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Abstract

Multicomponent data are increasingly acquired on land and at the ocean bottom in
an attempt to better understand the subsurface structure and characterize oil and gas

reservoirs.

Seismic imaging in areas with complex geology requires accurate reconstruction of
seismic wavefields. Since in reality, seismic waves propagate through the earth as a su-
perposition of compressional and shear waves, an elastic wave equation is usually more
appropriate and more accurate for wavefield reconstruction compared to an acoustic wave
equation. Conventional acoustic migration techniques image a scalar wavefield represent-
ing P-waves; in contrast, elastic migration techniques image a vector wavefield including
both the P- and S-waves. A crucial component of wave-equation migration is the imaging
condition which extracts information about the discontinuities of physical properties from
the reconstructed wavefields at every location in space. For elastic imaging, it is desirable
to decompose the reconstructed vector fields into pure wave modes, such that the imaging
condition produces interpretable images which characterize reflectivity of different reflection

types. This requires a wave mode separation before application of an imaging condition.

In a homogeneous VTI (transversely isotropic with a vertical symmetry axis) medium,
wave-mode separation can be achieved in the wavenumber domain by projecting the recon-
structed vector fields onto the polarization vectors of various wave modes. The polarization
vectors of P- and SV-waves in the wavenumber domain are determined by the medium
parameters, i.e. Thomsen parameters ¢ and § and the Vpy/Vgg ratio. For a heteroge-
neous medium, the polarization vectors at all grids of the model are transformed to the
space domain to become spatially varying filters. Then the wave modes are separated by

non-stationary filtering of the vector wavefields with the space-domain operators.
i




For a 3D TTI (transversely isotropic with a tilted symmetry axis) medium, the po-
larization vectors depend on the tilt and azimuth of the symmetry axis, as well as the
parameters, Vpg, Vso, €, and §. Using these parameters, one can separate the wave-modes
by constructing nine filters corresponding to the nine Cartesian components of the three
modes at every grid point. Since the polarization vectors of two shear modes in the symme-
try axis direction of a TI medium are not defined by the medium parameters, I construct
their vectors by exploiting the polarization orthogonality of the three modes. This procedure
allows one to separate two shear modes from each other kinematically.

Wave-mode separation by spatial filtering is computationally intensive and is usually
not affordable for 3D models. A wavenumber-domain projection is much cheaper than the
space-domain filtering, but it is only effective for a homogeneous model. A more efficient
separation technique, which combines the benefit of both methods, is a mixed-domain sep-
aration. A mixed-domain separation is applicable for heterogeneous anisotropic models.
The method first separates the wave modes at several homogeneous reference models in
the wavenumber domain. Then these modes are interpolated in the space domain using
the spatially variable medium parameters. This mixed-domain separation offers the same
high computational efficiency as the wavenumber-domain separation and approximately the
same accuracy as the space-domain separation.

The wave-mode separation for TI media developed in this thesis can be applied to
reverse time migration (RTM) and subsequent angle decomposition for anisotropic media

with complex subsurface structure.

it
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Chapter 1

Introduction

Multicomponent data are often acquired because multicomponent waves have been
recognized to have a number of advantages. Converted waves can produce better images of
the Earth structure where P-waves have small reflectivity and S-waves have larger reflectiv-
ity. Converted waves also complement P-waves in imaging through zones where P-waves are
highly attenuated and S-waves are less affected, e.g., in gas-concentrated areas. Converted
waves also provide valuable information for lithology discrimination, anisotropic parameter

estimation, and reservoir characterization.

Imaging with multicomponent data is usually carried out by separating P- and S-
wave data and using them for acoustic-like imaging. The separation of P- and S-wave data
is usually achieved under the assumption that the near surface S-wave velocity is small
and that S-waves propagate in near-vertical directions around the receivers. In areas with
complicated near-surface structures, this assumption is violated, and P- and S-wave data
separation is difficult. On the other hand, one can use the recorded multicomponent data
to reconstruct vector wavefields using elastic wave equation. If vector wavefields are recon-
structed, one has two options for imaging condition: imaging with Cartesian components
or with pure modes. The former images with mixed wave modes, and images obtained
this way lack clear physical meaning and are not suitable for interpretation. To obtain
images with clear physical meaning, I propose to image with vector potentials instead of
vector displacements, velocities, or accelerations. This proposed imaging condition yields
images that resemble acoustic-type imaging in physical meaning, i.e., the images represent

reflection coefficients of different reflection types.
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To obtain the vector potential equivalents in anisotropic media, one needs to separate P
and S modes. This thesis develops mode separation for heterogeneous models and extends
the work to symmetry planes of TI media. The thesis also generalizes the algorithm to
TTI media in 3D and enables separation of P, SV, and SH modes to obtain three scalar
wavefields. The general idea of mode separation is to project the vector wavefields onto
the polarization direction of each mode. The polarization vectors are obtained by solving
the Christoffel equation using local medium parameters. These vectors in the space domain
correspond to localized filters, and each mode can be separated from the others by non-
stationary filtering of the vector wavefields with the spatially varying operators. To separate
wave modes more efficiently in 3D, I develop a mixed-domain algorithm for mode separation,

which makes the processing feasible for 3D models with complex geology.

Chapters 2-5 of this thesis have been written as individual papers. In particular,
Chapters 2 and 3 have already been published (Yan & Sava, 2008, 2009). Chapters 4 and 5

have been submitted for publication.

In Chapter 2, I propose a method for reverse time migration with angle-domain imag-
ing formulated for multicomponent data from isotropic media. The method is based on the
separation of the reconstructed elastic wavefields into pure wave modes using conventional
Helmholtz decomposition for isotropic media. Elastic wavefields from the source and re-
ceivers are separated into pure compressional and transverse wave-modes which are then
used for angle-domain imaging. The images formed using this procedure are interpretable
in terms of the subsurface physical properties, for example, by analyzing the PP or PS

angle-dependent reflectivity.

In Chapter 3, I present a method for obtaining spatially-varying “pseudo-derivative”
operators with application to wave-mode separation in symmetry planes of VTI media. The
main idea is to utilize polarization vectors constructed in the wavenumber domain using
local medium parameters and then transform these vectors back to the space domain. The

main advantage of applying the pseudo-derivative operators in the space domain constructed



Jia Yuan / Wave-mode separation for elastic imaging in TI media 3

in this way is that they are suitable for heterogeneous media. The wave-mode separators
obtained using this method represent spatially-variable filters and can be used to separate
wave modes in VTI media with arbitrary strength of anisotropy. This methodology is

applicable for elastic RTM in heterogeneous VTI media.

In Chapter 4, I show a method for obtaining spatially-varying wave-mode separators,
which can be used to separate elastic wave-modes in TTI models. In order for the operators
to work in TI models with a tilted symmetry axis, I incorporate one more parameter — the
local tilt angle — in addition to the parameters needed for the VTI operators. As in VTI
media, the spatial filters can be used to separate complicated wavefields in models with
substantial heterogeneity and strong anisotropy. This chapter also extends the wave-mode
separation to 3D TI models. The P-mode separators can be constructed by solving the
Christoffel equation for the P-wave eigenvectors with local medium parameters. The SV
and SH separators are constructed using the mutual orthogonality among P, SV, and SH
modes for a fixed plane-wave phase vector. For the three modes, there are nine filters, with
three filters for each mode. The separators vary according to the medium parameters Vpo,
Vso, €, 6, and tilt ¥ and azimuth a of the symmetry axis. In anisotropic media, P-waves
usually polarize linearly in most directions, and S-waves polarize non-linearly in singular
directions and velocity extrema directions. Therefore, the separation based on projecting
wavefields onto the linear-polarization directions of each mode preserves P-wave amplitudes
better than S-wave amplitudes. Spatially-varying 3D separators have potential benefits for

complex models and can be used to separate wave-modes in elastic RTM for TTI models.

In Chapter 5, I suggest an efficient method for elastic wave mode separation applicable
for complex media. Wave mode separation can be carried out in a mixed wavenumber and
space domain. First, I separate wave modes in the wavenumber domain for a number of
reference models. This is followed by interpolation in the space domain. The mixed-domain
separation has the advantage of being much more computationally efficient than the more

accurate space-domain separation. The mixed-domain separation is especially beneficial
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for 3D heterogeneous models where the space-domain separation becomes prohibitively
expensive. The efficient method is effective for mode separation in media with spatially
varying e, 4, tilt angle v and azimuth angle a.

Finally, I draw general conclusions and suggest future work directions in Chapter 6.
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Chapter 2

Isotropic angle-domain elastic reverse time
migration

2.1 Summary

Multicomponent data are not usually processed with specifically designed procedures,
but with procedures analogous to the ones used for single-component data. In isotropic
media, the vertical and horizontal components of the data are commonly taken as proxies
for the P- and S-wave modes which are imaged independently with acoustic wave equations.
This procedure works only if the vertical and horizontal component accurately represent P-
and S-wave modes, which is not true in general. Therefore, multicomponent images con-
structed with this procedure exhibit artifacts caused by the incorrect wave mode separation
at the surface.

An alternative procedure for elastic imaging uses the full vector fields for wavefield
reconstruction and imaging. The wavefields are reconstructed using the multicomponent
data as a boundary condition for a numerical solution to the elastic wave equation. The
key component for wavefield migration is the imaging condition that evaluates the match
between wavefields reconstructed from sources and receivers. For vector wavefields, a simple
component-by-component crosscorrelation between two wavefields leads to artifacts caused
by crosstalk between the unseparated wave modes. An alternative method is to separate
elastic wavefields after reconstruction in the subsurface and implement the imaging con-
dition as crosscorrelation of pure wave modes instead of the Cartesian components of the
displacement wavefield. This approach leads to images that are easier to interpret, since

they describe reflectivity of specified wave modes at interfaces of physical properties.
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As for imaging with acoustic wavefields, the elastic imaging condition can be formu-
lated conventionally (crosscorrelation with zero lag in space and time), as well as extended
to non-zero space and time lags. The elastic images produced by an extended imaging con-
dition can be used for angle decomposition of primary (PP or SS) and converted (PS or SP)
reflectivity. Angle gathers constructed with this procedure have applications for migration

velocity analysis and amplitude versus angle analysis.

2.2 Introduction

Seismic processing is usually based on acoustic wave equations, which assume that the
Earth represents a liquid that propagates only compressional waves. Although useful in
practice, this assumption is not theoretically valid. Earth materials allow for both compres-
sional and shear wave propagation in the subsurface. Shear waves, either generated at the
source or converted from compressional waves at various interfaces in the subsurface, are
detected by multicomponent receivers. Shear waves are usually stronger at large incidence
and reflection angles, often corresponding to large offsets. However, for complex geologi-
cal structures near the surface, shear waves can be quite significant even at small offsets.
Conventional single-component imaging ignores shear wave modes, which often leads to
incorrect characterization of wave propagation, incomplete illumination of the subsurface
and poor amplitude characterization.

Even when multicomponent data are used for imaging, they are usually not processed
with specifically designed procedures. Instead, those data are processed with ad-hoc pro-
cedures borrowed from acoustic wave equation imaging algorithms. For isotropic media,
a typical assumption is that the recorded vertical and in plane horizontal components are
good approximations for the P- and S-wave modes, respectively, which can be imaged inde-
pendently. This assumption is not always correct, leading to errors and noise in the images,
since P- and S-wave modes are normally mixed on all recorded components. Also, since

P and S modes are mixed on all components, true-amplitude imaging is questionable no
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matter how accurate the wavefield reconstruction and imaging condition are.

Multicomponent imaging has long been an active research area for exploration geo-
physicists. Techniques proposed in the literature perform imaging by using time extrap-
olation, e.g. by Kirchhoff migration (Kuo & Dai, 1984; Hokstad, 2000) and reverse time
migration (Whitmore, 1995; Chang & McMechan, 1986, 1994) adapted for multicomponent
data. The reason for working in the time domain, as opposed to the depth domain, is
that the coupling of displacements in different directions in elastic wave equations makes it
difficult to derive a dispersion relation that can be used to extrapolate wavefields in depth

(Clayton & Brown, 1979; Clayton, 1981).

Early attempts at multicomponent imaging used the Kirchhoff framework and involve
wave-mode separation on the surface prior to wave-equation imaging (Wapenaar et al.,
1987; Wapenaar & Haimé, 1990). Kuo & Dai (1984) perform shot-profile elastic Kirch-
hoff migration, and Hokstad (2000) performs survey-sinking elastic Kirchhoff migration.
Although these techniques represent different migration procedures, they compute travel-
times for both PP and PS reflections and sum data along these travel time trajectories.
This approach is equivalent to distinguishing between PP and PS reflections and applying
acoustic Kirchhoff migration for each mode separately. When geology is complex, the elastic
Kirchhoff migration technique suffers from drawbacks similar to those of acoustic Kirchhoff

migration because ray theory breaks down (Gray et al., 2001).

There are two main difficulties with independently imaging P and S wave modes sep-
arated on the surface. The first is that conventional elastic migration techniques either
consider vertical and horizontal components of recorded data as P and S modes, which is
not always accurate, or separate these wave modes on the recording surface using approx-
imations, e.g. polarization (Pestana et al., 1989) or elastic potentials (Etgen, 1988; Zhe
& Greenhalgh, 1997) or wavefield extrapolation in the vicinity of the acquisition surface
(Wapenaar et al., 1990; Admundsen & Reitan, 1995). Other elastic reverse time migration

techniques do not separate wave modes on the surface and reconstruct vector fields, but
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use imaging conditions based on ray tracing (Chang & McMechan, 1986, 1994) that are not
always robust in complex geology. The second difficulty is that images produced indepen-
dently from P and S modes are hard to interpret together, since often they do not line-up
consistently, thus requiring image post processing, e.g. by manual or automatic registration

of the images (Gaiser, 1996; Fomel & Backus, 2003; Nickel & Sonneland, 2004).

I advocate an alternative procedure for imaging elastic wavefield data. Instead of
separating wavefields into scalar wave modes on the acquisition surface followed by scalar
imaging of each mode independently, I use the entire vector wavefields for wavefield recon-
struction and imaging. The vector wavefields are reconstructed using the multicomponent
vector data as boundary conditions for a numerical solution to the elastic wave equation.
The key component of such a migration procedure is the imaging condition which evaluates
the match between wavefields reconstructed from the source and receiver. For vector wave-
fields, a simple component-by-component crosscorrelation between the two wavefields leads
to artifacts caused by crosstalk between the unseparated wave modes, i.e. all P and S modes
from the source wavefield correlate with all P and S modes from the receiver wavefield. This
problem can be alleviated by using separated elastic wavefields, with the imaging condition
implemented as crosscorrelation of wave modes instead of crosscorrelation of the Cartesian
components of the wavefield. This approach leads to images that are cleaner and easier
to interpret since they represent reflections of single wave modes at interfaces of physical

properties.

As for imaging with acoustic wavefields, the elastic imaging condition can be formu-
lated conventionally (crosscorrelation with zero lag in space and time), as well as extended
to non-zero space lags. The elastic images produced by extended imaging condition can
be used for angle decomposition of PP and PS reflectivity. Angle gathers have many ap-
plications, including migration velocity analysis (MVA) and amplitude versus angle (AVA)

analysis.

The advantage of imaging with multicomponent seismic data is that the physics of
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wave propagation is better represented, and resulting seismic images more accurately char-
acterize the subsurface. Multicomponent images have many applications. For example
they can be used to provide reflection images where the P-wave reflectivity is small, image
through gas clouds where the P-wave signal is attenuated, validate bright spot reflections
and provide parameter estimation for this media, Poisson’s ratio estimates, and detect frac-
tures through shear-wave splitting for anisotropic media (Li, 1998; Zhu et al., 1999; Knapp
et al., 2001; Gaiser et al., 2001; Stewart et al., 2003a; Simmons & Backus, 2003). Assuming
1o attenuation in the subsurface, converted wave images also have higher resolution than
pure-mode images in the shallow part of sections because S-waves have shorter wavelengths
than P-waves. Modeling and migrating multicomponent data with elastic migration algo-
rithms enables one to make full use of information provided by elastic data and correctly

position geologic structures.

This chapter presents a method for angle-domain imaging of elastic wavefield data
using reverse time migration (RTM). In order to limit the scope of this chapter, I ignore
several practical issues related to data acquisition and pre-processing for wave-equation mi-
gration. For example, my methodology ignores the presence of surface waves, e.g. Rayleigh
and Love waves, the relatively poor spatial sampling when imaging with multicomponent
elastic data, e.g. for OBC acquisition, the presence of anisotropy in the subsurface and
all amplitude considerations related to the directionality of the seismic source. All these
issues are important for elastic imaging and need to be part of a practical data processing
application. I restrict in this chapter my attention to the problem of wave-mode separation
after wavefield extrapolation and angle-decomposition after the imaging condition. These

issues are addressed in more detail in a later section of the chapter.

I begin by summarizing wavefield imaging methodology, focusing on reverse time mi-
gration for wavefield multicomponent migration. Then, I describe different options for
wavefield multicomponent imaging conditions, e.g. based on vector displacements and vec-

tor potentials. Finally, I describe the application of extended imaging conditions to multi-
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component data and corresponding angle decomposition. I illustrate the wavefield imaging

techniques using data simulated from the Marmousi II model (Martin et al., 2002).

2.3 Wavefield imaging

Seismic imaging is based on numerical solutions to wave equations, which can be classi-
fied into ray-based (integral) solutions and wavefield-based (differential) solutions. Kirchhoff
migration is a typical ray-based imaging procedure which is computationally efficient but
often fails in areas of complex geology, such as sub-salt, because the wavefield is severely
distorted by lateral velocity variations leading to complex multipathing. Wavefield imaging
works better for complex geology, but is more expensive than Kirchhoff migration. De-
pending on computational time constraints and available resources, one can apply different
levels of approximation to accelerate imaging, i.e. one-way vs. two-way, acoustic vs. elastic,
isotropic vs. anisotropic, etc.

Despite the complexity of various types of wavefield migration algorithms, any wave-
field imaging method can be separated into two parts: wavefield reconstruction followed
by the application of an imaging condition. For prestack depth migration, source and re-
ceiver wavefields have to be reconstructed at all locations in the subsurface. The wavefield
reconstruction can be carried out using extrapolation in either depth or time, and with dif-
ferent modeling approaches, such as finite-differences (Dablain, 1986; Alford et al., 1974),
finite-elements (Bolt & Smith, 1976), or spectral methods (Seriani & Priolo, 1991; Seriani
et al., 1992; Dai & Cheadle, 1996). After reconstructing wavefields with the recorded data
as boundary conditions into the subsurface, an imaging condition must be applied at all lo-
cations in the subsurface in order to obtain a seismic image. The simplest types of imaging
conditions are based on crosscorrelation or deconvolution of the reconstructed wavefields
(Claerbout, 1971). These imaging conditions can be implemented in the time or frequency
domain depending on the domain in which wavefields have been reconstructed. Here, 1

concentrate on reverse time migration with wavefield reconstruction and imaging condition
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implemented in the time domain.

2.3.1 Reverse time migration

Reverse time migration reconstructs the source wavefield forward in time and the re-
ceiver wavefield backward in time. It then applies an imaging condition to extract reflectivity
information out of the reconstructed wavefields. The advantages of reverse time migration
over other depth migration techniques are that the extrapolation in time does not involve
evanescent energy, and no dip limitations exist for the imaged structures (McMechan,
1982, 1983; Whitmore, 1983; Baysal et al., 1983). Although conceptually simple, reverse
time migration has not been used extensively in practice due to its high computational cost.
However, the algorithm is becoming more and more attractive to the industry because of

its robustness in imaging complex geology, e.g. sub-salt (Jones et al., 2007; boe, n.d.).

