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Abstract

The objective of seismic full waveform inversion (FWI) is to estimate a model of the
subsurface that minimizes the difference between recorded seismic data and synthetic data
simulated for that model. Although FWI can yield accurate and high-resolution models,
multiple problems have prevented widespread application of this technique in practice.
First, FWI is computationally intensive, in part because it typically requires many iter-
ations of costly gradient-descent calculations to converge to a solution model. Second,
FWI often converges to spurious local minima in the data misfit function of the difference
between recorded and synthetic data. Third, FWI is an underdetermined inverse problem
with many solutions, most of which may make no geological sense. These problems are re-
lated to a typically large number of model parameters and to the absence of low frequencies
in recorded data.

FWI with an image-guided gradient mitigates these problems by reducing the number
of parameters in the subsurface model. We represent the subsurface model with a sparse
set of values, and from these values, we use image-guided interpolation (IGI) to compute
finely- and uniformly-sampled gradients of the data misfit function in FWI. Because the
interpolation is guided by seismic images, gradients computed in this way conform to geo-
logic structures and subsequently yield models that also agree with subsurface structures.
Because models are parameterized sparsely, IGI makes the models more blocky than finely-
sampled models, and this blockiness from the model space mitigates the absence of low
frequencies in recorded data. A smaller number of parameters to invert also reduces the
number of iterations required to converge to a solution model. Tests with a synthetic model

and data demonstrate these improvements.
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Chapter 1

Introduction

The ultimate goal of exploration seismology is to estimate quantitatively accurate
models m of the subsurface from measured seismic data d. In general, this requires solving
an inverse problem governed by a forward operator F (see Figure 1.1). Seismic migration is
used to extract and locate reflectivities of the subsurface by producing a structural image
(Claerbout, 1985). However, a structural image alone cannot supply sufficient information
to fully interpret properties of the model of the subsurface. Among many reasons for this
insufficiency, the most obvious and intrinsic one is that seismic migration behaves as an
adjoint operator rather than the inverse operator. In other words, a migrated image only
approximates the solution of the inverse problem.

Seismic migration has evolved from producing a simple structural image of the subsur-
face to rendering an image with correct amplitudes and other attributes that can describe
the interior of the earth. For this to happen, seismic depth migration depends more on
velocity information than do other seismic processing steps (Etgen et al., 2009), because
the accuracy of seismic depth imaging depends greatly on the accuracy of the velocity
model, especially in complex media. For example, the estimation of an accurate velocity
model with high resolution in and below a salt body is essential for subsalt imaging(Oezsen,
2004; Wang et al., 2008; Jiao et al., 2008). High resolution velocity models also benefit
seismic pore pressure prediction (Batzle & Wang, 1992), which helps geoscientists improve
understanding of hydrocarbon reservoirs, identify potential drilling hazards, and improve

well positioning.

1.1 Methods for Estimating Velocity Models

In the exploration and production industry, several methodologies have been devel-
oped to build velocity models of the earth. These methodologies can be mainly divided
into three categories: traveltime tomography (Stork, 1992; Woodward, 1992; Vasco & Ma-
jer, 1993; Zelt & Barton, 1998), migration velocity analysis (MVA) (Yilmaz & Chambers,
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Forward problem

Inverse problem

Figure 1.1: Schematic of the relationship between the model space m and the data space
d. Simulating data in a model with a forward operator F illustrates a forward problem
d = F (m). Retrieving model parameters or properties from recorded data with an inverse
operator Flisa corresponding inverse problem, m = F~1 (d). For generality, the operator
F depends nonlinearly on model m.

1984; Sava & Biondi, 2004a,b), and full waveform inversion (FWI) (Tarantola, 1984; Pratt
et al., 1998; Pratt, 1999; Symes, 2008).

1.1.1 Traveltime Tomography

‘Tomography that uses data collected on a surface to estimate models was developed for
medical imaging (such as X-ray computerized tomography) before being performed using
seismic data. A tomographic method used with success in exploration seismology begins
with extraction of refraction or reflection traveltime from large sets of recorded seismic
data. An inverse problem is then posed for which the measured data are these traveltimes.
In seismic traveltime tomography, the objective is to match traveltimes obtained from
recorded seismic data and corresponding synthetic seismic data simulated in a trial model

of the subsurface.

1.1.2 Migration Velocity Analysis

Migration velocity analysis (MVA) is the process of estimating velocity model in the

image domain by iteratively performing the following three steps:

(1) migrate data with the current estimate of velocity model;



Yong Ma / Full waveform inversion with image-guided gradient 3

(i) measure kinematic errors in the prestack images;
(iii) invert measured kinematic errors to obtain velocity updates by a tomographic process.

To measure kinematic errors caused by velocity errors, MVA exploits data redundancy in
common image gathers (CIGs) by measuring coherency across images obtained for different
offsets, or for different reflection angles. The objective in MVA is to flatten these CIGs.
Wave-equation migration velocity analysis (WEMVA) (Sava & Biondi, 2004a,b) goes be-
yond flattening CIGs; i.e., WEMVA measures image focusing to estimate velocity errors.
To do so, migrated images produced by extended imaging conditions are needed. WEMVA
works better than MVA in complex media because WEMVA combines both kinematics
(through wave propagation) and data attributes (through image focusing). In contrast,
MVA employs only the kinematic information. Symes (2008) further states that MVA is
an approximate special case of waveform inversion.

Both traveltime tomography and MVA are able to estimate velocity models of the sub-
surface in large-scale (low-resolution), but neither of them can estimate velocity variation

in small-scale (high-resolution).

1.1.3 Full Waveform Inversion

With increasing computing power, seismic full waveform inversion (FWI) (Tarantola,
1984; Pratt et al., 1998; Pratt, 1999; Symes, 2008) has become an increasingly practical tool
for estimating subsurface parameters, which is the ultimate goal in exploration seismology.
FWI iteratively updates an estimated subsurface model and computes corresponding syn-
thetic data to reduce the difference (the data misfit) between the synthetic and recorded
data. The objective of FWI is to match the synthetic data F (m) and recorded datad in a
comprehensive way, such that all information in waveforms (e.g., traveltimes, amplitudes,
converted waves, multiples, etc.) is accounted for in the data misfit £ (m). An often used
form of E (m) is a least-squares function £ (m) = %HF (m) —d||%.

The FWI technique is attractive in its capability to estimate a subsurface model
with generally higher resolution (Operto et al., 2004) than does traveltime tomography
(Stork, 1992; Woodward, 1992; Vasco & Majer, 1993; Zelt & Barton, 1998) and migration
velocity analysis (MVA) (Yilmaz & Chambers, 1984; Sava & Biondi, 2004a,b). Another
advantage of FWI over traveltime tomography or MVA is that FWI can estimate multiple
parameters (e.g., velocity, density, attenuation, etc.). In practice, a macromodel generated

by traveltime tomography or MVA may serve as an initial model for FWL
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1.2 FWI challenges

Although FWI has a long history and definite benefits, two major obstacles have

prevented its widespread application in exploration seismology.

1.2.1 High Computational Cost

One obstacle is computational cost. FWI requires huge amounts of simulations and
reconstructions of seismic wavefields, and computational cost is proportional to the number
of sources or the number of shots. For large 3D models and seismic data sets, this cost may
be prohibitive. Therefore, various efforts from different perspectives have been expended
to reduce computational cost. One such method is to apply phase-encoding techniques
(Krebs et al., 2009) that combine all shots together to form a simultaneous source. The
computational cost of FWI using encoding techniques is thereby reduced by a factor roughly
equal to the number of encoded shots divided by the number of recorded shots.

