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CWP Policy on Proprietary Printed 

Material 

New printed material that is produced at the Center for Wave Phenomena under Con- 

sortium support is presented to Sponsors before it is released to the general public. We 

delay general publication by at least 60 days so that Sponsors may benefit directly from 

their support of the Center for Wave Phenomena. 

During this delay, Sponsors may make whatever use of the material inside their organi- 

zation that they deem proper. However, we expect that all Sponsors will respect the rights 

of other Sponsors, and of CWP, by not publishing these results externally and indepen- 

dently, in advance of this 60-day delay (even with attribution to CWP). Please refer to your 
Consortium Membership Agreement under the paragraph entitled “Sponsor Confidentiality 

Obligation.” 

Those reports in this book that were produced primarily under consortium support 

and have not been previously distributed or submitted for publication, will be available for 

general distribution by October 1, 2009. 

If you have independently generated results that duplicate or overlap these, and plan 

to submit them for publication under your own name before this date, please notify us 

immediately, so that misunderstandings do not arise. 
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1 Welcome Words from the Director 

The Center for Wave Phenomena (CWP) is an international group with students and faculty from 

China, France, Japan, Korea, India, Italy, the Netherlands, Nigeria, Romania, Russia, and the 

United States. The international character of our center reflects not only the rapid globalization 

that is happening, but also the increasing diversity of the U.S. population. As in any situation 

where people from different cultures meet, there is sometimes linguistic and cultural confusion.! 

This confusion, however, is compensated by the enrichment inherent to a cultural mix. At CWP we 

put much emphasis on effective communication as part of the education of our students, through 

writing, training, and intensive coaching for oral communication. We also provide workshops that 

address cross-cultural issues that students may encounter. As a result, our students learn to work 

effectively in the international environment in which geophysicists operate. We cherish the mix of 

nationalities in CWP and discover daily on the work-floor that apparent differences are only a thin 

veneer that covers the humanity that we share. 

CWP has a double mission of carrying out research and education. In our research we focus 

on cutting-edge techniques that enhance our capabilities for imaging, modeling, monitoring, visu- 

alizing, and interpreting seismic data. In our teaching we aim to deliver the technical skills needed 

for a career in industry or academia. We also aim to create a nurturing environment for students, 

a research and learning environment that helps students realize their potential and that fosters a 

balanced growth in intellectual and human skills needed for effective and compassionate leadership 

in science and technology. The students, staff, and faculty at CWP constitute a wonderful group 

of people. What a joy it is to work with this group! 

With great pleasure, we welcome representatives of our sponsor companies to the 26th Annual 

Project Review Meeting and look forward to the opportunity to exchange ideas and thoughts about 

this past year’s projects and our plans for the future. Dialogue with sponsor representatives helps 

us focus on the scientific problems that are important to your organizations. We look forward 

to using the Project Review Meeting as a platform for such discussions. It is fitting that we will 

celebrate the 70th birthday of Norm Bleistein with a dinner at the end of the meeting. Norm is 

not only one of the founders of CWP, he also has played an important role in educating students 

over more than 26 years. 

This edition of the report on the Consortium Project at the Center for Wave Phenomena 

summarizes much of the research conducted within CWP since the 2009 Project Review Meeting. 

Note that the papers in this report and those presented orally during the Annual Project Review 

Meeting, May 17-20, 2010, only partially overlap. 

Roel Snieder, Director 

Center for Wave Phenomena 

May 2010 

  

1T am surprised how often Dutch jokes do not resonate with colleagues of other nationalities. 
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2 Papers in this Report 

The papers in this volume are grouped into the following categories: imaging, velocity estimation, 

image processing & interpretation, seismic interferometry, electromagnetic fields, and anisotropy. 

These categories show both similarities to and differences from those of the past few years, indicative 

of both the continuity and expanding breadth of our research program. 

Imaging has traditionally been a major focus at CWP. This book contains five contributions 

on this topic. Sava and Vasconcelos discuss the imaging condition for wave-equation migration 

which is critical for the development of wide-azimuth wavefield-based velocity analysis required 

by depth imaging in complex geologic environments. They concentrate in particular on the high 

computational cost required by the extended images and propose to use extended common-image- 

point (CIP) gathers constructed at sparse points distributed throughout the image at locations 

consistent with the geologic structure. Godwin and Sava discuss wave-equation imaging with si- 

multaneous sources using a matrix representation of the migration process. They show that the 

problem of optimal encoding that enhances structure and reduces cross-talk can be cast as the 

problem of decomposing an approximation of the identity matrix using singular value decompo- 

sition. They conclude that by using their amplitude modulation scheme it is possible to achieve 

migration speed-up factors of an order of magnitude. Perrone and Sava discuss a complementary 

shot encoding scheme that is based on phase delays applied to the recorded data. They compare 

and contrast conventional encoding schemes and conclude that an optimal combination of high 

spatial resolution and low cross-talk between unrelated experiments can be achieved at a mini- 

mal computational cost increase using dithered-plane encoding. Vasconcelos, Sava, and Douma 

discuss the connections between the extended images constructed by wave-equation imaging and 

the theory of seismic interferometry. They characterize extended images as locally scattered fields 

reconstructed by image-domain interferometry and conclude that such images can in principle ac- 

count for nonlinear effects in the imaging process with application to migration of multiples, and for 

amplitude corrections. Bleistein and Gray close this section with a contribution on true-amplitude 

3-D Gaussian beam migration. 

The section of velocity estimation contains four contributions. Yang and Sava discuss the 

applicability of extended common-image-point gathers to model building using wave-equation mi- 

gration velocity analysis. They concentrate on the efficient implementation of migration and mi- 

gration velocity analysis with extended images in the general framework of downward continuation. 

They also explore the use of differential semblance to velocity analysis with extended images and 

formulate several alternative penalty operators leading to smooth and convex objective functions. 

Yan and Sava discuss model building for multicomponent data. They suggest the use of a process in 

which the P and S velocities are estimated sequentially using extended common-image-point gath- 

ers. Their proposed method avoids the need for complicated image registration and it is suitable for 

model building using wave-equation migration velocity analysis adapted for converted waves. Ma, 

Hale, Meng and Gong describe a method for improving the computational efficiency of gradient 

descent in full waveform inversion; they propose the use of image-guided interpolation and its ad-



joint to compute an image-guided gradient. Luo and Hale describe the use of weighted semblance, 

a simple and inexpensive modification to the conventional semblance calculation, to increase the 

resolution of NMO-velocity spectra. 

The section on image processing and interpretation describes algorithms that might typi- 

cally be applied after seismic imaging to facilitate seismic interpretation and subsurface modeling. 

Liang, Hale and Mauéec propose a new method for processing seismic images that simultaneously 

detects faults and estimates relative displacements of geologic layers on both sides of those faults. 

Engelsma and Hale describe a new method for interactive 3D painting of geologic features in seismic 

images. Their method uses 3D metric tensor fields to automatically warp a 3D digital paintbrush 

so that it conforms to imaged features. In a separate paper, they describe a method for visualizing 

such tensor fields, which are useful in a variety of image-processing algorithms, including image- 

guided interpolation. Hale demonstrates the use of image-guided interpolation to construct 3D 

images of borehole data that conform to features in a 3D seismic image. Liang and Hale describe 

a new efficient and robust implementation of natural neighbor interpolation, and compare it with 

other implementations. 

The section on interferometry starts with a two-part tutorial by Wapenaar, Snieder, et al. 

This tutorial was written on invitation for the 75th anniversary issue of GEOPHYSICS. Part 1 

of the tutorial covers the basic principles of seismic interferometry using idealized simple models, 

and part 2 covers the mathematical background and sketches recent developments in this field of 

research. The principle of equi-partitioning is often invoked to justify the extraction of the impulse 

response of a system from field fluctuations. Equipartitioning refers to distribution of energy in 

a system that is homogeneously distributed in some sense. Snieder, Slob and Wapenaar present 

several examples of equi-partitioning and its relation to seismic interferometry, pointing out that 

the meaning of equi-partitioninig in these different examples is not necessarily the same. They 

show that while equi-partitioning may be a necessary condition for Green’s function extraction, it 

is not a sufficient condition. When dense networks of seismometers are available, one can retreive 

the full wavefield that propagates across the network by cross-correlating the field recorded at each 

sensor with the field recorded at a master station. Lin, Ritzwoller, and Snieder use this to extract 

the full wavefield that propagates through US-Array in the western part of the USA. Since different 

stations can be used as a master station, one can retrieve the surface waves propagating in different 

directions at each point in space. From the surface waves traveling in different directions one 

can determine the azimuthal anisotropy at every point. They show that the obtained azimuthal 

anisotropy agrees well with tectonic features, in particular estimates of the strain. One might 

think that in order to extract scattered waves in seismic interferometry, one just needs to correlate 

scattered waves with scattered waves. Fleury, Snieder, and Larner show that this is not the case. 

They show, in fact, that the cross-correlation of the scattered waves with the direct wave and 

the cross-correlation of scattered waves with scattered waves are both needed to extract scattered 

waves. They show this for a large class of linear systems that include waves that reflect off layers 

in the subsurface. Snieder and Fleury illustrate this principle for the case of isolated scatterers in 

an acoustic medium. They show that the generalized optical theorem applied to each scatterer is 
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essential for the correct retrieval of the impulse response from field fluctuations. 

The research of the past year on applications of interferometry to electromagnetic fields has 

led to three papers in electromagnetic methods. Fan, Snieder, et al. study the application 

of synthetic aperture methods to Controlled Source Electromagnetics (CSEM). They show that 

by making suitable combinations of the fields excited by a small antenna, one can synthesize the 

response of the system to a large antenna. In this process one can direct the antenna in specific 

directions. They show that this increases the sensitivity of CSEM measurements to hydrocarbons 

and illustrate this with an example with field data. The inversion of CSEM data is in practice 

based computationally-intensive data fitting methods. Kwon and Snieder investigate the use of the 

inverse scattering series in CSEM as an alternative. The application of the inverse scattering series 

has been studied extensively for seismic problems by Art Weglein at the University of Houston. 

It is the long wavelength of the fields used in CSEM that makes the inverse scattering series 

an interesting alternative to brute-force data fitting methods. Last year we presented the new 

formalism for Lagrangian Green’s function extraction, and showed that it is possible to extract 

the impulse response of potential fields from quasi-static field fluctuations. Snieder, Slob, and 

Wapenaar present numerical examples that show that electrostatic potential for a monopole can 

be extracted from field fluctuations that are generated by random dipoles. 

The section on seismic anisotropy includes five papers. Tsvankin et al. present a comprehen- 

sive review of seismic modeling, processing, and inversion for anisotropic media. They discuss the 

foundations of methods operating with both P-waves and multi-component data, demonstrate the 

improvements achieved by anisotropic imaging algorithms and outline the possibilities of applying 

anisotropy parameters in reservoir characterization. Wang and Tsvankin develop a 3D inversion 

algorithm for layered TTI (transversely isotropic with a tilted symmetry axis) media that operates 

with P-wave NMO ellipses, zero-offset traveltimes, and reflection slopes supplemented by borehole 

data. They show that if the symmetry axis is perpendicular to the bottom of each layer, it is 

possible to estimate the interval symmetry-direction velocity Vpo, the anisotropy parameter 6, and 

the reflector orientation using only one borehole constraint — the reflector depth. When the tilt of 

the symmetry axis represents a free parameter, the input data also must include wide-azimuth VSP 

traveltimes with the offset reaching at least 1/4 of the maximum reflector depth. Takanashi and 

Tsvankin discuss P-wave nonhyperbolic moveout inversion for horizontally layered VTI (TI with 

a vertical symmetry axis) models that include a low-velocity isotropic lens (e.g., channel or reef). 

Finite-difference modeling shows that even a thin lens can cause substantial laterally varying errors 

in the normal-moveout velocity and the anellipticity parameter 7. They propose several criteria to 

delineate the area influenced by the lens and devise an efficient algorithm for removing lens-induced 

traveltime shifts from prestack data. Shekar and Tsvankin extend the attenuation layer-stripping 

method, previously developed for pure-mode reflections, to mode-converted (PS) waves with the 

goal of estimating the interval S-wave attenuation coefficient. Their technique involves application 

of the PP+PS=SS method and velocity-independent layer stripping (VILS) to PP and PS reflec- 

tions from the top and bottom of the target layer. A synthetic test on multi-component synthetic 

data from VTI media confirms that the algorithm can accurately evaluate the interval shear-wave 
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quality factor in the target without knowledge of the velocity and attenuation in the overburden. 

Smith and Tsvankin study the influence of reservoir compaction on time-lapse P-, PS-, and S-wave 

reflection data by combining 2D geomechanical and finite-difference seismic modeling. Application 

to a rectangular compacting reservoir embedded in a homogeneous, isotropic unstressed medium 

reveals both similarities and differences between the traveltime shifts of compressional and shear 

waves. The developed methodology helps analyze kinematic and dynamic time-lapse attributes for 

multi-component data and can be used in the inversion for the compaction-induced stress field. 

3 Overview of Developments in CWP 

CWP Faculty and Staff 

There has been no change in the CWP faculty group since the 2009 Project Review Meeting. 

The full-time CWP academic faculty includes Dave Hale, Paul Sava, Roel Snieder (director), and 

Ilya Tsvankin. In accordance with the rotation plan approved by the CWP faculty in 2004, Roel 

Snieder assumed the position of CWP director in June 2008. Ken Larner and Norm Bleistein 

remain part of the team in their “retirement,” and are actively involved in many aspects of our 

research and educational program. Program assistant, Pam Beckman, has married and is now 

Pam Kraus. She manages the CWP office in a most professional and cheerful way. Publication 

specialist Barbara McLenon provides essential assistance in preparing our scientific manuscripts, 

public relations material, our website, and the newsletters of CWP and the Geophysics department. 

John Stockwell not only manages the computer systems of CWP, his insight and expertise in the 

mathematical aspects of geophysics are invaluable. John is principal investigator of Seismic Unix 

and is instrumental in maintaining and promoting this software for seismic data processing. 

Students and long-term visitors 

During the 2009-2010 academic year, 15 graduate students were doing research in CWP. Five new 

CWP students (Thomas Cullison, Chris Engelsma, Clement Fleury, Jeff Godwin, and Simon Luo) 

started their graduate studies in the Fall of 2009. In the past year, two students completed their 

degree work: Derek Parks, MSc., and Jyoti Behura, PhD. In August-December 2009, Lorenzo 

Casasanta from the Politecnico di Milano visited CWP and worked with Ilya Tsvankin. Ioan Vlad 

from Statoil is a visiting scientist at CWP from January through December 2010 working with Paul 

Sava. 

Center Support 

Currently the Consortium is supported by 25 companies including our newest sponsors, Nexen 

Petroleum and Paradigm Geophysical. We thank the representatives of our sponsors for their 

continued support. A full list of sponsor companies over the term of the past year appears on the 

acknowledgment page at the beginning of this volume. 
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We have received approximately $860K of additional support since June, 2009, from the National 

Science Foundation, Petroleum Research Fund of the American Chemical Society, the Research 

Partnership to Secure Energy for America, ENI, ExxonMobil, Shell, ConocoPhillips, Hess, Statoil, 

and the Abu Dhabi National Oil Company through its educational partnership with the Colorado 

School of Mines. Our industrial and government support for research and education complement 

one another; each gains from, and strengthens, the other. As a net result, for the annual 2009-2010 

fee of $52.8K, a company participates in a research project whose total funding level is close to 

$2.21M, which means that the contribution of every sponsor is leveraged with a factor of 42. 

Joint Projects with Industry and Non-Profit Corporations 

Roel Snieder and his students continue their work with Shell within the framework of the com- 

pany’s Gamechanger program. Shell has provided funding for the three-year project “Stripping the 

overburden from the seismic and electromagnetic earth response” started by Roel in collaboration 

with Kees Wapenaar and Evert Slob of Delft University. Roel started a collaborative program with 

ConocoPhillips and Boise State University that is focused on various aspects of multiple scattering 

in imaging and monitoring. Roel also receives funding from the National Science Foundation and 

the US Department of Energy. 

Paul Sava is supported by a grant from ENI dedicated to the development of migration velocity 

analysis using reverse-time migration techniques. This four-year project will provide full support 

for one graduate student (Francesco Perrone). In addition, Paul continues a three-year project 

supported by Statoil on wave-equation velocity analysis and imaging for wide-azimuth data. This 

research provides 50% support for graduate student Tongning Yang. 

Ilya Tsvankin and his student Bharath Shekar continue their work on the two-year project 

“Azimuthal AVO and attenuation analysis for fracture characterization” funded by the Research 

Partnership to Secure Energy for America (RPSEA). RPSEA is a non-profit corporation formed 

by a consortium of premier U.S. energy research universities, industry, and independent research 

organizations. 

Dave Hale and CWP graduate student Luming Liang worked last year with Marco Mauéec of 

Landmark on a new method to estimate fault locations and displacements. Dave also worked with 

Joe Meng to launch a new multi-year project funded by ConocoPhillips on applications of image- 

guided interpolation and related technologies to full-waveform inversion. CWP graduate student 

Yong Ma is supported by this research. 

Joint research by CWP students and faculty with geophysicists in sponsoring companies has 

proven to be extremely valuable for connecting CWP research with the scientific activities of our 

sponsors. The complementary nature of academic and industrial research has significantly enhanced 

the value of a number of projects. For this reason, CWP encourages directly sponsored research with 

companies and non-profit corporations that could lead to sharing of results with the Consortium. 
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SmartGeo 

SmartGeo is an interdisciplinary engineering and science graduate program designed to prepare 

a new generation of leaders in the development of intelligent geosystems - enabling engineered 

and natural earth structures and environments that sense their environment and adapt to improve 

performance. Research efforts focus on advancing intelligent geoconstruction, distributed sensor 

networks, and real-time monitoring. The research is applied to intelligent earth dams and levees, 

and remediation of contaminated soil and water. This interdisciplinary graduate program is led by 

faculty members in civil engineering, geophysics, and computer science. Dave Hale is a principal 

investigator in the SmartGeo program partly because of his background in both geophysics and 

computer science. 

Educating our students 

The Department of Geophysics and other departments at the Colorado School of Mines offer nu- 

merous graduate courses from which CWP benefits. In addition to these courses, we have taken 

the following initiatives to educate CWP students. 

e English Writing & Speaking. For many students, writing scientific papers is an onerous 

activity, especially for international students. Over the past several semesters, Diane Witters, 

a writing consultant whose expertise is English as a Second Language (ESL), has worked 

with CWP students to improve their writing and speaking skills through one-on-one tutoring 

sessions and writing workshops. Diane closely coordinates her efforts with CWP faculty. In 

addition to helping students advance their writing skills, she has assisted foreign students to 

make the transition from the work culture in their home country to the professional style 

common in the United States. 

e Mathematics. In order to ensure that CWP students master the mathematics needed for wave 

propagation and imaging, John Stockwell teaches a Math Clinic, a graduate course covering 

the mathematics used in CWP research. The course is attended by a record number of 15 

students from both CWP and other research groups in the Geophysics Department. The 

feedback from students has been extremely positive. 

e The Art of Science and Introduction to Research Ethics. Roel Snieder offers the interdepart- 

mental course “The Art of Science”, which is aimed at helping graduate students develop 

effective research habits. He also offers this material as a short course. With colleague Carl 

Mitcham, Roel developed the new graduate course “Introduction to Research Ethics.” This 

course fulfills the requirement for all-important ethics training for students and postdoctoral 

fellows who are funded by the National Science Foundation. 

Short courses and workshops 

The CWP faculty has been active in sharing their professional expertise by offering short courses 

to groups in academia and industry. Please contact CWP if you are interested in hosting one of 

XV



these short courses. 

e Ilya Tsvankin, with his long-time collaborator Vladimir Grechka of Shell, continued to of- 

fer the short course Seismic anisotropy: Basic theory and applications in exploration and 

reservoir characterization as part of the SEG Continuing Education Program. The course 

provides the necessary background information about anisotropic wave propagation and dis- 

cusses modeling, inversion, and processing of seismic reflection and VSP data in the presence 

of anisotropy. The main emphasis of the course is on practical parameter-estimation methods 

for transversely isotropic and orthorhombic subsurface models. 

e Paul Sava traveled extensively giving his course Wavefield Seismic Imaging. This course 

provides a survey of current seismic imaging methods designed for acoustic wavefield data. 

Wavefield seismic imaging, also known as wave-equation migration, is presented in a unified 

theoretical framework in connection with related topics, including migration velocity analysis 

(MVA) and amplitude-versus-angle analysis (AVA). The main target audiences for this course 

are graduate students engaged in seismic imaging research and practicing geophysicists with a 

basic understanding of seismic data processing and imaging who wish to become familiar with 

modern imaging techniques available to the industry. Geologists and reservoir engineers can 

also benefit from a short version of this course by familiarizing themselves with the concepts 

that underly practical imaging techniques, their applicability, and limitations. 

e Norm Bleistein continued to enjoy his “retirement” by giving his short course Mathematics 

of Modeling, Migration and Inversion with Gaussian Beams, most recently at the 2009 SEG 

Annual Meeting in Houston. This course is designed for data processing developers with 

some knowledge of ray theory, migration, and inversion methods, and a desire to learn the 

fundamentals of modeling, migration and inversion using Gaussian beams. As such, it is a 

course based on the mathematics that underlies the theory and implementation of Gaussian 

beams in seismic modeling. 

e Roel Snieder developed a short version of the course The Art of Science. In this short course 

he offers elements of his full course that help young researchers develop effective research 

habits. Because of the wide scope of the material that he uses for his graduate course 

there is much freedom in the selection of topics for the short course. He has taught this 

short course at Stanford University, Tohoku University, Utrecht University, and Australian 

National University. This course is well-suited for industrial research environments as well. 

@ CWP played a major role in organizing the 13th International Workshop on Seismic Anisotropy 

in Winter Park on August 10-15, 2008. The Workshop Proceedings were published in 

September-October 2009 as a special section of the journal GEOPHYSICS, with Ilya Tsvankin, 

Ken Larner, and James Gaiser of Geokinetics serving as guest editors. 
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Interaction with Other Research Projects at CSM and Elsewhere 

During this past year, as in previous years, faculty and students of CWP have interacted closely 

with those in other industry-funded research projects in the CSM Department of Geophysics. 

These include the Reservoir Characterization Project (RCP), led by Tom Davis; the Center for 

Rock Abuse, led by Mike Batzle; and the Gravity/Magnetics Project, led by Yaoguo Li. 

In addition, the CWP faculty have engaged in collaborative efforts with researchers elsewhere. 

Ilya Tsvankin spent the Spring and Summer of 2009 on sabbatical leave. He was writing a new book 

and traveled for two months in Europe where he worked with Serge Shapiro at the Free University 

of Berlin and Walter Sdllner at the PGS office in Oslo. He also taught a course on anisotropy at 

the Free University and gave a number of presentations in several European cities (see more details 

below). Other collaborations of the CWP faculty include: 

e Norm Bleistein 

~ Sam Gray (CGG Veritas) 

e Dave Hale 

— Marco Mauéec, Bill Harlan and Bob Howard (Landmark) 

~— Joe Meng (ConocoPhillips) 

— Joe Stefani (Chevron) 

e Paul Sava 

~— Uwe Albertin (BP) 

~ Tariq Alkhalifah (KAUST) 

~ Clara Andreoletti and Nicola Bienati (ENI) 

~ Andre Bulcao (Petrobras) 

~ Sergey Fomel (UT Austin) 

~ Paul Fowler (WesternGeco) 

~— Marianne Houbiers and Ioan Vlad (Statoil) 

~ Panos Kelamis, Yi Luo, and Tong Fei (Aramco) 

— Scott Morton (Hess) 

— Michael Payne, Jie Zhang, Anupama Venkataraman, Rongrong Lu, Alex Martinez (Exxon- 

Mobil) 

— Bill Symes (Rice University) 

~— Ivan Vasconcelos (ION Geophysical) 

Stuart Wright (Dawson Geophysical) 

~ Yu Zhang and Sam Gray (CGG Veritas) 

~ Peter Traynin and Lorie Bear (ExxonMobil) 

e Roel Snieder 

Andrew Curtis and David Halliday (Edinburgh University) 
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~ Malcolm Sambridge (Australian National University) 

~— Johannes Singer, Jon Sheiman, Mark Rosenquist and David Ramirez Mejia (Shell) 

— Grant Gist and Rebecca Saltzer (ExxonMobil) 

— Ivan Vasconcelos and Huub Douma (ION Geophysical) 

— Kees Wapenaar and Evert Slob (Delft Institute of Technology) 

— Kasper van Wijk (Boise State University) 

— Phil Anno and Mark Willis (ConocoPhillips) 

— Haruo Sato (Tohoku University) 

e Ilya Tsvankin 

~ Andrey Bakulin and Jérg Herwanger (WesternGeco) 

~ James Gaiser (Geokinetics) 

— Vladimir Grechka (Shell Exploration & Production) 

— Subhashis Mallick (University of Wyoming) 

— Ivan PSenéik (Czech Academy of Sciences) 

— Serge Shapiro (Free University of Berlin) 

— Walter Sdllner (PGS) 

Travels and Activities of CWP People 

Interactions and collaborations that have taken place away from Golden include the following: 

e Norm Bleistein 

— Traveled to Israel to visit Zvi Koren at Paradigm in March 2010. 

e Dave Hale 

— Presented research on image-guided interpolation to Landmark in Highlands Ranch, 

Colorado (July 2009). 

— Traveled to Northwestern University to help teach an NSF/Earthscope one-week work- 

shop on industrial-strength processing of seismograms currently being recorded in the 

USArray experiment (August, 2009). 

— Presented a paper on image-guided interpolation at the SEG Annual Meeting in Houston 

(October 2009), recognized as one of the top thirty presented at that meeting. 

— Traveled to Rice University to give an invited presentation on the question, “Who will 

write the software?”, as part of the 2010 Oil and Gas High Performance Computing 

Workshop (March 2010). 

— Continued to develop the open-source Mines Java Toolkit with various collaborators. 

e Ken Larner 

— In cooperation with Roel Snieder wrote the book “The Art of Being a Scientist” that 

was published by Cambridge University Press in August, 2009. 
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— Served as Chair of the Board of Directors of the SEG Advanced Modeling Project 

(SEAM). 

— Invited speaker for the Geophysical Society of Houston/SEG 2010 Spring Symposium 

honoring Enders Robinson and Sven Treitel. 

— Participated on a team to evaluate the Earth Sciences Institutes in Berlin and Potsdam, 

Germany. 

e Paul Sava 

— Presented a paper at the EAGE Annual Meeting in Amsterdam (June 2009). 

— Traveled to Trondheim to collaborate with colleagues from Statoil (June 2009). 

~ Traveled to Milan, Italy, to collaborate with colleagues from ENI (June 2009). 

— Presented the Wavefield Seismic Imaging (WSI) course in Houston for ExxonMobil, in 

Trondheim for Statoil, and in Milan for Eni. 

— Presented a course on Reverse-Time Migration at the bi-annual Congress of the Brazilian 

Geophysical Society SBGf (August 2009). 

— Presented a paper at the SEG Annual Meeting, Houston (October 2008), and co- 

authored nine other presented papers. 

— Delivered a keynote address at the Subsalt Imaging Workshop organized by EAGE in 

Cairo, Egypt (November 2009) and co-authored another presented paper. 

— Served on the EAGE research committee. 

e Roel Snieder 

— Served on the Earth Science Council of the US Department of Energy (DOE). 

— Associate editor of the Journal of the Acoustical Society of America. 

— Presented his outreach lecture “The Global Energy Challenge” 20 times at universities, 

community colleges, high school and elementary schools, service clubs, and churches. 

More information is at http: //www.mines.edu/~rsnieder/Global_Energy. html 

— Visiting Fellow at the Australian National University where he lectured on CO2 seques- 

tration, taught his short course The Art of Science, and presented the annual Totoya 

Lecture The Global Energy Challenge. 

— Invited speaker at the Summer Research Workshop on Carbon Capture and Sequestra- 

tion, Banff, Canada. 

— Invited speaker, Joint Assembly of the American Geophysical Union, Toronto. 

— Visiting professor of the Center of Excellence Program of Tohoku University, Sendai, 

Japan. 

— Visited JAPEX in Tokyo. 

— Co-organizer of a research workshop at Shell Research (Houston). 

— Member of the Diversity Committee at the Colorado School of Mines. 

— Chair of the Committee for Ethics Across the Curriculum of the Colorado School of 

Mines. 
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— In addition to the activities above he presented 15 presentations and seminars at uni- 

versities, industry, and international conferences 

e Ilya Tsvankin 

— Served as editor of the Proceedings of the 13th International Workshop on Seismic 

Anisotropy (13IWSA) published as a special section of Geophysics (September-October 

2009). 

— Worked on the new book “Seismology of azimuthally anisotropic media and seismic 

fracture characterization” in cooperation with Vladimir Grechka of Shell. The book is 

scheduled for publication by SEG in 2011. 

— Taught the two-day SEG Continuing Education Course “Seismic anisotropy: Basic the- 

ory and applications in exploration and reservoir characterization” at the Free University 

of Berlin, Germany (June 2009) and as part of the Continuing Education Week of the 

Denver Geophysical Society (August 2009). 

— Presented a paper at the Annual EAGE Conference in Amsterdam (June 2009). 

— Presented the invited lecture “Characterization of fractured reservoirs using wide-azimuth 

seismic data” at the Free University of Berlin (June 2009). 

— Visited the PGS office in Oslo, Norway to collaborate with Walter Sdllner and give a 

presentation on anisotropic velocity analysis (June 2009). 

— Presented the lecture “Fracture characterization using surface and borehole seismic data: 

Advances and challenges” as part of the Distinguished Lecturer Series at the University 

of Wyoming (October 2009). 

— Coauthored four papers at the SEG Annual International Meeting in Houston (October 

2009). 

— Invited speaker at the Spring Symposium of the Geophysical Society of Houston in honor 

of Enders Robinson and Sven Treitel (March 2010). 

— Gave the presentation “Role of anisotropic methods in characterization of tight gas 

sandstones” at the National Meeting of the Research Partnership to Secure Energy for 

America (RPSEA; April 2010). 

— Co-authored a presentation at the 14th International Workshop on Seismic Anisotropy 

in Perth, Australia (April 2010). 

Our students traveled considerably this past year as well. In addition to attending meetings, 

many of the students held internships during summer 2009. These experiences enrich their educa- 

tion and help foster valuable contacts with potential employers. 

Visitors to CWP 

CWP has benefited again this year from visits by a number of scientists and friends from other 

universities and industry. We strongly encourage visits from our sponsor representatives, whether 

it be for a single day, or for an extended period.



e Evert Slob from Delft University of Technology worked at CWP from January-August 2009 as 

part of his sabbatical leave. He worked with Roel Snieder and his students on the application 

of interferometric concepts to electromagnetic fields. 

e Paul Fowler (WesternGeco), James Gaiser (Geokinetics), and Edward Jenner (ION/GXT) 

have regularly participated in the A(nisotropy)-Team seminar and collaborated with CWP 

faculty and students. Paul has also attented seminars of the I(maging)-Team. 

e Alexandre Araman from Total S.A. in Pau (France) came to CSM as an M.S. student in 

2008 and collaborated with Ilya Tsvankin on a project involving processing and inversion 

of multi-component offshore data. Alexandre was primarily affiliated with the Reservoir 

Characterization Project and defended his M.S. thesis in the Fall of 2009. 

e Seiichiro Kuroda from Japan worked at CWP from March-October 2009 on the application 

of interferometry to ground penetrating radar. He worked with Roel Snieder and Evert Slob 

and focused on the use of multi-dimensional deconvolution. 

e Chenghong Zhu from Sinopec was at CWP from March-August 2009 to get better acquainted 

with the research carried out at CWP and to establish a common ground for future collabo- 

ration. 

e Ioan Vlad from Statoil is spending a year (January-December 2010) at CWP to work with 

Paul SAVA and other members of his team. Ioan continues the collaboration with Tonging 

Yang that started during his internship with Statoil in the summer of 2009. 

e Nicola Bienati and Clara Andreoletti (Eni) visited for a week in January 2009 to participate 

in joint research with Paul Sava and Francesco Perrone. 

e Tariq Alkhalifah (KAUST) visited for a week in July 2009 to work with Paul Sava on 

anisotropic extended images. 

e Uwe Albertin (BP) visited in December 2009 to work with Paul Sava and Paul Fowler (West- 

ernGeco) on wavefield-based migration velocity analysis. 

We also had a number of short-term visitors: 

e Monica Kohler, Center for Embedded Networked Sensing, University of California 

e Leonard Srnka, ExxonMobil 

e Diana Sava, The University of Texas at Austin 

e Craig Beasley, WesternGeco 

e Richard C. Aster, New Mexico Institute of Technology 

e Kees Wapenaar, Delft University of Technology 

e Andrey Bakulin, WesternGeoco 

e Tariq Alkhalifah, King Abdullah University of Science and Technology 

e Jeff Shragge, University of Western Australia 

e Ben Kadlec, TerraSpark Geosciences



e Christof Stork, Tierra Geophysical 

e Chuck Diggins, Fusion Petroleum Technologies, Inc. 

Heloise Lynn, Lynn Inc. 

Scott Morton, Hess Corporation 

Andre Bulcao, Petrobras 

Uwe Albertin, BP 

Marco Maucec, Stew Levin, and Bob Howard, Landmark 

Vladimir Grechka, Shell 

Peter Leary, University of Auckland 

Anatoly Levshin, University of Colorado 

Subhashis Mallick, University of Wyoming 

Papers at SEG and EAGE 

CWP students an faculty presented a total of nineteen oral presentations, poster papers, and work- 

shop contributions at the 2009 SEG Annual Meeting in Houston. A number of these presentations 

result from collaborations with sponsor companies and other academic groups. In addition, the 

CWP faculty and students contributed four presentations at the 2009 EAGE meeting in Amster- 

dam. 

Publications 

Student Theses 

During recent months, the following theses of CWP students Jyoti Behura (PhD), Ran Xuan (MSc) 

and Derek Parks (MSc) have been distributed to sponsors. 

e Behura, J., 2009, Estimation and analysis of annenuation anisotropy: Ph.D. thesis, Colorado 

School of Mines. Defended May 1, 2009 [CWP-639]. 

e Xuan, R., 2009, Probabilistic micro-earthquake location for reservoir monitoring: M.Sc. the- 

sis, Colorado School of Mines. Defended September 18, 2009 [CWP-640]. 

e Parks, D., 2010, Seismic image flattening as a linear inverse problem: M.Sc. thesis, Colorado 

School of Mines. Defended January 19, 2010 [CWP-643]. 

If you would like to receive a copy of these, or any other CWP publications, contact Barbara 

McLenon: barbara@dix.mines.edu. 

The MSc thesis defense of Yongxia Liu is upcoming, her thesis will also be distributed to 

sponsors. 
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Book published 

The book The Art of Being a Scientist by Roel Snieder and Ken Larner was published in August, 

2009, by Cambridge University Press (ISBN: 9780521743525). This book, which grew out of a 

graduate course that Roel has been teaching for the past eight years, is a hands-on guide aimed 

at helping graduate students and other young researchers acquire the skills needed for a career in 

research. Though some aspects of the philosophy of science are covered in the book, most of the 

material is of a practical nature-applicable to all fields of science, engineering, and humanities. 

More information can be found on http: /www.mines.edu/~rsnieder/Art_of _Science.html 

Research Reports 

As in past years, a significant number of papers authored or co-authored by CWP faculty and 

students have been published in leading journals. The complete list of CWP papers from 1984 

onward is on our web site at http: //www.cwp.mines.edu/bookshelf.html. Most papers are 

available there for downloading as PDF files. 

Publications in 2009 from CWP faculty and students 

[1] Ayzenberg, M., Tsvankin, I, Aizenberg, A., & Ursin, B. 2009. Effective reflection coefficients 

for curved interfaces in transversely isotropic media. Geophysics, 74, WB33-WB53. 

[2] Behera, L., & Tsvankin, I. 2009. Migration velocity analysis for tilted transversely isotropic 

media. Geophysical Prospecting, 57, 13-26. 

[3] Behura, J., & Tsvankin, I. 2009. Role of the inhomogeneity angle in anisotropic attenuation 

analysis. Geophysics, 74, WB177-WB191. 

[4] Behura, J., & Tsvankin, I. 2009. Reflection coefficients in attenuative anisotropic media. Geo- 

physics, 74, WB193-WB202. 

[5] Behura, J., & Tsvankin, I. 2009. Estimation of interval anisotropic attenuation from reflection 

data. Geophysics, 74, A69-A74. 

[6] Fan, Y., & Snieder, R. 2009. Required source distribution for interferometry of waves and 

diffusive fields. Geophys. J. Int., 179, 1232-1244. 

[7] Fuck, R. F., Bakulin, A., & Tsvankin, I. 2009. Theory of traveltime shifts around compacting 

reservoirs: 3D solutions for heterogeneous anisotropic media. Geophysics, 74, D25-D36. 

[8] Fuck, R. F., & Tsvankin, I. 2009. Analysis of the symmetry of a stressed medium using nonlinear 

elasticity. Geophysics, 74, WB79-WB87. 

[9] Hale, D. 2009. A method for estimating apparent displacement vector from time-lapse seismic 

images. Geophysics, 74, V99-V107. 
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[10] Lin, F.C., Ritzwoller, M.H., & Snieder, R. 2009. Eikonal tomography: surface wave tomogra- 

phy by phase front tracking across a regional broad-band seismic array. Geophys. J. Int., 177, 

1091-1110. 

[11] Ma, Y., & Sava, P. 2009. The effects of multi-scale heterogeneities on wave-equation migration. 

Journal of Seismic Exploration, 18, 357-383. 

[12] Sava, P., & Hill, S. 2009. Overview and classification of wave-equation depth imaging methods. 

The Leading Edge, 28, 170-183. 

[13] Silva, E., & Sava, P. 2009. Modeling and migration with orthogonal isochron rays. Geophysical 

Prospecting, 57, 773-784. 

[14] Snieder, R. 2009. Book review of “Seismic Interferometry” by G.T. Schuster. J. Acoust. Soc. 

Am., 126, 3375. 

[15] Snieder, R. 2009. Extracting the time-domain building response from random vibrations. 

Pages 283-292 of: Schanz, T., & Iankov, R. (eds), Coupled site and soil-structure interaction 

effects with application to seismic risk mitigation. NATO science for peace and security series - 

C: Environmental Security. Springer. 

[16] Snieder, R., & Larner, K. 2009. The Art of Being a Scientist, A Guide for Graduate Students 

and their Mentors. Cambridge, UK: Cambridge University Press. 

[17] Snieder, R., & Young, T. 2009. Facing major challenges in carbon capture and sequestration. 

GSA Today, 19(11), 36-37. 

[18] Snieder, R., Miyazawa, M., Slob, E., Vasconcelos, I., & Wapenaar, K. 2009. A comparison of 

strategies for seismic interferometry. Surveys in Geophysics, 30, 503-523. 

[19] Snieder, R., Sdnchez-Sesma, F.J., & Wapenaar, K. 2009. Field fluctuations, imaging with 

backscattered waves, a generalized energy theorem, and the optical theorem. SIAM J. Imaging 

Sci., 2, 763-776. 

[20] Vasconcelos, I., R., Snieder, & Douma, H. 2009. Reciprocity theorems and Green’s function 

retrieval in perturbed acoustic media. Phys. Rev. E, 80, 036605. 

[21] Wang, X., & Tsvankin, I. 2009. Estimation of interval anisotropy parameters using velocity- 

independent layer stripping. Geophysics, 74, WB117-WB127. 

[22] Yan, J. & Sava, P. 2009. Elastic wavefield separation for VTI media. Geophysics, 74, WB19- 

WB32. 
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Computing Environment 

In the past year, CWP purchased four desktop PC systems, each consisting of dual-core quad- 

processor 64 bit, each with 8GB of RAM, and 1 Terabyte of diskspace for each system. In addition, 

we purchased several eight core Apple Macintosh systems. We now have in excess of 92 new 

nodes that are available to our students for inhouse parallel applications. Our operating system of 

choice is Linux (Fedora 9 on most platforms, moving to Fedora 11). The CWP research computing 

environment also includes an aging 32 processor Linux cluster system that was purchased in 2003. 

The total amount of disk space available on the CWP Net exceeds 40 Terabytes, roughly double 

of that available last year. For data transport, our preferred medium consists of USB hard drives, 

formatted with the ext3 filesystem. CWP faculty and students make regular use of the following 

commercial packages: Mathematica, Matlab, the Intel C and Fortran compilers, as well as the 

NAG95 (Fortran 90/95 compiler). In addition to the CWP internal computing facilities, the CSM 

campus facilities now include a 2144 node high-performance cluster system. CWP has access to 

this cluster and we aim to expand this cluster with nodes that are dedicated to CWP research. 

Software Releases 

CWP releases open-source software as well as software that is confidential to the Consortium. 

Most confidential codes depend heavily on the free software environment, so both are relevant to 

the Consortium. The period of confidentiality is three years. Some of the codes developed at CWP 

are part of government-funded research projects and have to be released as open source. Software 

developed using in-house resources of sponsor companies generally is not available to us for release. 

A widely used vehicle of open software distribution is the Seismic Un*x (SU) package. This 

package has been installed at more than 3900 sites at locations, defined by 69 internet country 

codes as determined by voluntary direct emails. Another measure of the user base is the active 

membership in the “seisunix” listserver group (1010+ members up from about 800 in the previous 

year) and general interest via downloads of more than 15 per day, though these may be more 

reflecting of internet bots, rather than real users. Release 42 of SU, originally scheduled for release 

on 20 April 2009, was delayed until 15 February 2010, with nine incremental intermediate releases. 

This release contains 47 new programs derived from contributions written by Balazs Nemeth while 

he was at the Potash Corporation of Saskatoon, Saskatchewan, by Chris Liner of the University of 

Houston, and other users in the worldwide SU users community. For details, please download the 

release notes from http: //www.cwp.mines.edu/cwpcodes. 

The open-source Mines Java Toolkit is available online from Dave Hale’s home page at 

http://www.mines.edu/~dhale/jtk/. This software is the foundation for most of Dave’s teaching 

and research and is also being used by commercial software companies. Anyone with a web browser 

can view and download the always up-to-date source code repository. Important recent additions 

are implementations of structure-oriented smoothing and semblance, and an entirely new package 

for interpolation of scattered data, including image-guided (blended neighbor) interpolation. 

Paul Sava and his students continue to work with and develop software for Madagascar, an open- 
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source software package for geophysical data processing and reproducible numerical experiments. 

Its mission is to provide a convenient and powerful environment and a technology transfer tool for 

researchers working with digital image and data processing. The technology developed using the 

Madagascar project management system is transferred in the form of recorded processing histories 

that become “computational recipes” to be verified, exchanged, and modified by users of the system. 

This open-source package is available from http: //www.reproducibility.org 

Annual Project Review Meeting 

This year’s Annual Project Review Meeting will be held on May 17-20, 2010, on the campus of 

the Colorado School of Mines in Golden, Colorado. A tradition of recent years is that, prior to the 

meeting, we hold a short course for sponsors on a topic of particular interest within CWP. This 

year, in the afternoon of May 17, Gerhard Pratt of the University of Western Ontario will give a 

short course entitled “What else can the seismic wavefield tell us?” During the following three days, 

CWP students and faculty will present more than 20 research papers. In addition, the program 

will include two guest speakers: Sven Treitel (Tridekon Inc.), Zvi Koren (Paradigm Geophysical), 

and Yu Zhang (CGGVeritas). The evening of May 20 we will celebrate the 70th birthday of Norm 

Bleistein at a dinner held in his honor. Thank you for joining us! 
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CWP-644 

Extended imaging conditions for wave-equation migration 

Paul Sava! & Ivan Vasconcelos? 
1 Center for Wave Phenomena, Colorado School of Mines 

2 ION Geophysical and School of Geosciences, University of Edinburgh 

ABSTRACT 

Wavefield-based migration velocity analysis using the semblance principle requires 
computation of images in an extended space in which we can evaluate the imaging 

consistency as a function of overlapping experiments. Usual industry practice is to as- 
semble those seismic images in common-image-gathers (CIG) which represent reflec- 
tivity as a function depth and extensions, e.g. reflection angles. We introduce extended 
common-image-point (CIP) gathers constructed only as a function of the space- and 
time-lag extensions at sparse and irregularly distributed points in the image. Semblance 
analysis using CIPs constructed by this procedure is advantageous because we do not 
need to compute gathers at regular surface locations and we do not need to compute ex- 
tensions at all depth levels. The CIPs also give us the flexibility to distribute them in the 
image at irregular locations aligned with the geologic structure. Furthermore, the CIPs 
remove the depth bias of CIGs constructed as a function of the depth axis. An inter- 
pretation of the CIPs using scattering theory shows that they are scattered wavefields 
associated with sources and receivers inside the subsurface. Thus, when the surface 
wavefields are correctly reconstructed, the extended CIPs are characterized by focused 
energy at the origin of the space- and time-lag axes. Otherwise, the energy defocuses 
from the origin of the lag axes proportionally with the cumulative velocity error in the 
overburden. This information can be used for wavefield-based tomographic updates 
of the velocity model, and if the velocity used for imaging is correct, the coordinate- 
independent CIPs can be decomposed function of the angles of incidence. 

Key words: wave-equation, migration, velocity analysis 

1 INTRODUCTION 

In regions characterized by complex subsurface structure, 

wave-equation depth migration is a powerful tool for accu- 

rately imaging the earth’s interior. The quality of the final im- 

age greatly depends on the quality of the velocity model. Thus, 

constructing accurate velocity is essential for imaging (Gray 

et al., 2001). In particular, it is important to construct subsur- 

face velocity models using techniques that are consistent with 

the methods used for imaging. 

Generally speaking, there are two possible strategies for 

velocity estimation from surface seismic data in the context 

of wavefield depth migration which differ by the implementa- 

tion domain. One possibility is to formulate an objective func- 

tion in the data space, prior to migration, by evaluating the 

match between recorded and simulated data using an approx- 

imate (background) velocity model. Techniques in this cate- 

gory are known by the name of tomography (or inversion). 

Another possibility is to formulate an objective function in the 

image space, after migration, by measuring and correcting im- 

age features that indicate model inaccuracies. Techniques in 
this category are known as migration velocity analysis (MVA), 

since they involve migrated images and not the recorded data 

directly. In both cases, velocity estimation can be done ei- 

ther using rays or waves as the carrier of information, lead- 

ing to techniques known by the names of traveltime tomogra- 

phy (Bishop et al., 1985; Stork, 1992; Al-Yahya, 1987; Fowler, 

1988; Etgen, 1990; Chavent & Jacewitz, 1995; Clement et al., 
2001; Chauris et al., 2002a,b; Billette et_al., 2003, Lambare 

et al., 2004; Clapp et al., 2004), or wave-equation tomography 
(Gauthier et al., 1986; Tarantola, 1987; Mora, 1989; Wood- 

ward, 1992; Pratt, 1999; Sirgue & Pratt, 2004; Biondi & Sava, 

1999; Sava & Biondi, 2004a,b; Shen et al., 2003; Albertin 
et al., 2006). 

The key component for an MVA technique implemented 

in the image space is the analysis of image attributes which 
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indicate inaccurate imaging. These attributes are often repre- 

sented by image extensions, e.g. reflectivity as functions of 

angle or offset which exploit the semblance principle stating 
that images constructed for different seismic experiments are 

kinematically similar if the correct velocity is used. This prop- 

erty can be exploited for velocity model building by minimiz- 

ing objective functions to optimize certain image attributes. 

For example, we can consider flatness or focusing measured 

on image gathers, which can be quantified using the generic 

annihilators as discussed by Symes (2009). 

In this paper, we discuss an imaging condition for 

wavefield-based imaging which can be exploited for veloc- 
ity model building. This imaging condition is best understood 

in the context of reverse-time migration since it does not re- 

quire assumptions about the spatial distribution of reflectors 

in the subsurface. We construct common-image-point gathers 

at sparse locations in the image, thus reducing computational 

cost while preserving velocity model building information. We 

mainly concentrate on exploring the meaning and features of 

this imaging condition, on the computational aspects which 

make implementation of this imaging condition efficient and 

on measurements that can be made on migrated images to es- 

tablish the accuracy of the velocity model. How such mea- 

surements can be used for migration velocity analysis is a vast 

subject and we leave it outside the scope of this paper. 

2 IMAGING CONDITIONS 

Conventional seismic imaging methods share the assumption 

of single scattering at discontinuities in the subsurface. Un- 

der this assumption, waves propagate from seismic sources, 

interact with discontinuities and return to the surface as re- 

flected seismic waves. We commonly speak about a “source” 

wavefield, originating at the seismic source and propagating 

in the medium prior to any interaction with discontinuities, 

and a “receiver” wavefield, originating at discontinuities and 

propagating in the medium to the receivers (Berkhout, 1982; 

Claerbout, 1985). The two wavefields kinematically coincide 

at discontinuities. Any mismatch between the wavefields indi- 

cates inaccurate wavefield reconstruction typically assumed to 

be due to inaccurate velocity. In this context, we do not need to 

make geometrical assumptions about up- or down-going prop- 

agation, since waves can move in any direction as long as they 

scatter only once. We also do not need to make any assumption 

about how we reconstruct those two wavefields as long as the 

wave-equation used accurately describes wave propagation in 

the medium under consideration. 

We can formulate imaging as a process involving two 

steps: the wavefield reconstruction and the imaging condition. 

The key elements in this imaging procedure are the source 

and receiver wavefields, W, and W,.. We can represent those 

wavefields as 4-dimensional objects, either in the time do- 

main (for wavefield reconstruction using the two-way acous- 

tic wave-equation) as a function of space x = {z,y,z} and 

time ¢, or in the frequency domain (for wavefield reconstruc- 

tion using the one-way acoustic wave-equation) as a function 

of space and frequency w. For imaging, we need to analyze if 

the wavefields match kinematically in time and then extract the 

reflectivity information using an imaging condition operating 

along the space and time axes. 

A conventional cross-correlation imaging condition (cIC) 

based on the reconstructed wavefields can be formulated in 

the time or frequency domain as the zero lag of the cross- 

correlation between the source and receiver wavefields (Claer- 

bout, 1985): 

R(x)= >> >> W, (x, t) Wr (x, £) (1) 
shots t 

= > SS W, (x,w)W, (x,w), (2) 
shots w 

where R represents the migrated image and the over-line rep- 

resents complex conjugation. This operation exploits the fact 

that portions of the wavefields match kinematically at subsur- 

face positions where discontinuities occur. Alternative imag- 

ing conditions use deconvolution of the source and receiver 

wavefields, but we do not elaborate further on this subject in 

this paper since the differences between cross-correlation and 

deconvolution are not central for our discussion in this paper. 

An extended imaging condition preserves in the output 

image certain acquisition (e.g. source or receiver coordinates) 

or illumination (e.g. reflection angle) parameters (Clayton & 

Stolt, 1981; Claerbout, 1985; Stolt & Weglein, 1985; Weglein 

& Stolt, 1999). In shot-record migration, the source and re- 

ceiver wavefields are reconstructed on the same computational 

grid at all locations in space and all times or frequencies, there- 

fore there is no a-priori separation that can be transferred to 

the output image. In this situation, the separation can be con- 

structed by correlation of the wavefields from symmetric lo- 

cations relative to the image point, measured either in space 

(Rickett & Sava, 2002; Sava & Fomel, 2005) or in time (Sava 

& Fomel, 2006). This separation essentially represents local 

cross-correlation lags between the source and receiver wave- 

fields. Thus, an extended cross-correlation imaging condition 

(eIC) defines the image as a function of space and cross- 

correlation lags in space and time. This imaging condition can 

also be formulated in the time and frequency domains: 

R(x,A,7)=5> $2 W, (x—A,t-7) Wy (x+A,t+7)3) 
shots t 

=> Doe W, (KA, wW)W, (x+A,w) (4) 
shots w 

Equations 1-2 represent a special case of equations 3-4 for 

A = 0 and + = O. The elC defined by equations 3-4 

can be used to analyze the accuracy of wavefield reconstruc- 

tion. Assuming that all errors accumulated in the incorrectly- 

reconstructed wavefields are due to the velocity model, the 

extended images could be used for velocity model building 

by exploiting semblance properties emphasized by the space- 

lags (Biondi & Sava, 1999; Shen et al., 2003; Sava & Biondi, 
2004a,b) and focusing properties emphasized by the time- 

lag (Faye & Jeannot, 1986; MacKay & Abma, 1992, 1993; 

Nemeth, 1995, 1996). Furthermore, these extensions can be 

converted to reflection angles (Weglein & Stolt, 1999; Sava & 

Fomel, 2003, 2006), thus enabling analysis of amplitude varia-



tion with angle for images constructed in complex areas using 

wavefield-based imaging. 

3 COMPUTATIONAL COST ANALYSIS 

The main drawback of the extended imaging conditions 3-4 is 

that they require a large number of computations correspond- 

ing to the size of the image given by the space variable x and 

by the number of space and time lags given by variables X 

and 7. In practice, computing and saving the non-zero cross- 

correlation lags at all image coordinates for large datasets is 

infeasible. The complete extended image space has 7 dimen- 

sions, although due to cost consideration this space is usually 

analyzed using subsets. We argue later in this paper that cal- 

culation of the full extended image may actually not be neces- 

sary. In order to analyze the cost of computing wave-equation 

images with extensions, we can rewrite the expression of the 

image obtained by eIC using the notation 

R(a,y, Z,Az, Ay, Az,T) d (5) 

where x, y, 2 represent the space coordinates, Az, Ay, Az rep- 

resent space-lag extensions and 7 represents the time-lag ex- 

tension. Our discussion is limited to the computational cost of 

the imaging condition and does not refer to the computational 

cost of wavefield reconstruction. We distinguish the following 

4 special cases: 

3.1 1: imaging with no extensions 

If we do not use any space and time extensions, the extended 

image is: 

R(a,y,2,Az = 0,Ay = 0,A, = 0,7 =0) . (6) 

As indicated earlier, this subset of the extended image corre- 

sponds to the conventional imaging condition. Figures 1(a)- 

1(b) show conventional images for the Sigsbee 2A dataset 

(Paffenholz et al., 2002) for correct and low velocities, respec- 
tively. The zero lag images indicate velocity inaccuracy by de- 

focusing of point-like events (diffractors or reflector trunca- 

tions against faults) and by the existence of crossing events 

in regions of high reflector curvature. This information can be 

used for velocity model updates (de Vries & Berkhout, 1984; 

Harlan et al., 1984; Sava et al., 2005; Fomel et al., 2007). 
The computational cost C’ of cIC is proportional to the 

product N,N,NzN;:, where N;, Ny, Nz represent the num- 
ber of samples along the space axes, and N; represents the 

number time samples used for imaging using reverse-time mi- 

gration. A similar argument applies for migration by one-way 

wavefield extrapolation, in which case we replace the number 

of time samples N; with the number of frequencies N., used 

for imaging. In both cases, the product of space grid points 

and time or frequency grid points coincides to the size of the 

reconstructed seismic wavefields which control the total cost 

of migration. We use this cost reference when we analyze other 

cases. 
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3.2 2: imaging with space-lag extensions 

A common special case of wave-equation imaging with exten- 

sions is represented by images obtained with horizontal space- 

lag extensions only: 

R(x = 20, y = yo, 2,Ac,Ay,Az =0,7=0), (7) 

where xo and yo indicate fixed coordinates on the surface. 

This subset of the extended image corresponds to the so-called 

space-lag common image gathers (Rickett & Sava, 2002; Sava 

& Fomel, 2005). Figures 2(a)-2(b) show space-lag gathers for 

the Sigsbee 2A dataset for correct and low velocities, respec- 

tively. The gathers are constructed as a function of depth at 

fixed surface coordinate x = 9.25 km. The space-lag CIGs in- 

dicate velocity inaccuracy by defocusing from zero space-lag. 

In this case, since the Sigsbee 2A data are simulated with off- 

end acquisition, only the positive side of the defocused events 

is present in the gather. This information can be used for ve- 

locity model updates (Sava & Biondi, 2004a,b; Shen et _al., 

2003). 
Assuming that we are computing the extensions at 

sparse surface coordinates, we construct CIGs at N = 

(az Nz) (ayN,) points, where a, and a, represent decima- 
tion coefficients along coordinates x and y. The computational 

cost of this type of imaging condition relative to the cost of the 

cIC is 

Cr 
Ce ~~ (az Ny, ) (ayNy,) : (8) 

If Na, = 40 and a; = 107" (é = {,y}), then @ ~ 16. 