McMechan (1982, 1983), Whitmore (1983), and Baysal et al. (1983) first used reverse
time migration for poststack or zero-offset data. The procedure underlying poststack re-
verse time migration is the following: first, reverse the recorded data in time; second, use
these reversed data as sources along the recording surface to propagate the wavefields in
the subsurface; third, extract the image at zero time, e.g. apply an imaging condition. The
principle of poststack reverse time migration is that the subsurface reflectors work as ex-
ploding reflectors and that the wave equation used to propagate data can be applied either

forward or backward in time by simply reversing the time axis (Levin, 1984).

Chang & McMechan (1986) apply reverse time migration to prestack data. Prestack
reverse time migration reconstructs both source and receiver wavefields. The source wave-
field is reconstructed forward in time, and the receiver wavefield is reconstructed backward
in time. Chang & McMechan (1986, 1994) use a so-called excitation-time imaging condi-
tion, where images are formed by extracting the receiver wavefield at the time taken by a
wave to travel from the source to the image point. This imaging condition is a special case

of the crosscorrelation imaging condition of Claerbout (1971).
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2.3.2 Elastic imaging vs. acoustic imaging

Multicomponent elastic data are often recorded in land or marine (ocean-bottom) seis-
mic experiments. However, as mentioned earlier, elastic vector wavefields are not usually
processed by specifically designed imaging procedures, but rather by extensions of tech-
niques used for scalar wavefields. Thus, seismic data processing does not take full advantage
of the information contained by elastic wavefields. In other words, it does not fully unravel
reflections from complex geology or correctly preserve imaging amplitudes and estimate
model parameters, etc.

Elastic wave propagation in an infinite homogeneous isotropic medium is characterized

by the wave equation (Aki & Richards, 2002)

d%u

pw=f+(A+2u)V(V-u)—,ququ, (2.1)

where u is the vector displacement wavefield, ¢ is time, p is the density, f is the body source
force, and A and u are the Lamé moduli. This wave equation assumes a slowly varying
stiffness tensor over the imaging space. For isotropic media, one can process the elastic
data either by separating wave-modes and migrating each mode using methods based on
acoustic wave theory, or by migrating the whole elastic data set based on the elastic wave
equation 2.1. The elastic wavefield extrapolation using equation 2.1 is usually performed in
time by Kirchhoff migration or reverse time migration.

Acoustic Kirchhoff migration is based on diffraction summation, which accumulates
the data along diffraction curves in the data space and maps them onto the image space.
For multicomponent elastic data, Kuo & Dai (1984) discuss Kirchhoff migration for shot-
record data. Here, identified PP and PS reflections can be migrated by computing source
and receiver traveltimes using P-wave velocity for the source rays, and P- and S-wave veloc-
ities for the receiver rays. Hokstad (2000) performs multicomponent anisotropic Kirchhoff
migration for multi-shot, multi-receiver experiments, where pure-mode and converted-mode

images are obtained by visco-elastic vector wavefields and application of a survey-sinking
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imaging condition to the reconstructed vector wavefields. The wavefield separation is ef-
fectively done by the Kirchhoff integral which handles both P- and S-waves, although this

technique fails in areas of complex geology where ray theory breaks down.

Elastic reverse time migration has the same two components as acoustic reverse time
migration: reconstruction of source and receiver wavefield and application of an imaging
condition. The source and receiver wavefields are reconstructed by forward and backward
propagation in time with various modeling approaches. For acoustic reverse time migration,
wavefield reconstruction is done with the acoustic wave equation using the recorded scalar
data as a boundary condition. In contrast, for elastic reverse time migration, wavefield
reconstruction is done with the elastic wave equation using the recorded vector data as

boundary conditions.

Since pure-mode and converted-mode reflections are mixed on all components of recorded
data, images produced with reconstructed elastic wavefields are characterized by crosstalk
due to the interference of various wave modes. In order to obtain images with clear physical
meaning, most imaging conditions separate wave modes. There are two potential approaches
to separate wavefields and image elastic seismic wavefields. The first option is to separate
P and S modes on the acquisition surface from the recorded elastic wavefields. This pro-
cedure involves either approximations for the propagation path and polarization direction
of the recorded data, or reconstruction of the seismic wavefields in the vicinity of the ac-
quisition surface by a numerical solution of the elastic wave equation, followed by wavefield
separation of scalar and vector potentials using Helmholtz decomposition (Etgen, 1988;
Zhe & Greenhalgh, 1997). An alternative data decomposition using P and S potentials
reconstructs wavefields in the subsurface using the elastic wave equation, then decomposes
the wavefields into P- and S-wave modes. This is followed by forward extrapolation of the
separated wavefields back to the surface using the acoustic wave equation with the appro-
priate propagation velocity for the various wave modes (Sun et al., 2006) by conventional

procedures used for scalar wavefields.
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The second option is to extrapolate wavefields in the subsurface using a numerical
solution to the elastic wave equation and then apply an imaging condition that extracts
reflectivity information from the source and receiver wavefields. In the case where extrapo-
lation is implemented by finite-difference methods (Chang & McMechan, 1986, 1994), this
procedure is known as elastic reverse time migration, and is conceptually similar to acous-
tic reverse time migration (Baysal et al., 1983), which is more frequently used in seismic
imaging.

Many imaging conditions can be used for reverse time migration. Elastic imaging
conditions are more complex than acoustic imaging conditions because both source and
receiver wavefields are vector fields. Different elastic imaging conditions have been proposed
for extracting reflectivity information from reconstructed elastic wavefields. Hokstad et al.
(1998) use elastic reverse time migration with Lamé potential methods. Chang & McMechan
(1986) use the excitation-time imaging condition which extracts reflectivity information
from extrapolated wavefields at traveltimes from the source to image positions computed
by ray tracing, etc. Ultimately, these imaging conditions represent special cases of a more
general type of imaging condition that involves time crosscorrelation or deconvolution of

source and receiver wavefields at every location in the subsurface.

2.4 Conventional elastic imaging conditions

For vector elastic wavefields, the crosscorrelation imaging condition needs to be imple-
mented on all components of the displacement field. The problem with this type of imaging
condition is that the source and receiver wavefields contain a mix of P- and S-wave modes
which crosscorrelate independently, thus hampering interpretation of migrated images. An
alternative to this type of imaging performs wavefield separation of scalar and vector poten-
tials after wavefield reconstruction in the imaging volume, but prior to the imaging condition
and then crosscorrelate pure modes from the source and receiver wavefields, as suggested

by Dellinger & Etgen (1990) and illustrated by Cunha Filho (1992).
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2.4.1 Imaging with scalar wavefields

As mentioned earlier, under the assumption of single scattering in the Earth (Born
approximation), a conventional imaging procedure consists of two components: wavefield
extrapolation and imaging. Wavefield extrapolation is used to reconstruct the seismic wave-
field in the imaging volume using the recorded data on the acquisition surface as a bound-
ary condition, and imaging is used to extract reflectivity information from the extrapolated
source and receiver wavefields.

Assuming scalar recorded data, wavefield extrapolation using a scalar wave equation
reconstructs scalar source and receiver wavefields, us (x,t) and u, (x,t), at every location
x in the subsurface. Using the extrapolated scalar wavefields, one can implement a conven-

tional imaging condition (Claerbout, 1985) as crosscorrelation at zero-lag time:

I(x) = / s (%,8) ur (%, ) dt . (2.2)

Here, I(x) denotes a scalar image obtained from scalar wavefields us (x,t) and ur (x,1),

x = {x,y, 2z} represent Cartesian space coordinates, and t represents time.

2.4.2 Imaging with vector displacements

Assuming vector recorded data, wavefield extrapolation using a vector wave equation
reconstructs source and receiver wavefields, u, (x,t) and u, (x,t), at every location x in the
subsurface. Here, us and u, represent displacement fields reconstructed from source wavelet
and from data recorded by multicomponent geophones at the surface boundary, respectively.
Using the vector extrapolated wavefields u; = {usq, Usy, Us, } and Uy = {trg, Ury, Urz}, AN
imaging condition can be formulated as a straightforward extension of equation 2.2 by
crosscorrelating all combinations of components of the source and receiver wavefields. Such

an imaging condition for vector displacements can be formulated mathematically as

Lj (x) = /us,- (%, t) urj (x,t) dt (2.3)
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where the quantities u; and u; stand for the Cartesian components z,y, z of the vector
source and receiver wavefields u (x, ). For example, I, (x) represents the image component
produced by crosscorrelating of the z components of the source and receiver wavefields, and
Iz (x) represents the image component produced by crosscorrelating of the z component
of the source wavefield with the z component of the receiver wavefield, etc. In general, an

image produced with this procedure has nine components at every location in space.

The main drawback of applying this type of imaging condition is that the wavefield
used for imaging contains a combination of P- and S-wave modes. Those wavefield vectors
interfere with one another in the imaging condition, since the P and S components are not
separated in the extrapolated wavefields. The crosstalk between various components of the
wavefield creates artifacts and makes it difficult to interpret the images in terms of pure
wave modes, e.g. PP or PS reflections. This situation is similar to the case of imaging with
acoustic data contaminated by multiples or other types of coherent noise which are mapped

in the subsurface using an incorrect velocity.

2.4.3 Imaging with scalar and vector potentials

An alternative to the elastic imaging condition from equation 2.3 is to separate the
extrapolated wavefield into P and S potentials after extrapolation and image using crosscor-
relations of the vector and scalar potentials (Dellinger & Etgen, 1990). Separation of scalar
and vector potentials can be achieved by Helmholtz decomposition, which is applicable to
any vector field u (x, t):

u=Ve+Vxw, (2.4)

where ® (x, t) represents the scalar potential of the wavefield u (x,t) and W (x,t) represents
the vector potential of the wavefield u (x, t), and V- ¥ = 0. For isotropic elastic wavefields,
equation 2.4 is not used directly in practice, but the scalar and vector components are

obtained indirectly by the application of the divergence (V) and curl (V x ) operators to
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the extrapolated elastic wavefield u (x,t):

P = V.u=V2, (2.5)

S = Vxu=-Vir. (2.6)

For isotropic elastic fields far from the source, quantities P and S describe compressional
and transverse components of the wavefield, respectively (Aki & Richards, 2002). In 2D,
the quantity S corresponds to SV waves that are polarized in the propagation plane.
Using the separated scalar and vector components, I can formulate an imaging condi-
tion that combines various incident and reflected wave modes. The imaging condition for

vector potentials can be formulated mathematically as

Ty ) = [ o (xit) ary Geit) (27)

where the quantities o; and «; stand for the various wave modes a = {P, S} of the vector
source and receiver wavefields u (x,t). For example, Ipp (x) represents the image compo-
nent produced by crosscorrelating of the P wave mode of the source and receiver wavefields,
and Ipg (x) represents the image component produced by crosscorrelating of the P wave
mode of the source wavefield with the S wave-mode of the receiver wavefield, etc. In
isotropic media, an image produced with this procedure has four independent components
at every location in space, similar to the image produced by the crosscorrelation of the var-
ious Cartesian components of the vector displacements. However, in this case, the images
correspond to various combinations of incident P or S and reflected P- or S-waves, thus

having clear physical meaning and being easier to interpret for physical properties.

2.5 Extended elastic imaging conditions

The conventional imaging condition from equation 2.2 discussed in the preceding sec-
tion uses zero space- and time-lags of the crosscorrelation between the source and receiver

wavefields. This imaging condition represents a special case of a more general form of an
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extended imaging condition (Sava & Fomel, 2006b)
I(x,A,T)=/us(x—/\,t—'r)u,.(x+A,t+7‘)dt, (2.8)

where A = {/\z,')\y, A:} and 7 stand for crosscorrelation lags in space and time, respectively.
The imaging condition from equation 2.2 is equivalent to the extended imaging condition

from equation 2.8 for A\ =0 and 7 = 0.

The extended imaging condition has two main uses. First, it characterizes wavefield
reconstruction errors, since for incorrectly reconstructed wavefields, the crosscorrelation
energy does not focus completely at zero lags in space and time. Sources of wavefield re-
construction errors include inaccurate numeric solutions to the wave equation, inaccurate
models used for wavefield reconstruction, inadequate wavefield sampling on the acquisition
surface, and uneven illumination of the subsurface. Typically, all these causes of inaccu-
rate wavefield reconstruction occur simultaneously and it is difficult to separate them after
imaging. Second, assuming accurate wavefield reconstruction, the extended imaging condi-
tion can be used for angle decomposition. This leads to representations of reflectivity as a
function of angles of incidence and reflection at all points in the imaged volume (Sava &
Fomel, 2003). Here, I assume that wavefield reconstruction is accurate and concentrate on

further extensions of the imaging condition, such as angle decomposition.

2.5.1 Imaging with vector displacements

For imaging with vector wavefields, the extended imaging condition from equation 2.8
can be applied directly to the various components of the reconstructed source and receiver
wavefields, similar to the conventional imaging procedure described in the preceding section.

Therefore, an extended image constructed from vector displacement wavefields is

Iij (X,A,T) =/usi(x_A)t_T)urj (X+A,t+7‘)dt, (2.9)
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Figure 2.1. Local wave vectors of the converted wave at a common-image point location in
3D. The plot shows the conversion in the reflection plane in 2D. ps, Pr, Px and p) are ray
parameter vectors for the source ray, receiver ray, and combinations of the two. The length
of the incidence and reflection wave vectors are inversely proportional to the incidence and
reflection wave velocity, respectively. Vector n is the normal of the reflector. By definition,
Px = Pr — Ps and px = Pr + Ps.
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where the quantities us and u,; stand for the Cartesian components z,y, z of the vector
source and receiver wavefields, and A and 7 stand for cross-correlation lags in space and
time, respectively. This imaging condition suffers from the same drawbacks described for
the similar conventional imaging condition applied to the Cartesian components of the

reconstructed wavefields, i.e. crosstalk between the unseparated wave modes.

2.5.2 Imaging with scalar and vector potentials

An extended imaging condition can also be designed for elastic wavefields decomposed
in scalar and vector potentials, similar to the conventional imaging procedure described in
the preceding section. Therefore, an extended image constructed from scalar and vector
potentials is

I (x, A7) = /as,- (X = At —7)ary (x+ A £ 4+7)dt (2.10)

where the quantities a,; and arj stand for the various wave modes a: = { P, S} of the source
and receiver wavefields, and A and 7 stand for cross-correlation lags in space and time,

respectively.

2.6 Angle decomposition

As indicated earlier, the main uses of images constructed using extended imaging con-
ditions are migration velocity analysis (MVA) and amplitude versus angle analysis (AVA).
Such analyses, however, require that the images be decomposed in components correspond-
ing to various angles of incidence. Angle decomposition takes different forms corresponding
to the type of wavefields involved in imaging. Thus, I can distinguish angle decomposition

for scalar (acoustic) wavefields and angle decomposition for vector (elastic) wavefields.

2.6.1 Scalar wavefields

For the case of imaging with the acoustic wave equation, the reflection angle corre-

sponding to incidence and reflection of P-wave mode can be constructed after imaging, using
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Figure 2.2. (a) A model showing one shot over multiple reflectors dipping at 0°, 15°, 30°,
45°, and 60°. The vertical dashed line shows a CIG location. The incidence ray is vertically
down and P to S conversions are marked by arrowed lines pointing away from reflectors. (b)
Converted wave angle gather obtained from algorithm described by Sava & Fomel (2006a).
Notice that converted wave angles are always smaller than incidence angles (in this case,
the dips of the reflectors) except for normal incidence.
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mapping based on the relation (Sava & Fomel, 2005)

_ [kl

tand, = ka] ’
X

(2.11)

where 0, is the incidence angle, and kyx = ky — kg and ky = k; + ks are defined using the
source and receiver wavenumbers, ks and k,. The information required for decomposition
of the reconstructed wavefields as a function of wavenumbers ky and k), is readily available
in the images I (x, A, 7) constructed by extended imaging conditions equations 2.9 or 2.10.
After angle decomposition, the image I (x, 6, ¢) represents a mapping of the image I (%, A, 7)
from offsets to angles. In other words, all information for characterizing angle-dependent

reflectivity is already available in the image obtained by the extended imaging conditions.

2.6.2 Vector wavefields

A similar approach can be used for decomposition of the reflectivity as a function of
incidence and reflection angles for elastic wavefields imaged with extended imaging condi-
tions equations 2.9 or 2.10. The angle . characterizing the average angle between incidence
and reflected rays can be computed using the expression (Sava & Fomel, 2005)

)P k(1= )% k[

tan® 0, = 5 5 3 5
(1+7)° [kx[? = (1 = )" [ka\|

(2.12)

where 7 is the velocity ratio of the incident and reflected waves, e.g. Vp / Vs ratio for incident
P mode and reflected S mode. Figure 2.1 shows the schematic and the notations used in
equation 2.12, where |px| = |kx|/w, |pa| = |ka|/w, and w is the angular frequency at the
imaging location x. The angle decomposition equation 2.12 is designed for PS reflections

and reduces to equation 2.11 for PP reflections when y = 1.

Angle decomposition using equation 2.12 requires computation of an extended imaging
condition with 3D space lags (\z, Ay, Az), which is computationally costly. Faster compu-

tation can be done if one avoids computing the vertical lag \,, in which case the angle
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decomposition can be done using the expression (Sava & Fomel, 2005):

(1+7) (ax, +bz)
2y ky + /4722 + (12 — 1) (a», + bs) (ac +0x,)

where ay, = (1+7) kr,, @z = (L +7) kg, by, = (1 — ) k»,, and by = (1 — ) kz. Figure 2.2

tan 03 = (2.13)

shows a model of five reflectors and the extracted angle gathers for these reflectors at the
location of the source. For PP reflections, they would occur in the angle gather at angles
equal with the reflector slopes. However, for PS reflections, as illustrated in Figure 2.2, the

reflection angles are smaller than the reflector slopes, as expected.

2.7 Examples

I test the different imaging conditions discussed in the preceding sections with data
simulated on a modified subset of the Marmousi IT model (Martin et al., 2002). The section
is chosen to be at the left side of the entire model which is relatively simple, and therefore

it is easier to examine the quality of the images.
2.7.1 Imaging with vector displacements

Consider the images obtained for the model depicted in Figures 2.3(a) and (b). Fig-
ure 2.3(a) depicts the P-wave velocity (smooth function between 1.6 — 3.2 km/s), and Fig-
ure 2.3(b) shows the density (variable between 1.0 — 2.0 g/ cm?). The S-wave velocity is a
scaled version of the P-wave velocity with Vp/Vs = 2. T use a smooth velocity background
for both modeling and migration. I use density discontinuities to generate reflections in
modeling but use a constant density in migration. The smooth velocity background for
both modeling and migration is used to avoid back-scattering during wavefield reconstruc-
tion. The elastic data, shown in Figures 2.4(a) and (b), are simulated using a space-time
staggered-grid finite-difference solution to the isotropic elastic wave equation (Virieux, 1984,
n.d.; Mora, 1987, 1988). I simulate data for a source located at position z = 6.75 km and
z = 0.5 km. Since I am using an explosive source and the background velocity is smooth,

the simulated wavefield is represented mainly by P-wave incident energy and the receiver
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Figure 2.3. (a) P- and S-wave velocity models and (b) density model used for isotropic
elastic wavefield modeling, where Vp ranges from 1.6 to 3.2 km/s from top to bottom and
Vp/Vs = 2, and density ranges from 1.0 to 2.0 g/cm? .
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Figure 2.4. Elastic data simulated in model 2.3(a) and 2.3(b) with a source at z = 6.75 km
and z = 0.5 km, and receivers along z = 0.5 km: (a) vertical component, (b) horizontal
component, (c) scalar potential and (d) vector potential of the elastic wavefield. Both
vertical and horizontal components, panels (a) and (b), contain a mix of P and S modes,

as seen by comparison with panels (c) and (d).
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Figure 2.5. Images produced with the displacement components imaging condition from
equation 2.3. Panels (a), (b), (c), and (d) correspond to the crosscorrelation of the vertical
and horizontal components of the source wavefield with the vertical and horizontal compo-
nents of the receiver wavefield, respectively. Images (a) to (d) are the zz, zz, zz, and zz
components, respectively. The image corresponds to one shot at position z = 6.75 km and
z = 0.5 km. Receivers are located at all locations at z = 0.5 km.
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Figure 2.6. Images produced with the scalar and vector potentials imaging condition from
equation 2.7. Panels (a), (b), (c), and (d) correspond to the crosscorrelation of the P and S
components of the source wavefield with the P and S components of the receiver wavefield,
respectively. Images (a) to (d) are the PP, PS, SP, and SS components, respectively.
The image corresponds to one shot at position z = 6.75 km and 2z = 0.5 km. Receivers are
located at all locations at z = 0.5 km. Panels (c) and (d) are blank because an explosive
source was used to generate synthetic data.
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wavefield is represented by a combination of P- and S-wave reflected energy. The data
contain a mix of P and S modes, as can be seen by comparing the vertical and horizontal
displacement components, shown in Figures 2.4(a) and (b), with the separated P and S

wave modes, shown in Figures 2.4(c) and (d).

