. Note the strong velocity inversion due to the presence of

a roughly 600 m thick permafrost zone. With the proposed inversion procedure, we aim at

recovering the 3D heterogeneous velocity perturbations required for generating high-quality

structural images, which would facilitate future reservoir analyses.

(a) (b) (c)

Figure 5.3 (a) An example of a common-receiver (i.e., reciprocal shot) gather extracted at
[x, y, z] = [1.111, 1.072, 0.710] km and sorted by radial offset from the borehole, which
ranges from 0.01 m to 1.1 km at Traces 1 and 1699, respectively. Windowed downgoing (b)
P- and (c) S-wave first-arrival waveforms used in the TRI process.
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(a) (b)

Figure 5.4 Initial 1D (a) VP and (b) VS models. Note the strong velocity inversion in each
panel due to the presence of a roughly 600 m thick permafrost zone.

5.3.3 Inversion results

We conduct the tomography process on a grid with a discretization interval of [∆x,∆y,∆z] =

[18, 18, 9] m and a 3D model domain of [Nx, Ny, Nz] = [120, 120, 240] grid points, which re-

sults in a model size of 2.16×2.16×2.16 km3. For forward and adjoint wave propagations,

we use a graphics processing unit (GPU)-based finite-difference time-domain (FDTD) solver

with the second-order temporal and eighth-order spatial accuracy stencil (Weiss and Shragge,

2013) optimized to run on NVIDIA V100 GPU hardware. Our numerical simulations use

boundary conditions consisting of absorbing boundary (Clayton and Enquist, 1977) and

exponential-damping sponge-layer (Cerjan et al., 1985) operators. We do not apply the

free-surface boundary condition because a top absorbing boundary is applied to forestall the

generation of multiples, which have been excluded from the windowed data.

We select the inversion parameters to be [ε1, ε2, ε3] = [1.0, 10−5, 10−5] to emphasize the

optimization of the extended term while downweighting the contributions of the zero-lag

terms by two orders of magnitude relative to the extended term in the objective function.

Furthermore, we choose the zero-lag and extended penalty widths to be w = 10.0 and

[σx, σy, σz] = [0.08, 0.08, 0.08], respectively, to effectively remove the well-focused energy in
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the images. Finally, we extend the images by [ |λx|, |λy|, |λz| ] ≤ 0.15 km because such an

extension adequately captures the shifted energy (see Figure 5.6) arising due to the inaccurate

starting models (see Figure 5.4). We construct the extended image gathers at the reciprocal

source locations along the borehole as opposed to microseismic scenarios where one typically

evaluates extended images at the spatial point that corresponds to the zero-lag PS image

maximum (Oren and Shragge, 2021a; Witten and Shragge, 2015).

(a) (b)

(c) (d)

Figure 5.5 Recovered (a) VP and (b) VS models along with the percentage change from the
background 1D models in the (c) VP and (d) VS models.
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(a) (b) (c)

(d) (e) (f)

Figure 5.6 (a)-(c) Zero-lag and (d)-(f) space-lag extended image gathers computed using
the initial velocity models. The blue crosshairs in the zero-lag and extended images
respectively show the true reciprocal source locations and the zero lag. The images in
(d)-(f) are respectively computed the following locations in (a)
[x, y, z] = [1.045, 1.047, 0.507] km, (b) [x, y, z] = [1.111, 1.072, 0.710] km, and (c)
[x, y, z] = [1.178, 1.096, 0.913] km.

Figure 5.5 depicts the inverted VP and VS models along with the percentage velocity

change after applying ten tomographic iterations. Analyzing the recovered velocity updates

in the VP model, we note increased velocities up to 6.5% within the ice-bearing permafrost

zone down to a depth of 0.5 km, whereas the velocities are decreased by up to −8.5%

between 0.9−1.2 km in depth, which partially includes the second hydrate unit. We observe

mostly 1D velocity updates within the deep part due to a considerably narrowing aperture

angle between reciprocal sources and receivers. Moreover, the recovered VS model exhibits

a significant velocity increase up to 21% throughout the permafrost zone, while the deeper
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part below that zone exhibits little-to-no model updating.