FWI also requires multiple iterations of gradient descent to minimize the data misfit
(see Figure 1.2), and computational cost is proportional to the number of required itera-
tions. To reduce this number, one may reduce the number of model parameters used to
represent the subsurface model. To reduce the number of parameters, one can represent a
finely-sampled model as some basis functions of a sparse set of parameters. Many different
compression methods employed for this purpose, such as Fourier transform, wavelet trans-
form, curvelet transform, etc., share the same principle of projecting a model into another
sparse domain. Through the sparse representation, one discards unwanted or unresolvable
details that could be present in a more finely sampled model. The wavelet transform is a
representative technique used in inverse problems (Meng & Scales, 1996). However, such
methods do not account for geological structures in the subsurface that may be apparent

in seismic images, and so may yield models that are geologically unreasonable.

1.2.2 No Unique Solution

A second obstacle is that the inverse problem posed by FWI has no unique solution.
This is first because FWI is a typical underdetermined problem. Many different models
may yield synthetic data that match recorded data within a reasonable tolerance that ac-
counts for uncertainties and inadequacies in both recorded data and the theory underlying
computed synthetic data.

The presence of local minima in the data misfit E (m) is another source of the

nonuniqueness problem. The forward operator F is generally a nonlinear function of the
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Figure 1.2: Illustration of many iterations required to convergence to a solution model.

model m, thereby generating local minima in the data misfit function %”F (m) — d|?,
as illustrated in Figure 1.3. Iterative inversion methods may converge, in the presence of
local minima, to the global minimum if the initial model is close to the true model. If
the initial model is too far away from the true model, iterative methods may converge to
a local minimum. To eliminate local minima, one can linearize the inverse problem by
linearizing the forward operator F (Tarantola, 1984). As a consequence, the data misfit
function becomes §||Fm — d||?, which is a purely quadratic function of m and contains
only a global minimum (Snieder, 1998). However, this linearization approach is valid only

if the initial model is in the vicinity of the true model.

Cycle-skipping also causes nonunique solutions to FWI. As shown in Figure 1.4, cycle-
skipping occurs if the phase difference (time delay) between synthetic and recorded data is
larger than half a period of the dominant wavelet. In practice, the cycle-skipping problem
appears because it can be difficult to obtain an adequate initial model that is consistent
with unrecorded low frequencies. In particular, low-wavenumber components of models

are often poorly recovered by FWI because corresponding low-frequency content in data is
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Figure 1.3: Schematic of the local-minima problem in FWI. The data misfit has spurious
local minima because of the nonlinearity in forward modeling F (m) = d. If FWI starts
from a initial model (starting model 1) that is too far way from the true model, FWI may
converge to a local minimum. If FWI starts from a initial model (starting model 2) that
is close to the true model, FWI may converge to the global minimum.
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rarely recorded.

Both local-minima and cycle-skipping problems lead to models that poorly approx-
imate the subsurface. To mitigate such problems, multiscale approaches (Bunks, 1995;
Sirgue & Pratt, 2004; Boonyasiriwat et al., 2009) have been proposed. These methods re-
cursively add higher-frequency details to models first computed from lower-frequency data.
The fidelity of multiscale techniques depends fundamentally on the fidelity of low-frequency
content in recorded data. In practice, the low frequencies required to bootstrap a multi-
scale FWI technique may be unavailable. Other methods for addressing these problems
have been proposed as well. These include minimizing data misfit functions in logarithmic
and Laplace domains (Shin & Min, 2006; Shin & Ha, 2008).

To obtain better subsurface models, a priori information is useful to make an inverse
problem well determined. The a priori knowledge can take different forms. For exam-
ple, both geological and geophysical data, such as those obtained from boreholes, may
provide useful a priori constraints. Other useful constraints may be specified shapes and
orientations of geologic structures in the subsurface. Meng (2009) uses estimated dips of
reflectors as a constraint. Such a prioré information constrains gradients and updates to

models computed iteratively in FWL

1.3 Thesis Overview

In this thesis, I develop image-guided FWI, a new technique for decreasing compu-
tational cost by reducing the number of iterations required for convergence. This image-
guided FWI calculates and guides gradients using structural information derived from
seismic images as the a priori constraints. Subsurface models computed from these image-
guided gradients conform to geologic structures apparent in those images.

In Chapter 2, I first revisit basic concepts of FWI, analyze computational cost of
FWI, and illustrate some of its practical problems with a synthetic example.

In Chapter 3, I first exploit the relationship between convergence and model param-
eters, then propose the inverse problem in the sparse domain with fewer model parameters,
finally show how image-guided interpolation (Hale, 2009a) and its adjoint may be used to
constrain the calculations of gradients in image-guided FWL The same synthetic example
used in Chapter 2 is used to illustrate the effectiveness of image-guided FWI.

Chapter 4 discusses the advantages of image-guided FWL

Chapter 5 summarizes the thesis and discusses ideas for future investigation.
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Figure 1.4: Two synthetic monochromatic seismograms with a period 7T in (a) and (c) are
compared with the recorded seismogram in (b) to illustrate the cycle-skipping problem in
FWI. The synthetic monochromatic seismogram in (a) has a time delay larger than half
a period, and in the case FWI will update the model such that the (n + 1)th cycle in
(a) matches the nth cycle in (b). Therefore, FWI produces an inaccurate model. The
seismogram in (c) has a time delay smaller than half a period, and in the case FWI will
update the model to make the nth cycle in (c) match the nth cycle in (b), leading to a
correct model. Image courtesy of Virieux & Operto (2009).
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Chapter 2

Full waveform inversion

2.1 Summary

This chapter first provides some background knowledge about full waveform inversion
(FWI). I then analyze the composition of the computational cost of FWI, based on a
typical implementation of FWI. Finally, I provide a synthetic FWI example and discuss

some practical problems that could be encountered in FWIL

2.2 FWI as An Optimization Problem

Full waveform inversion (Tarantola, 2005) uses recorded seismic data d to estimate
parameters of a subsurface model m, given a forward operator F that synthesizes data. In
FWI, we seek a model m that minimizes the difference d — F (m). In seismic inversion,
as for most geophysical inversion problems, the forward data-synthesizing operator F is a
non-linear function of model parameters, such as seismic wave velocities.

Unfortunately, for almost any geophysical inverse problem, the forward operator F has
no inverse F~1, so we cannot simply invert for the model from the data using m = F~1(d).
Therefore, FWI is usually formulated as a least-squares optimization problem, in which

we compute a model m that minimizes the data misfit function
1 2
E(m) = 5lld - F (m)|*, (2.1)

where ||.|| denotes an L2 norm. All information in recorded seismic waveforms should, in
principle, be taken into account in the data misfit function. Therefore, FWI comprehen-
sively minimizes the difference in traveltimes, amplitudes, converted waves, multiples, etc.
between recorded and synthetic data. This all-or-nothing approach distinguishes FWI from
other methods, such as traveltime tomography, which focuses only on traveltime differences.
Monte Carlo (random) methods (Nocedal & Wright, 2000; Tarantola, 2005) test randomly

generated models to find one that minimizes the data misfit function E (m). However, the
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typically large number of model parameters makes such Monte Carlo methods impractical.