Imaging the data shown in Figures 2.4(a) and (b) using the imaging condition from
equation 2.3, I obtain the images depicted in Figures 2.5(a) to (d). Figures 2.5(a) to (d)
correspond to the crosscorrelation of the z and = components of the source wavefield with
the z and = components of the receiver wavefield, respectively. Since the input data do not
represent separated wave modes, the images produced with the imaging condition based on
vector displacements do not separate PP and PS reflectivity. Thus, the images are hard
to interpret, since it is not clear what incident and reflected wave modes the reflections

represent. In reality, reflections corresponding to all wave modes are present in all panels.

2.7.2 Imaging with scalar and vector potentials

Consider the images (Figures 2.6(a) to (d)) obtained imaging condition from equa-
tion 2.7 applied to the data (Figures 2.4(a) and (b)) from the preceding example. Because
I used an explosive source for the simulation, the source wavefield contains mostly P-wave
energy, while the receiver wavefield contains P- and S-wave mode energy. Helmholtz decom-
position after extrapolation but prior to imaging isolates P and S wavefield components.
Therefore, migration produces images of reflectivity corresponding to PP and PS reflec-
tions, Figures 2.6(a) and (b), but not reflectivity corresponding to SP or SS reflections,
Figures 2.6(c) and (d). The illumination regions are different between PP and PS images,
due to different illumination angles of the two propagation modes for the given acquisition
geometry. The PS image, Figure 2.6(b), also shows the usual polarity reversal for positive
and negative angles of incidence measured relative to the reflector normal. By comparing
Figures 2.6(a) and (b) with Figures 2.5(a) and (b), it is apparent that the crosstalk in the

images obtained from displacement-based imaging condition is more prominent than the one
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obtained from potential-based imaging conditions, especially in Figure 2.5(a). Furthermore,
the polarity in Figure 2.5(b), normally taken as the PS image, does not reverse polarity at

normal incidence, which is not correct either.

2.7.3 Angle decomposition

The images shown in the preceding subsection correspond to the conventional imaging
conditions from equations 2.3 and 2.7. I construct other images using the extended imaging
conditions from equations 2.9 and 2.10, which can be used for angle decomposition after
imaging. Then, I can use equation 2.13 to compute angle gathers from horizontal space

cross-correlation lags.

Figures 2.7(a) and (c) together with Figures 2.7(b) and (d) show, respectively, the PP
and PS horizontal lag- and angle-gathers for the common-image gather (CIG) location in the
middle of the reflectivity model, given a single source at = 6.75 km and z = 0.5 km. PP
and PS horizontal lag gathers present lines dipping at angles that are equal to the incidence
angles (real incidence angles for PP reflection and average of incidence and reflection angles
for PS reflection) at the CIG location. PP angles are larger than PS angles at all reflectors,

as illustrated on the simple synthetic example shown in Figure 2.2.

Figures 2.8(a) and (c) together with Figures 2.8(b) and (d) show, respectively, the PP
and PS horizontal lag- and angle-gathers for the same CIG location, given many sources
from z = 5.5 to 7.5 km and z = 0.5 km. The horizontal space cross-correlation lags are
focused around A = 0, which justifies the use of conventional imaging condition extracting
the crosscorrelation of the source and receiver wavefields at zero lag in space and time.
Thus, the zero lag of the images obtained by extended imaging condition represent the
image at the particular CIG location. The PP and PS gathers for many sources are flat,
since the migration was done with correct migration velocity. The PS angle gather, depicted

in Figure 2.8(d), shows a polarity reversal at § = 0 as expected.
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Figure 2.7. Horizontal cross-correlation lags for (a) PP and (c) PS reflections for the model
in Figures 2.3(a) and (b). The source is at = 6.75 km and the CIG is located at = 6.5 km.
Panels (b) and (d) depict PP and PS angle gathers decomposed from the horizontal lag
gathers in panels (a) and (c), respectively. As expected, PS angles are smaller than PP
angles for a particular reflector due to smaller reflection angles.
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Figure 2.8. Horizontal cross-correlation lags for PP (a) and PS (c) reflections for the model
in Figures 2.3(a) and (b). These CIGs correspond to 81 sources from x = 5.5 to 7.5 km at
z = 0.5 km. The CIG is located at = 6.5 km. Panels (b) and (d) depict PP and PS angle
gathers decomposed from the horizontal lag gathers in panels (a) and (c), respectively.
Since the velocity used for imaging is correct, the PP and PS gathers are flat. The PP
angle gathers do not change polarity at normal incidence, but the PS angle gathers change
polarity at normal incidence.
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2.8 Discussion

The presentation of the angle-domain reverse time migration method outlined in the
preceding sections deliberately ignores several practical challenges in order to maintain the
focus of this chapter to the actual elastic imaging condition. However, for completeness,
I would like to briefly mention several complementary issues that need to be addressed in
conjunction with the imaging condition in order to design a practical method for elastic
reverse time migration.

First, reconstruction of the receiver wavefield requires that the multicomponent recorded
data be injected into the model in reverse time. In other words, the recorded data act as a
displacement sources at receiver positions. In elastic materials, displacement sources trig-
ger both compressional and transverse wave modes, no matter what portion of the recorded
elastic wavefield is used as a source. For example, injecting a recorded compressional mode
triggers both a compressional (physical) mode and a transverse (non-physical) mode in the
subsurface . Both modes propagate in the subsurface and might correlate with wave modes
from the source side. There are several ways to address this problem, such as by imaging
in the angle-domain where the non-physical modes appear as events with non-flat move-
out. One can make an analogy between these non-physical waves and multiples that also
lead to non-flat events in the angle-domain. Thus, the source injection artifacts might be
eliminated by filtering the migrated images in the angle domain, similar to the technique
employed by Sava & Guitton (2005) for suppressing multiples after imaging,.

Second, the data recorded at a free surface contain both up-going and down-going
waves. Ideally, one should use only the up-going waves as a source for reconstructing the
elastic wavefields by time-reversal. In the examples, I assume an absorbing surface in order
to avoid this additional complication and concentrate on the imaging condition. However,
practical implementations require directional separation of waves at the surface (Wapenaar
& Haimé, 1990; Wapenaar et al., 1990; Admundsen & Reitan, 1995; Admundsen et al.,

2001; Hou & Marfurt, 2002). Furthermore, a free surface allows other wave modes to be
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generated in the process of wavefield reconstruction using the elastic wave equation, e.g.
Rayleigh and Love waves. Although these waves do not propagate deep into the model,
they might interfere with the directional wavefield separation at the surface.

Third, I suggest in this chapter that angle-dependent reflectivity constructed using
extended imaging conditions might allow for elastic AVA analysis. This theoretical possi-
bility requires that the wavefields are correctly reconstructed in the subsurface to account
for accurate amplitude variation. For example, boundaries between regions with different
material properties need to be reasonably located in the subsurface to generate correct mode
conversions, and the radiation pattern of the source also needs to be known. None of these
aspects is part of my analyses, but they represent important considerations for practical
elastic wavefield imaging.

Fourth, the wave-mode separation using divergence and curl operators, as required
by Helmholtz decomposition, does not work well in elastic anisotropic media. Anisotropy
requires that the separation operators take into account the local anisotropic parameters

that may vary spatially. This extension will be presented in the next chapter.

2.9 Conclusions

I present a method for reverse time migration with angle-domain imaging formulated
for multicomponent elastic data. The method is based on the separation of elastic wave-
fields reconstructed in the subsurface into pure wave-modes using conventional Helmholtz
decomposition. Elastic wavefields from the source and receivers are separated into pure
compressional and transverse wave-modes which are then used for angle-domain imaging.
The images formed using this procedure are interpretable in terms of the subsurface physical
properties, for cxample, by analyzing the PP or PS angle-dependent reflectivity. In contrast,
images formed by simple crosscorrelation of Cartesian components of reconstructed elastic
wavefields mix contributions from P and S reflections and are harder to interpret. Artifacts

caused by back-propagating the recorded data with displacement sources are present in
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both types of images, although they are easier to distinguish and attenuate on the images
constructed with pure elastic wave-modes separated prior to imaging.

The methodology is advantageous not only because it forms images with clearer phys-
ical meaning, but also because it is based on more accurate physics of wave propagation
in elastic materials. For example, this methodology allows for wave-mode conversions in
the process of wavefield reconstruction. This is in contrast with alternative methods for
multicomponent imaging which separate wave-modes on the surface and then image those
independently. In addition, elastic images can be formed in the angle-domain using ex-
tended imaging conditions, which offers the potential for migration velocity analysis (MVA)

and amplitude versus angle (AVA) analysis.
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Chapter 3

Elastic wavefield separation for VTI media

3.1 Summary

Wave propagation in anisotropic media can be modeled with elastic wave equations
which correctly characterizes both kinematics and dynamics. However, because P and S
modes are both propagated using elastic wave equations, there is a need to separate P
and S modes to obtain images that represent reflection coefficients of different reflection
types. The separation of wave modes into P and S from isotropic elastic wavefields is
typically done using Helmholtz decomposition. However, Helmholtz decomposition using
conventional divergence and curl operators in anisotropic media does not give satisfactory
results and leaves the different wave modes only partially separated. The separation of
anisotropic wavefields requires the use of more sophisticated operators which depend on
local material parameters. Anisotropic wavefield separation operators are constructed using
the polarization vectors evaluated by solving the Christoffel equation at each point of the
medium. These polarization vectors can be represented in the space domain as localized
filtering operators, which resemble conventional derivative operators. The spatially-variable
“pseudo” derivative operators perform well in heterogeneous VTI media even in areas of
rapid velocity/density variations. Synthetic results indicate that the operators can be used

to separate wavefields for VTT media with arbitrary strength of anisotropy.
3.2 Introduction

Wave equation migration for elastic data usually consists of two steps. The first step

is wavefield reconstruction in the subsurface from data recorded at the surface. The second




36 Chapter 3. Elastic wavefield separation for VTI media

step is the application of an imaging condition which extracts reflectivity information from

the reconstructed wavefields.

The elastic wave equation migration for multicomponent data can be implemented
in two ways. The first approach is to separate recorded elastic data into compressional
and transverse (P and S) modes and use the separated data for acoustic wave equation
migration separately. This acoustic imaging approach to elastic waves is more frequently
used, but it is fundamentally based on the assumption that P and S data can be successfully
separated on the surface, which is not always true (Etgen, 1988; Zhe & Greenhalgh, 1997).
The second approach is to extrapolate the entire elastic wavefield at once, and then separate
wave modes prior to applying an imaging condition. The reconstruction of elastic wavefields
can be implemented using various techniques, including by time reversal (RTM) (Chang &

McMechan, 1986, 1994) or by Kirchhoff integral techniques (Hokstad, 2000).

The imaging condition applied to the reconstructed vector wavefields directly deter-
mines the quality of the images. Conventional crosscorrelation imaging condition does not
separate the wave modes and crosscorrelates the Cartesian components of the elastic wave-
fields. In general, the various wave modes (P and S) are mixed on all wavefield components
and cause crosstalk and image artifacts. In Chapter 2, I suggest using imaging conditions
based on elastic potentials, which require crosscorrelation of separated modes. Potential-
based imaging condition creates images that have clear physical meaning, in contrast with
images obtained with Cartesian wavefield components, thus justifying the need for wave

mode separation.

As the need for anisotropic imaging increases, more processing and migration are
performed based on anisotropic acoustic one-way wave equations (Alkhalifah, 1998, 2000;
Shan, 2006; Shan & Biondi, 2005; Fletcher et al., 2009; Fowler et al., 2010). However,
much less research has been done on anisotropic elastic migration based on two-way wave
equations. Elastic Kirchhoff migration (Hokstad, 2000) obtains pure-mode and converted

mode images by downward continuation of elastic vector wavefields with a visco-elastic wave
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equation. The wavefield separation is effectively done with elastic Kirchhoff integration,
which handles both P and S waves. However, Kirchhoff migration does not perform well in
areas of complex geology where ray theory breaks down (Gray et al., 2001), thus requiring

migration with more accurate methods, such as reverse time migration.

One of the complexities that impedes anisotropic migration using elastic wave equa-
tion is the difficulty to separate anisotropic wavefields into different wave modes after recon-
structing the elastic wavefields. However, the proper separation of anisotropic wave modes is
as important for anisotropic elastic migration as is the separation of isotropic wave modes for
isotropic elastic migration. The main difference between anisotropic and isotropic wavefield
separation is that Helmholtz decomposition is only suitable for the separation of isotropic

wavefields.

In this chapter, I show how to construct wavefield separators for VTI (transverse
isotropic with a vertical symmetry axis) media applicable to models with spatially varying
parameters. I apply these operators to anisotropic elastic wavefields and show that they

successfully separate anisotropic wave modes, even for media with strong anisotropy.

The main application of this technique is to elastic reverse time migration. In this
case, complete wavefields containing both P and S wave modes are reconstructed from
recorded data. The reconstructed wavefields are separated into pure wave modes prior to
the application of a conventional crosscorrelation imaging condition. I limit the scope of
this chapter only to the wave-mode separation procedure in highly heterogeneous media,

although the ultimate goal of this procedure is to aid elastic RTM.

3.3 Separation method

Separation of scalar and vector potentials can be achieved by Helmholtz decomposition,
which is applicable to any vector field W(z,y, z). By definition, the vector wavefield W

can be decomposed into a curl-free scalar potential © and a divergence-free vector potential




38 Chapter 3. Elastic wavefield sépa.ration for VTI media

¥ according to the relation (Aki & Richards, 2002):
W=VO+VxW. (3.1)

Equation 3.1 is not used directly in practice, but the scalar and vector components are ob-
tained indirectly by the application of the divergence and curl operators to the extrapolated

elastic wavefield:

P = V-W, (3.2)

= VxW. (3.3)

For isotropic elastic fields far from the source, quantities P and S describe compressional

and shear wave modes, respectively (Aki & Richards, 2002).

Equations 3.2 and 3.3 allow one to understand why divergence and curl pass compres-
sional and transverse wave modes, respectively. In the discretized space domain, one can
write:

P =V-W = D[W,] + D,[W,] + D,[W,], (3.4)

where D, Dy, and D, represent spatial derivatives in the z, y, and z directions, respectively.
Applying derivatives in the space domain is equivalent to applying finite difference filtering
to the functions. Here, D [-] represents spatial filtering of the wavefield with finite difference
operators. In the Fourier domain, one can represent the operators D, Dy, and D, by iky,
i ky, and i k,, respectively; therefore, one can write an equivalent expression to equation 3.4

as:
P=ik - W =ik, Wy +ik, W, +ik, W,, (3.5)

where k = {k;,ky, k.} represents the wave vector, and W(km, ky,k.) is the 3D Fourier
transform of the wavefield W (z, y, z). We see that in this domain, the operator i k essentially
projects the wavefield W onto the wave vector k, which represents the polarization direction

for P waves. Similarly, the curl operator projects the wavefield onto the direction orthogonal



Jia Yuan / Wave-mode separation for elastic imaging in TI media 39

1 B 1; . N
POANAA AL FAAAAALL LT :
M/\AA/\,\,\,LL.L.LL‘LCZL: MAAAA,L.L.L.L.L.L.&:Z: :
AAAAAAALL UL L L LJ-J\/\/\/\,\,LL.L.L.LL{_é .
AAAAAAN L L L L L LS AW NNV I

0.5 AA I YY L L L L L 05‘JJ‘J\/\/V\1\.LLLLL<(VY- .

-L\/\/\/\/VV\/\,\,LL(<<< B S A B B OV VRV VSR ) v )
Ls/\f\/\/\/\lvvuL << Jddddgv v v (rrrrr
L.}JJ\/\/\/VV“L?(<<<(((( .J.J.J.!.J.:.:q»,.g((rrrrrr:
.J.J.JJJ.I.I«-.(:::‘{[(-(VV J O O I I IR ::;;grrr:
O—J.J.J—]JJJ ..... rr Cre O.L_’.J.J.J.)J ..... [ ol o cre
B D D D A S N B B D D I I 0 0 B
AJJ)))))W-'-\A:,’:I/:;PPPJ OJJ-J-JJ—‘—‘)“I'!-\AI‘::::E:I‘:‘_.F,
))))})))7‘|—\t\/\/\/\/\//:gr.l JJJJJ)))”'“""/‘I‘I‘["JCF!

>>>)77'|~\r\/\/\/\/\/\/\.//::/l JJJJ)}>7~,-,.‘,\,\/\PPPPFJ

-0.5}. 2777700 A AAAASNYY -0.5} -3-3))>77‘|'|'\’\4A/\/\/\r‘m

SRR AL S22 2 AR
é?‘?ﬁﬁﬁ'\ﬂf\fvwvw ;‘7‘7’7'1‘1'1'1’\'\/\/\/\/\1\;‘

1 LI INNNK, 1 LTI

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

(a) (b)

Figure 3.1. P and S polarization vectors as a function of normalized wavenumbers k,
and k, ranging from —1 to +1 cycles, for (a) an isotropic model with Vp = 3 km/s and
Vs = 1.5 km/s, and (b) an anisotropic (VTI) model with Vpy = 3 km/s, Vo = 1.5 km/s,
€ = 0.25, and § = —0.29. The P-wave polarization vectors point radially (exactly for the
isotropic medium and roughly for the VTI medium), and the SV-wave polarization vectors
are orthogonal to the P-vectors for a given wave vector k.

to the wave vector k, which represents the polarization direction for S waves (Dellinger &
Etgen, 1990). For illustration, Figure 3.1(a) shows the polarization vectors of the P mode of
a 2D isotropic model as a function of normalized k, and k, ranging from —1 to 1 cycles. The
polarization vectors are radial because the P waves in an isotropic medium are polarized in
the same directions as the wave vectors.

Dellinger & Etgen (1990) suggest to extend wave mode separation to anisotropic media
by projecting the wavefields onto the directions in which the P and S modes are polarized.
This requires modification of the wave-separation equation 3.5 by projecting the wavefields

onto the true polarization directions U to obtain P-waves:

z .

P=iUK) - W =iU Wy +iU, Wy +iU, W, (3.6)

In anisotropic media, U(ky, ky, k) is different from k, as illustrated in Figure 3.1(b), which
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shows the polarization vectors of P wave mode for a 2D VTI anisotropic model with nor-
malized k; and k, ranging from —1 to 1 cycles. Polarization vectors are not radial because
P waves in an anisotropic medium are not polarized in the same directions as wave vectors,

except in the isotropy plane (k, = 0) and along the symmetry axis (k, = 0).