5.3.4 TRI-based inversion validation

We validate our recovered elastic models based on the focusing of the zero-lag and ex-

tended source images constructed with the TRI procedure. We first evaluate the quality

of the initial models shown in Figure 5.4. Figure 5.6 presents three representative initial

zero-lag images associated with sources that are vertically offset from each other by roughly

200 m, as well as their extended versions that are evaluated at the corresponding true source

locations. To attenuate the elastic zero-lag imaging artifacts, we choose tmax in equation 5.2

to be 0.3 s through trial and error. While the initial zero-lag images exhibit poorly focused

energy outside of the true source locations (i.e., the blue crosshairs in Figure 5.6a-c), the ex-

tended image gathers feature energy shifted downwards with respect to zero lag (i.e., the blue

crosshairs in Figure 5.6d-f), which clearly indicates the required velocity update direction

(i.e., increased velocities). Figure 5.7 shows the final zero-lag and extended image gathers

computed using the inverted models in Figure 5.5. Relative to the initial imaging results,

we note that the focusing in the final zero-lag images is stronger at the source locations, and

the extended images exhibit well-focused energy in the vicinity of zero lag indicating that

the updated imaging velocities are more accurate relative to the starting models.

Another approach to validate the recovered velocity models using the TRI results is to

interpret the calculated Euclidean distance between the estimated and true source locations

as the spatial root-mean square (RMS) error. By following the work of Oren and Shragge

(2022), we estimate the source locations by picking the maximum absolute value in each zero-

lag image Iαβ(x, e). Figure 5.8a and Figure 5.8b respectively presents two crossplots between

the initial and final total and depth RMS errors for all 15 sources used in the inversion. These

results indicate that we achieve a total RMS location error reduction of 70% with the inverted

models. The average depth error, which contributes to the total RMS error, decreases from

11.3 m to 0.9 m (i.e., a reduction of 92%). This implies that the majority of the total RMS

error arises from the more limited lateral (i.e., x− and y−directions) resolution of the source
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images, which is likely affected by the relatively narrow imaging aperture and Fresnel zone

considerations. Moreover, the Figure 5.8 colorbars indicate that the deeper (z > 0.5 km)

sources generally exhibit lower total and depth errors compared to shallower (z ≤ 0.5 km)

sources. We attribute this observation to the imperfect TRI results at shallow locations

mainly affected by the relatively weak amplitudes of the P wavefield backpropagated from

wider offsets due to reduced DAS fiber sensitivity to P waves at larger angles as well as the

complex permafrost zone, both of which tend to degrade the image quality.

(a) (b) (c)

(d) (e) (f)

Figure 5.7 (a)-(c) Zero-lag and (d)-(f) space-lag extended image gathers computed using
the inverted velocity models. Note how the images exhibit improved focusing around the
source location as well as zero lag relative to the initial imaging results shown in Figure 5.6.
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Figure 5.8 Crossplots of the initial and final (a) total and (b) depth RMS location errors of
the reciprocal sources. Points falling along the dashed line indicates no change in error
whereas those below the line indicate improved source location estimates. The colorbar
represents the depth location of the sources. The results show an approximately 70%
decrease in total location errors while a depth error reduction of 92% on average over all
sources.

5.3.5 Inversion validation through elastic reverse time migration

We construct elastic RTM images (i.e., energy, PS, and SS) using different imaging con-

ditions with the goal of obtaining complementary reflectivity information of specified wave

modes at interfaces of discontinuous physical properties. Besides the previous TRI-based

inversion validation step, the elastic RTM images allow us to further evaluate the quality of

the inverted models through well-tie analysis. Our elastic RTM algorithm maps the prepro-

cessed upgoing DAS VSP data to a subsurface image using the following steps: (1) forward

model a source wavefield using an estimated wavelet while saving this wavefield at the do-

main boundaries, (2) reconstruct the source and receiver wavefields through reverse-time

propagation, and (3) evaluate an imaging condition on-the-fly to extract a reflectivity image

from the extrapolated source and receiver wavefields (Chang and McMechan, 1987; Yan and