3.3 3: imaging with time-lag extension 

Another common special case of wave-equation imaging with 

extensions is represented by images obtained with time-lag ex- 

tensions only: 

R(x = £0,y = yo, 2, Ax = 0,Ay =0,A. = 0,7), (9) 

where xo and yo indicate fixed coordinates on the surface. 

This subset of the extended image corresponds to the so- 

called time-lag common image gathers (Sava & Fomel, 2006). 

Figures 3(a)-3(b) show time-lag gathers for the Sigsbee 2A 

dataset for correct and low velocities, respectively. The gath- 

ers are constructed as a function of depth at fixed surface co- 

ordinate c = 9.25 km. The time-lag CIGs indicate velocity 

inaccuracy by departure of the maximum focusing from zero 

time-lag. This information can be used for velocity model up- 

dates, for example by the techniques of (Brown et al., 2008; 

Yang & Sava, 2009b). 

Assuming that we are computing the extensions at sparse 

space coordinates as in the preceding case, then the computa- 

tional cost of this type of imaging condition relative to the cost 

of cIC is 

S ~ ArayN;, . (10) 

If N, = 10? anda; = 10~' @ = {x,y}), then S ~ L,ieca
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Figure 1. Sigsbee 2A image constructed using (a) correct and (b) low velocities. For the low velocity model, the sediment velocity is 90% of the 
original.
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Figure 2. Sigsbee 2A space-lag common-image-gather constructed at z = 9.25 km using (a) correct and (b) low velocities. The depth and horizontal 

space-lag axes are represented to scale. 

tT (s) 
0 0.5 

       
(a) (b) 

Figure 3. Sigsbee 2A time-lag common-image-gather constructed at 2 = 9.25 km using (a) correct and (b) low velocities.
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significantly lower computational cost than the one of imaging 

with space-lag extensions. 

For completeness, we note that a hybrid type of common- 

image-gather as a function of both space-lags and time-lags 

can also be computed. Such gathers exploit at the same time 

the semblance and focusing properties provided by the space- 

lags and time-lags, respectively (Yang & Sava, 2009a). We can 

represent such gathers using multidimensional cubes at every 

location where they are constructed. In this paper, we repre- 

sent such cube using slices taken at fixed coordinates inside 

the cube, as indicated in Figures 4(a)-4(b). Figures S(a)-5(b) 

show space-lag/time-lag gathers for the Sigsbee 2A dataset 

for correct and low velocities, respectively. The gathers are 

constructed as a function of depth at fixed surface coordinate 

x = 9.25 km. The mixed space-lag/time-lag CIGs indicate 

velocity inaccuracy by defocusing as a function of space-lags 

and departure of the maximum focusing from zero time-lag. 

The space-lag and time-lag CIGs discussed earlier represent 

special cases of this type of gather atr = OorA = 0, 

respectively. The discussion of the relative advantages of us- 
ing mixed space-lag/time-lag CIGs over the more conventional 

space-lag or time-lag CIGs falls outside the scope of this pa- 

per. 

3.4 4: imaging with space- and time-lag extensions 

Another special case of imaging with extensions, which is the 

main focus of our paper, is at the exact opposite end of the 

spectrum relative to cIC. Instead of computing images as a 

function of space coordinates, we can compute images as a 

function of extensions at fixed locations in the image (only 

one, in the extreme): 

R(x = Zo, y = Yo. Z = 20, Az, Ay, AzsT) ’ (11) 

where Zo, Yo, Zo indicate fixed coordinates in the image space. 

Such gathers really correspond to unique image points, thus 

for the rest of this paper, we use the terminology common- 
image-point (CIP) gathers to emphasize the fact that they refer 
to single image points. 

We assume that we compute extensions at a finite number 

N of locations in the image. In this case, the total computa- 

tional cost of this type of imaging condition is 

Cyr ny NazNay Nas N; 

Cc NzN,Nz 

As discussed later in the paper, assuming that we can ex- 

ploit the dip information measured on the image constructed 

with the conventional imaging condition, we can drop one of 

the space-lag axes from the computation. For example, if we 

do not use the vertical space-lag axis (a choice appropriate 

for nearly-horizontal refiectors), then the computational cost 

drops one order of magnitude 

Car y Nae NayNr 
C N,N,Nz 

We can, in principle, make other choices of space-lag pa- 

rameters to account for different reflector dips in the image. 

  (12) 

(13) 

If N; = 108, Ny, = 40 = {2,y}), Nr = 102, and 
N = 10°, then SA* ~ 0.2, i.e. a cost smaller than the one 
of space-lag imaging, and comparable to the cost of time-lag 

imaging. We achieve smaller computational cost mainly be- 

cause we can compute the image as a function of space-lag 

and time-lag extensions at a relatively small number of points 

distributed (non-uniformly) in the image, for example along 

the main reflectors identified in the image by a prior imag- 

ing with a cheaper imaging condition, e.g. cIC. This smaller 

computational cost is attractive for imaging if and only if the 

space- and time-lag extensions characterize properly the mi- 

grated images and, in particular, if they provide information 

about the velocity model accuracy. We discuss this topic in 

detail in the following sections. 

Finally, we note that the strategy of selecting CIP loca- 

tions could be used for selecting locations at which to con- 

struct CIG’s. However, as noted earlier, if using CIGs we 

would then still be suffering from a bias towards horizontal 

reflectors in the velocity analysis process. 

4 COMMON-IMAGE-POINT GATHERS 

As indicated earlier, conventional migration velocity analysis 

is based on the general principle of semblance between images 

of the interior of the Earth constructed from different seismic 

experiments. Typically, those experiments represent shots as 

acquired in the field, but a similar argument applies to other 

types of experiments synthesized from field data, e.g. plane en- 

coding (Whitmore, 1995) or random encoding (Romero et al., 
2000). The collections of images constructed from different 

experiments are usually organized as a function of surface co- 

ordinates at discrete locations. These gathers are refered to as 

common-image gathers (CIGs), with the understanding that 

the word “common” refers to the surface position. There are 

several drawbacks to this type of analysis. 

First, due to the typically large computational cost asso- 

ciated with the CIG construction, such gathers are not con- 

structed at all surface positions, but only at a sparse set of co- 

ordinates. It is not uncommon that CIGs are constructed, for 

example, at every 500 m or so in in-line and cross-line direc- 

tions, which may be too sparse for correct evaluation of the 

image accuracy. 

Second, CIGs are usually constructed for fixed surface 

coordinates, at all depth coordinates. The depth coordinate is 

finely sampled to describe the seismic wavelet and to capture 

the rapid variations due to stratigraphic changes. It is not un- 

common that the image is sampled every 10 m in depth, which 

amounts to several (maybe 10 or 20) samples per wavelet. If 

we are trying to analyze the accuracy of imaging a specific 

event in the image, this representation may be too dense with- 

out adding much value for velocity analysis. 

Third, the sparse CIG calculation is independent of the 
geologic structure. We see this as a drawback, since it adds 

no value to compute image extensions at locations that are not 

useful for velocity analysis, e.g. inside salt bodies. It would 

make more sense to compute extensions at locations that are
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(b) (a) 

Figure 4. Orthogonal slices in a 3D cube represented (a) at their true position and (b) at the edges of the cube. The unfolded edge representation 

allows for unobstructed visualization of the slices. For the cubes used in this paper, panel A represents z — hz or hz — hz, panel B represents z — 7 

or hz — 7 and panel C represents 7 — hz. 
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Figure 5. Sigsbee 2A space-lag/time-lag common-image-gather constructed at « = 9.25 km using (a) correct and (b) low velocities.
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driven by the structure itself, rather than at locations chosen by 

a-priori cost considerations. 

Fourth, computing CIGs as a function of the depth axis 

introduces a depth bias which makes those gathers most ap- 
propriate for nearly-horizontal structures. For steeply-dipping 

structures, it makes more sense to compute CIGs as a func- 

tion of another space axis, e.g. the in-line coordinate (Biondi 

& Symes, 2004), although even this option preserves an az- 

imuthal ambiguity between the in-line and cross-line direc- 

tions. 

In addressing all those issues, we argue for the con- 
struction of common-image-point gathers (CIPs) that are con- 

structed as a function of cross-correlation lags at fixed posi- 

tions in space. Such CIPs can be computed at image coordi- 

nates that are as dense or sparse as the image itself dictates. 

Furthermore, since no space axis is used in the gather construc- 

tion, it does not matter whether we analyze nearly-horizontal 

or nearly-vertical reflectors. All reflectors are equally well re- 

solved, aside from aperture limitations which decrease the ve- 

locity discrimination power for steep reflectors when data are 

acquired on a horizontal datum. The selection of parameters 

characterizing the extended CIPs, i.e. the A and 7 range, de- 

pends on the frequency band of the reflection data, as well 

as on the complexity of the analyzed structure. For lower fre- 

quency, we can sample sparsely in the extended domain, but 
for a wider range of parameters; otherwise, we need to sample 

more densely but for a lower range of parameters. For simple 

structures, we can distribute the points where we compute the 

extensions with low density, while for complex structures we 

need to distribute such points with higher density. The distribu- 

tion of CIPs can be irregular and consistent with the geologic 

structure, thus minimizing the computational cost required to 

characterize the accuracy for a given image. 

We also argue that CIPs constructed at individual points 

in the image represent a natural choice for reverse-time mi- 

gration. In this case, waves are extrapolated equally well in 

all space directions and have no bias toward the depth axis 

as is the case for conventional downward continuation meth- 

ods. Likewise, CIPs constructed at fixed image positions do 

not have a bias toward the depth axis, and can handle waves 

incident at any angles on reflectors with arbitrary dips and az- 

imuths. The key element used to eliminate the depth bias is the 

use of the time-lag variable 7. 

5 MOVEOUT ANALYSIS 

In this section, we discuss the general properties of the 

common-image-point gathers introduced in the preceding sec- 

tion. We describe the moveout functions for different types 

of reflectors and for diffractors imaged with correct and in- 

correct velocities. We formulate analytic moveout functions 

which give insight into the expected behavior of such CIPs in 

areas of complex velocity variation. 

5.1 Reflection moveout 

Consider the reflection geometry depicted in Figure 6. In the 
immediate vicinity of the reflection points, we can assume that 

the source wavefield, the receiver wavefield and the reflector 

itself can be approximated by planes and we can also assume 

that the local velocity in this region is constant. The source, 

receiver and reflector planes are characterized by unit vectors 

Ns, N,, and n, respectively. The vectors are linked according 

to Snell’s law by the relations: 

Jn, -n| = |n,-n| =cosé@, (14) 

where @ represents the reflection angle measured relative to the 

reflector normal n. 

For a specific reflection event, without loss of generality, 

we can set the origin of the time axis at the moment when the 

two planes characterizing the source and receiver wavefields 

planes intersect at the reflector. Then, we can write the expres- 

sions for the source and receiver wavefield planes as 

n,-x = 0, (15) 

ny-x = 0, (16) 

where x is a variable spanning the planes. 

By construction, the extended imaging condition sepa- 

rates the source and receiver wavefield by shifts in space and 

time using quantities A and 7, respectively. The expressions 

for the shifted planes in space and time are 

ns:(x-—A) =  -v7T, (17) 

ny-(x+A) = +07, (18) 

where v represents the local velocity at the reflection point, as- 

sumed to be constant in the region in which the planar assump- 

tions on the source and receiver wavefields holds. Subtracting 

the expressions 17-18, we obtain 

(n,+ns):A=2uT. (19) 

If we define unit vector q in the reflection plane, tangent to the 

reflector (i.e., by construction q -n = 0), then we can write 

(q-A)sin@ = vr. (20) 

Equation 20 describes the moveout function characteriz- 

ing a reflection from a single shot-receiver pair in the {A,7} 
space, i.e. the space-lags and the time-lag are linearly related 

by a function which depends on the reflection angle @, the lo- 

cal velocity v, and by a vector which depends on the reflec- 

tor dip and reflection azimuth q (Figure 7(a)). When r = 0, 

the moveout function has the form gzAz + qyAy + GzAz = 
0, i.e. a plane oriented orthogonal to the vector q. When 

qz = 0, i.e. for a horizontal reflector, the moveout function 

is (qzAc + qyAy)sin@ = vr, ie. the moveout function de- 
pends on the local angle of incidence at the reflector and the 

local reflector slope, Figure 7(a). 

We can also express moveout function s (A, 7) for a sin- 
gle shot-receiver pair using the multidimensional Dirac delta 

function as (Bracewell, 2006): 

8(A,T) = 6((q-A)sin@— vr) . (21)
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Figure 6. Cartoon illustrating the assumptions made in deriving the moveout functions based on space-lag and time-lag extensions. 
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Figure 7. Illustration of (a) the reflection moveout function for individual shots, (b) the reflection moveout function for all shots, and (c) the 

diffraction moveout function for all shots. Panels (a) and (b) correspond to a reflector dipping at 15°. Panel (a) assumes angles of incidence from 

—60° to +60°.
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Figure 8. Image of a horizontal reflector in constant velocity media. Sources are distributed along the surface at z = 0.0 km between x = 
1.0 — 5.0 km. 
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Figure 9. Common-image-point gathers for a horizontal reflector constructed at {x, z} = {3.0, 1.0} km from shots located at (a) {2 = 2.0, z = 
0.0} km, (b) {2 = 3.0, z = 0.0} km, and (c) {2 = 4.0, z = 0.0} km.



This expression simply indicates that s(A,7) = 1 when 
(q- A)sin@ = v7 and s (A, 7) = 0 otherwise. 

For illustration, consider the example shown in Figure 8 

corresponding to a horizontal reflector imaged with a constant 

velocity model. Figures 9(a)-9(c) show CIPs for shots located 

at coordinates = 2.0, 3.0, 4.0 km, respectively. In all cases, 

the moveout function for an individual shot is a plane in the 

{A, 7} space depending on the angle of incidence and local 

velocity. As predicted by the theory, the normal incidence CIP 

is represented by a plane at 7 = 0 and independent of A. 

In contrast, consider the example shown in Figure 10 cor- 

responding to a dipping reflector imaged with a constant ve- 

locity model. Figures 11(a)-11(c) show CIPs for shots located 

at coordinates x = 2.0,3.0, 4.0 km, respectively. Compared 

with the CIPs shown in Figures 9(a)-9(c), the moveout de- 

pends not only on the angle of incidence and local velocity, 

but also on the reflector slope. 

The moveout characterizing in the {A,7} space a reflec- 
tion from many shots located on the surface is given by the su- 

perposition of events from different sources, ie. we construct 

the moveout function r (A, 7) by 

r(Ast) = [0 6((a- A) sind ~ v7) ; (22) 

therefore 

r(A,7) =6(q-A)d(vT) . (23) 

Equation 23 indicates that, aside from a scaling factor, the 

moveout function characterizing a reflector illuminated from 

many shots is a line at 7 = 0 oriented at an angle parallel 

to the reflector normal (Figure 7(b)). Such events can be seen 

in Figure 12(b) for the case of the horizontal reflector shown 

in Figure 8, and in Figure 13(b) for the case of the dipping 

reflector shown in Figure 10. 

§.2 Diffraction moveout 

We can analyze the moveout function characterizing a diffrac- 

tor in the {A,7} space by noting that we can form point 
diffractors as a superposition of planar reflectors overlapping 

at the diffractor position. In this case, we can find the moveout 

function d(A, 7) by 

d(\,7) = fas 5(q-A)6 (v7) , (24) 

therefore 

d(A,7T) = 4(A) d(vr) . (25) 

Equation 25 indicates that, aside from a scaling factor, the 

moveout function characterizing a diffraction illuminated from 

many shots is a point at 7 = 0 and A = 0 (Figure 7(c)). Such 

an event can be seen in Figure 14(b) for a diffractor located at 

coordinates {x, z} = {3.0, 1.0} km, which contrasts with the 
events evaluated at the same position in the cases of horizontal 

and dipping reflectors, Figures 12(b) and 13(b), respectively. 

The apparent vertical stretch is related to the fact that we illu- 

Extended imaging conditions 11 

minate this diffractor only from the surface, thus the vertical 

resolution is poorer than the horizontal resolution. 

We note here that the temporal resolution of the extended 

CIPs is high, both for the case of reflection and for the case 

of diffractions. This is in contrast with the low temporal reso- 

lution of more conventional time-lag gathers (Sava & Fomel, 

2006). This observation is important for migration velocity 

analysis where time picking controls the both resolution and 

inversion accuracy. 

5.3 Velocity error 

An important question to address is what is the impact of 

imaging with incorrect velocity on the CIPs constructed in the 

{A,7} domain. We have indicated earlier that the computa- 
tional cost of constructing such gathers is relatively low since 

it is simply proportional to the number of points at which lags 

are evaluated. This is a user-defined parameter and it should 

reflect the appropriate CIP density necessary to constrain the 

velocity model. The question is, are those CIPs sensitive to the 

velocity error? 

We address this question with numeric examples. We do 

not derive moveout functions for incorrect velocity since any 

such expression would only be valid in simple media, e.g. con- 

stant velocity, and not in more complex environments. For ve- 

locity analysis we can define a penalty function based on the 

ideal layout of the CIPs indicated by equations 23 or 25. 

Figures 12(a)-14(c) show a comparison of imaging reflec- 

tors and diffractors with 3 different velocities, low, correct and 

high, respectively. In all cases, we track a particular refiection 

point function of space. This means that the zero lag point of 

the CIP always characterizes the same seismic event, regard- 

less of its movement due to velocity error. In this experiment, 

we seek to illustrate that the extended CIPs show velocity inac- 

curacy even for the case of a complex velocity model imaged 

with limited-aperture data. 

We notice that the shape of the CIPs changes as a func- 

tion of the velocity model indicating not only that the velocity 

is erroneous, but also what is the sign of the velocity error. This 

is true for all types of events, i.e. reflections and diffractions. 

Since the velocity error is uniform and the velocity model is 

constant, the moveout function is also uniform indicating sim- 

ilar error from all illumination angles. 

The expressions derived in this section are applicable un- 

der the assumptions made up-front, i.e. that we operate in the 

immediate vicinity of the reflection point. In this region, we 

can approximate the source and receiver wavefields by planes, 

we can approximate the reflector by a plane and we can as- 

sume that the velocity is locally constant. When these assump- 

tions are violated, then the moveout functions discussed here 

are only accurate for a small range of lag parameters. Other- 

wise, the discussion made here remains true regardless of the 

complexity of the velocity model which influences wavefield 

reconstruction at the considered image point.
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Figure 10. Image of a dipping refiector in constant velocity media. Sources are distributed along the surface at z = 0.0 km between z = 
1.0 — 5.0 km. 
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Figure 11. Common-image-point gathers for a dipping reflector constructed at {x, z} = {3.0, 1.0} km from shots located at (a) {x = 2.0,z = 
0.0} km, (b) {2 = 3.0, z = 0.0} km, and (c) {2 = 4.0, z = 0.0} km. 

  

Figure 12, Common-image-point gathers for a horizontal reflector constructed at {x, z} = {3.0, 1.0} km from all shots located along the surface 

at z = 0.0 km between x = 1.0 — 5.0 km for (a) low velocity, (b) correct velocity, and (c) high velocity.
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    (b) 

Figure 13. Common-image-point gathers for a dipping reflector constructed at {2, z} = {3.0, 1.0} km from all shots located along the surface at 
z = 0.0km between x = 1.0 — 5.0 km for (a) low velocity, (b) correct velocity, and (c) high velocity. 
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0.4 -0.4 -0.05     
Figure 14, Common-image-point gathers for a point diffractor constructed at {2,2} = {3.0, 1.0} km from all shots located along the surface at 
z = 0.0 km between x = 1.0 — 5.0 km for (a) low velocity, (b) correct velocity, and (c) high velocity.
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Figure 15. Extended images can be described explicitly in terms of scattered wavefields. As such, an extended image at x correspond to the 

scattering response Gg (x + A,x — A,7) due to a pseudo-source at x — X recorded by a pseudo-receiver at x + X. These cartoons illustrate 

the differences in evaluating an extended image at x according (a) equation 28 and (b) to equation 30. The grey circle in both cartoons denotes a 

finite-size scatterer, where in (a) the scatterer is contoured with a solid line to indicate the presence of model singularities (i.e., sharp boundaries), 
while in (b) the dotted-line contour represents the use of a smooth background model. 

6 DESCRIPTION OF THE EXTENDED IMAGES USING SCATTERING THEORY 

The extended imaged described in the earlier sections can be interpreted in a more general sense using scattering theory. An imaging 

condition for migration by wavefield extrapolation can be physically defined in terms of a scattered field G's, as 

R(x) = Gs(x,x,7r = 0). (26) 

According to this definition, the conventional image R(x) can be thought of a zero-offset scattered field for source and receiver 
coinciding at the image point x, evaluated at zero time. Here, we use standard notation for the Green’s functions, i.e., Gg(x, y, 7) 

corresponds to a scattered-wave response recorded at x due to a source at y. Since waves in the subsurface travel with finite wave 

speeds, the zero-offset scattered-wave response in equation 26 is zero when x is away from scatterers or interfaces, and it is finite 

when the image point is at a scatterer or interface. This definition is analogous to the “exploding reflector” concept (Loewenthal 

et al., 1976; Claerbout, 1985). Based on the definition in equation 26, an extended image can be readily defined by evaluating the 

scattered field G's for finite source-receiver offsets and at nonzero times, that is 

R(x, A, 7) = Gs(x +A,x—A,7T). (27) 

An exact correlation-type representation of Green’s functions characterizing the scattered wavefield for a source located at coordi- 

nates x — A, a receiver located at coordinates x+ A and scatterers distributed at coordinates x in a medium of volume V surrounded 

by surface OV, Figure 15, is given by the expression (Vasconcelos, 2008; Vasconcelos et al., 2009a): 

2 awr l [Aa FT 
Gs(x +A,x—A,7T) fa Xs de iwp [Go = A, Xs,w)VGs(x + A,xs,w)| n 

x,E€dV 

2 Qiwr 1 DATwe Ly ay - fa x, > € iwp [Gs(x + A,x5,w)VGo(x A, x,w)| n 

x5€0V w 

3 Qiwr 1 Ale Vey + iE x, > € wp O* + A, Xs, w)V(xs)Go(x — A, Xs, w) . (28) 

xsEV w 

In equation 28, x, represents source positions distributed along the surface OV, V(xs) = w?(v~ (xs) — v9 7(x)) is the scattering 
potential (v is the migration velocity model, vo is a reference velocity model), Gs is the scattered wavefield due to V(x5), Go is the 

reference wavefield, and G = Go +Gsg is the total wavefield. Within the context of migration/inversion, the scattering potential V is 

typically said to contain the singular part, i.e., the sharp boundaries, of the desired Earth model while the background wavespeed vp 

is assumed to be smooth (Symes, 2009). While this is simply one conventional for the meaning of V, we note that equation 28 is valid 

for whichever definition or interpretation is chosen for the scattering potential. For the sake of argument, however, in this manuscript 

we restrict ourselves to the interpretation that V represents the sharp contrasts in the Earth model. Equation 28 requires the evaluation
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of an integral over the whole subsurface volume V, as well as an integral over its bounding surface OV. In this expression, n denotes 

the unit normal vector on OV. The gradients in the integrands of equation 28 are taken at surface coordinates x;, and physically 

represent dipole source (i.e., particle-velocity), in addition to monopole sources (i.e., pressure) along the entire surface OV. In order 

for equation 28 to be written in terms of integrals over source positions x;, we rely on source-receiver reciprocity (Fokkema & 

Van Den Berg, 1993) to modify the original version of the correlation-type scattering representations (Vasconcelos et al., 2009a). 

In migration and imaging, implicit within the integrals on the right-hand side of equation 28 is the concept of “double focussing”, 

since apart from the explicit integration over sources x, there is an implicit summation over receivers as the extrapolated fields 

Go,s(x + A, xs,w) in the integrands consist of the superposition of extrapolating the signals of all receivers for a given source at 

Xz (Halliday et al., 2009). 

Computing the scattered wavefield in a medium using the integrals in equation 28 is not practical in exploration seismic 

experiments for three main reasons. First, the number of sources is limited, and typically available only on the surface of the Earth, 

i.e. the sources x, are available on a subset OV; of OV. Second, receivers are also only available at the Earth’s surface or have 

limited subsurface coverage (e.g., in VSP experiments) and therefore responses for receivers at x € V required by the integrands 

are not readily available. Third, the quantity V(x) in the integrand of the volume term assumes perfect knowledge of the velocity 

model, which is also not available in practice. 

For conventional implementation of reverse-time migration, the following assumptions are being made: 

i)the singularities in the model are ignored in migration, sing supp(V(x;)) = 0; 

4i)sources are distributed on a finite surface, xs € OV;; 

dit)sources are located in the far field; (29) 

év)the reference field is given by the source wavefield, Go(x — A,x;,w) = W(x — A,w); 

v)the scattered field is given by the receiver wavefield, Gs(x+A,x5,w) = W,(x+A,w);. 

Condition 7) states that the true Earth model is unknown, therefore migration uses a smooth migration velocity model, from which 

we obtain V(x,). Condition 72) states that the integral over closed surface OV is replaced by an integral over an open surface OV:, 
e.g. sources are located only along the surface. Condition 2éz) states that because dipole sources are not available in conventional 

exploration seismic surveys, they are replaces by monopole sources. This assumption is only valid in the far field (Wapenaar & 

Fokkema, 2006). Finally, conditions iv) and v) state that we approximate the Green’s functions Go and Gs in the subsurface by 
wavefields reconstructed from the recorded data based on the smooth background velocity model. These wavefields are evaluated 

numerically by solving a wave-equation whose coefficients are given by the migration velocity model vo (x). Therefore, under 

the assumptions listed in equation 29, wavefield imaging using reverse-time migration approximates the scattered wavefield G's in 

equation 28 by evaluating only the surface integral 

Zeurt(K+A,X—-A,T) *& f dx, > ewer [Gotx —A,xs,w)Gs(x +A, x.,w)| 

xsEOVe 0 

yy ¢ d°x, > eT W(x — A,w)W,(x +A,w) - (30) 

Xs EV: « 

The surface integral in Equation 30 represents exactly the extended image in equation 4, if we replace the integral of the open 

surface OV, with a simple summation over shots: 

R(x,A,7) © Zsure(x + A,X —A,T) . (31) 

We can conclude that Equation 30 is adequate if the imaging objective is to map correctly the reflectors in the subsurface using a 

smooth background velocity model. The comparison between the two expressions also shows that the images R (x, A,7) simply 

represent scattered wavefields in the extended space of A and 7. We note that using only the surface term to estimate the extended 

image implicitly corresponds to the single-scattering assumption. To properly migrate multiply-scattered energy (i.e., multiples) 

the velocity model must contain singularities (i.e., hard interfaces) for the wavefields W, and W,. to properly position multiple 

reflections, therefore using only the surface integral may not be sufficient (Vasconcelos et al., 2009b). 

The key insight gained by analyzing the extended images via scattering representations is that extended images are, in fact, 

estimates of scattered wavefields associated to sources and receivers inside the subsurface. Therefore, we can think of fully extended 

seismic images as dynamic objects whose behavior is described by wave-equations based on the known velocity model. This idea 

can be exploited in practice using stationary-phase analysis of equation 30 (Vasconcelos et al., 2009b), as discussed in this paper. 

As presented here, our formulation of extended images establishes a formal, explicit connection between the fields of seismic 

imaging and seismic interferometry. In seismic interferometry the cross-correlation of wavefields received at two receivers allows 

the extraction of the response between these receivers as if one of them acts as a source (Wapenaar & Fokkema, 2006; Vasconcelos 

et al., 2009b). While most interferometry applications rely on reciprocity formulations for full wavefields (Wapenaar & Fokkema, 

2006), a similar response for only the scattered field traveling from one point inside the medium to another can be found using 
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scattering reciprocity relations (Vasconcelos et al., 2009b). Since an image of a scatterer can be obtained by collapsing the recorded 

scattered wavefield onto the scatterer location, this formulation based on scattering representations can be used to interpret the 

imaging condition in the context of seismic interferometry (Vasconcelos, 2008): the image is the zero-time scattered-wave response 

generated by zero-offset pseudo-experiments in the image domain. Here we expand on this notion of “image-domain interfer- 

ometry” and show that the representation theorems for the scattered field allow the extended images to be described as scattered 

wavefields which are “excited” and “recorded” in the image domain, as illustrated by Figure 15. 

Finally, while in this manuscript we only briefly discuss the role of the volume term in equation 28, we must also point out that 
a more complete understanding on how to deal with this volume integral is subject of ongoing research. We know at the moment 

that the volume integrals play a crucial role in describing behavior of the extended images that is nonlinear on the unknown Earth 

model i.e., in describing proper amplitude behavior or in migrating multiples. In fact, we hypothesize that the previously reported 

“reverse-time migration artifacts” (Fletcher et al., 2006; Guitton et al., 2006) that appear when using rough velocity models (i.e., 

models with singularities) are likely to be intrinsically related to ignoring the volume terms discussed above. 
  

7 SIGSBEE 2A EXAMPLE 

In this section, we illustrate the CIP construction described in the preceding sections with the Sigsbee 2A model. For the CIPs 

shown here, we consider a fixed reflector in the image and track it at different positions as a function of the velocity model used for 

imaging. This is legitimate since the only way we can identify a reflector is by observing it in the conventional image at zero lags 

in space and time. We refer to the images shown in Figures 1(a) and 1(b) to identify CIP locations. 

Figures 16(a)-16(c)-16(e) show one CIP for the reflector located at {z,z} = {9.7,4.6} km in the image constructed 
with the correct velocity, Figure 1(a). The various panels correspond to different shots located on the surface at coordinates 

x = {5.16, 6.99, 8.82} km. Similarly, Figures 16(b)-16(d)-16(f) show one CIP for the reflector located at {x, z} = {9.6,4.4} km 
in the image constructed with the low velocity, Figure 1(b). In both situations, we observe that the CIPs for different shots change 
as a function of the shot position, i.e. they change as a function of the angle of incidence. This observation enables us to speculate 

that we can use these CIPs to decompose the reflectivity function of the angle of incidence at various positions in the image using 

slant-stacks similar to the technique used by Sava & Fomel (2003) for more conventional space-lag gathers. 

We can also observe that in the case of CIPs constructed with correct velocity, the events corresponding to different shots 

intersect at zero lag in space and time, indicating correct imaging. In contrast, in the case of CIPs constructed with incorrect 

velocity, the events corresponding to different shots do not intersect at zero lag in space and time, indicating incorrect imaging. This 

observation can be further analyzed in the CIPs obtained by stacking of contributions from different shots, as shown in Figure 17(a) 

for correct velocity and in Figure 17(b) for incorrect velocity. The CIPs constructed with correct velocity are focused around zero 

in the A — 7 space, while the CIPs constructed with low velocity show events with moveout in the A — 7 space. The complicated, 

wavefield-like behavior of the extended images as a function of space and time lags can be described by the physics of scattered 

fields, as discussed in the preceding sections. The fact that the extended CIPs here only show nonzero scattered-wave responses 

on positive times for positive space lags or negative times for negative space lags is due to the physical aperture limitations of the 

towed marine acquisition used in the modeling of Sigsbee 2A data. 

In general, for arbitrary distribution of velocity anomalies in the overburden, there is no analytic function characterizing 

those CIPs. For the case we consider here, i.e. uniform scaling of the sediment velocity in the overburden, the events show nearly 

hyperbolic moveout. The curvature of the events passing through the zero lag point is indicative of velocity error, but it characterizes 

the cumulative contributions of all velocity anomalies in the overburden relative to this image point. Unraveling this effective 

contribution requires a tomographic procedure minimizing a global objective function, as indicated earlier in the paper. 

Finally, we note that the gather in Figure 17(a) represents a reflector and not a diffractor and that imaging was performed with 

correct velocity. Furthermore, we can also identify the dip of the reflector without additional measurements in the image space. 

In contrast, the gather shown in Figure 18(a) corresponds to the superposition between a diffractor and a reflector, as indicated by 

the apparent focus in the space-lag panel. The focus is not perfect due to the limited aperture of the surface acquisition array. For 

imaging with incorrect velocity, Figure 18(b), the CIP is not focused. 

8 CONCLUSIONS 

Extended common-image-point gathers are effective tools for analyzing velocity accuracy for wave-equation imaging. The extended 

CIPs can be analyzed at sparse locations in the image volume, thus reducing the computational cost of this imaging condition. One 

possibility is to construct extended CIPs along the main reflectors which are the most indicative velocity model building components 

of migrated images. The sparse CIP allows for easier visualization and interpretation of extended images. The CIP construction can 

be further accelerated if we avoid constructing extensions in the direction orthogonal to the reflector dip. Such CIPs are also not 

biased toward reflectors with specific dips (e.g. nearly-horizontal), thus making them a natural choice for reverse-time migration.
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Figure 16. Sigsbee 2A common-image-point gathers constructed for different shots at coordinates c = {5.16,6.99, 8.82} km. Panels (a)-(c)-(e) 

correspond to coordinates {x, z} = {9.7, 4.6} km in the image constructed with the correct velocity, Figure (a), and panels (b)-(d)-(f) correspond 

to coordinates {x, z} = {9.6, 4.4} km in the image constructed with the low velocity, Figure 1(b).
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Figure 17. Sigsbee 2A common-image-point gathers constructed for all shots. Panel (a) corresponds to coordinates {x, z} = {9.7, 4.6} km in the 

image constructed with the correct velocity, Figure 1(a), and panel (b) correspond to coordinates {x, z} = {9.6, 4.4} km in the image constructed 

with the low velocity, Figure 1(b). The image at this locations corresponds to a slanted reflector. 
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Figure 18. Sigsbee 2A common-image-point gathers constructed for all shots. Panel (a) corresponds to coordinates {z,z} = {7.65,5.15} km 
in the image constructed with the correct velocity, Figure 1(a), and panel (b) correspond to coordinates {x,z} = {7.65, 4.87} km in the image 

constructed with the low velocity, Figure 1(b). The image at this location corresponds to the superposition between a reflector and a diffractor 
embedded in the model.



A key requirement for the effectiveness of this technique 

is that space-lags and time-lag extensions be analyzed simul- 

taneously. This is particularly the case when defining objec- 

tive functions which penalize CIPs for departure from their 

ideal geometry. In this situation, we can use scattering theory 

to interpret the CIPs as scattered wavefields corresponding to 

sources inside the model. These scattered wavefields have spe- 

cial properties which depend on the the quality of the velocity 

model used for reconstruction of the source and receiver wave- 

fields from the surface. In addition to velocity analysis, poten- 

tial applications the CIPs described in this paper include wide- 

azimuth angle-domain amplitude analysis, as well as slope es- 

timation and separation of reflections and diffractions. 
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ABSTRACT 

The computational cost of conventional shot-record imaging is large for today’s wide- 
azimuth seismic surveys. One strategy to reduce the overall cost of seismic imaging is 
to migrate with multiple shot-gathers at once, a technique which is known as blended 
source imaging. Blended source imaging trades the reduced cost of imaging with the 
presence of artifacts (cross-talk) in the image. A special case of blended source imag- 
ing is that of zero phase-delay, or simultaneous sources. We show that a theoretical 
framework using a matrix representation of the imaging process adequately describes 
both conventional and simultaneous source imaging. Furthermore, the matrix repre- 
sentation predicts both the quantity and strength of cross-talk artifacts prior to imag- 
ing, thus allowing us to decide a priori the trade off between cross-talk and speed. By 
exploiting our theoretical framework, we are able to design a simultaneous source en- 
coding scheme, referred to as Truncated Singular Vector encoding (TSV), that trades 
a significantly reduced cost of imaging with spatial resolution. The TSV encoding al- 
lows us to reduce the cost of imaging by at least an order of magnitude relative to 
conventional shot-record migration. Overall, we provide a framework for finding si- 
multaneous source encoding schemes, that produce good quality images at lower com- 

putational cost. 

Key words: seismic imaging, migration, blended sources, simultaneous sources, sin- 

gular value decomposition, shot-encoding, wave-equation, matrix representation. 

1 INTRODUCTION 

Today’s seismic imaging challenges include imaging areas 

with increasingly complex geology, such as salt domes and 

overthrust regions. The major issues for imaging these areas 

are poor data quality and lack of seismic illumination, as the 

complex geology severely deforms seismic wavefields. One 

approach to resolving these issues is to obtain large amounts of 

redundant information from various acquisition directions via 

wide-azimuth or full-azimuth seismic surveys (Ting & Zhao, 

2009). However, wide-azimuth surveys require significantly 

more time to acquire and even greater amounts to process. 
Subsequently, the cost of acquiring and processing a wide- 

azimuth survey is significantly more expensive than the cost 

of a conventional survey. Additionally, the cost of imaging in 

complex geology is much greater, because advanced wave- 

equation imaging algorithms such as reverse-time migration 

must be used. Therefore, both the financial and computational 

cost of today’s large surveys is increasing at a rapid pace. 

However, recent technological advances may reduce the 

cost of data acquisition and imaging for large seismic surveys. 

One of these technologies is acquisition using simultaneous 

or delayed sources (Womack, 1990; Beasley, 2008; Berkhout 

et al., 2008; Hampson et al., 2008; Blacquiere et al., 2009). As 

the name implies, simultaneous sources are multiple sources 

triggered at the same time but at different spatial locations. 

By acquiring multiple sources in a shot-gather, it is hoped that 

the amount of time that a survey requires reduces thus decreas- 

ing the acquisition costs. The downside to simultaneous source 

acquisition, is that simultaneous source data creates additional 

noise in the final seismic image. Presently, this issue is circum- 

vented by deblending the simultaneous source shot-gathers to 

create separate shot-gathers for each source prior to imaging 

(Akerberg et al., 2008; Hampson et al., 2008; Spitz et al., 2008; 
Huo et al., 2009; Kim et al., 2009). The separated shot-gathers 
are then imaged using a conventional shot-record migration. 

The drawback to separating the shots is twofold. First, the 

sources must be separable, which typically implies that they 

are relatively isolated from one another in space which limits 

the maximum amount of shots that can be used at once dur- 

ing acquisition. Second, the imaging process is not sped up by 

separating the shots.
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An alternative approach, is to reduce the cost of imag- 

ing by using multiple sources at once during imaging. This 

process, known as blended imaging, combines multiple shot- 

gathers together prior to migration, which reduces the number 

of migrations that are needed to produce a final image (Liu, 

1999; Morton, 1999; Romero et _al., 2000; Soubaras, 2006; 

Zhang et_al., 2007; Berkhout et al., 2009; Perrone & Sava, 
2009). Certain forms of blended imaging, such as plane-wave 

migration, are used in industry today, but many forms of blend- 

ing (i.e. random phase) are not used today because they intro- 

duce a significant amount of noise to the image. However, the 

presence of the noise may be justified if the cost advantage 

over conventional shot-record migration is sufficiently high. 

In conventional seismic imaging (shot-record migration), 

seismic data corresponding to individual shots are backpropa- 

gated independently to construct the receiver-wavefields. Con- 

currently, the source-wavefield for each shot is constructed by 

forward propagating the source using a known velocity model. 

An imaging condition is then applied to the individual recon- 

structed source and receiver wavefields to produce an image of 

the subsurface. Because this process is repeated for each shot, 

the cost of shot-record migration (SRM) is expressed as 

  

  

C=N,C, (1) 
where Cy, is the total cost in computation time, N, is the num- 
ber of shot records, and C; is the computational cost for each 

shot (Zhang et al., 2007). Since modern seismic surveys often 
consist of many tens of thousands of shots, and each shot may 

image a large area (a few km?), the overall computational cost 

for seismic imaging is tremendous. 

However, equation | hints at two possibilities to reduce 

the overall cost of imaging: 

e reduce the cost of migrating each shot (i.e. reduce C;), or 

e reduce the number of shot-records used for migration (i.e. 

reduce N,). 

In most scenarios, reducing the cost of migrating each shot C, 

is the most practical approach to reducing the cost of imaging 

because one can choose the algorithm that is used for wave- 

field reconstruction (i.e. wavefield extrapolation or reverse- 

time migration). However, much of today’s imaging is done 

in areas with complex geology, so computationally expensive 

algorithms like reverse-time migration have to be used to pro- 

duce accurate images. Therefore, most reductions in compu- 

tational cost typically come from advances in computer hard- 

ware. In most cases however, our ability to create more de- 

manding algorithms i.e. full anisotropic reverse-time migra- 

tion, and acquire more data greatly exceeds the rate of hard- 

ware advances. 
Furthermore, reducing the number of shots N, that are 

used to image is not typically considered because both the 

signal-to-noise ratio and the illumination of the seismic im- 

age are negatively impacted by removing sources. An alterna- 

tive to reducing the number of sources is to linearly combine 

multiple independent shot-records together into blended shot- 

records prior to migration (Romero et al., 2000). By doing so, 
we effectively reduce the number of migrations that are nec- 

essary from N; to N,, where N, is the number of blended ex- 

periments. The ultimate goal of blended imaging is to image 

using all shots in a single migration. Therefore, the total cost 

of imaging using a blended migration scheme becomes: 

CL=NeCe. (2) 

Here, Cj is the total cost for a blended source migration, C, 

is the cost of an individual blended record migration, which 

we assume to be the same as the SRM cost C,. In practice, 

Ce > Cs as blended shots must be migrated over larger aper- 
ture ranges (Romero et al., 2000). In general, as the number of 

blended experiments N, decreases the overall cost of imaging 

decreases. In most instances, the reduction in cost by blending 

greatly outweighs the additional cost of extending the migra- 

tion aperture as N. < Ns, whereas C, is only somewhat greater 

than C;. 

The blending process usually applies a phase delay to 

each shot-record and then linearly combines all of the shot 

records together into a series of blended experiments prior 

to migration (Morton, 1999; Liu, 1999; Romero et al., 2000; 
Soubaras, 2006; Zhang et al., 2007; Berkhout et al., 2009; Per- 

rone & Sava, 2009). A single blended experiment may also be 

referred to as a realization. A combination of experiments or 

realizations, where the combination method may change from 

experiment to experiment, is referred to as a shot-encoding 

scheme. During the imaging process, both the encoded source- 

and receiver-wavefields are reconstructed. The conventional 

cross-correlation imaging condition is applied to the blended 

wavefields as follows, 

R(x)=yy (Ewen) (EW), (3) 
et i j 

where i and j are the shot-record indices, W,'(x,1) is the HF te. 

constructed source wavefield, W,/(x,r) is the j* reconstructed 

receiver wavefield, e represents the blended shot-gathers in- 

dex, f represents time and x is a vector of locations in space. 

When i = j, equation 3 computes the correlation of wavefields 

related to a single shot gather. Conversely, when i # j, equa- 

tion 3 computes the value of the source and receiver wave- 

fields that are not physically related to one another, hence 

these terms are referred to as cross-talk. In blended imaging, 

the cross-talk exists between each source and every other re- 

ceiver wavefields and vice versa which means that the blended 

images are contaminated by a significant amount of cross-talk 

noise. Additionally, cross-talk is unlike most other noise in that 

it is: coherent, strong (amplitude), and virtually indistinguish- 

able from geology (Romero et al., 2000). Therefore, cross-talk 
must be removed before an image is usable for interpretation. 

Previous attempts to remove cross-talk from blended- 

images focused on modifying the phase-encoding scheme to 

introduce inconsistency between unrelated wavefields in or- 

der to decrease the contribution of the cross-talk terms (Mor- 

ton, 1999; Liu, 1999; Romero et al., 2000; Zhang et_al., 
2007; Berkhout et al., 2009; Perrone & Sava, 2009). In these 
encoding schemes, multiple realizations of all or some of 

the shot-gathers are used to create images. Some common 

phase-encoding schemes include: planar (Liu, 1999), random 
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  (Romero et al., 2000), harmonic (Zhang et al., 2007), and pla- 

nar with dithering (Perrone & Sava, 2009) . Another shot- 

encoding option is to modulate the amplitude of the wavefields 

to reduce the contribution of cross-talk terms to the image 

(Soubaras, 2006). Regardless of encoding choice, the standard 

method to attenuate cross-talk in images from separate real- 

izations of blended shots is conventional stacking. 

A special case of blended source imaging is simultaneous 

source imaging, i.e. linearly combining shot-gathers with zero 

phase- and time-delay. The major advantage of simultaneous 

source imaging compared to blended imaging is that simulta- 

neous source data can be acquired using the same recording 

time length, whereas blended source acquisition requires long 

recording times due to time-delays between sources. Thus, si- 

multaneous source imaging reduces both the cost of conven- 

tional acquisition and the data volume (Beasley, 2008; Hamp- 

son et al., 2008). However, the same problems with cross-talk 
in blended source imaging plague simultaneous source imag- 

ing as well. To some extent, the cross-talk problem is worse 

in simultaneous source imaging as it is more difficult to create 

incoherency in the wavefields during imaging (Romero et al., 

2000). Ultimately though, we want to image using simulta- 

neous source data because this saves time in imaging and in 

acquisition. 

This paper focuses on the intersection of using simulta- 

neous sources for data acquisition as well as for imaging. We 

examine simultaneous source shot-encoding schemes that can 

be used to reduce the amount of cross-talk present in simul- 

taneous source images. To reduce the cross-talk, we develop 

a theoretical framework that allows us to evaluate the rela- 

tive amount of cross-talk produced by an encoding scheme. 

By exploiting the framework, we are able to design an encod- 

ing scheme that minimizes the cross-talk in the image. We il- 

lustrate our method on both a simple synthetic model and the 

Sigsbee salt-model. Overall, the primary goal of this paper is 

to reduce the cost of imaging by an order of magnitude by 

using simultaneous sources in the imaging process. The long- 

term goal (beyond this research) is to design a simultaneous 

source acquisition scheme so that both the cost of data ac- 

quisition and the cost of imaging are reduced by an order of 

magnitude. 

2 SIMULTANEOUS SOURCE ENCODINGS 

An optimal shot-encoding scheme minimizes the amount of 

cross-talk present in the migrated images after stacking to- 

gether images from multiple simultaneous source experiments 

(Romero et al., 2000). There are two issues that must be ad- 

dressed when using simultaneous encodings. First, spatially 

close simultaneous sources form partial plane-waves during 

the migration process, which reduces the spatial resolution of 

the migration. Second, the wavefields from sources that are 

spatially distant from one another may interfere during the 

imaging condition, producing cross-talk noise which reduces 

the signal-to-noise ratio of the final image. Therefore, simul- 

taneous source encoding schemes must be carefully designed 

to minimize the negative effects of both of these issues. 

2.1 Matrix representation of wave-equation migration 

To design simultaneous source encoding schemes, we could 

start by randomly selecting possible encodings schemes. How- 

ever, this search spans a space that is infinitely large, and there 

is no guarantee that one would ever find an optimal encod- 

ing. Rather, we find that conventional seismic imaging can be 

described by a series of matrix operations, which can be ex- 

panded to include simultaneous source imaging. The matrix 

representation allows us to determine the overall suitability 

of a simultaneous shot-encoding scheme by determining the 

amount of cross-talk in the migrated image in advance. 

Conventional shot-record migration is composed of two 

steps: wavefield reconstruction and the application of an imag- 

ing condition: 

R(x) = VY We (x, We (x, 0). (4) 

For each shot gather, the source-and receiver-wavefields are 

reconstructed separately. Then, the two wavefields are cross- 

correlated together and summed over time or frequency, de- 

pending on the domain, to form a partial image. All of the 

partial images are then stacked together to form the final im- 

age. Mathematically, each source and receiver-wavefield can 

be thought to be an element in a vector that holds all source- 

or receiver-wavefields respectively, 

Ws [WW We, $s ny WS ‘| (5) 

Wr = [Wa Ways Whsn Wa |, (6) 

where Ws and We are row vectors, Ns is the number of shot- 

gathers, composed of the back projected wavefields, wi and 

Wi, respectively. The i* elements of both Ws and Wp cor- 

respond to the same physical shot-gather. Thus, conventional 

seismic imaging is equivalent to the inner product of the two 

vectors, 

R=WsWi, (7) 

where R is the constructed image, and the multiplication of 

two elements of the matrix is actually the application of the 

imaging condition between those wavefields. As indicated ear- 

lier, the application of the imaging condition implies a summa- 

tion over either time or frequency depending on which domain 

we use for wavefield reconstruction. The summation over ele- 

ments implies stacking the partial images together, Figure 1 (a). 

In order to expand this notation to simultaneous source 

imaging, we introduce an additional matrix, which we call the 

encoding matrix E. The encoding matrix is an Ns x Ne matrix, 

where N, is the number of experiments and N, is the number of 

shots in the survey. Each column in the encoding matrix corre- 

sponds to a single simultaneous source experiment, while each 

row acts as a weight for a particular wavefield. Thus, each col- 

umn in the encoding matrix weighs all wavefields to determine 

how to combine them together prior to imaging. The weights 

may be fractional, positive or negative numbers, or may be bi- 

nary numbers to indicate which wavefields to use or not use in 

an experiment. Figure 2(a) depicts a sample encoding matrix
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(a) (b) 

Figure 1. Conventional seismic imaging comprises wavefield reconstruction and the application of an imaging condition to produce an image for 

each shot-gather. If each wavefield is considered to be a component of a vector of source Ws or receiver Wr wavefields, then the imaging process 
is equivalent to the dot product of the Ws and Wr vectors (a). In the vector notation, an identity matrix (b) indicates that each source-wavefield is 

paired only with its corresponding receiver wavefield. 

BD 
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(c) (d) 

Figure 2. In contrast to conventional imaging, a simultaneous source encoding (a) uses an encoding matrix E to determine how to combine the 
source-wavefields together into a smaller vector Bs of blended wavefields. By analog, simultaneous source imaging (b) is the dot product of the 

Bg and Br’ vectors. An overview of simultaneous source imaging (c) finds that the process is similar to conventional shot imaging, but with 

the presence of the encoding matrices. The R, image is the original image plus additional artifacts from the cross-talk. By multiplying EE? the 

cross-talk matrix C (d) is formed. The off-diagonal terms are the cross-talk artifacts that contaminate Re.
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where the weights are binary which selects only some wave- 

fields per experiment. 

The encoding matrix reduces the effective number of re- 

constructed wavefields that are used for imaging as follows: 

B—WE.then{ a _ Whe (8) 

where WE is the projection of the wavefield vector (i.e Ws 

or Wr) onto the encoding matrix E, and B is the blended 

wavefield vector for the source- or receiver-wavefields (i.e. 

Bsor Br). Therefore, Bs is the 1 x Ne row vector of combined 

source-wavefields and Br is an Nz, x 1 column vector of com- 

bined receiver-wavefields. Because the migration operator is 

linear, we can perform the combination of the source- and 

receiver-data, the product of WE, prior to wavefield recon- 

struction, thus reducing the necessary number of migrations 

from N; to Ne. The final simultaneous source image R, is rep- 

resented by 

Re = BsBh, (9) 

and is shown in Figure 2(b). By substituting the expressions 

for Bs and Br from equation 8 into equation 9, we obtain 

Re = WsEE' Wj, (10) 

which is similar to equation 7 and is illustrated in Figure 2(c). 

We refer to the product EE? as the cross-talk matrix C, which 

is square and has dimensions of N, x N;. Thus, equation 10 

can be written as 

Re = WsCWw; . day 

The cross-talk matrix C is similar to the identity 7, but with 

additional off-diagonal terms as shown in Figure 2(d). This is 

a convenient description because equation 7 can be rewritten 

to include the identity matrix J to represent the pairing of each 

source wavefield with its corresponding receiver wavefield as 

R=WsIW,. (12) 

Thus, the C matrix represents the formation of the conven- 

tional seismic image (i.e the diagonal terms) plus additional 

terms in the off-diagonals representing the pairing of wave- 

fields that are not physically related to one another. Subse- 

quently, the off-diagonal components of the C matrix are the 

cross-talk terms that we generate by using a certain encoding 

matrix E. 

By examining equations |1 and 12, we find that the prob- 

lem of designing optimal simultaneous source encodings be- 

comes the problem of finding a cross-talk matrix C that is as 

close to the identity matrix / as possible in order to minimize 

the cross-talk in the image Re. Consequently, the process of 

choosing a simultaneous source encoding becomes one of de- 

termining an encoding matrix E such that EE’ has the fewest 

off-diagonal components, or EE? ~ J. In fact, if an encoding 

exists such that EE’ = /, then we can produce the same image 

as shot-record migration, at a cost proportional to the number 

of simultaneous source experiments Ne, instead of Ns. We note 

that the matrix representation in equation 11 is a more generic 

expression of the amplitude encoding scheme that Soubaras 

(2006) previously discussed. 

2.2 Identity matrix decompositions 

The question of how to create an optimal simultaneous source 

encoding then becomes a question of how to decompose the 

identity matrix into a set of rectangular matrices E such that 

EE’ ~ I, In mathematics, a well-known decomposition of the 

identity matrix into two matrices is through the construction 

of an orthonormal basis. 

For reference, a matrix Q is defined to be an orthonormal 

basis if QQ = J and QQ" = I. Thus, we can reconstruct the 
identity matrix I from EE’, if we use an orthonormal basis 

for our encoding matrix E. Unfortunately, orthonormal bases 

are represented by square matrices of the same size as that 

of the parent matrix or the same size as C which is Ns x Ns 

in our case. Therefore, an orthonormal basis encoding matrix 

provides no cost advantage compared to standard shot-record 

imaging. 

While it may not be possible to directly use an orthonor- 

mal basis for an encoding matrix, one option is to truncate the 

columns of the orthonormal basis to form an encoding matrix 

that provides a substantial cost reduction. The truncated ma- 

trix’s rows are no longer linearly independent, and hence no 

longer completely orthogonal to one another but, they still re- 

tain some of their original orthogonality. Soubaras (2006) ar- 

rived at a similar idea using a discrete Fourier basis for his ex- 

periments. The key in this scheme is to truncate the encoding 

matrix (orthonormal basis) such that the missing information 

degrades the image quality only slightly. 

A logical choice for an orthonormal basis to use for an 

encoding matrix is to use the identity matrix itself. To do so, 

we would truncate columns starting from the end of the iden- 

tity matrix J to form the encoding matrix FE such that it is 

Ny x Ne. However, truncating the identity matrix to form the 

encoding matrix removes entire shot-gathers from the recon- 

structed EE’ matrix which is not optimal because all of the 

shots should be used for imaging. Therefore only encoding 

matrices (truncated orthonormal bases) that use all of the shots 

are viable for consideration as encoding matrices. 

2.3 Data compression 

The question then becomes which orthonormal basis should 

be used for the encoding matrix, and how best to truncate this 

matrix. This problem is well studied in other fields such as 

data compression (Rabbani, 1991; Salomon, 2007). In partic- 

ular, the concept of projecting the wavefields onto an orthonor- 

mal basis and truncating the resulting matrix is directly similar 

to a class of /ossy data compression algorithms referred to as 

transform algorithms (Rabbani, 1991; Salomon, 2007). Some 

common orthonormal bases used in transform compression in- 

clude: Fourier, wavelet, and the discrete cosine. The key differ- 

ence between the bases is the level of compression at a certain 

level of truncation and the quality of the recovered data at a 

specific level of compression. Along the same lines, Singular 

Value Decomposition (SVD) can be used to form orthonormal 

bases to compress data (Eckart & Young, 1936). In all cases, 

data are irreversibly lost once the orthonormal basis is trun- 

cated. In the context of the imaging problem, the loss of data
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due to compression corresponds to a loss of information in the 

image, but the compression of the imaging process results in a 

decrease in the computational cost. 

2.4 Singular value decomposition 

Due to data loss, it is impossible to reconstruct the identity ma- 

trix from the product of EE’. An alternate way of approach- 

ing the problem is to design the cross-talk matrix C in advance 

so that it is close to the / matrix, and then decompose the C 

matrix into two matrices E and E’ . The benefit is that we con- 

trol how close the approximation C is to the J matrix. In this 

way, the problem can be reformulated as an inverse problem. 

The problem of approximating a matrix by decomposition has 

been extensively studied in mathematics, and the optimal so- 

lution is given by the Singular Value Decomposition (SVD) 

(Eckart & Young, 1936). 

