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ABSTRACT

Marchenko methods are based on integral representations which express Green’s
functions for virtual sources and/or receivers in the subsurface in terms of the
reflection response at the surface. An underlying assumption is that inside the
medium the wave field can be decomposed into downgoing and upgoing waves
and that evanescent waves can be neglected. We present a new derivation of
Green’s function representations which circumvents these assumptions, both
for the acoustic and the elastodynamic situation. These representations form
the basis for research into new Marchenko methods which have the potential
to handle refracted and evanescent waves and to more accurately image steep
flanks.
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1 INTRODUCTION

Marchenko redatuming, imaging, monitoring and multiple elimination are all derived from integral representations

which express Green’s functions for virtual sources or receivers in the subsurface in terms of the reflection response

at the surface (Ravasi et al., 2016; Staring et al., 2018; Jia et al., 2018; Lomas & Curtis, 2019; Mildner et al.,

2019; Brackenhoff et al., 2019; Zhang & Slob, 2020; Elison et al., 2020; Reinicke et al., 2020). These representations,

in turn, are derived from reciprocity theorems for one-way wave fields (Slob et al., 2014; Wapenaar et al., 2014),

building on ideas presented by Broggini & Snieder (2012). Marchenko methods deal with internal multiples in a data-

driven way and have the potential to solve large-scale 3D imaging and multiple elimination problems (Pereira et al.,

2019; Staring & Wapenaar, 2020; Ravasi & Vasconcelos, 2020). Of course Marchenko methods have also limitations.

One of the limitations is caused by the fact that the one-way reciprocity theorems require that the wave field in the

subsurface region of interest can be decomposed into downgoing and upgoing fields. Moreover, one of these reciprocity

theorems (the correlation-type theorem) is based on the assumption that evanescent waves can be neglected. These

assumptions complicate the imaging of steep flanks and exclude a proper treatment of refracted waves and evanescent

waves tunnelling through high velocity layers.

To address some of the limitations, Kiraz et al. (2020) propose a Marchenko method without decomposition inside

the medium, assuming the input data are acquired on a closed boundary. On the other hand, for reflection data on a

single horizontal boundary, a first step has been set towards a Marchenko method that deals with evanescent waves

(Wapenaar, 2020). This method is restricted to horizontally layered media and uses wave field decomposition inside

the medium.

In this paper we derive more general Green’s function representations which do not rely on wave field decomposi-

tion in the subsurface and which hold for an arbitrarily inhomogeneous medium below a single horizontal acquisition
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boundary. These representations form a starting point for new research on Marchenko methods which circumvent

several of the present limitations. Diekman & Vasconcelos (2021) independently investigate the same problem, using

a somewhat heuristic approach, without specifying a focusing condition for their function f . They postulate that the

most compact version of f gives a proper focusing function. Our derivation follows a different approach, using an

explicit focusing condition which uniquely determines our focusing function f . Moreover, we derive several forms of

Green’s function representations, including one for the homogeneous Green’s function between a virtual source and

a virtual receiver in the subsurface. We also derive elastodynamic versions of these representations.

This paper is restricted to the derivation of the Green’s function representations; a discussion of their application

in new Marchenko methods is beyond the scope of this paper.

2 ACOUSTIC WAVE FIELD REPRESENTATION

We consider a lossless acoustic medium, consisting of a homogeneous isotropic upper half-space and an arbitrary

inhomogeneous anisotropic lower half-space, separated by a horizontal surface ∂DR. Coordinates in the medium are

denoted by x = (xH, x3), with xH = (x1, x2) denoting the horizontal coordinates and x3 the depth coordinate (the

positive x3-axis is pointing downward). The horizontal surface ∂DR is defined at x3 = x3,R (in the next section we

choose this as the surface at which seismic acquisition takes place). The medium parameters of the lower half-space

x3 > x3,R are the compressibility κ(x) and the mass density tensor ρjk(x). At the micro scale (much smaller than the

wavelength of the acoustic field) the mass density is isotropic. However, small-scale heterogeneities of the isotropic

mass density, for example caused by fine-layering, may manifest themselves as effective anisotropy at the scale of

the wavelength (Schoenberg & Sen, 1983). The mass density tensor is symmetric, that is, ρjk(x) = ρkj(x). The

parameters of the upper half-space x3 < x3,R are the constant compressibility κ = κ0 and the constant isotropic mass

density ρjk = δjkρ0, where δjk is the Kronecker delta function. The propagation velocity of the upper half-space is

c0 = (κ0ρ0)−1/2. At ∂DR we choose the same constant isotropic medium parameters as in the upper half-space.

The basic equations for acoustic wave propagation are the linearized equation of motion

ρjk∂tvk + ∂jp = 0 (1)

and the linearized deformation equation

κ∂tp+ ∂ivi = q, (2)

respectively. Here p(x, t) is the space (x) and time (t) dependent acoustic pressure, vi(x, t) the particle velocity and

q(x, t) a source in terms of volume-injection rate density. Operator ∂i stands for differentiation in the xi-direction.

Lower-case subscripts (except t) take on the values 1, 2 and 3, and the summation convention applies to repeated

subscripts. Operator ∂t stands for differentiation with respect to time. We introduce the specific volume tensor ϑij(x)

as the inverse of the mass density tensor, with ϑijρjk = δik. Applying the operator ∂iϑij to equation (1), operator ∂t
to equation (2), and subtracting the two equations yields the acoustic wave equation

∂i(ϑij∂jp)− κ∂2
t p = −∂tq. (3)

We introduce a focusing function F (x,xR, t), in which xR = (xH,R, x3,R) denotes the position of a focal point at

∂DR, see Figure 1. For fixed xR and variable x and t, this focusing function is a solution of wave equation (3) for the

source-free situation, hence, for q = 0. We define the focusing property as

F (x,xR, t)|x3=x3,R = δ(xH − xH,R)δ(t), (4)

and further demand that F (x,xR, t) is purely upgoing at ∂DR and in the homogeneous isotropic upper half-space.

Note that F (x,xR, t) is similar, but not identical, to the focusing function f2(x,xR, t) introduced in Wapenaar et al.

(2014). We come back to this in section 3.2.

We define the temporal Fourier transform of a space- and time-dependent function u(x, t) as

u(x, ω) =

∫ ∞
−∞

u(x, t) exp(iωt)dt, (5)

where ω is the angular frequency and i the imaginary unit. The integral is taken from t = −∞ to t =∞ to account

for non-causal functions, such as the focusing function F (x,xR, t) for which no causality condition is implied (hence,
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Figure 1. The focusing function F (x,xR, t), which focuses at xR. The upward pointing arrows in the upper half-space indicate

that F (x,xR, t) is purely upgoing for x at and above ∂DR. The up/down arrows in the lower half-space indicate that F (x,xR, t)
is a full (not decomposed) field for x below ∂DR.

in general it can be non-zero for positive and negative time). With this transform, wave equation (3) transforms to

Lp = iωq, (6)

with

L = ∂iϑij∂j + ω2κ. (7)

The transformed focusing function F (x,xR, ω) obeys the wave equation

LF = 0, (8)

the focusing condition

F (x,xR, ω)|x3=x3,R = δ(xH − xH,R), (9)

and it is upgoing at and above ∂DR. We discuss a representation for a wave field p(x, ω), which may have sources in

the upper half-space above ∂DR, but which obeys the source-free wave equation Lp = 0 for x3 ≥ x3,R. In the lower

half-space we express p(x, ω) as a superposition of mutually independent wave fields that obey the same source-free

wave equation for x3 ≥ x3,R. For this purpose, we choose the focusing functions F (x,xR, ω) and F ∗(x,xR, ω) (the

asterisk denotes complex conjugation, which corresponds to time-reversal in the time domain). To be more specific,

we express p(x, ω) as

p(x, ω) =

∫
∂DR

F (x,xR, ω)a(xR, ω)dxR +

∫
∂DR

F ∗(x,xR, ω)b(xR, ω)dxR,

for x3 ≥ x3,R. (10)

Here a(xR, ω) and b(xR, ω) are yet undetermined coefficients, which depend on the position xR at ∂DR. In Appendix

A1 we formulate two boundary conditions at ∂DR, from which we solve a(xR, ω) and b(xR, ω). We thus obtain

p(x, ω) =

∫
∂DR

F (x,xR, ω)p−(xR, ω)dxR +

∫
∂DR

F ∗(x,xR, ω)p+(xR, ω)dxR,

for x3 ≥ x3,R, (11)
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where p−(xR, ω) and p+(xR, ω) represent the upgoing (−) and downgoing (+) parts, respectively, of p(xR, ω) for xR
at ∂DR. These upgoing and downgoing fields are pressure-normalized, meaning that p− + p+ = p at (and above)

∂DR. The underlying assumption in the derivation of equation (11) is that evanescent waves can be neglected at ∂DR.

Hence, it only holds for waves which have a horizontal slowness s which obeys

|s| ≤ 1/c0, at ∂DR. (12)

Note that ignoring evanescent waves at ∂DR does not imply that they cannot be taken into account inside the

inhomogeneous medium below ∂DR. For example, in an isotropic horizontally layered medium with depth-dependent

velocity c(x3), in which the horizontal slowness is independent of depth, waves that are propagating at ∂DR become

evanescent when they reach a depth at which 1/c(x3) < |s| ≤ 1/c0. In section 3.4 we show with a numerical

example that equation (11) indeed accounts for such evanescent waves. Although for laterally varying media we

cannot formulate a similar precise condition for waves becoming evanescent, it is still true that equation (11) holds

for evanescent waves inside the medium, as long as they are related to propagating waves at the surface, as formulated

by equation (12).

Note that we previously derived a representation similar to equation (11) with heuristic arguments, and used it as

the starting point for deriving the Marchenko method (Wapenaar et al., 2013). However, further on in that derivation

we applied up/down decomposition to the wave fields at an artificial internal boundary in the lower half-space and

we neglected evanescent waves throughout space. In the following derivations we avoid up/down decomposition in

the lower half-space and evanescent waves are only neglected at ∂DR. From equation (11) we derive representations

for the full wave field at any point x in the subsurface, expressed in terms of the reflection response at the surface.

3 ACOUSTIC GREEN’S FUNCTION REPRESENTATIONS

3.1 Representation for the acoustic dipole Green’s function

We introduce the Green’s function G(x,xS , t) as a solution of equation (3) for an impulsive monopole source of

volume-injection rate density at xS , hence

∂i(ϑij∂jG)− κ∂2
tG = −δ(x− xS)∂tδ(t). (13)

We demand that G is the causal solution of this equation, hence G(x,xS , t) = 0 for t < 0. Note that G obeys

source-receiver reciprocity, i.e., G(x,xS , t) = G(xS ,x, t). In the frequency domain, G(x,xS , ω) obeys the following

wave equation

LG = iωδ(x− xS). (14)

We choose xS = (xH,S , x3,S) in the upper half-space, at a vanishing distance ε above ∂DR, hence, x3,S = x3,R − ε.
We define a dipole-source response as

Γ(x,xS , ω) = − 2

iωρ0
∂3,SG(x,xS , ω), (15)

where ∂3,S denotes differentiation with respect to the source coordinate x3,S . For x at ∂DR (i.e., just below the

source) we have for the downgoing part

Γ+(x,xS , ω)|x3=x3,R = δ(xH − xH,S). (16)

We define the reflection response R(xR,xS , ω) of the medium below ∂DR as the upgoing part of the dipole-source

response Γ(xR,xS , ω), with xR at ∂DR, hence

R(xR,xS , ω) = Γ−(xR,xS , ω)

= − 2

iωρ0
∂3,SG

−(xR,xS , ω)

= − 2

iωρ0
∂3,SG

s(xR,xS , ω), (17)
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where superscript s stands for scattered. Substituting p(x, ω) = Γ(x,xS , ω) and p±(xR, ω) = Γ±(xR,xS , ω) into

equation (11), using equations (16) and (17), gives

Γ(x,xS , ω) =

∫
∂DR

F (x,xR, ω)R(xR,xS , ω)dxR + F ∗(x,xS , ω), for x3 ≥ x3,R. (18)

This is a representation for the dipole response Γ(x,xS , ω) at virtual receiver position x anywhere in the half-space

below ∂DR, expressed in terms of the reflection response R(xR,xS , ω) at ∂DR. It is similar to our earlier derived

Green’s function representations, but here it has been derived without applying decomposition in the lower half-space.

It excludes the contribution from waves that are evanescent at ∂DR. A difference with our earlier representations is

that the Green’s function on the left-hand side is a dipole response instead of a monopole response.

3.2 Representation for the acoustic monopole Green’s function

In this section we turn equation (18) into a representation for the monopole Green’s function G(x,xS , ω). To this

end we introduce a modified focusing function f(x,xR, ω) via

F (x,xR, ω) =
2

iωρ0
∂3,Rf(x,xR, ω), (19)

where ∂3,R denotes differentiation with respect to x3,R. According to equations (8), (9) and (19), f(x,xR, ω) obeys

the wave equation

Lf = 0, (20)

the focusing condition

∂3,Rf(x,xR, ω)|x3=x3,R =
iωρ0

2
δ(xH − xH,R), (21)

and it is upgoing at and above ∂DR. Analogous to equations (15) and (17) we have

F ∗(x,xS , ω) = − 2

iωρ0
∂3,Sf

∗(x,xS , ω). (22)

Substituting equations (15), (17), (19) and (22) into equation (18), applying source-receiver reciprocity to the scattered

Green’s function and dropping the operation − 2
iωρ0

∂3,S from all terms gives

G(x,xS , ω) =
2

iωρ0

∫
∂DR

{∂3,Rf(x,xR, ω)}Gs(xS ,xR, ω)dxR + f∗(x,xS , ω),

for x3 ≥ x3,R. (23)

We transfer the operator ∂3,R from f to Gs, which is accompanied with a sign change (see Appendix A2). Using the

definition of R in equation (17) this yields

G(x,xS , ω) =

∫
∂DR

f(x,xR, ω)R(xS ,xR, ω)dxR + f∗(x,xS , ω), for x3 ≥ x3,R. (24)

This is the main result of this paper. We discuss a number of aspects of this representation.