Sava, 2008; Yan and Xie, 2012).
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We are provided with two data sets for structural imaging: (1) the full upgoing wavefield

data that contain both P- and S-wave arrivals (Figure 5.9a) used in the energy norm imaging

condition (Rocha et al., 2017), and (2) the separated upgoing S-wave data (Figure 5.9b) that

predominantly includes reflected S waves and P-to-S conversions used to generate the PS

and SS images. Minimal preprocessing was carried out on both data sets by deconvolving

the source signature to obtain more balanced spectra, as well as by filtering out the wavefield

energy beyond 50 Hz to make the elastic imaging process feasible with the available com-

putational GPU resources. Similar to the strategy presented in the previous image-domain

inversion approach, we migrated the reciprocal shot gathers after decimating the total num-

ber of shots to 25 distributed throughout the borehole because our initial testing showed

that migrating an increased number of shot gathers did not significantly improve the results.

Herein we present a number of different elastic images formed by correlating source and

receiver wavefields that include either decomposed P- and S-wave modes or non-decomposed

data that consist of various wave modes. To construct the energy image, we use the energy

norm imaging condition that does not require wave-mode decomposition, and produces a

scalar image that is free of backscattering artifacts (Rocha et al., 2017). To generate the

converted wave PS and SS images, we exploit the kinetic term of the PS energy imaging

condition originally developed for microseismic data (Oren and Shragge, 2021a). Active-

source DAS VSP imaging implementation of the PS energy imaging condition requires a

straightforward replacement of the first adjoint wavefield with a source wavefield decomposed

into its associated P- or S-wave mode. During source wavefield reconstruction, we assume

that the medium is isotropic and the following differential operators uα = ∇∇ · u and

uβ = −∇×∇×u judiciously decompose the displacement field (u) into its P(uα) and S(uβ)

wavefield components. The separated upgoing S-wave data are injected at the reciprocal

receiver locations and then backpropagated through the model domain when reconstructing

the receiver wavefield.
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(a) (b)

Figure 5.9 DAS 3D VSP shot gathers showing (a) upgoing wavefield energy including both
P- and S-wave modes and (b) upgoing S-wave energy separated through preprocessing from
data shown in (a).

Figure 5.10 depicts the inline and crossline images extracted from the 3D energy RTM

volume and computed with the initial and inverted P- and S-wave velocity models. We have

also overlain the P-wave sonic log data shown in blue along with several key interpreted

horizons denoted by dashed lines in different colors. In general, both initial and final image

quality is rather high with coherently imaged structures in and below the ice-bearing per-

mafrost zone, the base of which is roughly at 574 m in depth. However, the final imaged

reflectivity appears to better match the log data and interpreted horizons associated with

the base of ice-bearing permafrost levels (green and yellow dashed lines), as well as the target

gas hydrate reservoir tops (cyan and magenta dashed lines) relative to those in the initial

energy images.

Figure 5.11 displays the initial and final inline sections extracted from the 3D PS and

SS RTM volumes. We note that the final images exhibit improved coherency of the im-

aged reflectivity within the permafrost zone. Moreover, the key gas hydrate reservoirs are
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successfully imaged in both PS and SS images. Compared to the previous energy imag-

ing results, the PS and SS image quality overall appears to be less coherent because the

preprocessing steps (e.g., deconvolution) primarily aimed at optimizing the upgoing P-wave

energy that seems to dominate the DAS VSP recordings relative to the upgoing S-wave en-

ergy (see Figure 5.9). We assert that S-wave-oriented preprocessing is needed to enrich the

higher-frequency S-wavefield components that may result in enhanced PS and SS images.

Also, compared to the energy and PS imaging results, SS images exhibit more semicircular

migration artifacts, which can be largely attenuated through post-migration filtering.