Dellinger & Etgen (1990) demonstrate wave mode separation in the wavenumber do-
main using projection of the polarization vectors, as indicated in equation 3.6. However, for
heterogeneous media, this equation breaks down because the polarization vectors are spa-
tially varying. One can write an expression equivalent to equation 3.6 in the space domain

for each grid point as:

where Lz, Ly, and L, represent the inverse Fourier transforms of iUy, iUy, and iU,
respectively. L[] represents spatial filtering of the wavefield with anisotropic separators.
Ly, Ly, and L, define the pseudo derivative operators in the z, y, and z directions for an
anisotropic medium, respectively, and they change from location to location according to

the material parameters.

We obtain the polarization vectors U(k) by solving the Christoffel equation (Aki &
Richards, 2002; Tsvankin, 2005):

[G-pVI]U=0, (3.8)

where G is the Christoffel matrix Gi; = cjjun n;, in which ¢ is the stiffness tensor,
n; and n; are the unit wave vector components in the j and ! directions, and i,j,k,l =
1,2,3. The parameter V corresponds to the eigenvalues of the matrix G. The eigenvalues
V represent the phase velocities of different wave modes and are functions of the wave vector

k (corresponding to n; and n; in the matrix G). For plane waves propagating in vertical
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symmetry planes of a VTI medium, one can set ky to 0 to get

c11k2 + csskZ — pV? 0 (c13 + c55) kzk U,
0 066"72 + 655k§ — pV? 0 Uy| = 0. (3.9)
(013 + 055) kyk, 0 C55k§ + C33k§ - pV2 U,

The middle row of this matrix characterizes the SH wave polarized in the y direction, and
P and SV modes are uncoupled from the SH mode and are polarized in the vertical plane.
The top and bottom rows of this equation allow one to compute the polarization vector
U = {U,, U,}(the eigenvectors of the matrix G) of P- or SV- waves given the stiffness tensor

at every location of the medium.

One can extend the procedure described here to heterogeneous media by computing
two different operator for each mode at every grid point. In vertical symmetry planes of
VTI media, the operators are 2D and depend on the local values of the stiffness coefficients.
For each point, I pre-compute the polarization vectors as a function of the local medium
parameters, and transform them to the space domain to obtain the wave mode separators.
I assume that the medium parameters vary smoothly (locally homogeneous), but even for
complex media, the localized operators work in the same way as the long finite difference
operators. If one represents the stiffness coefficients using Thomsen parameters (Thomsen,
1986), then the pseudo-derivative operators L, and L, depend on ¢, é, Vpg and Vgo, which
can be spatially varying. One can compute and store the operators for all grid points in
the medium, and then use these operators to separate P and S modes from reconstructed
elastic wavefields at different time steps. Thus, wavefield separation in VTI media can be

achieved simply by non-stationary filtering with the operators L, and L.

3.4 Operator properties

In this section, I discuss the properties of the anisotropic “derivative” operators, in-

cluding order of accuracy, size, and compactness.
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3.4.1 Operator orders

As shown in the previous section, the isotropic separation operators (divergence and
curl) in equations 3.4 and 3.5 are exact in the « and k domains. The exact derivative oper-
ators are infinitely long series in the discretized space domain. In practice, when evaluating
the derivatives numerically, one needs to take some approximations to make the operators
short and computationally efficient. Usually, difference operators are evaluated at different
orders of accuracy. The higher order the approximation is, the more accurate and longer
the operator becomes. For example, the 274 order operator has coefficients (—%, +%), and

4% order operator has coefficients (+1—12, —%, %, —1—12) (Fornberg & Ghrist,

the more accurate
1999).

In the wavenumber domain, for isotropic media, as shown by the black line in Fig-
ure 3.2(b), the exact difference operator is ik. Appendix A shows the k¥ domain equivalents
of the 27, 4tk 6% and 8™ order finite difference operators, and they are plotted in Fig-
ure 3.2(b). The higher order operators have responses closer to the exact operator ik (black
line). To obtain vertical and horizontal derivatives of different orders of accuracy, I weight
the polarization vector ik components ik; and ik, by the weights shown in Figure 3.2(c).
For VTI media, similarly, I weight the anisotropic polarization vector iU(k) components

iU, and iU, by these same weights. The weighted vectors are then transformed back to

space domain to obtain the anisotropic stencils.

3.4.2 Operator size and compactness

Figure 3.3 shows the derivative operators of 274, 4t 6t and 8t orders in the z and z
directions for isotropic and VTI (e=0.25, 6=-0.29) media. As we can see, isotropic operators
become longer when the order of accuracy is higher. Anisotropic operators, however, do not
change much in size. One can see that the central parts of the anisotropic operators look
similar to their corresponding isotropic operators and change with the order of accuracy;

while the outer parts of these anisotropic operators all look similar, and do not change
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Figure 3.2. Comparison of derivative operators of different orders of accuracy (2"¢, 4th
6", and 8" orders in space, as well as the approximation applied in Dellinger & Etgen
(1990)—cosine taper) in both (a) the z domain and (b) the k domain. (c) Weights to apply

to the components of the polarization vectors.
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Ly

(8) (h)

Figure 3.3. 2", 4** 6" and 8 order derivative operators for an isotropic medium (Vp =
3 km/s and Vg = 1.5 km/s) and a VTI medium (Vpg = 3 km/s, Vo = 1.5 km/s, € = 0.25,
and 0 = —0.29). The left column includes isotropic operators, and the right column includes
anisotropic operators. From top to bottom are operators with increasing orders of accuracy.
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much with the order of accuracy. This indicates that the central parts of the operators are
determined by the order of accuracy, while the outer parts are representation of the degree
of anisotropy.

Figure 3.4 shows anisotropic derivative operators with same order of accuracy (8”‘
order in space) for three VTI media with different combinations of € and d. These operators
have similar central parts, but different outer parts. This result is consistent with the

previous observation that the central part of an operator is determined by the order of

accuracy, and the outer part is controlled by the anisotropy parameters.

Figure 3.5(a) shows the influence of approximation to finite difference (2" and gth
order, Figures 3.3(h) and (b)). The “anisotropic” part (“diagonal tails”) is almost the
same, and the difference comes from the central part. Figure 3.5(b) shows the difference
between operators with different anisotropy (Figures 3.4(a) and (b)). The difference mainly

lies in the “tails” of the operators.

Comparison between Figures 3.4(a) and (b) shows that when one a has large difference
between € and &, the operator is big in size and when the difference of € and ¢ stays the
same, the parameter § affects the operator size. A comparison between Figures 3.4(b) and
(c) shows that when the difference between € and d becomes smaller and 6 does not change,
the operator get smaller in size. This result is consistent with the polarization equation for

VTI media with weak anisotropy (Tsvankin, 2005):
vp =0+ B[§+2(e—5)sin’ 6] sin 26, (3.10)

where
1 1
2f  2(1-Vg/Vhy)

Vpo and Vgg are P- and S-wave velocities along the symmetry axis, respectively, 6 is the

B

phase angle, and v, is the P wave polarization angle. This equation demonstrates the
deviation of anisotropic polarization vectors from the isotropic ones: the difference of € and

§ (which is close to n for weak anisotropy) and the parameter § control the deviation of vp
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from @ and, therefore, the size of the anisotropic derivative operators.

3.4.3 Operator truncation

The derivative operators for isotropic and anisotropic media are very different in both
shape and size , and the operators vary with the strength of anisotropy. In theory, analytic
isotropic derivatives are point operators in the continuous limit. If one can do perfect
Fourier transform to ik, and ik, (without doing the approximations to different orders of
accuracy as one does in Figure 3.2), one gets point derivative operators. This is because ik,
is constant in the z direction (see Figure 3.6(a)), whose Fourier transform is delta function;
the exact expression of ik; in the & domain also makes the operator point in the z direction.
This makes the isotropic derivative operators point operators in the r and z direction. And

when one applies approximations to the operators, they are compact in the space domain.

However, even if one does perfect Fourier transformation to iU, and iU, (without doing
the approximations for different orders of accuracy) for VTI media, the operators will not
be point operators because iU, and iU, are not constants in z and z directions, respectively
(see Figure 3.6(b)). The xz domain operators spread out in all directions (Figures 3.3(b),
(d), (£), and (h)).

This effect is illustrated by Figure 3.3. When the order of accuracy decreases, the
isotropic operators become more compact (shorter in space), while the anisotropic opera-
tors do not get more compact. No matter how one improves the compactness of isotropic
operators, one does not get compact anisotropic operators in the space domain by the same

means.

Because the size of the anisotropic derivative operators is usually large, it is natural
that one would truncate the operators to save computation. Figure 3.7 shows a snapshot of
an elastic wavefield and corresponding derivative operators for a VTI medium with ¢ = 0.25
and § = —0.29. Figure 3.8 shows the attempt of separation using truncated operator size of

(a) 11x 11, (b) 31 x 31 and (c) 51 x 51 out of the full operator size 65 x 65. Figure 3.8 shows
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(b)

L, Ly
(©)

Figure 3.4. 8" order anisotropic pseudo derivative operators for three VTI media: a)
€=0.25, 6=-0.29, b) €=0.54, 6=0, and c¢) ¢=0.2, §=0.
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Ly

(b)

Figure 3.5. (a) Difference between the 8¢" and 2" order operators (Figures 3.3(h) and (b)) in
the z and x directions for a VTI medium with anisotropy €¢=0.25, §=-0.29. (b) The difference
between the 8" order anisotropic operators for a VTI medium with anisotropy e=0.25, é=-
0.29 (Figure 3.4(a)) and a VTI medium with anisotropy €=0.54, §=0 (Figure 3.4(b)).
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(b)

Figure 3.6. (a) Isotropic and (b) VTI (e = 0.25, § = —0.29) polarization vectors (Figure 3.2)
projected on to the z (left column) and z directions (right column). The isotropic polariza-
tion vectors components in the z and z directions depend only on k, and k., respectively.

In contrast, the anisotropic polarization vectors components are functions of both k; and
k..
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that the truncation causes the wave-modes incompletely separated. This is because the
truncation changes the directions of the polarization vectors, thus projecting the wavefield
displacements onto wrong directions. Figure 3.9 presents the P-wave polarization vectors
before and after the truncation. For a truncated operator size of 11 x 11, the polarization
vectors deviate from the correct ones to a maximum of 10°, but even this difference makes

the separation incomplete.

3.5 Examples

I illustrate the anisotropic wave mode separation with a simple synthetic example and

a more challenging elastic Sigsbee 2A model (Paffenholz et al., 2002).
3.5.1 Simple model

I consider a 2D isotropic model characterized by the Vp, Vg, and density shown in
Figures 3.10(a)—(c). The model contains negative P and S velocity anomalies that cause
triplications on the wavefronts. The source is located at the center of the model. Fig-
ure 3.11(a) shows the vertical and horizontal components of one snapshot of the simulated
elastic wavefield (generated using the 8" order finite difference solution of the elastic wave
equation), Figure 3.11(b) shows the separation to P and S modes using divergence and curl
operators, and Figure 3.11(c) shows the mode separation obtained using the pseudo oper-
ators which are dependent on the medium parameters. A comparison of Figures 3.11(b)
and (c) indicates that the divergence and curl operators and the pseudo operators work
identically well for this isotropic medium.

I then consider a 2D anisotropic model similar to the previous model shown in Fig-
ures 3.10(a)—(c) (with Vp and Vs representing the vertical P and S wave velocities), and
additionally characterized by the parameters ¢ and d shown in Figures 3.10(d) and (e),
respectively. The parameters € and § vary gradually from top to bottom and left to right,
respectively. The upper left part of the medium is isotropic and the lower right part is

strongly anisotropic. Since the difference between ¢ and § at the bottom part of the model
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Figure 3.7. (a) A snapshot of an elastic wavefield showing the vertical (left) and horizontal
(right) components for a VTI medium (¢ = 0.25 and § = —0.29). (b) 8th order anisotropic
pseudo derivative operators in z (left) and z (right) direction for this VIT medium. The
boxes show the truncation of the operator to sizes of 11 x 11, 31 x 31, and 51 x 51.
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Figure 3.8. Separation by 8 order anisotropic pseudo derivative operators of different
sizes: (a) 11 x 11, (b) 31 x 31, (c) 51 x 51, shown in Figure 3.7(b). The plot shows the
larger the size of the operators, the better the separation is.
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Figure 3.9. Deviation of polarization vectors by truncating the size of the space-domain
operator to (a) 11 x 11, (b) 31 x 31, (c) 51 x 51 out of 65 x 65. The left column shows
polarization vectors from —1 to +1 cycles in both z and z directions, and the right column
zooms to 0.3 to 0.7 cycles. The solid vectors are the exact polarization vectors, and the
dashed ones are the effective polarization vectors after truncation of the operator in the z

domain.
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is large, the S waves in this region are severely triplicated due to this strong anisotropy.

Figure 3.12 illustrates the pseudo derivative operators obtained at different locations
in the model defined by the intersections of z coordinates 0.3, 0.6, 0.9 km and z coordinates
0.3, 0.6, 0.9 km. Since the operators correspond to different combination of the parameters
€ and 4, they have different forms. The isotropic operator at coordinates z = 0.3 km
and z = 0.3 km, shown in Figure 3.12(a), is purely vertical and horizontal, while the
anisotropic operators (Figure 3.12(b) to (i)) have “tails” radiating from the center. The
operators become larger at locations where the medium is more anisotropic, for example,
at coordinates z = 0.9 km and z = 0.9 km.

Figure 3.13(a) shows the vertical and horizontal components of one snapshot of the sim-
ulated elastic anisotropic wavefield, Figure 3.13(b) shows the separation to P and S modes
using conventional isotropic divergence and curl operators, and Figure 3.13(c) shows the
mode separation obtained using the pseudo operators constructed using the local medium
parameters. A comparison of Figure 3.13(b) and 3.13(c) indicates that the spatially-varying
derivative operators successfully separate the elastic wavefields into P and S modes, while

the divergence and curl operators only work in the isotropic region of the model.

3.5.2 Sigsbee model

The second model (Figure 3.14) uses an elastic anisotropic version of the Sigsbee 2A
model (Paffenholz et al., 2002). In the modified model, Vpg is taken from the original
model, the Vpg/Vso ratio ranges from 1.5 to 2, the parameter € ranges from 0 to 0.48
(Figure 3.14(d)) and the parameter & ranges 0 from to 0.10 (Figure 3.14(e)). The model is
isotropic in the salt and the top part of the model. A vertical point force source is located
at coordinates z = 14.5 km and z = 5.3 km to simulate the elastic anisotropic wavefield.

Figure 3.15 shows one snapshot of the simulated elastic anisotropic wavefields using the
model shown in Figure 3.14. Figure 3.16 illustrates the separation of the anisotropic elastic

wavefields using the divergence and curl operators, and Figure 3.17 illustrates the separation
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Figure 3.10. 1.2 kmx 1.2 km model with parameters (a) Vyo = 3 km/s except for a low
velocity Gaussian anomaly around z = 0.65 km and z = 0.65 km, (b) Vso = 1.5 km/s
except for a low velocity Gaussian anomaly around z = 0.65 km and z = 0.65 km, (c)
p = 1.0 g/cm3 in the top layer and 2.0 g/cm? in the bottom layer, (d) e smoothly varying
from O to 0.25 from top to bottom, (e) § smoothly varying from 0 to —0.29 from left to
right. A vertical point force source is located at x = 0.6 km and z = 0.6 km shown by the
dot in panels (b), (c), (d), and (e). The dots in panel (a) correspond to the locations of the
anisotropic operators shown in Figure 3.12 .
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Figure 3.11. (a) One snapshot of the isotropic wavefield modeled with a vertical point force
source at £=0.6 km and 2=0.6 km for the model shown in Figure 3.10, (b) isotropic P and S
wave modes separated using divergence and curl operators, and (c) isotropic P and S wave
modes separated using pseudo derivative operators. Both (b) and (c) show good separation
results.
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Figure 3.12. 8% order anisotropic pseudo derivative operators in the z and z directions
at the intersections of =0.3, 0.6, 0.9 km and 2=0.3, 0.6, 0.9 km for the model shown in
Figure 3.10.
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Figure 3.13. (a) One snapshot of the anisotropic wavefield modeled with a vertical point
force source at £=0.6 km and 2=0.6 km for the model shown in Figure 3.10, (b) anisotropic
P and S modes separated using divergence and curl operators, and (c) anisotropic P and
S modes separated using pseudo derivative operators. The separation of wavefields into
P and S modes in (b) is not complete, which is obvious at places such as at coordinates
z = 0.4 km z = 0.9 km. In contrast, the separation in (c) is much better, because the
correct anisotropic derivative operators are used..
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using my pseudo derivative operators. Figure 3.16 shows the residual of unseparated P and
S wave modes, such as at coordinates £ = 13 km and z = 7 km in the P panel and at
2 = 11 km and z = 7 km in the S panel. The residual of S waves in the P panel of
Figure 3.16 is very significant because of strong reflections from the salt bottom. This
extensive residual can be harmful to under-salt elastic or even acoustic migration, if not
removed completely. In contrast, Figure 3.17 shows the P and S modes better separated,
demonstrating the effectiveness of the anisotropic pseudo derivative operators constructed
using the local medium parameters. These wavefields composed of well separated P and S
modes are essential for producing clean seismic images.

In order to test the separation with spatially invariant anisotropy in the model, I
show in Figure 3.18 the separation with ¢ = 0.3 and 6 = 0.1 in the k domain. This
separation assumes a model with homogeneous anisotropy. The separation shows that there
is still residual in the separated panels. Although the residual is much weaker compared
to separating using an isotropic model, it is still visible at locations such as at coordinates
£ =13 km and z = 7 km, and z = 13 km and z = 4 km in the P panel and at z = 16 km
and z = 2.5 km in the S panel.

3.6 Discussion

The separation of P and S wave-modes is based on the projection of elastic wavefields
onto their respective polarization vectors. For VTI media, P and S mode polarization
vectors can be conveniently obtained by solving the Christoffel equation. The Christoffel
equation is a plane-wave solution to the elastic wave equation. Since the displacements,
velocity and acceleration field have the same form of elastic wave equation, the separation
algorithm applies to all these wavefields. The P and SV mode separation can be extended
to TTI (transverse isotropic with a tilted symmetry axis) media by solving a TTI Christoffel
matrix, and obtain TTI separators. Physically, the TTI media is just a rotation of VTI

media. This extension will be presented in Chapter 4.
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Figure 3.14. Sigsbee 2A model in which (a) is the P wave velocity (taken from the original
Sigsbee 2A model (Paffenholz et al., 2002) ), (b) is the S wave velocity, where Vpo/Vso ratio
ranges from 1.5 to 2.0, (c) is the density ranging from 1.0 g/cm?® to 2.2 g/cm3, (d) is the
parameter € ranging from 0.20 to 0.48, and (e) is the parameter § ranging from 0 to 0.10 in
the rest of the model.

Figure 3.15. Anisotropic wavefield modeled with a vertical point force source at
z = 14.3 km and z = 5.3 km for the model shown in Figure 3.14.
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Figure 3.16. Anisotropic P and S modes separated using divergence and curl operators
for the vertical and horizontal components of the elastic wavefields shown in Figure 3.15.
Residuals are obvious at places such as at coordinates x = 13 km and z = 7 km in the P
panel and at £ = 11 km and z = 7 km in the S panel.
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Figure 3.17. Anisotropic P and S modes separated using pseudo derivative operators for
the vertical and horizontal components of the elastic wavefields shown in Figure 3.15. They
show better separation of P and S modes.
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x(km)

Figure 3.18. Anisotropic P and S modes separated in the & domain for the vertical and
horizontal components of the elastic wavefields shown in Figure 3.15. The separation as-
sumes € = 0.3 and § = 0.1 throughout the model. The separation is incomplete. Residuals
are still visible at places such at coordinates z = 13 km and z = 7 km, and z = 13 km and
z =4 km in the P panel and at £ = 16 km and z = 2.5 km in the S panel.