• Equation (24) has the same form as equation (13) in Wapenaar et al. (2014), with f2 in that paper replaced by

f . Using ∂3,Rf(x,xR, ω) = −∂3f(x,xR, ω) for x3 = x3,R (i.e., at the boundary of the homogeneous upper half-space),

equation (21) can be written as

∂3f(x,xR, ω)|x3=x3,R = − iωρ0
2

δ(xH − xH,R). (25)

This is the same focusing condition as that for f2(x,xR, ω). The only difference between f and f2 is the medium

in which these focusing functions are defined. Focusing function f2 is defined in a truncated version of the actual

medium, where the medium below some depth level is replaced by a homogeneous medium. It is assumed that

up/down decomposition is possible at the truncation level. On the other hand, focusing function f in equation (24)

is defined in the actual medium (similar as F in Figure 1). In a horizontally layered medium the functions f and f2
are identical.

Moreover, the derivation in Wapenaar et al. (2014) of the representation is different: we started with decomposed
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focusing functions f+
1 (x,xA, ω) and f−1 (x,xA, ω) in the truncated medium, with xA being a focal point at the

truncation depth. Next, we derived representations for G+(xA,xS , ω) and G−(xA,xS , ω) and combined the two

into a single representation for G(xA,xS , ω) = G+(xA,xS , ω) + G−(xA,xS , ω), using the relation f2(xA,xR, ω) =

f+
1 (xR,xA, ω) − {f−1 (xR,xA, ω)}∗ (note the different order of coordinates in f1 and f2). The latter relation is only

valid when evanescent waves can be neglected at the truncation level inside the medium. In our current approach we

do not make use of decomposition at a truncation level inside the medium and we avoid the approximate relation

f2 = f+
1 −{f

−
1 }∗. The only requirement for f(x,xR, ω) is that it obeys equations (20) and (21). Hence, representation

(24) gives the full wave field at the virtual receiver position x inside the medium, including multiply reflected, refracted

and evanescent waves. It only excludes the contribution from waves that are evanescent at ∂DR, see the condition

formulated by equation (12).

• Using another approach, also without applying decomposition inside the medium, Diekman & Vasconcelos (2021)

derive an equation of the same form as equation (24), but without specifying a focusing condition for f . They postulate

that the most compact version of their f is the focusing function. The derivation of equation (24) in the current paper

uses an explicit focusing condition for f (equation 21).

• It is counterintuitive that in equation (24) we use a focusing function f(x,xR, ω) with its focal point xR situated

at the surface ∂DR, opposed to the focusing function f±1 (x,xA, ω) in the classical representation, which has its focal

point xA in the subsurface. Note, however, that in the representation of equation (24) the integration takes place

along xR, while keeping x fixed. Hence, in equation (24) the variable xR denotes the position of Huygens sources

along ∂DR, while x in f(x,xR, ω) plays a similar role as the focal point xA in f±1 (x,xA, ω).

• Equation (24) forms a starting point for deriving the Marchenko method. By applying an inverse Fourier trans-

form we obtain

G(x,xS , t)− f(x,xS ,−t) =

∫
∂DR

dxR

∫ t

−∞
f(x,xR, t

′)R(xS ,xR, t− t′)dt′, (26)

for x3 ≥ x3,R. The Marchenko method is based on the separability in time of G(x,xS , t) and f(x,xS ,−t). For

horizontal plane waves in 1D media (Burridge, 1980; Broggini & Snieder, 2012) and for point-source responses at

limited horizontal distances |xH − xH,S | in moderately inhomogeneous 3D media (Wapenaar et al., 2013), these

functions only overlap at t = td, which is the time of the direct arrival of the Green’s function. This minimum

overlap in time allows the construction of a time-windowed version of equation (26) without G(x,xS , t) (this is

the 3D Marchenko equation). From this equation the focusing function f(x,xS , t) can be resolved, given its direct

arrival and the reflection response R(xS ,xR, t). In essence this separability of the Green’s function and the time-

reversed focusing function has been the underlying assumption of all implementations of the Marchenko method.

This assumption excludes, among others, the treatment of refracted waves, which may arrive prior to the direct

arrival of the Green’s function and interfere with the focusing function.

Since we have shown that the representations of equations (24) and (26) hold for refracted and evanescent waves,

it is opportune to start new research on Marchenko methods which exploit the generality of these representations.

However, in comparison with earlier developments, additional care should be taken to account for the overlap in

time of the Green’s function and the time-reversed focusing function. A further discussion of the development of new

Marchenko methods is beyond the scope of this paper.

• Equation (24) is, in principle, suited to retrieve the Green’s function G(x,xS , ω) for x anywhere in the lower

half-space. However, a single type of Green’s function is not a sufficient starting point for imaging. In the classical

approach to Marchenko imaging, the downgoing and upgoing parts of the Green’s function are retrieved, from which

a reflection image can be obtained, either by a deconvolution or a correlation method. In the full-wavefield approach,

we need at least one other type of field at x, next to G(x,xS , ω), which represents the acoustic pressure field at x in

response to a volume-injection rate source at xS . To this end we introduce a Green’s function Gvi (x,xS , ω) which, for

i=1, 2, 3, stands for the three components of the particle velocity field at x. From the Fourier transform of equation

(1) we derive that the particle velocity vi can be expressed in terms of the acoustic pressure as vi = 1
iω
ϑij∂jp.

Similarly, we relate Gvi to G via

Gvi (x,xS , ω) =
1

iω
ϑij(x)∂jG(x,xS , ω). (27)

Hence, when G(x,xS , ω) is available on a sufficiently dense grid, Gvi (x,xS , ω) can be obtained via equation (27).

Alternatively, Gvi (x,xS , ω) can be obtained from a modified version of the representation for G(x,xS , ω). Applying
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the operation 1
iω
ϑij∂j to both sides of equation (24) yields

Gvi (x,xS , ω) =

∫
∂DR

hi(x,xR, ω)R(xS ,xR, ω)dxR − h∗i (x,xS , ω), for x3 ≥ x3,R, (28)

with

hi(x,xR, ω) =
1

iω
ϑij(x)∂jf(x,xR, ω). (29)

The Green’s functions G(x,xS , ω) and Gvi (x,xS , ω) together provide sufficient information for imaging. For example,

one could decompose the field into incident and scattered waves in any desired direction, say in a direction perpen-

dicular to a local interface (Yoon & Marfurt, 2006; Liu et al., 2011; Holicki et al., 2019), and use these fields as input

for imaging.

3.3 Representation for the homogeneous acoustic Green’s function

The representations in sections 3.1 and 3.2 give the response to a source at xS , observed by a virtual receiver at

x inside the medium. Here we modify this representation, to create the response at the surface to a virtual source

inside the medium. After that, we show how to obtain the response to this virtual source at a virtual receiver inside

the medium.

We start by renaming the coordinate vectors in equation (24) as follows: xS → xR, xR → xS , x → xA. This

yields, in combination with applying reciprocity source-receiver on the left-hand side of equation (24),

G(xR,xA, ω) =

∫
∂DR

R(xR,xS , ω)f(xA,xS , ω)dxS + f∗(xA,xR, ω), for x3,A ≥ x3,R. (30)

Here R(xR,xS , ω) is the reflection response to a dipole source at xS , observed by a receiver at xR, both at the

surface ∂DR. This is schematically illustrated in Figure 2(a). The integral in equation (30) describes redatuming of

the sources from all xS at the surface to virtual-source position xA in the subsurface, see Figure 2(b). After adding

f∗(xA,xR, ω) (according to equation 30)) this gives the Green’s function G(xR,xA, ω), which is the response to the

virtual source at xA, observed by the receiver at xR at the surface.

Our next aim is to derive a representation for the response observed by a virtual receiver at x in the subsurface,

given G(xR,xA, ω). Equation (11) cannot be used for this in the same way as before, since G(x,xA, ω) obeys a

wave equation with a singularity at xA, whereas p(x, ω) in equation (11) is not allowed to have sources in the lower

half-space. To overcome this problem, we define the homogeneous Green’s function (Porter, 1970; Oristaglio, 1989)

Gh(x,xA, ω) = G(x,xA, ω) +G∗(x,xA, ω). (31)

Here G(x,xA, ω) and G∗(x,xA, ω) obey equation (14), with source terms iωδ(x−xA) and −iωδ(x−xA), respectively,

on the right-hand sides. Hence, Gh(x,xA, ω) obeys the following equation

LGh = 0, (32)

which confirms that the homogeneous Green’s function has no singularities. This time we choose for p(x, ω) in equation

(11)

p(x, ω) = Gh(x,xA, ω), (33)

with Gh(x,xA, ω) defined in equation (31). For x at ∂DR the Green’s function G(x,xA, ω) is purely upgoing, since

the upper half-space is homogeneous and the virtual source at xA lies in the lower half-space. Similarly, G∗(x,xA, ω)

is downgoing at ∂DR, except for the evanescent field (which we already neglected at ∂DR in the derivation of equation

(11)). Hence, we may write

p−(x, ω) = G(x,xA, ω), for x3 = x3,R, (34)

p+(x, ω) = G∗(x,xA, ω), for x3 = x3,R. (35)
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@DR
<latexit sha1_base64="uv4zieMhmva56mHXlSBACTX883o=">AAAB/XicbVDLSsNAFL2pr1pf8bFzEyyCq5JUQRcuCrpwWcU+oAlhMp20QyeTMDMRaij+ihsXirj1P9z5N07aLLT1wMDhnHtnzpwgYVQq2/42SkvLK6tr5fXKxubW9o65u9eWcSowaeGYxaIbIEkY5aSlqGKkmwiCooCRTjC6yv3OAxGSxvxejRPiRWjAaUgxUlryzQM3QUJRxNwIqWEQZNcT/843q3bNnsJaJE5BqlCg6Ztfbj/GaUS4wgxJ2XPsRHlZfjNmZFJxU0kShEdoQHqachQR6WXT9BPrWCt9K4yFPlxZU/X3RoYiKcdRoCfzjHLey8X/vF6qwgsvozxJFeF49lCYMkvFVl6F1aeCYMXGmiAsqM5q4SESCCtdWEWX4Mx/eZG06zXntFa/Pas2Los6ynAIR3ACDpxDA26gCS3A8AjP8ApvxpPxYrwbH7PRklHs7MMfGJ8/1HaVcQ==</latexit>

xR
<latexit sha1_base64="wrvIv9UrfGx/n3L+LgtmmovEDo0=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe6ioIVFwMYyivmQ5Ah7m71kye7esbsnhuN+hY2FIrb+HDv/jZvkCk18MPB4b4aZeUHMmTau++0UVlbX1jeKm6Wt7Z3dvfL+QUtHiSK0SSIeqU6ANeVM0qZhhtNOrCgWAaftYHw99duPVGkWyXsziakv8FCykBFsrPSQ9oIQPWX9u3654lbdGdAy8XJSgRyNfvmrN4hIIqg0hGOtu54bGz/FyjDCaVbqJZrGmIzxkHYtlVhQ7aezgzN0YpUBCiNlSxo0U39PpFhoPRGB7RTYjPSiNxX/87qJCS/9lMk4MVSS+aIw4chEaPo9GjBFieETSzBRzN6KyAgrTIzNqGRD8BZfXiatWtU7q9Zuzyv1qzyOIhzBMZyCBxdQhxtoQBMICHiGV3hzlPPivDsf89aCk88cwh84nz+KhpA3</latexit>

xS
<latexit sha1_base64="ceQGYPZksSbCOCj00aQj2/csgtM=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe6ioIVFwMYyovmQ5Ah7m71kye7esbsnhuN+hY2FIrb+HDv/jZvkCk18MPB4b4aZeUHMmTau++0UVlbX1jeKm6Wt7Z3dvfL+QUtHiSK0SSIeqU6ANeVM0qZhhtNOrCgWAaftYHw99duPVGkWyXsziakv8FCykBFsrPSQ9oIQPWX9u3654lbdGdAy8XJSgRyNfvmrN4hIIqg0hGOtu54bGz/FyjDCaVbqJZrGmIzxkHYtlVhQ7aezgzN0YpUBCiNlSxo0U39PpFhoPRGB7RTYjPSiNxX/87qJCS/9lMk4MVSS+aIw4chEaPo9GjBFieETSzBRzN6KyAgrTIzNqGRD8BZfXiatWtU7q9Zuzyv1qzyOIhzBMZyCBxdQhxtoQBMICHiGV3hzlPPivDsf89aCk88cwh84nz+MCpA4</latexit>

R(xR,xS , !)
<latexit sha1_base64="l2YYWEgN9lOeC6B2sqIbQn0a3RQ=">AAACBnicbZDLSsNAFIYnXmu9RV2KMFiECqUkVdCFi4Ibl7XaCzQhTKaTduhkEmYmYgldufFV3LhQxK3P4M63cdpG0NYfBj7+cw5nzu/HjEplWV/GwuLS8spqbi2/vrG5tW3u7DZllAhMGjhikWj7SBJGOWkoqhhpx4Kg0Gek5Q8ux/XWHRGSRvxWDWPihqjHaUAxUtryzIN6MXX8AN6PvHrph25KThSSHjr2zIJVtiaC82BnUACZap756XQjnISEK8yQlB3bipWbIqEoZmSUdxJJYoQHqEc6GjkKiXTTyRkjeKSdLgwioR9XcOL+nkhRKOUw9HVniFRfztbG5n+1TqKCczelPE4U4Xi6KEgYVBEcZwK7VBCs2FADwoLqv0LcRwJhpZPL6xDs2ZPnoVkp2yflyvVpoXqRxZED++AQFIENzkAVXIEaaAAMHsATeAGvxqPxbLwZ79PWBSOb2QN/ZHx8A61Jl/Y=</latexit>