2.2.1 Newton-like Method

Gradient descent is a more practical alternative to a random search. We begin with
an initial model mg, which can be found using other inversion methods (e.g., traveltime
tomography or migration velocity analysis); then we use the gradient of the data misfit
function g = Vi, F = m evaluated at mg to search locally for a model m = mg + ém

that reduces the data misfit E (m).

The Taylor series expansion of equation 2.1 about the initial model is

E (mg + dm) = E (mo) + ém”g

+ %6mTH06m +.., (2.2)

where E'(myg) denotes the data misfit evaluated at my, g = g(mg) and Hy = H (my)
denotes the Hessian matrix comprised of the 2nd partial derivatives of E'(m), again eval-
uated at mg. If we ignore any term higher than the 2nd order in equation 2.2, this Taylor
approximation is quadratic in the model perturbation 0m, and we can minimize the data

misfit £ (m) by solving a set of linear equations:
Hpdm = —g, (2.3)
with a solution
ém = —H;g, . (2.4)

In Newton’s method for minimization of the data misfit E (m), we begin with the

initial model mg and solve iteratively for
ém; = —Hi_lgi , (2.5)

and

m;41 = m; — Hi—lgi ’ (2‘6)

where g; = g (m;) and H; is the Hessian matrix for the model m;. If we neglect nonlinearity
(e.g., multiple scattering) in the forward operator F', we obtain a Gauss-Newton method
(Pratt et al., 1998). However, in practice, the large size of the Hessian matrix H;, which

depends on the number of parameters in the model, prevents the application of Newton-like
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methods.

2.2.2 Iterative Method

Alternatively, the model update in equation 2.6 can be iteratively approximated by

replacing the inverse of the Hessian matrix with a scalar step length o:
m; = m; — o;h;, (2.7)

where the search direction h; is determined by conjugate gradients (Vigh & Starr, 2008):

hO = 80>
gl (g —8i-1)
ﬂ’l. = T .
8i-18i-1
h; = g; + Bihi1 . (2.8)

In each iteration, we compute the step length o; using a quadratic line search algorithm
(Nocedal & Wright, 2000).

2.3 Implementation of FWI

2.3.1 A Four-step Procedure

A gradient-descent implementation of FWI consists of four steps performed iteratively,

beginning with an initial model mg:

(i) Compute d — F (m;), the difference between recorded data d and synthetic data

F (m;) computed for the current model m;;
(ii) Compute the gradient g, = VmE;;
(iii) Search for a step length ¢; in the conjugate direction h;;
(iv) Compute the updated model m;; using equation 2.7.

2.3.2 Time Domain versus Frequency Domain

This gradient-descent version of FWI can be implemented both in the time domain
(Tarantola, 1984, 1986; Mora, 1989) and in the frequency domain (Pratt, 1999). Perhaps
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the greatest benefit of using frequency domain FWI is that we can select only a few frequen-
cies for inversion (Sirgue & Pratt, 2004). Unfortunately, this advantage does not extend
to inversion for deep subsurface models that require more frequencies. The advantages of
implementing FWI in the time domain, as noted by Vigh & Starr (2008), include increased
parallelism and reduced memory requirements, thereby making FWI more applicable to
large 3D models and data sets. In the examples shown in this report, I use reverse time

migration (RTM) and implement FWI in the time domain.

2.4 Analysis of Computational Cost

Most of the computational cost of FWI in this gradient-descent based implementation
lies in steps (ii) and (iii), and meanwhile the computational cost in steps (i) or (iv) is

neglectable.

2.4.1 Calculation of the Gradient

Although the gradient of the data misfit function g = V,E can be intuitively ob-
tained by taking the first derivative of the data misfit function E (m) with respect to each
element in m, the gradient calculated in this way is extremely expensive, especially when
the model m contains a large number of parameters. Alternatively, we can compute the

gradient in the following way by first rewriting the data misfit function as:
1
E(m) =5 (d - F (m))" (d - F (m)) . (2.9)

Subsequently, the gradient should be

__ OE(m) OF (m)
8= "5m =~ om

(F (m) —d) = (‘?F—(m))T ad, (2.10)

om

where 0d = F (m) — d is the data residual.

Applying the Born approximation to the forward modeling operator F, we have
F(m+ém)~F (m)+ G (m)dm, (2.11)

where G (m) describes the single-scattering of model perturbation ém. The single-scattering

operator G depends nonlinearly on the background velocity m and in this way m accounts

OF
for the kinematic of data. Therefore, we can substitute G for m in equation 2.10 and

om
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Figure 2.1: Schematic of a quadratic line-search method. Except for (0, Eq, ), this quadratic
search requires at least two trials of (step-length, misfit) pairs (e.g., (a1, Ea,) and (o2, Eq,))
to determine an optimal step-length aoptimal-

obtain the gradient as
g=GTsd. (2.12)

The gradient g in equation 2.12 is a migrated image of the data residual éd, because
the adjoint GT of the operator of G is migration. To compute such an image, we first
backpropagate the data residual 6d as a single simultaneous source in the background
velocity model m and then correlate this backpropagated wavefield with a forward wavefield
simulated in a model m. The gradient computed in this way is equivalent to a result of
prestack reverse time migration (RTM). This idea is introduced in Tarantola (1984) and

later is also referred to as the adjoint-state method (Tromp et al., 2005).

The major computational cost in RTM is spent in simulating two wavefields in a
full model space for all the shots. We approximately write this part of cost in FWI as
2N;Cp(m), where Nj is the number of shots and Cp(m) is the unit cost spent in simulating

a wavefield for a single shot.
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Components | Description Reduction method
N; the number of iterations speed up convergence
Ny the number of shots phase-encoding technique
CF(m) cost per shot in simulating | faster forward modeling ker-
wavefields nel

Table 2.1: Components that control the computational cost in FWI.

2.4.2 Cost of Line-search

Another part of the computational cost lies in searching for a step-length o to update
the model. Figure 2.1 illustrates an example of quadratic line-search. At least two trials
of step length are necessary in this quadratic search. For each trial, it requires simulating
a wavefield in the whole model space for all the shots. Therefore, this part of cost is larger

than or equal to 2NsCF(m)-

2.4.3 Total Cost in FWI

Because those four steps are performed iteratively, the total computational cost in
FWI Crwr is
Crwi < NiNsCp(y) (2.13)

where N; is the number of iterations required to converge to a solution model.

Table 2.1 summarizes these three components that directly control the computational
cost of FWI. From the point of decreasing computational cost view, a variety of efforts can
be expended to reduce N;, N;, and CF(m), respectively. Among them, reducing the unit
cost Cp(m) is a key ingredient, which involves developing a more efficient forward modeling
algorithm. To reduce N;, phase-encoding techniques have been recently employed in FWI.
Furthermore, speeding up the convergence of FWI is helpful to reduce the number of
iterations NV;, thereby reducing the total cost.

2.5 Synthetic Example

Figure 2.2(a) depicts a subsurface velocity model with two anomalies. One is a low-

velocity zone and another is a high-velocity bar, as shown separately in Figure 2.2(c). We
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refer to the model in Figure 2.2(a) as the true model m. Figure 2.2(b) displays the initial

model mg that we used in FWI, it is simply the true model m without the two anomalies.