Suppose that in a 2D seismic survey for an area characterized by VTI anisotropy, the
survey line is along the dip of the structure. In this vertical symmetry plane of the VTI
media, SV and SH waves are uncoupled most of the time, where SH wave is polarized out
of plane. One only needs to decompose P and SV modes in the vertical plane. The plane
wave solution is sufficient for most TI media, except for a special case where there exists
a singularity point at an oblique propagation angle in the vertical plane (a line singularity
in 3D), at which angle SV and SH wave velocities coincide. At this point, the SV wave
polarization is not uniquely defined by Christoffel equation. S waves at the singularity are
polarized in a plane orthogonal to the P wave polarization vector. However, this is not a
problem since we define SV waves polarized in vertical planes only, therefore I remove the
singularity by using the cylindrical coordinates. The situation is more complicated in S-wave
coupling in orthorhombic media, where there is at least one singularity per quadrant. As
pointed out by Dellinger & Etgen (1990), the singularity in orthorhombic media is a global

property of the media and cannot be removed, therefore the separation using polarization
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vectors in 3D orthorhombic media is not straightforward.

The anisotropic derivative operators depend on the medium parameters. In Fig-
ure 3.19, I show how sensitive the separation is to the medium parameters. One elastic
wavefield snapshot is shown in Figure 3.7(a) for a VTI medium with Vpg/Vgo = 2 and
e =025 6 = —0.29. I try to separate the P and SV modes with (a) € = 0.4, § = —0.1,
(b) e =0, = —0.3 and (c) € = 0, § = 0 . The results shows that parameters (a) help
achieve good separation, showing that the accuracy in € and ¢ is important. The worst-case

scenario is shown by parameters (c), where isotropy is assumed for this VTI medium.

3.7 Conclusions

I present a method for obtaining spatially-varying pseudo-derivative operators with
application to wave mode separation in anisotropic media. The main idea is to utilize
polarization vectors constructed in the wavenumber domain using the local medium param-
eters and then transform these vectors back to the space domain. The main advantage of
applying the pseudo derivative operators in the space domain constructed in this way is that
they are suitable for heterogeneous media. The wave-mode separators obtained using this
method are spatially-variable filtering operators, which can be used to separate wavefields
in VTT media with arbitrary strength of anisotropy. This methodology is applicable for

elastic RTM in heterogeneous anisotropic media.
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Figure 3.19. P and SV wave mode separation for a snapshot shown in Figure 3.7(a).
The true medium parameters are ¢ = 0.25, § = —0.29. The separation assumes medium
parameters of (a)e = 0.4, § = —0.1, (b) e =0, § = —0.3, and (c)e = 0, § = 0. Hard clipping
was applied to show the weak events. The plot shows that different estimate of anisotropy
parameters has influence on the the wave mode separation.
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Chapter 4

Elastic wave-mode separation for TTI media

4.1 Summary

Seismic imaging in areas characterized by complex geology requires techniques based
on accurate reconstruction of the seismic wavefields. A crucial component of the methods in
this category, collectively known as wave-equation migration, is the imaging condition which
extracts information about the discontinuities of physical properties from the reconstructed
wavefields at every location in space. Conventional acoustic migration techniques image
a scalar wavefield representing P waves, in contrast to elastic migration techniques, which
image a vector wavefield representing both the P- and S-waves. For elastic imaging, it is
desirable that the reconstructed vector fields are decomposed into pure wave-modes, such
that the imaging condition produces interpretable images, characterizing, for example, PP or
PS reflectivity. In Chapter 3, I show that, in symmetry planes of VTI (transversely isotropic
with a vertical symmetry axis) media, wave-mode separation can be achieved by projection
of the reconstructed vector fields on the polarization vectors characterizing various wave
modes. For heterogeneous media, the polarization directions change with position, therefore
wave-mode separation needs to be implemented using space-domain filters. For transversely
isotropic media with a tilted symmetry axis (T'TI), the polarization vectors depend on the
elastic material parameters, including the tilt angle. Using these parameters, I separate the
wave-modes by constructing nine filters corresponding to the nine Cartesian components of
the three polarization directions at every grid point. Since the S polarization vectors in TI
media are not defined in the singular directions, e.g. along the symmetry axis, I construct

these vectors by exploiting the orthogonality between the SV and SH polarization vectors,
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as well as their orthogonality to the P polarization vector. This procedure allows one to
separate all three modes, with better preserved P-wave amplitudes than S-wave amplitudes.
Realistic synthetic examples show that this wave-mode separation is effective for both 2D

and 3D models with strong heterogeneity and anisotropy.

4.2 Introduction

Acoustic migration is currently the most common procedure for seismic imaging; imag-
ing with multicomponent data has been recognized to benefit lithology discrimination, pa-
rameter estimation, and reservoir characterization (Stewart et al., 2003b). In Chapter 2, I
investigate elastic imaging by using pure modes, which requires a mode-separation before
application of an imaging condition. Chapter 3 illustrates P- and SV-wave mode separation
in the symmetry planes of VTI media. The mode separation in heterogeneous VTI media is
implemented as non-stationary filtering the wavefields with spatially varying separators in
the space domain. Synthetic examples indicate that separation is effective even for complex
geology with high heterogeneity.

However, VTI models are suitable only for limited geological settings with horizontal
layering. Many case studies have shown that TTI (transversely isotropic with a tilted sym-
metry axis) models better represent complex geologies like thrusts and fold belts, e.g., the
Canadian Foothills (Godfrey, 1991). Using the VTI assumption to image structures char-
acterized by TTI anisotropy introduces both kinematic and dynamical errors in migrated
images. For example, Vestrum et al. (1999), Isaac & Lawyer (1999), and Behera & Tsvankin
(2009) show that seismic structures can be mispositioned if isotropy, or even VTI, is assumed
when the medium above the imaging targets is TTIL To carry out elastic wave-equation mi-
gration for TTI models and apply the imaging condition that crosscorrelates the separated
wave-modes, the wave-mode separation algorithm needs to be adapted to TTI media. For
sedimentary layers bent under geological forces, T'TI migration models usually incorporate

locally varying tilts, and for simplicity, the local symmetry axes are usually assumed to be
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orthogonal to the reflectors throughout the model (Charles et al., 2008; Alkhalifah & Sava,
2010). Therefore, in complex TI models, both the local anisotropy parameters € and ¢, and
the local symmetry axes with tilt ¥ and azimuth o can be space-dependent.

Wave-mode separation technique by projecting the vector wavefields onto polarization
vectors has been applied only to P- and SV-mode separation for 2D wavefields (Dellinger,
1991) and to P-mode separation for 3D wavefields (Dellinger, 1991) in homogeneous VTI
media. In Chapter 3, I extend P- and SV-mode separation to heterogeneous VTI media.
For 3D models, the main challenge resides in the fact that fast and slow shear modes have
complicated polarizations around symmetry-axis propagation directions. It is possible to
apply the 2D separation method to 3D TTI models using the following procedure. First,
project the elastic wavefields onto symmetry-axis planes (which contains P- and SV-modes)
and isotropy plane (which contain the SH-mode only); then separate P- and SV-modes in
the symmetry-axis planes using divergence and curl operators for isotropic media or polar-
ization vector projection for TI media. However, this approach is difficult in practice as
wavefields are usually constructed in Cartesian coordinates and symmetry-axis planes of
the models are not aligned with the Cartesian coordinates. Furthermore, for heterogeneous
models, the symmetry-axis planes change spatially, which makes projection of wavefields
onto symmetry-axis planes impossible. To avoid these problems, I propose a simpler and
more straightforward solution to separate wave-modes with 3D operators, which eliminates
the need for projecting the wavefields onto symmetry-axis planes. The new approach con-
structs shear-wave filters by exploiting the mutual orthogonality of shear modes with the P
mode, whose polarization vectors are computed by solving 3D Christoffel equations.

In this chapter, I extend mode separation to symmetry-axis planes of TTI media and
generalize the algorithm to 3D TI media. Then, I demonstrate wave-mode separation in
2D with examples for homogeneous and heterogeneous media and separation in 3D with an

example for homogeneous TTI media.
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4.3 Wave-mode separation for 2D TI media

In Chapter 3, I show mode separation for symmetry-axis planes of VTI media. The
separation algorithm for TTI models is similar to the approach used for VTI models. The
main difference is that for VTI media, the wavefields consist of P- and SV-modes, and
equations 3.6 and 3.7 can be used for separation in all vertical planes of a VTI medium.
However, for TTI media, this separation only works in the plane containing the normal
to the reflector, where P- and SV-waves are polarized, while other vertical planes contain
SH-waves as well. Note that the “SH-wave” is a term which is originally used in isotropic
media to refer to a shear-wave polarized horizontally and perpendicular to the 2D reflection
plane, in which P-wave is polarized. I use the term “SH-wave” in TI media as a shear-mode
that is polarized perpendicular to the symmetry-axis plane. The SH-wave in TI media is
not necessarily horizontal (Figure 4.6).

To obtain the polarization vectors for P and S modes in the symmetry planes of T'TI

media, one needs to solve for the Christoffel equation 3.8 with

Gn = cund+2c5ngn, + cssn?, (4.1)
Gi2 = cisnk+ (c13 + cs5) g, + casn?, (4.2)
Gy = 055113 + 2c35ngn, + C33n§ . (4.3)

Here, since the symmetry axis of the TTI medium is not aligned with the vertical axis
k-, the TTI Christoffel matrix is different from its VTI equivalent. The stiffness tensor is
determined by the parameters Vpg, Vgg , €, 8, and the tilt angle v.

In anisotropic media, Up generally deviates from the wave vector direction k = #n,
where w is the angular frequency, V' is the phase vector. Figures 4.5(a) and (b) show the
P-mode polarization in the wavenumber domain for a VTI medium and a TTI medium with
a 30° tilt angle, respectively. The polarization vectors for the VTI medium deviate from

radial directions, which represent the isotropic polarization vectors k. The polarization
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vectors of the TTI medium are rotated 30° about the origin from the vectors of the VTI
medium.

Figures 4.1(a) and (b) show the components of the P-wave polarization vectors for a
VTI medium and a TTI medium with a 30° tilt angle, respectively. Figure 4.1(c) shows that
the polarization vectors in Figure 4.1(b) rotated to the symmetry axis and its orthogonal
direction of the TTI medium. Comparing Figures 4.1(a) and (c), we see that within the
circle that has a radius of 7 radians, the components of this TTI medium are rotated
30° from those of the VTI medium. However, note that the z and  components of the
polarization vectors for the VTI medium (Figure 4.1(a)) are symmetric with respect to the
z and z axes, respectively; in contrast, the vectors of the TTI medium (Figure 4.1(c)) are
not symmetric because the the TTI symmetry axis is not aligned with the z-axis of the
Cartesian system.

To maintain continuity at the negative and positive Nyquist wavenumbers for Fourier
transform to obtain space-domain filters, i.e. at k;,k, = +w radians, one needs to apply
tapers to the vector components. For VTI media, a taper corresponding to the function (Ap-

pendix A)
_ 8sin (k) N 2sin (2k)  8sin (3k) N sin (4k)

fk) = ——¢ 5k 105k 140k (4.4)

can be applied to the z and z components of the polarization vectors (Figure 4.1(a)), where
k represent the components k, and k, of the vector k. This taper ensures that U, and U,
are zero at k, = +x radians and k; = +x radians, respectively. The components U, and
U, are continuous in the 2z and z directions across the Nyquist wave numbers, respectively,
due to the symmetry of the VTI media. Moreover, the application of this taper transforms
polarization vector components to 8" order derivatives. If the components of the isotropic
polarization vectors k are tapered by the function in equation 4.4 and then transformed
to the space domain, one obtains the conventional 8! order finite difference derivative
operators 3% and ;% (Appendix A). Therefore, the VTI separators reduce to conventional

derivatives—the components of the divergence and curl operators—when the medium is
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Figure 4.1. Z and z components of the polarization vectors for P-mode in the Fourier
domain for (a) a VTT medium with € = 0.25 and § = —0.29, and for (b) a T'TI medium with
€ = 0.25, 6 = —0.29, and v = 30°. Panel (c) represents the projection of the polarization
vectors shown in (b) onto the tilt axis and its orthogonal direction.
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Figure 4.2. Wavenumber-domain vectors in Figure 4.1 are tapered by the function in equa-
tion 4.5 to avoid Nyquist discontinuity. Panel (a) corresponds to Figure 4.1(a), panel (b)
corresponds to Figure 4.1(b), and panel (c) corresponds to Figure 4.1(c).
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Figure 4.3. Space-domain wave-mode separators for the medium shown in Figure 4.5.
They are the Fourier transformation of the polarization vectors shown in Figure 4.2. Panel
(a) corresponds to Figure 4.2(a), panel (b) corresponds to Figure 4.2(b), and panel (c)

corresponds to Figure 4.2(c). The zoomed views show 24 x 24 samples out of the original
64 x 64 samples around the center of the filters.
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Figure 4.4. Panels (a)—(c) correspond to component U, (left) and operator L, (right) for
o values of 0.25, 1.00, and 1.25 radians in equation 4.5, respectively. A larger value of
o results in more spread components in the wavenumber domain and more concentrated
operators in the space domain.
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isotropic.
For TTI media, due to the asymmetry of the Fourier domain derivatives (Figure 4.1(b)),
one needs to apply a rotational symmetric taper to the polarization vector components to

obtain continuity across Nyquist wavenumbers. A simple Gaussian taper

|k|?

g(k) =Cezxp [—535] (4.5)

can be used, where C is a normalizing constant. When one chooses a standard deviation
of o = 1 radian, the magnitude of this taper at |k| = 7 radians is about 0.7% of the peak
value, and therefore the TTI components can be safely assumed to be continuous across
the Nyquist wavenumbers. Tapering the polarization vector components in Figure 4.1 with
the function in equation 4.5, one obtains the plots in Figure 4.2. The panels in Figure 4.2,
which exhibits circular continuity across the Nyquist wavenumbers, transform to the space-
domain separators in Figure 4.3. The space-domain filters for TTI media is rotated from
the VTI filters, also by the tilt angle v.

The value of o determines the size of the operators in the space domain and also
affects the frequency content of the separated wave-modes. For example, Figure 4.4 shows
the component U, and operator L, for o values of 0.25, 1.00, and 1.25 radians. A larger
value of o results in more concentrated operators in the space domain and better preserved
frequency of the separated wave-modes. However, one needs to ensure that the function
9(k) at |k| = 7 radians is small enough to assume continuity of the value function across
Nyquist wavenumbers. When one chooses ¢ = 1 radian, the TTI components can be safely
assumed to be continuous across the Nyquist wavenumbers.

For heterogeneous models, I can pre-compute the polarization vectors at each grid
point as a function of the Vpy/Vsg ratio, the Thomsen parameters € and 4, and tilt angle v.
I then transform the tapered polarization vector components to the space domain to obtain
the spatially-varying separators L, and L,. The separators for the entire model are stored

and used to separate P- and S-modes from reconstructed elastic wavefields at different time
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steps. Thus, wavefield separation in TT media can be achieved simply by non-stationary
filtering with spatially varying operators. I assume that the medium parameters vary slowly
in space and that they are locally homogeneous. For complex media, the localized operators
behave similarly to the long finite difference operators used for finite difference modeling at

locations where medium parameters change rapidly.

4.4 Wave-mode separation for 3D TI media

In order to separate all three modes, P, SV, and SH, one needs to construct 3D sep-
arators. Dellinger (1991) shows that P-waves can be separated from two shear modes by
a straightforward extension of the 2D algorithm. Indeed, for 3D TI media, one can always
obtain the P-mode by constructing P-wave separators represented by the polarization vec-
tor Up = {Uy, Uy, U,} and then projecting the 3D elastic wavefields onto the vector Up.
The P-wave polarization vector with components {Uy, Uy, U} is obtained by solving the

3D Christoffel equation (Aki & Richards, 2002; Tsvankin, 2005):

G11 — sz G12 G13 U:c
G2 Gaog — pV2 Gog Uy =0. (4-6)
G13 G23 Gss — pV?| |U.
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Figure 4.5. Polarization vectors of P-mode as a function of normalized wavenumbers k.
and k, ranging from —7 radians to += radians, for (a) a VTI model with Vpg = 3.0 km/s,
Vso = 1.5 km/s, € = 0.25 and § = —0.29, and for (b) a TTI model with the same model
parameters as (a) and a symmetry axis tilt » = 30°. The vectors in (b) are rotated 30°
with respect to the vectors in (a) around k, = 0 and &, = 0.
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The notation in this equation is the same as in equation 3.8. For TTI media, the matrix G

has the elements

Gui = cnnl + ceen + Cssn? + 2C16NgMy + 2C15MT; + 2c56My M (4.7)
G2 = cegni+ cQ2n§ + caan? + 2coengny + (ca5 + Ca6)Nanz + 2c2amyN7 (4.8)
Gs3 = cs5n2 + caanl + csan? + 2c4sngny + 2c35M07; + 2c34My 7 (4.9)
Gi2 = cien’ + caen? + casn? + (c12 + Ce6)nany + (14 + C56)nanz + (Co5 + cas)nynz
(4.10)
Gizs = c1sn2+ cagnl + casn? + (c1a + cs6)nany + (c13 + s5)nem; + (36 + cas)nyms
(4.11)
G2z = csen’ + caanl + caqn? + (Cos + Cap)nany + (c36 + Ca5)nenz + (c23 + cag)nyn .
(4.12)

When constructing shear mode separators, one faces an additional complication: SV-
and SH-waves have the same velocity along the symmetry axis of a T medium, and this
singularity prevents one from obtaining polarization vectors for shear modes in this par-
ticular direction by solving the Christoffel equation (Tsvankin, 2005). In 3D TI media,
the polarization of the shear modes excited by point sources are non-linear around the sin-
gular directions and cannot be characterized by a plane-wave solution (Vavrycuk, 2002).
Consequently, constructing 3D global separators for fast and slow shear modes is difficult.

To mitigate the effects of this “kiss” singularity, I use the mutual orthogonality among
the P, SV, and SH modes depicted in Figure 4.6. In this figure, vector n = {sinv cos «,
sin v sin @, cos v} represents the symmetry axis of a TTI medium, with v and o being the
tilt and azimuth of the symmetry axis, respectively. The wave vector k characterizes the
propagation direction of a plane wave. Vectors P, SV, and SH symbolize the compressional,
and fast and slow shear polarization directions, respectively. For TI media, the symmetry

axis n and any wave vector k form a symmetry plane. For a plane wave propagating in the




78 Chapter 4. Elastic wave-mode separation for TTI media

direction k, the P-wave is polarized in this symmetry plane and deviates from the vector
k; the SV- and SH-waves are polarized perpendicular to the P-mode, in and out of the
symmetry plane, respectively.

Using this mutual orthogonality among all three modes, I first obtain the SH-wave
polarization vector Ugy by cross multiplying vectors n and k, which ensures that the SH

mode is polarized orthogonal to symmetry planes:

USH = nxk
- {kzny - ynz,
ken, — kyng,

Then I calculate the SV polarization vector Ugy by cross multiplying polarization
vectors P and SH modes, which ensures the orthogonality between SV and P modes and

SV and SH modes:

Usy = UpxUgy,

Here, the magnitude of the P-wave polarization vectors for a certain wavenumber |k| is a

Up| = /U2 + U2 + U2 =c. (4.15)

This ensures that for a certain wavenumber, P-waves obtained by projecting the elastic

constant:

wavefields onto the polarization vectors are uniformly scaled. For comparison, the magni-
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tudes of all three modes are respectively

Upl = e, (4.16)
|[Usy| = ecsing, (4.17)
|[Us| = ecsing, (4.18)

where ¢ is the polar angle of the propagating plane wave, i.e., the angle between vectors k
and n. Figure 4.7 shows the polarization vectors of P-, SH-; and SV-modes computed using
equations 4.6, 4.13, and 4.14, respectively. All P-wave polarization vectors in Figure 4.7(a)
all have the same magnitude, but the SV and SH polarization vectors in Figures 4.7(c) and
(b) do not. In the symmetry axis direction, they are zero vectors, and in the isotropy plane,
they are unit vectors. The amplitudes and directions of the shear-mode polarization vectors
in k-domain change smoothly. Using separators represented by solutions of equation 4.6
and expressions 4.13 and 4.14 to filter the wavefields, I obtain separated shear modes that
are scaled differently than is the P-mode. For a certain wavenumber, the shear modes are
scaled by sin ¢, with ¢ being the polar angle, which increases from zero in the symmetry
direction to unity in the orthogonal propagation directions. Physically, S-wave polarizations
in the symmetry direction are determined by the source. However, to simplify the problem,
the shear-waves around singularity are zeroed.