In SVD, the matrix A is approximated by, 

A=Uov', (13) 

where A is an M x N matrix, U is M x N, o is anN XN di- 
agonal matrix corresponding to the singular values, and V7 is 

N x N. Both the columns of U and V? form separate orthonor- 

mal bases, referred to as the left-singular and right-singular 

vectors respectively. In the special case where A is a real- 

valued, square, and symmetric matrix, which is the case for all 

cross-talk matrices C, then U = V and equation 13 becomes 

C=Ucou’. (14) 

This expression is similar to C = EE’ except that in equa- 

tion 14 U is a square matrix and that o is present. Thus, we are 

able to conclude that E ~ U;,, where Uj, is the truncated matrix 

U. In order to formalize the relationship between the encoding 

matrix E and the singular vectors U, we truncate the columns 

of U (singular vectors) according to SVD theory, which indi- 

cates that we should keep the first N, columns corresponding 

to the largest singular values. Additionally, we split the singu- 

lar value matrix o by taking the square root of the matrix and 

multiplying it to U;¢. Therefore, E and ET are respectively: 

E = Ute VGire, (15) 

ET = vorufz. (16) 

We refer to the constructed encoding matrix E as the Trun- 

cated Singular Vector (TSV) encoding. For SVD, there exists 

an optimal truncation level for which most of the information 

in the decomposed matrix is preserved. This point can be iden- 

tified using the singular values. Large singular values indicate 

which singular vectors contribute most to the reconstruction of 

the matrix C. Conversely, small singular values (close to zero) 

indicate that a singular vector does not have a significant con- 

tribution to the reconstruction of C. We note, that the product 

of EE? is an approximation to C, as a result of truncating U, 

which in turn is an approximation of the identity matrix J, by 

design. Also, it should be noted that the E matrix from the 

SVD uses ail sources, for each simultaneous source experi- 

ment. 

2.5 Constructing the cross-talk matrix 

The construction of the C matrix to approximate J using SVD 

is of paramount importance to the quality of the final image 

Re. Since the C matrix should be as close to the identity ma- 

trix as possible, there are at least a few clear choices. The first 

is to band the diagonal in the C matrix, such that there are 

upper and lower diagonals. This is equivalent to applying a 

boxcar filter to the J matrix, as in Figure 3(a). For the boxcar 

filter, the full window width is defined as a = 2\/30, where a 

is the window width and o is the standard deviation. Another 
option is to use a Gaussian filter, to gradually taper the val- 

ues away from the diagonal in the approximating matrix as in 

Figure 3(b). The Gaussian filter is defined as the normal dis- 

tribution with a mean yp and a standard deviation o. In both 

cases, the additional components along the diagonal represent 

the construction of small plane-waves because this is equiva- 

lent to combining the images for spatially closest sources into 

the output image, which results in loss of spatial resolution. If 

the product of EE? is close to the J matrix though, the loss in 

spatial resolution can be negligible. 

There are many other options for possible C matrices, and 

this is by no means a comprehensive discussion. Our examples 

demonstrate how SVD can be used to approximate the Gaus- 

sian and boxcar diagonal matrices, and to reconstruct images 

that are very close to the image obtained by shot-record migra- 

tion. We leave for future research the problem of determining 

the optimal approximation to the identity matrix. 

3 EXAMPLES 

We conduct a series of examples to illustrate the ability of the 

SVD to construct encodings for simultaneous source imaging 

on two models. The first model consists of point diffractors, 

which illustrates that our encoding schemes do not suffer from 

a significant loss of spatial resolution. The second model is 

the Sigsbee2A salt model which demonstrates the ability of 

the SVD to handle complex velocity models while maintain- 

ing spatial resolution. For each model, the SVD is performed 
for both the boxcar and Gaussian approximations to the iden- 

tity matrix, Figures 3(a) and 3(b). The orthonormal matrix U is 

truncated to form the encoding matrix E based on the chosen 

number of experiments to perform N,. The shot-gathers and 

source-wavelets are combined and weighted linearly accord- 

ing to the encoding matrix E prior to wavefield reconstruction. 

The combined data are then reconstructed using downward 

continuation, and the imaging condition is applied, which cre- 

ates a partial image for an experiment. All of the partial images 

are stacked to form the final image. For each experiment, the 

theoretical speed up is given by the ratio: 

Ns 
K= Ne (17) 

where N, is the number of sources available, and N, is the 

number of experiments using for imaging. The ratio K repre- 

sents how many times faster the encoded migration is com- 

pared to conventional shot record migration.
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Figure 3. The boxcar approximation of the identity matrix (b) with a boxcar window width a of 7, corresponding to a standard deviation o of 2. 

The Gaussian approximation of the identity matrix (c) with 4 = 0,0 = 2. The only difference between (a) and (b) is the distribution (i.e. boxcar or 

Gaussian) used to band the identity matrix. 

For each example, we show the encoding matrix E’, the 

cross-talk matrix C, and a measure of relative amplitude. The 

measure of relative amplitude is given by 

As=) lEscl; (18) 
c 

where As is the relative amplitude, c is the column index in 

the encoding matrix, s is the shot index in the encoding ma- 

trix, and E is the encoding matrix. The relative amplitude As is 

then normalized by the maximum value and measures the to- 

tal effective contribution from each shot based on the weights 

in the encoding matrix. Ideally, this measure would be 1.0 for 

each shot, indicating that each shot’s total contribution across 

all encodings is the same as its contribution for conventional 

shot-record migration. A tess ideal condition is that all of the 

shots have contributions that are approximately 1.0. The rel- 

ative contribution for each shot can exceed 1.0 because the 

singular values weight these terms. In this case, the amplitude 

of the conventional image can be reconstructed by performing 

a global rescaling. If the amplitude A; varies as a function of 

shot, then the simultaneous source image contains spatial am- 

plitude variability, which is a result of the simultaneous source 

encoding. The spatial variability in the amplitude causes cer- 

tain portions of the image to be washed out and amplifies other 

portions of the image. 

All the images are compared against one another and are 

clipped to the same relative range. This allows a direct compar- 

ison of amplitudes in the images, even though the amplitudes 

are not the same for the simultaneous experiments and for the 

conventional images. By doing so, we assume that the ampli- 

tudes in the simultaneous source experiments are erroneous by 

a constant scaling factor. 

3.1 Model with uniformly distributed point scatterers 

The simple model is composed of a constant velocity, isotropic 

medium with 20 evenly spaced point diffractors arranged in 

a grid. We simulate 200 shots with receivers distributed over 

the full aperture of the model. Thus, there is no computational 

gain by decomposing the migration domain to represent lim- 

ited aperture for each individual shot. For each simultaneous 

source experiment, the source wavelets and data are combined 

together into synthetic source and receiver datasets. The com- 

bined source- and receiver-wavefields are reconstructed using 

downward continuation. The standard cross-correlation imag- 

ing condition is applied to the reconstructed wavefields for 

each experiment to produce a partial image. The simultane- 

ous source partial images are stacked together to form the final 

image. A conventional shot-record migration using downward 

continuation for all 200 shots is presented independently in 

Figure 4. This image serves as the benchmark for the simulta- 

neous source images. 

3.1.1 Boxcar Approximation 

The boxcar approximation to the identity matrix uses a win- 

dow width a of 7, which corresponds to a standard deviation 

o of 2. The first boxcar experiment involves 10 simultaneous 

source experiments which provides a speed-up K of 20. The 

singular values for the decomposition are shown in Figure 5. 

For reference, an interesting number of singular values to trun- 

cate is 50, where there is an abrupt change in the singular val- 

ues. We truncate below this point because we are primarily 

interested in reducing the cost of imaging. Figures 6(a) and 

6(b) shows the construction of the encoding matrix and the 

reconstruction of the C matrix using SVD for the boxcar ap- 

proximation matrix for 10 simultaneous source experiments 

respectively. Figure 6(c) shows the amplitudes as a function 

of shot, which are spatially variable for 10 experiments. The 

encoding matrix, cross-talk matrix and amplitude variation for 

20 experiments is shown in Figures 7(a), 7(b) and 7(c). Addi- 

tionally, Figures 8(a), 8(b), and 8(c) show the encoding matrix 

E, the cross-talk matrix C and the amplitudes for 50 experi- 

ments. 
The final image for 10 encodings using the boxcar ap- 

proximation is shown in Figure 9(a). Figure 9(b) shows the
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Figure 4. The stacked image for the point scatterer model using conventional shot-record migration for 200 shots. 

image for 20 experiments, which results in a ratio K of 10. 

Figure 9{(c) shows the final image for 50 experiments, which 

has a speed-up K of 4. Clearly, as the number of simultaneous 

experiments increases, the quality of the image increases. In 

the limit, the imaging would approximate the image for shot- 

record-migration, since the reconstructed cross-talk matrix ap- 

proaches C which is close to the identity matrix. 

3.1.2. Gaussian Approximation 

Another set of experiments demonstrates how the Gaussian ap- 

proximation to the identity matrix / affects the final image. For 

the Gaussian approximation, the distribution is created with a 

mean p = 0 and standard deviation of o = 2. The singular val- 

ues in Figure 10 have smoother variation when compared to 

the boxcar approximation as in Figure 5 because the Gaussian 

approximation tapers off slowly instead of having an abrupt 

change in the cross-talk matrix. This implies that there are 

not abrupt changes in the simultaneous source image quality 

by including certain singular values or excluding some. Also, 

the singular values taper to zero rather quickly, indicating that 

the encodings corresponding to the zero singular values do not 

contribute to the image. Thus, the best possible image for the 

Gaussian approximation can be obtained by using all the sin- 

gular values that are not zero or approximately the first 70 sin- 

gular values. Figures 11(a), !1(b) and 11(c) show the encoding 

matrix, the cross-talk matrix and the amplitudes as a function 

of space for 10 experiments. The encoding matrix, cross-talk 

matrix and amplitude variation for 20 experiments are shown 

in Figures 12(a), 12(b) and 12(c). For the Gaussian approxima- 

tion, we use truncate at 60 singular values because this seems 

to correspond to most of the information. Figures 13(a), 13(b) 

and 13(c) show the encoding matrix, cross-talk matrix and the 

amplitudes for 60 experiments (K ~ 3). The amplitudes are 

uniform across all shots, which indicates that the relative am- 

plitude is not as spatially variable as for the other examples. 

Figure 14(a) shows the final image for 10 experiments, which 

has a speed-up factor K of 20. The image for 20 experiments 

has a K of 10, Figure 14(b). Figure 14(c) shows the final im- 

age for 60 experiments. This image is significantly closer to 

the target image than the images obtained from the other ex- 

periments. 

3.2 Sigsbee2A model 

A similar group of experiments is conducted for the Sigsbee2A 

salt model. In this case, we create a new Sigsbee2A survey us- 

ing 3200 shots to represent a shot at every possible shot loca- 

tion. Each shot is forward modelled using a finite-difference 
acoustic algorithm for the full aperture available in the Sigs- 

bee model. In other words, the receivers are at every possible 

grid location on the surface. As in the simple model, there is 

no computational gain by decomposing the migration domain 

based on migration aperture, because the shots are simulated 

with receivers everywhere on the surface. For reference, the 

migration of all 3200 shots via conventional shot-record mi- 

gration is shown in Figure 15. We construct the singular values 

for both the boxcar and Gaussian approximations, Figure 16(a) 

and 16(b). We evaluate only the Gaussian approximation to the 

identity matrix for the Sigsbee model because the singular val- 

ues for the Gaussian approximation quickly taper to zero. 

Figure 17(a) shows the image for 10 experiments using 

the Gaussian approximation. Theoretically, the image in Fig- 

ure 17(a) is created 320 times faster than the conventional im- 

age, but there is additional overhead in terms of disk usage that 

slows down the process. For comparison, Figure 17(b) shows 
the result from the Gaussian approximation for 30 experi- 

ments. The image quality is substantially improved for the 30 

experiment image, compared to the 10 experiment image. For 

example, the 30 experiment image is less noisy in the salt body 

than the 10 experiment image. Additionally, the 30 experi- 

ment image is substantially clearer underneath the salt body 

(x = 15.0km, 4.5km < z < 8.0km). Figure 17(c) shows the re- 

sult from a Gaussian approximation using 100 experiments.
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Figure 5. The singular values for the boxcar approximation to the identity matrix for the model with point scatterers. There is an abrupt change in 

slope of the singular values near VN, = 50, which seems to be an optimal point to truncate the singular values at. The singular values gradually taper 

to zero, indicating that all singular values contribute to the image, although the smaller singular values contribute less than large ones. 

This image is created 32 x faster than that of the conventional 

migration. Figure 17(c) is of much better quality than both of 

the other experiments, and is visually close to Figure 15. 

4 DISCUSSION 

Our theoretical model has allowed the creation of an optimal 

simultaneous source encoding scheme that we refer to as the 

Truncated Singular Vector encoding (TSV). Our experiments 

confirm that the TSV encoding scheme produces nearly opti- 

mal migrated images, as the images are close to the conven- 

tionally migrated images with CL < Cj. The main difference 
between the conventional image and the encoded image is that 

the amplitude of the encoded image changes spatially depend- 

ing on the number of encodings used for imaging. Further- 

more, the TSV encoding is able to reduce the cost of seismic 

imaging, by at least an order of magnitude. For the Sigsbee 

data set, the cost of seismic imaging is reduced by up to /00 

times for 3200 shots. We note that 3200 shots is excessive sam- 

pling for imaging Sigsbee and that a good quality image can 

be obtained using only 500 shots. Regardless, the TSV encod- 

ing is equally valid for 3200 shots or 500 shots, although the 

actual speed-up factor might be different. 

In practice, some of the relative speed advantage K 

gained by using the TSV encoding is offset by the requirement 

of additional data input and output to produce the encoded ex- 

periments. If the combination procedure is efficiently spread 

over multiple machines with many disks, then this additional 

cost is negligible. However, the reduced cost comes at the ex- 

pense of cross-talk noise and a spatial variation of the ampli- 

tudes in the image. The spatial amplitude variation is the result 

of an uneven weighting of shot-gathers by the encoding ma- 

trix. A possible way to remove the amplitude variation is to de- 

sign a cross-talk matrix C that weighs the wavefields to even- 

out the amplitude effects of the encoding scheme. Presently, 

both the noise and amplitude variation can be addressed by 

increasing the number of experiments used in the production 

of the final image. If all possible experiments are used, then 

the TSV scheme approximates conventional shot-record mi- 

gration. The difference between the best possible image for 

TSV and conventional migration is determined by the choice 

of the cross-talk matrix C. 

One of the outstanding questions is whether or not our 

approximations to the identity matrix produce the best images 

via TSV. We chose to examine only the Gaussian and a box- 

car taper approximations because they seem to be two obvious 

candidates. Other interesting candidates include other tapered 

functions such as a sinc or double-sided, decaying exponential. 

Further, we have not yet explored how the parameters, such as 

standard deviation, that control the size or length of the win- 

dow affect the results. We suspect that overall these parameters 

control how much spatial resolution is lost during the encod- 

ing process because they control how many near wavefields 

are combined together to form an image. Consequently, these 

parameters probably influence the singular values and thus are 

related to the image quality at certain levels of truncation. 

More research is needed on how to quantify the amount of 

noise that is added to the image, and on a way to quantify how 

much of the image is lost based on the number of experiments. 

By examining the quality of the image as a function of the 

number of experiments, one may be able to find an optimum 

number of simultaneous source experiments to conduct. Right 

now, we base the number of experiments to use on the singular 

values. 

Additionally, we conjecture that the simultaneous source 

encoding framework that we have developed is independent 

of dimensionality, i.e. 2-D or 3-D, because the matrix repre- 

sentation deals solely with reconstructed wavefields based on 

the physical relation of shots in a large array. Therefore, the 

simultaneous source encoding scheme is likely applicable to 

three-dimensional data, as long as the spatial relationship be- 

tween the sources and the encoding matrix E is maintained. 

Lastly, TSV encoding is not dependent on any of the 

following: survey parameters, geologic structure, the velocity



30 =o J. Godwin & P. Sava 

  

    

  

5 Encoding Matrix 

3 
[- 4 

a 

(a) 

g Cross-talk Matrix 

50 

+ 

8 100 
wn 

150 

100 200 
Shot # 

(b) 

Relative Amplitude for Each Shot over All Experiments 

1.0} 

    
  

3 2 oe 

2 e 

06+, 
$ 
3 |e e 
wu 

= 04 lp © 

P « 

0.2) q 

0.0) . . . 
0 50 100 150 200 

Shot # 

(c) 

Figure 6. The transpose of the encoding matrix (a) constructed by truncating the singular vectors for a boxcar approximation for 10 simultaneous 

source experiments. Note the oscillatory nature of the weights in the encoding matrix. The reconstructed C matrix (b) obtained from EE’. For both 

(a) and (b), white values are (1) and black values are (-1). The relative amplitudes (c) across all 10 experiments for each shot-gather. Not all shots 

contribute to the image equally, which means there is a spatial variation in the amplitude caused by the encoding.
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Figure 7. The transpose of the encoding matrix (a) constructed by truncating the singular vectors for a boxcar approximation. The additional 

experiments are more oscillatory than those in Figure 6(a). For both (a) and (b), white values are (1) and black values are (-1). There are 20 

simultaneous source experiments. The reconstructed C matrix (b), obtained by multiplying EE T The overall amplitudes (c) across all 20 experiments 

for each shot-gather show less variation as a function of shot-gather than those in Figure 6(c).



32 = J. Godwin & P. Sava 

Encoding Matrix     
5 
E 

5 
a 

200 
Shot # 

(a) 

0 Cross-talk Matrix 

50 

Sh
ot
 

# 
~
 

o
 

o
 

150 

  

  

    
  

Shot # 

(b) 

Relative Amplitude for Each Shot over All Experiments 

1.0} 4 pap Anrrrtrw mA AE AREAL OIA Rng] 
e e 

e q 
w 08 
a 

g 
a 

< 0.6 

3 
8 
we 

“04 

0.2} 

0.05 50 100 150 200 
Shot # 

(c) 

Figure 8. The transpose of the encoding matrix (a) constructed by truncating the singular vectors for a boxcar approximation. There are 50 simulta- 

neous source experiments. The reconstructed C matrix (b), obtained by multiplying EE? . For both (a) and (b), white values are (1) and black values 

are (-1). The overall amplitudes (c) across all 50 experiments for each shot-gather show that the average value of the amplitude is more closely 

grouped than in Figure 6(c) or Figure 7(c) which indicates that the amplitudes can be globally rescaled.
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Figure 9. The final stacked images for 10 (a), 20 (b) and 50 (c) experiments using the boxcar approximation. The image quality increases as the 

number of experiments increases.
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Figure 10. The singular values for the Gaussian approximation to the identity matrix for the model with point scatterers. The Gaussian distribution 

has a mean p = 0 and a standard deviation o = 2. 

model or migration type. The encoding scheme only depends 
on the number of experiments used to construct the final im- 

age, and the approximation to the identity matrix to be decom- 

posed. Therefore, if an optimal combination of the two param- 

eters can be found, then the cost of seismic imaging may be 

reduced even further. 

5 CONCLUSIONS 

We develop a theoretical framework that adequately explains 

both conventional seismic imaging and simultaneous source 

imaging. The framework allows us to reformulate the prob- 

lem of simultaneous source imaging in the context of matrix 

operations and leads to the use of singular value decomposi- 

tion to construct optimal encoding matrices. This allows us to 

identify simultaneous source encoding schemes, such as Trun- 

cated Singular Vector (TSV), that produce migrated images at 

much lower cost than conventional shot-record migration. The 

encoded migrations trade reduced computational cost with in- 

creased noise in the image, spatial amplitude variation, and 

loss of spatial resolution. We demonstrate the validity of these 

encodings through numerical experiments on both a simple 

model and on the geologically complex Sigsbee2A salt model. 

In both cases, the Truncated Singular Vector encoding scheme 

reduces the cost of imaging by at least an order of magnitude 

while restricting cross-talk noise and maintaining spatial reso- 

lution. 
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Figure 11. The transpose of the encoding matrix (a) constructed by truncating the singular vectors for a Gaussian approximation. There are 10 

simultaneous source experiments, which means the K is 20. The reconstructed C matrix (b), obtained by multiplying EE". In (a) and (b), white 

values are (+1) and black values are (-1). The overall amplitudes (c) across all 10 experiments for each shot-gather. There is an amplitude variation 

as a function of shot, so the amplitudes in the final image are spatially variable due to the encoding.
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Figure 12. The transpose of the encoding matrix (a) constructed by truncating the singular vectors for a Gaussian approximation. There are 20 

simultaneous source experiments or K = 10. The reconstructed C matrix (b), obtained by multiplying EE’ In (a) and (b), white values are (+1) 

and black values are (-1). The overall amplitudes (c) across all 20 experiments for each shot-gather. The amplitude variation as a function of shot is 

identical to the variation for the boxcar, Figure 7(c).
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Figure 13. The transpose of the encoding matrix (a) constructed by truncating the singular vectors for a Gaussian approximation. There are 60 

simultaneous source experiments. The reconstructed C matrix, obtained by multiplying EE T (b). In (a) and (b), white values are (+1) and black 

values are (-1). The overall amplitudes (c) across all 60 experiments for each shot-gather. The spatial amplitude variation is more consistent in this 

case, which indicates that the amplitudes can be globally rescaled to match the conventional image’s amplitudes.
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Figure 14. The final stacked image (a) for 10 experiments. The stacked image (b) for 20 experiments and the stacked image (c) for 60 experiments. 

All experiments used the Gaussian filter as the cross-talk C matrix. The image quality increases as the number of experiments increases.
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Figure 15. The stacked image of Sigsbee using conventional shot-record migration for all 3200 shots. 
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Figure 16. The singular values for the Sigsbee survey using the boxcar approximation (a) and the Gaussian approximation (b).
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Wave-equation migration with dithered plane waves 

Francesco Perrone & Paul Sava 
Center for Wave Phenmena, Colorado School of Mines 

1 INTRODUCTION 

ABSTRACT 

Wave-equation based shot-record migration provides accurate images but is compu- 
tationally expensive because every shot must be migrated separately. Shot-encoding 
migration, such as random shot-encoding or plane-wave migration, aims to reduce the 
computational cost of the imaging process by combining the original data into syn- 
thetic experiments. Random shot-encoding migration and plane-wave migration have 
different and complementary features: the first recovers the full spatial bandwidth of 
the image but introduces strong artifacts, which are due to the interference between 
different shot wavefields; the second provides an image with limited spatial detail but 
free of crosstalk noise. We design a hybrid scheme that combines linear and random 
shot-encoding in order to counterbalance the drawbacks and merge the advantages 
of these two techniques. We advocate mixed shot-encoding migration through dither- 
ing of plane waves, which increases the spatial bandwidth relative to conventional 
plane-wave migration and reduces crosstalk noise relative to random shot-encoding 
migration. Migration with dithered plane waves operates as a hybrid encoding scheme 
in-between the end members represented by plane-wave migration and random shot- 
encoding. The combination of complementary encodings is effective in reducing the 
trade-off between spatial resolution and crosstalk noise; nonetheless, the noise cannot 

be completely removed. We test two denoising algorithms for eliminating the resid- 
ual noise in the encoded image. We conclude that because crosstalk noise has spectral 
properties similar to the signal, denoising techniques in the image domain are less 
effective than our mixed encoding scheme. In particular in poorly illuminated areas, 
better encoding is a more effective solution for controlling crosstalk and recovering 
a correct image. Migration with dithered plane waves has several advantages: every 
synthetic experiment images in a larger aperture with respect to shot-record migra- 
tion; crosstalk noise is controlled relative to random shot-encoding; and higher spatial 
resolution is achievable with regard to linear shot-encoding. Computational cost is 
also reduced relative to both random and linear shot-encoding migration since fewer 
synthetic experiments are necessary for obtaining high signal-to-noise ratio and high 
spatial resolution in the final image. 

Key words: imaging, migration, shot-encoding 

of view but nonlinear. The imaging condition extracts an im- 

age where the data, extrapolated backward in time, match the 

In conventional seismic depth-imaging, data are acquired by 

means of independent experiments that are then separately im- 

aged. In wave-equation migration, the imaging procedure con- 

sists of two steps: wavefield extrapolation, from data recorded 

on the surface to all locations in the subsurface, and the ap- 

plication of an imaging condition (Claerbout, 1985). The ex- 

trapolation step is linear but computationally intensive; the 

imaging step is relatively cheap from the computational point 

source wavefield, extrapolated forward in time. A conventional 

imaging condition evaluates the matching between the source 

and receiver wavefields through their crosscorrelation (Claer- 

bout, 1985). 

In shot-record (shot-profile) migration, every experiment 

is imaged separately and the total cost is therefore a linear 

function of the number of experiments. Moreover, the more ac- 

curate the wavefield extrapolation scheme, the higher its com-
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putational cost. In the case of reverse-time migration (RTM) 

(Baysal et al., 1983), the computational cost is high, thus pos- 

ing a challenge for industrial applications. Simultaneous shot 

migration has several benefits: first, we can reduce the overall 

time of the migration procedure, thus reducing the cost; sec- 

ond, we can exploit the possibility of imaging in a fixed time 

and in a bigger aperture with respect to shot-profile migration 

in the migration velocity analysis loop, which is a crucial step 

in the seismic inversion process. 

Random shot-encoding migration (Morton & Ober, 1998; 

Romero et al., 2000) is used to image data by simultaneously 
migrating a number of shots, which are linearly combined af- 

ter the application of random delays. The main goal is to re- 

duce the computational cost of wave-equation migration. The 

drawback is that unrelated shots interfere with one another, 

thus leading to artifacts commonly referred to as crosstalk. For 

random shot-encoding, the power of the artifacts in the image 

decreases as 1/M with M being the number of encodings con- 

sidered, i.e., the number of stacked encoded images. 

An intrinsic problem in shot-profile migration is that 

the natural pre-stack gather (the shot indexed gather) cannot 

be directly or easily related to the incidence angle or other 

illumination-related quantities (Soubaras, 2006). To overcome 

this difficulty, several authors propose synthesizing composite 

shots by applying delays that are linear functions in the orig- 

inal shot positions (Whitmore, 1995; Zhang et al., 2005; Liu 

et al., 2006). These new synthetic shots are synthetic plane- 
waves and the new data are, therefore, the response of the sub- 

surface to an incident plane-wave. The natural pre-stack in- 

dex for these experiments is the ray parameter p = sin(a)/v, 
where a is the take-off angle of the synthetic plane-wave. This 

index is a surface-related parameter and does not remove the 

complexity of the overburden at the image point, i.e., it does 

not represent the illumination of the image point as a function 

of the angle of incidence. 

  

The angle of incidence represents a preferential domain 

for indexing seismic images. Stolk & de Hoop (2001) show 

that wave-equation common-angle image gathers are not af- 

fected by multipathing artifacts that characterize kirchhoff mi- 

gration (Stolk & Symes, 2004); hence, they represent a pow- 

erful tool for performing velocity analysis via semblance prin- 

ciple. The plane-wave take-off angle is directly related to the 

angle of incidence in depth only if the velocity model is lay- 

ered and laterally homogeneous; in complex velocity models, 

the angle of incidence can be computed by considering ex- 

tended images and transforming them into the angle domain 

(Rickett & Sava, 2002; Sava & Fomel, 2003). 

Plane-wave migration, or linear-shot encoding migration 

(L-SEM), is equivalent to shot-profile migration when one 

considers all plane waves that describe the data. Zhang et al. 
(2005) present an equation for the minimum number of plane- 

wave components necessary for correctly representing the data 

in a certain range of take-off angles. Soubaras (2006) presents 

a different strategy that exploits a unitary transformation for 

combining the original shots. Modulated-shot encoding pro- 

duces an image equivalent to shot-profile migration as well 

as image-gathers indexed by ray parameter p, but it is less 

costly than plane-wave migration. Modulated shot-encoding 
and plane-wave migration are closely related: both combine 

the shots through a unitary transformation, but while mod- 

ulated shot-encoding uses a frequency independent unitary 

transformation, plane-wave migration uses a frequency depen- 

dent basis. They span the same space frequency-wavenumber 

(w, p), but in different ways. The modulated-shot encoding al- 
gorithm represents an improvement over both plane-wave mi- 

gration and shot-record migration, and the computational gain 

is preserved in the time-domain implementation (Zhang et al., 
2007). In this work, we present an alternative algorithm, suit- 

able for reverse-time migration, which allows straightforward 

implementation, quality control of the final image, and com- 

putational cost reduction. 

The artifacts produced in simultaneous migration of dif- 

ferent shots originate in the migration operator. The migration 

operator (wavefield extrapolation followed by the application 

of an imaging condition) is simply the adjoint of the forward 

Born operator used for modeling the data (Lailly, 1983) which 

is “almost” a unitary operator for a single shot-profile experi- 

ment. For simultaneous shot migration, the migration operator 

is no longer unitary and this is evidenced by the artifacts that 

contaminate the image. An alternative approach to this prob- 

lem is least-squares migration; in this way we can compensate 

for the non-unitary nature of the migration operator and elim- 

inate the artifacts in the image (Tang & Biondi, 2009). Least- 

squares migration is effective but computationally expensive: 

shot-encoding is intended to reduce the computational cost but 

a least-squares inversion of such a large linear problem makes 

the process less cost-effective. It is interesting to observe the 

similarities between the least-squares approach to simultane- 

ous shot migration and processing of blended data (Berkhout, 

2008), where datasets with overlapping shots are processed 

and imaged in a least-square sense (Verschuur & Berkhout, 

2009; Berkhout et al., 2009). 

In this paper, we analyze shot-encoding schemes, namely 

random-shot encoding (R-SEM) (Romero et al., 2000) and 

plane-wave migration (Zhang et al., 2005), that are suitable 

for reverse-time migration. We look at the behavior of the two 

methods with respect to crosstalk artifacts and spatial resolu- 

tion in the final image. Our goal is to develop an improve- 

ment over random shot-encoding that converges faster to the 
shot-record migration (SRM) result and that controls the ar- 

tifacts introduced in the image by the interference of differ- 

ent experiments. At the same time, we want to achieve higher 

spatial resolution with respect to plane-wave migration, which 

trades speed for spatial resolution by using only certain plane- 

wave components for reconstructing the image of the subsur- 

face. Moreover, imaging plane-wave components with a high 

take-off angle (or ray parameter p), when a time-domain finite 

difference scheme is used (like in RTM), requires an increase 

in the computational time and cost since long delays have to 

be taken into account. From this analysis, we design a hybrid 

encoding scheme that combines L-SEM and R-SEM. First, we 

construct the linear delay function that produces the synthetic 

plane-wave response from the original data; then, we dither the 

planar wavefront with random delays in order to increase the 
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spatial resolution without migrating additional plane waves. 

We test it on the synthetic Sigsbee model and show that it is 

more effective than both L-SEM and R-SEM. In areas with 

poor or uneven illumination, the hybrid approach recovers the 

full spatial bandwidth of the image, in contrast to L-SEM, and 

is less prone to crosstalk noise than R-SEM. 

2 SHOT-ENCODING METHODS 

The imaging condition is a nonlinear operation; it is not able to 

distinguish between wavefields from ditferent shots and pro- 

duces artifacts when several experiments are simultaneously 
migrated. Let us consider the source wavefields s;(x,¢) and 
the receiver wavefields r;(x,t), where the index z indicates 
the shot number. We can combine wavefields of different shots 

and extrapolate them all at once because the wave equation we 

use is linear in the wavefield; however, problems arise in the 

extraction of the image. Conventional imaging condition in- 

volves computing the time crosscorrelation at every location 

x in space of the source and receiver wavefields S(x, ¢) and 
R(x, t) and stacking over time: 

I(x) = 55 S(x, t)R(x, t). (1) 

If the wavefields S(x,t) and R(x,t) are, respectively, the 
combination of all shot source and receiver wavefields with 

different delays, then we obtain: 

I(x) = SOS do silx,t — ra)re (x,t — 7) 
t i k 

So elx) + SSF s(x, — nr (x,t - Te), 
t fk 

where I;(x) is the image obtained from the ith shot, and the 

term > > 81(x,£—7:)rx(x, t— 7%) represents the crosstalk 
t If¢k 

artifacts produced by the imaging condition as result of the si- 

multaneous migration of different experiments. Shot-encoding 

migration deals with the design of an optimal combination of 

the original data that allows one to simultaneously migrate 

several shots at once, control the crosstalk noise, and recover 

the correct image of the structure that generated the recorded 

data. 

Different encoding schemes have been discussed in the 

literature. Random shot-encoding (R-SEM) (Romero et _al., 

2000) and linear shot-encoding (L-SEM) (Zhang et al., 2005) 

apply simple delays to the source and receiver wavefields of 

every shot. In random shot-encoding, a random delay is ap- 

plied to each one of the shot wavefields prior to the compo- 

sition of the synthetic experiments. The uncorrelation of the 

delays is reflected in uncorrelated artifacts that can be stacked 

out by summing up the images obtained from different real- 

izations of random delays. 

On the other hand, linear shot-encoding aims to construct 

the response of the Earth to synthetic plane waves by applying 

delays that are linear functions of the shot positions. Linear 

shot-encoding migration has been proven to be equivalent to 

  

shot-record migration if a sufficient number of plane-waves 

is considered. Random shot-encoding is equivalent to shot- 

record migration when considering an infinite number of re- 

alizations of random delays. For both methods, because of the 

model-dependence of the problem, the question of how many 

encodings we really need for obtaining a correct image is still 

open (Stork & Kapoor, 2004; Etgen, 2005) . For example, for 

imaging a single horizontal reflector, we need a single plane 

wave; on the other hand, for highly heterogeneous media and 

complex structures, a more complete illumination of the spa- 

tial wavenumber domain is required. In the latter case, random 

shot-encoding can represent a more economic solution, given 

the acceptable level of crosstalk. 

A third encoding scheme that involves more than just 

simple delays is modulated-shot encoding (Soubaras, 2006) 

or, in the time-domain implementation, harmonic-source en- 

coding (Zhang et al., 2007). These strategies are effective but 
not straightforward to implement, especially the time-domain 

implementation. Harmonic-source encoding involves the con- 

volution of the original data with a filter that decays like 1/t, 
and particular care is needed in the choice of the encoding pa- 

rameters. Nonetheless, both methods halve the computational 

cost of a typical production project (Soubaras, 2006; Zhang 

et al., 2007). 

Our work aims to find a simple and economic way to 

image a survey using RTM. We focus on random and lin- 

ear shot-encoding migration, and all considerations are drawn 

from these two references and their features with respect to the 

standard shot-profile migration. 

Both random and linear shot-encoding can be described 

using a general formulation of the encoding procedure. In fact, 

we can express the synthetic wavefields as a weighted sum of 

the actual shot wavefields appropriately delayed: 

S(x,t,0) = S~ se(x, t) * 6(t — f(xx,0)) (2) 
k 

and 

R(x, t,0) = S~ri(x, t) * 5(t — f(x1,8)), 3) 
l 

where f(x, 0) represents the delay applied to the kth shot 
wavefields as a function of the shot position x, and the param- 

eter 6. The parameter 6 spans the encoding axis. For example, 

in the case of plane-wave migration in a 2D model (Whitmore, 

1995; Zhang et al., 2005), f(a%,@) = sin(a®) (2, —a9), where 
Zo is a reference point and a@ represents the take-off angle of 

a single plane wave; for random shot-encoding, f(x, @) is a 

random process with different values for every shot position 

Xx, where the parameter 6 indexes the random delay realiza- 

tions. 

If N represents the total number of shots and M the num- 

ber of different encodings (plane-waves or random delay real- 

izations), the strategy is effective if M < N, ie., if we can 

obtain an image which is comparable in quality to shot-record 

migration with a smaller number of migrations. 

The wave-equation used in seismic imaging is linear in 

the wavefield; hence, we can linearly combine wavefields of
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Figure 1. Artifacts generated by the imaging condition: the wavefields corresponding to different shots are represented with different colors ad 

different lines and indicated with numbers | and 2. The source wavefields are $1 and S2, the receiver wavefields R1 and R2. The correct image is 

produced where the wavefields of the same shots coincide, i.e., where the two solid lines, S1 and R1, and the two dashed lines, $2 and R2, intersect. 

Shot-encoding migration generates artifacts where $1 intersects R2 and S2 intersects R1. 

different shots and numerically propagate their superposition 

in the subsurface model. However, the imaging condition is a 

nonlinear operation and introduces crosstalk between different 

experiments. The cartoon in Figure 1 describes the mechanism 

that produces crosstalk when two shots are simultaneously mi- 

grated. When the source and receiver wavefields belonging to 

different experiments match in time, the imaging condition ex- 

tracts an image which does not correspond with a reflection. 

If we substitute the expressions for the synthetic wave- 

fields, equation 2 and equation 3, into the imaging condition 

in equation 1 and then transform in the frequency domain, we 

obtain 

T(x) = SO SSS se (x,w)ri (x, w) Wr, (4) 
wi ik l 

where 

War = So ell 08) F en 0, (5) 
6 

The matrix Wi, which has the shot positions x; and x, as 

rows and columns, represents the coupling between different 

shots in equation 4 and it is fully determined by the encoding 

function f(-,-). 

An encoding scheme is considered equivalent to shot- 

record migration if the crosstalk term in equation 4 approx- 

imates the identity matrix, ie., if the following condition is 

satisfied: 

War = Settle Ol ox Sgr, (6) 
6 

where dx. is the Kronecker symbol. 

In the following sections, we study the crosstalk term 

for linear shot-encoding and random shot-encoding. We high- 

light the main features in terms of spatial bandwidth achiev- 

able in the final image and crosstalk noise, and then we design 

a strategy for combining the advantages and controlling the 

drawbacks of these two schemes. We recognize linear shot- 

encoding and random shot-encoding as end members of a 

more general family of encodings, which we can span by con- 

trolling the correlation of the delays of neighboring shots. Fig- 

ure 2 describes our idea; fixing the computational cost, we can 

move from plane-wave migration to random shot-encoding, 

i.e., from low crosstalk and low spatial bandwidth to high 

crosstalk and high spatial resolution in the final image. The 

correlation of the delays of neighboring shots involves a tun- 

ing parameter that controls the dithering of an initial plane- 

wave. In Figures 3(a)-3(c), we respectively show the source 

wavefield for linear shot-encoding, random shot-encoding and 

a combination of the two, in which the initial plane wave is 

dithered by a random perturbation. In the following, we ana- 

lyze L-SEM and R-SEM and introduce mixed shot-encoding 

migration (M-SEM) as their combination. 

2.1 Linear shot-encoding migration 

In linear shot-encoding, the recorded wavefields of different 

experiments are combined in order to obtain the response to 

a synthetic plane wave. The encoding function is linear in the 

shot position and depends on one parameter, which represents 

the ray parameter pg associated with a particular plane wave: 

f(x, ) =Ppe- (Xk _ xo); (7) 

where xo represents an arbitrary reference point. 

Let us assume that pe is a continuous parameter; if the 

expression in equation 7 is substituted into the expression de-
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Figure 2. Trade-off between bandwidth and crosstalk for different shot-encoding schemes. L-SEM achieves a clean image with low spatial resolu- 

tion, while R-SEM obtains a full bandwidth image highly contaminated by crosstalk noise. For drawing the cartoon, we assume fixed computational 

cost. 
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Figure 3. Examples of source wavefield for (a) L-SEM, (b) R-SEM, and (c) M-SEM. Mixed shot-encoding consists in dithering the wavefront we 

synthesize for L-SEM.
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scribing the crosstalk, we obtain 

We = [cere dpe. (8) 

The expression in equation 8 is actually proportional to the 

Dirac delta 6(x, — x,); this means that plane-wave migration 
is equivalent to shot-record migration if we consider all ray pa- 

rameters that reconstruct the data. In the real world, we sample 

the p-space and then we have only a discretized version of the 

integral in equation 8: 

Wri = So ete (rem) (9) 

@ 

Several papers discuss the sampling requirements for the p- 

space (Zhang et_al., 2005; Stork & Kapoor, 2004; Etgen, 

2005); the take-off angle range constrains the minimum num- 

ber of plane waves necessary for correctly reconstructing the 

data in that range. At the same time, the angle range defines the 

computational cost for RTM and the accuracy of the image re- 

construction; reducing the angle range decreases not only the 

computational cost but also the quality of the final image. If we 

assume that the ray parameter space is properly sampled and 

the synthesized plane waves are not aliased, then equation 9 

represents a sinc function (the DFT of a discrete boxcar func- 

tion) and tends to a delta function if we increase the take-off 

angle range. 

We can display the crosstalk matrix for a given number of 

plane waves and analyze the behavior as a function of the num- 

ber of p components considered. In Figures 4, we observe how 

the crosstalk term becomes spikier by imaging more plane- 

wave components. This is because, for linear shot-encoding, 

the crosstalk term is actually an approximate representation of 

the identity operator (equations 8-9). 

  

2.2 Random shot-encoding migration 

In random shot-encoding, the delay of every shot is drawn 

from a random process and the parameter @ is the realization 

index. We use the following notation: 

f (xk, 9) ~ tmacl4; (10) 

at every shot location x;, the delay f(x, 6) is a random vari- 

able uniformly distributed between 0 and tmaz; U4 represents 

the uniform distribution between 0 and 1. If we indicate with 

t® the delay for the Ath shot in the @th synthetic experiment, 

we can write the crosstalk matrix as 

Wi = So etl tel = M6 + (1 _ 5r1) So cilia) . 

6 6 
(11) 

Equation 11 shows that the crosstalk depends on the relative 

delay difference between different shots. The delay difference 

changes the spatial location of the artifacts in the image for 

different realizations of random delays. On the other hand, the 

correct structural image is always obtained at the correct lo- 

cation. Since the delays are random independent variables, the 

location of the artifacts will be an independent variable as well. 

The random superposition of the artifacts in space and the null 

DC component of the wavelet of the recorded signal partially 

stack out the crosstalk noise; the subsequent stack over differ- 

ent random delay realizations further improves the signal-to- 

noise ratio, since the positions of the reflectors do not depend 

on the encoding delays and their contribution will always stack 

constructively (Romero et al., 2000). 
Figure 5 shows the evolution of the crosstalk matrix in 

equation 11 as more synthetic experiments are imaged and 

stacked, and highlights the increasing signal-to-noise ratio de- 

scribed above. The main diagonal is a perfect spike and indi- 

cates that we are not constraining the range of spatial compo- 

nents in the image. Stacking the images obtained with different 

realizations of random delays, we decrease the energy of the 

out-of-diagonal terms and, consequently, the signal-to-noise 

ratio increases linearly with the number of random delay real- 

izations (Romero et al., 2000). The image obtained by random 
shot-encoding approaches the shot-profile migration result as 

M — ow. 

2.3 Mixed shot-encoding migration 

The observations in the previous sections lead to the cartoon 

in Figure 2. In the space defined by crosstalk and spatial band- 

width, we can recognize plane-wave migration as one ex- 

tremum (low crosstalk and low bandwidth) and random shot- 

encoding as the other extremum (high crosstalk as well as high 

spatial bandwidth). The cartoon corresponds to a slice at con- 
stant computational cost, which is the third axis in this ab- 

stract space. We assume a constant computational cost in or- 

der to consistently compare the different approaches. We can 

imagine moving in the space described by crosstalk and spatial 

bandwidth by combining the previously presented encodings. 

Our new approach aims to simultaneously reduce the crosstalk 

and increase spatial bandwidth as we move toward the cen- 

ter of the crosstalk-bandwidth plane. Of course, the ideal goal 

is to move towards the upper-right corner (high bandwidth 

and low crosstalk), and the combination of linear and random 

shot-encoding is a proxy for this result. Indeed, if we are able 

to control the artifacts in the image and reduce the crosstalk 

power, we can filter them out in post processing, thus preserv- 

ing the structural information in the image and moving toward 

the shot-record migration result at a lower cost. 

The combination of linear and random shot-encoding in- 

volves dithering the plane waves with a random perturbation 

(Figure 3(c)). The expected result is the reduction of crosstalk 

(because of the side lobes that characterize the crosstalk term 

for L-SEM) and an increase in spatial bandwidth (given the 

spikiness of the crosstalk term for R-SEM). In Figure 6, we 

show the crosstalk matrix for the new mixed shot-encoding 

scheme: 

Wa = Sy cf loon —an) He HI 
@ 

Mébui + (1 — dat) D> eho mnr + thal (129 
@ 

we can observe the behavior in-between linear and random 

shot-encoding. The crosstalk term partially preserves the char-
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Figure 4. L-SEM crosstalk matrix VS number of plane waves for a single temporal frequency w: (a) 2, (b) 10, (c) 20, and (d) 30. Increasing the 

number of plane waves, we sharpen the main diagonal of the crosstalk matrix and better approximate the identity, ie., we tend toward the shot-record 

migration result.
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Figure 5. R-SEM crosstalk matrix VS number of synthetic experiments: (a) 2, (b) 10, (c) 20, and (d) 30. The more random-delay realization we 

consider, the better we approximate the artifact random process. Since the artifacts are zero mean and the stack of a number of experiments is an 

estimate of the expected value of the process, we are able to remove the crosstalk noise by stacking the images obtained from different random-delay 

encodings.
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Figure 6. M-SEM crosstalk matrix VS number of experiments: (a) 2, (b) 10, (c) 20, and (d) 30. Combining L-SEM and R-SEM, we obtain a 

crosstalk matrix characterized by a hybrid behavior. In the panels, we observe the L-SEM convergence footprint and the random fluctuations due to 

the wavefront dithering. The dithering is particularly effective in sharpening the main diagonal of the crosstalk matrix.
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Figure 7. Slices of the crosstalk panel for 50 synthetic experiments: (a) L-SEM, (b) R-SEM, and (c) M-SEM. They represent the coupling of the 

wavefields of different shots as a function of the distance between the shots.
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Figure 8. Plane-wave components considered in the imaging procedure for: (a) L-SEM, (b) R-SEM and (c) M-SEM. L-SEM migrates all the plane- 

wave components in a limited range with the same weight; R-SEM images all the plane-wave components with uneven amplitudes; M-SEM gives 

more weight to the dithered plane waves but images all components.
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acteristic trend of linear shot-encoding with respect to the side 

lobes while the dithering destroys the coherency of the side 

lobes and allows for a spikier main lobe. 

Restricting our attention to a single column (row) of the 

panels in Figures 4-6 , we can better appreciate the behavior 

with respect to spatial bandwidth and artifacts of L-SEM, R- 

SEM and M-SEM, respectively. Figure 7(a) shows the abso- 

lute value of a column (row) of the crosstalk term in the case 

of L-SEM and 50 plane waves. Note the main lobe and de- 

caying side lobes. Intuitively, we can think of the width of 

the main lobe as an indicator of the achieved spatial band- 

width, since it describes the coupling between neighboring 

shots. The amplitude of the side lobes determines the strength 

of the artifacts in the image. In this case, we expect a loss 

in spatial resolution but small artifacts in the final image. We 

verify these considerations in the result section. For R-SEM 

(Figures 7(b)) we observe a spike at xn — Xm = 0, ie., 

when the source and receiver wavefields belong to the same 

shot, over a random noise floor, which represents the interfer- 

ence between different shots. The spike indicates that we are 

not trading off the bandwidth of the image; the nonzero terms 

for Xn # Xm determines the artifacts. M-SEM (Figure 7(c)) 

presents a behavior in between L-SEM and R-SEM. The spike 

for the crosscorrelation of wavefields belonging to the same 

shots (Xn — Xm = 0) is produced by the dithering, while the 

linear trend reduces the out-of-diagonal term of the crosstalk 

matrices. 

Figure 8 shows us how the different encodings take into 

account the plane-wave components. In Figure 8(a), we see 

that plane-wave migration is constrained by the range of syn- 

thesized ray parameters. At the other extremum, R-SEM im- 

ages all the components but the equalization among them is 

missing. In Figure 8(b), the “non-flatness” of the spectrum is 

the counterpart of the artifacts due to crosstalk in the image. 

Finally, in Figure 8(c), we observe how M-SEM images all the 

spatial components giving greater weight to those related to 

the ray parameters of the plane-waves that have been dithered. 

Again the “non-flatness” reflects the presence of artifacts in 

the image. Nonetheless, the distortion is less pronounced than 

for R-SEM. 

2.4 Example ofa point scatterer in constant 
background 

We illustrate the features highlighted in the previous sections 

with a simple exercise that images a point scatterer in a con- 

stant velocity background. We compare the results obtained 

by stacking 50 images constructed with linear, random and 

mixed shot-encoding (Figure 9). In all three cases, the maxi- 

mum delay applied to wave-fields is the same and is equal to 

1 s. For imaging algorithms implemented in the time domain, 

like reverse-time migration, the fixed maximum delay ensures 

that all migrations have same cost, regardless of the encoding 

type. 
Notice the lower focus of the image obtained by L-SEM 

(Figure 9(a)). The point is spread in the horizontal direction 

because we have not considered plane waves with high values 

of @ in the imaging process, i.e., with high ray parameter p. 

On the other hand, the image is clean because the crosstalk 
decreases quickly with the distance (x; — x1). The data syn- 
thesized for plane-wave migration contain the minimum num- 

ber of events: the response to an incident plane-wave con- 

tains the same number of reflection events in the shot-profile 

data. Because of this, the undesired crosscorrelations between 

wavefields from different experiments, and then the crosstalk, 

are minimized. R-SEM (Figure 9(b)) represents the other ex- 

tremum in the trade-off between crosstalk and spatial band- 

width. In this case, a wider range of the spatial components 

is imaged but crosstalk noise is present in the image, as well. 

The synthetic experiments contain more events than the single 

shot-profile data, and then for a encoded image the crosstalk is 

maximized. The stack of the different experiments is effective 

for this simple model but the result rapidly worsens with in- 

creasing complexity of the subsurface. Figure 9(c) shows the 

image obtained by M-SEM. We can observe a spatial resolu- 

tion that is closer to R-SEM but has fewer artifacts. The am- 

plitude spectra of the stacked images in Figure 10 highlight 
the smaller spatial bandwidth of L-SEM with respect to both 

R-SEM and M-SEM. Nonetheless, they show the distortion of 

the spectrum, i.e., the artifacts in the image. Notice the smaller 

distortion in the case of M-SEM compared to R-SEM (Fig- 
ure 10(c) and 10(b), respectively). 

2.5 Denoising and image enhancing 

Because M-SEM preserves the full-bandwidth information but 

the image is contaminated with noise, we can consider remov- 

ing that noise in post-processing by applying a suitable de- 

noising algorithm. The criterion for choosing among different 

denoising procedures is the preservation of the geologic fea- 

tures in the image. We test two denoising schemes: the first is 

based on seislet transform (Fomel, 2006), the second is a non- 

linear structure-enhancing algorithm (Liu et al., 2009) based 

on plane-wave destruction filters (Fomel, 2002). 
  

2.5.1 Denoising using the seislet transform 

The seislet transform (Fomel, 2006) is a wavelet-like trans- 

form that decomposes the signal into its components at differ- 

ent scales according to the local dip. This transform is very 

effective in removing uncorrelated noise from a seismic image 

and preserving the structures that characterize the image itself. 

After the seislet decomposition, we reconstruct the image us- 

ing all but the smallest scale coefficients in order to eliminate 

the incoherent part of the signal. This approach is based on the 

assumption that the crosstalk is both incoherent and weaker 

than the desired signal. Unfortunately, this is not always the 

case. 

2.5.2 Denoising using nonlinear structure-enhancing 

filters 

As an alternative denoising procedure, we test the structure- 

enhancing algorithm proposed by Liu et al. (2009). The non-
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Figure 9. Point scatterer in a constant medium: (a) L-SEM, (b) R-SEM, and (c) M-SEM. Observe the horizontal spreading in L-SEM; the limitation 

in spatial components reduces the spatial bandwidth of the image. R-SEM produces a sharper image but creates artifacts; M-SEM provides an 

full-bandwidth image and controls the crosstalk with respect to R-SEM. 
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Figure 10. Spatial spectra of the images obtained by (a) L-SEM, (b) R-SEM, and (c) M-SEM. R-SEM distorts the spectrum of the image but 

recovers all the spatial components; on the contrary, L-SEM is constrained by the plane waves synthesized. M-SEM reduces the distortion of the 

spectrum and images a wider range of spatial components.
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linear structure-enhancing algorithm operates on a extended 

cube, which is created by plane-wave prediction from a start- 

ing image; then, filtering acts across the prediction axis by se- 

lecting point-wise the median value of the predicted images. 

In our case, the starting image is the stack of the mixed shot- 

encoding synthetic experiments. 

3 SIGSBEE EXAMPLE 

In this section, we illustrate the technique in a more realistic 

case by imaging the Sigsbee dataset. In the previous section, 

we have analyzed the mixed shot-encoding algorithm in the 

case of a point scatterer in a homogeneous velocity model. We 

point out the reduction in crosstalk, with respect to random 

shot-encoding, and the increase in spatial bandwidth with re- 

gard to linear shot-encoding migration. Here, we verify those 

results in a general case. 

From the simple example of a point scatterer, we know 

that the crosstalk is attenuated but not completely suppressed. 

Nonetheless, if we are able to control the noise during the 

imaging step, we can apply any denoising algorithm for clean- 

ing up the image from residual artifacts. Results are discussed 

at the end of the section. 
The crosstalk in the final image is heavily dependent on 

the complexity of the model. In a complex, heterogeneous ve- 

locity model, plane waves are distorted and the phase relations 

that define W;; break down as soon as inhomogeneities are en- 

countered. On the other hand, R-SEM is more robust against 

this problem since there is no phase coherency to be preserved. 

Let us now consider the complex Sigsbee model. Fixed 

the computational cost, we consider 50 shots for SRM and 50 

different experiments that combine all 500 shots of the survey 

for the three encoding strategies. The migration algorithm used 

is downward continuation and the maximum delay applied to 

a single shot is +2 s. 

Figure 11 shows the image obtained by migrating 50 

shots separately (standard shot-record migration). The shot- 

record migration image represents our benchmark with respect 

to cost and image quality. 

In order to compare the different encoding strategies, we 

look at the two parts of the image indicated by the boxes in 

Figure 11. The areas of particular interest are above the salt 

body, where we want to clearly resolve the stratigraphic se- 

quence, and below the salt body, where the poor illumination 

and the complexity of the overburden make imaging challeng- 

ing. In both areas, the signal-to-crosstalk ratio have to be high 

and the reflectors have to be interpretable despite the interfer- 

ence produced by the simultaneous migration of several shots; 

furthermore, the spatial spectrum of the image must be accu- 

rately recovered in order not to have artifacts in the final result. 

Indeed, the lack of illumination (mainly due to the salt body) 

weakens the signal-to-noise ratio for every encoding scheme, 

and in particular for R-SEM (see Figure 12(b) below the salt 

body at z-= 5.5 km). Moreover, because of the heterogene- 

ity of the velocity model in the overburden, synthetic plane- 

waves are severely distorted and L-SEM becomes inaccurate 

(see Figure 12(a); at z = 10 km the faults are not imaged). 

In Figure 12(a) the illumination footprint of L-SEM is 

easily observable. By imaging only a limited range of plane- 

wave components, we obtain an illumination pattern which 

differs from the correct one that would have resulted from 

shot-record migration. Moreover, not all faults are imaged be- 

cause of the constraints on the range of migrated plane-wave 

components (2 = 10 km). Nonetheless, note the absence of 

residual diffractions below the salt body (z = 5 km) due to 

the undersampling of the shot domain, previously observed in 

the shot-record migration image. 

The illumination pattern for R-SEM (Figure 12(b)) and 

M-SEM (Figure 12(c)) is consistent with SRM, but artifacts 

are introduced by the encoding procedure. In both cases, we 

are able to image the full spatial bandwidth information of the 

image but strong crosstalk contaminates the R-SEM result, es- 

pecially in poorly illuminated areas and near the salt bound- 

aries. M-SEM produces weaker crosstalk both above and be- 

low the salt bodies; especially in poorly illuminated areas, M- 

SEM supplies an interpretable image (compare Figure 12(c) 

and Figure 12(b) at z = 5.5 km). 

The close-ups on the selected areas confirm the above 

considerations. Figure 13(b) is has poor spatial resolution with 

respect to 13(a): note the spread point diffractor at z = 5 km. 

The number of plane-wave components used is clearly insuffi- 

cient for the complexity of the Sigsbee model; thus, the infor- 

mation about the faults in the image is largely lost (2 = 10). 