To test FWI, we first create datad = F (m) using the true model m. Henceforth, for
consistency with the discussion above, we refer to these data as the “recorded” data, even
though we compute these noise-free data using the forward operator F, a finite-difference
constant-density solution to the 2D acoustic wave equation. A total of 25 shots are evenly
distributed on the top surface with an interval of 120 m; the receiver interval is 10 m. The
source is a Ricker wavelet with a peak frequency of 15 Hz. For example, Figure 2.3(a) shows
a common-shot gather for shot number 13 of the recorded data d. Figure 2.3(b) shows
the corresponding synthetic data F (mp) computed for the initial model mg displayed in
Figure 2.2(b). Figure 2.3(c) displays the difference d — F (myg), which is also known as
the data residual, that part of the recorded data that cannot be explained by the current
model. In the four steps of FWI, computation of this data residual is step (i).

In step (ii), we compute the gradient of the data misfit. As discussed by (Tarantola
& Valette, 1982; Pratt, 1999), this gradient is equal to the output of RTM applied to the
data residual shown in Figure 2.3(c), using the current model mg shown in Figure 2.2(b).
This method for the calculation of gradient is also referred to as the adjoint-state method
(Tromp et al., 2005). Figure 2.4(a) shows the gradient g, computed in this way for the
first iteration of FWI.

In step (iii), we then compute a step length ap that determines how much to change
our velocity model in this first iteration. We compute the step length using a quadratic
line search algorithm and search in a direction defined by conjugate gradients (Gong et al.,

2008). This line search requires computation of at least two synthetic data sets.

Finally, in step (iv), we update the current velocity model according to equation 2.7.
Figure 2.5(a) is the change dmyg in velocity computed in the 1st iteration; in this 1st

iteration, this change is simply a scaled version of the gradient computed in step (ii).

In subsequent iterations, the iterative four-step FWI process introduces additional
details, as indicated by the gradients displayed in Figure 2.4(b) and (c), which correspond
to the 2nd and 5th iterations, respectively. Figure 2.5(b) and (c) show the correspond-
ing accumulated velocity updates, the difference between the current and initial velocity

models.
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Figure 2.2: (a) The LVZ model courtesy of ConocoPhillips. (b) The initial velocity model
in FWI. (c) Velocity anomalies (one low velocity zone and one high velocity bar) created
by subtracting the initial model in (b) from the true model in (a).
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Figure 2.3: (a) The common-shot gather of shot number 13 in the recorded data set. (b)
The corresponding synthetic common-shot gather simulated in the initial velocity model
(Figure 2.2(b)). (c) The data residual for this shot. Intuitively, FWI needs to recover the
velocity anomalies in Figure 2.2(c), starting from an initial model in Figure 2.2(b) and the
data residual in (c).
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Figure 2.4: Gradient of the data misfit function in (a) the first iteration, (b) the second
iteration and (c) the fifth iteration. The gradient in each iteration is the result of RTM
applied to the current data residual, using the current velocity model.
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Figure 2.5: Accumulated velocity updates after (a) 1 iteration, (b) 2 iterations and (c) 5

iterations.
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Figure 2.7: Data residuals after (a) 1 iteration, (b) 2 iterations and (c) 5 iterations.
These residuals are differences between data simulated in models shown Figure 2.6 and
the recorded data shown in Figure 2.3(a), respectively.
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2.6 Problems in FWI

Figure 2.6 depicts velocity models that take FWI updates into account after 1, 2 and 5
iterations, respectively, and Figure 2.7 shows the corresponding data residuals. By looking
at Figure 2.6 and Figure 2.7, one may have a first impression that FWI fails to converge

to a satisfactory result, at least within the first 5 iterations.

2.6.1 Slow Convergence

After the 1st iteration, the data residual corresponding to shot number 13, as shown
in Figure 2.7(a), becomes significantly smaller than that in Figure 2.3(c). However, in
subsequent iterations, the data residuals shown in Figure 2.7(b) and (c) increase. This
nonmonotonic change of data residual in fact slows the convergence of FWI.

In principle, each iteration of FWI should reduce the data misfit E (m), but in the
search for a step length a;, FWI risks producing unsatisfactory models with larger data
residuals. Figure 2.8 plots the data misfit function E (m) as a function of the number
of iteration. For example, the data residual after the 2nd iteration of FWI is even larger
than the residual of the 1st iteration; a similar case occurs in the 4th iteration. Such

nonmonotonic relationship between E (m) and the iteration number is mainly caused by
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two reasons in the line search.

First, as noted in earlier section, the quadratic line search requires at least two trials
of step-length. Unfortunately, within a limited number (e.g., 5 in this paper) of trials
of gradient descent, FWI sometimes fails to find a step-length o; that decreases the data
misfit function E (m). In this case, FWI cannot be simply terminated. In order to continue
FWI, I keep the step-length that gives the smallest data misfit function E (m) in those five
trials, and hope that FWI can reduce E (m) in subsequent iterations. FWI in fact reduces
the data residual in the 3rd iteration, but we confront another increase of the data residual
in the 4th iteration.

Second, FWI updates the model in the conjugate direction h; instead of the gradient
direction g;, which guarantees the descent of the data misfit function. In contrast, the
conjugate direction may lead to temporal increase of the data residual. The well-known
iterative conjugate-gradient method, in fact, does not monotonically decrease the residual.

Another proof of slow convergence of FWI in this example is that FWI nearly cannot
reduce the data residual any more after the 5th iteration. Figure 2.9 shows data resid-
vals after FWI updates the model in the 6th, 8th and 10th iteration, respectively. The
data residuals in Figure 2.9 vary little, and this corresponds to the flatness of the objective
function curve shown in Figure 2.8. Because this example illustrates a reflection FWI, it re-
covers only high-wavenumber components but fails in recovering the low-/mid-wavenumber
components in the velocity model. Therefore, after the recovery of high-wavenumber com-

ponents, FWI eventually stops reducing the data misfit function.

2.6.2 Band-limited Data

Recall the peak frequency (15 Hz) of the Ricker wavelet in the above example. Clearly
the data used for FWI is highly band-limited. In other words, low-frequency and high-
frequency information cannot be recorded in the data. Particularly, the low frequencies in
data are crucial in FWI, because the absent low frequencies help resolve the intermediate-
and low-wavenumber (large-scale) components of the subsurface. Due to the absence of
low frequencies, FWI updates the velocity model only at locations of reflecting interfaces,
as shown in the previous example (see Figure 2.5).

For the same reason, the accumulated velocity updates produced by FWI, as we
observe from Figure 2.5, contain significant imprints of the seismic wavelet. Those wavelet
imprints thereby make those velocity updates look more like migrated images rather than

any reasonable perturbations to the initial velocity model.
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Chapter 3

Image-guided full waveform inversion

3.1 Summary

This chapter focuses on improving and speeding up convergence of FWL. I first explain
the relationship between the convergence rate of FWI and model parameters. Then the
inverse problem is posed with respect to fewer model parameters in the sparse domain.
Through inverting fewer model parameters, FWI converges more quickly to a more accurate
model. In particular, image-guided interpolation (Hale, 2009a) and its adjoint are employed

to build image-guided FWI for a sparsely parameterized model.