(a)

@DR
<latexit sha1_base64="uv4zieMhmva56mHXlSBACTX883o=">AAAB/XicbVDLSsNAFL2pr1pf8bFzEyyCq5JUQRcuCrpwWcU+oAlhMp20QyeTMDMRaij+ihsXirj1P9z5N07aLLT1wMDhnHtnzpwgYVQq2/42SkvLK6tr5fXKxubW9o65u9eWcSowaeGYxaIbIEkY5aSlqGKkmwiCooCRTjC6yv3OAxGSxvxejRPiRWjAaUgxUlryzQM3QUJRxNwIqWEQZNcT/843q3bNnsJaJE5BqlCg6Ztfbj/GaUS4wgxJ2XPsRHlZfjNmZFJxU0kShEdoQHqachQR6WXT9BPrWCt9K4yFPlxZU/X3RoYiKcdRoCfzjHLey8X/vF6qwgsvozxJFeF49lCYMkvFVl6F1aeCYMXGmiAsqM5q4SESCCtdWEWX4Mx/eZG06zXntFa/Pas2Los6ynAIR3ACDpxDA26gCS3A8AjP8ApvxpPxYrwbH7PRklHs7MMfGJ8/1HaVcQ==</latexit>

xR
<latexit sha1_base64="wrvIv9UrfGx/n3L+LgtmmovEDo0=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe6ioIVFwMYyivmQ5Ah7m71kye7esbsnhuN+hY2FIrb+HDv/jZvkCk18MPB4b4aZeUHMmTau++0UVlbX1jeKm6Wt7Z3dvfL+QUtHiSK0SSIeqU6ANeVM0qZhhtNOrCgWAaftYHw99duPVGkWyXsziakv8FCykBFsrPSQ9oIQPWX9u3654lbdGdAy8XJSgRyNfvmrN4hIIqg0hGOtu54bGz/FyjDCaVbqJZrGmIzxkHYtlVhQ7aezgzN0YpUBCiNlSxo0U39PpFhoPRGB7RTYjPSiNxX/87qJCS/9lMk4MVSS+aIw4chEaPo9GjBFieETSzBRzN6KyAgrTIzNqGRD8BZfXiatWtU7q9Zuzyv1qzyOIhzBMZyCBxdQhxtoQBMICHiGV3hzlPPivDsf89aCk88cwh84nz+KhpA3</latexit>

G(xR,xA, !)
<latexit sha1_base64="43tG7kbLUx3RWbn4H2AGdcNTTto=">AAACBnicbZDLSsNAFIYnXmu9RV2KMFiECqUkVdCFi4oLXVaxF2hCmEwn7dBJJsxMxBK6cuOruHGhiFufwZ1v47SNoK0/DHz85xzOnN+PGZXKsr6MufmFxaXl3Ep+dW19Y9Pc2m5InghM6pgzLlo+koTRiNQVVYy0YkFQ6DPS9PsXo3rzjghJeXSrBjFxQ9SNaEAxUtryzL3LYur4AbwfejelHzovOTwkXXTomQWrbI0FZ8HOoAAy1Tzz0+lwnIQkUpghKdu2FSs3RUJRzMgw7ySSxAj3UZe0NUYoJNJNx2cM4YF2OjDgQr9IwbH7eyJFoZSD0NedIVI9OV0bmf/V2okKTt2URnGiSIQni4KEQcXhKBPYoYJgxQYaEBZU/xXiHhIIK51cXodgT588C41K2T4qV66PC9WzLI4c2AX7oAhscAKq4ArUQB1g8ACewAt4NR6NZ+PNeJ+0zhnZzA74I+PjG3+Rl9k=</latexit>

. . . . . .xS . . . . . .
<latexit sha1_base64="d4QudPiCZJ+O8eUb5jzyDSaWGcQ=">AAACBnicbVDLSgMxFM34rPU16lKEYBFclZkq6MJFwY3LivYB7VAyaaYNzWSG5I5Yhq7c+CtuXCji1m9w59+YTgfU1gMJh3PuIbnHjwXX4Dhf1sLi0vLKamGtuL6xubVt7+w2dJQoyuo0EpFq+UQzwSWrAwfBWrFiJPQFa/rDy4nfvGNK80jewihmXkj6kgecEjBS1z7o9CLQ2ZV2/ADfj7s3P1LXLjllJwOeJ25OSihHrWt/mhxNQiaBCqJ123Vi8FKigFPBxsVOollM6JD0WdtQSUKmvTRbY4yPjNLDQaTMkYAz9XciJaHWo9A3kyGBgZ71JuJ/XjuB4NxLuYwTYJJOHwoSgSHCk05wjytGQYwMIVRx81dMB0QRCqa5oinBnV15njQqZfekXLk+LVUv8joKaB8domPkojNURVeohuqIogf0hF7Qq/VoPVtv1vt0dMHKM3voD6yPbyYwmYk=</latexit>

f(xA,xS , !)
<latexit sha1_base64="aRF2XeJJwScbgombfZJ8CtBGJKw=">AAACBnicbZDLSsNAFIYn9VbrLepShMEiVCglqYIuXFTcuKxoL9CEMJlO2qGTSZiZiCV05cZXceNCEbc+gzvfxmkbQVt/GPj4zzmcOb8fMyqVZX0ZuYXFpeWV/GphbX1jc8vc3mnKKBGYNHDEItH2kSSMctJQVDHSjgVBoc9Iyx9cjuutOyIkjfitGsbEDVGP04BipLTlmftBKXX8AN6PvIvyD92UnSgkPXTkmUWrYk0E58HOoAgy1T3z0+lGOAkJV5ghKTu2FSs3RUJRzMio4CSSxAgPUI90NHIUEummkzNG8FA7XRhEQj+u4MT9PZGiUMph6OvOEKm+nK2Nzf9qnUQFZ25KeZwowvF0UZAwqCI4zgR2qSBYsaEGhAXVf4W4jwTCSidX0CHYsyfPQ7NasY8r1euTYu08iyMP9sABKAEbnIIauAJ10AAYPIAn8AJejUfj2Xgz3qetOSOb2QV/ZHx8A7LTl/k=</latexit>

xA
<latexit sha1_base64="TDsRQAs2KT49b9WGg/tL2oSeaNw=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe6ioIVFxMYygvmQ5Ah7m71kye7esbsnhiO/wsZCEVt/jp3/xs3lCk18MPB4b4aZeUHMmTau++0UVlbX1jeKm6Wt7Z3dvfL+QUtHiSK0SSIeqU6ANeVM0qZhhtNOrCgWAaftYHwz89uPVGkWyXsziakv8FCykBFsrPSQ9oIQPU371/1yxa26GdAy8XJSgRyNfvmrN4hIIqg0hGOtu54bGz/FyjDC6bTUSzSNMRnjIe1aKrGg2k+zg6foxCoDFEbKljQoU39PpFhoPRGB7RTYjPSiNxP/87qJCS/9lMk4MVSS+aIw4chEaPY9GjBFieETSzBRzN6KyAgrTIzNqGRD8BZfXiatWtU7q9buziv1qzyOIhzBMZyCBxdQh1toQBMICHiGV3hzlPPivDsf89aCk88cwh84nz9wwpAm</latexit>

(b)

@DR
<latexit sha1_base64="uv4zieMhmva56mHXlSBACTX883o=">AAAB/XicbVDLSsNAFL2pr1pf8bFzEyyCq5JUQRcuCrpwWcU+oAlhMp20QyeTMDMRaij+ihsXirj1P9z5N07aLLT1wMDhnHtnzpwgYVQq2/42SkvLK6tr5fXKxubW9o65u9eWcSowaeGYxaIbIEkY5aSlqGKkmwiCooCRTjC6yv3OAxGSxvxejRPiRWjAaUgxUlryzQM3QUJRxNwIqWEQZNcT/843q3bNnsJaJE5BqlCg6Ztfbj/GaUS4wgxJ2XPsRHlZfjNmZFJxU0kShEdoQHqachQR6WXT9BPrWCt9K4yFPlxZU/X3RoYiKcdRoCfzjHLey8X/vF6qwgsvozxJFeF49lCYMkvFVl6F1aeCYMXGmiAsqM5q4SESCCtdWEWX4Mx/eZG06zXntFa/Pas2Los6ynAIR3ACDpxDA26gCS3A8AjP8ApvxpPxYrwbH7PRklHs7MMfGJ8/1HaVcQ==</latexit>

. . . . . .xS . . . . . .
<latexit sha1_base64="d4QudPiCZJ+O8eUb5jzyDSaWGcQ=">AAACBnicbVDLSgMxFM34rPU16lKEYBFclZkq6MJFwY3LivYB7VAyaaYNzWSG5I5Yhq7c+CtuXCji1m9w59+YTgfU1gMJh3PuIbnHjwXX4Dhf1sLi0vLKamGtuL6xubVt7+w2dJQoyuo0EpFq+UQzwSWrAwfBWrFiJPQFa/rDy4nfvGNK80jewihmXkj6kgecEjBS1z7o9CLQ2ZV2/ADfj7s3P1LXLjllJwOeJ25OSihHrWt/mhxNQiaBCqJ123Vi8FKigFPBxsVOollM6JD0WdtQSUKmvTRbY4yPjNLDQaTMkYAz9XciJaHWo9A3kyGBgZ71JuJ/XjuB4NxLuYwTYJJOHwoSgSHCk05wjytGQYwMIVRx81dMB0QRCqa5oinBnV15njQqZfekXLk+LVUv8joKaB8domPkojNURVeohuqIogf0hF7Qq/VoPVtv1vt0dMHKM3voD6yPbyYwmYk=</latexit>

f(xA,xS , !)
<latexit sha1_base64="aRF2XeJJwScbgombfZJ8CtBGJKw=">AAACBnicbZDLSsNAFIYn9VbrLepShMEiVCglqYIuXFTcuKxoL9CEMJlO2qGTSZiZiCV05cZXceNCEbc+gzvfxmkbQVt/GPj4zzmcOb8fMyqVZX0ZuYXFpeWV/GphbX1jc8vc3mnKKBGYNHDEItH2kSSMctJQVDHSjgVBoc9Iyx9cjuutOyIkjfitGsbEDVGP04BipLTlmftBKXX8AN6PvIvyD92UnSgkPXTkmUWrYk0E58HOoAgy1T3z0+lGOAkJV5ghKTu2FSs3RUJRzMio4CSSxAgPUI90NHIUEummkzNG8FA7XRhEQj+u4MT9PZGiUMph6OvOEKm+nK2Nzf9qnUQFZ25KeZwowvF0UZAwqCI4zgR2qSBYsaEGhAXVf4W4jwTCSidX0CHYsyfPQ7NasY8r1euTYu08iyMP9sABKAEbnIIauAJ10AAYPIAn8AJejUfj2Xgz3qetOSOb2QV/ZHx8A7LTl/k=</latexit>

Gh(x,xA, !)
<latexit sha1_base64="A8Wj7INJE7Gunt6rBlKlWbHnUbw=">AAACDHicbVDNSgMxGMzWv1r/qh69BItQoZTdKujBQ8WDHivYH+guJZtm29BksyRZsSz7AF58FS8eFPHqA3jzbUzbPWjrQMgwMx/JN37EqNK2/W3llpZXVtfy64WNza3tneLuXkuJWGLSxIIJ2fGRIoyGpKmpZqQTSYK4z0jbH11N/PY9kYqK8E6PI+JxNAhpQDHSRuoVS9e9xJUcDtNy4voBfEgr2d27rLiCkwE6Nim7ak8BF4mTkRLI0OgVv9y+wDEnocYMKdV17Eh7CZKaYkbSghsrEiE8QgPSNTREnCgvmS6TwiOj9GEgpDmhhlP190SCuFJj7pskR3qo5r2J+J/XjXVw7iU0jGJNQjx7KIgZ1AJOmoF9KgnWbGwIwpKav0I8RBJhbformBKc+ZUXSatWdU6qtdvTUv0iqyMPDsAhKAMHnIE6uAEN0AQYPIJn8ArerCfrxXq3PmbRnJXN7IM/sD5/AFFDmn4=</latexit>

xA
<latexit sha1_base64="TDsRQAs2KT49b9WGg/tL2oSeaNw=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe6ioIVFxMYygvmQ5Ah7m71kye7esbsnhiO/wsZCEVt/jp3/xs3lCk18MPB4b4aZeUHMmTau++0UVlbX1jeKm6Wt7Z3dvfL+QUtHiSK0SSIeqU6ANeVM0qZhhtNOrCgWAaftYHwz89uPVGkWyXsziakv8FCykBFsrPSQ9oIQPU371/1yxa26GdAy8XJSgRyNfvmrN4hIIqg0hGOtu54bGz/FyjDC6bTUSzSNMRnjIe1aKrGg2k+zg6foxCoDFEbKljQoU39PpFhoPRGB7RTYjPSiNxP/87qJCS/9lMk4MVSS+aIw4chEaPY9GjBFieETSzBRzN6KyAgrTIzNqGRD8BZfXiatWtU7q9buziv1qzyOIhzBMZyCBxdQh1toQBMICHiGV3hzlPPivDsf89aCk88cwh84nz9wwpAm</latexit>