R-SEM (Figure 13(c)) recovers a more complete image where 

the illumination is high but loses coherency under the salt body 

because of the overwhelming level of crosstalk. In areas of 

poor illumination, the image is uninterpretable. On the other 

hand, Figure 13(d) shows that M-SEM recovers most of the 

image spatial bandwidth (in contrast to L-SEM) and increases 

the signal-to-crosstalk (in contrast to R-SEM) below the salt 

body. 

The image above the salt body warrants a separate discus- 

sion. Looking at the SRM image (Figure 14(a)), we note that 

L-SEM (Figure 14(b)) produces a clearer image (no residual 

diffractions) but the amplitudes in the image are also lower. 

This is likely related to the limitation imposed on the range of 

plane-wave components that have been imaged. Figure 14(c) 

shows the image obtained by R-SEM. All the information 

about the reflectors is preserved and the incoherence of the 

encoding delays, together with the strong illumination of the 

area, enable a better control of the artifacts, which appear to be 

incoherent and uncorrelated with the signal. M-SEM slightly 

improves the amplitudes of the reflection but also introduces a 

certain amount of correlated noise in the image (Figure 14(d)). 

Nonetheless, no information is lost with respect to the SRM 

(Figure 14(a)). 

3.0.3 Effects of dithering on crosstalk 

The previous examples of imaging with mixed shot-encoding 

involve a 0.5% dithering of the initial plane-wave. It is of in- 

terest to look at the effects of the amount of dithering on the 

quality of the final image. 

Intuitively, we obtain the L-SEM image by reducing the
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Figure 11. SRM of the Sigsbee dataset; the image is the stack of 50 shot-record migrations. The boxes highlight the areas we analyze in detail in 

Figures 13-14. 

dithering, but relation between the amount of perturbation 

and the increase in the spatial bandwidth of the image can- 

not be easily evaluated. In Figure 15(a), we show the stan- 

dard plane-wave migration image. Figure 15(b) is the result 

previously discussed (Figure 13(d)); note the considerable in- 

crease in spatial detail achieved with respect to plane-wave 

migration. The faults in the image are now interpretable and 

the point scatterers are better reconstructed. The illumination 

pattern is controlled by the main plane-wave components and 

closely resembles the illumination pattern in Figure 15(a). In- 

creasing the dithering (1% and 10% in Figures 15(c)-15(d), 

respectively), we equalize the illumination of the image and 

recover greater spatial detail but, at the same time, we intro- 

duce stronger distortion, especially in the subsalt area. We con- 

clude that a relatively small amount of dithering is necessary 

for sensibly increasing the spatial bandwidth of the final result. 

Nonetheless, it is difficult to quantify the optimum dithering, 

again because of the model-dependence of the problem. Given 

a dataset, we could estimate it a posteriori, crossing differ- 

ent image-quality indicators (spatial spectrum, image entropy, 

etc.) but this strategy would reduce the cost-effectiveness of 

M-SEM. 

3.0.4 Denoising and image enhancing 

Mixed shot-encoding is more robust against crosstalk than R- 

SEM and it supplies a full spatial bandwidth image; nonethe- 

less, the final image is not completely free from crosstalk. Let 

us now discuss the effectiveness of the postprocessing denois- 

ing algorithm against this kind of noise. Denoising is applied 

to an image constructed by dithering the planar wavefront with 

a random perturbation ranging within 0.5% of the maximum 

delay. 

For M-SEM, the seislet denoising is effective above the 

salt (Figure 16(b)), but it does not improve the image quality 

below the salt (Figure 17(b)) because of the relatively good 

quality of the starting image and poor illumination of the area. 

The latter impacts the signal-to-crosstalk ratio and makes sig- 

nal and artifacts not easily separable in the seislet domain. 

Overall, seislet transform is not effective in increasing the 

quality of the M-SEM result. 

In Figure 16(c) we observe that, above the salt, the 

structure-enhancing algorithm is actually effective in clean- 

ing the image and preserving the reflectors. Below the salt the 

situation is different; M-SEM already produces weaker arti- 

facts and the nonlinear filtering is able to partially enhance the 

sediments and reflectors in this poorly illuminated area (Fig- 

ure 17(c)). Moreover, the procedure is highly sensitive to am- 

plitudes and tends to sharpen amplitude contrasts. This is a 

positive feature for highlighting faults but it can also lead to 

misleading amplitude behavior in poorly illuminated areas. In 

conclusion, the denoising procedure contributes marginal im- 

provements to the initial M-SEM image. 

4 DISCUSSION 

The examples presented in the previous sections show the ro- 

bustness of M-SEM against artifacts produced by crosstalk be- 

tween different shots. A single point scatterer in a homoge- 

neous velocity medium is imaged with more spatial compo- 

nents with respect to L-SEM and, at the same time, the dis- 

tortion of its spatial spectrum is less significant with respect
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Figure 12. Sigsbee dataset migrated using different encoding schemes: (a) L-SEM, (b) R-SEM, and (c) M-SEM. 50 synthetic experiments have 
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been used for each encoding method.
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Figure 13. Image detail below the salt body: (a) SRM, (b) L-SEM, (c) R-SEM, and (d) M-SEM. The undersampling of the shot dimension is 

particularly important below the salt bodies and results in residual diffraction events that distort the image. L-SEM images correctly flat events but 

loses the fault information and the point diffractors. R-SEM reconstructs the complete spatial information but introduces crosstalk noise below the 

salt, where illumination is poor. M-SEM obtains a clearer image, with respect to R-SEM, better images the faults and the point diffractors, compared 

with L-SEM, and achieves an interpretable image below the salt, differently from the undersampied SRM. 

to R-SEM. Hence, with M-SEM we span the domain in be- 

tween the two extremal strategies represented by L-SEM and 

R-SEM. 

This result gives us confidence about the success of M- 

SEM when applied to imaging in complex velocity models. In- 

deed, in a heterogeneous velocity field, L-SEM also produces 

important artifacts caused by the distortion of the planar wave- 

front and triplications of the wavefield. The delay incoherence, 

typical for R-SEM, is useful in recovering full bandwidth and 

effective in destroying the coherence of the artifacts in the mi- 

grated image. 

The effectiveness of the encoding is directly related to the 

behavior of the crosstalk matrix. In order to be completely free 

from artifacts, the sequence of crosstalk matrices must tend to 

the identity. The encoding problem can then be rephrased in 

terms of approximation to the identity. In this section, we ana- 

lyze in greater detail why M-SEM is more effective in imaging 

in complex velocity models. 

The crosstalk term W,, for the three encodings presented 

in the previous sections is 

w = So ew Pa ler xn) . (13) 

@ 

Wi = Soil (14) 
6 

wi = So eel Po rand + (PH) , (15) 

6 

for L-SEM, R-SEM and M-SEM, respectively. In the case of 

L-SEM and R-SEM, equations 13 and 14 actually approxi- 

mate the identity but from very different points of view. In the 

first case, the completeness of the Fourier basis functions is in- 

voked; in the second case, the uncorrelation of delays and ar- 

tifacts, in the data and the final image, respectively, yields the 

result. W,4 converges slowly and smoothly toward the iden- 

tity operator but does not introduce strong artifacts; on the 

other hand, W;% converges toward the identity matrix by atten- 

uating the random out-of-diagonal terms. The out-of-diagonal 

terms contribute strong crosstalk, which is iteratively reduced 

by stacking different synthetic experiments obtained from dif- 

ferent random delay realizations. 

The crosstalk matrix for M-SEM in equation 15 can be 

rewritten as follows: 

we = So cle lPe Amn tach): (16) 

8 

separating the terms for k = I and collecting Ax,: in the 

exponent, yields 

a ) 

iw| | pe+ x Ax, 

Wil = Mém + (1— dm) Doe ( om Be PT 17) 
eo 

- At? . . 
The ratio =—*« has the dimensions of a ray parameter 

Axx:
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Figure 14. Image detail above the salt body: (a) SRM, (b) L-SEM, (c) R-SEM, and (d) M-SEM. The SRM presents correlated noise due to the 

undersampling of the shot dimension. L-SEM is able to very well recover nearly horizontal events, but the top of salt is smoothed out and the steep 

flank of salt canyon are not well imaged. R-SEM introduces random-like noise but images correctly the structures and the rugose top of the salt. 

M-SEM reduces the crosstalk, images correctly the almost horizontal events and obtains a better image of the top of the salt. 
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Figure 15. Effects of the amount of dithering on the image: (a) L-SEM, (b) 0.5%, (c) 1% and (d) 10% of the maximum delay. We observe the 

smooth increase of both spatial detail and crosstalk noise, especially subsalt.
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Figure 16. Results after denoising. (a) M-SEM image detail above the salt body. Both (b) seislet transform denoising and (c) nonlinear structure 

enhancing algorithm are effective in removing incoherent noise where the dip field of the image is slowly varying. If conflicting dips are present, 

the image is distorted; observe the flank of the salt canyon.



62 FE Perrone & P. Sava 

  
9 10 11 12 13 14 15 

  

Figure 17. Results after denoising. (a) M-SEM image detail below the salt body. In poorly illuminated areas, crosstalk is hardly distinguishable 

from the signal. (b) seislet transform denoising removes high scale noise but does not affect the image below the salt body; (c) nonlinear structure 

enhancing algorithm boosts amplitude differences, sharpening faults, but cancels the point diffractors.
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and can be viewed as a perturbation of the the plane-wave 

ray parameter pe. Note that the perturbation varies spatially 

since it depends on Ax;.; the non-stationary nature of the 
. Ate : . . : 

ratio x, allows us to gain spatial resolution with respect 
Xkl 

to standard plane-wave migration, since a greater number of 
Q 

“equivalent” spatial components p5? = pe + Rat is imaged; 
however, it also introduces a disturbance in the convergence of 

the crosstalk matrix toward the identity operator, i.e., random- 

like artifacts in the final image. 

Let us consider two limit cases. If Axx: is “small”, i-e., 

if we are close to one particular shot location, we have 

@ @ 

Axi Axx! 

on the other hand, if Ax, is “large”, i.e., if we are considering 

the mutual influence of two distant shots, we have 

  (18) Pe’ = Po + 

Ath _, sin(aé) 

Axx 

Mixed shot-encoding behaves like R-SEM (see equation 18) 

when we consider neighboring shots, and resembles L-SEM 

when we look at the effects on a particular shot from more 

distant ones (see equation 19). This different behavior explains 

the increase in the spatial resolution (with respect to L-SEM) 

and the decrease in crosstalk (with respect to R-SEM) that M- 

SEM is able to achieve. 

Be! = po + (19) 

The analysis of the distribution of the resulting random 
8 

variable at is not straightforward; even though we can intu- 

itively understand Ath as a random perturbation of a fixed ray 

parameter pe, this perturbation is now spatially-varying along 

the shot positions because of the term Axx. This is coun- 

terintuitive since we usually associate a ray parameter with a 

planar wavefront rather than with one that is dithered and not 

well-defined. 

An alternative way of looking at this is to imagine si- 

multaneously migrating a bundle of plane-waves which are 

randomly taken in the neighborhood of a given pe. Actually, 

M-SEM images more plane-wave components than L-SEM; 

indeed, it images all the plane-wave components but with un- 

even relative amplitudes. This conclusion emerges from Fig- 

ure 8(c): at the surface, M-SEM constructs not only the ba- 

sis plane waves synthesized in L-SEM, but also plane-wave 

components outside the limited range of plane-wave migra- 

tion. The amplitudes are lower and uneven because the ad- 

ditional plane-wave components are obtained in a statistical, 

rather than deterministic way. Nonetheless, by constraining the 

random fluctuations of these components, we can reduce the 

artifacts in the image without limiting the spatial bandwidth. 

Moreover, if we are able to shape the profile of plane-wave 

components synthesized at the surface, we can aim to further 

decrease the crosstalk noise. Considering the L-SEM result as 

a benchmark for spatial bandwidth and crosstalk, we can eval- 

uate the effects of the amount of dithering on the crosstalk in 

the final image. We experimentally found that a dithering of 

0.5% of the maximum delay is sufficient for spatial details to 

emerge (compare Figure 15(b) and 15(a)) in areas with poor 

illumination. 

The illumination pattern varies smoothly with the pertur- 

bation of the planar wavefront; the amplitudes in the image are 

distorted with respect to shot-record migration but most of the 

geometrical and structural information is reliably recovered, 

although point scatterers and highly corrugated salt boundaries 

may be smoothed off. In areas with good illumination, if we 

increase the dithering, we obtain amplitudes that are closer to 

shot-record migration. On the other hand, in areas with poor 

illumination, the signal-to-crosstalk ratio is low and reflectors 

cannot be interpreted (see Figure 15(c) and 15(d) below the 

salt body). 

Fixing the maximum delay, we analyze the different en- 

codings at equal computational cost. M-SEM recovers more 

spatial components than L-SEM and controls the crosstalk 

that R-SEM alone would produce. The results on the Sigsbee 

dataset prove that M-SEM converges faster than both R-SEM 

and L-SEM toward an image of comparable quality to the one 

obtained by shot-record migration; 50 synthetic experiments 

are sufficient for recovering the structural information of the 

image, and the overall cost of the imaging step is 10% of stan- 

dard shot-record migration. For the Sigsbee dataset, we con- 

sider take-off angles from —14 to 14 degrees, a central fre- 

quency f = 15 Hz, and a source spacing of 45 m; if the 

expression in Zhang et al. (2005) for the minimum number 

of p components had been used, at least 109 p components 

would have been necessary for correctly reconstructing the 

data. However, we used only 50 dithered plane waves. The 

dithering allows one to overcome both the limitation in the 

recoverable spatial bandwidth of the image and the p compo- 

nent sampling requirements for correctly representing the data. 

Moreover, since all the shots are encoded in every synthetic 

experiment, the shot dimension is not undersampled, and no 

residual diffraction (caused by the aperture limitation of the 

single shot) is imaged. 

  

5 CONCLUSIONS 

We design a hybrid encoding scheme, which we refer to as 

mixed shot-encoding, that combines the characteristics of lin- 

ear and random shot-encoding in order to move across the 

space defined by spatial bandwidth and crosstalk at fixed com- 

putational cost. We analyze the behavior of the shot coupling 

term and test mixed shot-encoding migration on the Sigsbee 

dataset, verifying the effectiveness of the algorithm. Dither- 

ing a planar wavefront, we increase the spatial bandwidth of 

a single image with respect to linear shot-encoding, and we 

introduce weaker crosstalk noise with regard to random-shot 

encoding. We investigate the effects of the amount of dithering 

on the final image and verify that one can move smoothly for 

one extremum, L-SEM, to the other extremum, R-SEM. The 

migrated image results highly sensitive to dithering. Very little 

perturbation of the wavefront has significant impact on the fi- 

nal image; in particular, the spatial bandwidth increases faster 

than crosstalk and a relatively small dithering allows one to 

recover spatial bandwidth without introducing strong artifacts.
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We test the effectiveness of postprocessing denoising for en- 

hancing the structural information in the encoded image and 

for removing the residual crosstalk noise. In general, denoising 

performs well in areas with good illumination. In areas with 

poor illumination, the crosstalk is not distinguishable from the 

signal and denoising becomes ineffective. 

There are several possibilities for further research: 1) an 

accurate analysis of the convergence rate toward shot-record 

migration will help in estimating the computational cost gain 

we can achieve through mixed shot-encoding migration; 2) a 
statistical analysis of the artifacts can provide indications for 

designing more sophisticated encoding schemes; 3) shaping 

of the amplitude spectrum of the migrated plane-wave compo- 

nents can further reduce the crosstalk noise in the image; 4) a 

parallel research direction is the design of denoising strategies 

based on adaptive subtraction of the artifacts after remodel- 

ing of the data. Finally, if the crosstalk is sufficiently under 

control, i.e., the signal-to-crosstalk ratio is high, mixed shot- 

encoding migration produces image gathers that can be used 

for migration velocity analysis. 
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1 INTRODUCTION 

ABSTRACT 

Wave-equation, finite-frequency imaging and inversion still faces considerable 
challenges in addressing the inversion of highly complex velocity models as well 
as in dealing with nonlinear imaging (e.g., migration of multiples, amplitude- 
preserving migration). Extended images (EI’s), as we present here, are partic- 
ularly important for designing image-domain objective functions aimed at ad- 
dressing standing issues in seismic imaging such as two-way migration velocity 
inversion or imaging/inversion using multiples. Using general two- and one-way 
representations for scattered wavefields, we describe and analyze EI’s obtained 
in wave-equation imaging. The presented formulation explicitly connects the 
wavefield correlations done in seismic imaging with the theory and practice of 
seismic interferometry. We define extended images as locally scattered fields 
reconstructed by model-dependent, image-domain interferometry. Because we 
use the same two- and one-way scattering representations that are used for seis- 
mic interferometry, the reciprocity-based EI’s can in principle account for all 
possible nonlinear effects in the imaging process, i.e., migration of multiples, 
amplitude corrections, etc. In that case, the practice of two-way imaging de- 
parts considerably from that of the one-way approach. Here we elaborate on 
the differences between these approaches in the context of nonlinear imaging, 
describing these differences both in the wavefield extrapolation steps as well as in 
imposing the extended imaging conditions. When invoking single-scattering and 
ignoring amplitude effects in generating EI’s, the one- and two-way approaches 
become essentially the same as those employed in today’s migration practice, 
with the straightforward addition of space- and time-lags in the correlation- 
based imaging condition. Our formal description of the EI’s and the insight 
that they are scattered fields in the image-domain may be useful in further 
development of imaging and inversion methods: either in the context of lin- 
ear, migration-based velocity inversion, or in more sophisticated image-domain 

nonlinear inverse scattering approaches. 

Key words: Inverse scattering, wave equation, imaging, interferometry. 

so-called full-waveform inversion methods (e.g., Taran- 
tola, 1984; Pratt, 1999; Sirgue and Pratt, 2004; Plessix, 

Seismic imaging and model estimation still present 

daunting challenges to the geophysical community when 

it comes to dealing with areas of high structural com- 

plexity or in making use of nonlinear scattering present 

in the data (in the form of e.g., multiples or amplitude 

effects). One avenue to address these challenges are the 

2006; Tape et al., 2009; Zhu et al., 2009). These meth- 

ods operate by finding models that best fit the recorded 

data, and although in principle they are well suited to 

handle nonlinear scattering effects in the data, waveform 

inversion methods are notoriously ill-posed in terms of 

their sensitivity to the choice of starting models. An al-
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ternative to deal with the ill-posedness of data-domain 

nonlinear inversions such as waveform inversion or in- 

verse scattering approaches (e.g., Rose et al., 1985; Bu- 

dreck and Rose, 1990; Weglein et al., 2003) is to set 

up the inverse problem in the subsurface image domain 

(e.g., de Hoop et al., 2006; Symes 2008, 2009). These 

approaches have demonstrated their potential for lin- 

ear, wave-equation migration-based velocity inversion 

(e.g., Chauris, 2000; Mulder and Ten Kroode, 2002; Sava 

and Biondi, 2004). A key element that is necessary for 
image-domain finite-frequency inversion methods is the 

analysis of subsurface image gathers. Extended images 

(El’s; see Sava and Vasconcelos, 2010), as we describe 
in this paper, are an extension of traditional subsurface- 

domain image gathers. As such, our objective with this 

paper is to provide formalism and insight regarding one- 

and two-way EI’s that will serve as the basis for the de- 

velopment of image-domain inversion approaches. 

Most wave-equation-based imaging methods rely on 

the cross-correlation of source and receiver wavefields 

to invoke the zero time-lag and zero space-lag imag- 

ing condition (e.g., Claerbout, 1971,1985). This imag- 
ing condition has recently been extended by correlating 

wavefields with non-zero lags in the spatial coordinates 

also (Sava and Fomel, 2003). This allows, for example, 

studying the dependence of the image gathers on the 

velocity used in wave-equation-based imaging. Besides 

allowing for lags in the spatial coordinates when calcu- 

lating the cross correlations, one can also allow for non- 
zero lags in the time variable (Rickett and Sava, 2002; 

Sava and Fomel, 2006; Sava and Vasconcelos, 2009). We 

refer to the images obtained using non-zero lags in both 

the spatial and time variables as extended images. 

In seismic interferometry the cross-correlation of 

wavefields received at two receivers allows the extrac- 

tion of the response between these receivers as if one of 

them acts as a source (e.g., Claerbout, 1968; Fink, 1997; 

Rickett and Claerbout, 1999; Weaver and Lobkis, 2001; 

Campillo and Paul, 2003; Wapenaar, 2004; Schuster et 

al., 2004; Curtis et al., 2006; Wapenaar et al., 2006, and 

references therein; Wapenaar et al., 2010). Representa- 

tion theorems for the scattered field traveling from one 
point inside the medium to another can be found using 

scattering reciprocity relations (Wapenaar, 2007; Wape- 

naar et al., 2008; Vasconcelos et al., 2009). These the- 

orems contain surface integrals like those used in seis- 

mic interferometry. Since an image of a scatterer can 

be obtained by collapsing the recorded scattered wave- 

field onto the scatterer location, this formulation based 

on scattering representations can be used to interpret 

the imaging condition in the context of seismic inter- 

ferometry (Vasconcelos, 2008): the image is the zero- 
time scattered-wave response generated by zero-offset 

pseudo-experiments in the image domain. Here we ex- 

pand on this notion of “image-domain interferometry” 

and show that the representation theorems for the scat- 

tered field allow the extended images to be described as 

scattered wavefields which are “excited” and recorded in 
the image domain. We show this for both the one-way 

and two-way wave equation formulations. 

While explicitly defining EI’s from exact two- and 

one-way scattering reciprocity theorems is the essence 

of our work in this manuscript, the integral representa- 

tions as used for seismic interferometry are not entirely 
new to seismic imaging. Esmersoy and Oristaglio (1988) 
and Oristaglio (1989) used reciprocity integrals to for- 
mulate the wavefield extrapolation step in reverse-time 

double-focussing migration algorithms, while de Hoop 

and de Hoop (1995) also used general reciprocity rela- 
tions to describe the data redatuming for imaging of 
general acoustic, elastic and electromagnetic fields. In 

the context of linear, Born-based migration /inversion 
reciprocity relations have also been used to describe 

wavefield extrapolation both for two-way (e.g., Clayton 

and Stolt, 1981; Stolt and Weglein, 1985) and one-way 

(e.g., Wapenaar et al., 1989; Thorbecke and Berkhout, 

2006) imaging. Furthermore, van Manen et al. (2006) 
were the first to point out the relationship between seis- 

mic interferometry and the migration resolution func- 

tion, which was then developed in detail by Thorbecke 
and Wapenaar (2007). Vasconcelos (2008) then followed 
with an explicit general representation of Claerbout’s 
imaging condition (e.g., Claerbout, 1971, 1985) using 
scattering-based integral relations originally derived for 

seismic interferometry (Vasconcelos and Snieder, 2008; 

Vasconcelos et al., 2009a). More recently, Halliday and 

Curtis (2010) derived the formal link between imaging 
by double-focussing (Oristaglio, 1989) in terms of the 
scattering-based version of the source-receiver interfer- 

ometry method by Curtis and Halliday (2010). 
In this manuscript, we further explore the connec- 

tion first established by Vasconcelos et al. (2009b) be- 
tween wave-equation imaging and seismic interferom- 

etry for general scattering experiments for two-way as 
well as one-way propagation. We begin our discussion by 

defining EI’s for both two- and one-way imaging explic- 

itly as time- and space-dependent subsurface scatter- 

ing experiments. Next, we use reciprocity theorems for 

two- (Vasconcelos et al., 2009a) and one-way scattering 
(Wapenaar et al., 2008) to provide formal description 
for the extended imaging conditions. We describe how 

to generate two- and one-way EI’s both in terms of wave- 

field extrapolation step as well as in terms of evaluating 

the imaging conditions. Finally, we address the com- 
putation of El’s in the context of the single-scattering 

assumption and connect our reciprocity-based formula- 

tion to current practice in two- and one-way migrations.
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Figure 1. Cartoons illustrating geometries for two-way extended imaging using scattering reciprocity. The point x (white 
triangle) is an image point in the subsurface/model domain D. The points x + 6x and x — 6x (grey triangles) are respectively 

the locations of pseudo-sources and pseudo-receivers in D, that are displaced from x by a space lag 6x. xs and x, represent, 

respectively, the locations of the physical sources (stars) and receivers (black dots) used in the data acquisition. For each 
shot in xs, there are receivers x; everywhere on OD or ODo; and the sources themselves also cover the same surfaces. The 

arrows represent the scattered-wave response Gg. The curved grey lines represent heterogeneity in the subsurface model (e.g., 
layering). Panel (a) depicts the most general case where the surface OD encloses the subsurface domain and the imaging- 
condition integration is conducted over x’ in the volume D as well as on the surface. In panel (a), the subsurface model may 

contain sharp boundaries which are indicated by the solid grey lines. Panel (b) depicts the more conventional configuration 
for single-scattering, Born-based imaging where integration is typically conducted over x’ on the open surface ODp, and where 

sharp model discontinuities are absent (indicated by the dashed grey lines). 

2 DEFINING A WAVEFIELD-BASED 
IMAGE 

2.1 Two-way extended images 

An imaging condition for migration by wavefield extrap- 

olation can be defined in terms of a scattered field Gs, 

as (Claerbout, 1971) 

I(x) = Gs(x,x,7 =0). (1) 

According to this definition, the conventional image 

T(x) can be physically thought of a zero-offset scat- 
tered field for source and receiver coinciding at the im- 

age point x, evaluated at zero time. Since waves in the 

subsurface travel with finite wavespeeds, the zero-offset 

scattered-wave response in equation 1 is zero when x is 

away from scatterers or interfaces, and it is finite when 

the image point is at a scatterer or interface. Thus, it 

is the principle of causality that makes the image in 

equation | physically suitable for the mapping of dis- 

continuities in the subsurface. 

Based on the definition in equation 1, an extended 

image (EI) can be readily defined by evaluating the scat- 
tered field Gs for finite source-receiver offsets and at 

nonzero times, that is 

T(x, 6x, T) = Gs(x+ bx, x, T) ’ (2) 

where 6x and 7 can be thought of as space and time 

lags, respectively. Note that equation 2 states that the 

extended image Z. corresponds to the scattered-wave 

response excited by a source at the image point x and 

recorded by receivers at x + 6x at time 7. Since there 
are no real physical excitations or observations inside 

the subsurface, we shall from now on refer to them 

as “pseudo-sources” and “pseudo-receivers”. In addi- 

tion, it is possible to define other types of extended 

images with “pseudo-acquisition” geometries that are 

different than that in equation 2. While Z. in equa- 

tion 2 represents a common-source-type geometry, defin- 

ing Ze(x,6x,7T) = Gs(x + 6x,x — 6x,7T) generates a 
common-mid-point type of geometry, where the con- 

ventional image point x lies at the midpoint between 

pseudo-sources at x — 6x and pseudo-receivers at x + 6x. 

An illustration of the latter can be found in figure 1. 

Equations | and 2 identify an image as a scattered wave- 

field, ie., as a space- and time-dependent object that 

satisfies the partial differential equation (PDE) 

LI. =—-VGo, (3) 

where Go are frequency-domain Green’s functions, 

£(x) is a wave-equation operator, e.g., £(x) = V? + 
c-?(x) w?, and V(x) is a scattering operator, e.g., 
given Lo(x) = V? + c9?(x) w?, V = L(x) — Lo(x) = 
w* [eo ?(x) — co ?(x)|. Here, e(x) and co(x) pertain to 
the perturbed and reference subsurface wavespeed mod- 

els, respectively. Since it follows from the definition of 

VY that £ = £Lo + V, we point out that Ze in equation 3 

is nonlinear on Y. This means that the extended images
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based on the definitions in equations 1 through 3 prop- 

erly take the effects of multiple scattering into account. 

It is important to note that the scattering poten- 

tial V can be defined arbitrarily. The most common def- 

inition in migration/imaging literature (e.g., Oristaglio, 
1989; Weglein, 2003; Symes, 2009) is that c = co + 6c 
is comprised of a smooth background co and of sharp 

discontinuities dc (i.e., the singular part of the model). 
Under this definition, V thus becomes an operator that 

accounts for the singularities in the scattered wavefields 

Gs. We will also use this definition in the context of this 

manuscript, but we point out that V can also be defined 

in other ways, e.g., as a smooth time-lapse change, or 

by incorporating attenuation (e.g., Vasconcelos et al., 

2009). 

2.2. One-way extended images 

In the context of one-way wave propagation (e.g., Claer- 

bout, 1971; Fishman and McCoy, 1984; Wapenaar et al., 

2001; de Hoop et al., 2003), an extended image can be 

defined as 

I.(x, 8x, 7) = RG (x + 5x,x,7) (4) 
where R¢ (x +x, x,T) is the finite-time up-going reflec- 
tivity response to a downgoing field pt (Wapenaar et al., 

2004; Wapenaar et al. 2008), for pseudo-sources at the 

image point x and pseudo-receivers at x + 6x within 

the subsurface (see figure 2). Similar to the definition 

of two-way extended images in terms of Gs in equa- 

tion 2, the image J, is also a space- and time-dependent, 

wavefield-like object. As with the two-way case, equa- 

tion 4 is a straightforward extension of the classical 
definition of a subsurface image as a zero-offset and 

zero-time reflectivity response (e.g., Claerbout, 1971), 

ie. I(x) = Ro (x,x,7 = 0). 

Despite the similarities in their definitions, the one- 

way extended image defined via equation 4 is fundamen- 

tally different from the two-way image defined in equa- 

tion 2. The first and most important difference lies in 

the meaning of these definitions. While it follows from 

the definition of the two-way EI in equation 2 that Z. 

satisfies the PDE in equation 3, the one-way I, in equa- 

tion 4 is the kernel operator of the integral equation 

(e.g., Wapenaar et al., 2004; Wapenaar et al. 2008) 

F eaxns) = | 
xzEODy 

RG (Xa, Xz, w)p* (x2, Xs,w)d?xz; 

(5) 
where {xqg,x-} are points in the subsurface plane ODq, 

and p (xa, Xs,w) and p* (xz, Xs,w) are respectively up- 
and down-going fields recorded at depth due to sources 
at xs, on the surface plane ODo. This is illustrated 

in figure 2. The EI in equation 4 is obtained from 

Ri (xa, Xz,w) by choosing x, = x and xq = x + 6x 
and after an inverse Fourier transform w +> +. There- 

fore, while the two-way EI Z. in equation 2 is a scattered 

wavefield with physical dimensions (e.g., dimensions of 

pressure), its one-way counterpart J. in equation 4 is 

a dimensionless operator. Furthermore, the decomposi- 

tion that yields the up/down-separated fields pt’— im- 

poses limitations on spatial aperture (e.g., leading to a 

decrease in accuracy toward horizontal directions) and 
ignores the effects of laterally-propagating or evanescent 

wave modes (e.g., Fishman and McCoy, 1984; Wape- 

naar et al., 2001); these restrictions do not apply to 

the two-way extended images described by equation 3. 

Finally, we note that the one-way EI describes only 

up-going, back-scattered responses between subsurface 

points, whereas the two-way EI defined in terms of Gs 

ideally retrieves both forward- and back-scattered waves 

with no directional restrictions. Therefore, while one- 

way EI’s retrieve only upward propagating reflection 

responses, two-way EI’s ideally can reconstruct both 

transmission and reflection responses between subsur- 

face points. 

3 EXTENDED IMAGES FROM 
SCATTERING RECIPROCITY 

3.1 Two-way imaging conditions 

After defining the two-way EI’s according to equations 1 
and 2, the next step is to formally define imaging con- 

ditions that retrieve images that comply to those def- 

initions. Since our definitions rely on the retrieval of 

the scattered fields Gs, we can use integral scattering 

representations to obtain the desired images (e.g., Thor- 

becke and Wapenaar, 2007; Wapenaar, 2007; Vasconce- 

los, 2008; Vasconcelos et al., 2009b; Halliday and Cur- 

tis, 2010). These scattering representations are similar 

to those employed in seismic interferometry applications 

(e.g., Bakulin and Calvert, 2006; Wapenaar, 2007; Vas- 

concelos and Snieder, 2008). 
The extended images 7, that follow from equation 2 

can be obtained reconstructing the scattered field Gs for 

finite times and by allowing the source and receiver lo- 

cations to be arbitrarily different (see discussion about 
equation 2 above). Assuming a common image point 

x, we write the pseudo-source and receiver locations as 

x + 6x and x — 6x respectively (figure 1). Using the 
correlation-type scattering representation for Gs from 

Vasconcelos et al. (2009a) in equation 2 then gives (Vas- 
concelos et al., 2009b)
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Figure 2. Cartoons illustrating geometries for one-way extended imaging using scattering reciprocity. As in Figure 1, xs and xr 

represent sources and receivers that cover the top acquisition surface ODo. xz and xq (depicted by triangles) are two arbitrary 

subsurface points that lie on the depth-domain surface ODg. In panel (a), p* represent up- and down-going fields due to a 
source at x on ODo, and depth-extrapolated to OD from the data recorded by the receivers at all x, € 9Dp (black dots). p+ 
are the full up- or down-going wavefields that include all multiple arrival types. Panel (b) illustrates the up-going reflection 

impulse response Re (equations 4 and 5) for a pseudo-source and a pseudo-receiver both on the depth-domain surface ODg, that 

contains all up-going primaries and multiples. Note that the response Rt corresponds to that of a medium that is heterogeneous 

below ODg but is homogeneous above it. 

T.(x, dx, T) = Gs(x _ 6x, x+ 5x,t _ Tr) 

F(w) 
. ) 

=((f22 iwp [Vps( (x _— Ox, x’,w) po(x + 6x, x ,w)| 

n x’) eT dw 

-[(¢=2 w) [ps(x — 5x, x’,w) Vpo(x + dx, x’,w)] 
twp 

n x’) eT dw 

ff F@) p(x — 6x, x’,w) V(x’) po(x + 6x, x’,w) 

wp 

ax’) eT dw : (6) 

where p is density, po is a reference pressure field, ps 

are scattered pressure waves and p = pot+ ps. F(w) isa 
deconvolution-type filter that turns the pressure fields p 

into impulse responses G. The pressure fields in the in- 

tegrand require “sources” at x’ to be everywhere on the 

surface OD as well as in the volume D (figure la). Also, 
the “observation” points x and x + 6x are also inside 

the model and do not correspond to physical recording 

locations. Since in practice we physically excite waves at 

xs and record them at x, on the boundary (figure 1), 
the wavefields in the integrands of equation 6 are ob- 

tained after wavefield extrapolation. We address the role 

of wavefield extrapolation in the next section. Halliday 

and Curtis (2010) also use equation 6 to arrive at a 
generalized formula for the scattered field for imaging 

where the ps fields in the integrand are themselves re- 

placed by another set of integrals in the context of the 

source-receiver interferometry formulation (Curtis and 
Halliday, 2010). 

Once Z. is defined by equation 6, it is straightfor- 

ward to obtain the conventional image Z (equation 1) 
by setting constant 6x = 0 and r = 0, which thus yields 

I(x) = Gs(x,x,t =0) 

-{(¢=2 Fw) [Vps(x, x’, w) po(x,x’,w)] +n ax’) dw 
piwp 

/fime [ps (x, x’, w) Vpo(x,x’,w)] -n d?x ‘) du 

[US Fw =O) p(x, x’ ,w) V(x x!) p5(0ex/w) dx’) dw. 

(7) 

Although here we refer to this equation as a “conven- 

tional” image, we note that typical implementations of 

two-way imaging by, e.g. reverse-time migration, do not 

use the formulation above. We elaborate further on the 

differences between current migration/imaging prac- 
tices and the equations above later in this manuscript. 

The gradients terms in the integrands of equation 6 

imply an implicit requirement for acquiring data with 

sources and receivers of both monopole and dipole type 

(e.g., Fokkema and van den Berg, 1993; Wapenaar and 

Fokkema, 2006). Since dipole (i.e., particle velocity) 
sources and receivers are seldom available in real-life 

seismic surveys, it is convenient to use the far-field ap- 

proximation Vp-n = iwc !p (e.g., Wapenaar and
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Figure 3. An illustration of the discrete operator Rt = 

Re (xg,Xz,w) in matrix form, at a chosen ODg (figure 2b) 

and for a fixed frequency w. Each column of the matrix corre- 
sponds to a discrete pseudo-receiver location xg and variable 

Xz, whereas rows represent a fixed pseudo-source coordinate 

xz and variable xg. The dotted contours highlight different 

choices of geometries of one-way extended images. 

Fokkema, 2006) to recast equation 6 as 

Z.(x,6x,7) = 

[G22 ps(x — 6x,x’,w) 

po(x + 5x,x’, w) d?x’ e* dw 

+/( FU) nix — 6x, x’,w) V(x’) 
p wp 

po(x + x, x’, w) ax’) e’? dw. 

(8) 

In the context of imaging conditions, as we point 

out above, the pressure fields in the integrands of equa- 

tions 6 and 8 are obtained from wavefield extrapola- 

tion and not from direct physical experiments. When 

the fields in question are in fact direct measurements, 

then equations 6 and 8 above are the same as used for 

seismic interferometry applications (e.g., Bakulin and 

Calvert, 2006; Vasconcelos et al., 2009). It is important 

to note that in many of the interferometry applications 

(e.g., Bakulin and Calvert, 2006), the volume terms of 
equations 6 and 8 can be ignored (Vasconcelos et al., 

2009a). For general imaging applications, however, the 

volume integrals cannot be ignored (Vasconcelos, 2008; 

Vasconcelos et al., 2009b; Halliday and Curtis, 2010). 

The connection between the calculation of extended im- 

ages and seismic interferometry arises directly from the 

image definitions in equations 1 and 2 together with the 

use of scattering reciprocity integrals (e.g., Wapenaar, 

2007; Vasconcelos, 2008; Vasconcelos et al., 2009b; Hal- 

liday and Curtis, 2010). A similar analogy exists for the 

one-way formulation as well (see below). 
Given that the depth-domain fields p” (xa, xs,w) 

and p+ (xz,Xs5,w) (equation 5 and figure 2) can be gen- 
erated from the acquired data via wavefield extrapo- 

lation, extended images as defined in equation 4 can 

obtained by solving equation 5 for Rt . The integral 

representation in equation 5 can also be expressed in 

discrete matrix-operator form, i.e., P- = R¢ Pt. Here 

the columns of the fixed-frequency matrices pt = PE 

contain B* (x, Xi,w) for fixed source location x; and 

variable receiver location x , whereas the rows contain 

p (x;,x,w) for fixed receiver location x; and variable 
source location x at a particular fixed depth level. Fig- 

ure 3 illustrates the operator R¢ = Rt (xa,xz,w) asa 
matrix for a chosen frequency. 

A pseudo-inverse reflectivity operator Ri can then 

be obtained from e.g. a regularized least-squares inver- 

sion as (e.g., Hansen, 1997; Wapenaar et al., 2008) 

R§ (xa,x2,0) = RF = P-(P*)! (PHP) + 2a] ' 
(9) 

where t stands for the conjugate-transpose, A is a shap- 

ing/regularization operator and ¢€ is a weighting fac- 

tor. With appropriate choices for « and A, equation 9 

can yield an acceptable estimate of the reflectivity op- 

erator, i.e., Ri ~~) Ri . To then obtain an extended 

image I, (e.g., equation 4) from the reflectivity oper- 

ator, one can simply select an appropriate subset of 

Rt . For example, selecting a row of the Rt (green 

highlight in Figure 3) operator (figure 3) and choos- 
ing a fixed x, = x for variable xq = x + 6x yields 
precisely the extended image as defined by equation 4. 

This choice leads to an extended image of a common- 
source type of geometry, similarly to that discussed for 

the two-way case of equation 2. Conversely, extract- 

ing the columns of R¢ (blue highlight in Figure 3) 
would yield extended images with a pseudo-acquisition 

geometry of the common-receiver type. Another choice 
would be to extract the off-diagonal elements of R¢ 
(red highlight in Figure 3) by setting xg = x — 6x and 
x, = x + 6x for a fixed image point x: this would then 

yield I.(x,6x,7) = Ri (x — 6x,x + 6x,7T), ie., an ex- 
tended image with a common-midpoint type of geom- 

etry. This geometry would be the same as that of the 

two-way Z,. described by equations 6 and 8 and illus- 

trated in figure 1. 

As with the two-way imaging conditions presented 

above, extended imaging based on the one-way reci- 

procity theorem in equation 5 is also directly related 

to the practice of seismic interferometry. Wapenaar et 

al. (2008) presented the method of interferometry by 
multidimensional deconvolution (MDD) that relies on 
equations 5 and 9 to estimate R¢ from observed up- 
and down-going fields.
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The approach presented here is the same as that in Wapenaar et al. (2008) except that the fields used in the 

estimation of the reflectivity operator are depth extrapolated fields, as opposed to physically observed data as used 

in interferometry (figure 2). 

4 WAVEFIELD EXTRAPOLATION FOR NONLINEAR EXTENDED IMAGES 

4.1 Two-way extrapolation 

While interferometry relies on observed fields po and pg (e.g., Bakulin and Calvert, 2006; Vasconcelos, 2008), in two- 

way wave-equation imaging (equation 8) these fields result from extrapolating (i.e., re-datuming) the fields recorded 

at the acquisition surface to the image point x (e.g., Claerbout, 1985; Sava and Vasconcelos, 2009). In imaging, 

po(x,x’,w) (e.g. equation 8) are depth-extrapolated source wavefields, which translates to numerically solving the 

following initial value problem 

{ Lo bo = 0, bo = po(x,x’,w), x € D and x’ € DU@D, with 
po(Xr,Xs,t) = s(t) * d(x, — Xs,Xs,t) as 1.C., for all x;,r € OD; (10) 

where I.C. stands for “initial conditions”, x, and x, are the acquisition source and receiver coordinates (figure 1a), 6 

is the Dirac delta, s(t) is the time-domain source signature and * stands for convolution. The problem in equation 10 

is translated as forward modeling of each shot at x’ = x, € OD to every point x inside D (figure 1a). In addition, 

based on the fields from surface sources recorded at every x € D, the response from each x’ inside D to every x € D 

must also be calculated. This latter step can be performed, for example, with the method by van Manen et al. (2005). 

Solving the initial value problem described by equation 10 results in the po(x, x’,w) fields required by the extended 

imaging condition in equation 8. This reference field po is traditionally named “the source wavefield” in migration 

practice. The source wavefield calculation in equation 10 is analogous to that performed in current migration practice, 

with the additional step of modeling the response of sources that are also inside the subsurface. This additional step 

is necessary for the evaluation of the volume integral in equation 8. 

The next step is to compute the scattered fields js(x, x’,w), or “the receiver wavefields”, necessary for evaluating 

the integrands in equation 8. These are obtained by solving the boundary value problem 

(11) 
Lis = -Vpo, bs = ps(x,x’,w), x € Dand x’ € DUOD, with 

ps(Xr,Xs,w) = d(x, Xs,w) as B.C., for all xs,- € OD. 

where B.C. stands for “Boundary Conditions”, which consist of d3(x;,Xs,w): the full, time-reversed scattered wave- 

field from the acquired common-shot data. It is important to note here that the receiver extrapolation approach in 

equation 11 differs from usual migration practice in three points. First, here the boundary value problem described 

in equation 11 solves the inhomogeneous PDE for scattered fields (e.g., equation 3) as opposed to a homogeneous 

wave equation (e.g. similar to that in equation 10). As a consequence, the source wavefield po that resulted from 

solving the problem in equation 10 must in fact be used for extrapolating for the receiver or scattered wavefield ps as 

described by the problem in equation 11. Second, receiver wavefield extrapolation according to equation |! uses the 

operators £ and V which differ from the smooth operator Lo used for the source wavefield (equation 10). In other 
words, the models used for source and receiver extrapolation are different. This allows for the modeling of multiples in 

the extrapolation of the receiver wavefields as the wavefields jo and js are allowed to interact with the singularities in 

£ and V (equation 11). Third, as with the source wavefield calculation above, the field ps(x, x’,w) must be computed 
for x’ € D in additional to surface sources only (i.e. x’ = xs € OD). In the formulation by Halliday and Curtis (2010), 
the extrapolation for the receiver wavefield ps is analitically expressed in terms of scattering representation integrals 

(Vasconcelos et al., 2009a) and inserted into equation 6, as opposed to the boundary value problem approach we 

present here. 

4.2 One-way extrapolation 

Wavefield extrapolation for the generation of one-way extended images as discussed above is in fact similar to current 

practice in one-way migration. The depth-domain source wavefield P+ = p*(x.,x5,w) (equations 5 and 9) is generated 

via 

Pt=T's{, with (12) 

Sf = 8d (xr, xs,w) = 6(xr — Xs,xs)s(w), for all {x,,x-} € ODo,
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where Sf = &{(xr,Xs,w) are the source data at the acquisition surface (figure 2), s(w) is the frequency-domain 
source excitation function and T+ is a modeling operator for down-going transmission that maps surface data at 

x, € ODo to subsurface-domain wavefields at x, € ODg (figure 2). In parallel with the source wavefield calculation in 
equation 12, the one-way receiver fields P~ = p (xa,Xs,w) (equations 5 and 9; figure 2) are obtained from 

P-=(T-)' Do, with (13) 
Do = do (xr,Xs,w), for all {xs,x,} € ODo, 

where Dp = do (xr, Xs5,w) are the full, up-going reflection data acquired for all shots and receivers on the acquisition 

surface. T~ is the modeling operator for up-going transmission that datums depth-domain fields at all xz € ODg to 

surface data at x, € ODo (figure 2). The inverse of T~ thus maps the reflection data at the surface to the receiver 

wavefield in the subsurface. 

There are three main distinctions between the wavefield extrapolation steps described by equations 12 and 13 

and those employed in current one-way migration approaches. First, the up-going surface data Dp = dp (xr, Xs,w) 

contains the full recorded reflection response (i.e., with all up-going multiples), as opposed to only primary reflection 

data. Second, the modeling operators T+ are meant to be full transmission response operators (e.g., Thorbecke, 1997; 

Wapenaar et al., 2004), i-e., they model amplitude-preserving transmitted fields that contain direct arrivals as well as 

transmission multiples. Malcolm et al. (2009) offers a scattering-series-based approach that can be used for practical 

implementation of the nonlinear T* operators. Finally, we note that the inverse operator (r-)7? is used for the 

back-propagation of the receiver data Dg , whereas common practice does not rely on inverse transmission operators 

(see next section). In principle, these three differences combined allow for the proper modeling of multiples in the 

depth-extrapolated fields, which is a key element necessary for the inversion of the full nonlinear reflectivity operator 

in equations 5 and 9. In the next section we address differences between the steps above and the computation of 

extended images in current migration practice. 

5 EXTENDED IMAGES IN CURRENT MIGRATION PRACTICE 

Unlike the discussion above on the nonlinear imaging conditions and on wavefield extrapolation that models multiples 

in the depth-extrapolated fields, most current migration practices generally rely on the Born approximation (e.g., 

Claerbout, 1971; Stolt and Weglein, 1985) for both one- and two-way imaging. Furthermore, since the objective 

behind most migration schemes is structural characterization, it is not uncommon that additional approximations 

are made that ignore amplitude-related effects in extrapolation and imaging. As a consequence, these approximations 

bring two major simplifications for practically implementing EI’s, namely, i) that all of the wavefield extrapolation 

can be carried out with a single smooth wave-speed model and ii) that the evaluation of the imaging conditions is 

substantially simpler and becomes effectively the same for both two- and one-way imaging. 

Two-way imaging in current migration practice is typically achieved first by adapting the receiver wavefield 

extrapolation in equation 11 to 

{* ps =0 for ps(x,x’,w) with x € D,x’ =x, € ODo (14) 

ps(Xr,Xs,w) = dp(xr,Xs,w) for all xs,- € ODo; 

where the primary-only data dp(x,, Xs,w) replaces the full recorded scattered waves ds(x;,Xs,W) in equation 11, and 
these are now backward-extrapolated with the smooth Helmholtz operator Lo, same as used for the source wavefield 

extrapolation described by equation 10. We point out the homogeneous PDE Lo ps = 0 is not equivalent to the 

Born approximation of the inhomogeneous PDE in equation 11. Proper Born modeling would require the inclusion 

of the forcing term —Vjo, i.e., solving for Lops = ~V po instead. Sources and receivers are no longer assumed to 

enclose the medium, and are instead available only over a finite surface OD (figure 1b). While this assumption 
mimics realistic geophysical data where physical sources and receivers are only available at the Earth’s surface, it 

also typically introduces artifacts in the wavefield reconstruction and interferometry processes (e.g., Wapenaar, 2006, 

Wapenaar and Fokkema, 2006). Note that here the responses of both source and receiver wavefields, i.e, fo,s(x,x’,w), 

are computed only for points x’ = x, on the surface, while the fields extrapolated in equations 10 and 11 need 

additional extrapolated sources at the points x’ inside the subsurface volume. 

By extrapolating the receiver wavefield according to equation 14 as opposed to equation 11, the nonlinear 

interactions between the back-propagating receiver wavefield and the model discontinuities present in the operators 

£ and V are ignored. Also, when ignoring the contributions of model discontinuities in the extrapolation step (i.e. by 

ignoring the Born forcing term V fo), current two-way migration algorithms thus also ignore the volume integral in
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Figure 4. Sigsbee numerical example. Panel (a) shows the true wavespeed model, while panel (b) shows a conventional one-way 
migrated image. The blue dot in both panels shows the location x of the extended image portrayed in figure 5. The red dots 

show the location of the surface acquisition shots xs € ODo. The area highlighted by white lines in panel (a) indicates the 

spatial coverage of space-lags 5x in the extended image (figure 5). The EI in figure 5 is an approximate reconstruction of the 

scattered waves excited at x + dx somewhere inside the white-highlighted area and recorded at x — 6x. The original acquired 
data is laid out in a towed-streamer-type geometry whereby the recording receivers lie only on the right-hand side of the shots. 

the imaging condition in equation 8. Thus, an EI can be approximated from equation 8 as the surface integral 

T.(x, 6x, T) © IU. 2F(w) ps(x — 6X, Xs,w) po(x + Bx, xx, )dxs) e”? dw; 
a Dg PC 
  

where ODo is a subset of OD (figure 1), and x’ = x, as shown in equation 14. This result yields an estimate for an 

EI that is a straightforward extension of the conventional correlation-based imaging condition, obtained by adding 

space lags dx and time lags 7 to the cross-correlation of source wavefields po and receiver wavefields ps (Sava and 

Vasconcelos, 2009; Sava and Vasconcelos, 2010). ° 

An analogous approach is taken to generate one-way EI’s under the single-scattering approximation and using a 

smooth wavespeed model. For one-way imaging, source wavefield extrapolation is done according to equation 12 with 

the full transmission operator T* replaced by T{, the transmission operator in a smooth medium (e.g., Thorbecke, 

1997; Wapenaar et al., 2004). A similar replacement takes place in the receiver wavefield extrapolation, T~ is replaced 

by its smooth medium counterpart T9 . Additionally, given the computational challenges involved with computing the 

inverse of the transmission operator (equation 13), (To )" is typically replaced by the conjugate-transpose (To )'.
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Once one-way source and receiver wavefields are ex- 

trapolated using the smooth transmission operators Td 

and (To y, the image is estimated by cross-correlating 

the resulting source and receiver fields, i-e., 

R{ ~ P- (Pt); (15) 

which is an approximation to the inverse in equation 9 

(e.g., Claerbout, 1971; Wapenaar et al., 2008). The stan- 

dard one-way migrated image is then extracted from the 

diagonal elements of R¢ (black highlight in figure 3). 

From the Rj matrix (equation 15), El’s can be ob- 
tained by selecting other specific combinations of its 

elements, as discussed above discussion regarding fig- 

ure 3. For example, the off-diagonal elements of Rt 

(highlighted in red in figure 3) yield the extended image 
I(x, 6x, 7) = Rg (x —6x,x+ 6x, t = 1), which based on 

equation 15 can be directly evaluated via the integral 

I.(x,6x,7) = Ro (x — 6x,x + 6x,r) 

= [Ue dX, Xs,w) 

{p* (x + 6x, xs,w) }* ax.) eT dw. (16) 

Thus, in current one-way migration practice, we can 

readily generate an EI by adding space and time lags to 

the conventional cross-correlation of receiver and source 

wavefields (p~ and p’ , respectively, in equation 16), fol- 

lowed by a summation over sources x; on the acquisition 

plane ODo. 

Figures 4 and 5 provide a numerical example from 
the Sigsbee model of a one-way EI that is generated us- 

ing equation 16. The standard image, displayed in fig- 

ure 4b, corresponds to the diagonal elements of the esti- 

mated R¢ matrix (equation 15), evaluated at r = 0. Be- 
cause it is an approximate estimate of Rt (x,x,7 = 0), 

the conventional image in figure 4b is commonly inter- 
preted as a representation of the structure of the true 

model in figure 4a. 

The EI in figure 5, however, shows that extended 

images display an appearance which is similar to that of 

recorded data, i.e., that of time- and space-dependent 

band-limited signals with characteristic moveout signa- 
tures. This is consistent with the reciprocity-based def- 

initions of the EI as given by equations 4, 9, or 16, that 

show that an EI are reconstructed reflectivity data ac- 

quired by pseudo sources and receivers in the subsurface 

model. This “reconstruction” is analogous to data re- 

construction by seismic interferometry (e.g., Wapenaar 

and Fokkema, 2006; Bakulin and Calvert, 2006), with 

the distinction that the computation of extended imag- 

ing conditions is done with extrapolated image-domain 

fields as opposed to actual recordings. While the reflec- 

tivity response reconstructed in the EI in figure 5 is 

predominantly causal as expected from the definition 

in equation 4, arrivals are also present for r < 0 due 

to the approximation made in using only the adjoint of 

Pt and not its inverse (see equations 9 and 15). Fur- 

thermore, the proper reflectivity moveout signatures are 

reconstructed only for 7 > 0 and Az < 0 because the 

towed-streamer acquisition of the Sigsbee synthetic data 

only allows for receivers to be placed on one side of the 

source locations. 

6 DISCUSSION 

In this paper, we define extended images (El’s) for both 

two- and one-way explicitly as scattered fields or, re- 

spectively, reflectivity operators that are both excited 

and recorded within the subsurface and for finite times. 
These definitions for “an image” (e.g., according to 

equations 2 and 4), while consistent with the concepts 

originally offered by Claerbout (e.g., 1971, 1985), dif- 
fer from the majority of formal definitions for an im- 

age which target the direct reconstruction of disconti- 
nuities in the Earth parameters, e.g. the scattering po- 

tential V (e.g., Prosser, 1968; Beylkin, 1984; Stolt and 

Weglein, 1985; Esmersoy and Oristaglio, 1988; Weglein 

et al., 2003; Symes, 2008). Instead, by defining EI’s in 

terms of space- and time-dynamic objects such as the 

two-way wavefield Gs, or the one-way reflectivity op- 

erator Ri we use wavefield reciprocity (e.g., Fokkema 

and van den Berg, 1993; Wapenaar et al., 2008; Vas- 

concelos et al., 2009) to derive formal expression for the 
nonlinear extended imaging conditions as presented in 

this manuscript. 

By invoking integral reciprocity relations and defin- 

ing EI’s as subsurface-domain scattering experiments, 

we draw an explicit connection between the computa- 

tion of extended images via migration-type imaging by 

wavefield extrapolation and current practices in seismic 

interferometry. In fact, the integral representations we 

propose here for generating EI’s are precisely the same 

as those employed in seismic interferometry. The scat- 

tering representation we use for our two-way extended 

imaging condition is directly analogous to that em- 

ployed in scattered-wave seismic interferometry as dis- 

cussed by, e.g., Bakulin and Calvert (2006); Vasconcelos 

et al. (2009a) and Wapenaar et al. (2010). Likewise, our 
one-way EI formulation is based on the one-way ap- 

proach by Wapenaar et al. (2008). 

When the imaging objective is structural charac- 

terization, it is common for current migration practice 

to rely on the single-scattering approximation and to 

ignore amplitude effects. In that case, we show here 

that the two- and one-way extended imaging conditions 

are essentially the same calculation (described by equa- 

tions 15 and 16): a straightforward cross-correlation of 
receiver and source depth-domain wavefields followed by 

summing over all shots on the acquisition surface. The 

only difference being that the source and receiver wave- 
fields are generated via two- or one-way extrapolation. 