The components of the polarization vectors for P-, SV-, and SH-waves can be trans-
formed back to the space domain to construct spatial filters for 3D heterogeneous TI media.
For example, Figure 4.8 illustrates nine spatial filters transformed from the Cartesian com-
ponents of the polarization vectors shown in Figure 4.7. All these filters can be spatially
varying when the medium is heterogeneous. Therefore, in principle, wave-mode separation
in 3D would perform well even for models that have complex structures and arbitrary tilts

and azimuths of TT symmetry.
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symmetry-axis plane

isotropy plane

Figure 4.6. (a) Schematic showing the elastic wave-mode polarization in a 3D TI medium.
The three parallel planes represent the isotropy planes of the medium. The vector n repre-
sents the symmetry axis, which is orthogonal to the isotropy plane and has tilt angle v and
azimuth angle a. The vector k is the propagation direction of a plane wave. The angles
between vectors k and n is the polar angle 6 in equation 3.10. Wave modes P, SV, and SH
are polarized in the directions P, SV, and SH, respectively, and are polarized orthogonal
to each other for a fixed wave vector k. The deviation of vectors P and k indicates that
the medium is anisotropic.
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Figure 4.7. Wave-mode polarization for P-, SH-, and SV-mode for a VIT medium with
parameters Vpg = 4.95 km/s, Vg0 = 2.48 km/s, ¢ = 0.4, and § = 0.1. The P-mode
polarization is computed using the 3D Christoffel equation, and SV and SH polarizations
are computed using equations 4.14 and 4.13. Note that the SV- and SH-wave polarization

vectors have zero amplitude in the vertical direction.
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Figure 4.8. Separation filters L, Ly, and L, for the P, SV, and SH modes for a VTI medium.
The corresponding wavenumber-domain polarization vectors are shown in Figure 4.7. Note
that the filter L, for the SH mode is blank because the z component of the polarization
vector is zero. The zoomed views show 24 x 24 samples out of the original 64 x 64 samples
around the center of the filters.
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4.5 Examples

I illustrate the anisotropic wave-mode separation with a simple fold synthetic example
and a more challenging example based on the elastic Marmousi II model (Bourgeois et al.,

1991). I then show the wave-mode separation for a 3D TTI model.
4.5.1 2D TTI fold model

Consider the 2D fold model shown in Figure 4.9. Panels 4.9(a)—(f) show Vpg, Vso,
density, parameters ¢, §, and the local tilts v of the model, respectively. The symmetry
axis is orthogonal to the reflectors throughout the model. Figure 4.10 illustrates the sep-
arators obtained at different locations in the model and defined by the intersections of z
coordinates 0.15,0.3,0.45 km and z coordinates 0.15,0.3,0.45 km, shown by the dots in Fig-
ure 4.9(f). Since the operators correspond to different combinations of the Vpy/Vgp ratio
and parameters ¢, 4, and tilt angle v, they have different forms. However, the orientation
of the operators conform to the corresponding tilts at the locations shown by the dots in
Figure 4.9(f). For complex models, the symmetry-axis orientations vary spatially, which
makes it difficult to rotate the wavefields to the local symmetry-axis directions. Conse-
quently, the elastic wavefields are reconstructed in unrotated Cartesian coordinates, and
when separating wave-modes, I use operators constructed in the unrotated Cartesian coor-
dinates. To illustrate the relationship between the operators and the local tilts, the filters
in Figure 4.10 are projected onto the local symmetry axes and the orthogonal directions at
the filter location. As shown in Figure 4.3, the rotated filters (Figure 4.3(c)) show a clearer
relation with the tilt angle, while the non-rotated filters (Figure 4.3(b)), which are used in
the wave-mode separation, do not.

Figure 5.5(a) shows the vertical and horizontal components of one snapshot of the
simulated elastic anisotropic wavefield; Figure 4.11(b) shows the separation into P- and S-
modes using divergence and curl operators; Figure 4.11(c) shows the separation into P and

S modes using VTI filters, i.e., assuming zero tilt throughout the model; and Figure 4.11(d)




84 Chapter 4. Elastic wave-mode separation for TTI media

shows the separation obtained with the TTI operators constructed using the local medium
parameters with correct tilts. The isotropic separation shown in Figure 4.11(b) is incom-
plete; for example, at £ = 0.4 km and z = 0.1 km, and at £ = 0.4 km and 2z = 0.35 km,
residuals for direct P and S arrivals are visible in the P and S panels, respectively. A com-
parison of Figures 4.11(c) and (d) indicates that the spatially-varying derivative operators
with correct tilts successfully separate the elastic wavefields into P and S modes, while the

VTI operators only work in the part of the model that is locally VTI.
4.5.2 Marmousi IT model

The second model (Figure 4.12) uses an elastic anisotropic version of the Marmousi
II model (Bourgeois et al., 1991). In the modified model, Vpy is taken from the original
model (Figure 4.12(a)), the Vpy/Vgp ratio ranges from 2 to 2.5, (Figure 4.12(b)), and the
density p is taken from the original model (Figure 4.12(c)). The parameters € and § are
derived from the density model p with the relations of € = 0.250 — 0.3 and € = 0.125p— 0.1,
respectively. The parameter € ranges from 0.13 to 0.36 Figure 4.12(d), and parameter §
ranges from 0.11 to 0.24 Figure 4.12(e). These anisotropy parameters are obtained by
assuming linear relationships to the density model, and therefore, they both follow the
structure of the model. Figure 4.12(f) represents the local dips obtained from the density
model using plane wave destruction filters (Fomel, 2002). The dip model is used to both
simulate the wavefields and construct TTI separators. A displacement source oriented at
45° to the vertical direction and located at coordinates z = 11 km and z = 1 km is used to
simulate the elastic anisotropic wavefield.

Figure 4.13(a) presents one snapshot of the simulated elastic wavefields using the aniso-
tropic model shown in Figure 4.12. Figures 4.13(b), (c), and (d) demonstrate the separation
using conventional divergence and curl operators, VTI filters, and correct TTI filters, re-
spectively. The VTI filters are constructed assuming zero tilt throughout the model, and

the TTI filters are constructed with the dips used for modeling. As expected, the con-
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Figure 4.9. Fold model with parameters (a) Vo, (b) Vso, (c) density, (d) ¢, (e) J, and (f)
tilt angle v. The dots in panel (f) correspond to the locations of the anisotropic operators
shown in Figure 4.10.
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Figure 4.10. TTI wave-mode separation filters projected to local symmetry axes and their
orthogonal directions. Here, I use 0 = 1 in equation 4.5 to taper the polarization vector
components before the Fourier transform. The filters correspond to the intersections of
z = 0.15, 0.3, 0.45 km and z = 0.15, 0.3, 0.45 km for the model shown in Figure 4.9. The
locations of these operators are also shown by the dots in Figure 4.9(f).



Jia Yuan / Wave-mode separation for elastic imaging in TI media 87

(b)

x(km)

qP qsS qP qS
(c) (d)

Figure 4.11. (a) A snapshot of the anisotropic wavefield simulated with a vertical point
displacement source at £ = 0.3 km and z = 0.1 km for the model shown in Figure 4.9.
Panels (b) to (d) are the anisotropic P and S modes separated using isotropic, VTI, and
TTI separators, respectively. The separation is incomplete in panels (b) and (c) where the
model is strongly anisotropic and where the model tilt is large, respectively. Panel (d) shows
the best separation among all.
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ventional divergence and curl operators fail at locations where anisotropy is strong. For
example, in Figure 4.13(b) at coordinates z = 12.0 km and z = 1.0 km, there are strong
S-wave residuals, and at coordinates £ = 13.0 km and z = 1.5 km, there are strong P-wave
residuals. VTI separators fail at locations where the dip, and, therefore, the symmetry-axis
tilt, is large. For example, in Figures 4.13(c) at coordinates z = 10.0 km and z = 1.2 km,
there are strong S-wave residuals. However, even for this complicated model, separation

using TTI separators is effective at locations where medium parameters change rapidly.
4.5.3 3D TTI model

I use a homogeneous TTI model to illustrate the separation of P-, SV-, and SH-modes.
Figure 4.14 shows a snapshot of the elastic wavefields in the z, z, and y directions. A
displacement source located at the center of the model and oriented at tilt 45° and azimuth
45° is used to excite the wavefield. Figure 4.15 shows successfully separated P-, SV-, and
SH-modes. In this model, the parameter v, which is responsible for the anisotropy of SH-
mode, is set to zero so that there is no SH-wave angular velocity variation. The spherical
wavefront in the SH-panel indicates successful separation of SV- and SH-modes.

Because this model is homogeneous, the separation is implemented in the wavenumber
domain to reduce computation cost. For heterogeneous models, 3D non-stationary filtering
is necessary to separate different wave-modes. I do not perform wave-mode separation in
3D heterogeneous models because of the high computational cost, as will be discussed in

more detail in the following section.

4.6 Discussion

4.6.1 Computational issues

The separation of wave-modes for heterogeneous TI models requires non-stationary
spatial filtering with large operators (operators of 50 samples in each dimension are used
in this chapter), which is computationally expensive. The cost is directly proportional to

the size of the model and to the size of each operator. Furthermore, in a simple imple-
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Figure 4.12. Anisotropic elastic Marmousi IT model with (a) Vo, (b) Vso, (c) density, (d)
¢, (e) 4, and (f) local tilt angle v.
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Figure 4.13. (a) A snapshot of the vertical and horizontal displacement wavefield simulated
for model shown in Figure 4.12. Panels (b) to (c) are the P- and SV-wave separation using
V- and V x, VTI separators and TTI separators, respectively. The separation is incomplete
in panels (b) and (c) where the model is strongly anisotropic and where the model tilt is
large, respectively. Panel (d) shows the best separation.
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Figure 4.14. A snapshot of the elastic wavefield in the z, x and y directions for a 3D VTI
model. The model has parameters Vpg = 3.5 km/s, Vso = 1.75 km/s, p = 2.0 g/cm3,
e = 04, § = 0.1, and v = 0.0. A displacement source oriented at 45° to the vertical
direction and located at coordinates z = 11 km and z = 1 km is used to simulate the elastic

anisotropic wavefield.
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Figure 4.15. Separated P-, SV- and SH-wave-modes for the elastic wavefields shown in
Figure 4.14. P, SV, and SH are well separated from each other.
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mentation, the storage for the separation operators of the entire model is proportional to
the size of the model and to the size of each operator. Suppose that a 3D elastic TTI
model is characterized by model parameters Vpg, Vsg, €, §, and symmetry axis tilt angle
v and azimuth angle a. For a 3D model of 300 x 300 x 300 grid points, if one assumes
that all operators have a size of 50 x 50 x 50 samples, the storage for the operators is
300% grid points x 50% samples/independent operator x 3 independent operators/grid
point X 4 Bytes/sample = 40.5 TB. This is not feasible in ordinary processing. How-
ever, since there are relatively few medium parameters (i.e., the Vpo/Vso ratio, €, 6, and
angles v and «), which determine the properties of the operators, one can construct a
look-up table of operators as a function of these parameters, and search the appropriate
operators at every location in the model when doing wave-mode separation. For example,
suppose one knows that Vpg/Vsg € [1.5,2.0], € € [0,0.3], § € [0,0.1], the symmetry axis tilt
v € [—90°,90°] and azimuth a € [-180°,180°], one can sample the Vpo/Vsg ratio at every
0.1, € and § at every 0.03, and the angles at every 15°. In this case, one only needs a stor-
age of 6 x 10 x 3 x 12 x 24 combinations of medium parametersx 50 sample/independent
operatorx3 independent operators/combination of medium parametersx 4 Bytes/sample

= 77 GB; this is more manageable, although still a large volume to store.
4.6.2 S wave-mode amplitudes

Although the procedure used in this chapter to separate S-waves into SV- and SH-
modes is straightforward, the amplitudes of S-modes are not accurate because the S-wave
separators are not normalized for any given wavenumbers. The amplitudes of S-modes
obtained in this way are zero in the symmetry-axis direction and gradually increase to
unity in the isotropy plane.

The main problem that prevents one from constructing the 3D global shear wave
separators is that the SV and SH polarization vectors are singular in the symmetry-axis

direction, i.e., they are not defined by the plane-wave solution of the TI elastic wave equa-
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tion. Various studies (Kieslev & Tsvankin, 1989; Vavrydéuk, 2002; Tsvankin, 2005) show
that S-waves excited by point forces can have non-linear polarization in several special di-
rections. For example, around the direction of point force, the S-wave can have non-linear
polarization. This phenomenon exists even in isotropic media. Anisotropic velocity and
amplitude variations can also cause the S-waves to be polarized non-linearly. For instance,
S-wave triplication, S-wave singularities, and S-wave velocity extrema can all result in S-
wave polarization anomalies. In these special directions, SV- and SH-mode polarizations
are incorrectly defined by plane-wave theory. One possibility for obtaining more accurate
S-wave amplitudes is to approximate the anomalous polarization with the major axes of the
quasi-ellipses of the S-wave polarization, which can be obtained by incorporating the first-
order term in the ray tracing method. This extension is impractical and remains outside
the scope of this chapter.

Although the simplified approach used in this chapter ignores the complicated po-
larization behavior in some propagation directions, it does successfully separate fast and
slow shear modes kinematically. This allows one to use the separated scalar shear-modes
for implementing the subsequent imaging condition and obtain images with clear physical

meaning.
4.7 Conclusions

In this chapter, I present a method for obtaining spatially-varying wave-mode separa-
tors for TT models, which can be used to separate elastic wave-modes in complex media.
The method computes the components of the polarization vectors in the wavenumber do-
main and then transforms them to the space domain to obtain spatially-varying filters. In
order for the operators to work in TI models with a titled symmetry axis, I incorporate
one more parameter—the local tilt angle »—in addition to the parameters needed for the
VTI operators. This kind of spatial filters can be used to separate complicated wavefields

in TI models with strong heterogeneity and anisotropy. I test the separation with synthetic
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models that have realistic geologic complexity. The results support the effectiveness of
wave-mode separation with non-stationary filtering.

I also extend the wave-mode separation to 3D TI models. The separation of three
modes in 3D TI media is based on the plane-wave solution to the elastic wave equation.
The P-mode separators can be constructed by solving the Christoffel equation for the P-wave
eigenvectors with local medium parameters. The SV and SH separators are constructed us-
ing the mutual orthogonality among P, SV, and SH modes. For the three modes, there are a
total number of nine separators, with three components for each mode. The separators vary
with the medium parameters Vpg, Vsg, €, 4, and tilt v and azimuth o of the symmetry axis.
In anisotropic media, P-waves polarize more linearly than S-waves. Therefore, the plane-
wave approximation preserves the separated P-waves better than the S-waves. Nevertheless,
the proposed technique successfully separates fast and slow shear wavefields. The process
of constructing 3D separators and separating wave-modes in 3D eliminates the step of pro-
jecting the wavefields into symmetry-axis plane and isotropy plane, which is only effective
for models with an invariant symmetry axis. Spatially-varying 3D separators have potential
benefits for complex models and can be used to separate wave-modes in elastic reverse time
migration (RTM) for TTI models. The spatially-varying 3D separators are built at a large
computational and storage cost, and therefore, a more efficient separation method, such as

the proposed table look-up alternative, is necessary for a successful implementation.
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Chapter 4. Elastic wave-mode separation for TTI media
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Chapter 5

Improving the efficiency of elastic wave-mode
separation for heterogeneous TTI media

5.1 Summary

In this chapter, I show an efficient method for wave-mode separation, which exploits the
same general idea of projecting wavefields onto polarization vectors. The method consists
of two steps: 1) separate wave-modes in the wavenumber domain at a number of reference
models to obtain the same number of partially separated wavefields; then transform all the
wavefields to the space domain; 2) interpolate the wavefields (obtained in step 1) in the
space domain using the spatially-variable model parameters. The new method resembles
the phase-shift plus interpolation (PSPI) technique (Gazdag & Sguazzero, 1984), which
interpolates the wavefields that are reconstructed at several reference velocities. Synthetic
examples show that the separation followed by interpolation is effective for models with

complex geology. The new technique has the benefit of both speed and accuracy.

5.2 Introduction

In Chapters 3 and 4, I show wave-mode separation in symmetry-axis planes of TI
media. For heterogeneous models, wave-mode separation can be performed in the space
domain using non-stationary spatial filtering, which is computationally expensive. In fact,
the cost becomes prohibitive in 3D because it is proportional to the number of grids in
the model and the size of each filter (Chapter 4). Zhang & McMechan (2010) separate
wave modes for heterogeneous models that are comprised of several distinct geologic units,

where the polarization vectors in each unit are stationary. They separate wave modes using
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medium parameters taken from each unit and obtain a final separation by combining cor-
rectly separated modes from corresponding blocks. This approach is only effective when the
model is simple and when it is easy to choose the separated modes from the corresponding
units.

In this chapter, I propose a new approach for wave-mode separation in two steps. First,
choose some reference models based on the model parameter distribution and separate
wave modes in the wavenumber domain at these reference models. Then, transform all
the separated modes to the space domain. Finally, interpolate the wavefields in the space
domain using the spatially-variable model parameters. My approach is effective for geologic
models with a high heterogeneity.

In the following, I show that wave-mode separation can be carried out more efficiently
in a mixed domain—separation in the wavenumber domain followed by interpolation in the
space domain. This procedure, which resembles the phase-shift plus interpolation (PSPI)
process from wave-equation migration (Gazdag & Sguazzero, 1985; Ursenbach & Bale, 2009;
Bale et al., 2007), offers both speed and accuracy. I use synthetic examples to show that
the proposed approach is efficient: I achieve approximately the same accuracy as the space-

domain separation and significantly reduce the computational cost.

5.3 Wave mode separation in the wavenumber domain by interpolation

Asillustrated in Chapters 3 and 4, accurate separation of wave modes for heterogeneous
TI media requires non-stationary filtering with large operators in the space domain, which is
computationally expensive. The computation cost is directly proportional to the size of the
model and the size of the space-domain filters. Furthermore, in a simple implementation,
the storage of the separation filters for the entire model is also proportional to the size of
the model times the size of the filters. Thus, the spatial separation becomes prohibitively
expensive in 3D.

I show a method to separate the wave-modes in the wavenumber domain at a much
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lower cost: the wave-modes are first separated at a number of reference models in the
wavenumber domain; then the separated modes obtained at these references are interpolated

in the space domain. Here, for 3D TTI media, the model space is multi-dimensional:
m = {VPO, VSan) 6) Y Vs CY} ’ (51)

where Vpy and Vgg are the P and S velocities along the symmetry axis, respectively; ¢, d,
and vy are the Thomsen parameters; v and « are the tilt and azimuth of the symmetry axis,
respectively. All of these parameters can be spatially varying.