. . . . . .xR . . . . . .
<latexit sha1_base64="JIWwlTDf3WtC2Ul8HZg9BDSlopM=">AAACBnicbVDLSgMxFM34rPU16lKEYBFclZkq6MJFwY3LKvYB7VAyaaYNzWSG5I5Yhq7c+CtuXCji1m9w59+YTgfU1gMJh3PuIbnHjwXX4Dhf1sLi0vLKamGtuL6xubVt7+w2dJQoyuo0EpFq+UQzwSWrAwfBWrFiJPQFa/rDy4nfvGNK80jewihmXkj6kgecEjBS1z7o9CLQ2ZV2/ADfj7s3P1LXLjllJwOeJ25OSihHrWt/mhxNQiaBCqJ123Vi8FKigFPBxsVOollM6JD0WdtQSUKmvTRbY4yPjNLDQaTMkYAz9XciJaHWo9A3kyGBgZ71JuJ/XjuB4NxLuYwTYJJOHwoSgSHCk05wjytGQYwMIVRx81dMB0QRCqa5oinBnV15njQqZfekXLk+LVUv8joKaB8domPkojNURVeohuqIogf0hF7Qq/VoPVtv1vt0dMHKM3voD6yPbySimYg=</latexit>

x<latexit sha1_base64="nsDGhzqZlVxME+aPb+nPIYtI1aM=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgFe6ioIVFwMYygvmA5Ah7m71kyd7esTsnhiM/wsZCEVt/j53/xk1yhSY+GHi8N8PMvCCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9nfvuRayNi9YCThPsRHSoRCkbRSu2sF4TkadovV9yqOwdZJV5OKpCj0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXUkUjbvxsfu6UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGa/k4HQnKGcWEKZFvZWwkZUU4Y2oZINwVt+eZW0alXvolq7v6zUb/I4inACp3AOHlxBHe6gAU1gMIZneIU3J3FenHfnY9FacPKZY/gD5/MHLoqPcg==</latexit>

F (x,xR, !)
<latexit sha1_base64="4Qp2vlYqesqeKrJCGDRYTf/sa2I=">AAACBHicbVDLSgMxFM34rPU16rKbYBEqlDJTBV24KAjisop9QGcomTTThiaTIcmIZejCjb/ixoUibv0Id/6NaTsLbT1wuYdz7iW5J4gZVdpxvq2l5ZXVtfXcRn5za3tn197bbyqRSEwaWDAh2wFShNGINDTVjLRjSRAPGGkFw8uJ37onUlER3elRTHyO+hENKUbaSF27cFVKvSCED+Ny1ru3ZU9w0kfHXbvoVJwp4CJxM1IEGepd+8vrCZxwEmnMkFId14m1nyKpKWZknPcSRWKEh6hPOoZGiBPlp9MjxvDIKD0YCmkq0nCq/t5IEVdqxAMzyZEeqHlvIv7ndRIdnvspjeJEkwjPHgoTBrWAk0Rgj0qCNRsZgrCk5q8QD5BEWJvc8iYEd/7kRdKsVtyTSvXmtFi7yOLIgQI4BCXggjNQA9egDhoAg0fwDF7Bm/VkvVjv1sdsdMnKdg7AH1ifPy5llyQ=</latexit>

(c)

Figure 2. Illustration of source and receiver redatuming as a two-step process. Starting with (a) the reflection response

R(xR,xS , ω) at the surface, in step one (b) the Green’s function G(xR,xA, ω) is obtained for a virtual source at xA, and

step two (c) yields the homogeneous Green’s function Gh(x,xA, ω) for a virtual receiver at x. All functions in this figure are
represented by simple rays, but in reality these are wave fields, including primaries, multiples, refracted and evanescent waves.

Substitution of equations (33) − (35) into equation (11) yields

Gh(x,xA, ω) =

∫
∂DR

F (x,xR, ω)G(xR,xA, ω)dxR +

∫
∂DR

F ∗(x,xR, ω)G∗(xR,xA, ω)dxR,

for x3 ≥ x3,R, (36)
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or

Gh(x,xA, ω) = 2<
∫
∂DR

F (x,xR, ω)G(xR,xA, ω)dxR, for x3 ≥ x3,R, (37)

where < denotes that the real part is taken. This equation describes redatuming of the receivers from all xR at the

surface to virtual-receiver position x in the subsurface, see Figure 2(c). It gives the homogeneous Green’s function

Gh(x,xA, ω), which is the response to the virtual source at xA, observed by a virtual receiver at x, plus its complex

conjugate. After transforming this to the time domain we obtain

Gh(x,xA, t) = G(x,xA, t) +G(x,xA,−t). (38)

The two functions at the right-hand side do not overlap in time (except for x = xA and only for t = 0), hence,

G(x,xA, t) can be extracted from Gh(x,xA, t) by selecting its causal part.

Note that there is an unbalance in the focusing functions used for source redatuming (f(xA,xS , ω) in equation

(30)) and for receiver redatuming (F (x,xR, ω) in equation (37)), see also Figure 2(c). This is due to the difference

in types of responses at the surface (the dipole response R(xR,xS , ω)) and in the subsurface (the monopole re-

sponse Gh(x,xA, ω)). When the response at the surface were also a monopole response, then the focusing function

f(xA,xS , ω) for source redatuming should be replaced by F (xA,xS , ω).

Homogeneous Green’s function representations similar to equation (37) were also derived by Wapenaar et al.

(2016a), Van der Neut et al. (2017) and Singh & Snieder (2017), but here it has been derived without decomposition

inside the medium. Hence, it also holds for evanescent waves inside the medium, as long as condition (12) is obeyed.

Moreover, the derivation presented here is much simpler than in those references.

The source and receiver redatuming processes can be captured in one equation by substituting equation (30)

into (37). This gives

Gh(x,xA, ω) = 2<
∫
∂DR

∫
∂DR

F (x,xR, ω)R(xR,xS , ω)f(xA,xS , ω)dxSdxR

+ 2<
∫
∂DR

F (x,xR, ω)f∗(xA,xR, ω)dxR, for {x3, x3,A} ≥ x3,R. (39)

The double integral on the right-hand side resembles the process of classical source and receiver redatuming (Berkhout,

1982; Berryhill, 1984), but with the primary focusing functions in those references replaced by full-field focusing

functions. It also resembles source-receiver interferometry (Curtis & Halliday, 2010), but with the double integration

along a closed boundary in that paper replaced by the double integration over the open boundary ∂DR. Hence,

via the theories of primary source-receiver redatuming (Berkhout, 1982; Berryhill, 1984), closed-boundary source-

receiver interferometry (Curtis & Halliday, 2010) and open-boundary homogeneous Green’s function retrieval of

decomposed wave fields (Wapenaar et al., 2016a; Van der Neut et al., 2017; Singh & Snieder, 2017), we have arrived

at a representation for open-boundary homogeneous Green’s function retrieval of full wave fields (equation 39),

which accounts for internal multiples, refracted and evanescent waves in the lower half-space. In section 5.3 this

representation is extended for the elastodynamic situation.

3.4 Numerical examples

We illustrate the representations of sections 3.2 and 3.3 with numerical examples. Our main aim is to show that

these representations hold for evanescent waves inside the medium. To this end we consider oblique plane waves in

a horizontally layered medium, with isotropic depth-dependent medium parameters c(x3) (propagation velocity) and

ρ(x3) (mass density). We consider a horizontally layered medium because in this case we can unequivocally distinguish

between propagating and evanescent waves. However, as discussed in section 2, the representations also account for

evanescent waves in more general inhomogeneous media. We define the spatial Fourier transform of a space- and

frequency-dependent function u(x, ω) as

ũ(s, x3, ω) =

∫
R2

exp{−iωs · xH}u(xH, x3, ω)dxH, (40)

with s = (s1, s2), where s1 and s2 are horizontal slownesses and R is the set of real numbers. This decomposes the

function u(x, ω) into monochromatic plane-wave components. Next, we define the inverse temporal Fourier transform
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per slowness value as

u(s, x3, τ) =
1

π
<
∫ ∞
0

ũ(s, x3, ω) exp{−iωτ)dω, (41)

where τ is the so-called intercept time (Stoffa, 1989).

First we investigate the representation of equation (24) and take xS = (0, 0, x3,R). We use the definitions of

equations (40) and (41) to transform this representation to the slowness intercept-time domain. Taking into account

that for a horizontally layered, isotropic medium all functions in equation (24) are cylindrically symmetric, it suffices

to consider the transformed representation for one slowness variable only. We thus obtain

G(s1, x3, x3,R, τ) =

∫ τ

−∞
f(s1, x3, x3,R, τ

′)R(s1, x3,R, τ − τ ′)dτ ′

+ f(s1, x3, x3,R,−τ), for x3 ≥ x3,R. (42)

For any given value of s1, the Green’s function G(s1, x3, x3,R, τ) is the response to a plane-wave source at x3,R as a

function of receiver depth x3 and intercept time τ . For |s1| ≤ 1/c(x3) the plane wave is propagating, whereas for |s1| >
1/c(x3) it is evanescent. For propagating waves, the local propagation angle α(x3) follows from s1 = sinα(x3)/c(x3).

The focusing function f(s1, x3, x3,R, τ) obeys the focusing condition formulated by equation (25), transformed to the

slowness intercept-time domain, hence

f(s1, x3, x3,R, τ)|x3=x3,R =
ρ0c0

2 cosα0
δ(τ), (43)

with α0 = α(x3,R). Consider the horizontally layered medium of Figure 3(a). Two thin high-velocity layers (c2 = c4 =

3000 m/s) are embedded in a homogeneous background medium with a velocity of 2000 m/s. The mass densities, in

kg m−3, are assigned the same numerical values as the velocities to get significant contrasts between the different

layers. A plane wave is emitted from x3,R into the medium, with slowness s1 = 1/2800 s m−1, hence, this wave leaves

the surface with an angle α0 = 45.6o and becomes evanescent in the high-velocity layers. For the source function

we use a Ricker wavelet with a central frequency of 50 Hz, hence, the wavelength for the central frequency in the

high-velocity layers is 60 m. The thickness of the high-velocity layers is 20 m, which is small compared with the

wavelength, hence, we may expect that the waves tunnel through these layers. Figure 3(b) shows the numerically

modelled reflection response R(s1, x3,R, τ) for the chosen slowness. The first two events are composite reflections

from the two high-velocity layers (including internal multiples of evanescent waves inside these layers) and the other

events are multiple reflections between these layers. Figure 3(c) shows the numerically modelled focusing function

f(s1, x3, x3,R, τ) as a function of x3 and τ , convolved with the same Ricker wavelet for a clear display. Blue and red

arrows indicate upgoing and downgoing waves, respectively, in the homogeneous background medium. The tunnelling

of the waves through the high-velocity layers is clearly visible. A single upgoing wave reaches the surface x3,R at

τ = 0, conform the focusing condition formulated by equation (43) (except that in this display δ(τ) is convolved

with the Ricker wavelet). Note that the amplitude increases with increasing depth (to compensate for the evanescent

waves in the high-velocity layers), which means that, in practice, the numerically computed focusing function becomes

unstable beyond some depth.

The reflection response of Figure 3(b) and the focusing function of Figure 3(c) (the latter without the wavelet)

are used as input for the representation of equation (42). This yields the Green’s function G(s1, x3, x3,R, τ) (convolved

with the Ricker wavelet) as a function of x3 and τ , see Figure 4(a). Blue and red arrows indicate again upgoing and

downgoing waves, respectively. This figure shows the expected behaviour of the response to a plane-wave source at

x3,R (a downgoing wave leaving the surface, two composite primary upgoing waves and multiple reflections between

the high velocity layers). Figure 4(b) shows G(s1, x3,A, x3,R, τ) for x3,A = 300 m. The green line is the Green’s

function obtained from equation (42), the red line is the directly modelled Green’s function. Similarly, Figure 4(c)

shows G(s1, x3,B , x3,R, τ) for x3,B = 210 m, i.e., inside the first high velocity layer. In both cases the match is perfect,

which confirms that the representation of equation (42) correctly accounts for propagating and evanescent waves

inside the medium.