5.4 Discussion

The actual benefit of the inverted elastic velocity models comes when they are used as

input in acoustic/elastic depth imaging algorithms (e.g., RTM), which intrinsically drive the

need for accurate models. Relative to traditional surface-recorded seismic data, elastic near-

well imaging seems more achievable for VSP data because it is easier to separate upgoing

from downgoing waves and upgoing P- from S-wave energy. Moreover, given properly prepro-

cessed S-wave data as discussed above, complementary PS and SS images may lead to more

useful geological inference (e.g., higher-resolution reflectivity and sharper fault structures)

compared to conventional PP images as the wavelengths of S waves are shorter than those of

P waves. We note that the PS and SS imaging results presented herein open up possibilities

for robust elastic imaging with different wave paths and illumination of distinct wave modes.

In addition to the conventional RTM approach, one can also consider exploiting the elastic

least-squares RTM (LSRTM) technology that potentially delivers images with more accu-

rate amplitudes, less artifacts emerged due to incomplete acquisition, and better resolved

reflectivity (Feng and Schuster, 2017). However, especially for 3D implementations, the com-

putational cost of the elastic LSRTM procedure remains substantially more expensive than

its acoustic counterpart.

As thoroughly discussed in Oren and Shragge (2022), the computational expense of the

applied inversion procedure is one of the drawbacks, and primarily depends on the forward
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and adjoint elastic wavefield propagations. The number of sources and space lags used for

the extended image computation are the other factors influencing the cost. For the presented

3D field data experiment, each iteration takes nearly 3.0 hours on a single NVIDIA V100

GPU device when using 15 sources. These results suggest that a real data application similar

to the Alaska DAS VSP data set may be carried out within a more reasonable time frame

particularly when following a data parallelism or domain-decomposition strategy involving

multiple GPU nodes.

Because the current tomographic approach uses an isotropic parameterization, the in-

verted velocity models may be compensating for anisotropy effects. Unlike the isotropic

inversion results presented herein, one could incorporate anisotropy into the current veloc-

ity model building approach. One strategy to meet this goal is to invert for the Thomsen

(1986) anisotropy coefficients along with the vertical velocities VP0 and VS0 depending on

the symmetry assumption. In this case, one can use the PS energy imaging condition that

exhibits sensitivity to anisotropy parameters for various transversely isotropic symmetries as

demonstrated by Oren and Shragge (2021b). However, this would require a more challenging

multiparameter inversion, which likely will suffer from interparameter cross-talk. A less de-

manding procedure (though potentially less accurate) is to first estimate the relevant param-

eters from existing (e.g., borehole) measurements and then only invert for vertical velocities

while including the estimated anisotropy in the forward and adjoint wavefield propagations

that generate the state and adjoint state variables used for the inversion process.

There is potential to use the presented tomographic framework on a variety of borehole

DAS data sets in onshore and offshore environments, including as an essential precursor

analysis to generate high-quality starting models essential for elastic VSP FWI applications

(Egorov et al., 2018b; Podgornova et al., 2017). In addition to the field data implementation

presented herein, another onshore application may be time-lapse reservoir monitoring during

hydrocarbon production or CO2 injection (Yurikov et al., 2021). Potential deepwater appli-

cations include but are not limited to 3D near-well imaging of reservoir depths (Jiang et al.,
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2016) or complex structures such as salt flanks (Duan et al., 2020), as well as cost-effective

4D monitoring of production-related operations including water injection or other types of

recovery stimulation (Kiyashchenko et al., 2019). As opposed to the onshore DAS VSP

settings, though, one would expect to observe relatively weak elastic behaviour (recorded

P-to-S conversions) in deepwater scenarios, which may affect the success of the proposed

elastic inversion method.

5.5 Conclusions

We have successfully adopted a recently proposed passive-style image-domain elastic

inversion method for active-source DAS VSP configurations to update P- and S-wave velocity

models. This implementation is made possible by source-receiver reciprocity as if the sources

were positioned at borehole while the data were recorded at the surface. We apply the

inversion approach to an active-source DAS 3D VSP data acquired in the North Slope of

Alaska. We use 15 reciprocal sources to reconstruct reasonably accurate VP and VS models.