This explicitly connects our formulation to common 

practice in migration-type imaging widely employed to- 

day. We point out, however, that this similarity be-
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Figure 5. Example of a one-way, fully extended image (EI) of common-mid-point type of geometry, i.e., Ie(x, 6x, 7) = Ro (x- 

6x, x + 6x, t = 7). The El is shown here for a fixed x-location (indicated by the blue dot in figure 4), and for varying dx and r. 
The space-lag 6x has components {Az, Az} which are shown in the figure axes. T-axis is the time-lag variable. 

tween two- and one-way EI’s exhibited by equations 15 

and 16 is only due to the approximations involved. In 

their more general form, reciprocity-based two-way EI’s 

are substantially different from their one-way counter- 

parts both in terms of their meaning as well as in terms 

of the required computations. These differences, how- 

ever, should only necessarily be addressed in imaging 

practice if the objective is to deal with nonlinear ef- 

fects in the imaging process such as e.g. the migration 

of multiples or amplitude corrections due to transmis- 

sion effects. Consistently with our findings, Halliday and 

Curtis (2010) show that Oristaglio’s (1989) two-way in- 
version formula, which is a Born-inversion extension to 

Claerbout’s imaging condition (1971), explicitly follows 
from interferometry-based integral relations. 

Since the reciprocity-based integrals used for inter- 

ferometry make no single-scattering assumptions and in 

principle reconstruct full nonlinear scattering responses, 

our imaging conditions based on image-domain interfer- 

ometry are suitable for dealing with nonlinear imaging 
such as multiple-scattered arrivals and associated am- 

plitude effects. To properly account for nonlinear effects 

in both the two- and one-way case, current extrapola- 

tion practices must be modified such that nonlinearity is 

accounted for at the modeling stage. We show here that 

while nonlinear transmission operators must be used for 

both source and receiver wavefields in one-way imaging, 

in the two-way approach only the receiver wavefields 

include nonlinear effects and their modeling becomes 
dependent on previously computed source wavefields. 

Apart from the necessary modifications in the 

wavefield extrapolation step, we show that the imag- 

ing conditions that generate nonlinear EI’s also differ 
from standard migration practice. In the two-way case, 

apart from the evaluation of a surface integral of cross- 
correlated source and receiver wavefields (akin to the 
source stacking typically conducted in shot-profile mi- 

gration) there is an extra volume integral term that 

must be evaluated. Concurrent with our analysis, Hall- 

iday and Curtis (2010) show that the volume terms are 
necessary both for nonlinear imaging as well as for imag- 

ing based on Born inversion (Oristaglio, 1989). While 
there is no volume integral term to be computed in 

generating one-way EI’s, these in turn require the in-
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version of the full source-wavefield data matrix. At this 

point, computing the two-way volume integral or one- 

way data matrix inverse both present unsolved compu- 

tational challenges in practically computing nonlinear 

El’s. These issues are currently the subject of further 

investigation. 

It is important to emphasize that the greatest chal- 

lenge in practically computing nonlinear EI’s is, at the 

same time, the main justification for why we should gen- 

erate them in the first place. As shown in the approach 

we provide in this manuscript, the computation of both 

two- and one-way EI’s requires knowledge not only of 

the smooth migration velocity model, but also of the 

discontinuities (i.e., the singularities) in the subsurface 
model. That information is obviously not available at 

the outset of a seismic imaging experiment. It is pre- 

cisely for the determination of velocity models, e.g., via 

wave-equation image-domain inversion approaches, that 

the concept of image extensions was originally devel- 

oped. Symes (2008, and references therein) provides a 

comprehensive description of the role of extended im- 

ages in the velocity inversion problem within the context 

of differential semblance optimization. 

Sava and Vasconcelos (2010) show that EI’s can 
bring additional sensitivity to the wavespeed models 

used in current migration practice, and can help in 

advancing migration-based methods for the inversion 

of background wavespeed models. While using EI’s in 

current migration schemes is in itself potentially ben- 
eficial for increasing sensitivity to background migra- 

tion wavespeed models, our nonlinear EI formulation 

presented here can be used to devise nonlinear finite- 

frequency inversions whose objective functions act in 

the subsurface image domain. Such approaches would 

bring the advantages of using image extensions and dif- 

ferential semblance as advocated by Symes (2008) to 
designing practical numerical solutions to the nonlin- 

ear seismic inverse scattering problem (e.g., Tarantola, 

1984; Rose et al., 1985; Weglein et al., 2003; Symes, 

2009). We note also that Halliday and Curtis (2010) 
show that the scattering-based EI’s as presented here 

are formally connected to exact Born inverse scattering 

formulations and are thus also suitable for extensions to 

more sophisticated nonlinear problems. 

On a more practical note, we point out that the 

EI formulation we present here can immediately con- 

tribute to current migration routines. For instance, re- 

cent examples of two-way reverse-time migration ap- 

plications that utilize sharp boundaries in the migra- 

tion velocity model to migrate multiply-scattered ar- 

rivals (e.g., Fletcher et al., 2006; Guitton et al., 2006; 

Jones et al., 2007) rely on a conventional migration prac- 

tices and do not evaluate the volume integral term in 

the two-way imaging condition. Our approach for gen- 

erating two-way reciprocity-based images can be imple- 

mented for the imaging of multiple-scattered arrivals 

using interpretation-based wavespeed models contain- 

ing sharp discontinuities, i-e., by using sharp horizons 

picked from pre-existing images and using our two-way 

formulation to adapt a reverse-time migration scheme. 

Likewise, our one-way nonlinear EI formulation based 

on multi-dimensional deconvolution is readily appli- 

cable to one-way migrations that rely on amplitude- 

preserving one-way extrapolators (e.g., Zhang et al., 

2007) or to recursive one-way migrations that target 

the imaging of multiples (e.g., Berkhout and Verschuur, 

2006; Malcolm et al., 2009). 

7 CONCLUSIONS 

Extended images (EI’s) in wavefield seismic imaging can 
be explicitly defined as space- and time-dependent ob- 

jects in the subsurface domain. In our particular case, 

we define El’s as time-varying scattered wavefields that 

are excited and acquired by virtual sources and receivers 

that surround a particular image point in the subsurface 

domain. This definition of an EI departs from the typical 

concept of migrated image as a static representation of 

the discontinuities in the Earth’s subsurface. Two-way 

EI’s are defined as scattered fields that satisfy the par- 

tial differential equation for scattering in the subsurface 

domain, whereas we define one-way EI’s as a dimension- 

less reflectivity operator that relates down-going excita- 

tions with the up-going subsurface waves recorded in 

the data. 

Together with exact integral reciprocity relations, 

our definitions of two- and one-way El’s reveal an im- 

mediate connection between wave-equation imaging and 

the practice of seismic interferometry. Our extended 

images are, in fact, interferometric reconstructions of 

two- or one-way scattering experiments that use model- 
dependent, depth-extrapolated data as opposed to phys- 

ically observed recordings typically employed in seismic 

interferometry. Because we use the same general scatter- 

ing reciprocity integrals used in interferometry to define 

EI’s, we expect that both our two- and one-way formu- 

lations for the extended imaging conditions account for 

nonlinear amplitude and multiple scattering effects. 
To migrate multiples or to account for other non- 

linear imaging effects, the computation of EI’s departs 
significantly from today’s practices in wave-equation mi- 

gration. First, the depth-extrapolation step must be ap- 

propriately modified to model scattering interactions 

with model discontinuities: only for the receiver wave- 

fields in two-way imaging, and for both source and re- 

ceiver wavefields in the one-way case. Next, we show 

that the imaging condition for two-way reciprocity- 
based EI’s requires the inclusion of an additional scat- 

tering volume integral term that is not present in typ- 

ical migration routines. In the one-way case, the ex- 

tended imaging condition requires the inversion of the 

full down-going source-wavefield data matrix, which de- 

parts from current approaches that use either cross- 

correlation or single-channel deconvolution.



Our explicit reciprocity-based descriptions of two- 

and one-way EI’s can be used to address, both ana- 

lytically as well as numerically, the velocity-dependent 

signatures of these fully extended image gathers. Conse- 

quently, these wavefield-based EI’s can help in devising 

general formulations of image-domain objective func- 

tions for finite-frequency velocity inversion. In addition, 

one- and two-way El’s as we describe here can be of 

immediate use in current reverse-time migration appli- 

cations, as well as in refining amplitude-preserving one- 

way wave-equation migration routines. 
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ABSTRACT 

Gaussian beams are often used to represent Green’s functions in three- 
dimensional Kirchhoff-type true-amplitude migrations because such migrations 
made using Gaussian beams yield superior images to similar migrations using 
classical ray-theoretic Green’s functions. Typically, the integrand of a migration 
formula consists of two Green’s functions, each describing propagation to the 
image point —one from the source and the other from the receiver position. 
The use of Gaussian beams to represent each of these Green’s functions in 
3D introduces two additional double integrals when compared to a Kirchhoff 
migration using ray-theoretic Green’s functions, thereby adding a significant 
computational burden. Hill proposed a method for reducing those four inte- 
grals to two, compromising slightly on the full potential quality of the Gaussian 
beam representations for the sake of more efficient computation. That ap- 
proach requires a two-dimensional steepest descent analysis for the asymptotic 
evaluation of a double integral. The method requires evaluation of the complex 
traveltimes of the Gaussian beams as well as the amplitudes of the integrands 
at the determined saddle points. In addition, it is necessary to evaluate the 
determinant of a certain (Hessian) matrix of second derivatives. Hill did not 
report on this last part; thus, his proposed migration formula is kinematically 
correct but lacks correct amplitude behavior. In this paper, we derive a formula 
for that Hessian matrix in terms of dynamic ray tracing quantities. We also 
show in a simple example how the integral that we analyze here arises in a true 
amplitude migration formula. 
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1 INTRODUCTION 

In oil and gas exploration, a seismic reflection exper- 

iment consists of an exploding or vibrating source of 

energy near the Earth’s surface sending elastic waves 

into the Earth. The seismic waves propagate inside the 

Earth, and waves reflected from interfaces where mate- 

rial properties change return to the Earth’s surface to 

be recorded by an array of receivers. A seismic survey 

consists of hundreds or thousands of such experiments in 

close proximity to one another, each producing a seismic 

record that gives a distorted picture of the Earth’s sub- 
surface. Although reflectors are visible on the records, 

they tend to be misplaced laterally and obscured by 

diffracted energy. Further, the records are recorded in 

time, so they do not provide an image of the Earth’s 

subsurface in depth. 

The goal of seismic migration is to undistort the 

data recorded by the seismic survey, producing accu- 

rate maps of reflector locations. The basis for migration 

is wave propagation theory: given a reasonably accurate 

profile of seismic wave velocities inside the Earth, the 

physical waves are simulated by numerical wavefields 

propagating from the source and receiver locations, and 

the occurrence of reflection at locations inside the Earth 

is simulated by an imaging condition involving the wave- 

fields at those locations. There is a vast geophysical lit- 

erature on migration and associated problems, includ- 

ing problems of analyzing migrated amplitudes and esti- 

mating the wave velocities. Some of these problems are 

treated by Claerbout [1985]. The problem of interest in 
this paper is true-amplitude migration, which aims to 

preserve reflection amplitudes to the point where am- 

plitudes of migration data provide accurate estimates 

of reflection coefficients as a function of source-receiver 

offset or incidence angle at reflector locations. 

1.1 Kirchhoff migration 

As with all migration methods, true-amplitude Kirch- 

hoff migration requires downward propagation of the 

source wavefield and downward propagation of the ob- 

served data to image points in the subsurface. The 
downward propagations are accomplished using Green’s 

identity, operating on data evaluated along one surface 

to obtain data at a deeper surface via a convolution- 

type integral of the data with a Green’s function. When 

the sources are something other than the point sources 
we assume in this paper, we would also downward 

propagate the sources as such a convolution-type inte- 

gral. This is Kirchhoff migration [Schneider, 1978]. Each 

of these propagation processes requires generation of 

Green’s functions at the image point, one from a source, 

one from a receiver. When Gaussian beam representa- 

tions of these Green’s functions are used, it is necessary 

to generate the Gaussian beams themselves in neighbor- 

hoods of the image points. Then, to obtain the Gaussian 

beam representation of each Greens function in 3D, it 

is necessary to carry out a 2D integration of Gaussian 

beams over all takeoff angles where rays are in the vicin- 

ity of the image point. By contrast, the Greens functions 

for standard Kirchhoff migration, derived from classical 
asymptotic ray theory, require only a complex function 

evaluation with no additional integrations. 

1.2 Gaussian beam migration 

Multiplying the Green’s functions together, as required 

by migration theory, results in the need to evaluate four 

nested integrals for Gaussian beam migration, as op- 

posed to the multiplication of two complex numbers for 

Kirchhoff migration. Hill [2001] suggested a method for 
reducing those four additional integrals to two. Hill’s 

method first replaces integrals over source and receiver 

ray parameters with integrals over midpoint and offset 

ray parameters. He then applies the method of steepest 

descent for integrals with complex exponents to the (in- 

nermost) integrals over offset parameters, leaving the 

(outermost) integrals over midpoint parameters to be 
computed numerically. He provides a technique for de- 

termining the critical (saddle) points and evaluating the 

complex traveltime and amplitude in the Kirchhoff inte- 

gral formula. However, for true amplitude integrity, the 

steepest descent approximation of the integral also re- 

quires including the determinant of the Hessian matrix 
of second derivatives of the complex traveltime with re- 

spect to the two offset ray parameters as an additional 

adjustment factor in the amplitude of the asymptotic 

approximation. Hill did not evaluate that determinant; 

thus his method is not a true amplitude Kirchhoff mi- 

gration. That is, its peak amplitude on reflectors cannot 

be shown to be proportional to a specular reflection co- 

efficient when the image is produced by a single specular 

ray pair. 

1.3 The Hessian and the method of steepest 

descent for integrals 

The Hessian we seek is a sum of two other Hessians, 

one with respect to initial transverse ray parameters 

for the rays from the source to the image point, the 

other, the same for the rays from the receiver. Those 

matrices are needed to compute the sum of matrices 

before evaluating the needed determinant. Cerveny and 

Péenéik [1983] and Cerveny [2001], Section 5.8, provide 
the tools for determining those matrices as well as other 

details of Gaussian beams which come from the dynamic 

equations using ray tracing, complex-valued traveltime 

and complex-valued ray amplitude. 

The steepest descent method needs the evaluation 

of the Hessians in offset ray parameters for each choice 

of the midpoint point ray parameters over which the nu- 

merical integration is yet to be done. It is important to 

note that at those saddle points for which one and/or 
the other of the central rays from source and receiver 

misses the image point, the imaginary part of the com- 

plex traveltime is positive, and the integrand has ex- 

ponential decay. Only when both rays from source and



receiver pass through the saddle point is the imaginary 

part of the traveltime equal to zero. Thus, the remain- 

ing outermost integrations are dominated by the region 

of midpoint ray parameters for which central rays pass 

nearby the image point. 

1.4 Two Hessians 

We can exploit this observation to simplify the evalu- 

ation of the two Hessians at the saddle points in off- 

set ray parameters. Those Hessians contain terms lin- 

ear in the offset variables—the q’s of ray-centered co- 

ordinates. When central rays from both source and re- 

ceiver pass through the image point, those q’s are all 

zero, producing the zero of the imaginary traveltime. 

Directly evaluating the coefficients of the terms linear 

in the q’s would require finite difference approximations 

to derivative operators. This evaluation would be com- 

promised by numerical artifacts arising from differenc- 

ing quantities that are only moderately well behaved. 

As an alternative, we propose an approximate evalua- 

tion of the two Hessian matrices. In our approximation, 

we neglect those contributions that are linear in the q’s. 

Near the regions of dominant contribution to the inte- 

gral, this causes insignificant error because the q’s are 

small; elsewhere the error is limited by the exponential 

decay of the integrand. The resulting approximation of 

the Hessians can then be evaluated in terms of dynamic 

ray quantities. Our approximation has been empirically 

shown to be adequate for estimating reflection coeffi- 

cients in 2D [Gray and Bleistein, 2009}. 

1.5 The 2D problem 

The problem in 2D requires the reduction of two single 

integrals of Gaussian beams over takeoff angles repre- 

senting the two Green’s functions, one from the source, 

one from the receiver. In 2D the there is only one or- 

thogonal variable, say g, and the dynamic variables are 

also scalars, Q and P. The second derivative we need is 

a scalar given by the sum of two other known scalars. 

That case is discussed by Gray and Bleistein [2009] who 
present a true amplitude Gaussian beam migration in 

2D. They derived the second derivative indirectly by a 

method that did not expose the approximation we in- 

troduce here, although the same approximation is im- 

plicit in the final formula. Numerical examples confirm 

the claim of true amplitude migration. We show one of 

those examples in the final section of this paper. 

The second derivatives we need are the derivatives 

of the complex traveltimes with respect to the initial 

transverse ray parameters—for rays from source and 
receiver—of rays in a Cartesian coordinate system. On 

the other hand, we know about the second derivatives 

of complex traveltime with respect to the orthogonal 

coordinate gq for rays from source and receiver; these 

derivatives are expressible in terms of Q and P. Thus, we 

need to connect the two second derivatives—one for rays 

from the source, the other for rays from the receiver— 

through changes of variables and the derivatives of those 
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Figure 1. Rotation of Cartesian coordinates in 2D to the 

direction of the central ray. @ is the angle with respect to 

the z-axis of the initial slowness vector p/ to a central ray. 
In the ray-centered coordinate system the initial transverse 

slowness on the central ray is pio. Propagating that ray, we 

find the point z’ from which a perpendicular line of length 

q hits the image point. 

   

   
Central ray 

z of GB 

Figure 2. Ray from ao through aw’, connectioned along an 

orthogonal vector q to the point a. The vector p’ of equation 

(13) is the initial slowness along the ray from a to a’. 

transformations. This is the key to determining the de- 

sired second derivatives of complex traveltime in terms 

of computed quantities of dynamic ray tracing. 

As a first step, we need a transformation of the 

underlying Cartesian coordinate system to a Cartesian 

system defined by the initial direction of the ray from a 

source or receiver to the image point; eventually, we will 

not need to know that ray which might not be one of 
the central rays of the Gaussian beams. In Figure 1, that 

initial point is denoted by wo, which can be the source
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point x, or the receiver point z,. The angle of the ini- 

tial direction of this ray is denoted by § and the initial 
direction along the ray from ao through x is denoted by 

the initial slowness vector p’ in the figure. This trans- 
formation is completely geometric, defined by a matrix 

of rotation of coordinates. 

The vector p depicts the initial direction of the ray 

from 29 through 2’ along a central ray of a Gaussian 

beam. The integration variable in Hill’s method in 2D 

is the initial ray parameter p,, the z-component of p in 

the Cartesian coordinate system (x, z). The method of 
steepest descent of a single integral, such as the integral 

over directions of the rays of the Gaussian beams, re- 

quires the second derivative with respect to this integra- 

tion variable pz. The 3D depiction is more complicated 

because there are two transverse slowness coordinates 

to deal with. 

The ray equations in ray-centered coordinates de- 

scribe the propagation of the orthogonal displacement 

q between the point 2’ and x. The traveltime at the 

image point x is approximated to quadratic order in q, 

as differential equations in the arc length s along the 

central ray through x’. The differential equation for gq is 

coupled with a differential equation for the propagation 

of pi: = O7/Oq. The initial value of p, is the projection 
of p on to the initial direction defined by p’ (rather than 

on the vertical z-axis as is the case for pz. 

The dynamic quantities in 2D, scalars Q and P, 

are described by differential equations in s along the ray 

through 2’. The second derivatives of traveltimes with 

respect to q are given by the quotient PQ~! for appro- 

priate initial conditions on these dynamic variables. For 

classical asymptotic ray theory with real traveltimes, 

the initial conditions for Q and P are real; for Gaussian 

beams with complex traveltimes, the initial conditions 

for Q and P are complex. Thus, once the second deriva- 

tive of traveltime with respect to pz is transformed to 

a second derivative with respect to g, we can write that 

second derivative with respect to pz in terms of the dy- 

namic quantities Q@ and P. This latter second deriva- 

tive is exactly the one that we need to complete the 

amplitude formula in the method of steepest descent; 

this was done in Gray and Bleistein [2009], although we 
used an indirect method to compute that scalar second 

derivative—simpler to determine than the determinant 

of second derivatives that we need in 3D. 

1.6 Returning to the 3D problem 

The next step after the rotation of coordinates is to 

transform from initial slownesses in the ray-centered co- 

ordinate system to the qg’s mentioned above. This is a 

standard matrix of propagation of a local ray tube in 

ray-centered coordinates. It is given by a matrix solution 

Q of the dynamic ray tracing equations with appropri- 

ate initial data for the pair, Q, P. After these steps, the 

original Hessian of the complex traveltime in Cartesian 
slownesses can be written in terms of the Hessian of the 

same complex traveltime with respect to g = (q1,q2). 

One other subtlety occurs in the derivation of the 

Hessian in q. In ray-centered coordinates, the arc length 

along a ray is an independent third parameter with the 
given location determined by marching out to a specific 

value of the arc length s and then moving orthogonally 

to the ray along a vector g. However, the image point 

zx is the same for the entire family of Gaussian beams 
in the integral representing a Green’s function. As a 

result of that, the arc length can be different for each 

ray that “carries” a Gaussian beam, so that s = s(q), 

as we show below by examining the case of constant 

velocity in the discussion beginning on page 92; on the 

other hand, when there are no caustics in the ray family, 

we can also write down g = q(s,,p10,p20); the latter 
pair on the right here are the two initial slownesses that 

generalize pio shown in Figure 1 to 3D. 

With an explanation of the approximation we make 

along the way, we arrive at an approximate expression 

for the desired Hessian of the complex traveltime in 

Cartesian slownesses that we want in terms of the Hes- 

sian of the same complex traveltime with respect to q. 

The latter Hessian is surrounded by the Jacobians of the 

two transformations of coordinates and their transposes. 

The formula for the Hessian of one set of Cartesian 

slownesses—sources or receivers—is stated in equation 

(50). The final formula for the sum of Hessians needed 
in this analysis is stated in equation (51). 

All quantities in (51) are determined on the dis- 
crete set of central rays that are computed. Thus, after 

a difficult theory, once we have the answer the original 

rotation to the ray through the image point z is not 

needed. This is explained in context. 

1.7 Content of the sections 

Section 2 contains background information necessary 

for this analysis and establishes a baseline of notation. 

The asymptotic formula we need to evaluate is stated 

in equation (19), with J in that equation related to 
the product of Green’s functions as defined by equation 

(15). The Hessian matrix that we need to determine at a 
saddle point is defined by equation (18). It is written in 
terms of the Hessians of transverse slownesses for source 

and receiver in equation (21). 
Section 3 is devoted to the analysis of either of these 

last two slownesses; they both require the same analysis, 

one for source coordinates, one for receiver coordinates. 

Hence, a single analysis suffices for both. Section 4 pro- 

vides the final formula for the Hessian matrix that we 

seek. 

In Section 5, we present a true amplitude common- 

shot Kirchhoff migration formula and show that exactly 

the sort of integral we analyze in this paper appears in 

that formula. The methodology we present is driven by 

the fact that the exponent that appears in the migration 

operator is the complex conjugate of the sum of complex 

traveltimes of the separate Green’s functions.
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Figure 3. The polar angles define the initial slowness in the Cartesian system. The ray through z has initial direction p’. 

61, €2 are the other initial orthogonal coordinates in this system. Furthermore, the rotation angles 3, and (2 are depicted. 

Each of the central rays of Gaussian beams has its own such triple of initial directions. 

That structure is generic and not specific to our example; hence, our derivation applies to the kernel of the 

integral migration operator for any integration operator using Gaussian beams. 

Finally, in Section 6, we provide the 2D example that appeared in Gray and Bleistein [2009]. This example 

supports our claimed accuracy of the method presented here. 

The two major results derived in this paper are as follows. 

(i) The asymptotically-approximate determinant of a sum of two Hessian matrices that are required to complete 

the 2D steepest descent formula that provides “true amplitude” of the Gaussian beam migration formula in 3D. 

(ii) Strictly speaking, the steepest descent evaluation of integrals is not available in more than once complex 

variable, but iteration under reasonable assumptions provides us with a formula that is almost to be expected in a 

double integral with a complex exponent. This analysis is presented in Appendix A. 

2 PRELIMINARIES 

We need various pieces of background information and notation in order to explain our analysis. That will be done 

in this preliminary section. Here is a list of what will be discussed. 

(i) The kinematic and dynamic equations governing propagation of paraxial rays in ray-centered coordinates. 

(ii) The dynamic quantities of the propagator matrix—Cerveny [2001], Section 4.3.1—and the relationship to the 

dynamic quantities of Gaussian beams. 

(iii) The complex traveltimes from source and receiver to an image point; their dependencies on the original 

slownesses as well as their dependencies on the transformed slownesses proposed by Hill [2001]. 

(iv) The Hessian we need to evaluate and its relation to the Hessians in the original slowness variables from source 

and receiver to image point. 

2.1 The kinematic and dynamic equations governing propagation on paraxial rays in ray-centered 

coordinates 

This is item (i) in the list above. We begin by considering a ray defined by Cartesian ray theory with initial point ao 

and passing through 2’ as in Figure 2, the 3D version of Figure 1, omitting the slowness vectors. The point a9 might 

be the initial point for a ray from a source location, 2 = @s, or a receiver location, ap = @,. 

The initial direction of the ray from xo through a defines the rotation direction in 3D of the new coordinate 

system in 3D. Associated with that ray is an orthogonal ray-centered coordinate system, (s,q1,q2). Figure 3 on page 

83 shows the initial orientation of the unit vectors (t,é@1,@2) in an (s,q1,q2) coordinate system. In these coordinates 

s is arc length along the central ray, as depicted in Figure 2 and qi and q2 are the orthogonal coordinates to the 

central ray, also orthogonal to one another.
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In Figure 2, we depict the coordinates of the point a in terms of the ray-centered coordinates (s,qi,q2) on the 

central ray through a’. 
In these coordinates, g1 = g2 = 0 on the central ray through x’. Nearby central rays of Gaussian beams from the 

same point Zo are defined by initial directions that are different from the initial direction of this central ray. 

We need a notation for the velocity and its derivatives along the central ray through 2’: 

  

8v(s,0,0 
Vo(s) = v(s,0,0), vo. = Ovlsss 0 

qa = q2 >= 
. (1) 

Ov O°v 
Vor = a ’ VYors = BD, ’ I,J =1,2, V = [vor] - 

O41 |g, = 2 =0 091995 |g, = qn =0   

The central rays are determined by describing the propagation of the coordinates (qi, q2) for each s along the 

central ray and the slownesses of the real traveltime 7 of asymptotic ray theory, defined by 

Or Or 
= me 2 Pi agi » p2 Oq2 ( ) 

In our application, we need to move from initial slownesses (pz, py) in the Cartesian coordinate system of the defined 

integral of interest to the initial ray-centered slownesses (pio, p20) that generalize pio of Figure 1 on page 81 to three 

dimensions. 

The kinematic equations are then given by 

dq, 

  

“ds. = VoP;> q, (0) = 0, 

» (3) 
ad 

7 - qs, p, (0) = Dro; I,J =1,2. 

Summation on capital indices on repeated indices from 1 to 2 is understood. The propagation of the transverse 

slownesses (pi, p2). is determined. We determine the q’s of interest through the connection of the central ray to the 

image point. 

These equations can also be written in vector form as 

d 
a = Vvop, q(0) = 0, 

dp 1 
(4) 

ads = ~ yee P(0) = Po- 

In the last equation, V is the matrix defined in equation (1) and the vectors are vertical arrays of the q’s and p’s, 

respectively. 

We turn now to the dynamic equations of ray centered coordinates. These are equations for two 2 x 2 matrices, 

Q and P. This is item (ii) of our list in the introduction to this section. These matrices are, in turn, related to the 
Hessian matrix of second derivatives of the traveltime with respect to q as follows. 

  m=| or IJ=1,2 M=PQ” (5) 8q,99, ? , > ? 

with Q and P satisfying the equations 

ane 
(6) 

dP 1 ds 7 ave 

These are the same equations as the kinematic equations (4), except now for 2 x 2 matrices. We refrain from stat- 

ing initial conditions since we will define different solutions to these equations below by imposing different initial 
conditions. Furthermore, when we introduce Gaussian beams through complex-valued initial conditions for Q and 

P, we will use T instead of 7 for the resulting complex traveltime. Then, 7 remains the real traveltime of classical 

asymptotic ray theory. However, the relation between the Hessian of T with respect to g and the matrices M, Q and 

P stated in equation (5) will remain the same.
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2.2 The dynamic quantities of the propagator matrix. 

Cerveny [2001], Section 4.3.1, introduces the propagator matrix I(x’, x0). This is a matrix of four columns and four 

rows made up of two different solutions of the dynamic ray equations (6) with different initial conditions as follows. 

II (zo, 2+) = Bie ee) Pin) 

" The initial conditions for these two pairs of solutions are 

Qi(20,20) =I, Qa(x0, £0) = 0, (8) 
P1(xo0, Xo) = 0, , P2(xo0, Zo) =f. 

The solution pair Qi(x’, zo) and P(x’, zo) arise naturally when describing propagation of plane waves in (real) 
asymptotic ray theory. The solution pair Qo(x’, ao) and P2(x’, 20) arise naturally when describing the propagation 

from a point, as for the Green’s function. The initial data for II is a 4 x 4 identity matrix. Furthermore, when the 

columns are viewed as solutions of the system of differential equations (6), it can be shown that they are linearly 

independent in the sense that the Wronskian—the determinant of the matrix II—is nonzero for all values of s. 

Remark 

It is useful to understand the dimensions of the two solutions comprising the propagator matrix. Note that the elements of 

Q) are dimensionless quantities, given initially by a matrix of ones and zeroes. Similarly, the elements of P2 are dimensionless. 

With Q: dimensionless, the second differential equation in (6) reveals that the dimensions of the elements of P; are T'/L?— 
TIME/LENGTH-SQUARED. Similarly, with P2 dimensionless, the dimensions of Q2 are L?/T—LENGTH-SQUARED/TIME. 

For our physical applications, we will choose the dimension of the elements of Q to be LENGTH and the dimensions of the 
elements of P to be slowness, inverse velocity —-TIME/LENGTH. Thus, when adding together linear combinations of the two 
sets of fundamental solutions, the dimensionality of the coefficients of these solutions will have corresponding dimensionality to 

yield the desired dimensionality of the sum. 

Now let us consider a complex-valued traveltime, T, instead of r used above in equation (5). Thus, instead of 

equation (5), we write 

PT 
Moo = |5>5--| , 1,J=1,2 Mog =PopQon- (9) 

The pair of functions Q(z’, 20) = Qg,(x’, Zo) and P(a’, ao) = P,,(x’, Zo) are solutions of the dynamic equations 

(6) subject to the initial conditions 

wwe 
Qes (xo, Zo) = vo(0) I, 

  

(10) i 
P.,2(x0,x0) = —~I es ( Os 0) vo(0) ’ 

In the first equation, w, is a reference frequency and wo is a length scale. At the reference frequency w,, wo is the 

initial “standard deviation” of the Gaussian exponential that arises in the description of the Gaussian beam. For 

example, in a homogeneous medium with initial arc length zero and initial traveltime zero, the exponential part of 

the Gaussian beam is 

exp {iwT} = exp {i (1) lac’ —xo| wiql? 
Vo 2 [wwe + iVolax’ - Zo|] 

It is easy to check our claim about wo by setting 2 = @o in this equation and w = w,. 

As a result of the linearity in the differential equations, we can write the two matrices Q,, and P,, in terms 

of the elemental matrices of equation ®) as follows: 

Wr we 

vo(0) —~ Q2(2', £0), Qon(z', 20) = = ——~Qil(z’, Zo) + —— 
(0 ) 

(12) 

Pop(2#', 20) = ett P(e’ Xo) + wa Pa Zo).
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2.3 Gaussian beams and the complex traveltimes T 

Here we proceed to item (iii) in our list at the beginning of this section. The Gaussian beam representation of a 

Green’s function G(x, x0,w) is given by Hill [2001] as* 

iw, we . dp‘ dp’ 
G(a,20,w) = Inv3/2(ao) F Aca (2's 0) exp{iwT (2’ ,w0)} 7. 

ay = [OD rey ay rte) oP 
Agp(® , 0) = det[Q., (2’(s))]’ T(x’, zo) = T(s) + of PosQe5d (13) 

ds’ 

= | sy 
0 

In these equations, the superscript T denotes “transpose.” The vector p’ = (p{,p, p3) is the initial Cartesian slowness 

vector of the ray that propagates from ao to x’. The ensemble of central rays in this integral covers a region around 

the image point 2. (We do not need to know which ray goes through x. This claim will be explained near the end 

of Section 4.) For each ray, a vector q connects point 2’ to the image point x and is perpendicular to the ray at 

zx’; sis the arc length along that ray to the point 2’. Thus, the complex traveltime T is implicitly a function of the 

transverse slownesses, p|, p2, and 7(s) is the traveltime of the classical asymptotic ray theory as noted above. In the 

application where = is fixed and the initial direction of the ray changes, the arc length s at the upper limit of the 

integral defining T is also a function of the initial slownesses on the ray from xo through 2’ and the image point z. 

Any correlation-type migration imaging condition involves a product of such Green’s functions from source and 

receiver to image point: 

G(x,25,07,w) = G"(z,x5,w)G" (x, 2,,w), (14) 

with (*) denoting complex conjugate here and below. When we use equation (13) for each Green’s function, we obtain 

2, 2,4 en ww, wo 

Gla to triwe) =~ Fray, \veA(@,) Pentre) 
: i é ; 

I(a, Ls, £,,w) = / aP's1 Psa / dBridPra (15) 

zs Ps3 zr Prg 

Abn (@5, 25) At, (a, 27) exp{—wV(x,,25,2,,2,)}, 

V(x,,25,2,,07) = —i[T(x,,25)+T(x,,2,)]". 

Hill [2001] proposes the change of variables 

i é i é 

Phi = Pri —Psis_ Pho = Dro — Ds2s p= Pra Ph, = Pa — Poa 

eS (16) 
i f i i 

D. + Dp, Pm2 ~ DP, Bint = Pr + Peis Dina = Pho + Pray Big = IE, pig = 
The variables in p, may be viewed as offset slowness vectors and the variables in p,, may be viewed as midpoint 

slownesses. 

This change of variables produces an expressions for I with the (pin1, Pm2) integrals outermost. He then proposes 

that the method of steepest descent be applied to the two integrals in the variables p;,,; and p;,.. He carries this out 

as a kinematic process. Therefore, he needs only to determine the saddle points in these two variables for any given 

choice of the other pair, p;,; and pi,2. He then proposes to compute the integrals over p/,, and pj, numerically. 

In Appendix A we show how to calculate the leading order asymptotic expansion of an integral such as J in 

equation (15) by the method of steepest descent. This method calculates that expansion by applying the method of 

steepest descent in one dimension iteravely. The method properly accounts for amplitude as well as complex exponent 

in that expansion. We assume that for each value of 

Pin = (Pini; Pm2) there exists a “ simple saddle point” 

*Hill (1990, 2001] uses subscripts z, y and z. We use numerical subscripts because we need them for index notation in the 

matrices to follow.
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ps2" (pi,) = (pi24(pi,), PRS" (Bin))s (17) 
for which 

ov ov     
ap, Opn ° Pr = PrP) 

(18) 
au , 

det(¥] 40, & = |-———_],, _ J, J= 1,2, = p5*4(pi_). [vw] # poe | Pr = Pr“ (Din) 

The last constraint here, det|Y] 4 0, makes this saddle point “simple.” This is a standard assumption on the Hessian 

matrix © in two-dimensional integrals. 

Remark The condition, det[W] 4 0 

In one dimension, a stationary point is simple” if the second derivative of the exponent is nonzero at that point. In this case, 

the difference, 

U(p) — U(p 4) = W'"(p 4) (p — p 24)? 2, 
is quadratic. The stationary phase formula relies on this quadratic approximation. The stationary point is called ” higher 

order” if the second derivative at the stationary or saddle point is zero as well; the local approximation is at least cubic and 

the leading order asymptotic approximation is changed accordingly. See, for example, Bleistein and Handelsman [1986]. For 
higher dimensional integrals with a real traveltime, (imaginary exponent), this idea is extended by using properties of Hessian 
matrixies. In particular, these matrices are symmetric, their eigenvalues are real and their eigenvectors are orthogonal. Bleistein 

and Handelsman [1975, 1986] show how these properties allow a rotation of coordinates to the directions of the eigenvectors, 

called the “principal directions” of the Hessian. In this case, the function © is locally a sum of signed squares, with the signs 

of the separate terms depending on the signs of the individual eigenvalues. The same is possible for purely real exponents, such 

as occur in Laplace-type integrals (op. cit.), except that now all of the eigenvalues have to be of one sign. This leads to the 

asymptotic expansion derived by the one-dimensional stationary phase or Laplace method formula applied to the integrations 

in each of the principal directions. 
For a complex valued traveltime Y, we do not have the same theory for its complex valued Hessian matrix. However, we show 

in Appendix A that the same condition naturally arises in order to solve for the second derivative of the second variable of 

integration after having determined the first integral by the formula for the leading order asymptotic approximation by the 

method of steepest descent. See equation (A.18). 

Under these assumptions, the iterated method of steepest descent leads to the following asymptotic formula for 

T, in equation (4). 

T dpi dPin2 At 
I 3, Lr - >. ‘ 8 * ; r (@, 25,27, w) 20 Jy /det] op (@s€s)AGg (Lr, kr) 

(19) 
-exp{in[T(a,,26) + Tez)" Pa = Pie (Pin) 

The objective of this paper is evaluate det(Y] appearing in this formula. For that purpose, let us first rewrite 

the matrix © in terms of the separate Hessian matrices for T(z4,25) and T(x;,2,) appearing in the definition of ¥ 

in equation (14). 
To begin this process, we observe first that 

    au Op; OW Ops; OW 
OP}, ; Op},; OP; OP},; OP,; , 

OV aw = 22 f* 20 
Op; OP; (20) 

, , * = + OP (wr ®r) _ OT (ws, #5) | j21,2. 

In the second line in this equation, we used equation (16) to evaluate the derivatives of the elements of p, with 

respect to the elements of p, and p,. In the third line, we replaced & by the separate complex traveltimes, the T’s, 

using the definition of Y in equation (15). 
Differentiating one more time leads to the following representation of the elements of the Hessian matrix of 

second derivatives of W: 

Pv _ | PT (a, ar) | OPT (x5, 25) 
OP, OP OP, OP) x OP; OP sk 
  | , jk = 1,2. (21)
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Figure 4. Rays with a caustic point incident on a reflector, shown as solid lines. Reflected rays shown as dashed lines. For a 
flat reflector, the reflected rays are simple “image rays” from corresponding source points in the lower space. The image rays 
have the same caustic as the incident rays. 

This is item (iv) of the list at the beginning of this section. In the next section we analyze the two matrices on the 
right hand side of this equation. 

We remark that each of the matrices on the right hand side of equation (21) will be singular at a caustic of the 

central rays {a} from the receiver (first matrix), or {b} from the source (second matrix), respectively. This would 
undo the original purpose of using Gaussian beams to represent the Green’s functions. However, the occurrence of 

both matrices being singular simultaneously in such a manner as to create a singular sum of matrices is expected to 
be relatively rarer than singular behavior of one or the other. The sum of the singular matrices being zero requires an 

alignment of the eigenvectors attached to the pair of zero eigenvalues. In fact, one situation where we know this will 

occur is when the image point is on a caustic of the incident rays. In that case, the incident rays and the reflected 

rays lie in a plane, and the eigenvectors of the zero eigenvalues are colinear. In Figure 4, we show a 2D example of a 

family of rays (solid black) incident on a line. The reflected rays (dashed black) continue the caustic of t he incident 
rays. In fact, those rays emanate from the “image points” of the sources points at 0 km depth. This example is a 

cartoon of the more general 3D case. Incident and reflected rays start out in the same plane, so that the slice might 

be thought of as arising from the normal to the local tangent to the reflector surface at the caustic point. Further, 

if the reflector were curved, that curvature would only slightly distort the directions of the reflected (black) rays. 

However, those new rays would still exhibit the same caustic as the incident rays. 

The true amplitude Kirchhoff migration theory is not valid at caustics in any case. We would not use a caustic 

reflection point as a place to estimate a reflection coefficient. We only need to regularize the sum of matrices in equation 

(21) so that the zero determinant of the sum of those two matrices does not cause the running sum producing the 

true amplitude migration to blow up. So the question of inversion as we define it is moot. Thus, we would content 

ourselves with some appropriate regularization of the matrix sum. 

3 THE HESSIAN MATRIX T 

The right hand side of equation (21) contains two Hessian matrices of identical structure. In this section, we show 

how they can be written in terms of the matrix elements of the propagator matrix II of equation (6). There is no 

need to distinguish between source and receiver here through the subscripts s and r and so we speak of a generic 

Hessian with respect to initial transverse slownesses. Thus, we write 

OT (2,2) 
T= [Tj], Tye = Op’. Op’, 

3 

» ji k=1,2. (22) 

As discussed in the Introduction, we proposed to determine this Hessian by transforming from Cartesian coordi- 

nates to ray-centered coordinates and relating this Hessian to the Hessian of T with respect to the offset coordinates 

(q1, 92) from a central ray, . 
We propose to do this in two steps. 

(i) Transform the Hessian from the variables p’ of the integral in Cartesian coordinates to the initial ray-centered 
slownesses orthogonal to the central ray (p10,p20). Implicit in this transformation is a transformation also of the 

Cartesian coordinates, x’ to the ray-centered coordinates (s, q1,q2). This transformation is described below. 

(ii) Transform the Hessian in (pio, p2o) into a Hessian in (qi, q2). The Jacobian of this transformation arises from 
the mapping by rays from a point source.



Second derivatives, complex traveltime 89 

x    
Figure 5. The reference ray from ao to x and the ray from ao to 2’. The initial ray direction of the first. ray is defined by the 

polar angles (/3;, 82). The initial direction of this ray is defined by the values of p’. The initial vector pg is the vector p’ in the 

coordinate system of the central ray through vx’ 

A subtlety in Step 1 of this analysis needs discussion. Each (p{, p>) of the Cartesian integration variables defines 

a new central ray. Each central ray has its own ray-centered coordinate system. In each individual coordinate system, 

the initial slownesses (p10,p20) orthogonal to the central ray are zero on the central ray. By changing coordinate 

systems with each central ray, we cannot transform derivatives with respect to the variables (p},p2) into derivatives 

with respect to (p10, p20) because the coordinate system of the latter slownesses keeps changing. That is, there is only 

one Cartesian coordinate system, but each ray has its own ray-centered coordinate system. 

Instead, we introduce the central ray from xo to 2 as a reference. We then evaluate the initial values py of the 

vector p on each paraxial ray in a fixed ray-centered coordinate system measured from the initial direction of this 

reference ray. In this rotated coordinate system po is just the new representation of the vector p’. In Figure 5, we 

depict the ray from ao to x as well the ray a9 to x’. We also show the polar angles (1, 82) of the initial direction of 

the ray to z. 

Once we have this first transformation from p’ to the initial values po in place, the second transformation from 

the initial values of (pio, p20) to (qi. 42) is simply a mapping by rays that can be expressed in terms of the appropriate 

dynamic matrix Qe. 

Gaussian beams were used for a similar purpose in the asymptotic analysis of the integral over Gaussian beams in 

Hill [2001], Appendix B. He used such transformations in homogeneous media to compare his beam representation to 

the known leading order ray-theoretic asymptotic approximation of Green’s functions. In that appendix, the integral 

over beams is calculated as an integral in polar angles measured from the distinguished central ray through a as 

opposed to an integration of slownesses p’, or p’, through the points x, or x}, respectively, as in the representations 

of the Green’s functions imbedded in the right hand side in equation (15). The use of polar coordinates as in 
Hill’s appendix was not really necessary; in fact, Hill’s [2001] Gaussian beam migration integrates initially over the 

slownesses p’, or p/. as we are doing here. However, in his appendix Hill carried out the asymptotic analysis in 

homogeneous media; that is all he needed for the purpose of comparison of leading order asymptotic representations 

of Green's functions; the calculation in homogeneous media is particularly simple in polar coordinates. Here, however, 

for the Hessian matrices T of equation (22) for sources and receivers and eventually for the matrix Y of equation (18), 
we need to do a similar analysis in heterogeneous media. Implicit in our analysis is the methodology for calculating 

the asymptotic expansion that Hill [2001] did, but in heterogeneous media. This is not new: Cerveny{2001] describes 

asymptotic expansions for more arbitrary changes of coordinates in heterogeneous media. His method relies on a 

theorem in Korn & Korn [1968] where the authors show how to simultaneously diagonalize a symmetric complex- 

valued matrix such as our Hessian matrix T in equation (22). It is not straightforward to use Cerveny’s method to 
go from the general discussion of the asymptotic expansion of the double integral to the specific example we have 

here. Hence, we proceed with the transformations and then they will be applied to facilitate the evaluation of the 

det{]. Thereafter we apply the method of Appendix A of this paper to determine the asymptotic expansion in p), 

in equation (19). 
We now proceed to the outlined analysis.
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3.1 Transformation to a Hessian with respect to po. 

Figure 3 on page 83 shows the initial directions of a ray in Cartesian and ray-centered coordinates. The vector p’ 

is the initial direction of the ray through a. In the original Cartesian coordinate system the representation of the 
vector p’ = (p1, 2,3). As a first step, we rotate the Cartesian coordinate system through the angles @, and {2 of 
the figure, with p’ being the initial direction of the new z-axis. 

The rotation to the new Cartesian coordinates from the old is accomplished by first carrying out a rotation 

around the z-axis through the angle G2 and then by a rotation through the angle 3) about the new y-axis with unit 

vector @2. We therefore write the transformation of coordinates as a product of two matrix multiplications on the 

elements of an arbitrary slowness vector p’ as follows: 

Pio Pi 

Do = | P20 = 1 (61)P2(G2) | D2 | =T1T1(41)T'2(G2)p’. (23) 
P30 D3 

Here 

cos; OO sinf; cos 32 sinfo 0 

T(@1) = | 0 1 0 | » Pe(82) = | —sinGz2 +cosf2 0 | ; 

  

-sinG, O cosf~i 0 0 1 

(24) 
cos (3; cos G2 cos 3, sin G2 sin fy 

T1(41:)T'2(f2) = —sin Bo cos 32 0 
—sin@,; —cosG2 sin, sin G2 cosf~; 

Now in equation (22), we can apply the chain rule to rewrite the Hessian with respect to pi, p> as 

27 t 2. , ct 
T=(Tel, Te = OT (x',x) — 8°T(x', x) Opro BP x0 j,k=1,2, \H= 1,2. (25) 

apOp;, — Op»oOpxo Opi, Opi, 

Summation from 1 to 2 over the repeated indices \ and « is understood in this equation. 

This rotation of the representation of the initial slownesses is also the rotation of the initial directions of the 

coordinate system. It makes the direction of the post rotation z-axis be along the initial tangent of the ray from 2 

through a. 

We can calculate the matrix of derivatives among the slownesses in equation (25) from equation (23) relating 
these variables. We simply differentiate both sides of equation (25) with respect to p and p>. In doing so, we must 

take care to note that p3 is a function of p, and p, through the eikonal equation in Cartesian coordinates, namely, 

Pi + po +p3° = 1/v’. (26) 

When we carry out these calculations, we find that 

cosZ2 ~— sin G2 

[Spe] — | ow e088 | ina, Ag Le (27) Op’, 

    

  

—sin 2 cose 

In analogy with equation (25), let us now introduce the notation 

0°T (2’, x) 
To = [Taso], Theo = Bprodpno , AK=1,2. (28) 

Then we can rewrite T in equation (25) as 

Tye = TawoT aT nk, GR=1,2; T=P*TOD. (29) 
We sum over the repeated indices 4, « in the elements form of equation (28) for T;,;. Again, the superscript T denotes 

transpose in the matrix form of this same equation for T. 

Equation (29) completes the transformation of the Hessian of the complex traveltime in the initial slownesses p’ 

to a Hessian in the initial slownesses py. 

3.2 Transformation to a Hessian with respect to g 

Varying py leads to different rays, q = q(pp,s). Furthermore, the arc length s along the central ray also changes with 

Py because the image point a is fixed: s = s(q). As an example, consider the configuration of Figure 5 on page 89
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Figure 6. Central rays from the source and receiver propagating to points a’, and w/.. Those points connect to the image point 
zx by straight lines that are orthogonal to the respective rays at a, and «w/,, respectively. The exponential decay of the respective 

complex traveltimes from source and receiver arise from quadratic forms in the respective q’s defining the vectors « — a’, and 

zx —a/.. This configuration might be typical for a choice of pj, different from po, for which both rays pass through «2 and 

the q’s are all equal to zero. The difference of the transverse parts of the vector difference p/. — p’, is the 2D vector p, in the 

acquisition plane, while the transverse part of the sum pi. + pi, is the 2D vector pj, in the acquisition plane. 

for homogeneous media where the rays from zo to 2’ are straight lines. Similar to the complex exponent in equation 

(11) we find that the complex traveltime in equation (13) is 

p= 24 tal gga @? (30) 
Vo 2 [wrw2 +7Vos}’ , 

As claimed, s = s(q). We could equally have confirmed that s was a function of p’ or po, but the confirmation at this 

stage is much easier. 

Therefore, we consider a change of variables from py to gq. In that case, we write 

OT — OT Og, 

  

OT _ OF Ody 31 
OPyo Od, OPdo 

(31) 

and 

2 2 2 OT — OT Oy Ou OT Oa, Mea 1,2. (32) 

Opr0Opno — Oqu0q. Opr0 Opno  OQu OproOPx0’ 

As previously, summation over the repeated indices : and v from 1 to 2 is to be understood. 

Viewing this Hessian in gq helps us to understand a difficulty in the evaluation process: in general, the saddle 

points p*"(p',,) do not place the central rays through a, but rather through some x, or x}, as in Figure 6. In this 
case, Im|T] 4 0 for one and/or the other central ray from source and receiver. Hence the total traveltime will have 
some exponential decay. For a certain p/,,, say, p/°, both rays for the saddle point in p,, will pass through «; that is, 

q, = 4, = 0 and Im[T] = 0, as well. This is the choice of p’,, that would be the saddle point in p/,, if we were to 
estimate the integral in p/,, by the method of steepest descent. For this choice of p},, = pio, all of the first derivatives 

with respect to slownesses are zero, since the first derivatives with respect to the elements of p, = p*4(p!,) are 
already equal to zero. With all of these derivatives equal to zero, the first derivatives with respect to the elements of 

q must also be zero here, as well, when p, = p24 (p,,) and p’,, = p’?. Furthermore, from the equation for equation 
(13), we can see that the first derivatives of the traveltime T are linear in the q’s. 

From the point of view of leading order asymptotic analysis, the smooth variations of the amplitude of the 

integrand away from pe matter little as long as that amplitude is correct at pe. The Hessian that we are trying 

to evaluate is a piece of the amplitude in the integral over p/,, so this observation applies to the evaluation of the 

Hessian. This is true whether we evaluate the integral numerically or with some asymptotic formula. We avoid using 

an asymptotic formula because we cannot a priori guarantee the nature of the saddle point—whether it is a simple 

or higher order saddle point of the complex traveltime as a function of p/,. The numerical evaluation will be correct 

in either case, but it only depends on the amplitude near p’2; Im{T] # 0 away from this value of p/,, and the error 

in amplitude of the integrand in equation (19) for J is exponentially damped by the value of Im[T]. As noted in 
the introduction, the approximation we propose here has been empirically shown to be adequate for estimating the 

reflection coefficient in 2D as demonstrated in the numerical example in the last section of this paper.
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Thus, we can evaluate the formula for the Hessian in pg on the right hand side of equation (25)—admittedly 

incorrect for py, 4 po —by setting all first derivatives of T equal to zero and also setting q = 0. Now, in equation 

(32), we simplify the right hand side to write 

OT PT dq In 

Op00P 0 Oqu0qv ODP yo ODx0 , 

  AK = 1,2. (33) 

Furthermore, we will evaluate all derivatives at q = 0. 

As an aside, let us examine the exponent T for constant velocity, equation (30). The first and second derivatives of that 

traveltime with respect to q are as follows 

  

  

. lal2 
oT = 1m, *dp _ ial 5H, w= 1,2, 

qu Vo s [wr we + iVos| [wwe + iVos| 8 

(34) 
eT 1 [*# ete] idpy = -o pe + | + “+ 0(al*), wv = 1,2, 

OquOqu Vo lL s 33 [wr w3 + iVos] 

$s = la’ — aol? — g?. 

In the equation for the Hessian 0°7'/dq,0q, above, dyy is the Kronecker delta function, equal to one for » = v and equal to 
zero otherwise. 

Recall the discussion below equation (32) where we argued that quadratic corrections amplitude functions would affect the 
integration over slownesses negligibly. The most dominant part of the integrand was the neighborhood of the image point. For 

rays nearby that point, the quadratic correction is small. For rays further away the quadratic decay arising from T again makes 

the error negligible. Thus, there is no reason to write down those last terms in the second line in equation (34) to make the 

point that this Hessian is a complicated function of g, even for constant velocity. Neglecting the quadratic terms in the second 
derivative of T in equation (34) we obtain the approximation 

  

oT oo Suv 4 iduy 

OquOqu Vola! — xo| [wrwe + iVola’ — zo|| 

(35) 
yr wrwe q=0. 

[wrwe + iVo|x! — zo|| , 

In the first form here we can identify the two quotients with the matrix solutions of the dynamic ray equations (6). In matrix 
form 

  OT _ _ _ - 
Ty = = ~-P2Q5'+ PosQcp = PosQGp — P2Q7' 

8qu99 | a9 

(36) 

Qc Pés — P2Q7'=Q65' [PGnQ2 - Q3—P2] Qz'. 

In the first line, we have simply reordered terms. In the second line, we used the fact that each term is a matrix of second 

derivatives and hence symmetric. Therefore, we replaced one product by its transpose. Then we factored out the two inverse 

matrices to obtain a difference of products of matrices inside the braces [ ]. 

Let us now examine the term in square brackets in the last part of the equality in this last equation, (36). To begin, set 

  

A= P£,Q2 - QE ,P2 (37) 

and differentiate with respect to s: 

dA dPL dQ2 QZ P2 CA = pr _ GB Po — T F242 

ds ds Q2+ Pos ds ds” Qes ds 

(38) 
1 1 

= ~GaQGnVQ2 + PEp_VoP2 — PEpVoP2 + ~gQEnVQ2 = 0. 
0 oO 

In the second line, we have used the dynamic differential equations (6) and the fact that the matrix V defined in equation (1) 
is symmetric. Thus we conclude that A is constant on rays, given by its initial value. The initial values for Qgg and Pag are 

stated in equation (10) and the initial values of Q2 and P2 are stated in equation (8). Using these values we find that 

wwe I= wr we 
A=PE —Qz,P2=- . GBQ2 —- QgzRP2 Vo vo(0) 

  (39) 

This is an identity that arises from the simplectic properties of the propagator matrix as discussed by Cerveny [2001] in section
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4.3.2, starting on page 281 and introduced earlier in Cerveny and Psen¢éik [1983] without resorting to the simplectic method. 

Note that the derivation of differential equation (38) did not rely on the fact that the velocity is constant in the specific example. 

Hence, even for heterogeneous media, A is given by its initial value on the ray. 

Furthermore, the mechanics of the derivation were not peculiar to the particular choices of Q’s and P’s. It relied solely on the 

differential equations for Q’s and P. Thus, if we redefined A for any pairs of Q’s and P’s satisfying the dynamic differential 

equations (10), it would still be true that A is constant on the rays, given by its initial value or by its value at any point on 

the ray, for that matter. 