Using source-receiver reciprocity we may interpret Figure 4(b) as G(s1, x3,R, x3,A, τ), which is the response at

the surface x3,R to a virtual plane-wave source at x3,A = 300 m. Hence, G(s1, x3,R, x3,A, τ) may be seen as the result

of redatuming the source from the surface to x3,A. We now discuss receiver redatuming. To this end, we transform
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<latexit sha1_base64="8HsrKzOrkA3ZzdApvu7beLkHN44=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSxCBSlJFXThouDGZQX7gCaUyXTSDp2ZhHkINfRL3LhQxK2f4s6/cdpmoa0HLhzOuZd774lSRpX2vG+nsLa+sblV3C7t7O7tl92Dw7ZKjMSkhROWyG6EFGFUkJammpFuKgniESOdaHw78zuPRCqaiAc9SUnI0VDQmGKkrdR3y4FGJjivZoHkUE3P+m7Fq3lzwFXi56QCcjT77lcwSLDhRGjMkFI930t1mCGpKWZkWgqMIinCYzQkPUsF4kSF2fzwKTy1ygDGibQlNJyrvycyxJWa8Mh2cqRHatmbif95PaPj6zCjIjWaCLxYFBsGdQJnKcABlQRrNrEEYUntrRCPkERY26xKNgR/+eVV0q7X/Ita/f6y0rjJ4yiCY3ACqsAHV6AB7kATtAAGBjyDV/DmPDkvzrvzsWgtOPnMEfgD5/MHz/+ShA==</latexit>

R(s1, x3,R, ⌧)
<latexit sha1_base64="KwKNRT6kB2CTQvOtChj07zlzRSc=">AAAB/HicbVBNS8NAEN34WetXtEcvwSJUKCVpBcVTwYvHWuwHtCFsttt26WYTdidiCPWvePGgiFd/iDf/jds2B219MPB4b4aZeX7EmQLb/jbW1jc2t7ZzO/ndvf2DQ/PouK3CWBLaIiEPZdfHinImaAsYcNqNJMWBz2nHn9zM/M4DlYqF4h6SiLoBHgk2ZASDljyz0Cwpzyk/emmt3JyW+4Djc88s2hV7DmuVOBkpogwNz/zqD0ISB1QA4VipnmNH4KZYAiOcTvP9WNEIkwke0Z6mAgdUuen8+Kl1ppWBNQylLgHWXP09keJAqSTwdWeAYayWvZn4n9eLYXjlpkxEMVBBFouGMbcgtGZJWAMmKQGeaIKJZPpWi4yxxAR0XnkdgrP88ippVytOrVK9uyjWr7M4cugEnaISctAlqqNb1EAtRFCCntErejOejBfj3fhYtK4Z2UwB/YHx+QPFvpOJ</latexit>

(b)

-60
0

-50
0

-40
0

-30
0

-20
0

-10
0

0

-0.
4

-0.
3

-0.
2

-0.
1 0 0.1 0.2 0.3 0.4 0.5-0.4                   -0.2                    0.0                    0.2                   0.4                     

⌧ (s)
<latexit sha1_base64="8HsrKzOrkA3ZzdApvu7beLkHN44=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSxCBSlJFXThouDGZQX7gCaUyXTSDp2ZhHkINfRL3LhQxK2f4s6/cdpmoa0HLhzOuZd774lSRpX2vG+nsLa+sblV3C7t7O7tl92Dw7ZKjMSkhROWyG6EFGFUkJammpFuKgniESOdaHw78zuPRCqaiAc9SUnI0VDQmGKkrdR3y4FGJjivZoHkUE3P+m7Fq3lzwFXi56QCcjT77lcwSLDhRGjMkFI930t1mCGpKWZkWgqMIinCYzQkPUsF4kSF2fzwKTy1ygDGibQlNJyrvycyxJWa8Mh2cqRHatmbif95PaPj6zCjIjWaCLxYFBsGdQJnKcABlQRrNrEEYUntrRCPkERY26xKNgR/+eVV0q7X/Ita/f6y0rjJ4yiCY3ACqsAHV6AB7kATtAAGBjyDV/DmPDkvzrvzsWgtOPnMEfgD5/MHz/+ShA==</latexit>

x3,R = 0m
<latexit sha1_base64="cTxaJu9hkvYOWd2xlx7FtDiki9E=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCh1KSVrAXoeDFYxVbC00Im+22Xbq7CbsbaQn5K148KOLVP+LNf+O2zUFbHww83pthZl4YM6q043xbhY3Nre2d4m5pb//g8Mg+LndVlEhMOjhikeyFSBFGBeloqhnpxZIgHjLyGE5u5v7jE5GKRuJBz2LiczQSdEgx0kYK7PI0SBvV++za8aqpJznkWWBXnJqzAFwnbk4qIEc7sL+8QYQTToTGDCnVd51Y+ymSmmJGspKXKBIjPEEj0jdUIE6Uny5uz+C5UQZwGElTQsOF+nsiRVypGQ9NJ0d6rFa9ufif10/0sOmnVMSJJgIvFw0TBnUE50HAAZUEazYzBGFJza0Qj5FEWJu4SiYEd/XlddKt19xGrX53WWk18ziK4BScgQvggivQAregDToAgyl4Bq/gzcqsF+vd+li2Fqx85gT8gfX5A7fdk44=</latexit>

x3,1 = 200m
<latexit sha1_base64="UI+YUnK8oBrA36lvm7SmEy5LTR8=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwUUrSCnYjFNy4rGAf0IQwmU7aoTOTMDMRayj+ihsXirj1P9z5N07bLLT1wIXDOfdy7z1hwqjSjvNtrayurW9sFraK2zu7e/v2wWFbxanEpIVjFstuiBRhVJCWppqRbiIJ4iEjnXB0PfU790QqGos7PU6Iz9FA0IhipI0U2McPQVYru5OrquN45cyTHPJJYJecijMDXCZuTkogRzOwv7x+jFNOhMYMKdVznUT7GZKaYkYmRS9VJEF4hAakZ6hAnCg/m10/gWdG6cMolqaEhjP190SGuFJjHppOjvRQLXpT8T+vl+qo7mdUJKkmAs8XRSmDOobTKGCfSoI1GxuCsKTmVoiHSCKsTWBFE4K7+PIyaVcrbq1Svb0oNep5HAVwAk7BOXDBJWiAG9AELYDBI3gGr+DNerJerHfrY966YuUzR+APrM8fbG6T4w==</latexit>

x3,2 = 220m
<latexit sha1_base64="dTOh57WTsOFqcx+5o9l4Esjp7uI=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwUUqSCnYjFNy4rGAf0IQwmU7aoTNJmJmINQR/xY0LRdz6H+78G6dtFtp64MLhnHu5954gYVQqy/o2VlbX1jc2S1vl7Z3dvX3z4LAj41Rg0sYxi0UvQJIwGpG2ooqRXiII4gEj3WB8PfW790RIGkd3apIQj6NhREOKkdKSbx4/+Fm96uRXjmO51cwVHPLcNytWzZoBLhO7IBVQoOWbX+4gxiknkcIMSdm3rUR5GRKKYkbysptKkiA8RkPS1zRCnEgvm12fwzOtDGAYC12RgjP190SGuJQTHuhOjtRILnpT8T+vn6qw4WU0SlJFIjxfFKYMqhhOo4ADKghWbKIJwoLqWyEeIYGw0oGVdQj24svLpOPU7HrNub2oNBtFHCVwAk7BObDBJWiCG9ACbYDBI3gGr+DNeDJejHfjY966YhQzR+APjM8fcRyT5g==</latexit>

x3,3 = 380m
<latexit sha1_base64="j3qPsNKsDOocsJzK7d671LvkFqQ=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwUUrSCHYjFNy4rGAf0IQwmU7aoTNJmJmINQR/xY0LRdz6H+78G6dtFtp64MLhnHu5954gYVQqy/o2VlbX1jc2S1vl7Z3dvX3z4LAj41Rg0sYxi0UvQJIwGpG2ooqRXiII4gEj3WB8PfW790RIGkd3apIQj6NhREOKkdKSbx4/+JlTdfIrp2G51cwVHPLcNytWzZoBLhO7IBVQoOWbX+4gxiknkcIMSdm3rUR5GRKKYkbysptKkiA8RkPS1zRCnEgvm12fwzOtDGAYC12RgjP190SGuJQTHuhOjtRILnpT8T+vn6qw4WU0SlJFIjxfFKYMqhhOo4ADKghWbKIJwoLqWyEeIYGw0oGVdQj24svLpFOv2U6tfntRaTaKOErgBJyCc2CDS9AEN6AF2gCDR/AMXsGb8WS8GO/Gx7x1xShmjsAfGJ8/fZGT7g==</latexit>

x3,4 = 400m
<latexit sha1_base64="m+Ap/TnUi1aMoIAL53j8vbesnw8=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCi1KStmA3QsGNywr2AU0Ik+mkHTqThJmJWEPwV9y4UMSt/+HOv3HaZqGtBy4czrmXe+/xY0alsqxvo7C2vrG5Vdwu7ezu7R+Yh0ddGSUCkw6OWCT6PpKE0ZB0FFWM9GNBEPcZ6fmT65nfuydC0ii8U9OYuByNQhpQjJSWPPPkwUvrlUZ21bAsp5I6gkOeeWbZqlpzwFVi56QMcrQ988sZRjjhJFSYISkHthUrN0VCUcxIVnISSWKEJ2hEBpqGiBPppvPrM3iulSEMIqErVHCu/p5IEZdyyn3dyZEay2VvJv7nDRIVNN2UhnGiSIgXi4KEQRXBWRRwSAXBik01QVhQfSvEYyQQVjqwkg7BXn55lXRrVbterd02yq1mHkcRnIIzcAFscAla4Aa0QQdg8AiewSt4M56MF+Pd+Fi0Fox85hj8gfH5A3RCk+g=</latexit>

x3,5 = 600m
<latexit sha1_base64="A2gvvX4L95L8Xm9GM0225dcxjMo=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCi1KS1kc3QsGNywq2FZoQJtNJO3QmCTMTsYbgr7hxoYhb/8Odf+O0zUJbD1w4nHMv997jx4xKZVnfRmFpeWV1rbhe2tjc2t4xd/c6MkoEJm0csUjc+UgSRkPSVlQxchcLgrjPSNcfXU387j0RkkbhrRrHxOVoENKAYqS05JkHD15ar5xll+eW5VRSR3DIM88sW1VrCrhI7JyUQY6WZ345/QgnnIQKMyRlz7Zi5aZIKIoZyUpOIkmM8AgNSE/TEHEi3XR6fQaPtdKHQSR0hQpO1d8TKeJSjrmvOzlSQznvTcT/vF6igoab0jBOFAnxbFGQMKgiOIkC9qkgWLGxJggLqm+FeIgEwkoHVtIh2PMvL5JOrWrXq7Wb03KzkcdRBIfgCJwAG1yAJrgGLdAGGDyCZ/AK3own48V4Nz5mrQUjn9kHf2B8/gB48pPr</latexit>

(c) focus / �(⌧)
<latexit sha1_base64="duQl/FcsSNVNK1cPByuFagpcJeI=">AAACB3icbVDLSgMxFM3UV62vUZeCDBahbspMFeyy4MZlBfuAzlAyaaYNTWZCckcoQ3du/BU3LhRx6y+4829M21lo64HA4Zx7k5wTSs40uO63VVhb39jcKm6Xdnb39g/sw6O2TlJFaIskPFHdEGvKWUxbwIDTrlQUi5DTTji+mfmdB6o0S+J7mEgaCDyMWcQIBiP17VNfiSxKSKqnvlSJhMTxB5QDrviA04u+XXar7hzOKvFyUkY5mn37yx+Y2wSNgXCsdc9zJQQZVsAIp9OSn2oqMRnjIe0ZGmNBdZDNc0ydc6MMnChR5sTgzNXfGxkWWk9EaCYFhpFe9mbif14vhageZCyWKdCYLB6KUu6YtLNSnAFTlACfGIKJYuavDhlhhQmY6kqmBG858ipp16reZbV2d1Vu1PM6iugEnaEK8tA1aqBb1EQtRNAjekav6M16sl6sd+tjMVqw8p1j9AfW5w91cJmh</latexit>

tunnelling

tunnelling

Figure 3. (a) Horizontally layered medium with two high-velocity layers. (b) Numerically modelled reflection response
R(s1, x3,R, τ) at the surface. The horizontal slowness s1 = 1/2800 s m−1 is chosen such that the wave field is evanescent
in the high-velocity layers. (c) Numerically modelled focusing function f(s1, x3, x3,R, τ). The trace at x3,R = 0 m illustrates
the focusing condition of equation (43).

the representation of equation (36) to the slowness intercept-time domain, which yields

Gh(s1, x3, x3,A, τ) =

∫ τ

−∞
F (s1, x3, x3,R, τ

′)G(s1, x3,R, x3,A, τ − τ ′)dτ ′

+

∫ ∞
τ

F (s1, x3, x3,R,−τ ′)G(s1, x3,R, x3,A, τ
′ − τ)dτ ′,

for x3 ≥ x3,R, (44)
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⌧ (s)
<latexit sha1_base64="8HsrKzOrkA3ZzdApvu7beLkHN44=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSxCBSlJFXThouDGZQX7gCaUyXTSDp2ZhHkINfRL3LhQxK2f4s6/cdpmoa0HLhzOuZd774lSRpX2vG+nsLa+sblV3C7t7O7tl92Dw7ZKjMSkhROWyG6EFGFUkJammpFuKgniESOdaHw78zuPRCqaiAc9SUnI0VDQmGKkrdR3y4FGJjivZoHkUE3P+m7Fq3lzwFXi56QCcjT77lcwSLDhRGjMkFI930t1mCGpKWZkWgqMIinCYzQkPUsF4kSF2fzwKTy1ygDGibQlNJyrvycyxJWa8Mh2cqRHatmbif95PaPj6zCjIjWaCLxYFBsGdQJnKcABlQRrNrEEYUntrRCPkERY26xKNgR/+eVV0q7X/Ita/f6y0rjJ4yiCY3ACqsAHV6AB7kATtAAGBjyDV/DmPDkvzrvzsWgtOPnMEfgD5/MHz/+ShA==</latexit>

x3,R = 0m
<latexit sha1_base64="cTxaJu9hkvYOWd2xlx7FtDiki9E=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCh1KSVrAXoeDFYxVbC00Im+22Xbq7CbsbaQn5K148KOLVP+LNf+O2zUFbHww83pthZl4YM6q043xbhY3Nre2d4m5pb//g8Mg+LndVlEhMOjhikeyFSBFGBeloqhnpxZIgHjLyGE5u5v7jE5GKRuJBz2LiczQSdEgx0kYK7PI0SBvV++za8aqpJznkWWBXnJqzAFwnbk4qIEc7sL+8QYQTToTGDCnVd51Y+ymSmmJGspKXKBIjPEEj0jdUIE6Uny5uz+C5UQZwGElTQsOF+nsiRVypGQ9NJ0d6rFa9ufif10/0sOmnVMSJJgIvFw0TBnUE50HAAZUEazYzBGFJza0Qj5FEWJu4SiYEd/XlddKt19xGrX53WWk18ziK4BScgQvggivQAregDToAgyl4Bq/gzcqsF+vd+li2Fqx85gT8gfX5A7fdk44=</latexit>