3.2 Convergence Rate and Model Parameters

Conjugate-gradient methods are guaranteed to minimize the quadratic misfit function
of a linear system within M iterations, where M is the number of model parameters in the
solution vector m (Nocedal & Wright, 2000). Often the number of iterations required for
convergence deceases with the number of model parameters to invert. More precisely, the
convergence rate of a conjugate-gradient method depends on the condition number of the
Hessian matrix H (Cohen, 1972; Wheeler & Wilton, 1988).

In practice, FWI is usually ill-posed due to a typically large condition number of the
Hessian matrix. A large condition number tends to appear especially when an inverse
problem has a large number of model parameters in m. Since the Hessian matrix H
measures the sensitivity of the data misfit function E (m) with respect to model parameters,
if the change of a model parameter in m cannot cause significant change in the data misfit
function E (m), the Hessian matrix H will have a small (or nearly zero) eigenvalue. As a
consequence, the condition number of the Hessian matrix can be large enough such that

the gradient-descent method used to solve a FWI problem converges slowly.
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3.3 Fewer Model Parameters

Inspired by the intuitive relationship between the convergence rate and the number
of model parameters, if we can pose a FWI problem that only needs to invert a few model
parameters, to which the data misfit function is sensitive, we can reduce the condition
number of the Hessian matrix and thereby the number of required iterations. Pratt et al.
(1998, Appendix A) discuss a point collocation scheme to reparameterize the model space
m for this purpose.

Similar to the point collocation scheme, subspace methods (Kennett et al., 1988;
Oldenburg et al., 1993) reconstruct the finely- and uniformly-sampled (dense) model m
from a sparse model s that contains a much smaller number of model parameters than
does the dense model m:

m = Rs, (3.1)

where R denotes a linear operator that links model parameters in the sparse model and

the dense model.

3.4 Inverse Problem in Sparse Domain

Differentiating both sides of equation 3.1, we have
dm = Rés . (3.2)

Then, substituting equation 3.2 into equation 2.5, we can reformulate the inverse problem
posed in equation 2.5, with respect to a smaller number of model parameters in the sparse
model s, as

H;Rés; = —g; . (3.3)

Because R is not a square matrix, equation 3.3 is different from conventional precondition-
ing.

However, we cannot solve equation 3.3 with a solution like ds; = — (HiR)_1 g; in
the sparse domain s because equation 3.3 is overdetermined; i.e., there are more equations
than parameters. Alternatively, we obtain a solution for equation 3.3 in the sparse domain
s:

8s; = — (RTH,R) 'R7g;, (3.4)

where R is the adjoint operator of R. This adjoint operator projects model parameters

from the dense model m to the sparse model s.
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Like equation 2.7, the model update ds can be iteratively approximated by replacing

the inverse of the projected Hessian matrix (RTH,-R) with a scalar step length o;:
Si4+1 = 8; — aihf‘ y (3.5)

where the conjugate direction h is determined by

h§ = RTgo )
B = (RTgi)T (RT%' -RTg; )
(RTg;_1) RTg; 4
_ g;-rRRT (gi - gi-l)
ng—lRRTgi—l ,
h{ = R"g, + Gih]; . (3.6)

In equation 3.5, the step length can be again achieved with a quadratic line-search
method. Equation 3.6 differs from equation 2.8 in that the gradient g; is replaced by RTg,,
which implies that equation 3.5 provides a solution for the FWI problem in the sparse
domain s. Because of fewer model parameters involved, the projected Hessian matrix
(RTHiR) can become better-conditioned and thus equation 3.5 requires fewer iterations

than equation 2.7 to converge to a solution model s.

As noted in equation 3.1, we can apply the linear operator R to both sides of equa-
tion 3.5 and thereby project the sparse model update ds; to obtain the dense model update
Jmi:

m;;; =m; — ozh)" (3.7)

where we compute the search direction h!® by projecting the sparse conjugate direction h}

to the dense domain:
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h§* = Rh§ = RRTg, ,
o (RTgi)T (RTgi - RTgi—l)

& (RTg;_,) "RTg,_,
_g/RRT (g;—g;,)
B ng—IRRTgi—l ,
hi* = RR'g; + gih"; . (3.8)

Equations 3.7 and 3.8 provide a solution m for FWI in the dense space with the advantage

derived from the solution s in the sparse space.

3.5 Choice of R

The projection operator R can take different forms, including Fourier transform,
wavelet transform, cubic splines, etc. Unfortunately, none of these forms accounts for the
geological information of the subsurface. In this paper, we implement R with image-guided
interpolation (IGI) (Hale, 2009a), which uses metric tensor fields to guide interpolation of
a few sparsely scattered data points, making the interpolant conform to structural features

in the gradient image g.

3.5.1 Image-guided Interpolation

The input of IGI is a set of scattered data, a set

F= {f1’f2’""fK}

of K known sample values f; € R that correspond to a set

X = {X1,X2,..., XK}

of K known sample points x; € R®. Combining these two sets forms a space (e.g., the
sparse model s), in which F and x denote sample values and coordinates, respectively. The
result of the interpolation is a function g (x) : R® — R, such that ¢ (x;) = fi. Here, the

dense model m consists of uniformly sampled values g (x).
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Image-guided interpolation includes the application of two linear operators:
R=QP, (3.9)

where P and Q denote nearest neighbor interpolation and blended neighbor interpolation,
respectively. We follow the steps in Hale (2009a) to describe details of P and Q:

1. P: solve

Vit(x)-D(x)Vt(x)=1,x¢ x;
t(x)=0,x€x (3.10)

for
t (x): the minimum time from x to the nearest known sample point xg, and
p(x): the nearest neighbor interpolant corresponding to fi, the value of the sample

point xi nearest to the point x.
2. Q: for a specified constant e > 2 (e.g., e = 4 in this thesis), solve
2(x) ~ 2V (x) D (x) Vg (x) = p(x) (311)
for the blended neighbor interpolant g (x).

In equation 3.10, the metric tensor field D (x) (van Vliet & Verbeek, 1995; Fehmers
& Hocker, 2003) represents structural features of the subsurface, such as structural orien-
tation, coherence, and dimensionality, and therefore the image-guided interpolation result
is geologically plausible. In n dimensions, each tensor D in the metric tensor field D (x) is
a symmetric positive-definite n x n matrix (Hale, 2009a). Letting p and q denote vectors
that contain all elements in p (x) and g (x), respectively, we can rewrite equation 3.11 in a
matrix-vector form:
(1+B™DB)q=p, (3.12)

where B corresponds to a finite-difference approximation of the gradient operator (Hale,
2009b). Therefore, q = Qp, where

Q= (1+B'DB) ', (3.13)

and this inverse can be efficiently approximated by conjugate-gradient iterations because
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Figure 3.1: An example of image-guided interpolation. (a) The original Marmousi model.
(b) The metric tensor field illustrated by ellipses. (c) A decimated Marmousi model, with
only 0.2% samples remaining. (d) Image-guided interpolation of samples in (c).

I + BTDB is symmetric and positive-definite (SPD). Intuitively, the nearest neighbor
interpolation operator P scatters values fi from sample points x; to the interpolation

ponits x, and Q smooths the nearest neighbor interpolant p.

Figure 3.1 illustrates an example of image-guided interpolation with a Marmousi ve-
locity model. This example demonstrates the potential of IGI to reduce the number of
model parameters. Figure 3.1(a) shows the original Marmousi model with 400 x 500 sam-
ples; ellipses in Figure 3.1(b) depict the metric tensor field D (x) of the Marmousi model;
Figure 3.1(c) represents an undersampled Marmousi model, with only 20 x 25 (0.2%) sam-
ples remaining; Figure 3.1(d) displays the image-guided interpolation result. With IGI, we
can reconstruct the Marmousi model in great detail from only a sparsely-sampled model.