To complete this discussion, we now use the identity for A in the last equation (39) to rewrite T, in equation (36) as 

Wr we 

~ vo(0) 

In the second form here, we have exploited the fact that each of the matrices is symmetric. We took a transpose of the product 

and then removed the transpose of the matrix Qcr- 

2 
Wr Wo T,=- 

4 vo(0) 
  -1T¢9-1 _ 

Q, QB ~ 
  Q6292" (40) 

We return now to the heterogeneous case, continuing the analysis of the Hessian on the right hand side of equation 

(33). Let us begin by considering the first derivatives in that equation. We now show that the matrix of derivatives 

of (q1,q2) with respect to (pio, pao) is just Q2 by following Cerveny {2001], Section 4.1.7. To do so, let us set 

= | Oqu 5 _ | OPp a-|5%], B= | see), (41)     

This pair of vectors q,,,p,, satisfies the kinematic ray equations and initial conditions stated in equation (4). When 

we differentiate those equations with respect to the components of pg we obtain exactly the dynamic ray equations 

(6) for the matrices Q,P. Then, differentiation of the initial conditions of equation (4) yields exactly the initial 
conditions of the functions Q2, P2 given in equation (8). That is, 

yy Ody _ 

Q= Ea = Qa. (42) 
  

We use this identity and equation (33) to obtain 

&T 
To = Q2T,Q2, Ty = lama 

Ov 
fv = 1,2. (43) 

3.2.1 Analysis of T, 

Here, we follow the discussion of Cerveny [2001], Section 5.8.3. Figure 5 on page 89 shows the central ray of a Gaussian 

beam. The Gaussian beam is to be evaluated at the point 2, thus defining the vector g connecting a point on the 

ray x’ to the point x. In equation (13) we see that T is a sum of two traveltimes, the first being the central ray real 

traveltime 7(s) of asymptotic ray theory connecting ao to 2’. The second term is the complex part of the traveltime 

given by the standard quadratic form in gq. 

It is straightforward to evaluate the Hessian of the second term here with respect to g at q = O. The first term 

requires a little more effort. 

With a slight abuse of notation, let us consider the rea] ray-theoretic traveltime 7(z, Zo) from zo to «. We can 
write a quadratic approximation of that traveltime in terms of the traveltime on the central ray through a’ as 

1 _ 
T(#,20) = T(x’, x0) + g7P2Q2 ‘g. (44) 

This equality allows us to write the traveltime r(x’, zo) in terms of the fixed traveltime 7(a, xo) minus a quadratic 

form in the vector q; that is, 

1 - 
7(x',@o) = T(x, @o) — g7P2Q2 ‘q. (45) 

We use this equation in equation (13) to rewrite the complex traveltime T(z’, zo) as 

1 - ~ 
T(x’, x0) = T(x, x0) + 57 [Pes Qep — P2Q2'] 4. (46) 

Now, when we calculate the second derivative here at q = 0, we find that T, defined in equation (43) is given by 

T, = Pes ca ~ P2Q2', q=90, (47) 

in heterogeneous media. This is exactly the same as equation (36) for T, in homogeneous media. As noted in the 
discussion below that equation, the simplification of T, did not rely on the fact that the velocity was constant. Thus, 

the final form of T, in equation (40) is valid here as well and we write for the heterogeneous case.
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2 
WrWo A-1,-1 T,=-—~"qQ7'Q514, q=0. 48 q vo(0) 2 Woa, @ (48) 

We now have all of the pieces needed to express the Hessian matrix © in equation (21). 

4 THE APPROXIMATION OF © 

We now move back through the sequence of formulas for the various Hessians that we introduced in the previous 

section. Then we will take the formula for the Hessian with respect to p’ and apply it to both the source and receiver 

traveltimes to obtain a formula for © in equation (21). 
To begin, we use T, as defined in equation (48) to rewrite To in equation (43) as 

2 2 
WrWo -1,4-1 WrWo ~-1 
vo(0) % Q2 QesBQ2 vo(0) QesQ ( ) 

Now that we have To, we can go back a further step by substituting this representation into equation (29) to 
express the Hessian with respect to p’ in terms of To as follows. 

  To = 

wp we 

vo(0) 

The matrix I appearing on the right side of this equation is defined in terms of the angles 3, and (2 in equation (27). 

It is the matrix of transformation from Cartesian slownesses to ray-centered slownesses; the slowness vector defines 

the initial direction of the tangent of the ray from the initial point zo to the image point z. Further, recall that the 

various Q’s and P’s here are solutions of the dynamic ray equations (6) with initial conditions for Qga and Pca 
given in equation (10) and the initial conditions for Qz2 and P2 given in equation (8). 

Equation (21) tells us that we must add two Hessians of the form defined by the last equation, (50), in order to 
obtain the Hessian © for & which is related to the two complex traveltimes from source and receiver by equation (15). 
The only difference in the two components is that one is for sources and the other is for receivers. We can accomplish 

that distinction by introducing subscripts s and r in the right hand side of equation (50). Thus we find that 

T= — T™Q3),.Q.P. (50)   

. 2 1 TA-1 1 
W = w,wo ao" QoarQaPr + Vos(0) 

Note here that the subscript r in w, denotes “reference frequency” and is the same for Hessians associated with the 

traveltimes from source and receiver. 

The matrices Q2, and Q2, are each singular if x! or 2, respectively, is located at a caustic of the ensemble 

of central rays from their respective initial points. In order for this sum of matrices to be singular, the singularities 

of the two matrix products would have to “line up;” that is, their eigenvectors associated with the zero eigenvalue 

would have to be colinear. We would expect such an occurrence to be relatively rarer than for one and/or the other 

of the matrix products to be singular. Nonetheless, some regularization of this matrix may be required in numerical 

computations. 

As noted earlier, we can expect the Hessian matrix ® to be singular when the image point is located at a 

caustic of incident rays. However, the underlying inversion theory is not applicable at such a point for estimation of 

a reflection coefficient, so this anomaly is moot as regards that theory. 

In the Introduction and in Section 2.3 we claimed that we did not need to know the actual initial slownesses of 

the ray from the initial point 29 = z, or 2, to the image point 2. 

We explain now why we do not need to know those rotation angles on the ray from the source or receiver through 

the image point explicitly. It is necessary to assume that the actual rays that we do compute are close enough to one 

another so that the discrete sum over rays is a sufficiently accurate approximation of the continuous integral over 

rays to satisfy whatever numerical accuracy criterion we impose. That means we can think of the discrete sum as 

having the properties of the integral. 

We will use the matrices I’, and I’, on the rays that we actually compute. This again is justified by the discussion 

below equation (32). This is in error except for the distinguished ray pair from source and receiver through the image 

point. Those errors for other rays are linearly small for small values of the q’s nearby and exponentially small for 

q’s further away. This suffices for our leading order approximation of the the integral J in equation (19). Then, all 

quantities in equation (15) are determined on the central rays of the computed Gaussian beams. As we will see in 

the common shot example of Section 5 —in particular in equation (60)—the reflectivity in that example needs to be 

computed on the actual central rays of Gaussian beams that we compute. Hence, we can use Hill’s original variables 

Pm and p,, or even in the variables pi. and p, of equation (15). 

FPQz5.Q2.0.} . (51)
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4.1 Special case: V = 0 

In many applications, the matrix of second derivatives V defined by equation (1) is set equal to zero. This is equivalent 

to assuming a piecewise constant or piecewise linear velocity model. As a consequence, in equation (6) we see that the 

dynamic quantity P is a constant given by its initial value. Furthermore, the dynamic equations now separate into 

scalar equations for the pairs Qi; and Pj; for fixed ij and there is no interaction with other elements of the matrix; 

that is, the matrix equations reduce to scalar equations for each of these pairs. Further, for the case of piecewise 

constant velocity, the matrices Q and P become diagonal with the same functions propagating along each diagonal 

because the initial data are diagonal.' Since the initial data are the same for each diagonal element of Q and P in this 

case, each matrix is a scalar times the identity matrix; We call such a matrix a scalar matrix. Thus, the propagation 

is reduced to determining the scalar Q’s and P’s of 2D propagation. 

With all of this simplifications,we can replace the matrix of B by 

1 1 . 
W = iw, wo § —~ cartel, + —~ caslsls> - 52 IW, Wo {a QorQep-T- Pr + Vos(0) Q2sQensksT's (52) 

From equation (27), it is straightforward to calculate the products of I’s appearing here. They are 

1 1 
——-_ 0 —— 0 

rT, _ cos? Bir _ [vor (0)p5,]? 

0 1 0 1 

(53) 
1 1 

—~— 0 a sssti«<iO rtp, — | odie ° | _ | WosOps.P 
0 1 0 1 

Because these rotation matrices are not scalar matrices, W is not a scalar matrix; that is, they are not scalar multiples 

of the identity matrix. 

5 COMMON-SHOT INVERSION WITH GAUSSION BEAMS; AN EXAMPLE 

We will show a particular example of a common-shot inversion formula for which the product of Green’s functions 

leads to an integral of the form of J in equation (15). 
We start from the classic imaging condition for common-shot data [Claerbout, 1971), 

R(x, 25,0) = ie | Deane (54) 

This formula for the reflectivity 7 is asymptotically equivalent to the Kirchhoff inversion formula when U and D 

are replaced by their ray-theoretic asymptotic expansions; see Keho and Beydoun [1988], Hanitzsch [1997], Zhang 

et al [2003] and Bleistein et al [2005]. The function U(x, #s,w) is generated by downward propagating U(z,,@5,w), 

the observed response to a point source at 2, at the receivers denoted by z,. The function D(x, z.,w) is the full- 

bandwidth downward propagating wave from a point source, that is, it is the downward part of the Green’s function 

denoted by G(x, z;,w). Both wave fields are propagated into the Earth in some background model of the wavespeed. 

Let us replace D by G in the integrand of equation (54) for R and then multiply numerator and denominator 

by G", the complex conjugate of the downward propagating wave from the source. This leads to 

_ 1 f[ Ulz,xs,w)G" (x, 2s,w) . 

R(w, Bs) = Qn / G(a,@,,w)G"(a,@5,w) (55) 

Next, we propose to replace the Green’s functions in the denominator here by their leading order ray-theoretic 

asymptotic expansions and observe that only a product of amplitudes A, independent of w survive, the multiplication: 

R(x, x5) = mAee) / U(a,a,,w)G" (x, a5,w)dw. (56) 

In ray-centered coordinates 

Tif the velocity is linear in some direction, then that direction and the initial direction of each ray form a plane. The initial 

values of Q and P will be different in the in-plane and out-of-plane directions.
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Figure 7. Left: Migrated image (deconvolution imaging condition) from a single shot record in a constant-velocity medium 

with horizontal reflectors caused by identical density contrasts. Migrated amplitudes are similar for all reflectors. Amplitude 

artifacts near the maximum offsets are migration aperture truncation effects. Right: Peak amplitude as a function of offset for 

all reflectors. Amplitude fall-off corresponds to the peak amplitudes along the migration aperture artifacts of the left figure. 
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The determinant det[Q2(a,x,)] will be equal to zero at caustics of the rays from the source to the output point; 

some regularization is required to avoid the zeroes there. That is not important to the discussion here. 

When we use this formulas for A in equation (56) for the reflectivity, we find that 

__ 8nVo0(x,) det[Q(a, x.)] R(x, zs) = Vola) 

(57) 

U(2,2@5,w)G" (x, 25,w)dw. (58) 

The downward propagated field U(x,x,,w) can be written in terms of the surface data as 

U(#,@,,w) = 2iw f p3rG" (w,2,,w)U(2,, 2,,w)de-dy, (59) 
zr=0 

in a standard manner by using Green’s theorem. Here, p3, is the third component of pi.. 

Substitution of this representation of U(x, a#,,w) into equation (58) for the reflectivity leads to 

8rvo(x,) det[Q(z,x . 
R(z,2@s) = Ee vie f rd (ee, Ze,w)drydy, O(a, as, Xr, w). (60) 

0 

In this equation, @(x,2,,2,,w) is defined in equation (14) and was the starting point for the analysis of this paper. 

It is not our intention to continue with the discussion of this true amplitude migration formula or any other. We 

only wanted to show that the integral J that we analyzed asymptotically here does arise in true-amplitude migration 

formulas as claimed. 

6 A NUMERICAL EXAMPLE IN 2D 

In Gray and Bleistein [2009], we presented numerical examples in 2D for a common-shot data set. The asymptotic 

technique derived and implemented there is the 2D analog of what we have presented here. Both a deconvolution 

imaging condition with a structure similar to the reflectivity formula of equation (54) and a correlation imaging 

formula similar to the reflectivity formula of equation (60) were tested. See Gray and Bleistein [2009] for details. 
The best results were obtained for the deconvolution imaging condition and we present those here. This example 

models reflections from density contrasts in a medium of constant velocity 2000 m/s. Four horizontal reflectors with 
identical reflection coefficients are placed at depths of 1000, 2000, 3000, and 4000 m. A single shot record, with a 

recording aperture of 7000 m on either side of the shot point, is migrated. Half-opening angles were limited to 60 in 

the migration.



Within the reflection aperture for each reflector the 

output confirms the “true-amplitude” claim but for nu- 

merical noise from the computation and from the peak 

search. 

7 SUMMARY AND CONCLUSIONS 

We have obtain a formula for the Hessian matrix of com- 
plex traveltimes with respect to transverse Cartesian 

slowness variables [equation (50)|. We believe that this 
formula is new. That allows us to add two Hessian matri- 

ces of this form to obtain yet another Hessian matrix for 

the sum of complex traveltimes with respect to Carte- 

sian “offset slownesses,” equation (51). The determinant 
of this Hessian is needed for the asymptotic reduction 

of four integrals in source and receiver transverse slow- 

nesses to two integrals. The formula we evaluate in the 

first step [equation (50)] requires approximating an ear- 
lier representation of that Hessian at the saddle point of 

the traveltime with respect to the “midpoint slowness.” 

In two dimensions, the steepest descent analysis is 

much simpler. There, two integrals in transverse slow- 

nesses were reduced to a single integral by the method 

of steepest descent. The example of Gray and Bleis- 

tein [2009], provides a confirmation of “true-amplitude” 

claim for this method. 
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APPENDIX A: ITERATED METHOD OF 
STEEPEST DESCENT IN TWO VARIABLES 

In Section 2.3, we claimed a result for the asymptotic 

expansion of a pair of iterated integrals obtained by the 

method of steepest descent—specifically for the asymp- 

totic expansion of the integral [(%,a5,x2,,w) of equa- 
tion (15). To the best of the authors’ knowledge, the 
derivation of the explicit asymptotic formula leading to 

the asymptotic expansion of this integral presented in 

equation (19) has not appeared in the open literature. 
In that equation, W is given by equation (51). We de- 
rive the claimed leading order asymptotic expansion of 

equation (19) here. The derivation of the matrix form 
of © in equation (51) is the major discussion of Section 

2.3. 

The classical method of steepest descent for a one- 

dimensional integral does not generalize to higher di- 

mensions. It would require the analog of the Cauchy 

integral theorem in two complex variables—essentially 

four variables. The difficulty is that in higher dimensions
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a closed curve does not contain an interior domain as it does in one complex variable; that is, in two dimensions. On 

the other hand, we show here that the iterated application of the one-complex variable method of steepest descent 

really behaves much like the corresponding application of the multidimensional method of stationary phase, with the 

complex determinant of the Hessian matrix of the complex traveltime appearing in the amplitude of the asymptotic 

expansion. This is an alternative to the method used by Cerveny [1982] and repeated in Cerveny [2001]. His method 
rests on a theorem in linear algebra that gives conditions under which the sum of two complex-valued symmetric 
matrices can be simultaneous diagonalized. His reference for that result is a paper in the Russian literature, not 

easily accessible in the western literature. To date, we have not found the counterpart of this theorem in the western 

literature. 

Ali Steepest descent in one dimension 

Before beginning the analysis of the double integral, we remind the reader of the corresponding asymptotic expansion 

in one variable. We introduce the integral 

I(w) = [re exp{—wW(z) }dz. (A.1) 

Here, the interval of integration is reaf and positively oriented, but both functions in the integrand are complex-valued. 

We assume that the exponent has a real saddle point that we can characterize by the equation 

  

dv 
“zn 0, z= Zsaa. (A.2) 

Furthermore, we assume that the second derivative is nonzero at the saddle point, 

ay 
V2. = a? #0; (A.3) 

2=Zsad 

Wz, may be complex. We seek the leading order asymptotic expansion of this integral for “large” values of the 

parameter w. 

The Taylor expansion of Y near the saddle point has the form 

1 

2 
The direction of steepest descent in z — Zsag at the saddle point is the direction in which this second order approxi- 

mation is real and positive, which provides the direction of maximal exponential decay of the integrand. In terms of 

the phases (denoted by arg in the complex variable literature) of the factors in the complex product appearing on 

the right side of the last equation, this condition becomes, 

arg(W..) + 2arg(z — Zsad) = 0, 2m, ... « (A.5) 

W(z) — U(zsaa) = =Vaz(z — Zsaa)? +... « (A.4) 

We expect that the direction of choice will be a rotation of the contour of integration—the real line, positively 

oriented—through an acute angle. Thus from the two unique choices of direction here we choose 

arg(z — Zsaa) = — arg(W.-)/2, (A.6) 

such that the oriented direction with this angle makes an acute angle with the direction of the (real) path of integration. 

Application of the formula for evaluation of the integral of equation (A.1) by the method of steepest descent’ [Bleistein, 

1984, equation (7.3.11)] with positive w leads to the following. 

2 

w|V,2| 

= 4) Seana) exp {WW (Zaaa)}- 
Notice that by defining the integrand on the right hand side of equation for [(w) with a minus sign in the exponent, 

the phase adjustment in the first line here provides exactly the right factor so that the denominator can be expressed 

Tw) F(2saa) exp {—wW(Zsaa) — targ(V22)/2} 

(A.7) 

  

3The constraint of the path of integration to the real axis is not necessary. This can be generalized, but the generalization is 
not needed for our application 

4There we use \ = —w as the large parameter. The minus sign modifies the argument of the directions of steepest descent in 

equation (A.6).
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as the (principal value) square root of the second derivative. If we had defined the exponent without that minus sign, 

then we would have need an additional phase shift of +7/2 in the right hand exponents of this last equation. 

The method of steepest descent relies on deforming the path of integration onto a path where the exponential 

difference U(z) — Y(zsaa) remains real and increasing and then applying the more basic Laplace method [Bleistein, 

1984] to the integral on that steepest descent contour. 

A2 Iterated steepest descent in two dimensions 

This is an extension not found in texts on the method of steepest descent. We consider the iterated integral of equation 

(15). For this purpose, we introduce indexed variables and consider the integral 

Iw) = [re exp{—wW(z)}dzdz2, z = (21, 22). (A.8) 

Here, the domain of integration is real, although when considered as iterated integrals, we will allow for deformations 

into the complex zi-plane to obtain the asymptotic expansion of the integral with respect to z: and similarly for ze. 

Both functions in the integrand are complex-valued. 

We assume that the exponent has a real saddle point in both variables that we can characterize by the equation 

V.V(z) =0, 2=Zsad = (Z1sad; Z2sad): (A.9) 

Furthermore, we assume that the Hessian matrix—the matrix of second derivatives—of W is non-singular at this 

saddle point; that is 

aru det[] £0. w= eas | i,j = 1,2. (A.10) 

We will also assume that 

ay at 40. (A.11) 
2=Zsad   

If this were not the case, we could rotate the coordinate system to make this so; such rotations use matrices with 

determinant equal to one, so that they do not affect the final formula for the asymptotic expansion of [(w) in equation 

(19). 
Let us consider the integration in z; alone in equation (A.8). From equation (A.10), that integral has a saddle 

point when 

OV(z2 ) 22) -0 

Oz , 

By the assumption of the existence of the saddle point in equation (A.10), we know that this equation has a solution 

for z2 = z2sad, at which point, z1 = Zisea. By the implicit function theorem, equation (A.12) has a unique solution in 

the neighborhood of z = Zsaa by virtue of the assumption of equation (A.11) that the second derivative with respect 

to 21 is nonzero at the saddle point. Therefore we can write 

OW(Z(z2), 22) 

Oz 

in some neighborhood of z = Zsaa- 

We can now write down the asymptotic expansion with respect to z: of the iterated integral I(w) in equation 

(A.8) by using the formula of equation (A.7) for that asymptotic expansion in one variable: 

= [PH [| Aen) — ooo wo aes 20)}d Iw) (2 De, (Z(@a), 20) p{—wW(Z (22), 22) }dze. (A.14) 

We write down the first derivative with respect to z2 of this redefined exponent Y by applying the chain rule to 

deal with the dependence of the first variable of Y on z2. 

dv(Z(22),22) _ OY dz, OW 
dz2 ~ Oz dz2 Oz2 , 

The first term here is identically equal to zero as a result of the stationarity condition in equation (A.13). 

Therefore, let us rewrite the first derivative here accordingly and then write down the second derivative, as well. 

(A.12) 

A= Z(z2), =0 (A.13) 

(A.15)
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d¥(Z(z2), z2) _ ov 

dzg ~ Oza” 
(A.16) 

a@W(Z(z2),22) OU Ob dZ 
dz2 ~ O22 " Oz20z dza 

From the first line here, we see that the condition that the total derivative with respect to zo of this new exponent be 

equal to zero is exactly the condition that the partial derivative with respect to z2 be equal to zero. This is just the 

requirement that the second component of the gradient of & be equal to zero in equation (A.9). We then conclude 

that the saddle point occurs at z2 = Zasaq for which point we also have z; = Zisaa. In summary, the dual saddle point 

obtained by setting the gradient of the original exponent equal to zero is the same as the simultaneous saddle point 

in two separate variables determined by iterated application of the method of steepest descent. 

Now we must evaluate the second derivative of YW in equation (A.15) at the saddle point. To this end, we must 

first express the derivative of Z(z2) in terms of derivatives of ©. The function Z(z2) is defined implicitly in equation 
(A.13). We differentiate that equation with respect to z2: 

0°U(Z(z2), z2) dZ(z2) 4 0°W(Z(z2), z2) _ 

O22 dz2 021022 ~ 

The coefficient of the derivative of Z is nonzero at the saddle point—equation (A.11)—so we can divide by it and 

conclude that 

dZ(z2) __ OW(Z(z2), z2) [O°W(Z(z2),22)] 
dz2 02, 0dz2 022 , 

  0. (A.17) 

    (A.18) 

We substitute this value of the first derivative into the second line of equation (A.15) to obtain the representation 
we seek for the second derivative of VW with respect to ze. 

@Y(Z(22), 22) _ Ee -( aw )| [eee     
dz O22 O22 021022 Oz? 

(A.19) 

det|W] | ee 
2 Oz} 

We again apply the asymptotic expansion formula of equation (A.7) to the integral of equation (A.14) and find 

that 

Tw) ~ 2x f(Zsaa) 

w /det[¥(zsaa)] 

This is the formula that we applied to obtain the asymptotic expansion of the Gaussian beam representation of 

I in equation (15) to obtain the asymptotic expansion of J in equation (19). 

We have presented this general formula heere because it has application to other multidimensional integrals in the 

analysis of Gaussian beams. In particular, it is applicable to the asymptotic expansion of the basic Green’s function 

itself in heterogeneous media. Hill’s [2001] derivation is in homogeneous media. This derivation is an alternative to 

one presented by Cerveny [1982] and Cerveny [2001]. 

exp{—wW(Zsaa)}- (A.20)
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Wave-equation migration velocity analysis with extended 

common-image-point gathers 
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Center for Wave Phenomena, Colorado School of Mines 

ABSTRACT 

Wave-equation migration velocity analysis (WEMVA) is an image-domain velocity 
model building technique based on band-limited wave propagation and designed es- 
pecially for complex subsurface environments. It exploits the coherency of reflection 
events measured in extended images produced by a cross-correlation imaging condi- 
tion with non-zero lags. Conventional approaches use either space-lags or time-lag 
common image gathers, in which only partial information of the extended images is 
used for velocity updates. 
We propose an WEMVA approach using the complete information from both space- 
lags and time-lags of extended images. With this approach, the velocity model building 
benefits both from the robustness of using the time-lag information and from the high 

resolution of using the space-lags information. Such an implementation is facilitated 
by using extended common-image-point gathers (CIPs) constructed sparsely along re- 
flections and defined jointly for space- and time-lags. These CIPs avoid the bias to- 
wards nearly-horizontal reflectors so that steeply dipping events are well preserved in 
the gathers and the corresponding information related to velocity can be used. Also, 
the computation of the extended images can be avoided in areas where the velocity is 
known, e.g., inside salt bodies, or areas where the signal-to-noise ratio is too low, e.g., 

in shadow zones. This significantly reduces the cost of constructing extended images. 
A velocity estimation process based on these images requires an objective function 
based on an operator penalizing the distortion of the images caused by velocity errors. 
Such an objective function can be designed using the differential semblance princi- 
ple. The objective function built in this way is uni-modal with respect to the model, 
thus preventing the inversion from being trapped in local minima. The smoothness 
of the function around the global minima facilitates the use of gradient-type solvers 
for achieving convergence towards the true model. The velocity estimation process 
requires computing the gradient of the objective function which links image errors 
to velocity model updates. One key component for the construction of the gradient 
is the adjoint scattering operator which we construct in the framework of frequency- 
domain downward continuation. Such an operator is formulated by applying the Born 
linearization to the single square-root equation, and it serves as the foundation for 
image-domain wavefield tomography algorithms. 

Key words: wavefield-extrapolation, velocity analysis, extended images, objective 

function 

1 INTRODUCTION earth’s interior that has become a commercial routine. How- 

ever, since wavefield-based migration is sensitive to velocity 

error, the quality of the final image greatly depends on the ac- 

curacy of the velocity model. Thus, a key challenge for imag- 

The focus of seismic exploration is in regions characterized 

by complex subsurface structure. In such regions, wavefield- 

based migration is a powerful tool for accurately imaging the
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ing in complex geology is an accurate determination of the 

velocity model in the area under investigation. 

In practice, all velocity model building techniques require 

an information carrier to connect the input (the quantity we 

can measure from the data), to the output (the unknown quan- 

tity we want to resolve). Ray-based methods are techniques 

which use high-frequency asymptotic rays as the information 

carrier (Bishop et_al., 1985; Zhou, 2003; Stork, 1992; Liu, 
1997); while wavefield-based methods are techniques which 

use band-limited wavefields as the information carrier (Taran- 

tola, 1984; Pratt, 1999; Sava & Biondi, 2004a; Operto et al., 
2007; Shen & Symes, 2008; Xie & Yang, 2008). 

In complex geology, ray-based methods often fail to pro- 

duce a good velocity model for several reasons. First, ray- 

based methods cannot handle complicated wave propagation 

phenomena such as multi-pathing caused by the complexity of 

the subsurface. Second, sharp velocity contrasts cause insta- 

bility for ray-based methods. In addition, the high-frequency 

assumption embedded in ray-based methods is inconsistent 
with the finite-frequency characteristic of wavefield-based mi- 

gration. A wavefield-based velocity analysis technique is ex- 

pected to provide a more accurate, robust and consistent so- 

lution because of its accurate description of wave propaga- 

tion in a complex subsurface, capability of handling strong 

velocity variation, and a frequency band that is consistent 

with wavefield-based migration. Although ray-based methods 

have the advantage of computational efficiency, wavefield- 

based methods are more appropriate than ray-based methods 

for building a velocity model in complex geologic areas. How- 

ever, the expensive computational cost, reliance on the starting 

model, and convergence of the results at local minimum are 

all issues that need to be solved for practical application of 

wavefield-based methods (Etgen et al., 2009; Virieux & Op- 
erto, 2009). 

Wavefield-based velocity analysis techniques can be clas- 

sified by the domain in which the optimization problem is 

formulated. In the data domain, wavefield-based velocity es- 

timation techniques are described as full- waveform inver- 

sion (FWI) (Tarantola, 1987; Mora, 1988; Song et al., 1995), 

while they are referred to as wavefield-based MVA when im- 

plemented in the image domain (Biondi & Sava, 1999; Shen 

etal., 2003; Albertin et al., 2006; Shen & Symes, 2008; Symes, 
2008). The essential difference between these two categories 

is that FWI defines residuals by directly measuring the mis- 

fit between observed and predicted data, while WEMVA de- 

fines residuals by measuring the coherency and focusing of 

extended images. Then, the energy of the residual in either do- 

main is backprojected via band-limited wave propagation into 

velocity updates. 

WEMVA requires residuals defined in the image do- 
main as the input. Thus, one needs first to measure the defi- 

ciency of migrated images using focusing or semblance prop- 

erties. Biondi & Sava (1999) and Sava & Biondi (2004a,b) de- 

velop the framework of WEMVA and illustrate the construc- 

tion of a linearized migration operator and its adjoint. Shen 

et al. (2003) illustrate the WEMVA method using the differen- 

tial semblance optimization (DSO). Shen & Calandra (2005) 

  

and Shen & Symes (2008) implement a similar DSO scheme 

for survey-sinking and for shot-profile migration, respectively, 

and analyze properties of the differential semblance for offset 

and angle gathers. 
Earlier research on image-domain wavefield tomography 

uses space-lag common-image-gathers (CIGs), which include 

only partial information of migrated images (Sava & Biondi, 

2004a; Shen & Symes, 2008). The additional information em- 

bedded in time-lag CIGs, however, has yet to be fully exploited 
(Yang & Sava, 2009). An approach that simultaneously uses 

all lags information from the images can benefit from the high 

resolution of space-lag gathers and the robustness of time-lag 

gathers, thus having the potential to render an accurate and 

high-resolution velocity model in areas of complex geology. 

Here, we first present the algorithms for migration with 

conventional and extended images, as well as their adjoint 
algorithms. We then explain the key steps of the procedures 

and analyze the required computational cost. Also, we present 

algorithms of linearized migration with conventional and ex- 

tended images, as well as their adjoint algorithms. Linearized 

migration and its adjoint are critical components for image- 

domain wavefield tomography. We also formulate objective 

functions of image-domain tomography designed particularly 

for CIPs. Using the semblance principle, we can construct dif- 

ferent objective functions to penalize the residual moveout of 

events in CIPs. Finally, we demonstrate the characteristics of 

the objective function by synthetic examples. 

2 MIGRATION WITH EXTENDED IMAGES 

Under the assumption of single scattering at discontinuities in 

the subsurface, we can describe seismic migration as a two- 

steps imaging process: wavefield reconstruction followed by 

the application of an imaging condition. 

Seismic waves generated from the source, represented 

by the source wavefield, propagate in the medium and inter- 

act with discontinuities. The reflected seismic waves, repre- 

sented by the receiver wavefield, propagate back to the surface 

and are recorded by geophones. These two wavefields kine- 

matically coincide at discontinuities. Therefore, after we re- 

construct the wavefields by solving a wave equation numeri- 

cally, we can extract the reflectivity information from the re- 

constructed wavefields using a conventional imaging condition 

(Claerbout, 1985), 

R(x) = 30 W, (x,w)W, (x,w) , (1) 

or an extended imaging condition, 

R(x,A,7) = 3 Ws ( — A, w)W, (x + Aw) 7" 

(2) 
The image J is a function of space coordinates x, of the space- 

lag A and time-lag extensions 7 (Rickett & Sava, 2002; Sava 

& Fomel, 2006; Sava & Vasconcelos, 2009). The complete set 

of extended images is a multi-dimensional hypercube, which



allows us to simultaneously access the semblance and focusing 

information about the images. 

Seismic modeling process which maps the reflectivity of 

the subsurface into data D recorded on the surface can be for- 

mulated using a linear operator L applied to the reflectivity 

model represented by the image R: 

D=LR. (3) 

Since the modeling is a linear process, the adjoint process can 

be directly obtained. Such an adjoint process is referred to as 

migration, and can be conceptually formulated as applying the 

operator L* to data D and to obtain the image R. If we use 

matrix notation, we have 

R=L'D. (4) 

The pseudo-codes of the algorithm for migration and mod- 

eling with both conventional and extended images are de- 

tailed in boxes 1 and 2, respectively. The algorithms of mod- 

eling and. migration are formulated in this work as adjoint 

pairs. Such algorithm pairs ensure stability if we use the 

operators in solving a linear inverse problem by conjugate- 

gradient methods. The particular implementation we illustrate 

is based on one-way wavefield-extrapolation shot-record mi- 

gration, but one can generalize the algorithm to other imaging 

setups such as two-way wave-equation shot-record migration. 

The algorithms presented here perform computations for each 

frequency independently, which leads to a straightforward par- 

allelization. 

In the algorithms detailed in boxes 1 and 2, W.E. denotes 

wavefield extrapolation, I.C. denotes imaging condition, £* 

represents a casual wavefield extrapolator, while €~ repre- 

sents an anti-casual wavefield extrapolator. The source wave- 

field W, is precomputed before migration and stored in the 

disk, but it can also be computed inside the algorithms. In the 

migration algorithm, we first recursively downward continue 

the receiver wavefield by applying the extrapolator E~ and 

store the extrapolated wavefield at every depth level. We only 

need to store the wavefield for one frequency, which makes the 

calculation manageable. After the wavefield reconstruction is 

accomplished, we extract the conventional image by equation 

1, or the extended images by equation 2. The final image is the 

stack of images over all frequencies. 
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Box 1 

MIGRATION WITH CONVENTIONAL IMAGES 

set R(x) =0 

Ut = Wmyin s+. Wmar{ 

tread 3=W, (x) 
set W, (x) =0 
read = T'(z,y) 

Z>= Amin +++ Zmaz{ 

store W,. (x,y,z) = T (2,y) 
WE. T (z,y) =E (T(z, y)] 

LC. R(x)+= W, (x)W, (x) 

} 
write R(x) 

MODELING WITH CONVENTIONAL IMAGES 

read R(x) 

i = Wrmin ++. Wmar{ 

read = W,, (x) 
set W, (x) =0 
LC. W, (x) += W, (x) R(x) 

set T (a,y) =0 

22> 2max--- Zmin{ 

WE T(2,y) =£* (P(2,9)] 
inject T (x,y) += W, (x,y, 2) 

write T(a,y) 

} 

In the modeling algorithm, the reflectivity is injected into the 

receiver wavefield using the adjoint of the imaging condition 

in equations | or 2. Next, we recursively upward continue the 

full receiver wavefield from bottom to top by applying the 

adjoint extrapolator €+ and inject the wavefield constructed 

from the model at every depth level. After the wavefield recon- 

struction is finished, we output the wavefield at the surface.
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Box 2 

MIGRATION WITH EXTENDED IMAGES 

set R(c,A,7) =0 

w= Wmin ---Wmax 

read W, (x) 
set W, (x) =0 
read =T (x,y) 

= 2min--- Zmaz{ 

store W, (z,y, 2) = T (a, y) 

WE. = T(z, y) = E- [T (a,y)] 
} 
loop A,r { 

LC. R(c,A,7) += e777 W, (c—A)W, (c+A) 

write R(c,A,7) 

MODELING WITH EXTENDED IMAGES 

read R(c,A,7) 

Ww = Wmin +--+ wma { 

read W, (x) 
set W, (x) =0 

loop A, r{ / 
Lc. W,. (c+A) += Ws (e—A) et?” R(c, A,7) 

set T (z,y) = 

=2maxr--- Zmin{ 

W.E. T (2, y) = €* [T (x, y)] 
inject T (x,y) += W, (a, y, z) 

write T(z,y) 

} 

The computational cost for such implementations can also be 

split between the wavefield reconstruction and the imaging 

condition. Since we use a frequency-domain recursive extrap- 

olator to reconstruct the wavefields, the cost is proportional to 

the size of the model and the number of frequencies. Thus, it 

can be estimated as: 

Nwe. ~ Na Nx , (5) 

where N,, represents the number of frequencies and N,, rep- 

resents the number of samples along the space axes. 

The cost for the imaging condition is controlled by sev- 

eral factors: the frequency band, the number of locations we 

choose to construct the extended images, and the number of 

lags involved. Thus, it can be estimated as: 

Mic. ~ NuNeNdN- ’ (6) 

where Ne represents the number of CIPs and Ny, N- rep- 

resent the number of space- and time-lags. If we take the con- 

ventional space-lags CIGs and extended CIPs as examples, the 

computational cost for the imaging condition is 

Nic. ~ NuoNzNnzNnyNa. Nar, » (7) 

where Nz, and Np, represent the number of horizontal loca- 

tions at which we construct the gathers along in-line and cross- 

line directions. If we denote the cost of constructing space- 

lags common-image gathers as C’) and the cost of construct- 

ing space- and time-lags common-image-point gathers as C,, 

from the equation 6 and 7, we obtain the ratio: 

Oa NeNneNhy (8) 
Cyr NeN), Ne 

Suppose Nz = Nz = Ny = 500, Nhe = Na, = 50, 

Ne. = 500, M, = = 20, N; = 100, then oy ~ 1.2, which 

means the cost of computing CIPs is about the same as the 

cost of computing CIGs. However, we can drop the vertical 

space-lag axis if we are imaging nearly-horizontal reflectors, 

or we can eliminate one of the lag axes if we have informa- 

tion about the reflector dip. Then, 2a oY 25, thus we achieve 

a significant reduction in the computational cost of the imag- 

ing condition. Therefore, using CIPs for velocity analysis is 

particularly attractive, as they provide information about the 

velocity model at smaller cost. Furthermore, as discussed by 

Sava & Vasconcelos (2009), CIPs have other advantages over 

CIGs, mainly related to image sampling that is more consistent 

with the underlying geologic structure. 

We migrate the Sigsbee 2A dataset (Paffenholz et_al., 
2002) as an example. Figure 1(a) shows the background veloc- 

ity model, constructed by subtracting the perturbation shown 

in Figure 1(b) from the true velocity model. The image ob- 

tained is shown in Figure 1(c), overlain with the dots indicat- 

ing the locations where CIPs are constructed. The * indicate 

the positions of CIPs shown in Figure 2(a)-2(d). Since we use 

the background model for migration, we see that events in all 

CIPs are not well focused and exhibit residual moveout in A;- 
7 panels. In addition, in Figures 2(c) and 2(d), the CIPs are 

constructed in subsalt area with an uneven illumination, we see 

that the CIPs contain significant artifacts. In general, the salt 

creates uneven illumination and shadow zones, which gener- 

ate artifacts and distort the images. The distortion is similar 

to the imperfections caused by the velocity error. If we use 

such gathers for velocity analysis, we may obtain an incor- 

rect result. Thus, in complex area, illumination compensation 

is necessary for velocity model building. This important re- 

search direction falls outside the scope of this paper. 

3 LINEARIZED WAVEFIELD-BASED MIGRATION 
VELOCITY ANALYSIS WITH EXTENDED 
IMAGES 

To formulate the velocity analysis in the image-domain, we 

first need to construct an objective function for the optimiza- 

tion problem. In general, there are two approaches we can use 

to seek the solution. The first approach uses a linearized image 

perturbation. The second approach, based on differential sem- 

blance optimization, is discussed in the next section. To obtain



an image perturbation, one starts by applying the Taylor ex- 

pansion to an image as follows: 

R(x, 8c) = R(x, Sb) + AR (x) ’ (9) 

where 

Se = sp +As. (10) 

Here, s, denotes the correct slowness and s, and As denote 

background slowness and slowness perturbation, respectively. 

The image perturbation is related to the slowness perturbation 

by a linearized scattering operator A: 

OR( AR(x) = AAs = OR (8), As. (at) 

Since the image perturbation is proportional to the slowness 

perturbation, the velocity analysis can be performed by mini- 

mizing the image perturbation. Thus, the corresponding objec- 

tive function, which defines a linearized optimization problem, 

is formulated as: 

J (As) = sR - Ads|3. (12) 

The operator A in equations 11 and 12 is used to obtain 

an image perturbation from a slowness perturbation: 

AR=AAs. (13) 

We can directly construct the adjoint MVA process similarly to 

migration. In this way, we obtain the adjoint pair of operators. 

The adjoint process describes the backprojection from image 

perturbation to slowness perturbation: 

As = A*AR, (14) 

where A* represents the adjoint operator. 

The pseudo-codes of the algorithm for forward and ad- 

joint linearized MVA with both conventional and extended 

images are detailed in boxes 3 and 4, respectively. The algo- 

rithms are constructed based on the one-way wave-equation 

shot-record migration, and implemented in the frequency do- 

main. 
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Box 3 

FORWARD SCATTERING WITH CONVENTIONAL IM- 

AGES 

set AR(x)=0 
read As (x) 

WwW Wmin-+ .Wmaz { 

tead  W, (x) 
read W, (x) 

set Ts (x,y) = 0 
set T; (x, y) =0 

We ni neem ar 

WS. —T, (2,9) += S~ [W. (@ m2), As(a,y,2)| 
WS. T; (x, y) += Ss [W, (x, ys 2) ’ As (x, yw z)| 

W.E. Ts (x,y) = €* [z. (z,0)| 

W.E. T, (x,y) = E~ [T; (z,y)| 
store AW, (2, y, 2) = Ts (2, y) 
store AW, (a, y,2z) = T, (x,y) 

} — 
LC.  AR(x) += W, (x) AW; (x) 
LC. AR(x)+= W, (x)AW, (x) 

} 
write AR (x) 

ADJOINT SCATTERING WITH CONVENTIONAL IM- 

AGES 

read AR(x) 
set As(x)=0 

yom aD 
WG = Wmin + -.«Wmax 

read W, (x) 

read W, (x) 

Lc. AW, (x) = W, (x)AR (x) 
1.C. AW, (x) = W; (x) AR (x) 

set Ts; (x,y) = 0 
set T, (x,y) = 0 

Z=Zmaxr--- Zmin{ 

inject Ts (z,y)+= AW, (z,y, 2) 
inject T, (x, y) += AW, (a, y, z) 

W.E. Ts (x, y) = €~ [7 (a, »)| 

W.E. T; (a,y) = E* |T; (2, y)] 
WS. As(2,y,z) += St |W, (a, y,z),Ts (x,y) 

WS. As (x,y,z) += St |W, (x,y,z), Tr (z,y) 

} 
I 

write As (x)
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Box 4 

FORWARD SCATTERING WITH EXTENDED IMAGES 

set AR(c,A,7) =0 
read As (x) 

Ww =Wmin-.- Wmax{ 

read = W, (x) 
read = W,, (x) 

set T, (z,y) =0 
set T, (x,y) =0 

z= 2min.«-- Zmax{ 

WS. T; (x, y)t= S~ [W. (z,y,z), As (a, y, 2)| 

W.S. T, (2, y) += S7 |W, (x,y,z), As (x,y, z)] 

WE Ty) =£* [TR @y)| 
W.E. T; (x,y) = E7 [T, (2, y)] 

store AW, (x,y,z) = Ts (#, y) 
store AW, (z,y,z) = T; (x,y) 

} 
loop A, r{ 

LC. AR(c,A,7) += et?" W, (c +A) AW, (eA) 
LC. AR(c, A,T) += e777 W, (c—A)AW, (c+A) 

} 
} 

write AR(c,A,7r) 

ADJOINT SCATTERING WITH EXTENDED IMAGES 

read AR(x) 
set As(x)=0 

a = Wmin--- Wmaz{ 

read  W, (x) 
read W, (x) 

loop A, r{ 

Ec. AW, (c—A)+= e 7 W, (c+A)AR (ce, A,7) 
LC. AW, (c+A) += et’? W, (c—A) AR(c, A,7) 

} 
set T; (x,y) =0 
set T, (x,y) =0 

z= 2mar-+- Zmin { 

inject T; (x, y)+= AW, (x,y,z) 
inject T, (2, y) += AW, (2, y, 2) 

W.E. Ts (x,y) = E7 [7 (z,9)| 
WE. T, (x,y) = E* [T, (2, y)] 
WSS. As (z,y,z) += S* |W, (x,y, 2) ,Ts (z,y) 

WS. As (x,y, z) += st W, (x, Y 2),T; (z,y) 

} 
} 

write As (x) 

scattering operator. These scattering operators characterize the 

wavefield scattered from the slowness perturbation via the 

background wavefield (Sava & Vlad, 2008). The background 

wavefields must be precomputed beforehand. 

In the forward MVA algorithm, the total scattered wave- 

field consists of the scattered wavefield extrapolated from the 

previous depth level above added to the scattered wavefield 

generated from the slowness perturbation at the current depth 

level. At a certain depth level, we first apply the scattering op- 

erator S to obtain the scattered wavefields for the source and 

receiver, respectively. The imaging conditions cross-correlate 

the complex conjugate of the source wavefield and receiver 

wavefield. Taking the complex conjugate is not a linear op- 

eration in the complex domain. We can directly compute the 

complex conjugate of the scattered source wavefield and then 
downward continue the scattered wavefields by the wavefield 

extrapolator. After the computation for scattered wavefields 

is done, we use the conventional or extended imaging condi- 

tions to extract the image perturbation. In both cases, we apply 

the imaging conditions twice, to different combinations of the 

scattered and background wavefields, respectively, then sum 

the results from these two computations. 

In the adjoint MVA algorithm, we first construct the per- 

turbed wavefields from the image perturbations by the adjoint 

of the imaging conditions. Notice that we also directly com- 

pute the complex conjugate of the perturbed source wavefield 

to avoid taking the complex conjugate of the wavefield. Next, 

we inject the perturbed wavefield into the total scattered wave- 

field extrapolated from the previous depth level below, and up- 

ward continue the new scattered wavefield. The slowness per- 

turbation at the current depth level is obtained from the total 

scattered wavefield by the adjoint of the scattering operator. 

The computational cost for the MVA process consists of 

three parts: wavefield reconstruction (W.R.), wavefield scat- 

tering (W.S.), and imaging condition (I.C.). The cost for both 

wavefield reconstruction and scattering can be estimated by 

equation 5, scaled by 2 since we need to compute them twice, 

for the source and receiver sides. The cost for imaging condi- 

tion can be estimated by equation 6, scaled by 2 for the same 

reason. 

We use the Sigsbee 2A dataset as an example again with 

the background model in Figure 1(a) and with the slowness 

perturbation in Figure 1(b) to create the image perturbation. 

We construct the image perturbation for CIPs located at the 

same positions denoted by the * in Figure 1(c), as shown in 

Figures 3(a)- 3(d). Comparing the image perturbation of CIPs 

to those from background velocity model in Figure2(a)-(d), 

we notice that the events in Figure 3(a)-3(d) are more oscilla- 

tory because we use less frequencies in constructing the image 

perturbation to save cost. Also, the image perturbation has a 

phase difference because of the linearization of the wavenum- 

ber with respect to slowness in the scattering operator. Next, 

we apply the adjoint operator to the image perturbation to ob- 

tain the backprojection, which is equivalent to the gradient of 

In the algorithms detailed in boxes 3 and 4, W.S. denotes 

wavefield scattering, S* represents a casual wavefield scat- 

tering operator, and S~ represent an anti-casual wavefield 

the corresponding objective function given by equation 12. 

The backprojection provides a straightforward way to study 

the forward and adjoint scattering operators. The main fac-



tors that control the shape of the backprojection are (1) the 

frequency content of the background wavefields, (2) the type 

of source (e.g., point or plane-wave) from which we gener- 

ate the background wavefields, and (3) the type of perturba- 

tion constructed in the image space. Figure 4(a)-4(c) show the 

backprojection from a single shot at ¢ = 12.3 km using dif- 

ferent frequency bands. We can see that with increasing fre- 

quency band used, the magnitude of the backprojection be- 

come stronger. Figure 5(a)-5(c) show the backprojection from 

all shots using different frequency bands. Similarly, the magni- 

tude of the backprojection is increasing with more frequencies 
used. In Figure 5(c), we see that backprojection has a compli- 

cated shape due to the complexity of the background model. 

In practice, the true slowness perturbation is never 

known, so the image perturbation is also unknown. However, 

one can construct a linearized image perturbation to approx- 

imate the true one. Thus, the key element for this approach 

is the construction of the linearized image perturbation. Sava 

(2003) proposes using Stolt residual migration as the solu- 

tion, while Yang & Sava (2009) use focusing of the time- 

lag extended images to address the problem. Generally, the 

linearized-image perturbation approach can effectively avoid 

the common cycle-skipping problem for wavefield tomogra- 

phy. The construction of the linearized image perturbation, 

however, requires a quantity that can be measured directly 

from the image. Such a quantity is difficult to measure for all 

types of extended images. An alternative to this approach is to 

construct penalties of the migrated images itself, as discussed 

in the following section. 

4 DIFFERENTIAL SEMBLANCE OPTIMIZATION 

WITH EXTENDED IMAGES 

An alternative approach to formulate image-domain wavefield 

tomography relies on applying a penalty function to extended 

images. The penalty function measures the coherency of im- 

ages and highlights and penalizes the image imperfections 

caused by velocity errors. In general, we can formulate an ob- 

jective function for optimization by first identifying charac- 

teristics of the images corresponding to correct velocity. Such 

features define an ideal shape for the images relative to which 

we can measure image imperfections. Since the velocity error 

distorts the wavefields reconstructed in the subsurface, the im- 

ages constructed with an incorrect velocity does not conform 

with the ideal shape. This part of the energy in the images is the 

residual. Therefore, we require the penalty function to annihi- 

late the energy of images corresponding to the ideal shape, and 

to preserve and highlight the energy of images departing from 

the ideal shape. As a result, a penalized image is equivalent to 

the data misfit defined in the image domain. Therefore, the ve- 

locity optimization problem is formulated by minimizing the 

image residual, and the corresponding objective function 

J(s) = SIPIR (x, A,7)]I (15) 
In general, 2. (x, A, 7) are extended images with different ex- 

tensions and P is the penalty function. 
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According to the semblance principle, if data are mi- 

grated with the correct velocity model, the subsurface reflec- 

tors are imaged at a fixed location for different seismic ex- 

periments regardless of the geological structure (Al-Yahya, 

1989). Therefore, we can use the image semblance to quan- 

tify these imperfections and to update the velocity model. This 

process is referred to as semblance analysis. Symes & Caraz- 

zone (1991) introduce differential semblance as a particular 

implementation of semblance analysis, and the corresponding 

velocity analysis process, often referred to as differential sem- 

blance optimization (DSO). The underlying idea is to analyze 

the difference of semblance between neighboring traces within 

a CIGs or a CIPs. The main advantage of DSO is the con- 

vexity of the corresponding objective function, which greatly 

reduces the difficulty of handling the local minima in com- 

mon wavefield-tomography methods in the context of wave- 

equation migration velocity analysis. The DSO approach has 

been applied to conventional CIGs (Shen et al., 2003; Shen & 
Calandra, 2005; Shen & Symes, 2008). 

4.1 Objective function for extended images 

For CIGs constructed in the space-lag domain, Shen et al. 

(2003) and Shen & Symes (2008) derive the formula to de- 

scribe the kinematics of a reflector at depth zo using extended 

images by 

R(z,A) = 6 (A) d(z— 20) , (16) 

where zo is the depth of the reflector. The reflections should 

be focused at zero space-lag because the reflectors are imaged 

at the same subsurface location for different shots when the 

velocity is correct. Hence, we measure the focusing of events 

in CIGs, and penalize the residual moveout, which is the en- 

ergy not concentrated at zero space-lag. The penalty function 

is formulated as 

P,[R] = |A|R. (17) 

For CIPs constructed in the space- and time-lags domain, 

Sava & Vasconcelos (2009) describe the kinematics of the ex- 

tended images by 

R(A,T) =4(q-A)S(vr) , (18) 

where q denotes a unit vector parallel to the reflector and at the 

intersection of the reflection and reflector planes. When correct 

velocity v is used for imaging, an event in a CIPs is illuminated 

by multiple shots and is represented by a line at 7 = 0 oriented 

at an angle parallel to the reflector normal. Thus, we also mea- 

sure the focusing along the trajectory oriented at an angle par- 

allel to the reflector normal. Similar to the conventional DSO 

approach, we penalize the residual moveout spread from the 

tilted line at 7 = 0. The penalty function formulated in this 

way is 

Py,7)[R] = |r|FR. (19) 

Such a penalty function has the advantages that it is straight- 

forward and requires no information about the slope of the re- 

flection.
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Figure 1. (a) Sigsbee 2A synthetic model, (b) slowness perturbation and (c) migrated image with background velocity model. The dots indicate the 

positions where CIPs are constructed. The * indicate the positions of the CIPs shown in Figures 2 and 3.
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Figure 2. CIPs chosen from subsurface at (a) x = 5.81 km, z = 8.44 km (b) # = 7.92 km, z = 5.87 km, (c) z = 22.89 km, z = 7.44 km, and 

(d) x = 14km, z = 6.62 km.
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Figure 3. Image perturbation of CIPs chosen from subsurface at (a) x = 5.81 km, z = 8.44km(b) z = 7.92km, z = 5.87 km, (c) x = 22.89 km, 

z = 7.44 km, and (d) z = 14 km, z = 6.62 km.
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Figure 4. Backprojection from the image perturbation of all CIPs (a) using a single frequency of 3.5 Hz and a single shot at x = 12.3 km, (b) using 

a frequency band from 3-4.5 Hz and a single shot at « = 12.3 km, (c) using a frequency band from 3-8.5 Hz and a single shot at 2 = 12.3 km.
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Figure 5. Backprojection from the image perturbation of all CIPs (a) using a single frequency of 3.5 Hz and all shots, (b) using a frequency band 

from 3-4.5 Hz and all shots, (c) using a frequency band from 3-8.5 Hz and all shots.



Since the residual moveout extends in both the space- and 

time-lags direction, we can also penalize the energy not con- 

centrated at 7 = 0 and spread in the space-lag direction. Thus, 

we can formulate another penalty function as: 

Pon [Rl =la-AlR, (20) 

The information about the unit vector q can be extracted from 

CIPs by measuring the slope of the event in the A — Az panel, 

or just by measuring the reflector slope in conventional im- 

ages. 
Furthermore, we can combine the penalty functions 

above so that we simultaneously penalize the residual moveout 

in both the space- and time-lags direction. The penalty func- 

tion is thus 

Poa,r)[R] = Ry (vr)? + (a- A)’. (21) 

4.2 Event isolation for DSO 

When we design the various penalty functions, we implicitly 

assume that there is only one event in the CIPs. As the 7 axis of 

CIPs represents a time-shift applied to the reconstructed wave- 

fields, however, it is possible that nearby reflections can also 

be imaged in a given CIPs, although these nearby events do 

not go through the origin of the lag space. Consider an exam- 

ple shown in Figure 6, which consists of three reflectors em- 

bedded in a constant medium. Figures 7(a) and 7(b) shows the 

CIPs constructed in the middle reflector for correct and incor- 

rect velocity models, respectively. For the CIPs corresponding 

to correct velocity, Figure 7(a), the event crossing rT = 0 is 

focused at A = 0. For the CIPs corresponding to incorrect 

velocity, Figure 7(b), the event crossing tT = 0 is character- 

ized residual moveout. Ideally, we expect a CIPs constructed 

with correct velocity to be focused at r = 0 andq-A = 0, 

which is how we have defined the penalty functions shown in 

Figure 8(a), 9(a) and 10(a). However, when multiple reflectors 

are presented in the image, multiple reflections will also be 

part of the CIPs. Of all these events, the only event we need 

to penalize is the one on which we have picked the CIPs, i.e. 

the event that goes through 7 = 0 and A = 0. All other events 

should not be penalized. Therefore, it is necessary to isolate 

just the event on which we have constructed the CIP for the 

application of the penalty function. 

To isolate the irrelevant events, we simply apply a mask to 

CIPs and mute the events that do not contain the origin of the 

lag space. The key step is to construct the mask whose shape 

matches the trajectory of the event we want to preserve. we de- 

termine the trajectory by finding the similarity of the selected 

between neighboring traces using cross-correlation method. 

The maximum cross-correlation value corresponds to the shift 

between the signals at which they reach the maximum similar- 

ity. An example of the application of this procedure is shown 

in Figure 7(c). 

For the illustration of penalty functions, we use the ex- 

ample shown in Figure 6. The CIPs corresponding to correct 

and erroneous velocities are shown in Figures 7(a) and 7(b), 

respectively. Figures 8(a) and 8(c) show the penalty function 
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given by equation 19 and the CIPs in Figure 7(c) after the ap- 

plication of the penalty. The energy focused at 7 = 0 is anni- 

hilated, while the energy at nonzero 7 is enhanced, thus defin- 

ing the image residual. Figures 9(a) and 9(c) show the penalty 

function given by equation 20 and the CIPs in Figure 7(c) after 

the application of the penalty. In this case, we remove the en- 

ergy focused at q - A = 0, and enhance the energy outside the 

trajectory of q- A = 0. Figures 8(a) and 8(c) show the penalty 

function given by equation 21 and the CIPs in Figure 7(c) after 

the application of the penalty. The penalized image is similar 

to the one shown in 9(c) in that the residual moveout spread 

in A direction is emphasized. However, the residual moveout 

spread in 7 direction is also enhanced. 

Next, to demonstrate the characteristics of the objective 

functions corresponding to different penalties, we migrate data 

with models obtained by scaling the correct model with a con- 

stant factor ranging from 0.75 to 1.25. For each situation, 

we construct the CIPs then apply the penalty functions and 

compute the values of the corresponding objective functions. 