x3,1 = 200m
<latexit sha1_base64="UI+YUnK8oBrA36lvm7SmEy5LTR8=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwUUrSCnYjFNy4rGAf0IQwmU7aoTOTMDMRayj+ihsXirj1P9z5N07bLLT1wIXDOfdy7z1hwqjSjvNtrayurW9sFraK2zu7e/v2wWFbxanEpIVjFstuiBRhVJCWppqRbiIJ4iEjnXB0PfU790QqGos7PU6Iz9FA0IhipI0U2McPQVYru5OrquN45cyTHPJJYJecijMDXCZuTkogRzOwv7x+jFNOhMYMKdVznUT7GZKaYkYmRS9VJEF4hAakZ6hAnCg/m10/gWdG6cMolqaEhjP190SGuFJjHppOjvRQLXpT8T+vl+qo7mdUJKkmAs8XRSmDOobTKGCfSoI1GxuCsKTmVoiHSCKsTWBFE4K7+PIyaVcrbq1Svb0oNep5HAVwAk7BOXDBJWiAG9AELYDBI3gGr+DNerJerHfrY966YuUzR+APrM8fbG6T4w==</latexit>

x3,2 = 220m
<latexit sha1_base64="dTOh57WTsOFqcx+5o9l4Esjp7uI=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwUUqSCnYjFNy4rGAf0IQwmU7aoTNJmJmINQR/xY0LRdz6H+78G6dtFtp64MLhnHu5954gYVQqy/o2VlbX1jc2S1vl7Z3dvX3z4LAj41Rg0sYxi0UvQJIwGpG2ooqRXiII4gEj3WB8PfW790RIGkd3apIQj6NhREOKkdKSbx4/+Fm96uRXjmO51cwVHPLcNytWzZoBLhO7IBVQoOWbX+4gxiknkcIMSdm3rUR5GRKKYkbysptKkiA8RkPS1zRCnEgvm12fwzOtDGAYC12RgjP190SGuJQTHuhOjtRILnpT8T+vn6qw4WU0SlJFIjxfFKYMqhhOo4ADKghWbKIJwoLqWyEeIYGw0oGVdQj24svLpOPU7HrNub2oNBtFHCVwAk7BObDBJWiCG9ACbYDBI3gGr+DNeDJejHfjY966YhQzR+APjM8fcRyT5g==</latexit>

x3,3 = 380m
<latexit sha1_base64="j3qPsNKsDOocsJzK7d671LvkFqQ=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwUUrSCHYjFNy4rGAf0IQwmU7aoTNJmJmINQR/xY0LRdz6H+78G6dtFtp64MLhnHu5954gYVQqy/o2VlbX1jc2S1vl7Z3dvX3z4LAj41Rg0sYxi0UvQJIwGpG2ooqRXiII4gEj3WB8PfW790RIGkd3apIQj6NhREOKkdKSbx4/+JlTdfIrp2G51cwVHPLcNytWzZoBLhO7IBVQoOWbX+4gxiknkcIMSdm3rUR5GRKKYkbysptKkiA8RkPS1zRCnEgvm12fwzOtDGAYC12RgjP190SGuJQTHuhOjtRILnpT8T+vn6qw4WU0SlJFIjxfFKYMqhhOo4ADKghWbKIJwoLqWyEeIYGw0oGVdQj24svLpFOv2U6tfntRaTaKOErgBJyCc2CDS9AEN6AF2gCDR/AMXsGb8WS8GO/Gx7x1xShmjsAfGJ8/fZGT7g==</latexit>

x3,4 = 400m
<latexit sha1_base64="m+Ap/TnUi1aMoIAL53j8vbesnw8=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCi1KStmA3QsGNywr2AU0Ik+mkHTqThJmJWEPwV9y4UMSt/+HOv3HaZqGtBy4czrmXe+/xY0alsqxvo7C2vrG5Vdwu7ezu7R+Yh0ddGSUCkw6OWCT6PpKE0ZB0FFWM9GNBEPcZ6fmT65nfuydC0ii8U9OYuByNQhpQjJSWPPPkwUvrlUZ21bAsp5I6gkOeeWbZqlpzwFVi56QMcrQ988sZRjjhJFSYISkHthUrN0VCUcxIVnISSWKEJ2hEBpqGiBPppvPrM3iulSEMIqErVHCu/p5IEZdyyn3dyZEay2VvJv7nDRIVNN2UhnGiSIgXi4KEQRXBWRRwSAXBik01QVhQfSvEYyQQVjqwkg7BXn55lXRrVbterd02yq1mHkcRnIIzcAFscAla4Aa0QQdg8AiewSt4M56MF+Pd+Fi0Fox85hj8gfH5A3RCk+g=</latexit>

x3,5 = 600m
<latexit sha1_base64="A2gvvX4L95L8Xm9GM0225dcxjMo=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCi1KS1kc3QsGNywq2FZoQJtNJO3QmCTMTsYbgr7hxoYhb/8Odf+O0zUJbD1w4nHMv997jx4xKZVnfRmFpeWV1rbhe2tjc2t4xd/c6MkoEJm0csUjc+UgSRkPSVlQxchcLgrjPSNcfXU387j0RkkbhrRrHxOVoENKAYqS05JkHD15ar5xll+eW5VRSR3DIM88sW1VrCrhI7JyUQY6WZ345/QgnnIQKMyRlz7Zi5aZIKIoZyUpOIkmM8AgNSE/TEHEi3XR6fQaPtdKHQSR0hQpO1d8TKeJSjrmvOzlSQznvTcT/vF6igoab0jBOFAnxbFGQMKgiOIkC9qkgWLGxJggLqm+FeIgEwkoHVtIh2PMvL5JOrWrXq7Wb03KzkcdRBIfgCJwAG1yAJrgGLdAGGDyCZ/AK3own48V4Nz5mrQUjn9kHf2B8/gB48pPr</latexit>

(a)

0                     0.2                    0.4                    0.6                   0.8                   1.0      

x3,A = 300m
<latexit sha1_base64="U92lK3EXnB4MycI48M0utEo9ukU=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCi1KSVrAboeLGZQX7gCaEyXTSDp1JwsxErCH4K25cKOLW/3Dn3zhts9DWAxcO59zLvff4MaNSWda3UVhZXVvfKG6WtrZ3dvfM/YOOjBKBSRtHLBI9H0nCaEjaiipGerEgiPuMdP3x9dTv3hMhaRTeqUlMXI6GIQ0oRkpLnnn04KX1ylV2Wbcsp5I6gkOeeWbZqlozwGVi56QMcrQ888sZRDjhJFSYISn7thUrN0VCUcxIVnISSWKEx2hI+pqGiBPpprPrM3iqlQEMIqErVHCm/p5IEZdywn3dyZEayUVvKv7n9RMVNNyUhnGiSIjni4KEQRXBaRRwQAXBik00QVhQfSvEIyQQVjqwkg7BXnx5mXRqVbterd2el5uNPI4iOAYn4AzY4AI0wQ1ogTbA4BE8g1fwZjwZL8a78TFvLRj5zCH4A+PzB4cdk/Q=</latexit>

x3,B = 210m
<latexit sha1_base64="OEY1NFahyXCDdmmDc8cIg4GFa8I=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCi1KSVrAboejGZQX7gCaEyXTSDp1JwsxErCH4K25cKOLW/3Dn3zhts9DWAxcO59zLvff4MaNSWda3UVhZXVvfKG6WtrZ3dvfM/YOOjBKBSRtHLBI9H0nCaEjaiipGerEgiPuMdP3x9dTv3hMhaRTeqUlMXI6GIQ0oRkpLnnn04KX1ylV2WbMtp5I6gkOeeWbZqlozwGVi56QMcrQ888sZRDjhJFSYISn7thUrN0VCUcxIVnISSWKEx2hI+pqGiBPpprPrM3iqlQEMIqErVHCm/p5IEZdywn3dyZEayUVvKv7n9RMVNNyUhnGiSIjni4KEQRXBaRRwQAXBik00QVhQfSvEIyQQVjqwkg7BXnx5mXRqVbterd2el5uNPI4iOAYn4AzY4AI0wQ1ogTbA4BE8g1fwZjwZL8a78TFvLRj5zCH4A+PzB4iuk/U=</latexit>
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0                     0.2                    0.4                    0.6                   0.8                   1.0      
⌧ (s)
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Figure 4. (a) Green’s function G(s1, x3, x3,R, τ) obtained from Figures 3(b) and 3(c) via the representation of equation (42).

(b) G(s1, x3,A, x3,R, τ), taken from figure (a) for x3,A = 300 m (green), compared with directly modelled Green’s function (red).
(c) Similarly, G(s1, x3,B , x3,R, τ), taken from figure (a) for x3,B = 210 m inside the first high velocity layer. (d) Homogeneous

Green’s function Gh(s1, x3, x3,A, τ) obtained from Figures 3(c) and 4(b) via the representation of equation (44).
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with, analogous to equation (19),

F (s1, x3, x3,R, τ) =
2 cosα0

ρ0c0
f(s1, x3, x3,R, τ). (45)

Note that the right-hand side of equation (44) contains the Green’s function with the redatumed source at x3,A and

the receiver at the surface. This representation redatums the receiver from x3,R to any depth x3 in the subsurface.

This yields the homogeneous Green’s function, which consists of G(s1, x3, x3,A, τ) plus its time-reversal, see Figure

4(d). The causal part (right of the green dashed line) is the retrieved Green’s function G(s1, x3, x3,A, τ). Conform

expectation, we see a virtual source at x3,A emitting downgoing and upgoing plane waves, which reverberate in the

wave guide between the two high-velocity layers, but which also emit some energy through tunneling into the half-

spaces above and below the high-velocity layers. This example illustrates the handling of propagating and evanescent

waves inside the medium by the homogeneous Green’s function representation of equation (44).

4 ELASTODYNAMIC WAVE FIELD REPRESENTATION

We derive the elastodynamic equivalent of the representation of equation (11). We consider the same configuration as

in section 2, except that now the medium parameters of the lower half-space x3 > x3,R are the stiffness tensor cijkl(x)

and the mass density tensor ρik(x), with symmetries cijkl = cjikl = cijlk = cklij and ρik = ρki. In the homogeneous

isotropic upper half-space x3 ≤ x3,R the parameters are ρik = δikρ0 and cijkl = λ0δijδkl + µ0(δikδjl + δilδjk), with

λ0 and µ0 the Lamé parameters of the half-space. The P - and S-wave propagation velocities of the upper half-space

are cP = ((λ0 + 2µ0)/ρ0)1/2 and cS = (µ0/ρ0)1/2, respectively.

The basic equations in the frequency domain for elastodynamic wave propagation are the linearized equation of

motion

−iωρikvk − ∂jτij = f̂i (46)

and the linearized deformation equation

iωτij + cijkl∂lvk = 0, (47)

respectively. Here τij(x, ω) is the stress tensor (with symmetry τij = τji), vk(x, ω) the particle velocity and f̂i(x, ω)

a source in terms of volume-force density (the circumflex is used to distinguish this source term from the focusing

function). Equations (46) and (47) can be combined into the elastodynamic wave equation

Likvk = iωf̂i, (48)

with

Lik = ∂jcijkl∂l + ω2ρik. (49)

We introduce a focusing function F(x,xR, ω) as a 3× 3 matrix, according to

F(x,xR, ω) =

F1,1 F1,2 F1,3

F2,1 F2,2 F2,3

F3,1 F3,2 F3,3

 (x,xR, ω), (50)

where xR denotes again the position of a focal point at ∂DR. Each column of F is a particle velocity vector of which

the components, for fixed xR and variable x, obey the elastodynamic wave equation (48) for the source-free situation.

We define the focusing property, analogous to equation (9), as

F(x,xR, ω)|x3=x3,R = Iδ(xH − xH,R), (51)

(I is the 3 × 3 identity matrix) and demand that F(x,xR, ω) is purely upgoing at ∂DR and in the homogeneous

isotropic upper half-space.

We discuss a representation for a wave field vk(x, ω), which may have sources in the upper half-space above ∂DR,

but which obeys the source-free wave equation Likvk = 0 for x3 ≥ x3,R. We store the components vk(x, ω) in a 3× 1
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vector v(x, ω) as follows

v(x, ω) =

v1v2
v3

 (x, ω). (52)

In the lower half-space we express v(x, ω) as a superposition of mutually independent wave fields that obey the

same source-free wave equation for x3 ≥ x3,R. For this purpose we choose the focusing functions F(x,xR, ω) and

F∗(x,xR, ω), of which the columns are also mutually independent. Hence, analogous to equation (10) we express

v(x, ω) as

v(x, ω) =

∫
∂DR

F(x,xR, ω)a(xR, ω)dxR +

∫
∂DR

F∗(x,xR, ω)b(xR, ω)dxR,

for x3 ≥ x3,R. (53)

Here a(xR, ω) and b(xR, ω) are yet undetermined 3×1 vectors. In Appendix B1 we formulate two boundary conditions

at ∂DR, from which we solve a(xR, ω) and b(xR, ω). We thus obtain

v(x, ω) =

∫
∂DR

F(x,xR, ω)v−(xR, ω)dxR +

∫
∂DR

F∗(x,xR, ω)v+(xR, ω)dxR,

for x3 ≥ x3,R, (54)

where v−(xR, ω) and v+(xR, ω) represent the upgoing and downgoing parts, respectively, of v(xR, ω) for xR at ∂DR.

As for the acoustic representation of equation (11), the underlying assumption in the derivation of equation (54) is

that evanescent waves can be neglected at ∂DR. Hence, it only holds for waves which have a horizontal slowness s

which obeys

|s| ≤ 1/cP , at ∂DR. (55)

Using similar arguments as given below equation (12), it follows that equation (54) accounts for evanescent waves

inside the medium, as long as they are related to propagating waves at the surface, as formulated by equation (55).