Mathematically, the separation is first carried out with reference model mk, k =
1,2,...N, with N being the number of reference models. Then the wave modes are inverse
Fourier transformed to the space domain:

3
MEx) = FHS W)U (k) ¢ - (5.2)
j=1

Here, M stands for different wave modes, i.e. P, SV, SH, and j stands for the z, y, and 2
components of the wavefields. At reference model m¥, the polarization vector components
are expressed by

Uky; = Untj(m®) (5.3)

At any given model m one can express its polarization vectors as a weighted sum of the

vectors at a subset of the reference models:
Upmj(m) = Zwk (m(x),m', m? - ,m") Uprj(m"). (5.4)
k
A Fourier transform of Equation 5.4 gives the x-domain-weighted filters as
Lagj(x) = Y w*(x)Liy;(x) - (5.5)
k

Next, one can separate the wave-modes for a heterogeneous model as a weighted sum of

the wave-modes obtained at the reference models. From equation 3.7, an accurate P-mode
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separation in the space domain is formulated as:
gP=V,- W= LPz[Wz] + LPy[Wy] + LPz[Wz] . (5-6)

Generally, for P, SV, or SH mode, this equation can be written as
3
M(x) =) L () [W; (x)], (5.7)
j=1
where j denotes a Cartesian component in 3D. Insertion of Equation 5.5 into equation 5.7

yields
3

Mx)=) (Z w’“(X)L'X/;j(X)) [W;()] - (5.8)
k

i=1

Rearranging this equation, we obtain
3
M(x) =Y wh(x) { Y Ligx) W) ¢ (5.9)
k j=1

The term in the curly brackets is a separated mode using reference model mF in equation 5.7.

Therefore, we have the interpolated wave modes as
M(x) =) wh(x)M*(x). (5.10)
k

Here, we see that the weights used to interpolate among the separated wave-modes
M*¥ (in equation 5.10) are exactly the same as the weights used to interpolate among
the polarization vectors U*(in equation 5.4) or space-domain filters L¥(in equation 5.5).
Therefore, one simply needs to compute the weights based on the heterogeneous multi-
dimensional model, and then use these weights to obtain the interpolated wave modes.

The separation problem now becomes a question of how to find the interpolation

weights for the chosen reference models. There are two types of methods one can use:

1. Determine the form of the function one wants to interpolate (the polarization vectors,
in this case), use a few references to define the function (model), and then calculate

the weights for the reference models based on the function. I call this process the
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“analytic” method.

2. Regardless of the form of the function, find the interpolation weights for the reference
models using numerical interpolation methods, e.g. inverse-distance weight interpo-
lation, natural neighbor interpolation, etc. For symmetry, I refer to this process as

“numerical” method.

In the following, I show the implementation of both methods and compare their perfor-

mance.

5.4 Analytic interpolation method

This section describes the dependence of the polarization vectors on model parameters.
From the approximate function form of the vectors, one can find the interpolation weights
for the references at an arbitrary model.

In an anisotropic medium, the P-, SV-, and SH-modes are polarized orthogonal to
each other for a fixed wave vector k, as depicted by Figure 4.6. The P- and SV-modes are
polarized in the symmetry-axis plane, and the SH-mode is polarized in the isotropy plane.
The P-mode polarization vector P deviates from the wave vector k by an angle A. From
the cartoon, one can see that the easiest to separate is the SH-mode because it is always
polarized in the isotropy plane, and this fact is not influenced by the strength of anisotropy.

In equation 4.13, we have

Use = kzny - kynz ’
USHy = kgn, —k;ng,

These equations show that the SH-mode polarization does not depend on anisotropy and
that the mode can be interpolated between separated SH modes that are obtained using

different n. Since only two variables (two n components) exist in each polarization vector
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component, only two references are needed for interpolation of all Ugy components:
2
Ushj(n) =Y wkUsw;(n*). (5.12)
k=1
For a heterogeneous TTI model, the SH-mode can be obtained by

2
SH(x) =Y w*(x)SH*(x), (5.13)
k=1

where SH* = F-1{¥23_| iWhUty, }.
For VTI media, the P-wave polarization angle can be approximately represented by

the expression (Tsvankin, 2005)
vp =0+ B[§+2(c—6)sin®6]sin29, (5.14)

with
1
2 (1 - VS20/V1§0) '

Here, Vj:o and Vg are P- and S-wave velocities along the symmetry axis; and the angle 0 is

the angle between the phase vector k and the symmetry axis n (Figure 4.6). This expres-

sion is an approximation for weakly anisotropic media and indicates that the anisotropic

polarization vector (U) deviates from the isotropic polarization vector (k) by a small angle
A:

vp=0+A(0,R,¢0) . (5.15)

For a 3D TTI medium, whose symmetry-axis tilt and azimuth angles are nonzero,

the orientation of the P polarization vector also depends on these two angles. Assuming a

constant Vpg/Vsp ratio and a small angle A, we get
UMJ' = UI?/Ij + AUM]'

3
~ Ul?lj + (ae+bd) szijninj , (5.16)

i<j j=1

where a, b, d;; are functions of 4 (refer to Appendix B for derivation). Here, M stands for P
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or SV mode, and n;(i = 1,2, 3) is a component of the symmetry axis n.
There are 12 coefficients in Equation 5.16, and therefore at least 12 references are
needed to determine AU f,,j, and thus following equation 5.10, I obtain the interpolated

separation

12
M(x) => w*(x)M*(x), (5.17)
k=0

with Z,lczzo w*(x) = 1, M° being the separation obtained with isotropy model parame-
ters, and M* (k=1 to 12) being the separation with anisotropy reference model m* =
{€*, 8%, 1% o*} (Refer to Appendix B for details). For a model with either the tilt angle
v or the azimuth o being constant, the required minimum number of references is fewer.
Here, a minimum number of 12 anisotropy references are necessary to determine AUjsy.
Of course, if one uses more references, he can always use the neighboring 12 references for
the interpolation. In this chapter, in order to reduce the total separation cost, I limit the
the number of anisotropy references to 12.

In summary, the method separates the Thomsen parameters (¢ and ¢) from the symmetry-
axis-related parameters (ng,ny,n, or v and a). This procedure cascades and lowers the
dimension for interpolation, and thus the interpolation becomes possible for high dimension
(see Appendix B). The benefit of using this analytic method is that the choice of reference
models is not critical because one can use any set of reference models to fit the function,
as long as the weights for the reference models can be computed (The weights cannot be
computed if the interpolation problem degenerates. For example, if three nodal points are
co-linear for 2D linear interpolation, then the weights cannot be computed). The short-
coming is that the polarization vector function I use is an approximation, and thus the

polarization vectors obtained at the non-nodal models are inaccurate.

5.5 Numerical interpolation method

The above section discusses the possibility of simplifying the dependence of the polar-

ization vectors on various model parameters and using the model to calculate the interpo-
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lation weights.

Alternatively, one can find the interpolation weights using known numerical interpo-
lation methods. In this section, I test two types of interpolation methods: inverse-distance
weighting (IDW) and natural neighbor interpolation. I choose these two methods because
they are applicable for a limited number of irregularly scattered data points. Other inter-
polation methods usually require gridded data points and the number of data points grows
rapidly with the increased dimension of the model space. For example, if one is satisfied
with linear interpolation in 4D, then he has to use at least 2 = 16 data points, since two
points make a line in each dimension. If one wants to use polynomial or spline interpolation
with degree higher than one, then at least 3* = 81 data points have to be used in 4D.

Even though the model space shown in equation 5.1 is seven-dimensional, I show in
the previous section that the v parameter does not influence the mode polarization (even
for the SH mode; see equation 5.11) and I simplify the problem by assuming that the model

has a constant Vpg/Vgy ratio (both for wavefield reconstruction and wave-mode separation).
5.5.1 Inverse distance weighting (IDW) interpolation

Inverse distance weighting is suitable for multivariate interpolation. The method as-
signs values to non-nodal points by using values from the usually scattered set of nodal
points (Shepard, 1968). The value at a given model m is interpolated from N known

reference models m*, k=1...N:

N k
w
Umi =Y, =v—Uhj> (5.18)
1; 2= W
where the weight
1
k
wt= — (5.19)
[[m — m¥|

is inversely proportional to the distance of the model m to the known reference model m¥*.
The normalization in the weights assures that the weights vary between 0 and 1 and the

sum of all weights is 1. The advantage of using IDW interpolation is that it is simple to
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implement and extends straightforwardly to high dimensions. Therefore, it is applicable
to both 2D and 3D TTI wave-mode separation. A potential drawback is that the weights
calculated using IDW might be not accurate enough for just a few scattered points in a

large model space.
5.5.2 Natural neighbor interpolation

Natural neighbor interpolation is a method of spatial interpolation developed by Sibson
(1981). The method is based on Voronoi tessellation of a discrete set of spatial points, and
it provides a smooth approximation to the underlying “true” function.

The basic interpolation equation is
N
Unmj = Y wUfy;, (5.20)
k=1

where the weights are computed differently from the IDW interpolation and the subset
of points used for interpolation can also be different. A schematic example of 2D natural
neighbor interpolation is given in Figure 5.1. The dots surround by the shaded circles are the
nodal points and the dot within the shaded polygon is a point that needs to be interpolated
from the nodal points. The 2D space is divided up by the Thiessen polygons which are
constructed from the Delauney triangulation of a scattered point set. The Delauney criterion
ensures that no vertex lies within the interior of any of the circumcircles of the triangles
in the triangulation network. The centroids of the circumcircles of the Delauney triangles
are connected to make the Thiessen polygons. Each polygon encloses the area that is
closer to the enclosed scatter point than any other scatter point. If a point needs to be
interpolated, then this point changes the tesselation of the 2D space in the neighborhood
of this point, shown by the shaded polygon in Figure 5.1. The weights for all nodal points
are computed as the ratio of the area shared by the polygon defined by center point and
the area of the polygon defined by each point before this point was added. Apparently,

the weights computed using natural neighbor interpolation are different from the weights
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computed using inverse-distance weighting, which assigns a weight of approximately % to
each nodal point because the point for interpolation is about the same distance to all seven
nodal points.

I use natural neighbor interpolation both in 2D and 3D. For higher dimensions, the
computation of the weights gets more complicated, as it is difficult to visualize high-
dimensional tesselation and the question remains whether the 2D and 3D interpolation
algorithm extends straightforwardly to high dimensions. The high-dimensional natural
neighbor interpolation is outside the scope of this chapter. So far, I have only used natu-
ral neighbor interpolation for 2D TTI models where the model space is three dimensional:

m = {¢, 6, v}.
5.5.3 Reference model selection

In contrast to the analytic method, in numerical interpolation, the choice of reference
models is critical. Since the model space is at least four-dimensional for 3D TTI models,
it is difficult to visualize the model space. Therefore, I use a method for high-dimensional
reference picking extended from its 1D equivalent. As depicted in Figure 5.2, a model
parameter of the medium has a distribution shown by the curve. The horizontal axis is a
model parameter (for instance, the P wave velocity v) of the medium, and the vertical axis
is the population density of this parameter. The parameter spreads over the range [a, b],
the population density ranges from 0 to 1, and the area under the curve is 1. For this 1D
problem, I first choose a threshold of occurrence frequency and assume that only velocities
with higher occurrence frequency than this threshold are candidates for reference models.
Then, I choose the reference models represented by the two peaks of the curve, which
have the highest occurrence frequency over the entire model space. This crude method for
picking reference velocities in 1D assumes that along the curve there is only one peak in
a neighborhood. Otherwise many close references will be picked, which is wasteful for the

following processing. Similarly, in high dimensions, I first compute the population density
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Figure 5.1. Description of natural neighbour interpolation in 2D, taken from the wikipedia
website http : //en.wikipedia.org/wiki/Natural_neighbor. The area of the circles in each
polygon represents the interpolation weights w*, whose value is computed as the ratio of
the overlapping shaded area and that of the the neighbor polygon.
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0 é v V2 b v

Figure 5.2. Cartoon showing the occurrence frequency of a model parameter. The parameter
(P wave velocity, for example) spreads over the range [a,b], and the area under the curve
is 1. Velocity v; and vy are picked as references because of their high occurrence frequency.

of all model parameters, then I choose a threshold and find the local maximums as the

reference models.

5.6 Examples

I illustrate the method presented in this chapter with 2D and 3D examples. The 2D
example is an elastic version of Marmousi II. The 3D examples include a 3D fold model and

a 3D version of the elastic Marmousi II.
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5.6.1 2D Marmousi model

The first example uses a 2D Marmousi model to test the feasibility of the mixed-
domain separation. Figures 5.3(a)—(d) show model parameters Vpy, €, 4, and tilt angle v,
respectively. Figure 5.4 shows the variation of the parameters ¢, J, and tilt angle v in the
model space. A visual examination reveals that there are three clouds in the model space,
and the reference selection algorithm based on population density chooses 15 references out
of the three clouds (of course, the number of picked references changes with different choice
of threshold). These 15 references are used for the numerical interpolation. Figure 5.5(a)
is a snapshot of the elastic wavefields in the z and x direction. Figures 5.5(b), (c), and (d)
show the wave-mode separation using the analytic procedure, IDW, and natural neighbor
interpolation, respectively. A comparison of the separation results indicates that all the
methods can separate P and S modes. Among them, the analytic method obtains the
cleanest P separation at the top of the model. IDW and natural neighbor interpolation
achieves similarly good separation results, while exhibiting some visible residual at the top
of the model in the P panel, for example at £ = 11.5 km and z = 1.0 km. This artifact
suggests that the selected references do not represent the model parameters in that region

and that a better reference selection algorithm might be necessary.
5.6.2 3D fold model

The first 3D wave-mode separation example uses a fold model with spatially varying €
and §. The model has a constant Vpg/Vpy ratio equal to two and v = 0.0. The symmetry
axis is perpendicular to the layering throughout the model. Figure 5.6 shows the spatially
varying €, 4, tilt v, and azimuth «. Figure 5.7(a) is a snapshot of the elastic wavefields.
Figures 5.7(b) and (c) show the separation with the analytic method and IDW interpolation,
respectively. A comparison shows that the analytic method obtains a better separation
result for all three modes. This result suggests that more references are probably needed

for the IDW interpolation.
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Figure 5.3. Model parameters of a 2D elastic Marmousi II model showing varying (a) Vpo,
(b) €, (c) 9, and (d) tilt angle v.
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v(degrees)

€

Figure 5.4. Model space showing the variation of the parameters ¢, 4, and tilt angle v for
the model shown in Figure 5.3. Each dot represents the occurrence of one combination of
(¢,0,v) in the physical model. The dots form three clouds in this space. The circles are
the reference models. The reference models are selected based on a criterion depicted in
Figure 5.2.
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(d)

Figure 5.5. (a) A snapshot of the elastic wavefields in vertical and horizontal directions for
the model shown in Figure 5.3; trial separation of P- and S-mode using (b) the analytic
method, (c) natural neighbor interpolation, and (d) inverse distance weighting interpolation.



Jia Yuan / Wave-mode separation for elastic imaging in TI media 113

y (km)
y (km)

z (km)
z (km)

150
~~
£ s
X E 100
> ~
>
50
0
~ -50
E t
k3
~ = -100
N N
0.4 FEEase -150

0. 0.40 .
x (km) y (km)

(d)

Figure 5.6. 3D TTI fold with model parameters (a) ¢, (b) 4, (c) tilt angle v, and (d)
azimuth angle a.
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Figure 5.7. (a) A snapshot of the elastic wavefields in the z (left), z (middle), and y (right)

directions for the model shown in Figure 5.6. Separated P (left), SV (middle), and SH (right)
modes using (b) the analytic methods and (c) inverse-distance weighting interpolation.
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5.6.3 3D Marmousi model

The last example is a 3D version of the elastic Marmousi model. The first vertical slices
of Vpg, Vo, and density are taken from the original 2D model. In the y direction, the vertical
slice is shifted constantly to make the next vertical slice. This ensures that the medium
has a constant azimuth angle (26°) of anisotropy symmetry axis. Thomsen parameters are
derived from the velocity and density model with the relationship of € = 0.5p/maz(p) and
d = 0.25Vpg/max(Vpy). Figures 5.8(a)—(d) show Vpy, €, 4, and tilt angle v of the 3D model,
respectively. Figure 5.10(a) shows a snapshot of the elastic wavefields. Figures 5.10(b) and
(c) show separation using analytic and IDW methods, respectively. Both methods obtain
good separation results. The successfully separated modes obtained with IDW interpolation

suggest that the selected models represent the entire model space well.

5.7 Discussion

As was demonstrated by the synthetic examples, the separation in the space domain
by non-stationary filtering is accurate but computationally expensive; meanwhile, the sep-
aration in the mixed domain is less accurate but much cheaper. The cost of separation
in the = domain is proportional to the model size times the size of the separators, which
becomes prohibitive in 3D. In comparison, the cost of separation in the mixed domain is
just proportional to the number of used references, which includes wavefield projection and
inverse Fourier transforms of the wavefields.

In the analytic procedure, the interpolation error comes from the approximate rep-
resentation of the dependence of the polarization angles on ¢, 4, tilt v, and azimuth o
(equation 5.16). Strictly speaking, the anisotropic polarization vector is only approximately
represented by equation 5.16 in 3D. However, the synthetic examples show that mode sep-
aration is effective in the mixed domain with the analytic procedure, which suggests that
for weak anisotropy, the polarization vector function I used does not deviate much from the

true vector directions.
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Figure 5.8. 3D Marmousi model with model parameters (a) Vpg, (b) ¢, (c) 6, (d) tilt angle
v.
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Figure 5.9. Model space showing the variation of the parameters ¢, d, and tilt angle v for
the model shown in Figure 5.8. Each dot represents the occurrence of one combination of
(6,0,v) in the physical model. The dots are widely spread in this space. The circles are
the reference models. The reference models are selected based on a criterion depicted in
Figure 5.2.
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Figure 5.10. (a) A snapshot of the elastic wavefields in the z (left), z (middle), and y
(right) directions for the model shown in Figure 5.8. (b) Separated P (left), SV (middle),

and SH (right) modes using (b) the analytic method and (c) inverse-distance weighting
interpolation.
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In the numerical interpolation procedure, in order to decrease the dimensionality for
interpolation, I assume that some model parameters are inter-related. For example, I draw
upon the fact that the Thomsen parameter v does not play a role in the polarization of
wave modes. I also learn from equation 5.14 that it is the ratio of Vpg and Vsg that affects
the polarization vectors and that they do not affect the function independently. These
observations help one to decrease the dimensionality of the interpolation problem. For the
numerical approach, the separation accuracy increases with the number of reference models
one uses. However, to limit the cost of separation, one should try to use fewer reference
models; and therefore, the separation is always inaccurate.

The reference model selection is necessary in both approaches. Since I use a function to
compute the weights in the analytic procedure, the locations of the reference models are not
really important. In comparison, for the numerical approach, the reference models should
represent the model space of the medium for the best interpolation results. Therefore, the
analytic approach is more deterministic, while the numerical approach is more stochastic.
To obtain better separation results with the numerical approach, one needs to determine
the reference models that best represent the model space, and the choice of the models is
case dependent.

In summary, both analytic and numerical methods are subject to interpolation errors.
The numerical interpolation method is easy to understand and particularly easy to imple-
ment with inverse-distance weighting interpolation. The analytic method seems to be more
accurate for the synthetic examples, but the approximate equation I use as the underlying

“true” function also subjects the separation to errors.

5.8 Conclusions

I present a mixed-domain wave-mode separation method applicable to complex media.
First, I separate wave modes in the wavenumber domain at different reference values of

the anisotropy parameters ¢, 4, tilt angle v, and azimuth angle «. This is followed by
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interpolation in the space domain. I test two separation schemes. One of them derives a
relatively simple function of the polarization vectors; I then use this function to compute
the interpolation weights. The other is designed to compute the interpolation weights
numerically with various interpolation methods. Although the space-domain non-stationary
filtering is more accurate for heterogeneous media, it is very expensive. In comparison, the
separation in the mixed domain has the advantage of being much more computationally
efficient. The mixed-domain separation is especially beneficial for 3D models because the
space-domain separation is prohibitively expensive. I test the mixed-domain separation
method with several synthetic examples and show that both separation schemes are effective.
The analytic method is more accurate but the numerical method is more straightforward

to implement.