To emphasize the importance of event isolation,we apply the 

penalty functions to the un-masked CIPs and obtain the result 

as shown in Figure 11 (a). The thick solid, thin solid and dashed 

curves correspond to penalty functions given by equation 19, 

20 and 21, respectively. We see that without the event isola- 

tion, none of the objective functions reach the minimum at the 

correct velocity. This observation demonstrates that the objec- 

tive function incorrectly penalize the image imperfections and 

thus fails to measure the coherency of the events in CIPs. As a 

result, the objective function implemented in this way cannot 

produce correct velocity updates. Next, we apply the penalty 

functions to CIPs with event isolation and obtain the result 

shown in Figure 11(b). Similarly, the thick solid, thin solid and 

dashed lines correspond to penalty functions given by equation 

19, 20 and 21, respectively. We see that the objective func- 

tions for different penalties share similar characteristics. First, 

for all objective functions, there is only one minimum and 

it occurs at the correct velocity model. The uni-modal char- 

acter of the curves ensures the existence of a unique global 

minimum for the inversion. Second, the objective function is 

also monotonically increasing with the velocity error except 

for the objective function with penalty given by equation 21. 

One possible reason might be that the uneven illumination of 

the dipping reflectors causes uneven energy in the CIPs. The 

monotonically increasing objective functions facilitate the use 

of gradient-type methods in the inversion. 

5 CONCLUSIONS 

We discuss image-domain wavefield-based migration velocity 

analysis using extended images analyzed in common-image- 

point gathers constructed at sparse locations in the image. We 

present the algorithms of migration and modeling using ex- 

tended images, as well as the forward and adjoint linearized 

scattering using extended images. These algorithms are neces- 

sary components for the velocity updating procedure. To for- 

mulate the velocity optimization problem, a penalty function is 

required to measure the coherency of the images and to penal- 

ize imperfections caused by velocity errors. The penalty func-
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Figure 6. Synthetic example of a dipping reflector in a constant velocity model. The dot indicates the location where we construct CIPs.
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Figure 7. CIPs chosen from the middle reflector (a) for the correct velocity model. (b) for 90% of the correct velocity model. (c) after the event 

isolation. Notice that all the events not crossing 7 = 0 are eliminated.
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Figure 8. (a) The penalty function constructed by equation 19. (b) Penalty applied to CIPs shown in Figure 7(b) without event isolation. (c) Penalty 

applied to CIPs shown in Figure 7(c) with event isolation.
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Figure 9. (a) The penalty function constructed by equation 20. (b) Penalty applied to CIPs shown in Figure 7(b) without event isolation. (c) Penalty 

applied to CIPs shown in Figure 7(c) with event isolation.
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Figure 10. (a) The penalty function constructed by equation 21. (b) Penalty applied to CIPs shown in Figure 7(b) without event isolation. (c) Penalty 

applied to CIPs shown in Figure 7(c) with event isolation.
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Figure 11. The plot of the objective functions. The dashed line corresponds to penalty given by equation 19, the thick solid line corresponds to 

penalty given by equation 20, the thin solid line corresponds to penalty given by equation 21. (a) The objective functions applied to CIPs without 

event isolation. The curves do not reach the unique minimum at the correct velocity. (b) The objective functions applied to CIPs with event isolation. 

All the curves reach the unique minimum at the correct velocity.
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tion is designed using the semblance principle, and we present 

here three among the many possibilities. Synthetic examples 

demonstrate the uni-modal character of the objective func- 

tion, which guarantees the convergence of inversion to a global 

minimum, and the smooth variation of the objective function 

around the minimum, which facilitate the use of gradient-type 

methods. The events from nearby reflections, however, must 

be isolated before the objective function is constructed since 

the penalty functions are designed only for the reflections at 

the location where the CIPs are constructed. 
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velocity analysis 
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1 INTRODUCTION 

ABSTRACT 

Converted-wave data have been recognized to have potential in complementing con- 
ventional compressional data. However, imaging for converted-waves is more dif- 
ficult mainly due to the need for estimating shear-wave velocities, in addition to 
compressional-wave velocities. The common practice is to obtain the shear-wave ve- 
locity by registering PS and PP images. Despite its low cost, this procedure is prone 
to error due to the assumption of imaging simple structure and due to the high poten- 
tial for cycle skipping. On the other hand, we could obtain S velocities by adapting 
wave-equation migration velocity analysis (MVA) tools for shear waves. Our assump- 
tion is that we can update the S velocities while keeping the known P velocity fixed. 
We assume that the P-wave velocity is known from MVA of the PP component of the 
data, then we estimate the S-wave velocity from MVA on the PS component of the 
data. If P- and S-wave velocities are all correctly estimated, corresponding PP and PS 
events match in the migrated depth sections. This velocity analysis can make use of 
both common image gathers (CIGs) and common image point gathers (CIPs). We de- 
rive the moveout function for CIPs of converted-wave images and find that they present 
more complicated moveout than their pure-mode counterparts. We explore the appli- 
cability of differential semblance optimization (DSO) to the PP and PS gathers (CIPs 
and CIGs) to obtain objective functions, based which we can construct optimal velocity 
models. We find that the objective functions for both PP and PS data are convex, which 
warrants their use for migration velocity analysis using efficient gradient-descent nu- 
merical optimization schemes. 

Key words: velocity analysis, common image point gathers, coverted-waves 

Second, it is more difficult to pre-process converted-wave data. 

Multicomponent data are acquired both on fand and at 

ocean bottom because converted-waves have been recog- 

nized to have potential advantages in several aspects. Con- 

verted waves can produce better images of the Earth struc- 

ture where P-waves have small reflectivity and S-waves have 

larger reflectivity. Converted waves also complement P-waves 

in imaging through zones where P-waves are highly atten- 

uated and S-waves are less affected, e.g., gas-concentrated 

area. Converted-waves also provide invaluable information for 

lithology estimations, anisotropy parameter estimations, and 

reservoir characterization (Stewart et al., 2002, 2003). 
Despite its usefulness, imaging with converted-waves has 

not gained the same popularity as imaging with acoustic waves 

for the following reasons. First, it is much more expensive 

to acquire multicomponent data than single-component data. 

For example, gathering, mapping, and binning for converted- 

wave data are more complicated than pure-mode data due to 

the asymmetry of PS wave raypaths (Stewart et al., 2002; 

Thomsen, 1998). Third, it is more difficult to image with 

converted-wave data because both P- and S-wave velocities 

are needed. Furthermore, because of the strong influence of 

anisotropy on shear-waves, the isotropy assumption which 

cause less problems to acoustic-wave imaging is often insuffi- 

cient for converted-wave data. This makes it necessary to es- 

timate for additional model parameters, which is theoretically 

and computationally challenging. 

Many authors, including Nicoletis et al. (1998); Kendall 

et al. (1998); Dai et al. (2000), investigate methods for time 
or depth migration using converted-wave data. The migra- 

tion procedures for PP and PS data do not differ in nature, 

and both include two basic steps: the reconstruction of source 
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and receiver wavefields at all locations in the subsurface and 

the application of an imaging condition to extract reflectiv- 
ity from the reconstructed wavefields. The main difference is 

that for PP data, both source and receiver wavefields are re- 

constructed using P-wave velocity; for PS data, source and re- 

ceiver wavefields are reconstructed with P- and S-wave veloci- 

ties, respectively. Herrenschmidt et al. (2001) compare various 

approaches for obtaining migration velocities for converted- 

wave imaging. They find that time migration is acceptable only 

when the model has little lateral velocity variation, otherwise 

only positive or negative offsets get flattened. They conclude 

that imaging PS data with a prestack depth migration approach 

most naturally handles complexities in the model. 

One of the most difficult problems for imaging with 

converted-waves is to obtain correct migration models. Al- 

though it is common knowledge that prestack depth migra- 

tion generates better images than time migration, the PS mi- 

gration velocity is still usually obtained in the time domain, 

mainly due to a lower cost. The velocity estimation for shear- 

waves is mostly carried out by the so-called “registration” pro- 

cess: shear-wave velocities are estimated or tuned by correlat- 

ing corresponding PP and PS reflections in the time-migrated 

seismic sections and stretching in time the PS section to match 

with the PP section using the estimated Vp/Vs ratio. Initially, 

the registration process involves manual picking to correlate 

PP and PS events (Gaiser, 1996). Later, many authors, in- 

cluding Ogiesoba & Stewart (2003), Fomel & Backus (2003), 

Nickel & Sonneland (2004), Fomel et al. (2005), and Yuan 

et al. (2008), develop methods to improve the automation and 
efficiency of the registration process. Since PP and PS data 

do not have the same frequency contents, usually a spectral- 

whitening to both components is necessary to match the PP 

and PS events. The registration technique has the benefit of fast 

performance because the operation is usually carried out in the 

time domain and is relatively not time-consuming. However, 

velocity analysis using image registration has some inherent 

problems. First, P- and S-waves are assumed to have simi- 

lar reflectivity in a long-wavelength scale. This assumption is 

sometimes violated, since PP and PS waves do not necessarily 

respond equally to all reflectors. Second, the registration pro- 

cess is prone to cycle-skipping without the aid of well logs. 

Third, the registration process makes the assumption that there 

is no lateral mispositioning of the PS image (Fomel & Backus, 

2003), and therefore all adjustments of shear-wave velocity are 

local and vertical. 

An alternative for obtaining the S-wave velocities is to 

carry out a joint PP and PS inversion (Veire & Landrg, 2006; 

Margrave et al., 2001). The joint inversion technique starts 
with a rough estimate of Vp /Vs ratio to register corresponding 

PP and PS events and then inverts for the elastic parameters us- 

ing approximate PP and PS reflection coefficients (amplitude 

versus offset (AVO) response). The main benefit of the joint 

inversion is that it not only estimates Vp and Vs, but also the 

density p, which is an important elastic parameter for lithol- 

ogy analysis. The joint inversion technique, however, also re- 

quires registering PP and PS events. Moreover, a key problem, 

as pointed out by Veire & Landrg (2006), is the difficulty in 

converting PP and PS seismic amplitudes into true reflection 

coefficients, especially for complex geology. In these situa- 

tions, a more sophisticated analysis that converts data to true 

incidence/reflection angles and inverts with AVA (amplitude 

versus angle) is necessary (Veire & Landrg, 2006). 

Most existing shear-wave velocity analysis tools re- 

quire registration of PP and PS events in order to estimate 

the Vp/Vs ratio. This is usually difficult when pure- and 

converted-waves have different frequency contents, are sub- 

ject to different reflection coefficients, and the wavelets of the 
two wave modes are inconsistent with each other. In this paper, 

we explore the possibility of wave-equation MVA in the depth 

domain for the shear-mode using converted-wave data only, 
i.e., we update the S velocity after P velocity analysis, while 

keeping the P velocity fixed. We assume that the velocity of 

the P-wave is known from MVA of the PP component of the 

data, and then we perform MVA on the PS component only. 

This approach is analog to the layer-stripping approach used 

for velocity model building for simple structures. In the layer- 

stripping technique, velocity estimates for the deeper layers 

rely on the velocity estimates for the shallow layers. This pro- 

cedure, if not done correctly, introduces velocity errors to the 

deeper layers from errors accumulated in the shallow layers. 

The MVA procedure which estimates P- and S-wave veloci- 

ties independently is subject to a similar problem. Although 

errors in the a priori P-wave velocity might be translated into 

S-wave velocity, this procedure has the benefit that we do not 

need to register the PS and PP events. If P- and S-wave ve- 

locities are all correctly estimated, corresponding PP and PS 

events should match in the depth migrated sections. 

Wavefield tomography iteratively updates the model by 

minimizing an objective function. The objective function char- 

acterizes the data misfit and reaches its minimum when the 

velocity model is correct. For seismic data, one can invert for 

the model in the data domain using a technique commonly 

known as full waveform inversion (FWI) (Tarantola, 1987; 

Mora, 1988; Song et_al., 1995; Pratt & Worthington, 1990; 
Pratt, 1999), or in the image domain using a technique com- 

monly known as wave-equation migration velocity analysis 

(WEMVA) (Biondi & Sava, 1999; Shen et al., 2003; Albertin 

et al., 2006; Yang & Sava, 2009). 

The objective function for WEMVA exploits the er- 

rors from extended images due to the incorrect migration 

velocity. Subsets of extended images can be organized as 

common-image gathers (CIGs) or common-image point gath- 

ers (CIPs) (Sava & Vasconcelos, 2010). The CIGs can be 

computed in different domains, for example, space-lag do- 

main (Rickett & Sava, 2001), time-lag domain (Sava & Fomel, 

2006), space- and time-lag domain(Yang & Sava, 2008), and 

angle domain (Sava & Fomel, 2003; Yan & Sava, 2008). Ve- 

locity errors are characterized by the features of the events, for 

example misfocusing of the events in the space-lag domain, 

deviation from zero time-lag in the time-lag domain, or non- 

flatness of the events in the angle-domain. 

Sava & Vasconcelos (2010) develop the concept of CIPs 

and argue that computational cost for construction of CIPs de- 

creases compared to the cost of constructing regular CIGs.



They derive the moveout function of CIP events for pure-mode 

and suggest their use for migration velocity analysis. In this 

paper, we derive the moveout of CIPs for converted-waves, 

discuss their features, and compare the CIPs for pure-mode 

and converted-mode waves. We find that compared to PP CIPs, 

the PS CIPs are characterized by more complicated moveout, 

which increases the difficulty of using them for migration ve- 

locity analysis. 

We begin this paper with a review of PP and PS CIGs in 

the space-lag and angle domains and analyze the differences 

between the gathers obtained with both correct and incorrect 

migration velocities. We discuss the influence of the polarity 

reversal, which exist in both the PS data and the corresponding 

CiGs. Then we formulate DSO type penalty functions (Shen 

& Symes, 2008) for pure- and converted-mode data and show 

that the corresponding objective functions are convex func- 

tions suitable for numerical optimization with gradient based 

techniques. 

2 COMMON IMAGE GATHERS 

In wave-equation migration, images are obtained through two 

successive steps: the reconstruction of the source and receiver 

wavefields and the application of an imaging condition. A 

conventional imaging condition takes the zero-lag cross cor- 

relation of the source and receiver wavefields in both space 

and time to form an image. This imaging condition, however, 

does not carry velocity error information. An extended imag- 

ing condition is formulated as taking non-zero lags in space 

and time to retrieve the velocity error: 

R(x,A,7) = S W,(x + A,w) W,(x — A,w)e*" . Cd) 

Here, x = {x,y,z} denotes the image point coordinates, w 
is the angular frequency used to extrapolate the the source and 

receiver wavefield, W, and W,. The variables A and 7 are 

the space- and time-lags, respectively. The over-line indicates 

complex conjugate. The extended imaging condition provides 

access to information usable for migration velocity analysis. 

Since using both space- and time-lags is computationally 

expensive, it is desirable to work on subsets of the extended 

images, e.g., space-lag common image gathers, time-lag com- 

mon image gathers, or space-time-lag common image point 

gathers. These subsets of the extended images are cheaper to 

construct because either some of the lags are set to zero or the 

full lags are computed at a limited number of points distributed 

throughout the image. 

2.1  Space-lag-domain common image gathers 

To construct common image gathers at certain desired im- 

age locations, a special case of the extended imaging condi- 

tion which uses only space-lags A = {Az, Ay, Az} is often 

adopted: 

R(x, A) = SW + A,W) W(x Avw). 2) 
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This special case of extended images is often used to construct 

space-lag common image gathers (Rickett & Sava, 2001; Sava 

& Fomel, 200Sa). The space-lag gathers are used for velocity 

analysis and indicate velocity errors by misfocusing from zero 

space lags. 

2.2 Angle-domain common image gathers 

Angle-domain common image gathers are often constructed 

for migration velocity analysis (MVA) or amplitude versus an- 

gle (AVA) analysis. They can also be used for velocity analysis 

and indicate velocity errors by unflatness of the events. To ob- 

tain an angle-domain CIG, one needs to map the lag-domain 

CIG constructed by equation 2 to the angle domain. A general 

equation for the angle decomposition is formulated by Sava & 

Fomel (2005b): 

_ (147)? Ikal? = (1 = 1)? [kel? 
(1+ 7)? kx|? — (1 — 7)? [ka]? 

where + is the velocity ratio of the source and receiver wave- 

fields at the CIG location. The variables k, and k) are the 

wave vectors for the image point coordinates x and space-lag 

vector A, respectively. The angle @ is half of the opening an- 

gle between the source and receiver rays. Angle gathers can be 

used for MVA by exploiting the fact that reflections are not flat 

when data are imaged with incorrect velocity. 

tan? 6   (3) 

3 COMMON IMAGE POINT GATHERS 

The space-lag common image gathers use only the space lags 

and set the time lag to zero, thus discarding valuable infor- 

mation which could be used to characterize velocity errors. 

Therefore, it is desirable to utilize all types of lags to charac- 

terize velocity errors. A major implementation problem is that 

the extended images using all space- and time-lags are seven- 

dimensional objects, which are too computationally demand- 

ing and require large storage. To reduce the storage and com- 

putational cost, Sava & Vasconcelos (2010) introduce the con- 

cept of common-image-point gathers (CIPs), which are simply 

subsets of the extended images constructed at sparse locations 

in the subsurface. The construction of the CIPs allows us to 

extend the images to all space and time lags, while reducing 

the overall computation cost compared to regular CIGs. 

In this section, we derive the moveout equation for com- 

mon image point (CIP) gathers for converted-waves, assuming 

imaging with both a single shot and multiple shots. The move- 

out functions offer insight into the expected behavior of such 

CIPs in areas of complex velocity variations (Sava & Vascon- 

celos, 2010) and form the basis for the definition of an objec- 

tive function used for migration velocity analysis. 

3.1 CIP moveout for imaging with a single shot 

We use Figure | to illustrate the notations adopted in our 

derivation. In this schematic, the vector q denotes the direc- 

tion along which the reflector and the reflection plane inter-
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Figure 1. Schematic illustrating a P to S reflection upon 

a reflector. The reflection plane and the reflector intersect 

a line defined by the vector q. The reflector has a normal 

defined by the vector n. The source and receiver rays are 
characterized by the vectors pp and ps, respectively. The 

incidence and reflection angles are denoted by @p and @5, 
respectively. 

sect, and the vector n denotes the reflector normal. For a P- 

wave ray vector pp incident upon the reflector at an angle 0p, 
the S-wave ray pg is reflected at an angle 0,. The incidence 

and reflection angles are related by the Snell’s law: 

sin Op = sins ; (4) 
Up Us 

where vp and vs are the P- and S-wave velocities, respectively. 
The Snell’s law simply states that the slowness along the re- 

flector is preserved regardless of the reflector dip. We can ex- 

press the source and receiver ray vectors as: 

Np 
Pp = Up ’ (5) 

= Bs 
Ps —_ Vs ? (6) 

where np and ng are unit vectors along the source and receiver 
rays, respectively. 

We begin with the conventional imaging condition for P 

to S reflection. For a subsurface image point x, the conven- 

tional imaging condition can be expressed as the intersection 

  
of two planes given by the expressions 

Pp'x = 0, (7) 

Ps:x = O. (8) 

These relations assume that we take the origin of the space- 

time coordinate system at the image point x. Equations 7 and 

8 represent P and S plane wave-fronts and they intersect at 

the image point x. This is not a restrictive assumption, but 

simply indicates that we use relative space-time coordinates. 

The extended imaging condition shifts the source and receiver 

planes in space by the space-lag A in the positive and negative 

directions, respectively, and in time by 7, and 7;, respectively: 

Pp:(x-A) = —t, (9) 

Ps'(x+A) = 41s. (10) 

Combining equations 7 to 10 leads to the equations: 

Pp'A = 7, qd) 

Ps'A = Ts. (12) 

Since the source and receiver wavefields have a time separa- 

tion 27 (the total time shift in equation 1), we have tp + 7; =



2r. Summing the expressions 11 and 12, we obtain: 

(Pp + Ps) A= 2r. (13) 

We can also express the vectors p, and ps using the geometric 

relations between the vectors n and q and angles @, and @, as: 

sin Op cos Op 
Pp = q n, (14) 

Up Up 

sin @ cos @ 
Ps = ——q+ ——n. (15) 

Us Us 

These two equations relate the source and receiver ray vectors 

with the reflector orientation and incidence/reflection angles. 

Substitution of vp = vandv, = v/7, together with the Snell’s 

law from equation 4, into equations 14 and 15 yields 

[ y2 — sin? 9 — cos] 
Pp + Ps = 2= q+ ~—__‘n, (16) 

where the angle @ denotes the incidence angle ,, and the vari- 

able -y is the ratio between the P- and S-wave velocities. Sub- 

stituting expression 16 into equation 13, we obtain the move- 

out equation for PS reflections at an incidence angle @: 

1 > 
sin (q-A) +5 [V2 = sin 0 — cos6] (n-A) =0T, 

(17) 
where v and @ are the P-wave velocity and incidence angle, 

respectively. 

For the special case of PP reflections, where y = 1, equa- 

tion 17 reduces to 

sin9(q-A) =07T, (18) 

which is the relation described by Sava & Vasconcelos (2010). 

Equation 17 describes the moveout function characterizing a 

reflection from a single shot-receiver pair. The function rep- 

resents a plane in the {A,7} space which depends on the in- 
cidence angle, the P-wave velocity, the Vp/Vg ratio, and the 

reflector defined by the vectors q and n. 

To confirm the validity of equation 17, we overlay this 

function on a CIP reflection shown in Figure 3 for a horizon- 

tal reflector (Figure 2) and in Figure 5 for a dipping reflec- 

tor (Figure 4). In Figures 2 and 4, the dots on the surface at 

x = 3.1 km represent the sources and the lines on the surface 

represent the receivers. The dots on the reflectors indicate the 

CIP locations. For both experiments, panels (a) and (b) show 

the PP and PS reflections as a function of A and 7, respec- 

tively. The lines overlaid on top of these subplots indicate that 

equation 17 accurately predicts the CIP moveout. 

3.2 CIP moveout for imaging with multiple shots 

The CIP moveout for multiple shots can be analyzed as the 

stack of single-shot CIPs constructed for different angles of 

incidence. In the following, we define a new variable A, = 

vt to ensure that all axes have the same dimensionality, i.e. 

space. Thus, the moveout function for a single shot can also 
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be written as 

sind (a-A) +5 72 — sin? 6 ~ cos6] (n-A)=A-. 

(19) 
In the following, we consider the reflection geometries in 

the reflection plane, thus setting the y component of all vectors 

to zero. Since the vector q at the intersection of the reflection 

plane and the reffector and the reflector normal vector n are 

orthogonal, we can write q = {qz,q.} andn = {—q-, qx}. 
With the substitution of the q and n components into equa- 

tion 19, we can write 

(Aqz _ Baz) Az + (Aqz + Bqz) Az — Ar =0 ? (20) 

where 

A=sin@ (21) 

lf [>on 
B=3| 7+? — sin 0 — cos6] . (22) 

Equation 20 states that the CIP moveout for a single shot 

is represented by a plane that passes through the origin of the 

lag space {A,7} and is characterized by the vector normal 
v = {Aq: — Bqz, Aq. + Baz, —1}. When we consider multi- 
ple shots, the CIP moveout can be measured on the superposi- 

tion of all single-shot CIP reflection planes for various angles 

of incidence @. Let us consider reflections from two nearby 

shots whose vector normals are v and v2, respectively. When 

the incidence angle changes from @ to 6 + dé, the two CIP re- 

flection planes from neighbouring shots intersect along a line. 

The cross product of the two vector normals v; and v2 gives 

a vector V, which is parallel to the intersection line. Since 

both planes pass through the origin, the intersection line also 

passes through the origin. Thus, we can simply use the vector 

V originating at the origin to represent the intersection line of 

two neighbouring CIP reflection planes. The moveout surface 

for a CIP gather is the ensemble of the intersection lines for all 

possible incidence angles. 

To derive the intersection line formula for two adjacent 

CIP reflection planes, we begin by explicitly writing the vector 

normals of the planes from two neighbouring shots: 

and 

Aigz _ Biq: 

vi = |Aig. + Bigs |} , (23) 
-1 

Aogz — Boqz 

v2 = A2qz + Bags | , (24) 
-l1 

where 

A; = sin(@), (25) 

A2 = sin(@+dé), (26)
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Figure 2. The experiment geometry used to construct the CIP gathers in Figure 3. The dot on the surface represents the shot location, the line on 
the surface represents the receivers, and the dot on the reflector represents the CIP location. 
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Figure 3. A common image point reflection for (a) PP data and (b) PS data for the experiment shown in Figure 2. The overlain dashed line is given 

by equation 17 and matches exactly with the CIP reflection moveout. 

and tion line, i.e. the cross product of v1 and va, is 

1 2 cin2 g Ax By, 2 lv sin* 0 cos] , (27) Vv x. 

1 Ar 
By = = v7 — sin?(@ + d6) — cos(@ + d6é (28) 

2 ( ) ( ) 3 tan @(1 — 282) cosa + sina 

F flector with a dip angle a, the reflector vector q 1 tan O(1 cos ‘) ‘or are ’ = 5 tan@(1 — —-—) sina — cosa 
has components gz = cosa and g, = — sina. The intersec- dO cos6 | 2 V7?—-sin? @ 

2cos@ ( / 2 —sin? 6 

By neglecting the quadratic terms (do)? in the cross product 

of v1 and v2, we assume that the increment of the incidence 

angle for two nearby shots is small. 

By scaling the vector V by an arbitrary quantity r, we
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Figure 4. The experiment geometry used to construct the CIP gathers in Figure 5. The dot on the surface represents the shot location, the line on 

the surface represents the receivers, and the dot on the reflector represents the CIP location. 
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Figure 5. A common image point reflection for (a) PP data and (b) PS data for the experiment shown in Figure 4. The overlain dashed line is given 

by equation 17 and matches exactly with the CIP reflection moveout. 

obtain the parametric form of the PS CIP surface 

CIPps(r,0, a, y) 

3 tano(1 — —S22 _) cosa + sina 
V 7? -sin? @ 

1 cos @ : _ = | tana ra ning) Sin a cos @ | (30) 
2 1 +* cos @ 

Toon (t aang) 

where r can take positive and negative values. The surface re- 

duces to the simple form 

sin @ 

CIPpp(r,0,a,y =1) =r | —cosa G1) 

0 

for pure-mode waves. 

For a horizontal reflector, the CIP surface simplifies to 

CIPps(R,0,a = 0,7) 
i _ cos @ 5 tan A(1 Jatin? 6 

= Pr -1 : (32) 
x? cos @ 1 

Zeon (1 /y2 —sin2 @ 

by setting the reflector dip a to zero. The surface reduces to 

the simple form 

0 

CIPpp(r,0,0= 0,7 = 1) =r { -1 (33) 
0 

for pure-mode waves. 
We see that the CIP surfaces for a non-zero dip reflector
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and for a zero-dip reflector are related by a rotation with angle 

Qe: 

CIPps(r, 0, Q, Y) 

cosa -—sina 0 

= sina cosa 0|CIPps(r,6,a=0,7). 
0 0 1 

(34) 

Therefore, the CIP surface for a dipping reflector is simply 

a rotation about the 7 axis from CIP surface for a horizontal 

reflector. This conclusion is valid for both PP and PS reflec- 

tions. As will be discussed later, the CIP moveout equations 

for correct migration velocities allow us to formulate penalty 

functions for migration velocity analysis. 

Figure 6 shows PP and PS reflections CIPs for a horizon- 

tal reflector. We plot the CIP reflection planes for all possi- 

ble incidence angles and construct the intersections of these 

planes. In Figures 6(c) and (d), we plot the CIP line and sur- 

face for PP and PS reflections given by equations 33 and 32, 

respectively. The PS CIP is a smooth surface symmetric about 

the Az = 0 plane and reduces to a line along the 4, axis for 

pure-mode reflections. 

4 CIG AND CIP EXAMPLES 

We demonstrate the CIGs and CIPs using two models: one 

with a horizontal reflector and the other with a dipping reflec- 

tor. The moveout of the common image gathers and common 

image point gathers, and especially the difference of the gath- 

ers obtained with correct and incorrect velocities, give us clues 

about how to formulate penalty functions for migration veloc- 

ity analysis. We discuss this topic in a following section. 

4.1 Horizontal reflector 

In this example, we use a model with a single horizontal reflec- 

tor to show the migrated images (Figure 7), space-lag domain 

ClGs (Figure 8), angle-domain CIGs (Figure 9), and common- 

image-point gathers (Figure 10), for PP and PS waves. All the 

images and CIGs are migrated with low, correct, and high ve- 

locities. The PS images and gathers are obtained using correct 

P-wave velocities, but correct or incorrect S-wave velocities. 

The correct P- and S-wave velocities are 3 km/s and 1.5 km/s, 

respectively. The low and high P-wave velocities are 2.7 km/s 

and 3.3 km/s, respectively, and the low and high S-wave ve- 

locities are 1.1 km/s and 1.9 km/s, respectively. 

The space-lag CIGs displayed in Figure 8 are located at 

horizontal position « = 2.5 km of the model. The gathers 

for PP waves are all symmetric because of the lateral homo- 

geneity of the P-wave velocity and the symmetric illumina- 

tion from both sides of the CIG. The gathers for PS waves 

are anti-symmetric because of the polarity flip in the PS data. 

Compared to their PP gather counterparts, PS gathers migrated 

with incorrect velocities have larger curvature, i.e., they cover 

a smaller range of space lag Az in the CIGs. The radius of the 
: : _ (1=p?)d 

CIG moveout can be predicted by the equation R = aernya 

for homogeneous models (Yang & Sava, 2008), where d is the 

reflector depth, a is the reflector dip, and p is the ratio between 

the migration velocity and the real velocity. Given the same 

migration velocity ratio p for PP and PS migrations, since only 

the S velocity is incorrect, the effective p for PS data takes a 

smaller absolute value than that for PP data. Thus, the move- 

out radius R for PS data is smaller than PP data and covers a 
the smaller range of A, in the CIGs. 

The angle-domain ClGs migrated with correct velocities 

for PP data (Figure 9(b)) and PS data (Figure 9(e)) are flat 

and positioned at the correct depth of the reflector. When mi- 

grated with incorrect velocity, the CIGs are non-flat and at in- 

correct depth. The PP gathers have continuous polarity, while 

the PS gathers have reversed polarity at normal incidence. The 

PS angle-domain CIGs show less moveout than their PP coun- 

terparts, resulted from the larger curvature in the lag-domain 

PS ClGs. This fact indicates that the velocity error observed 
on the PS image is smaller than that observed on the PP im- 

age, due to the fact that we have assumed correct P imaging 

velocity. In this experiment, although the shear-wave veloc- 

ity errors reach (1.5 — 1.1)/1.1 =~ 36% (Figure 9(d)) or 

(1.9 — 1.5)/1.5 = 23% (Figure 9(f)), the shear-wave legs 
take a small fraction of the entire raypaths because the S-legs 

have small reflection angles. As expected, the CIGs are less 

sensitive to the shear-wave velocity error, because the P-wave 

velocity is assumed correct. 

Figure 10 presents the common image point gathers for 

PP (panels (a), (b), and (c)) and PS data (panels (d), (e), and 

(f)). The CIP location is indicated by the dot on the reflector, 

shown in Figure 2. A total number of 61 shots from z = 1 km 

to = 4 km are used for this experiment. For the correct 

migration velocities, the CIPs for both PP and PS data are cor- 

rectly predicted by equation 32 in the previous section: the PP 

CIP is characterized by a line along the A, axis, and the PS 

CIP is characterized by a surface symmetric about the 7 axis. 

For incorrect migration velocities, the CIPs deviate from this 

shape, which warrants their use for migration velocity analy- 
sis. 

4.2 Dipping reflector 

In this second example, we use a model with a single dipping 

reflector. Figures 11, 12, 13 and 14 show PP and PS migrated 

images, space-lag CIGs, angle-domain CIGs, CIPs, respec- 

tively. The P- and S-velocity models are the same as for the 

preceding example, and all the images and CIGs are imaged 

with the same range of velocities as in the preceding example. 

The space-lag CIGs at lateral position ¢ = 1.6 km, 

shown in Figure 12, present similar features as the CIGs for 

horizontal reflector in the previous example. A major differ- 

ence for the PS CJGs is that when incorrect S-wave migration 

velocity is used, the polarity flip does not occur at zero-lag. 

Instead, the location of the polarity flip is related to the dip of 

the model. This is because when incorrect migration velocities 

are used, the back propagated wavefields are not located at the 

correct reflector positions. 

The angle-domain CIGs also show similar features as the
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Figure 6. Common image point gather moveout for (a) PP reflection and (b) PS reflection (y = 2). The planes in panels (a) and (b) represent 

reflections from individual shots. The PP reflections insect a line along Az axis; the PS reflections intersect a surface. Panels (c) and (d) represent 

the CIP line and surface predicted by the moveout equations 33 and 32, respectively. 

  

(d) (f) 

Figure 7. Migrated images for PP (upper row) and PS (lower row) data for a model with a horizontal reflector at depth z = 1.0 km (the same model 

shown in Figure 2). The images are migrated using tow (left column), correct (middle column), and high (right column) velocities. 

ones for horizontal reflector. When correct migration veloc- 

ities are used, the gathers are flat and located at the correct 

reflector depth; the PP CIG has continuous polarity, and PS 

CIG has a polarity flip at zero incidence angle. When incor- 

rect velocities are used for migration, the polarity flip does not 

occur at zero incidence angle, but at an angle related to the 

dip of the model. Nevertheless, the main features for the CIGs 

persist when correct migration velocities are used. 

Figure 14 shows the CIPs for a dipping reflector. the CIP 

location is indicated by the dot on the reflector, shown in Fig-
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Figure 8. Space-lag CIGs for PP (upper row) and PS (lower row) data. The gathers are constructed using the extended imaging condition given by 

equation 2. From left to right, the gathers are constructed using low, correct, and high velocities.
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Figure 9. Angle-domain ClGs for PP (upper row) and PS (lower row) data. The gathers are mapped from the corresponding panels in Figure 8 

using equation 3.
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Figure 10. Common image point gathers for PP (upper row) and PS (lower row) data.The CIP location is indicated by the dot on the reflector in 
Figure 2. A total number of 61 shots from 2 = 1 kmto x = 4 kmare used. 

ure 4. A total number of 61 shots from z = 1kmtoz = 4km 

are used. The PP CIP obtained with the correct migration ve- 

locity is characterized by a line oriented in a direction orthog- 

onal to the reflector. The PS CIP obtained with the correct mi- 

gration velocity is rotated from the horizontal PS CIP shown 

in Figure 10 by the dip angie of the reflector. This rotation 

indicates that the CIPs can be successfully predicted by equa- 

tion 30. 

5 OBJECTIVE FUNCTION FOR MIGRATION 
VELOCITY ANALYSIS 

In order to obtain an optimized migration velocity model, an 

objective function that reaches its minimum at correct veloc- 

ity is needed. Shen et al. (2003), Shen (2004), and Shen & 

Symes (2008) propose the use of differential semblance cri- 

teria to formulate the objective function. A differential sem- 

blance optimization (DSO) operator P defines a residual by 

penalizing the departure of image gathers from an ideal shape 

corresponding to the image constructed with correct velocity. 

The application of an operator P to the gathers R(x, A) or 
R(x, 6) at incorrect velocity gives an image residual. Thus, 
the optimization problem can be formulated by minimizing the 

  

objective function: 

1 
J = 5\lPIRIIl- (35) 

The objective function for wave-equation migration velocity 

analysis can be defined using images constructed as a function 

of cross-correlation lags (Rickett & Sava, 2001) or reflection 

angles (Sava & Fomel, 2003). In particular, we can select sub- 

sets of extended images CIGs or CIPs to perform migration 

velocity analysis. 

5.1 PP and PS penalty function for common image 

gathers 

The DSO operators for CIGs in the space-lag domain is give 

by (Shen, 2004): 

Py[R] = |A[ R. (36) 

Based on the fact that the lag- and angle-domain gathers are 

related by a Radon transform, Shen (2004) shows the equiva- 

lence of using the DSO operator in equation 36 for space-lag 

gathers with a more conventional derivative applied to angle- 

domain CIGs. 

For ClIGs at correct migration velocities, the difference
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Figure 11. Migrated images for PP (upper row) and PS (lower row) data for a model with a 22° dipping reflector (the same model shown in 

Figure 4). The images are migrated using low (left column), correct (middle column), and high (right column) velocities. 

between PP and PS angle domain CIG is thatRpp = R(x, 8) 
is an even function of 6, while Res = R(x,@) is an odd 

function of @. Since, the PP and PS angle-domain CIGs are 

both flat when migration velocities are correct, we conjecture 

that it is valid to use the same penalty operator for PP and PS 

gathers. This penalty function only kinematically penalizes the 

moveout, and therefore amplitude variation versus angles of 

the events in the angle gathers does not influence our choice of 

penalty functions. 

It can be expected that because the PS gathers (in both 

lag- and angle-domains) are constructed with velocity errors 

only in the receiver wavefield, the objective functions for PS 

gathers are flatter than those for the PP gathers. This is il- 

lustrated in Figure 15, which shows the objective function 

J = 4\|Pa[R]l| for the PP and PS images constructed for 
the model shown in Figure 7, migrated with velocities scaled 

by constant values with respect to the correct velocity. For PS 

migration, the P velocity is assumed to be correct, and only the 

S-wave velocity has errors. 

5.2 PP and PS penalty function for common image 

point gathers 

The simple form of the CIP for PP images allows for an easy 

formulation of a penalty function. For a horizontal reflector, 

the PP CIP is a line along the A, axis, which makes it natural 

to penalize the events in a CIP by the radial distance from this 

axis: 

Posrz, Ar) [A] = RY AZ + AZ. (37) 

For a dipping reflector, the PP CIP is oriented at a direction 

perpendicular to the reflector in the {A, 7} space. We can for- 
mulate a penalty function by the distance from this tilted line: 

Po, rzar)[R] = RY (Az cosa + Az sina)? + A42,, (38) 

where a is the dip of the reflector at the CIP location. In a 

more compact form, the above equation can be written as 

Pov) lR] = RV (qa: A)? + 22. (39) 

Similarly, for PS gathers we can define a penalty func- 

tion which increases with distance from the surface defined by 

equation 30 and shown in Figure 6(b). Since the PS CIP for a 

dipping reflector is a rotation of that for a horizontal reflector, 

we start our analysis from the CIP for a horizontal reflector, 

which has a simpler form. Figure 16 shows the geometry used 

for construction of penalty function for PS images. The surface 

characterizes the moveout in a the CIP gather for a horizontal 

reflector and is based on equation 32. The PS CIP surface for 

a horizontal reflector is symmetric about the plane A; = 0 

and this plane intersects the CIP surface along a line L, whose 

form can be obtained by setting the incidence angle @ to zero 

in equation 32: 

0 

Liy,a=0)=r]-1]. (40) 
iz1 

2 

This line is a symmetry axis of the CIP surface. In the symme- 

try plane A, = 0, we can find a vector A perpendicular to this 

intersection line L: 

0 

A(y,a=0)={[%], (41) 

The vector A is an axis used for measuring the distance from 

the CIP surface. 

For a dipping reflector, the entire CIP surface is rotated 

from that of a horizontal reflector by the dip angle a. The 

shape of the CIP surface remains the same, which enables us 

to find the symmetry plane of the CIP surface by setting 6 = 0 

in equation 30: 

—sing 

L(y,a@)=r|—cosa] , (42) 
1-7 

2 

Note that this line is rotated from the one defined by equa- 

tion 40 by the dip angle a@ about the A, axis. A vector perpen- 

dicular to this intersection line in the symmetry plane can also 

be obtained by rotating equation 41 by an angle @ about the
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Figure 12. Space-lag CIGs for PP (upper row) and PS (lower row) data. The gathers are constructed using the extended imaging condition given by 

equation 2. From left to right, the gathers are constructed using low, correct, and high velocities.
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Figure 13, Angle-domain CIGs for PP (upper row) and PS (lower row) data. The gathers are mapped from corresponding panels in Figure 8 using 

equation 3. The dip used for the angle decomposition is obtained from the migrated images in Figure 11.
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Figure 14. Common image point gathers for PP (upper row) and PS (lower row) data.The CIP location is indicated by the dot on the reflector in 
Figure 4. A total number of 61 shots from z = 1 kmto x = 4 kmare used. 

Ar axis: 

yt sina 

A(7,a) = | %* cosa] . (43) 

-1 

The line defined by this vector reduces to the line given by 

equation 41 for a = 0. 

Based on the geometry shown in Figure 16, we construct 

a penalty function as the superposition of shifted CIP surfaces 

corresponding to various distances from the surface defined 

by equation 30. These surfaces in the {A,7} space are both 
shifted by a distance d along the axis vector A(-y, a) and also 
scaled by a factor d. A possible CIP penalty function is thus 
given by the parametric form 

Po, Az Ar 1054) [R] 

P(A. (7,8),A2 (7,8), Ax (7,0), [FR] 
A(a) 

RD |d| - lorPestr, 6,a,7) — amie] (44) 

Here, d ranges from negative to positive values along the axis 

defined by vector A(7, a). 
We plot the PP (equation 37) and PS (equation 44) 

penalty functions in Figure 17 for both horizontal (panels 

(c) and (d)) and dipping (panels (c) and (d)) reflectors. The 

penalty function is zero at the CIP line/surface (shown in 

Figures 10(b) and (e) for horizontal reflectors, and in Fig- 

ures 14(b) and (e) for dipping reflectors), and increases away 

from the line/surface. Figure 18 shows the objective function 

J = $(|Pc,,)[F]|| for both PP and PS data. The well be- 
haved convex functions indicate that the formulated penalty 

functions can be used for migration velocity analysis. 

6 CONCLUSIONS 

We study the features of common image gathers and common 

image point gathers. For correct migration velocities, the CIGs 

are characterized by focused points in the lag domain and by 

flat events in the angle domain. For incorrect migration veloc- 

ities, the CIGs are misfocusing in the lag domain and are non- 

flat in the angle domain. The PP CIGs show continuous po- 

larity, while the PS CIGs have polarity reversals at zero space- 

lags or zero incidence angles for correct velocity, or away from 

these points for incorrect velocity. 

For correct migration velocities, the CIPs for pure wave- 

modes are characterized by a line in the space- and time- 
lag space oriented orthogonal to the reflector; the CIPs for 

converted-waves are characterized by surfaces which contain
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Figure 15, Objective function for PP and PS CIPs by applying the penalty functions P, = |X| to PP and PS ClGs, respectively. The thick line is 

the curve for PP data, and the thin line is the curve for PS data. The horizontal axis is the ratio of migration velocity and true model velocity. The 

PS CIP gathers are obtained using correct P-wave velocity. 
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Figure 16. A cartoon showing the penalty function construction for PS CIPs. For simplicity, we use a horizontal reflector in this cartoon. The curved 

surface is the CIP surface for PS data, and the plane Ax = 0 is the symmetry axis of the surface. The CIP surface and its symmetry axis intersect 

along the line L. In the symmetry plane, we can find a vector A perpendicular to the line L.
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Figure 17. Panels (a) to (d) show penalty functions for PP horizontal, PS horizontal, PP dipping, PS dipping CIPs, respectively. The PP and PS 

penalty functions are given byequations 39 and 44, respectively. The dips used for panels (c) and (d) are both 22 °. 

the origin of the space- and time-lag space. For incorrect mi- 

gration velocities, the PP CIPs are not characterized by fo- 

cused lines but by surfaces which depend on the migration ve- 

locities; the PS CIPs are also characterized by surfaces deviat- 

ing from their ideal shape corresponding to correct velocity. 

The deviation of CIGs and CIPs gathers obtained with in- 

correct migration velocities from the ones obtained with cor- 

rect migration velocities warrants their use for migration ve- 

locity analysis. We use differential semblance optimization 

(DSO) to define penalty functions for CIGs and CIPs and for 

PP and PS waves. We formulate objective functions by penal- 

izing the departure of the gathers from the ideal shape obtained 

with correct migration velocities. The objective functions for 

both CIGs and CIPs and for both PP and PS data are convex, 

which allows their use in velocity optimization using gradient- 

descent methods. 
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Figure 1. Change of data misfit functions vs. iterations in full waveform inversion and image-guided full waveform inversion. 

ABSTRACT 

The objective of seismic full waveform inversion (F'WI) is to estimate a model 
of the subsurface that minimizes the difference between recorded seismic data 
and synthetic data simulated in that model. Although FWI can yield accurate 
and high-resolution models, multiple problems have prevented widespread ap- 
plication of this technique in practice. First, FWI is computationally intensive, 
in part because it typically requires many iterations of costly gradient-descent 
calculations to converge to a solution model. Second, FWI often converges to 
spurious local minima in the data misfit function of the difference between 
recorded and synthetic data. Third, FWI is an underdetermined inverse prob- 
lem with many solutions, most of which may make no geological sense. These 
problems are related to a typically large number of model parameters and to 
the absence of low frequencies in recorded data. 
FWI with an image-guided gradient mitigates these problems by reducing the 
number of parameters in the subsurface model. We represent the subsurface 
model with a sparse set of values, and from these values, we use image-guided 
interpolation (IGI) to compute finely- and uniformly-sampled gradients of the 
data misfit function in FWI. Because the interpolation is guided by seismic 
images, gradients computed in this way conform to geologic structures and 
subsequently yield models that also agree with subsurface structures. Because 
of sparse parametrization in the model space, IGI creates models that are more 
blocky than finely-sampled models, and this blockiness from the model space 
mitigates the absence of low frequencies in recorded data. A smaller number of 
parameters to invert also reduces the number of iterations required to converge 
to a solution model. Tests with a synthetic model and data demonstrate these 
improvements. 

Key words: waveform inversion, image-guided
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1 INTRODUCTION 

With greater computing power, seismic full waveform 

inversion (FWI) (Tarantola, 1984; Pratt et al., 1998; 

Pratt, 1999; Symes, 2008) has become an increasingly 

practical tool for estimating subsurface parameters, 

which is the ultimate goal in exploration seismology. 

FWI iteratively updates an estimated subsurface model 

and computes corresponding synthetic data to reduce 

the difference (the data misfit) between the synthetic 
and recorded data. The FWI technique is attractive in 

its capability to estimate a subsurface model with gener- 

ally higher resolution (Operto eé al., 2004) than travel- 
time tomography (Stork, 1992; Woodward, 1992; Vasco 

& Majer, 1993; Zelt & Barton, 1998) and migration ve- 

locity analysis (MVA) (Yilmaz & Chambers, 1984; Sava 
& Biondi, 2004a,b). In practice, a macromodel gener- 

ated by traveltime tomography or MVA may serve as a 

starting model for FWI. 

Although FWI has a long history and definite ben- 

efits, two obstacles have prevented its widespread appli- 

cation in exploration seismology. One obstacle is com- 

putational cost. FWI requires a huge amount of sim- 

ulations and reconstructions of seismic wavefields, and 

its computational cost is proportional to the number of 

sources or the number of shots. For large 3D models 

and seismic data sets, these computations may be pro- 

hibitive. Therefore, various efforts from different per- 

spectives have been expended to reduce the computa- 

tional cost. One such method is to apply phase-encoding 

techniques (Krebs et al., 2009) that combine all shots 

together to form a simultaneous source. The computa- 

tional cost of FWI using encoding techniques is thereby 

reduced by a factor roughly equal to the number of 
shots. 

FWI also requires multiple iterations of gradient 

descent to minimize the data misfit (see Figure 1), and 
the computational cost is therefore proportional to the 

number of required iterations. To reduce this number, 

one may reduce the number of model parameters of 

the subsurface. To reduce the number of parameters, 

one can represent a finely-sampled model using a sparse 

set of parameters and some basis functions. Many dif- 

ferent compression methods employed for this purpose, 

such as Fourier transform, wavelet transform, curvelet 

transform, etc., share the same principle of project- 

ing a model into another sparse domain. Through this 

sparse representation, one discards unwanted or unre- 

solvable details that could be present in a more complete 

model. The wavelet transform is a representative tech- 

nique used in inverse problems (Meng & Scales, 1996). 

However, such methods do not account for geological 

structures of the subsurface that may be apparent in 

seismic images and so may yield models that are geo- 

logically unreasonable. 

A second obstacle is that the inverse problem posed 

by FWI has no unique solution. Many different mod- 

els may yield synthetic data that match recorded data 

within a reasonable tolerance that accounts for uncer- 

tainties and inadequacies in both recorded data and the 

theory underlying computed synthetic data. In partic- 

ular, low-wavenumber components of models are often 

poorly recovered by FWI because corresponding low- 

frequency content in data is rarely recorded. In practice, 

it can be difficult to obtain an adequate initial model 

that is consistent with unrecorded low frequencies. This 

fact and the nonlinear relationship between model and 

data in FWI lead to cycle-skipping and local minima, 

which correspond to models that poorly approximate 

the subsurface. 

To mitigate such problems, multiscale approaches 

(Bunks, 1995; Sirgue & Pratt, 2004; Boonyasiriwat 
et al., 2009) have been proposed. These methods recur- 

sively add higher-frequency details to models first com- 

puted from lower-frequency data. The fidelity of multi- 

scale techniques depends fundamentally on the fidelity 

of low-frequency content in recorded data. In practice, 

the low frequencies required to bootstrap a multiscale 

FWI technique may be unavailable. Other methods for 

addressing the problems of cycle-skipping and local min- 

ima have been proposed as well. These include mini- 

mizing data misfit functions in logarithmic and Laplace 

domains (Shin & Min, 2006; Shin & Ha, 2008). 

To obtain better subsurface models, a priori infor- 

mation may be useful. The a priori knowledge can take 

different forms. For example, both geological and geo- 

physical data, such as those obtained from boreholes, 

may provide useful a priori constraints. Other useful 

constraints may be specified shapes and orientations of 

geologic structures in the subsurface. 

Inspired by image-guided interpolation (IGI) (Hale, 
2009a), we have proposed the use of structure-orientated 

metric tensor fields to constrain FWI gradients (Meng, 

2009). We have first presented this idea at the 2009 
SEG post-convention workshop (Meng et al., 2009). In 

this paper, we show how IGI and its adjoint may be 

used to calculate and guide gradients, with structural 

information derived from seismic images as the a priori 

constraints. We first review basic concepts of FWI and 

illustrate some practical problems with a synthetic ex- 

ample. We then construct image-guided FWI by incor- 

porating the image-guided interpolation and its adjoint 

to constrain the calculations of image-guided gradients. 

Subsurface models computed from these image-guided 

gradients conform to geologic structures apparent in the 

seismic images. Synthetic results further demonstrate 

the effectiveness of image-guided FWI in reducing the 

number of iterations required for convergence of FWI 

(see Figure 1). 

2 FULL WAVEFORM INVERSION 

Full waveform inversion (Tarantola, 2005) uses recorded 
seismic data d to estimate parameters of a subsur- 

face model m, given a forward operator F that syn-



thesizes data. In FWI, we seek a model m that min- 

imizes the difference d — F(m). In seismic inversion, 
as for most geophysical inversion problems, the forward 

data-synthesizing operator F is a non-linear function of 

model parameters, such as seismic wave velocities. 

2.1 FWI as an optimization problem 

Unfortunately, the forward operator F has no inverse 

F~' for almost any geophysical inverse problem, so we 

cannot simply invert the model from the data using 

m = F~! (d). Therefore, FWI is usually formulated as 
a least-squares optimization problem, in which we com- 

pute a model m that minimizes the data misfit function 

B(m) = 5\ld—F (m) |, (1) 
where ||.|| denotes an L2 norm. All information in 
recorded seismic waveforms should, in principle, be 

taken into account in the data misfit function. There- 

fore, FWI comprehensively minimizes the difference 

in traveltimes, amplitudes, converted waves, multiples, 

etc. between recorded and synthetic data. This all-or- 

nothing approach distinguishes FWI from other meth- 

ods, such as traveltime tomography, which only focuses 

on traveltime differences. Monte Carlo (random) meth- 
ods (Nocedal & Wright, 2000; Tarantola, 2005) test ran- 
domly generated models to find one that minimizes the 

data misfit function F (m). However, the typically large 

number of model parameters makes such Monte Carlo 

methods impractical. 

The gradient descent method is a more practical 

alternative to a random search. We begin with an ini- 

tial model mo, which can be found using other inversion 

methods (e.g., traveltime tomography or migration ve- 

locity analysis); then we use the gradient of the data 

misfit function g = VmE = ge evaluated at mo to 

search locally for a model m = mo + 6m that reduces 

the data misfit E (m). 
The Taylor series expansion of equation 1 about the 

initial model is 

E(mo + 6m) = E(mo) + 5m’ gy 

+ 50m" Hodm + a (2) 

where E (mo) denotes the data misfit evaluated at mo, 
Zo = g (mo), and Ho denotes the Hessian matrix com- 

prised of the 2nd partial derivatives of F (m), again 
evaluated at mo. If we ignore any term higher than the 

2nd order in equation 2, this Taylor approximation is 

quadratic in the model perturbation 6m, and we can 

minimize the data misfit £ (m) by solving a set of lin- 

ear equations: 

Hodm = —8o0 (3) 

with a solution 

6m = —Ho ‘go - (4) 
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In Newton’s method for minimization of the data 

misfit E(m), we begin with the initial model mo and 
solve iteratively for 

dm; = -H;'g; , (5) 
and 

mi+i1 = mi — H; 'g; ’ (6) 

where g; = g(m,;), and H; is the Hessian matrix for 

the model mj. If we neglect nonlinearity (e.g., multi- 

ple scattering) in the forward operator F, we obtain a 

Gauss-Newton method (Pratt eé al., 1998). However, in 
practice, the large size of the Hessian matrix H;, which 

depends on the number of parameters in the model, pre- 

vents the application of Newton-like methods. 

Alternatively, the model update in equation 6 can 

be iteratively approximated by replacing the inverse of 

the Hessian matrix with a scalar step length a;:: 

mji41 = m; — aih; , (7) 

where the search direction h; is determined by conjugate 

gradients (Vigh & Starr, 2008; Gong et al., 2008): 

ho = 80> 

gt (g.— 8-1) 
i 

8;-18i-1 

hi =g;+ Gihi-1 . (8) 

In each iteration, we compute the step length a; using 

a quadratic line search algorithm (Nocedal & Wright, 
2000) 

2.2. Implementation of FWI 

A gradient-descent implementation of FWI consists of 
four steps performed iteratively, beginning with an ini- 

tial model mo: 

(i) Compute d — F(m;,), the difference between 
recorded data d and synthetic data F(m;) computed 
for the current model m,; 

(ii) Compute the gradient g; = Vm ki; 
(iii) Search for a step length a; in the conjugate di- 

rection hj; 

(iv) Compute the updated model mj+1 using equa- 
tion 7. 

Most of the computational cost in this implementation 

lies in steps (ii) and (iii). 
This version of FWI can be implemented both in 

the time domain (Tarantola, 1984, 1986; Mora, 1989) 
and in the frequency domain (Pratt, 1999). Perhaps, the 

greatest benefit of using frequency domain FWI is that 

we can select only a few frequencies for inversion (Sir- 

gue & Pratt, 2004). Unfortunately, this advantage does 

not extend to inversion for deep subsurface models that 

require more frequencies. Because the gradient calcula- 

tion for full waveform inversion is similar to the process
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of reverse time migration (RTM)(Tarantola & Valette, 
1982; Pratt, 1999), a straightforward approach is to per- 

form FWI using an RTM engine. Vigh & Starr (2008) 
note that the advantages of implementing FWI in the 

time domain include increased parallelism and reduced 

memory requirements, thereby making FWI more appli- 

cable to large 3D models and data sets. In the examples 

shown in this report, we used RTM and implemented 

FWI in the time domain. 

2.3 Synthetic example 

Figure 2a depicts a subsurface velocity model with two 

anomalies. One is a low-velocity zone and the other is a 

high-velocity bar, as shown separately in Figure 2c. We 

refer to the model in Figure 2a as the true model m. 

Figure 2b displays the initial model mo that we used 
in FWI; it is simply the true model m without the two 

anomalies. 