5 ELASTODYNAMIC GREEN’S FUNCTION REPRESENTATIONS

5.1 Representation for a modified elastodynamic Green’s function

We introduce the elastodynamic Green’s function Gk,n(x,xS , ω) as a solution of equation (48) for a unit point source

of volume-force density at xS in the xn-direction, hence

LikGk,n = iωδinδ(x− xS). (56)

We demand that the time domain version of Gk,n(x,xS , ω) is causal. Note that Gk,n obeys source-receiver reciprocity,

i.e., Gk,n(x,xS , ω) = Gn,k(xS ,x, ω). We introduce G(x,xS , ω) as a 3× 3 matrix, according to

G(x,xS , ω) =

G1,1 G1,2 G1,3

G2,1 G2,2 G2,3

G3,1 G3,2 G3,3

 (x,xS , ω). (57)

Each column is a particle velocity vector of which the components, for fixed xS and variable x, obey wave equation

(56). The different columns correspond to different directions of the force source at xS . In matrix form, source-receiver

reciprocity implies G(x,xS , ω) = {G(xS ,x, ω)}t, where superscript t denotes transposition.

We choose xS = (xH,S , x3,S) again in the upper half-space, at a vanishing distance ε above ∂DR, hence, x3,S =

x3,R − ε. In Appendix B2 we derive a modified version Γ(x,xS , ω) of G(x,xS , ω) (equation B19), of which the

downgoing part Γ+(x,xS , ω) for x at ∂DR (i.e., just below the source) is equal to a spatial delta function. Hence

Γ+(x,xS , ω)|x3=x3,R = Iδ(xH − xH,S). (58)

We define the reflection response R(xR,xS , ω) of the medium below ∂DR as the upgoing part of Γ(xR,xS , ω), with
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xR at ∂DR, hence

R(xR,xS , ω) = Γ−(xR,xS , ω). (59)

Substituting v(x, ω) = Γ(x,xS , ω) and v±(xR, ω) = Γ±(xR,xS , ω) into equation (54), using equations (58) and (59),

gives

Γ(x,xS , ω) =

∫
∂DR

F(x,xR, ω)R(xR,xS , ω)dxR + F∗(x,xS , ω), for x3 ≥ x3,R. (60)

This is a representation for the modified version Γ(x,xS , ω) of the elastodynamic Green’s function. It has been derived

without applying decomposition in the lower half-space. It excludes the contribution from waves that are evanescent

at ∂DR.

5.2 Representation for the elastodynamic Green’s function

In Appendix B3 we show that equation (60) can be reorganized into the following representation for the elastodynamic

Green’s function G(x,xS , ω)

G(x,xS , ω) =

∫
∂DR

f(x,xR, ω){R(xS ,xR, ω)}tdxR + f∗(x,xS , ω), for x3 ≥ x3,R. (61)

Here f(x,xR, ω) is a modified version of the focusing function F(x,xR, ω) (equation B24). This representation gives

the full elastodynamic particle velocity field at any virtual receiver position x inside the medium. It is similar to

earlier derived elastodynamic representations for the Marchenko method (Wapenaar & Slob, 2014; da Costa Filho

et al., 2014), but here it has been derived without applying decomposition at a truncation level inside the medium. As

a consequence, equation (61) gives the full wave field at any virtual receiver position x inside the medium, including

multiply reflected, converted, refracted and evanescent waves. This representation only excludes the contribution

from waves that are evanescent at ∂DR, see the condition formulated by equation (55). Applying elastodynamic

representations like the one in equation (61) to derive a Marchenko method is not trivial. The functions G(x,xS , ω)

and f∗(x,xS , ω), transformed back to the time domain, partly overlap and hence they cannot be completely separated

by a time window (Wapenaar & Slob, 2014; Reinicke et al., 2020). A discussion of elastodynamic Marchenko methods

is beyond the scope of this paper.

Similar as in the acoustic situation, the representation of equation (61) is not a sufficient starting point for

imaging. We need at least one other type of field at x, next to G(x,xS , ω), which represents the particle velocity at

x in response to force sources at xS . To this end, we introduce a Green’s function Gτ
j (x,xS , ω) which, for j = 1, 2, 3,

stands for the three traction vectors at x. From equation (47) we derive that the traction vector τ j can be expressed

in terms of the particle velocity as τ j = − 1
iω

Cjl∂lv, with (τ j)i = τij and (Cjl)ik = cijkl. Similarly, we relate Gτ
j to

G via

Gτ
j (x,xS , ω) = − 1

iω
Cjl(x)∂lG(x,xS , ω). (62)

Hence, when G(x,xS , ω) is available on a sufficiently dense grid, Gτ
j (x,xS , ω) can be obtained via equation (62).

Alternatively, Gτ
j (x,xS , ω) can be obtained from a modified version of the representation for G(x,xS , ω). Applying

the operation − 1
iω

Cjl∂l to both sides of equation (61) yields

Gτ
j (x,xS , ω) =

∫
∂DR

hj(x,xR, ω){R(xS ,xR, ω)}tdxR − h∗j (x,xS , ω), for x3 ≥ x3,R, (63)

with

hj(x,xR, ω) = − 1

iω
Cjl(x)∂lf(x,xR, ω). (64)

The Green’s functions G(x,xS , ω) and Gτ
j (x,xS , ω) together provide sufficient information for imaging.

5.3 Representation for the homogeneous elastodynamic Green’s function

The representations in sections 5.1 and 5.2 give the elastodynamic response to a source at xS , observed by a virtual

receiver at x inside the medium. Similar as in section 3.3, here we modify this representation, to create the response
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at the surface to a virtual source inside the medium. After that, we show how to obtain the response to this virtual

source at a virtual receiver inside the medium.

We start by renaming the coordinate vectors in equation (61) as follows: xS → xR, xR → xS , x → xA. This

yields, in combination with transposing all terms and applying source-receiver reciprocity on the left-hand side of

equation (61),

G(xR,xA, ω) =

∫
∂DR

R(xR,xS , ω)f t(xA,xS , ω)dxS + f†(xA,xR, ω), for x3,A ≥ x3,R. (65)

Here superscript † denotes transposition and complex conjugation. The integral in equation (65) describes elastody-

namic redatuming of the sources from all xS at the surface to virtual-source position xA in the subsurface.

Our next aim is to derive a representation for the response observed by a virtual receiver at x in the subsurface,

given G(xR,xA, ω). Similar as in section 3.3, we define the homogeneous elastodynamic Green’s function

Gh(x,xA, ω) = G(x,xA, ω) + G∗(x,xA, ω). (66)

The components of the columns in G(x,xA, ω) and G∗(x,xA, ω) obey equation (56), with source terms iωδinδ(x−xA)

and −iωδinδ(x − xA), respectively, on the right-hand sides. Hence, the components of the columns of Gh(x,xA, ω)

obey this equation without a source on the right-hand side. Following a similar reasoning as in section 3.3, we

substitute

v(x, ω) = Gh(x,xA, ω), (67)

v−(x, ω) = G(x,xA, ω), for x3 = x3,R, (68)

v+(x, ω) = G∗(x,xA, ω), for x3 = x3,R, (69)

into equation (54). This gives

Gh(x,xA, ω) = 2<
∫
∂DR

F(x,xR, ω)G(xR,xA, ω)dxR, for x3 ≥ x3,R. (70)

This equation describes elastodynamic redatuming of the receivers from all xR at the surface to virtual-receiver

position x in the subsurface. It gives the homogeneous Green’s function Gh(x,xA, ω), which is the response to the

virtual source at xA, observed by a virtual receiver at x, plus its complex conjugate. After transforming this to the

time domain, G(x,xA, t) can be extracted from Gh(x,xA, t) by selecting its causal part.

An elastodynamic homogeneous Green’s function representation similar to equation (70) was also derived by

Wapenaar et al. (2016b) and illustrated with numerical examples by Reinicke & Wapenaar (2019), but here it has

been derived without decomposition inside the medium. Hence, it also holds for evanescent waves inside the medium,

as long as condition (55) is obeyed. Moreover, the derivation presented here is much simpler than in those references.

The source and receiver redatuming processes can be captured in one equation by substituting equation (65)

into (70). This gives

Gh(x,xA, ω) = 2<
∫
∂DR

∫
∂DR

F(x,xR, ω)R(xR,xS , ω)f t(xA,xS , ω)dxSdxR

+ 2<
∫
∂DR

F(x,xR, ω)f†(xA,xR, ω)dxR, for {x3, x3,A} ≥ x3,R. (71)

The double integral on the right-hand side resembles the process of classical elastodynamic source and receiver

redatuming (Wapenaar & Berkhout, 1989; Hokstad, 2000), but with the primary focusing functions in those references

replaced by full-field focusing functions. It also resembles elastodynamic source-receiver interferometry (Halliday et al.,

2012), but with the double integration along a closed boundary in that paper replaced by the double integration over

the open boundary ∂DR. Hence, via the theories of elastodynamic primary source-receiver redatuming (Wapenaar

& Berkhout, 1989; Hokstad, 2000), closed-boundary source-receiver interferometry (Halliday et al., 2012) and open-

boundary homogeneous Green’s function retrieval of decomposed wave fields (Wapenaar et al., 2016b), we have

arrived at a representation for elastodynamic open-boundary homogeneous Green’s function retrieval of full wave

fields (equation 71), which accounts for internal multiples, converted, refracted and evanescent waves in the lower

half-space.
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6 CONCLUSIONS

We have derived acoustic and elastodynamic Green’s function representations in terms of the reflection response at

the surface and focusing functions. These representations have the same form as the representations that we derived

earlier as the basis for Marchenko redatuming, imaging, monitoring and multiple elimination. However, unlike in our

original derivations, we did not assume that the wave field inside the medium can be decomposed into downgoing

and upgoing waves and we did not ignore evanescent waves inside the medium. We only neglected the contribution

of waves that are evanescent at the acquisition boundary. We have demonstrated with numerical examples that the

representations indeed account for evanescent waves inside the medium. The representations form a starting point

for new research on Marchenko methods which circumvent the limitations caused by the assumptions underlying the

traditional representations. In these new developments, special care should be taken to account for the overlap in

time of the Green’s function and the time-reversed focusing function.
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APPENDIX A: DERIVATION OF THE ACOUSTIC WAVE FIELD REPRESENTATION

A1 Derivation of the coefficients in equation (10)

We derive expressions for the coefficients a(xR, ω) and b(xR, ω) in the acoustic wave field representation of equation

(10). We do this by formulating two boundary conditions at ∂DR. First, we consider the acoustic pressure p(x, ω) at

∂DR. To this end, we evaluate equation (10) for x at ∂DR. Using the focusing condition formulated in equation (9)

we thus obtain

p(x, ω)|x3=x3,R =

∫
∂DR

δ(xH − xH,R)a(xR, ω)dxR +

∫
∂DR

δ(xH − xH,R)b(xR, ω)dxR,

= {a(x, ω) + b(x, ω)}x3=x3,R , (A1)

where we used xR = (xH,R, x3,R). This is our first equation for the coefficients a(xR, ω) and b(xR, ω).

Next, we consider the vertical component of the particle velocity v3(x, ω) at ∂DR. From the Fourier transform

of equation (1), using ρjk = δjkρ0 at ∂DR, we obtain v3(x, ω) = 1
iωρ0

∂3p(x, ω) for x at ∂DR. Substituting equation

(10) gives

v3(x, ω) =
1

iωρ0

∫
∂DR

∂3F (x,xR, ω)a(xR, ω)dxR

+
1

iωρ0

∫
∂DR

∂3F
∗(x,xR, ω)b(xR, ω)dxR, (A2)

for x3 = x3,R. Applying the spatial Fourier transformation of equation (40) to both sides of equation (A2) gives

ṽ3(s, x3, ω) =
1

iωρ0

∫
∂DR

∂3F̃ (s, x3,xR, ω)a(xR, ω)dxR

+
1

iωρ0

∫
∂DR

∂3F̃
∗(−s, x3,xR, ω)b(xR, ω)dxR, (A3)

for x3 = x3,R. At this depth level the focusing function is an upgoing field (see Figure 1), hence it obeys the following
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one-way wave equation

∂3F̃ (s, x3,xR, ω)|x3=x3,R = −iωs3F̃ (s, x3,R,xR, ω), (A4)

with the vertical slowness s3 defined as

s3 =

{√
1/c20 − s · s, for s · s ≤ 1/c20

i
√

s · s− 1/c20, for s · s > 1/c20.
(A5)

The two expressions in equation (A5) represent the situation for propagating and evanescent waves, respectively.

Applying the spatial Fourier transformation of equation (40) to equation (9) we further have

F̃ (s, x3,R,xR, ω) = exp{−iωs · xH,R}. (A6)

Substitution of equations (A4) and (A6) into equation (A3) for x3 = x3,R gives

ṽ3(s, x3,R, ω)

= − s3
ρ0

∫
∂DR

exp{−iωs · xH,R}a(xR, ω)dxR +
s∗3
ρ0

∫
∂DR

exp{−iωs · xH,R}b(xR, ω)dxR

= − s3
ρ0
ã(s, x3,R, ω) +

s∗3
ρ0
b̃(s, x3,R, ω). (A7)

Combining the spatial Fourier transform of equation (A1) with equation (A7) gives(
p̃

ṽ3

)
x3=x3,R

=

(
1 1

s∗3/ρ0 −s3/ρ0

)(
b̃

ã

)
x3=x3,R

. (A8)

For s ·s ≤ 1/c20 at ∂DR we have s∗3 = s3, see equation (A5). Hence, for propagating waves, equation (A8) is recognised

as the well-known system that composes the total wave fields on the left-hand side from downgoing and upgoing fields

on the right-hand side (Corones, 1975; Ursin, 1983; Fishman & McCoy, 1984). Hence

b̃(s, x3,R, ω) = p̃+(s, x3,R, ω), (A9)

ã(s, x3,R, ω) = p̃−(s, x3,R, ω), (A10)

for s · s ≤ 1/c20 at ∂DR. Transforming these expressions back to the space domain, using

p±(xR, ω) =
ω2

4π2

∫
R2

exp{iωs · xH,R}p̃±(s, x3,R, ω)ds (A11)

and similar expressions for a(xR, ω) and b(xR, ω) but with the integration interval limited to |s| ≤ 1/c0, gives

b(xR, ω) + evanescent waves = p+(xR, ω), (A12)

a(xR, ω) + evanescent waves = p−(xR, ω). (A13)

Substitution of equations (A12) and (A13) into equation (10), ignoring the evanescent waves, gives equation (11).