In practice, we can compute the metric tensor field from migrated images.
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3.5.2 Adjoint Image-guided Interpolation

Because QT = Q, we can write the adjoint image-guided interpolation as
RT = PTQT =PTQ. (3.14)

The adjoint operator Q7 is again a two-step process:

1. Q%(= Q): solve equation 3.11 again to smooth the input image;

2. PT: solve equation 3.10 for t (x) and gather information from the interpolation

points x to the sample points xg.

3.6 Implementation of Image-guided FWI

In this section, our scheme is to use image-guided interpolation (Hale, 2009a) to
reduce the number of model parameters in the calculation of the gradient of the data misfit
function. Because we choose image-guided interpolation as the operator to link the dense
model m and the sparse model s, we refer to the gradient RRTg in equation 3.7 as the
image-guided gradient. We also refer to implementation of FWI using the image-guided
gradient as image-guided FWI, which again consists of four steps performed iteratively,

beginning with an initial model my:
(i) Compute the data difference d — F (m,);
(ii) Compute the gradient g;, RTg;, and RRTg;;
(iii) Search for a step length «; in the conjugate direction hi";
(iv) Compute the updated model m;;; using equation 3.7.

Compared with the four steps of conventional FWI, the only significant difference is the
calculation of image-guided gradient in step (ii), where we not only compute the original
gradient g;, but also compute the projected gradient R7g, and image-guided gradient
RRTgi. Although these two additional computations are required in image-guided FWI,
the additional cost can be neglected because it is an insignificant part of the total cost of

FWI, which includes much more expensive wavefield simulations.




32 Chapter 3. Image-guided full waveform inversion

3.7 Synthetic Example of Image-guided FWI

To illustrate the feasibility of image-guided FWI, we test this technique using the
previous model with the same experimental settings, and compare the image-guided FWI
results with conventional FWI results.

In step (i), we start with the same initial model my displayed in Figure 2.2(b), and
so we obtain the same data residual d — F (my) displayed in Figure 2.3(c).

In step (ii), we first compute the gradient of the data misfit function as in step (ii)
in the conventional FWI, and thereby obtain a gradient displayed in Figure 2.4(a) that
corresponds to the data residual shown in Figure 2.3(c) and the current model mgy shown
in Figure 2.2(b), respectively.

We then compute the image-guided gradient. To obtain this gradient, one must
compute the metric tensor field D (x) that corresponds to the original gradient g of the
data misfit function E (m). Because of the structural coincidence between the migrated
image and the gradient, we can obtain the metric tensor field D (x) from the migrated
image. Figure 3.2(a) displays ellipses which correspond to the structural orientation of the
subsurface over the migrated image. We must also choose several sparse sample points,
as depicted by black dots in Figure 3.2(b). In this example, we select only six samples,
two of which are located between reflectors. Figure 3.2(c) shows the image-guided gradient
RRTgO computed in this way for the 1st iteration of image-guided FWI.

In step (iii), we use the same quadratic line-search algorithm to compute a step length
ogp. The search direction hj" is determined by conjugate gradients in equation 3.8.

Finally, in step (iv), we update the current velocity model according to equation 3.7.
Figure 3.3(a) is the change ém in the velocity model computed in the 1st iteration of
image-guided FWI; this change is simply a scaled version of the image-guided gradient in
step (ii).

With the image-guided gradient displayed in Figure 3.2(c), image-guided FWI can,
even in the 1st iteration, recover most velocity anomalies, as indicated by Figure 3.3(a).
Figure 3.5(a) depicts the data residual of shot number 13 after the 1st iteration. However,
comparison between Figure 3.5(a) and the data residual displayed in Figure 2.7(a) shows
that the 1st iteration of image-guided FWI does not reduce the data misfit as significantly
as the conventional FWI does. This is because the image-guided gradient RR” g, employed
in image-guided FWI cannot clearly resolve the boundaries of the velocity anomalies (see
Figure 3.4(a)) due to the smoothing process Q embedded in the second step of the image-
guided interpolation R.
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Figure 3.2: (a) The metric tensor field and (b) six selected samples (black dots) overlaid
on the gradient image. (c) Image-guided gradient.
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Figure 3.3: Accumulated velocity updates after (a) 1 iteration, (b) 2 iterations and (c) 5
iterations. The image-guided gradient is used only in the first iteration.
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Figure 3.4: Updated velocity models after (a) 1 iteration, (b) 2 iterations and (c) 5 itera-
tions.
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Figure 3.5: Data residual after (a) 1 iteration, (b) 2 iterations and (c) 5 iterations. The
image-guided gradient is used only in the first iteration.
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Figure 3.7: Variation of the data misfit function versus iterations in image-guided FWI.
Compared with conventional FWI, image-guided FWI monotonically decreases the data
misfit.

I solve this problem by using several iterations of conventional FWI to sharpen the
boundaries of velocity anomalies. Figure 3.3(b) and (c) are accumulated velocity updates
after the 2nd and 5th iterations, respectively. With sharper boundaries, the data simulated
in updated velocity model shown in Figure 3.4(b) and 3.4(c) match well with waveforms in
the recorded data, thereby decreasing corresponding data residuals significantly, as shown
in Figure 3.5(b) and (c). Figure 3.6 shows data residuals after higher-iteration updates, and
data residuals are further reduced. Figure 3.7 plots the data misfit objective function as a
function of the iteration number. The objective function of image-guided FWI decreases

monotonically in the first 10 iterations, unlike that of conventional FWI.
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Chapter 4

Discussion

4.1 Summary

The synthetic example demonstrates the improvements of image-guided FWI, which
changes only one step in the four-step implementation of conventional FWI. Using image-
guided gradient, image-guided FWI speeds convergence by mitigating the limitations of
line-search and the absence of low frequencies in recorded data. The effectiveness of image-

guided FWI depends on sample selections.

4.2 Line Search

This thesis used a quadratic line-search method to seek a scalar step length that
determines how much the velocity model can change. The best situation for this quadratic
line search is that we need only two attempts of gradient descent to calculate a step length
that decreases the data misfit function. Unfortunately, in some cases, even after many
attempts of gradient descent, FWI cannot find a step length to decrease the data misfit
function. Because each gradient descent requires a simulation of seismic wavefields of all
sources in a dense model space, the line-search approach is quite expensive. Figure 3.7
clearly indicates the failure of the conventional FWI in searching for a proper step length

in the 2nd and 4th iterations, using only five trial step lengths.

Although more sophisticated line-search methods may help overcome the limitation
of the quadratic line search, I suggest the use of image-guided FWI to avoid the limitation,
as indicated by the change of the data misfit function in Figure 3.7. Image-guided FWI
successfully finds a step length to decrease the data misfit function in the first 10 iterations,

again using only five trial step lengths.




40 Chapter 4. Discussion

4.3 Low Frequencies

As mentioned in the introduction, the absence of low frequencies in data is one of the
major reasons for local minima and cycle-skipping, which prevent FWI from converging
to a correct model. Multiscale approaches are proposed to solve the problem by gradually
adding high-frequency details into inversion results obtained from low-frequency data. Al-
though those multiscale approaches often start from impractical low frequencies, a question
remains. Do low frequencies in data really help? As noted earlier, the velocity updated
by FWI maintains imprints of the seismic wavelet because of band-limited data. For this
reason, even though one can take advantage of low frequencies in data, wavelet imprints
remain and degrade the velocity updates. This degradation is evident in migrated images.