We validate the inverted velocities by investigating zero-lag and extended images constructed

through TRI, as well as source location estimates. The velocity updates decrease the total

source location RMS error by 70% as well as a 92% reduction in the final average depth

error. We also generate several elastic RTM images based on the estimated velocity models

showing interpretable reflectivity that matches petrophysical log data in well-ties.
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(a) (b)

(c) (d)

Figure 5.10 (a)-(b) Initial and (c)-(d) final energy images overlaid with the VP well log
shown in blue, as well as the dashed lines that represent several key target levels. While
the yellow and green lines denote the base of ice-bearing permafrost and base of significant
ice-bearing permafrost; the cyan and magenta lines indicate the tops of the two gas hydrate
reservoirs. Left and right columns respectively represent the inline and crossline sections
extracted at x = 0.97 km and y = 1.04 km. Note how the imaged structures in the final
RTM results better match with the highlighted target levels compared to those in the
initial RTM results.
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(a) (b)

(c) (d)

Figure 5.11 (a)-(b) Initial and (c)-(d) final PS (left column) and SS (right column) images.
Both images are the inline sections extracted at x = 0.97 km. Note how the imaged
reflectors in the final RTM results appear to be more coherent and better match with the
key horizons compared to those in the initial RTM results.
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CHAPTER 6

CONCLUSIONS

In this thesis, I propose various 3D elastic imaging and tomography algorithms for differ-

ent types of passive- and active-source seismic data acquired for surface microseismic moni-

toring or vertical seismic profiling (VSP) surveying coupled with distributed acoustic sensing

(DAS) optical fibers. The tomographic velocity model building method is formulated in the

image domain and thus requires an elastic imaging condition that is adequately sensitive

to model perturbations. In Chapter 2, I introduce a robust (extended) PS energy imaging

condition used within the time-reverse imaging (TRI) concept, which is suitable for locating

microseismic events in 3D elastic isotropic media. Given a synthetic test, I also show that

the proposed imaging technique produces zero-lag and extended source images that exhibit

sufficient sensitivity to velocity model errors, which makes this imaging condition suitable

for 3D image-domain elastic velocity inversion algorithms.

Making isotropic media assumptions in TRI and image-domain inversion approaches

may not be sufficient especially when unconventional reservoirs are located within highly

anisotropic massive shale formations. In Chapter 3, I present a sensitivity analysis of the

anisotropy signature in zero-lag and extended PS energy images in 3D VTI (transversely

isotropic with a vertical symmetry axis), HTI (transversely isotropic with a horizontal sym-

metry axis), and ORT (orthorhombic) media. Using the realistic SEAM Barrett Unconven-

tional model, I analyze the PS energy imaging results revealing useful moveout patterns due

to perturbations in the Thomsen (1986) anisotropy coefficients [ε, δ, γ]. The synthetic nu-

merical tests demonstrate that the imaged events are largely influenced by errors in [ε, δ], but

exhibit almost no sensitivity to γ. Furthermore, the sensitivity analysis shows similar event

location errors in the Barrett model for VTI and HTI media; however, I observe substantial

location errors for ORT media. I assert that the presented sensitivity analysis provides useful
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information to determine a prospectus for image-domain anisotropic elastic tomography.

By exploiting the kinetic term of the aforementioned PS energy imaging condition, I

devise a full-wavefield adjoint-state tomography formalism in Chapter 4 for multicomponent

passive data to invert for isotropic P- and S-wave velocity models. I employ a multiterm

objective function that incorporates various event images to ensure optimal zero-lag and

extended image focusing, as well as consistency between the recovered elastic velocity models.

The developed inversion framework does not require arrival picking and thus can offer more

robustness to low signal-to-noise data relative to pick-based inversion methods. The realistic

synthetic numerical experiments demonstrate that the proposed image-domain tomography

approach can generate elastic models that greatly reduce the event location errors compared

to the initial model estimates.