Jia Yuan / Wave-mode separation for elastic imaging in T media 121

Chapter 6

Conclusions and future work

6.1 Main results

Multicomponent data have numerous advantages in structural imaging, lithology esti-
mation, anisotropic parameter estimation, and reservoir characterization. In this thesis, I
focus on the area of imaging using multicomponent data. The main results of this thesis

are addressed in what follows:

e In Chapter 2, I investigate elastic imaging using multicomponent data acquired in
isotropic media. If one uses elastic wave equation to reconstruct vector wavefields, he
has two options for imaging condition: crosscorrelating the Cartesian components or
pure-mode potentials. I compare images created using both imaging conditions and
conclude that the potential-based imaging condition creates images that are more
interpretable. This imaging condition endows the multicomponent images with clear
physical meaning, i.e., the images represent reflection coefficients of different reflection
types. Pure-mode potentials can also be used in a generalized imaging condition to

generate angle gathers for velocity analysis.

e In Chapter 3, I extend an existing mode-separation method (Dellinger & Etgen, 1990)
to heterogeneous media. The existing method for mode-separation in anisotropic me-
dia is not suitable for heterogeneous media because heterogeneity in the space domain
cannot be represented in the wavenumber domain. The proposed non-stationary fil-
tering in the space domain robustly separates wave modes for models with strong

heterogeneity and anisotropy. This extension to heterogeneous models is especially
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important because imaging complex geology remains one of the most difficult problems

in geophysical exploration.

In Chapter 4, I extend mode separation to 3D TTI media. As suggested by Dellinger
(1991), P-waves can be separated from 3D anisotropic vector wavefields as a straight-
forward extension of P-wave separation from 2D vector wavefields. In 3D, a difficulty
of shear-mode separation originates from the singularity of shear waves. The singu-
larity makes it impossible to find polarization directions for each shear mode in the
singular directions, and the shear polarization vectors computed using the plane-wave
solution are discontinuous in 3D. I address the shear-wave singularity problem in 3D
by taking kinematic approximations. The shear polarization vectors are constructed
by utilizing the orthogonality among P, SV, and SH modes for a fixed wave vector.
The singularity in the symmetry axis direction is thus ameliorated by taking a smooth
variation of the shear polarization vectors, both in amplitudes and directions. A global
solution like this enables one to separate shear modes and study shear-wave splitting
in 3D. Nowadays, a commonly practiced imaging technique is acoustic RTM for T'TI
media. The mode separation in 3D proposed in this chapter enables elastic RTM for
'T'TI media. Although the obtained shear modes do not have accurate amplitudes, the
algorithm enables shear-wave splitting analysis in 3D models. Shear-wave splitting
has been used extensively for fracture characterization. Conventionally, shear-wave
splitting is processed by Alford rotation (Alford, 1986) to the recorded near-offset
multicomponent data. In contrast, separating SV and SH modes in the space domain

allows one to analyze shear-wave splitting more directly in the subsurface.

In Chapter 5, I address the problem of computational cost that has been invoked
in Chapter 4. A modern geophysical technique not only requires accuracy but also
speed. Although the space-domain separation is robust and accurate for 2D models,

it is unaffordable for 3D models. To separate wave modes more efficiently in 3D, I
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present a mixed-domain approach. The idea is to select references to represent the
entire model space and separate the wave modes in the wavenumber domain at the
chosen references. The wavefields are interpolated later in the space domain. This
mixed-domain separation technique makes separation for heterogeneous 3D models
possible. This technique is much faster but has approximately the same accuracy
as the space-domain separation. The new approach provides computational speed to

wave-mode separation so that it can be applied more efliciently for RTM.

6.2 Suggested future work

In this thesis, I mainly investigate imaging with multicomponent data. I note some of

future work directions in the following.
6.2.1 Anisotropic elastic RTM

The mode-separation technique can be applied to reverse time migration and angle
decomposition in TTI media, as Helmholtz decomposition is applied in isotropic elastic
RTM in Chapter 2. The additional mode-separation step before application of an imaging
condition would yield elastic images and angle gathers that are more interpretable.

The elastic imaging technique advocated in this thesis generates four images in 2D
and nine images in 3D. In contrast to generating and interpreting only a single image with
acoustic migration, how can we use and interpret so many elastic images simultaneously?
It is not clear yet. However, I can at least say it takes more effort for the interpretation

and this might provide more information about the subsurface.
6.2.2 Anisotropic parameter estimation

In the mode separation, I use the same model parameters to reconstruct the wavefields
and separate wave modes, and thus the separation is always successful. However, to recon-
struct elastic wavefields in TTI media, one first needs to estimate the model parameters:

Vpo, Vso, €, 6, 7, tilt angle v, and azimuth angle a. Anisotropic model building is the most
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important and time-consuming procedure in any imaging project, and a high-resolution
model is the ultimate goal for reservoir characterization.

Anisotropic model building is a multi-dimensional parameter estimation problem. It
is an interesting research question to set up wavefield tomography and/or inversion engines
to obtain all these parameters with limited surface (and borehole) data. A possible research
direction in the framework of wavefield tomography is to utilize angle gathers for anisotropic
parameter estimation. Angle gathers can be used for anisotropic parameter estimation and
AVA (amplitude versus angle) analysis.

It has been intensively studied how to use angle gathers for velocity estimation in
isotropic media. In order to use the angle gathers for anisotropic parameter estimation,
it is imperative to study quantitatively how the anisotropy parameters influence the kine-
matic behavior of the angle gathers. This kind of study allows for estimation of anisotropy

parameters by iteratively updating these parameters to form flat angle gathers.
6.2.3 Model space representation

The synthetic examples in Chapter 5 show that the choice of reference models is
important for the mixed-domain separation if numerical interpolation is used. In Chapter 5,
I select the reference models for mode separation using a crude method extended from its
1D equivalent. The reference models are simply chosen as the local maxima of parameter
occurrence frequency in the model space. Although the chosen combinations of model
parameters have the highest occurrence frequency, the question remains whether they are
the most suitable for follow-up interpolation and how many reference models are needed to
represent the entire model space. An interesting research question also arises: whether a low-
dimensional algorithm for sampling has a straightforward extension to higher-dimensions.
The study of high-dimensional sampling in the model space has potential benefits in seismic
inverse problems, where it is desirable to use as few references as possible to represent the

entire model for the purpose of computational and storage-cost saving.
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Appendix A

Finite difference approximations to different
orders of accuracy

This appendix summarizes the wavenumber-domain weighting of the ideal derivative
function ik;, j = 1,2,3 for operators of various degrees of accuracy. Starting from the
coeflicients of a derivative stencil in the space-domain, one can use conventional Z trans-
forms to construct a wavenumber-domain weighting function representing the same order
of accuracy. I apply the same weighting functions to both the isotropic and anisotropic
projections of the polarization vectors in order to obtain space-domain derivative operators
of similar order of accuracy.

For the case of 2" order centered derivatives, the stencil has the following Z-transform

representation:

Dy(Z) = —% (z' -z71). (A.1)

Transforming from the Z to the wavenumber domain, we obtain
Lk —ik
Da(k) = —3 (e —e ) : (A.2)

which enables one to define the second order weight

sin (k) .

Wo(k) = P

(A.3)

Similarly, one can construct weights for 4", 6** and 8" order operators from Z-
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transform representations:

Dy(Z) = —2(2'-77)+ 5 (22~ 27, (A.4)
Dg(Z) = ”% (Z'-z7 Y+ % (Z22-z7%) - % (22 -2z73), (A.5)
Ds(Z) = -g (2'-z7Y) + % (22 -27%) - % (Z2-z7%) + Ti—o (z*-2z71),
(A.6)
which transform to the wavenumber-domain weights:
Da(k) = _; (eik _ e—ik) n % (e2ik _ e—2ik) ’ (A.7)
Dg(k) = _% (eik _ e—ik) + % (ezik _ e—2ik) _ % (e3ik _ e—3ik) ’ (A.8)
Ds(k) = _g (eik _ e—ik) + é (e2ik _ e—2ik) _ 14_5 (e3ik _ e—3ik) + % (e4ik _ e—-4’ik) ’
(A.9)
which lead to the following weighting functions:
Wa(k) —431;('“) + Si“6(:k) , (A.10)
We(k) = _3s12nk(k) + 3s11nO(k2k) B sn;(()zk) ’ (A.11)
w - E 1) sy it

These derivatives are shown in Figures 3.2(a) and (b) in the space and wavenumber do-
mains, respectively. Comparing these weights and their corresponding frequency responses,
we see that one needs to use higher order difference operators to have better approxima-
tions to high frequencies. For comparison, the weight used in Dellinger & Etgen (1990) is
2 [1 + cos(k)]. The cosine taper attenuates middle frequencies compared to high order finite

difference operators.



Jia Yuan / Wave-mode separation for elastic imaging in TI media 133

Appendix B

Linear Approximation for polarization vectors

B.1 The polarization vectors for 2D TTI media

For VTI media, the P-wave polarization angle can be approximately represented by

the expression (Tsvankin, 2005)
vp =0+ B[§+2(e—0)sin’ 0] sin 26, (B.1)

with
1

B = .
2 (1 - V.S?O/sz’o)

Here, Vpp and Vg are the P- and S-wave velocities along the symmetry axis; and the angle
0 is the angle between the phase vector k and the symmetry axis n (Figure 4.6).

For a TTI medium with a nonzero tilt angle, equation B.1 takes the form
vp=0+B[6+2(e— ) sin?(6 — v)] sin2(6 — v). (B.2)

Here, the angle @ is the angle between the vector k and the vertical axis k,. The angle 6 —v
gives the polar angle for the TTI medium. The anisotropic P-wave polarization vector (U)

deviates from the isotropic polarization vector (k) by an angle A:
vp=0+A(6,B,¢d,v) . (B.3)

The magnitude of the angle A is small. This is verified by Figures B.1(a) and (b), and
Figure B.2(a), which show that with moderate anisotropy (¢ = 0.4, § = 0.2 and Vpo/Vs0=2),

and various tilt angles v, the angle A is no more than 0.25 radians(< 1). The magnitude
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of the angle, of course, also depends on the Vpy/Vsg ratio, which usually ranges from 1.4
to 7. This gives a range [0.5,1] to the variable B. Even for the largest Vpo/Vsg ratio 7,
the angle A does not exceed 0.4 radians. Because the Vpy/Vgp ratio can be grouped with
the anisotropy parameters to make new variables Be and B4, the entire interpolation can
be implemented in the same way. For simplicity, I now assume that the Vpg/Vs ratio is a
constant.

Assuming small A, one can expand the P-wave polarization components into

Upz = sin(0+ A)=sinfcosA +cosfsinA = sinf + cosA = k, + k, A, (B.4)

Up, = cos(@+ A)=rcosfcosA —sinfsinA ~ cosf +sinfA =k, + k,A. (B.5)

Figures B.1(a) and (b) and equation 5.14 show that the deviation angle is approxi-
mately linearly dependent on the anisotropy parameters € and 4.

Figure B.2(a) shows that A does not linearly depend on v for fix € and §; however,
one can try to fit the curves of A at different v with a scaled function of sin 2(6 — v), shown
by Figure B.2(b). The fit is not exact due to the second term in the square bracket in

equation B.2, which depends on §. Thus, A is only approximately proportional to
sin 2(0 — v) = sin(26) cos(2v) — cos(26) sin(2v). (B.6)
We can now write the second terms of equations B.4 and B.5 for 2D TI media in the form
AUpmj =~ (a€+ bd)(ccos2v + dsin2v), (B.7)

where a, b, c, and d are functions of k; and k, (or functions of §). Equation B.7 indicates
that one needs a minimum number of four points, m! = {¢!,4',v'}, m? = {€, 4,02},
m3 = {e2,62,v'}, and m* = {€2,62,12}, to determine the model given in equation B.7.
The way to interpolate (extrapolate) between the four reference models is similar to bi-

linear interpolation shown in Figure B.3 and Appendix B.3. At any model parameter
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m = {¢, 4, v}, we have the polarization vector
4
Untj = Uy + AUnj = Upy; + > wFAUSy; (B.8)
k=1
For P mode, M = P, Up, = kg, and Up, = k. For SV mode, M = SV, Usy, = —k,, and
Usy, = kz. The P or SV wave is obtained with

2
M = FLLS iUy W

k=1

j=1
2 4
= Z [ WUy, + Zkak)}
oL
Z D wrF {in(Uz'fa - U?M)}
=1 k=1
4

= M°+> (w*M* —wFMO)
k=1

4 4
= (1-> whHMO+) (wFM*)
k=1 k=1
4
= > wkM*, (B.9)

where M? = F-1 {212-=1 inU,?,,j} is the separation with ¢ = 0 and § = 0 and M* =
F-1 {Z?:l inU Ilf,IJ} is the separation with reference model at reference model m* =

{e*, 8%, %}, The formulas to calculate the weights w* are given in Appendix B.3.

B.2 The polarization vectors for 3D TTI media

The P-mode polarization vector Up = {Upg, Upy, Up.} is always polarized in symmetry-
axis planes, the planes formed by symmetry axis vector n and wave vector k at different
directions. The P-mode polarization Up can be obtained by rotating from k by a small

deviation angle A (which is defined earlier for 2D) in the symmetry-axis plane (Figure 4.6):

Up = R(u)k, (B.10)
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Figure B.1. Deviation angle of P-mode polarization from the wave vector k for VTI media
with different combinations of € and 4. (a) The deviation angle for parameter € ranging
from 0.1 to 0.4 and a fixed € = 0.1; (b) The deviation angle for parameter ¢ ranging from
0.1 to 0.4 and a fixed € = 0.4. The deviation angles are approximately linearly dependent
on € and 4, which is consistent with the linearized equation B.1.
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Figure B.2. Deviation angle of P-mode polarization from the wave vector k for TTI media
(e = 0.4, 6 = 0.2) with varying tilt angle v . (a) is the deviation angles for tilt angles 0, 30°,
60°, and 90°. The curves for these angles are a simple shift from each other by the angle v.
(b) The deviation angle A can be approximated fit by a scaled function of sin 2(f — v).
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where R(u) is the rotation matrix with a rotation axis u = ﬁ:i—tf and rotation angle A.

Letting u = ]%}:[ = {z,y,2} and assuming small A, one can express the rotation matrix
as

(0 —2 4 )
R = z 0 —z|sinA+(I—uul)cosA+ uu”
\=v = 0
(0 - 4 )
z 0 —-=zxz|A+I
\"v = 0
(1 yA

= A 1 -—zA], (B.11)
\—yA A 1

Q

with cos A ~ 1 and sin A ~ A. Substitution of equation B.11 into equation B.10 yields

Up, = k,—yk:A+xky A (B.12)
I use Up; as an example to expand equation B.12:

Upr = kg —zkyA+yk, A
_(nx),
In x k|

N LLLYI TN, (B.13)

X
= ke |n x k|

The angle A has the same physical meaning as in 2D—it is an angle in the symmetry-
axis planes between the vector n and k. Therefore, as in 2D, the angle A is linearly

dependent on ¢ and 4.

From the analogy to 2D ( equation B.6), one knows that the angle A is approximately
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proportional to
sin(20p k) = 2sin(fn k) c0s(fnk) = 2(n- k) In x k| , (B.14)

with 0y being the angle between vectors n and k. Here, the wave vector k = {kz, ky, k2 }
and the symmetry axis vector n = {ng,ny,n,} = {sinvcosa,sinvsina,cosv}. One can

then express the sum of the second and third terms in equation B.12 as

(n x k),
" nx K|
A
In x k| =

= (ae+b6)(n-k)[—(n x k),ky + (n x k)yk,]

n x k),
[n x k|

(n x k) ky + (n x k)yk;]

AUp, = kyA + ( kA

= (ae + b6)(nzks + nyky + nzk;) [—(kynz — kany)ky + (ken, — kang)k:]

3
= (ae+bd) Y > dijmin;, (B.15)

i<j j=1

where a,b,d;; are functions of the vector k. All components of AUp can be represented
in this form. One can verify that this equation reduces to the 2D equation B.7 by setting
ky, = 0 and o = 0. With this equation, one can interpolate the P mode in 3D similar to 2D
as shown in Figure B.3.

The SV-mode can be interpolated in a way similar to the P-mode. Assuming that
U(S)V (k) is the SV-mode polarization vector of an isotropic medium for a given wave vector
k, the TI polarization vector for SV-mode Ugy is a rotation from U2/, represented by a
rotation matrix Rgy. Fortunately, because P- and SV-modes are mutually orthogonal and
both are polarized in the same symmetry-axis plane for a given wave vector k, the rotation

matrix from k to Up and from Ugv (k) to Ugy are the same. By analogy, we have

Usv = R(u) Ugy(k), (B.16)
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and therefore

Usve = Uy, — 2kyA +yk,A
Usvy = Uy, — kA + 2k A

Usv, = Uy, — yksA+ zkyA. (B.17)

Therefore, the SV-mode can be obtained by interpolation in the same way as for the P-mode.
From equation B.15, one needs two references for € and § and six references for tilt

axis n = {nz, ny,n,}, and therefore one needs a total number of 12 anisotropy references:
12 12
M = (1-) wM°+) (wFM*)
k=1 k=1
12
= ) wbM*, (B.18)
k=0

where M0 = F-1 {212-=1 iﬁ%U&j} is the separation with ¢ = 0 and § = 0 and M* =

F _1{ 12'=1 i,ijUf,Ij} is the separation with reference model at reference model m* =

{e*, 8%, v, o¥}. The formulas to calculate the weights w* are given in Appendix B.3.

B.3 Cascaded linear interpolation

We consider a function in the form

m n
F=Y ami) by;. (B.19)
=1 j=1

Similar to bi-linear interpolation, we can interpolate to obtain the function value at any
point in the panel, first in the direction of z’s, then in the direction of y’s. This idea is
shown in Figure B.3.

For linear interpolation either in the z direction or in the y direction, the problem

becomes a question of how to interpolate for a function in the form

m
g= Zai.’l,‘i . (B20)
i=1
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For such a function, one needs at least m known points to interpolate. This gives a system

of linear equations in the coefficients a;:

1 1 1 1
Ty Ty o ap a) g
2 2 2 2
Iy T3 "t Oy az | |9 (B21)
oty am am g

Here, the subscripts mean numbering of the variables, while the superscripts mean the

numbering of the data points. In a short form, the above equation can be written as
Xa=g. (B.22)

When the square matrix is not large, meaning the number m is not large, this system for
a; can be solved using Cramer’s rule:

_ det(X,-) i=

- B.2:
a‘t det(X)’ 1) 2, 7m) ( 23)

where X; is the matrix formed by replacing the i** column of the matrix X by the column g.
After the coefficients a; are determined, we can find the function value g for any combination
of (11,‘1,$2, tet ,xm):
m m
g= Zaiwi = Zwmgm. (B.24)
i=1 i=1
The original function f can be linear interpolated by cascading two linear interpolations
in z’s and y’s in the following way:
m n . ..
f= Z Zwufu , (B.25)
i=1 i=1
where

w = whw! . (B.26)
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Figure B.3. Function ) [~ a;z; Z;-;l bjy; can be interpolated by cascaded linear interpo-
lation in the directions of z’s and y’s. The solid circles, f, represent nodal points in the
interpolation. The open circles represent intermediate interpolated points by linear inter-
polation in the z’s direction. The shaded circle P represents an arbitrary point in the panel
that obtains its value by linearly interpolation between the open circles.