Figure 4.1 compares migrated images with the initial model shown in Figure 2.2(b), the
updated model with change shown in Figure 2.5(c), and the updated model with change
shown in Figure 3.3(c), respectively. Because of velocity anomalies, deeper reflectors in
Figure 4.1(a) do not appear at the correct depth; these deeper reflectors in Figure 4.1(b)
appear at almost the same position as in Figure 4.1(a). This mislocation implies that the
velocity updated by conventional FWI cannot correct the traveltime mismatch in the data
set. One reason for this incorrect update is the wavelet imprint in the velocity updates
apparent in Figure 2.5(c). Only the migrated image with the image-guided FWI model
places these deeper reflectors at the correct depth, as indicated by Figure 4.1(c).

Rather than dealing with unreliable low frequencies in recorded data, image-guided
FWI mitigates the absence of low frequencies in the data space by the image-guided in-
terpolation in the model space. Comparison between the original gradient (Figure 2.4(a))
and the image-guided gradient (Figure 3.2(c)) illustrates the appearance of more low fre-

quencies.

4.4 Limitation of Image-guided FWI

The effectiveness of image-guided FWI depends strongly on how sparse sample points
are chosen. In this thesis, I manually picked several sample points, some of which are
located between strong structural features, such as reflectors, which are outlined by struc-
ture tensor fields. In the example of image-guided FWI in this thesis, if those samples
between reflectors were omitted, image-guided interpolation would fail to properly add

low-frequency information to the model.



Yong Ma / Full waveform inversion with image-guided gradient 41

Distance (km)
0 0.5 1 1.5 2

2.5

04
_F0.2
0.5 1
1 0.1
= ; @
E s b
= 0 -T‘i
a 2 E
a ~ <
25 -0.1
3
’ -0.2
3.5
(a)
Distance (km)
1.5

0 05 1

2 2.5

0
0.2
0.5
1 0.1
= @
Es 3
£ 0 £
8 £
2.5 -0.1
3% --0.2

(b)

Distance (km)
0 0.5 1 1.5 2 2.5

Depth (km)
Amplitude

Figure 4.1: Migrated images with (a) the initial model, (b) the conventional FWI model
after 5 iterations, and (c) the image-guided FWI model after 5 iterations. Two red lines
in each figures indicate the correct depth of reflectors.
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Chapter 5

Conclusions and future work

5.1 Conclusions

I have proposed image-guided FWI for speeding up the convergence and mitigating the
absence of low frequencies. Different from taking advantage of unreliable low frequencies in
the data, as do multiscale approaches, this method reduces the number of model parameters
and yields low frequencies in the model space by computing the image-guided gradient
with image-guided interpolation and its adjoint. The synthetic example shown in this
thesis illustrates that image-guided FWI improves both inversion speed and quality without
significant additional cost. Because the structural features in the subsurface are taken into
consideration, models updated by image-guided FWI are geologically sensible. This thesis
tests image-guided FWI with only a simple synthetic example, and further investigations

of this technique with more realistic models and real data are necessary.

5.2 Sample Selection in IGI

As noted in the previous section, effectiveness of the image-guided FWI technique de-
pends on sample selections. Further study on sample selection should address the following

questions:
e How many samples are necessary and sufficient to build the image-guided gradient?
e Where are those samples best located?

A baseline criteria for selecting samples is that the Hessian matrix H (or the projected
Hessian RTHR) should become better conditioned. For this to happen, samples should
be located in areas where changes in model parameters will create significant changes in
data.
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5.3 Which Iteration Should Be Image-guided?

Image-guided FWI plays an important role in improving the convergence by reducing
the number of model parameters as well as incorporating low frequencies in the model
space. However, conventional FWI is still needed to enhance high-frequency components.

Further investigation on the optimal integration of two kinds of FWI is necessary:
e What are the criteria for switching between conventional FWI and image-guided

FWI?

5.4 FWI in Reduced Model Space

Image-guided FWI is simply FWI performed in a reduced model space. The feasibility
of FWI in the reduced model space comes from the fact that a dense model used in
simulation of seismic wave propagation has redundancy. For example, the grid size in
the finite-difference approximation is usually small relative to the wavelengths of seismic
waves. This redundancy in the model space is even more obvious when some kind of a

priori knowledge (e.g., structural features) can be used to describe the model.

5.4.1 Direct Conjugate-gradient Solution

In the thesis, I designed the image-guided FWI by applying the image-guided inter-
polation operator R onto the gradient. With further investigation, R might be directly

combined with the wave equation. For example, a linear system is formulated as
Fm=d. (5.1)
With equation 3.1, we can rewrite equation 5.1 as
FRs=d. (5.2)
The solution for equation 5.2 is equivalent to the solution for the following equation:
RTFTFRs = RTF7d (5.3)

where FT is the adjoint operator of F. In seismic migration language, F is the modeling
operator and FT is the migration operator. If RTFTFR remains sparse, symmetric and

positive-definite, equation 5.3 can be efficiently solved using a direct conjugate-gradient
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solver with respect to a reduced set of parameters s. In this case, we can avoid line-search

approaches, which are necessary in this thesis.

5.4.2 Use RTHR

Most of the computational cost of FWI lies in the search for a scalar step length
in the gradient direction g or conjugate direction h. This scalar step-length is a global
parameter that scales the whole model space uniformly. Intuitively, this global scaling
could be unreliable, because the gradient image g might not proportionally and correctly
measure the model update of the subsurface, especially in areas with poor illumination.

Instead, we might search for a vector (or a matrix); i.e, we need a set of distributed
parameters to scale the gradient image g locally with different weights. One example of
such a set of distributed parameters can be the inverse of the (approximated) Hessian
matrix H in the Newton-like method used to solve FWI. However, the typically large
number of model parameters makes the computation of the Hessian matrix and its inverse
impractical. A more practical way is to compute the projected Hessian matrix RTHR,
which corresponds to a sparse model with a reduced number of parameters. An efficient

algorithm to compute the projected Hessian matrix RTHR is critical.

5.4.3 Multiparameter FWI1

FWI often focuses on inverting for a velocity model of the subsurface, and meanwhile
it is also important to invert for a density model that in part accounts for the amplitude
mismatch between recorded and synthetic data. Multiparameter FWI becomes more feasi-
ble in the reduced model space. To invert for velocity and density models simultaneously,
redundancies of both velocity and density can be taken into account in the reduced model

space method.

5.4.4 Application of Borehole Data

FWI should produce models that conform to borehole measurements. In the reduced
model space, FWI may sacrifice accuracy for efficiency, and in this case, borehole data are

useful to
e Constrain inversion in the data space and the model space;

e Estimate uncertainty of FWI.
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Moreover, borehole data can also be incorporated into steps of A draft for image-
guided FWI with borehole data is that, from an initial model my, we can perform following

steps iteratively:
e Obtain a migrated image with the current model;
e Apply image-guided interpolation to borehole data for an model for the next step;

e Update the model in the previous step using one iteration of image-guided FWI (or

conventional FWT if necessary).

Here, the borehole data help build a better initial model for image-guided FWI.