In Chapter 5, I extend the application of the proposed passive-style image-domain elas-

tic tomography formalism to active-source DAS 3D VSP configurations for P- and S-wave

velocity model updating. By exploiting source-receiver reciprocity, I create a DAS 3D VSP

acquisition scenario where the sources and receivers are respectively located at borehole and

surface, which mimics a surface microseismic monitoring setting. I illustrate the efficacy of

the inversion approach on a DAS 3D VSP data set acquired in the North Slope of Alaska

where significant gas hydrate deposits have been detected in two sub-permafrost sand layers.

I first validate the estimated VP and VS models by examining the focusing of zero-lag and

extended images constructed via TRI, as well as source location estimates. The inverted

elastic models lead to a reduction of 70% and 92% in the total and depth source location

RMS errors, respectively. I further validate the recovered velocity models by generating

various elastic reverse time migration (RTM) images that show interpretable reflectivity of

several key structures such as ice-bearing permafrost zone and gas hydrate reservoirs. The

well-tie analysis results demonstrate that the final RTM images better match the existing

petrophysical log data as well as the interpreted key horizons relative to the initial RTM

images.
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Lastly, I relate the contributions of each chapter as the following. I first develop an

elastic TRI procedure to generate (extended) images of passive events in both isotropic and

anisotropic media. The proposed imaging technique forms the basis of the elastic velocity

model building algorithm that I devise to optimize the P- and S-wave velocity models that

can be used in various imaging algorithms. Next, I demonstrate the effectiveness of the

developed adjoint-state tomography method on an active-source fiber-optic 3D VSP data set

acquired in the North Slope of Alaska. The field data results show that the elastic velocity

models reconstructed through adjoint-state inversion improve the focusing of zero-lag and

extended image gathers and significantly reduce the source location error. Furthermore, the

optimized velocity models yield high-quality elastic RTM images of the target geological

structures exhibiting highly accurate well-tie matches. Overall, the developed tools and

workflows provide researchers with a complete inversion and imaging framework that can be

used for a wide variety of earth investigations including, but not limited to, microseismic,

gas hydrates, CO2 geosequestration, geothermal and groundwater monitoring activities.

6.1 Future work

Considering the underlying physics of the methodology presented in this thesis, the pro-

posed imaging and tomography framework may be applicable to different data types at

variety of scales. At the reservoir scales, the presented wavefield methods may be useful for

several passive- and active-seismic monitoring projects to investigate the changes in reservoir

during hydrocarbon production, CO2 sequestration, and waste-water injection. There is also

potential for use at regional and global seismological scales where near-field and teleseismic

earthquake data can be used to further refine the existing large-scale tomographic models.

Given the relatively sparse receiver coverage as well as less signal-to-noise data levels at such

scales, the presented wavefield imaging and inversion methods will not likely suffer from these

restrictions. Moreover, there could be a great potential to apply the proposed framework on

non-destructive damage testing used in civil engineering and quantitative structural health

monitoring projects (e.g., tunnels, dams, and levees).
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APPENDIX

PERMISSIONS FOR CHAPTERS

A.1 Permission from journals

This appendix includes the copyright permissions from Geophysics (Figure A.1) and

Geophysical Journal International (Figure A.2) for use of the published papers incorpo-

rated as chapters in this thesis. The URL that shows the details of copyright permissions

from Geophysics is https://library.seg.org/page/policies/open-access. The URL that shows

the details of copyright permissions from Oxford University Press, publisher for Geophysi-

cal Journal International, is https://global.oup.com/academic/rights/permissions/autperm/

?cc=us&lang=en&.

Figure A.1 A screenshot granting permission (highlighted in yellow) from Geophysics.
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Figure A.2 A screenshot granting permission (highlighted in yellow) from Oxford
University Press, publisher for Geophysical Journal International.
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A.2 Permission for field data set

I include a copy of the email exchanged with company representatives who granted per-

mission for the use of the North Alaska DAS 3D VSP data set presented in Chapter 5 of

this dissertation.

Figure A.3 Permission granted by JOGMEC for the use of the North Alaska DAS 3D VSP
data set presented in Chapter 5.
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