A2 Analysis of the integral in equation (23)

We analyze the integral in equation (23). We show that we can transfer the operator ∂3,R from f to Gs, and that this

is accompanied with a sign change. For a function of two space variables, u(x,xR, ω), we define the spatial Fourier

transform along the second space variable as

ũ(x, s, x3,R, ω) =

∫
R2

u(x,xH,R, x3,R, ω) exp{iωs · xH,R}dxH,R. (A14)

Note the opposite sign in the exponential, compared with that in equation (40). Using this Fourier transform and

Parseval’s theorem, we obtain for the integral in equation (23)∫
∂DR

{∂3,Rf(x,xR, ω)}Gs(xS ,xR, ω)dxR =

ω2

4π2

∫
R2

{∂3,Rf̃(x,−s, x3,R, ω)}G̃s(xS , s, x3,R, ω)ds. (A15)
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Note that f̃(x,−s, x3,R, ω) is differentiated with respect to the focal point depth x3,R, hence, the one-way wave equa-

tion gets a sign opposite to that in equation (A4), i.e. ∂3,Rf̃(x,−s, x3,R, ω) = iωs3f̃(x,−s, x3,R, ω), with s3 defined

in equation (A5). We transfer iωs3 to the Green’s function and use iωs3G̃
s(xS , s, x3,R, ω) = −∂3,RG̃s(xS , s, x3,R, ω)

(which is a differentiation with respect to the source depth x3,R). Making these substitutions in the right-hand side

of equation (A15) and applying Parseval’s theorem again gives

− ω2

4π2

∫
R2

f̃(x,−s, x3,R, ω)∂3,RG̃
s(xS , s, x3,R, ω)ds

= −
∫
∂DR

f(x,xR, ω)∂3,RG
s(xS ,xR, ω)dxR. (A16)

Hence, we have transferred the operator ∂3,R under the integral in equation (23) from f to Gs, which involves a sign

change.

APPENDIX B: DERIVATION OF THE ELASTODYNAMIC WAVE FIELD REPRESENTATION

B1 Derivation of the representation of equation (54)

We derive expressions for the coefficients a(xR, ω) and b(xR, ω) in the elastodynamic wave field representation of

equation (53). We do this by formulating two boundary conditions at ∂DR. First, we consider the particle velocity

vector v(x, ω) at ∂DR. To this end, we evaluate equation (53) for x at ∂DR. Using the focusing condition formulated

in equation (51) we thus obtain

v(x, ω)|x3=x3,R =

∫
∂DR

δ(xH − xH,R)a(xR, ω)dxR +

∫
∂DR

δ(xH − xH,R)b(xR, ω)dxR,

= {a(x, ω) + b(x, ω)}x3=x3,R . (B1)

For the second boundary condition we analyze the traction vector τ 3(x, ω) at ∂DR. First we establish a relation

between τ 3(x, ω) and v(x, ω) in the homogeneous isotropic upper half-space, including ∂DR. Using equation (40), we

transform v(x, ω) and τ 3(x, ω) for x3 ≤ x3,R to ṽ(s, x3, ω) and τ̃ 3(s, x3, ω), respectively. These fields can be related

to vectors p̃+ and p̃− containing downgoing and upgoing fields, respectively, according to(
−τ̃ 3

ṽ

)
=

(
L̃+

1 L̃−1
L̃+

2 L̃−2

)(
p̃+

p̃−

)
, for x3 ≤ x3,R, (B2)

(Kennett et al., 1978; Ursin, 1983; Wapenaar & Berkhout, 1989). We define the downgoing and upgoing parts of ṽ

as ṽ± = L̃±2 p̃± and rewrite equation (B2) as(
−τ̃ 3

ṽ

)
=

(
D̃+ D̃−

I I

)(
ṽ+

ṽ−

)
, for x3 ≤ x3,R, (B3)

with D̃± = L̃±1 (L̃±2 )−1. The matrices L̃±1 and L̃±2 in equation (B2) are not uniquely defined. They depend on the

chosen normalization of the fields contained in p̃+ and p̃−. However, independent of the normalization, the matrix

D̃± in equation (B3) is uniquely defined. It is given by

D̃±(s) = (B4)

ρc2S
sP3 s

S
3 + s · s

±((c−2
S − s

2
2)sP3 + s22s

S
3 ) ±s1s2(sP3 − sS3 ) −s1(c−2

S − 2(sP3 s
S
3 + s · s))

±s1s2(sP3 − sS3 ) ±((c−2
S − s

2
1)sP3 + s21s

S
3 ) −s2(c−2

S − 2(sP3 s
S
3 + s · s))

s1(c−2
S − 2(sP3 s

S
3 + s · s)) s2(c−2

S − 2(sP3 s
S
3 + s · s)) ±sS3 c−2

S


with the vertical slownesses sP3 and sS3 for P - and S-waves, respectively, defined as

sP,S3 =


√

1/c2P,S − s · s, for s · s ≤ 1/c2P,S

i
√

s · s− 1/c2P,S , for s · s > 1/c2P,S ,
(B5)
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where cP and cS are the P - and S-wave velocities, respectively, of the upper half-space x3 ≤ x3,R. Applying the

transform of equation (40) to equation (53) we obtain for x at ∂DR

ṽ(s, x3,R, ω) =

∫
∂DR

F̃(s, x3,R,xR, ω)a(xR, ω)dxR +

∫
∂DR

F̃∗(−s, x3,R,xR, ω)b(xR, ω)dxR.

(B6)

Since F̃(s, x3,R,xR, ω) is upgoing, the first term on the right-hand side is the upgoing velocity field ṽ−(s, x3,R, ω) and

the second term is, for propagating waves (i.e., for s · s ≤ 1/c2P ), the downgoing velocity field ṽ+(s, x3,R, ω). Hence,

using equation (B3) we obtain for the transformed traction vector

−τ̃ 3(s, x3,R, ω) =

D̃−(s)

∫
∂DR

F̃(s, x3,R,xR, ω)a(xR, ω)dxR

+D̃+(s)

∫
∂DR

F̃∗(−s, x3,R,xR, ω)b(xR, ω)dxR, (B7)

for s · s ≤ 1/c2P at ∂DR. Applying the transform of equation (40) to the focusing condition of equation (51) gives

F̃(s, x3,R,xR, ω) = I exp{−iωs · xH,R}. (B8)

Substituting this into equation (B7) we obtain

−τ̃ 3(s, x3,R, ω) = D̃−(s)ã(s, x3,R, ω) + D̃+(s)b̃(s, x3,R, ω), (B9)

for s · s ≤ 1/c2P at ∂DR. Combining this equation with the Fourier transform of equation (B1) yields(
−τ̃ 3

ṽ

)
x3=x3,R

=

(
D̃+ D̃−

I I

)(
b̃

ã

)
x3=x3,R

, (B10)

for s · s ≤ 1/c2P at ∂DR. Comparing this with equation (B3) we conclude

b̃(s, x3,R, ω) = ṽ+(s, x3,R, ω), (B11)

ã(s, x3,R, ω) = ṽ−(s, x3,R, ω), (B12)

for s · s ≤ 1/c2P at ∂DR. Transforming these expressions back to the space domain gives

b(xR, ω) + evanescent waves = v+(xR, ω), (B13)

a(xR, ω) + evanescent waves = v−(xR, ω). (B14)

Substitution of equations (B13) and (B14) into equation (53), ignoring the evanescent waves, gives equation (54).

B2 Derivation of the modified elastodynamic Green’s function

We derive a modified elastodynamic Green’s function Γ(x,xS , ω), such that for x at ∂DR, i.e., just below the source,

the downgoing part of Γ(x,xS , ω) obeys equation (58), i.e.,

lim
x3↓x3,S

Γ+(x,xS , ω) = Iδ(xH − xH,S). (B15)

To this end we first investigate the properties of the downgoing part of G(x,xS , ω) defined in equations (56) and

(57), just below the source. Consider the inverse of equation (B3)(
ṽ+

ṽ−

)
=

(
(D̃+ − D̃−)−1 (I− (D̃−)−1D̃+)−1

(D̃− − D̃+)−1 (I− (D̃+)−1D̃−)−1

)(
−τ̃ 3

ṽ

)
, for x3 ≤ x3,R. (B16)

The upper-left matrix, (D̃+ − D̃−)−1, gives the relation between −τ̃ 3 and the downgoing velocity vector ṽ+. The

same matrix transforms a unit force source in a homogeneous half-space into the downgoing part of the Green’s
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function just below this source, hence (defining D̃ = D̃+ − D̃−)

lim
x3↓x3,S

G̃+(s, x3,0, x3,S , ω) = D̃−1(s) =

1

2ρ


s21
sP3

+
(

1
c2
S
− s21

)
1
sS3

(
1
sP3
− 1

sS3

)
s1s2 0(

1
sP3
− 1

sS3

)
s1s2

s22
sP3

+
(

1
c2
S
− s22

)
1
sS3

0

0 0 sP3 + s·s
sS3

 .

(B17)

In equation (B17) the source is located at (0, x3,S). Next, we consider G(x,xS , ω) for a laterally shifted source position

(xH,S , x3,S). Applying a spatial Fourier transform along the horizontal source coordinate xH,S , using equation (A14)

with xH,R replaced by xH,S , yields G̃(x, s, x3,S , ω). For the downgoing part just below the source we obtain a phase-

shifted version of the Green’s function of equation (B17), according to

lim
x3↓x3,S

G̃+(x, s, x3,S , ω) = D̃−1(s) exp{iωs · xH}. (B18)

Comparing this with the desired condition of equation (B15) suggests to define the modified Green’s function (for

arbitrary x) as

Γ̃(x, s, x3,S , ω) = G̃(x, s, x3,S , ω)D̃(s), (B19)

such that

lim
x3↓x3,S

Γ̃+(x, s, x3,S , ω) = I exp{iωs · xH}. (B20)

The inverse Fourier transform from s to xH,S gives equation (B15).

We define the reflection response R̃(xR, s, x3,S , ω) of the medium below ∂DR as the upgoing part of the modified

Green’s function Γ̃(xR, s, x3,S , ω), with xR at ∂DR, hence

R̃(xR, s, x3,S , ω) = Γ̃−(xR, s, x3,S , ω), (B21)

or, using equation (B19),

R̃(xR, s, x3,S , ω) = G̃−(xR, s, x3,S , ω)D̃(s)

= G̃s(xR, s, x3,S , ω)D̃(s), (B22)

where superscript s stands for scattered. The inverse Fourier transform of equation (B21) from s to xH,S yields

equation (59).

B3 Derivation of the representation of equation (61)

To obtain a representation for G(x,xS , ω) we start by transforming all terms in equation (60) along xH,S , using

equation (A14), with xH,R replaced by xH,S , hence

Γ̃(x, s, x3,S , ω) =

∫
∂DR

F(x,xR, ω)R̃(xR, s, x3,S , ω)dxR + F̃∗(x,−s, x3,S , ω),

for x3 ≥ x3,R. (B23)

We introduce a modified focusing function f̃(x, s, x3,S , ω) via

F̃(x, s, x3,S , ω) = f̃(x, s, x3,S , ω)D̃(s). (B24)

According to equation (B17) we have for propagating waves (i.e., for s · s ≤ 1/c2P )

D̃(s) = D̃(−s) = D̃∗(s) = D̃t(s). (B25)

Hence, for F̃∗(x,−s, x3,S , ω) we obtain, analogous to equation (B19),

F̃∗(x,−s, x3,S , ω) = f̃∗(x,−s, x3,S , ω)D̃(s). (B26)
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Multiplying all terms in equation (B23) from the right by D̃−1(s), using equations (B19), (B22) and (B26), and

transforming the resulting expression back from s to xH,S gives

G(x,xS , ω) =

∫
∂DR

F(x,xR, ω)Gs(xR,xS , ω)dxR + f∗(x,xS , ω), for x3 ≥ x3,R. (B27)

We modify the integral step by step. First we use source-receiver reciprocity for the scattered Green’s function

Gs(xR,xS , ω) and we apply Parseval’s theorem. We thus obtain for the integral in equation (B27)

ω2

4π2

∫
R2

F̃(x,−s, x3,R, ω){G̃s(xS , s, x3,R, ω)}tds. (B28)

Substituting equation (B24), using equation (B25), gives

ω2

4π2

∫
R2

f̃(x,−s, x3,R, ω){G̃s(xS , s, x3,R, ω)D̃(s)}tds. (B29)

Using equation (B22) this gives

ω2

4π2

∫
R2

f̃(x,−s, x3,R, ω){R̃(xS , s, x3,R, ω)}tds. (B30)

Applying Parseval’s theorem again and inserting the integral in equation (B27) yields equation (61). It has been

derived without applying decomposition in the lower half-space, but it excludes the contribution from waves that are

evanescent at ∂DR.
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