Yong Ma / Full waveform inversion with image-guided gradient 47

References

Batzle, M., & Wang, Z.J. 1992. Seismic properties of pore fluids. Geophysics, 57(11),
1396-1408.

Boonyasiriwat, C., Valasek, P., Routh, P., Cao, W., Schuster, G. T., & Macy, B. 2009. An
efficient multiscale method for time-domain waveform tomography. Geophysics, 74(6),
WCC59-WCC68.

Bunks, C. 1995. Multiscale seismic waveform inversion. Geophysics, 60(5), 1457.

Claerbout, J. F. 1985. Imaging the earth’s interior. Cambridge, MA, USA: Blackwell
Scientific Publications, Inc.

Cohen, A. I. 1972. Rate of Convergence of Several Conjugate Gradient Algorithms. SIAM
Journal on Numerical Analysis, 9(2), 248-259.

Etgen, J., Gray, S. H., & Zhang, Y. 2009. An overview of depth imaging in exploration
geophysics. Geophysics, T4(6), WCA5-WCA17.

Fehmers, G. C., & Hocker, C. F. W. 2003. Fast structural interpretation with structure-
oriented filtering. Geophysics, 68(4), 1286-1293.

Gong, B., Chen, G., Yingst, D., & Bloor, R. 2008. 3D waveform inversion based on reverse
time migration engine. SEG Technical Program Ezpanded Abstracts, 27(1), 1900-1903.

Hale, D. 2009a. Image-guided blended neighbor interpolation. CWP Report, 634(634).
Hale, D. 2009b. Structure-oriented smoothing and semblance. CWP Report, 635(635).

Jiao, J., Lowrey, D. R., Willis, J. F., & Martinez, R. D. 2008. Practical approaches for
subsalt velocity model building. Geophysics, 73(5), VE183-VE194.

Kennett, B.L.N., Sambridge, M.S., & Williamson, P.R. 1988. Subspace methods for large
inverse problems with multiple parameter classes. Geophysical Journal, 94(2), 237-247.

Krebs, J. R., Anderson, J. E., Hinkley, D., Neelamani, R., Lee, S., Baumstein, A., &
Lacasse, M. 2009. Fast full-wavefield seismic inversion using encoded sources. Geophysics,
74(6), WCC177-WCC188.

Meng, Z. 2009. Dip guided full waveform inversion. Patent, 41279-USPRO.

Meng, Z., & Scales, J. A. 1996. 2D tomography in multi-resolution analysis model space.
SEG Technical Program Ezpanded Abstracts, 15(1), 1126-1129.

Mora, P. 1989. Inversion = migration + tomography. Geophysics, 54(12), 1575.




48 Chapter 5. Conclusions and future work

Nocedal, J., & Wright, S. J. 2000. Numerical Optimization. Springer.

Oezsen, R. 2004. Velocity modelling and prestack depth imaging below complex salt struc-
tures: a case history from on-shore Germany. Geophysical Prospecting, 52(6), 693-705.

Oldenburg, D.W., McGillvray, P.R., & Ellis, R.G. 1993. Generalized subspace methods for
large-scale inverse problems. Geophysical journal international, 114(1), 12-20.

Operto, S., Ravaut, C., Improta, L., Virieux, J., Herrero, A., & Dell’Aversana, P. 2004.
Quantitative imaging of complex structures from dense wide-aperture seismic data by

multiscale traveltime and waveform inversions: a case study. Geophysical Prospecting,
52(6), 625-651.

Pratt, R. G. 1999. Seismic waveform inversion in the frequency domain, Part 1: Theory
and verification in a physical scale model. Geophysics, 64(3), 888.

Pratt, R.G., Shin, C., & Hicks, G.J. 1998. Gauss-Newton and full Newton methods in
frequency-space seismic waveform inversion. Geophysical Journal International, 133(2),
341-362.

Sava, P., & Biondi, B. 2004a. Wave-equation migration velocity analysis. I. Theory. Geo-
physical Prospecting, 52(6), 593-606.

Sava, P., & Biondi, B. 2004b. Wave-equation migration velocity analysis. II. Subsalt imag-
ing examples. Geophysical Prospecting, 52(6), 607-623.

Shin, C., & Ha, W. 2008. A comparison between the behavior of objective functions for
waveform inversion in the frequency and Laplace domains. Geophysics, 73(5), VE119-
VE133.

Shin, C., & Min, D. J. 2006. Waveform inversion using a logarithmic wavefield. Geophysics,
71(3), R31-R42.

Sirgue, L., & Pratt, R. G. 2004. Efficient waveform inversion and imaging: A strategy for
selecting temporal frequencies. Geophysics, 69(1), 231.

Snieder, R. 1998. The role of nonlinearity in inverse problems. Inverse Problems, 14(3),
387.

Stork, C. 1992. Reflection tomography in the postmigrated domain. Geophysics, 57(5),
680-692.

Symes, W. W. 2008. Migration velocity analysis and waveform inversion. Geophysical
Prospecting, 56(6), 765-790.

Tarantola, A. 1984. Inversion of seismic-reflection data in the acoustic approximation.
Geophysics, 49(8), 1259-1266.

Tarantola, A. 1986. A strategy for nonlinear elastic inversion of seismic reflection data.
Geophysics, 51(10), 1893—1903.



Yong Ma / Full waveform inversion with image-guided gradient 49

Tarantola, A. 2005. Inverse Problem Theory and Methods for Model Parameter Estimation.
Society for Industrial and Applied Mathematics.

Tarantola, A., & Valette, B. 1982. Generalized non-linear inverse problems solved using
the least-squares criterion. Reviews of Geophysics, 20(2), 219-232.

Tromp, J., Tape, C., & Liu, Q.Y. 2005. Seismic tomography, adjoint methods, time reversal
and banana-doughnut kernels. Geophysical Journal International, 160(1), 195-216.

van Vliet, L. J., & Verbeek, P. W. 1995. Estimators for Orientation and Anisotropy in
Digitized Images. Proceeding of the First Annual Conference of the Advanced School for
Computing and Imaging, 442-450.

Vasco, D.W., & Majer, E.L. 1993. Wavepath travel-time tomography. Geophysical Journal
International, 115(3), 1055-1069.

Vigh, D., & Starr, E.W. 2008. 3D prestack plane-wave, full-waveform inversion. Geophysics,
73(5), VE135-VE144.

Virieux, J., & Operto, S. 2009. An overview of full-waveform inversion in exploration
geophysics. Geophysics, 74(6), WCC1-WCC26.

Wang, B., Kim, Y., Mason, C., & Zeng, X. 2008. Advances in velocity model-building
technology for subsalt imaging. Geophysics, 73(5), VE173-VE181.

Wheeler, J.E., & Wilton, D.R. 1988. Comparison of convergence rates of the conjugate
gradient method applied to various integral equation formulations. Pages 229-232 of:
Antennas and Propagation Society International Symposium.

Woodward, M. J. 1992. Wave-equation tomography. Geophysics, 57(1), 15-26.

Yilmaz, O., & Chambers, R. 1984. Migration velocity analysis by wave-field extrapolation.
Geophysics, 49(10), 1664-1674.

Zelt, C. A., & Barton, P. J. 1998. Three-dimensional seismic refraction tomography: A
comparison of two methods applied to data from the Faeroe Basin. J. Geophys. Res.,
103(B4), 7187-7210.










]