To test FWI, we first create data d = F(m) 
using the true model m. Henceforth, for consistency 
with the discussion above, we refer to these data as 

the “recorded” data, even though we compute these 

noise-free data using the forward operator F, a finite- 

difference constant-density solution to the 2D acoustic 

wave equation. A total of 25 shots are evenly distributed 
on the top surface with an interval of 120 m; the re- 

ceiver interval is 10 m. The source is a Ricker wavelet 

with a peak frequency of 15 Hz. For example, Figure 3a 

shows a common-shot gather for shot number 13 of the 

recorded data d. Figure 3b shows the corresponding syn- 

thetic data F (mo) computed for the initial model mo 
displayed in Figure 2b. Figure 3c displays the difference 

d — F (mo), which is also known as the data residual, 

that part of the recorded data that cannot be explained 

by the current model. In the four steps of FWI, compu- 

tation of this data residual is step (i). 
In step (ii), we compute the gradient of the data 

misfit. As discussed by (Tarantola & Valette, 1982; 
Pratt, 1999), this gradient is equal to the output of RTM 

applied to the data residual shown in Figure 3c, using 

the current model mo shown in Figure 2b. This method 

for the calculation of gradient is also referred to as the 

adjoint-state method (Tromp eé al., 2005). Figure 4a 
shows the gradient g, computed in this way for the first 

iteration of FWI. 

In step (iii), we then compute a step length ao that 

determines how much to change our velocity model in 

this first iteration. We compute the step length using 

a quadratic line search algorithm and search in a direc- 

tion defined by conjugate gradients (Vigh & Starr, 2008; 

Gong eé al., 2008). This line search requires computa- 

tion of at least 2 synthetic data sets. 

Finally, in step (iv), we update the current velocity 

model according to equation 7. Figure 5a is the change 

6m in velocity computed in the 1st iteration; in this 

Ist iteration, this change is simply a scaled version of 

Distance (km) 
1 1.5 2 

De
pt
h 

(k
m)
 

  

(a) 

Distance (km) 
0 0.5 1 1.5 2 2.5     

  

  

0 2.8 

0.5 

2.6 

~ j 2.4 

Eis: 
= 2.2 
s 2 

2 
2.5 

3 1.8 

3.5 1.6 

(b) 

Distance (km) 
0 05 1 #15 2 25 

0 roe 

0.5 4 

14 

De
pt
h 

(k
m)
 

N
 

      

  

(c) 

Figure 2. (a) The LVZ model courtesy of ConocoPhillips, 
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low velocity zone and one high velocity bar) created by sub- 
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Figure 3. (a) The common-shot gather of shot number 13 
in the recorded data set, (b) the corresponding synthetic 

common-shot gather simulated in the initial velocity model 
(Figure 2b), and (c) the data residual for this shot. 
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the gradient computed in step (ii). In subsequent itera- 
tions, the iterative four-step FWI process introduces ad- 

ditional details, as indicated by the gradients displayed 

in Figure 4b and c, which correspond to the 2nd and 5th 

iterations, respectively. Figure 5b and c show the corre- 

sponding accumulated velocity updates, the difference 

between the current and initial velocity models. 

After the 1st iteration, the data residual corre- 

sponding to shot number 13, as shown in Figure 6a, 

becomes significantly smaller than that in Figure 3c. 
However, in subsequent iterations, the data residuals 

shown in Figure 6b and c increase. 
In principle, each iteration of FWI should reduce 

the data misfit E(m), but in the search for a step 
length a;, FWI risks producing unsatisfactory models 

with larger data residuals. Figure 1 plots the data misfit 
function E (m) as a function of the number of iteration. 
For example, the data residual after the 2nd iteration 

of FWI is even larger than the residual of the Ist it- 

eration; a similar case occurs in the 4th iteration. This 

up-and-down relationship between E (m) and the itera- 
tion number has two main causes. First, FWI sometimes 

fails to find a step length a; that decreases the data mis- 

fit function E(m), within a limited number (e.g., 5 in 
this paper) of gradient descent trials. We cannot simply 

stop FWI, and to continue FWI, we must provide a step 

length and hope FWI can reduce the data misfit func- 

tion in subsequent iterations. FWI, in fact, reduces the 

data residual in the 3rd iteration, but we encounter an- 

other increase of the data residual in the 4th iteration. 

Second, we use the conjugate direction h; instead of 

the gradient direction g;, which guarantees the descent 

of the data misfit function. In contrast, the conjugate 

direction may temporally increase the data residual. 

Another problem noted in FWI is that, as shown in 

Figure 5, the accumulated velocity updates produced by 

FWI contain the imprint of the seismic wavelet; these 

updates look more like migrated images rather than any 
reasonable perturbations to our initial velocity model. 

Because we use a Ricker wavelet with a peak frequency 
of 15 Hz, which lacks low frequencies, local-minima and 

cycle-skipping problems may take place in the above 

conventional FWI example. 

3 IMAGE-GUIDED FWI 

Conjugate-gradient methods are guaranteed to mini- 

mize positive-definite quadratic misfit functions within 

M iterations, where M is the number of model parame- 

ters in the solution vector m (Nocedal & Wright, 2000). 
More precisely, the convergence rate of a conjugate- 

gradient method depends on the condition number of 

the Hessian matrix H (Cohen, 1972; Wheeler & Wilton, 

1988). The condition number is the ratio of the largest 
eigenvalue of the Hessian matrix H to the smallest 

eigenvalue, and in practice, FWI is usually ill-posed due 
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Figure 5. Accumulated velocity updates after (a) 1 itera- 
tion, (b) 2 iterations and (c) 5 iterations. 
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to a typically large condition number of the Hessian ma- 

trix. A large condition number often tends to appear, 

especially when an inverse problem has a large number 

of model parameters in m, some of which do not cause 

the data misfit function E (m) to change significantly. 
If the data misfit function E(m) is insensitive to the 
change of a model parameter in the solution vector m, 

the eigenvalue corresponding to this parameter is small 

and may be nearly zero, thereby yielding a large condi- 

tion number. In this case, the gradient descent method 

converges slowly. 

Conversely, if FWI only needs to invert a few model 
parameters, to which the data misfit function is sensi- 

tive, we can reduce the condition number of the Hessian 

matrix and thereby the number of required iterations. 
Pratt et al. (1998, Appendix A) discuss a point col- 
location scheme to reparameterize the model space m 

for this purpose. In this section, our scheme is to use 

image-guided interpolation (Hale, 2009a) to reduce the 

number of model parameters in the calculation of the 

gradient of the data misfit function. We then use this 

image-guided gradient in FWI. 

3.1 Fewer model parameters 

Similar to the point collocation scheme, subspace meth- 

ods (Kennett et al., 1988; Oldenburg e¢ al., 1993) recon- 

struct the finely- and uniformly-sampled (dense) model 
m from a sparse model s that contains a much smaller 

number of model parameters than the dense model m: 

(9) 
where R. denotes a linear operator that projects model 

parameters from the sparse model to the dense model. 

Differentiating both sides of equation 9, we have 

6m = Rés. (10) 

Then, substituting equation 10 into equation 5, we can 

reformulate the inverse problem posed in equation 5, 

with respect to a smaller number of model parameters 

in the sparse model s, as 

m=Rs, 

H;Rés; =—-gs.- (11) 

However, we cannot solve equation 11 with a solution 

like 6s; = — (H;R)~' g, in the sparse domain s because 
equation 11 is overdetermined, i.e., there are more equa- 

tions than parameters. Alternatively, we obtain a solu- 

tion for equation 11 in the sparse domain s: 

(12) 

where R? is the adjoint operator of R. This adjoint op- 

erator projects model parameters from the dense model 

m to the sparse model s. 

Like equation 7, the model update ds; can be it- 

eratively approximated by replacing the inverse of the 

5s; = — (R™HLR) © R’g, ,
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projected Hessian matrix (R7H:R) with a scalar step 
length ai: 

Si+1 = Si — aihj , (13) 

where the conjugate direction h? is determined by 

hg = R" gp, 

(R7g,)" (R’g, — R’g,_,) 

* (R7g,_ i)" R’g,_4 

_ g; RR™ (g: _ &i-1) 

— g]_,RR’g,, , 

hf = R7g,4 Gh? . (14) 

In equation 13, the step length can again be achieved 

with a quadratic line-search method. Equation 14 dif- 

fers from equation 8 in that the gradient g, is replaced 

by R’g,, which implies that equation 13 provides a so- 

lution for the FWI problem in the sparse domain s. 

Because of fewer model parameters involved, the pro- 

jected Hessian matrix (R7H;R) can become better- 

conditioned and thus equation 13 requires fewer iter- 

ations than equation 7 to converge to a solution model 

s. 

As noted in equation 9, we can apply the linear 

operator R to both sides of equation 13 and thereby 

project the sparse model update és; to obtain the dense 

model update 6m: 

my, = my — ah, (15) 

where we compute the search direction h? by projecting 

the sparse conjugate direction h? to the dense domain: 

ho’ = Rh§ = RR’g, , 

(R7g,)" (R’g, — R’g,_,) 

(RTg,_,)" Rg, 

_ g, RR? (g; 7 8-1) 

7 g? ,RR’g,_, , 

h” =RR7g,4+ Gh™, . (16) 

Equations 15 and 16 provide a solution for FWI in 

the dense space m while taking the advantage of fewer 

model parameters. 

3.2 Choice of R 

The projection operator R can take different forms, 

including Fourier transform, wavelet transform, cubic 

splines, etc. Unfortunately, none of these forms accounts 

for the geological information of the subsurface. In this 

paper, we implement R with image-guided interpola- 

tion (IGI) (Hale, 2009a), which uses metric tensor fields 
to guide interpolation of a few sparsely scattered data 

points, making the interpolant conform to structural 

features in the gradient image. 

3.2.1  Image-guided interpolation 

The input of IGI is a set of scattered data, a set 

F= {fis fa, 5 fx} 

of K known sample values f, € R that correspond to a 

set 

xX = (x1, X2,...,xXK} 

of K known sample points x, € R”. Combining these 

two sets forms a space (e.g., the sparse model s), in 

which F and x denote sample values and coordinates, 

respectively. The result of the interpolation is a function 
q(x) : R” — R, such that q(xx) = fx. Here, the dense 
model m consists of all interpolation points x and values 

q(x). 
Image-guided interpolation is a two-step process: 

R=QP, (17) 

where P and Q denote nearest neighbor interpolation 
and blended neighbor interpolation, respectively. We 

follow the steps in Hale (2009a) to describe the details 
of P and Q: 
  

(i) P: solve 

Vt (x) - D(x) Vi(x) =1,x¢x; 

t(x) =0,x Ex (18) 

for 

t (x): the minimum time from x to the nearest 
known sample point x;, and 

p(x): the nearest neighbor interpolant 
corresponding to f;, the value of the sample 

point x; nearest to the point x. 

(ii) Q: for a specified constant e > 2 (e.g.,e=4 
in this paper), solve 

g(x) — £V +t? (x) D(x) Va(x) = p(x) (19) 
for the blended neighbor interpolant gq (x).       

In equation 18, the metric tensor field D (x) (van 
Vliet & Verbeek, 1995; Fehmers & Hocker, 2003) repre- 
sents structural features of the subsurface, such as struc- 

tural orientation, coherence, and dimensionality, and 

therefore the image-guided interpolation result makes 

geological sense. In n dimensions, each metric tensor 

field D is a symmetric positive-definite n x n matrix 

(Hale, 2009a). Here, the minimum time ¢ (x) measures 
a non-Euclidean distance between a sample point x, 

and a interpolation point x. By this measurement, we 

can determine that a sample point x, is nearest to a 

point x if the time ¢ (x) to xx is less than that to any 
other sample point. 

Letting p and q denote vectors that contain all el- 

ements in p(x) and q(x), respectively, we can rewrite
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Figure 7. (a) The original Marmousi model, (b) a decimated Marmousi model, with only 0.2% samples remaining, (c) the 

metric tensor fields illustrated by ellipses, and (d) a Marmousi model produced by image-guided interpolation. 

equation 19 in a matrix-vector form: 

¢ + B"DB) a=p, (20) 

where B corresponds to a finite-difference approxima- 

tion of the gradient operator (Hale, 2009b). Therefore, 
q = Qp, where 

-1 

Q= (i + B’DB) (21) 

and this inverse can be efficiently approximated by 

conjugate-gradient iterations because I+ B? DB is sym- 

metric and positive-definite (SPD). Intuitively, the near- 
est neighbor interpolation operator P scatters values f;, 

from sample points x; to the interpolation ponits x, and 

Q smooths the nearest neighbor interpolant p. 

Figure 7 illustrates an example of image-guided in- 

terpolation with a Marmousi velocity model. This ex- 

ample demonstrates the power of IGI for reducing the 

number of model parameters. Figure 7a shows the orig- 

inal Marmousi model with 400 x 500 samples; Figure 7b 

represents an undersampled Marmousi model, with only 

20 x 25 (0.2%) samples remaining; ellipses in Figure 7c 
indicate the metric tensor field D(x) of the Marmousi 

model; Figure 7d displays the image-guided interpola- 

tion result. With IGI, we can reconstruct the Marmousi 

model in great detail from only a sparsely-sampled 

model. It is more practical to compute the metric tensor 

field from migrated images. 

3.2.2 Adjoint image-guided interpolation 

Note that Q7 = Q, so we can configure the adjoint 

image-guided interpolation as 

R’ = P7Q’=P’Q. (22) 

The adjoint operator R? is again a two-step process: 
  

(i) Q? or Q: solve equation 19 again to smooth 
the input image; 

(ii) P?: solve equation 18 for t (x) and gather 
information from the interpolation points x to 

the sample points xx.      
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3.3 Synthetic example of image-guided FWI 

Because we choose image-guided interpolation as the 
operator to link the dense model m and the sparse 

model s, we refer to the gradient RR‘g, in equation 16 

as the image-guided gradient. We also refer to imple- 

mentation of FWI using the image-guided gradient as 
image-guided FWI, which again consists of four steps 

performed iteratively, beginning with an initial model 

Mo: 

(i) Compute the data difference d — F (m;); 
(ii) Compute the gradient g; and the image-guided 

gradient RR’g;; 

(iii) Search for a step length a; in the conjugate di- 
rection h?; 

(iv) Compute the updated model m,41 using equa- 
tion 15. 

Compared with the four steps of conventional FWI, the 

only significant difference is the calculation of an image- 

guided gradient in step (ii). To illustrate the feasibil- 

ity of image-guided FWI, we test this technique using 

the previous model with the same experimental settings 

and compare the image-guided FWI results with con- 

ventional FWI results. 

In step (i), we start with the same initial model mo 
displayed in Figure 2b, and so we obtain the same data 

residual d — F (mo) displayed in Figure 3c. 
In step (ii), we first compute the gradient of the 

data misfit function just like step (ii) in the conven- 
tional FWI, and thereby obtain a gradient displayed in 

Figure 4a that corresponds to the data residual shown 

in Figure 3c and the current model mo shown in Fig- 
ure 2b, respectively. We then compute the image-guided 

gradient. To obtain this gradient, one must compute the 

metric tensor field D (x) that corresponds to the original 
gradient g, of the data misfit function E (m). Because 
of the structural coincidence between the migrated im- 
age and the gradient, we can obtain the metric tensor 

field D (x) from the migrated image. Figure 8a displays 
ellipses which correspond to the structural orientation 

of the subsurface over the migrated image. One also 

needs to choose several sample points, as depicted by 

red dots in Figure 8b. In this example, we only select 6 

samples, two of which are located in the middle of the 

reflectivities. Figure 8c shows the image-guided gradi- 

ent RR’ g, computed in this way for the 1st iteration 

of image-guided FWI. 

In step (iii), we use the same quadratic line-search 
algorithm to compute a step length ao. The search di- 

rection is determined by conjugate gradients in equa- 

tion 16. 

Finally, in step (iv), we update the current velocity 
model according to equation 15. Figure 9a is the change 

6m in the velocity model computed in the 1st iteration 

of image-guided F'WI; this change is simply a scaled ver- 

sion of the image-guided gradient in step (ii). Figure 10a 

depicts the data residual of shot number 13 after the lst 
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Figure 8. (a) The metric tensor field and (b) selected sample 

locations overlaid on the migrated image. (c) Image-guided 
gradient RR™ gy. 
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iteration; this data residual starts next iteration in step 

(i). 
On the one hand, image-guided FWI with the 

image-guided gradient (shown in Figure 8c), can re- 
cover, even in the Ist iteration, most velocity anoma- 

lies, as indicated by Figure 9a. On the other hand, a 

comparison between the data residual shown in Fig- 

ure 10a and the data residual shown in Figure 6a in- 
dicates that the 1st iteration of image-guided F WI does 

not reduce the data misfit as significantly as the con- 

ventional FWI does. This is because the image-guided 

gradient RR’ g, employed in image-guided FWI cannot 

clearly depict the boundaries of the velocity anomalies 

due to the smoothing process Q embedded in the second 
step of the image-guided interpolation R. 

We solve this problem that is apparent in the Ist 

iteration of image-guided FWI by running several iter- 

ations of conventional FWI to enhance the boundaries 
of velocity anomalies. Figure 9b and c are accumulated 
velocity updates after the 2nd and 5th iterations, re- 

spectively. With enhanced boundaries, the data misfit 

corresponding to shot number 13 significantly decreases, 

as shown in Figure 10b and c. 

4 DISCUSSION 

The synthetic example demonstrates the process of 

image-guided FWI, which only changes one step in the 

four-step implementation of conventional FWI. Using 

an image-guided gradient, image-guided F WI speeds up 

the convergence of FWI. 

4.1 Limitation of line search 

We used a quadratic line-search method in this paper to 

seek a scalar step length that determines how much the 

velocity model can update. An ideal situation for this 

quadratic line search would be that it only requires 2 

attempts of gradient descent to calculate a step length 

that decreases the data misfit function. Unfortunately, 

in many cases, even after many attempts of gradient 

descent, FWI cannot find a step length to decrease the 

data misfit function. Because each gradient descent re- 

quires a simulation of seismic wavefields of all sources 

in a full model space, the line-search approach is quite 

expensive. Figure 1 clearly indicates the failure of the 

conventional FWI in searching for a proper step length 
in the 2nd and 4th iterations, within 5 trials of gradient 

descent. 

Although more sophisticated line-search methods 

may help mitigate the limitations of the quadratic line 
search, we offer the option of image-guided FWI to avoid 

the same limitations, as indicated by the change of the 

data misfit function in Figure 1. Image-guided FWI suc- 

cessfully finds a step length to decrease the data misfit 
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Figure 9. Accumulated velocity updates after (a) 1 iter- 
ation, (b) 2 iterations and (c) 5 iterations. In (a)-(c), the 

image-guided gradient is only used in the first iteration. 
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Figure 10. Data residual after (a) 1 iteration, (b) 2 itera- 

tions and (c) 5 iterations. In (a)-(c), the image-guided gra- 
dient is only used in the first iteration. 
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Figure 11. Migrated images with (a) the initial model, (b) 

the FWI model after 5 iterations, and (c) the image-guided 
FWI model after 5 iterations. Two red lines in each figures 
indicate the correct depth of reflectors. 

Am
pl

it
ud

e 
Am

pl
it

ud
e 

A
m
p
l
i
t
u
d
e



function in the first 10 iterations, with 5 attempts of 

gradient descent. 

4.2 Low frequencies 

As mentioned before, the absence of low frequencies 

in data is one of the major reasons that causes lo- 

cal minima and cycle-skipping, and thereby prevents 

FWI from converging to a correct model. Multiscale ap- 
proaches are proposed to solve the problem by gradu- 

ally adding high-frequency details to inversion results 

obtained from low-frequency data. Although those mul- 

tiscale approaches often start from impractically low fre- 

quencies, a question remains. Do low frequencies in data 

really help? As noted earlier, the velocity updated by 

FWI maintains imprints of the seismic wavelet. For this 

reason, even though one can take advantage of low fre- 

quencies in data, wavelet imprints remain and counter- 

act the velocity updates. Migrated images can explain 

this counteraction. 

Figure 11 compares migrated images with the ini- 

tial model shown in Figure 2b, the updated model with 

changes shown in Figure 5c, and the updated model 

with changes shown in Figure 9c, respectively. Because 

of velocity anomalies, deeper reflectors in Figure 11a do 

not locate at the correct depth; these deeper reflectors in 

Figure 11b appear at almost the same position as in Fig- 

ure 1la. This implies that the velocity updated by con- 

ventional FWI cannot correct the traveltime mismatch 

in the data set. One reason for this is the wavelet im- 

print that appears in the velocity updates shown in Fig- 

ure 5. Only the migrated image, with the image-guided 
FWI model, places these deeper reflectors at the correct 

depth, as indicated by Figure Lic. 

5 CONCLUSIONS 

We have proposed image-guided FWI for speeding up 

the convergence and mitigating the absence of low fre- 

quencies. In contrast to multiscale approaches that take 

advantage of unliable low frequencies in the data space, 

our method reduces the number of model parameters 

and yields low frequencies in the model space by com- 

puting the image-guided gradient with image-guided 

interpolation and its adjoint. The synthetic example 

shown in this paper illustrates that image-guided FWI 

improves both inversion speed and quality without ap- 

pending significant additional cost. Because the struc- 

tural features of the subsurface are taken into consid- 

eration, models updated by image-guided FWI make 

good geological sense. Further investigation on criteria 

of selecting sample points is needed for image-guided 

interpolation. 
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Figure 1. A synthetic common midpoint gather (a), conventional semblance (b) and weighted semblance (c) velocity spectrum. 

ABSTRACT 

Increasing the resolution of semblance-based velocity spectra, or semblance 
spectra, can improve the accuracy of normal moveout velocity estimates. The 
resolution of semblance spectra depends on the sensitivity of semblance to 
changes in velocity. By weighting terms in the semblance calculation that are 
more sensitive to changes in velocity, we can increase resolution. 
Our implementation of weighted semblance is a straightforward extension 
of conventional semblance. Somewhat surprisingly, we increase resolution by 
choosing a weighting function that minimizes semblance. Compared to conven- 
tional semblance, weighted semblance better distinguishes semblance peaks for 
interfering events. 

Key words: semblance resolution velocity analysis 

1 INTRODUCTION 

Normal moveout (NMO) velocity analysis using sem- 

blance spectra (Taner & Koehler, 1969) is an important 
first step toward building a velocity model. The accu- 

racy of the velocity model depends on one’s ability to 

pick the correct velocity, which in turn depends on the 

accuracy and resolution of the semblance spectrum. In 

cases involving interfering events such as those shown 

in the common midpoint (CMP) gather in Figure 1a, 

it may be difficult to distinguish two sets of semblance 
peaks in the conventional semblance spectrum shown 

in Figure 1b. In comparison, it is easier to differenti- 

ate semblance peaks and pick the correct NMO velocity 

in the higher-resolution weighted semblance spectrum 

shown in Figure 1c. 

Semblance is a normalized coherency coefficient. It 
has been shown that emphasizing terms in a coherency 

coefficient calculation that are sensitive to changes in 

velocity can increase the resolution of the correspond- 

ing velocity spectra. For example, Celis & Larner (2002) 

introduce a selective-correlation sum that improves the 

resolution of velocity spectra by discarding crosscorre- 

lations between traces with relatively small differential 
moveout of events. Selective-correlation is effectively a 

weighted crosscorrelation sum with weights of either 

zero or unity, depending on the differential moveout be- 

tween traces.
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We can likewise increase the resolution of semblance 

spectra by weighting terms in the conventional sem- 

blance calculation. Unlike Celis and Larner, however, 

we do not discard terms in the semblance calculation 

but instead weight all terms on the basis of their sen- 

sitivity to changes in velocity. Our implementation of 

weighted semblance is based on work presented in Hale 

(2009). Hale uses a weighted semblance coefficient to 
prevent smoothing of seismic images across faults. We 

do something different, i.e. increase resolution, by using 

a different weighting scheme. 

In this paper we describe a method for computing 

weighted semblance for the purpose of increasing res- 

olution of semblance spectra. The method is easy to 

implement, and its computational cost is comparable to 

that of conventional semblance. 

2 SEMBLANCE METHODS 

Weighted semblance is a straightforward extension of 

conventional semblance. In this section, we will first dis- 

cuss conventional semblance, and we will introduce our 

implementation of weighted semblance. We will then de- 

rive the weighting function and show how it is used to 
increase resolution. 

2.1 Conventional semblance 

Conventional semblance is a normalized coherency mea- 

sure that was first defined by Taner & Koehler (1969). A 
comparison of semblance and other coherency measures 

can be found in Neidell & Taner (1971). Semblance is 
routinely used to estimate NMO velocity as a function 
of zero-offset time. Following normal moveout correc- 

tion of a CMP gather, semblance as defined by Neidell 

and Taner is computed as 

i+M /N-1 2 

(= a) 
j=i-M \k=0 

suri] = ae (1) 

NSD do alsa? 
j=i-M k=0 

where i and j are time sample indices, k is a trace num- 

ber, and q[{j, k] is the trace amplitude at time index j and 
trace number k of the NMO-corrected gather. The inner 

sums over k correspond to N NMO-corrected traces in 

a CMP gather, while the outer sums correspond to a 
time-smoothing window with length 2M +1 centered at 

time index i. Here, the time-smoothing is performed by 

a boxcar filter. 

In general, we are free to use any time-smoothing 

filter, but in practice, it is often a good idea to replace 

a boxcar filter with one that decays more smoothly. For 

the examples shown in this paper, the boxcar filter is 

replaced with a two-sided decaying exponential filter. 

We can represent the time-smoothing filter using an ad- 

ditional weighting function h[j]. The derivations are in- 
dependent of the choice of h[j], so its exact form is not 
important. We rewrite Neidell and Taner’s conventional 

semblance as 

do Ali - 3] (= ali, u) 
k 

NS hi - 5] oli, ky? 
gj k 

where it is assumed that the unspecified summation lim- 

its include all indices for which the summation terms are 

defined. 

The semblance value reflects how well the move- 

out path corresponding to the trial NMO velocity fits 
the moveout of signal in the data. A good fit produces a 
peak in the semblance spectrum, whereas a poor fit pro- 

duces semblance values closer to zero. Assuming there 

is no noise and no signal amplitude variation with off- 

set, semblance is maximized when the values of g[j, k] 
do not vary with index k. That is, s[i] = 1 when the 
NMO.-corrected events are aligned across traces at time 

index 7. 

The resolution of semblance spectra depends on the 

sensitivity of NMO times to changes in velocity. If a 

small change in trial velocity results in a relatively large 

change in NMO time, the semblance value will change 

rapidly with the mismatch between the NMO times cor- 

responding to the trial velocity and the correct velocity. 
The greater the change in NMO time for a change in 

trial velocity, the higher the resolution of the semblance 

spectrum. 

(2) 8c{t] = 

2.2 Conventional semblance rewritten 

Before we consider weighted semblance, let us introduce 

an alternative expression for conventional semblance. 

We express conventional semblance as a normalized cor- 

relation coefficient by first defining a reference trace r[j] 
as a summation over trace number (equivalently, a stack 

over offset) of the NMO-corrected traces in the CMP 
gather: 

r[j] = >- ali, kl. (3) 
k 

To simplify notation, we also define 

Crali] = Do hE - JI Drilali 

Crrli] = s hfi — 3] dl’ 

Caali] = s hl — 3] dds ky. 

(4)
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Conventional semblance s,[¢] can then be written as 

 _ _ Crafi]? 
sell] = GilCaaldl 6) 

Equation 5 and equation 2 are equivalent expressions 

for conventional semblance. 

2.3 Weighted semblance 

To obtain weighted semblance, we modify conventional 
semblance by introducing weights w[j, k] into equations 
4: 

Weal] = Do hlé— a) D_ whi Klas, 

Wel] = > hea] Dold Riel 

Waali] = 3 hfi— 3] So wis, kali, A)’. (6) 

Then, weighted semblance well is given by 

Wea [i]? (7) 

W,r[#]Wagli] 
Weighted semblance is clearly equal to conventional 

semblance for w[j, k] = 1. Moreover, it can be shown us- 

ing the Cauchy-Schwarz inequality that weighted sem- 

blance is bounded between zero and one if the weights 

w|j, k] and h[j] are non-negative. 

sw[i] = 

2.4 Weighting function 

We use a weighting function w{j, k] to emphasize terms 
in the semblance calculation that are most sensitive to 

changes in velocity. 

The form of the weighting function should reflect 

the change in NMO time for a given change in veloc- 

ity; ie., the weights should vary with both offset and 

time. Consider the first-order Taylor series expansion 
of the hyperbolic moveout equation about the unknown 

correct velocity 0: 

. ; = x(k]? tk] = V7U)P + 38k + (3, [3]? + Fa[k] aie + sak 

where 7[j] is the zero-offset time at time index j, z[k] is 
the offset at trace number k, y = 1/v?, and ¥ = 1/8”. 
The correct time is given by é[j,k] = «/r[j]? + F2[kl?, 

so we can rewrite equation 8 as 

- alk ? uj, k] — tlj,k 9 [i,k] — t[9, k] = 2i[j, k (y-7)- (9) 

Thus, the change in NMO time that results from a small 
change in velocity is proportional to offset squared and 

inversely proportional to time. 

  

To reflect this proportionality, we choose a weight- 

ing function w|j,k| that has a similar dependency on 
offset and time: 

elg}a[k]? wlj,k] =a+b———_, 10 (3, k] t15, kl (10) 

where a and 6 are parameters to be determined, and c[j] 
is calculated as the ratio of the zero-offset time to the 

average offset squared: 

dj) =§ 
Salk]? 

k 

Multiplying by c[j] ensures that 6 is unitless. 

The relative values of the parameters a and 6 in 

equation 10 effectively determine how the far offsets are 

weighted. In cases where we expect large weights for 

the farthest offsets, the ratio of b to a must approach 

infinity. To satisfy this condition more easily, we choose 

a=1-6, (12) 

(11) 

so that 

cli)x[x]? 
[j,k] | 

In addition, we allow b values only between zero and 

one. Bounding 6 ensures that the weighting function is 

non-negative, which is sufficient for weighted semblance 

to remain normalized between zero and one. 

After substituting equation 13 for w[j,k] in equa- 
tions 6, we have for weighted semblance 

wlj,k]} =1—b+6 (13) 

v= Wet Wa “ 
where 

W,a[t] = (1 — 5)C,[é] + 6B,ai], 

W,,[é] = (1 — 6)C,,[i] + 6B,-[i], 

Woali] = (1 — b)Caq[i] + bBag lil, (15) 

where C,q|2], C-r{i], and Cqq{é] are defined in equations 
4, and B,g|2|, Brr{i], and Bgq[t| are defined as 

Beall = MAD oe A 

Beil = Doe a T el 
Bull = SDM Dem A? (16) 

Weighted semblance is now a function of the parameter 

b. 
Note that although the weighting function is de- 

rived from the hyperbolic moveout equation, we do not 

make any assumptions about how the seismic data are 

NMO-corrected. Because semblance is calculated after 
NMO correction, we are free to use any moveout equa-
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tion, hyperbolic or non-hyperbolic, to correct the data. 

Our method for increasing resolution works in either 

case. 

2.5 Increasing resolution 

To increase the resolution of semblance spectra, we min- 

imize semblance with respect to b. Recall that in the 

case where the trial velocity equals the correct velocity, 

semblance is calculated along what are assumed to be 

constant trace amplitudes, i-e., amplitude is indepen- 

dent of trace number. 

If amplitude g|j, k] is independent of trace index k, 
then q[j, k] = r[j]/N can be pulled out of the summation 
over k in equations 4 and equations 16. Then, semblance 

is unity, regardless of the weighting function. Because 

semblance peaks where s,[i] = 1 are not influenced by 
the weighting function, we can increase the resolution of 

semblance spectra by minimizing semblance away from 

the peaks. 

To minimize semblance s,,{i] for any time index 2, 
we set the first derivative with respect to b equal to zero: 

dsy(b) _ 3 

Solving this equation, we find that semblance as a func- 

tion of b has two stationary points: 

_ ral 
Crqlé] — Brali]’ 

_(, , 2Crali]Breli) Boalt] — Brali) Als} \~? 
b= (14 Fe orice cocgag) > 9 

0. (17) 

bi (18) 

where 

Ali] = Crr[i]Bgqlé] + Coqlt] Brr [i]. (20) 

A typical plot of s(b) is shown in Figure 2. Note that 

one stationary point is a local minimum while the other 

is a local maximum. Also, note that stationary point 

b; always gives a semblance of zero. Although Figure 2 

shows b; as a local minimum and 62 as a local maximum, 

this is not always the case. Depending on the values of 

equations 4 and equations 16, in some cases b; may be 

a local maximum and b2 a local minimum. 

When calculating weighted semblance, we choose 

the stationary point that corresponds to the local min- 

imum. Let us define 

+ Cralt] 
Beall = Gia) — Beall’ 

a Crrli] 
R,, [i] = Crrli] — By, (i]’ 

These ratios give the b values of the zero and the two 

discontinuities in the plot of semblance as a function 

of b. Moreover, their relative values determine which of 

the two stationary points is a local minimum. It can be 
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Figure 2. Plot of semblance as a function of 6. 

shown that be corresponds to a local minimum if either 

Rrrli] < Rrqlé] < Raglé], (22) 

or 

Raglt] < Rrqli] < Rrr[i). (23) 

Thus, if b is between zero and one, we minimize sem- 

blance by choosing stationary point 62 in cases where 

either inequality 22 or inequality 23 holds, and by choos- 

ing stationary point 5; in all other cases. 

If b is not between zero and one, we simply choose 

the minimum value of s,,(0) and s.,(1). We choose the 
minimum because we are increasing resolution by min- 

imizing semblance. 

3 RESULTS 

To illustrate the action of the weighting function w[j, k] 
on the resolution of semblance spectra, we compare 

weighted semblance to conventional semblance for syn- 
thetic CMP gathers and for a field CMP gather from 

the North Viking Graben. 

3.1 Synthetic gather 

For all synthetic data examples, the CMP gathers have 

cable length 3 km, receiver group interval 50 m, and a 

Ricker wavelet peak frequency of 25 Hz. 

The first CMP gather consists of a series of syn- 

thetic primary reflections with linearly increasing NMO 

velocities. The velocity increases from 2 km/s at zero- 
offset time 7 = 0s to 3 km/s at 7 = 4s. Figure 3a 
depicts the CMP gather, and Figure 3b depicts the b 

values used in the weighting function w[j, k]. In the con- 
ventional and weighted semblance spectrum shown in 

Figures 3c and 3d, respectively, the contour lines mark 

s = 0.1 and s = 0.4. Note the spread in spectral am- 

plitude across a range of velocities in the conventional 
semblance spectra. In comparison, in the weighted sem- 

blance spectrum, both the spread in amplitude and the 

area enclosed by the contour lines have decreased.
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Figure 3. Synthetic CMP gather (a), plot of 6 values (b), 

conventional (c) and weighted (d) semblance spectrum. 

We can directly compare semblance peaks by plot- 

ting semblance as a function of trial velocity for a cho- 
sen zero-offset time. Figure 4 depicts this plot for the 

first synthetic CMP gather at zero-offset time 7 = 3.2 

s. In the figure, we see that minimizing semblance has 
reduced the semblance values at velocities away from 

the peak. As a result, the weighted semblance peak is 

sharper than the conventional semblance peak. 

3.2 Synthetic gather with multiples 

We add a second set of reflections to the synthetic CMP 

gather shown in Figure 3a to simulate interfering multi- 

ples. The second set of reflections have NMO velocities 

that increase linearly from 1.98 km/s at zero-offset time 
7 =0s to 2.70 km/s at rT = 4s. 

Figure 5a depicts the CMP gather, and Figure 5b 

depicts a plot of the 6 values used in the weighting func- 
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Figure 4. Plot of semblance as a function of trial velocity 
at T = 3.2 5s. 

tion w[j, k]. Figures 5c and 5d depict the conventional 
and weighted semblance spectrum, respectively. As con- 

firmed by the semblance curve in Figure 6, the weighted 

semblance spectrum affords higher resolution as it bet- 

ter distinguishes the two sets of semblance peaks. Again, 

minimizing semblance has reduced the semblance values 

at velocities away from the peaks. 

Note that the weighted semblance peaks have 
smaller amplitude compared to the conventional sem- 

blance peaks. This is a result of minimizing semblance. 

A necessary assumption for this minimization was that 

the NMO-corrected trace amplitudes are constant for 

the correct trial velocity. For our synthetic data, and 

for field data especially, this assumption is incorrect. 

Thus, in minimizing semblance, we actually expect the 

peak amplitudes to decrease in most cases. 

3.3. Synthetic gather with multiples and noise 

Next we consider a synthetic gather contaminated by 

additive noise. For this example, we added bandlimited 

random noise to the CMP gather shown in Figure 5a 
with a signal-to-noise ratio of 1. Here, the signal-to-noise 
ratio is computed as the ratio of the root-mean-square 

(rms) amplitude of the signal to the rms amplitude of 
the noise. 

Figure 7a depicts the noise-contaminated synthetic 

CMP gather, and Figure 7b plots the 6 values used in the 

weighting function. Figure 7c depicts the conventional 

semblance spectrum, and Figure 7d depicts the weighted 

semblance spectrum. 

Again, we see an increase in resolution and a de- 

crease in overall amplitude going from weighted to con-
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Figure 5. Synthetic CMP gather (a), plot of b values (b), 
conventional (c) and weighted (d) semblance spectrum. 

ventional semblance. However, because the conventional 

semblance peaks have relatively low amplitudes to be- 
gin with, the reduction in amplitude of the weighted 

semblance peaks has almost completely eliminated the 

s = 0.4 contour line in Figure 7d. 

3.4 Viking Graben example 

Our final example compares conventional and weighted 

semblance for a CMP gather taken from a 2D seismic 

dataset from the North Viking Graben. The cable length 
is 3 km, and the offset sampling interval is 50 m. The 

multiples in the data have been suppressed in order to 

make the semblance peaks easier to identify. 

Figure 8a depicts the CMP gather, while Figure 

8b depicts a plot of the b values used in the semblance 

weighting function. Figure 8c shows the conventional 
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Figure 6. Plot of semblance as a function of trial velocity 
at r= 3.25. 

semblance spectrum, and Figure 8d shows the weighted 

semblance spectrum. 

In the weighted semblance spectrum, the spread in 

semblance associated with the near offsets has been re- 

duced, and the decrease in the area enclosed by the con- 

tours indicates that the semblance peaks are sharper as 

well, 

4 CONCLUSION 

Weighting terms in the semblance calculation that are 

sensitive to changes in velocity increases the resolution 

of semblance spectra. Our implementation of weighted 
semblance increases resolution by using a weighting 
function to minimize semblance while maintaining a 

normalized semblance value bounded between zero and 

one. 

Implementing the weighted semblance calculation 

requires a small change to the conventional semblance 
implementation. This change increases the cost of calcu- 

lating semblance. However, the cost is still comparable 

to that of conventional semblance because the compu- 

tational complexity of calculating weighted semblance 

remains on the order of Nz x Ni x Ny, where Nz, Nz, 

and N, are the number of offset, time, and velocity sam- 

ples, respectively. 

Weighted semblance increases the resolution of 

semblance spectra for synthetic data consisting of iso- 

lated and interfering events and for field seismic data 

as well. Using weighted semblance to obtain a higher 

resolution semblance spectra can improve the accuracy 

of NMO velocity estimates and velocity models, which
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Figure 7. Synthetic CMP gather (a), plot of 6 values (b), 
conventional (c) and weighted (d) semblance spectrum. 

in turn can improve the quality of seismic images of the 

subsurface. 
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Figure 1. A 2D seismic section (a) showing extensional faulting and the same section with vertical displacements of faults 
highlighted (b). Signs of displacements indicate that geological layers have been displaced either downward (positive) or upward 

(negative) from left to right. 

ABSTRACT 
Geologic faults complicate the mapping of depositional layers. Most existing 
seismic image processing techniques highlight fault locations but fail to estimate 
fault displacements. 
We model faults as a displacement vector field. Unlike traditional attributes 
{e.g., semblance or coherence), our estimated fault displacement vector field 
provides information about fault displacements, as well as fault locations. This 
vector field can be used to automatically determine relative displacements of 
faulted layers, and thereby simplify the mapping of such layers. 

Key words: fault displacements, crosscorrelation, seismic interpretation 

1 INTRODUCTION 

In seismic images of the earth’s subsurface, such as the 

one shown in Figure la, we typically see interfaces be- 

tween geologic layers, because rocks or fluids within 

these layers vary from one layer to the next, causing 

changes in acoustic impedance. It is these changes that 

we image with seismic waves. 

Discontinuities are often apparent in these images. 

In Figure la, the two most obvious discontinuities ap- 

pear in the central part of the image. Discontinuities of 

this kind correspond to geologic faults, which are frac- 

tures in rocks. Faults tend to be more vertical than 

layers, as rocks on one side of a fault tend to be dis- 
placed downward or upward relative to rocks on the 

other side. In seismic images, faults appear as disconti- 

nuities in otherwise nearly continuous layers. Geoscien- 

tists quickly learn to estimate the amount of displace- 

ment along a fault as they attempt to unravel the geo- 

logic history of the subsurface that has been imaged. 
In an ideal 2D seismic image, without any random
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Figure 2. The fault displacement vector u(r). 

or coherent noise, faults appear as curves of discontinu- 

ities. These discontinuities are easily detected by human 

interpreters. Because faults never consist of a single frac- 
ture the term “fault zone” is sometimes used (Kadlec et 
al., 2008). However, in this paper, we consider a fault 

to be a single curve. 
Seismic image processing today routinely includes 

steps to highlight the locations of faults (Bahorich and 
Farmer, 1995; Cohen and Coifman, 2002; Gibson et al., 

2005; Al-Dossary and Marfurt, 2006; Kadlec et al., 2008; 

Hale, 2009b). That processing cannot yet reliably esti- 

mate the displacements along the faults. Fault displace- 

ments are today estimated manually using a tedious pro- 

cess of viewing seismic images and interactively picking 

corresponding points on both sides of a fault. 

We seek to replace this manual picking with a pro- 

cess that produces an image of fault displacements. This 

process extracts fault curves from 2D seismic images and 

estimates fault displacements along these curves. 

1.1 Fault model 

Many mathematical models for faults have been pro- 

posed by geologists and geophysicists (Watterson, 1986; 

Barnett et al., 1987) based on their investigations and 
conclusions about seismic images and well logs. Bar- 

nett et al. (1987) claim that fault displacements consist 
of two components which can be considered separately: 

near-field and far-field. The near-field components are 

displacements that occur in the rock volume closely sur- 

rounding a fault. The far-field components are related 
to the bulk deformation of a larger region. Our model 

considers only near-field displacements. 

In this paper, we consider only 2D slices of 3D seis- 

mic images, so that faults appear as curves of disconti- 

nuities in a 2D seismic image. Ideally, faults we detect 

are exactly one pixel wide, see Figure 1b. 

Fault displacement vectors, which have both verti- 

cal and horizontal components, vary continuously along 

these curves. We represent the seismic image with a 

2D scalar array: f(z1,22), where x; and x2 denote 
uniformly sampled vertical and horizontal coordinates, 

respectively. An estimated fault displacement is a 2D 

vector: u = u(u1,t2) (as in Figure 2), where ui = 
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Figure 3. Semblance for the seismic image in Figure la, 
computed using the method described by Hale (2009b). 

ui(@1,22) and ug = u2(x1,22) are vertical and hori- 
zontal components of the displacement, respectively. In 

Figure 1b, colored pixels represent the vertical compo- 

nent u; of the vectors u. Those vectors should be zero 

(or nearly zero) at locations where no faults are present. 

A nearly horizontal fault cannot be easily detected, 

even by human interpreters. Consequently, faults con- 

sidered here are more vertical than horizontal; we as- 

sume that the angle between a fault curve and a vertical 

line is less than 45 degrees. 

1.2 Estimating fault location 

A feature shared by most fault detection techniques is 

the computation of attributes that highlight disconti- 

nuities in seismic images. Examples of such attributes 

include coherence (Bahorich and Farmer, 1995), entropy 
(Cohen and Coifman, 2002), curvature (Al-Dossary and 
Marfurt, 2006) and semblance (Hale, 2009b). Depending 
on which attribute is chosen, discontinuities in seismic 

images cause attribute values to be anomalously low or 

high. 

Figure 3 illustrates structure-oriented semblance 

computed using the method by Hale (2009b). Potential 
fault locations are indicated by dark pixels. However, 

the information we obtain from this attribute is lim- 

ited. Darker areas indicate fault zones but fail to locate 

fault curves. Fault locations are poorly resolved. This 
defect is common in this sort of algorithm. 

This resolution problem is often due to the use of 

overlapping windows of samples when computing seis- 

mic attributes. Windows containing imaged faults smear 
information from both sides of the faults, over a distance 

proportional to the effective window width. Smaller win- 

dows cause less smearing, but yield less accurate mea- 

surements of discontinuity. 

To overcome this problem, methods that involve 

more heuristics or human interactions have been pro- 

posed. Kadlec et al. (2007) present an interactive 
method for computing a fault surface. Rather than us-
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Figure 4. Automatic horizon picking using ridges and val- 
leys detection as described by Patel et al. (2008). No signifi- 

cant differences exist between a fault area (red box) and an 
unfaulted area (blue box). 

ing the attributes mentioned above, they manually pick 
seed points in the image and then let the points evolve 

to surfaces using a level set method. 

Gibson et al. (2005) present a similar method. They 
also model faults in 3D as growing surfaces, but require 

no human interaction, because the seed points are gen- 

erated from semblance. Then, these points are grouped 

into small fault patches using a highest-confidence-first 
merging strategy. 

These methods compare automatic fault detection 

with human picking. The authors claim advantages in 
automatic fault detection over human picking in that 

the methods save time and are more accurate. 

1.3. Research on fault displacement 

Compared to automatic fault picking, automatic esti- 

mation of fault displacements is potentially more use- 

ful but less well developed. As mentioned above, fault 

displacements are today usually estimated manually by 

experienced interpreters. 

Methods for automatically picking horizons in seis- 

mic images are most closely related to our work. Tech- 

niques of this kind appear also in the fields of computer 

vision and machine intelligence, although the problem 

of how to automatically pick horizons stems from geo- 

physical applications. 

In the method described by Farakloioti and Petrou 

(2004), horizons can be automatically identified as me- 
dian surfaces of layers. The key part of this process is 

connected-component analysis, which is designed to join 

fragments that have consistent orientation and proxim- 
ity. However, this method does not attempt to find cor- 

respondences between horizons on each side of a fault 

and leaves fault zones blank. 

New approaches that use genetic algorithms (Aurn- 

hammer and Ténnies 2005) and a multi-scale Bayesian 
model (Admasu and Ténnies, 2006) have been proposed 
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to solve this problem. The former algorithm works for 
only 2D seismic images; the latter works for both 2D 

and 3D images. In addition to seismic images, these al- 
gorithms require horizon curves or surfaces in unfaulted 

regions as additional information; e.g., median surfaces 

extracted by Farakloioti and Petrou (2004) or valleys 
and ridges traced out by Patel et al. (2009). These two 
approaches match layers on both sides of faults, but nei- 

ther yields displacements along fault curves or surfaces. 

Moreover, both approaches are sensitive to errors in the 

input horizons. This sensitivity is illustrated in Figure 
4. In the case shown in Figure 4, two layers on each side 

of a fault join coincidentally in the red box. The method 

mistakenly picked one horizon across the fault in the red 

box. Because the method cannot distinguish the faulted 

and unfaulted areas highlighted there, layers would be 

mistakenly matched. 

For these reasons, newer algorithms are based on in- 

teractive horizon picking. Patel et al. (2008; 2009) pro- 
pose a framework for computer-assisted seismic anal- 

ysis, designed for a small group of interpreters. Their 

first step is automatic horizon picking in unfaulted ar- 

eas, which is similar to Farakloioti and Petrou’s (2004) 
method. By considering the amplitude of a 2D seismic 

image as height values in a terrain, Patel et al. trace out 

the valleys and ridges, which are texture primitives de- 

fined by Tiiceryan and Jain (1990). Then, they create 
curves from these valleys and ridges as horizons. The 
difference is in their second step. Rather than relying 

on an entirely automatic method, they employ a semi- 

automatic method that uses human intervention when 
the auto-picking result is incorrect, as in the red square 

in Figure 4. 

In this paper, we describe a method for automati- 

cally and simultaneously estimating both fault locations 

and fault displacements. We require only a seismic im- 

age as the input. Faults are simply located where our 

estimated fault displacements are nonzero. 

2 PROBLEMS 

A simple way to estimate vertical displacements across 

faults is to crosscorrelate each pair of adjacent traces in 

a seismic image. We search for peaks of normalized lo- 

cal crosscorrelations to estimate displacements between 

traces. Local correlations enable us to estimate displace- 

ments that may vary vertically. Normalization makes 

our estimates insensitive to vertical variations in seis- 

mic amplitudes. 

Normalized local crosscorrelations are often used in 

geophysical applications; e.g., to estimate relative dis- 

placements from two time-lapse seismic images (Hale, 

2009a) and to enhance stacking (Liu et al., 2009). 
Normalized local crosscorrelations are defined for
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Figure 5. The estimated vertical displacements using the 

simple method. 

two traces f and g by 

Cfo[k; |] c(k; 1] = ———Sfal 1 
i Vers {ks O] cag [k + 85 0] “ 

where 

crolksl] =D) flilali + 1] x w[k — 3] (2) 

and w[k] is a Gaussian window 

w(k] = ent (3) 

that, for some specified radius 0, makes crosscorrela- 

tions local. 

Crosscorrelations are normalized by the factors 

egg [k; 0] = Viti x w[k — J] (4) 

and 

Cgq(k; 0] = D9 il x wk — Jj]. (5) 

For each integer lag |, equation 1 gives a normal- 

ized local crosscorrelation coefficient for every sample 

indexed by k. We use a fast implementation of equa- 

tion 1 (Hale, 2006). When estimating displacements, we 

must store for each sample only those correlation coeffi- 

cients required to locate correlation peaks. For example, 

if the maximum correlation coefficient appears at lag 1, 

we need only store values for lags | — 1, 1, and 1+1. We 

then fit a quadratic function to those values to locate the 

correlation peak with sub-pixel precision. Details are de- 

scribed by Hale (2009a), and source code is available in 
the Mines Java Toolkit (http://mines.edu/dhale/jtk/). 
Figure 5 shows vertical displacements estimated by find- 

ing the peaks of local crosscorrelations of consecutive 

pairs of traces in the seismic section shown in Figure 

la. 

Although these trace-to-trace vertical displace- 

ments roughly conform to the orientations of the geo- 

logical layers in the seismic image, they do not properly 

describe fault displacements. Estimated displacements 

are apparently incorrect at some locations, such as the 

point near a fault with sample indices (160,143). Near 

this point, vertical displacements across the fault should 

be positive (about 5 or 6 samples), which means that 

the relative displacement of layers is downward from left 

to right. However, the estimated displacement value at 

that point is negative. Furthermore, faults appear as 

zones of displacement, not as curves, and displacements 

are not zero where layers are dipping but not faulted. 

In the remainder of this section, we describe in detail 

the shortcomings of this simple trace-to-trace correla- 

tion method for estimating fault displacements. 

2.1 Inadequacy of using two traces 

In Figure 6 are three subsets of pixels centered on the 
pixel with sample indices (160, 143) in Figure 1a. At this 
location, two layers on each side of a fault join coinci- 

dentally. Human interpreters can estimate the correct 

relative displacement of layers on each side; however, 

the simple method fails to do so. One problem with the 

simple method is that it is near sighted, as illustrated 

in Figure 6. 

Using our eyes, we can easily identify the location 

of the fault and roughly estimate the displacement be- 

tween layers on each side of the fault shown in Figure 

6a. From left to right across the fault, layers are clearly 

displaced downward. 

However, if we zoom in the image, and only look 

at Figure 6b, we may misinterpret the fault displace- 

ments. In this case, we can still see the location of the 

fault, but may unfortunately pick a wrong correspon- 

dence between layers on each side of the fault. If we 

continue to magnify the image until we can see only the 
5x5 region shown in Figure 6c, we may even be unaware 

of any faulting. Note that the window size used in many 

such image processing applications is often kept small 

because computational cost is higher if larger windows 
are used. 

When computing local crosscorrelations for pairs of 

traces, our window height is controlled by the Gaussian 
half-width o in equation 3, but the window width is only 
2 samples. Correlating local windows of only two traces 

near a fault is insufficient and quite different from what 

human interpreters do. Human interpreters use traces 

farther away from a fault to both locate the fault and 

estimate displacements. 

Of course, correlating a single pair of traces that 

are farther apart will introduce another source of er- 

ror, as displacements estimated from traces away from 

a fault may poorly approximate those apparent at a 

fault. What human interpreters correlate visually are 

not single pairs of traces, but many traces on both sides 

of faults.
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Figure 6. Zoomed views of the fault located around (160, 143) in Figure la. 
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Figure 7. Crosscorrelation of adjacent pairs of traces in two seismic images with vertical (a) and non-vertical (c) faults yields 

corresponding estimates of the vertical components of displacements (b) and (d). 

2.2 Faults are not vertical 

Another problem with the simple trace-to-trace corre- 

lation method is that it performs poorly for faults that 

are not vertical. Each trace in a seismic image is a ver- 

tical sequence of pixels. To estimate displacements for 

non-vertical faults, we should crosscorrelate sequences 

of pixels that are parallel to the fault. 

Figure 7 shows for a synthetic example the use of 

crosscorrelation of traces to estimate displacements. In 

this example, displacement is constant along the faults. 

As expected, displacements estimated from an image 

with a vertical fault are accurate. However, displace- 

ments estimated from image with the a non-vertical 
fault are inaccurate and inconsistent. 

Figure 8 illustrates the source of this problem. 

Crosscorrelation of adjacent traces, vertical sequences
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Figure 8. For a non-vertical fault, most samples in two ad- 

jacent traces (marked with red and blue lines) are similar, 

so that local trace-to-trace crosscorrelation fails to yield ac- 

curate estimates of even the vertical component of displace- 

ment. 

of pixels, is inadequate, because so many of those pixels 

are identical for a fault that is not vertical. 

2.3 Dipping layers are not faults 

Faults need not be vertical and geologic layers also 

need not be horizontal. Displacements are nonzero for 

dipping structures. In Figure 5, vertical displacements 

vary slowly along both dipping layers and faulted areas. 

Which displacements correspond to faults? 

Our goal is to determine the fault displacement vec- 

tor field, which should be zero where faults do not exist. 

Locating faults in Figure 5 is even harder than locating 

faults in the original seismic image shown in Figure la. 

Aimed to the three inadequacies mentioned above, 

we propose three improvements in following three sec- 

tions in addition to the simple estimation. 

3 FILTERING 

Many papers describe filtering techniques for seismic im- 

ages to aid interpretation (Luo et al., 2002; Fehmers and 

Hocker, 2003; Lu, 2006; AlBinHassan et al., 2006; Lu 

and Lu, 2009; Hale, 2009b). Most of these techniques 

enhance features, like structural layers, while suppress- 

ing noise. The Van Gogh filter (Fehmers and Hocker, 

2003) is an application of a coherence-enhancing dif- 

fusion (Weickert, 1999) in geophysics. The key to this 
method is to solve a partial differential equation guided 

by a diffusion tensor field. Another seismic image filter 
is the edge-preserving filter, which was first proposed by 

Luo (2002), and then extended to 3D (AlBinHassan et 
al., 2006) by himself and his colleagues. The most sig- 

nificant advantages of the edge-preserving filter are that 

it is efficient and it is easy to implement. 

However, none of these filters assist the correlations 

we require. We design a filter to assist the crosscorrela- 

tions between two sides of a fault. This filter gathers in- 

formation from nearby traces, but does not gather infor- 
mation across the fault. Our filter generates two traces 

on each side of a fault by weighted averaging traces. The 

filter is designed as follows. 
  

Left-to-right and right-to-left smoothing 

Inputs: 

seismic image q(r1,22) with ni x n2 samples 
filter coefficient a 

Outputs: 

seismic image q™ (#1, X2), filtered from left to right 
seismic image qt (x1, 22), filtered from right to left 

for all a1 

q (a1,0) = q(21,0) 

for x2 = 1,2,...,n2 —1 

for all x1 

find shifts u(x1) and 

peak correlation coefficients Cmaz(21), 
for all 21 

use sinc interpolation to compute a shifted trace 

q(r1) = q (x1 + u(x), 22 — 1) 
for all x1 

@ = & X Cmaz(21) 
q (v1,%2) = @ x q(xi) + (1 — a) x g(a1, 22) 

By simply reversing the filtering direction, we get the 

right-to-left smoothing q* (21, 22).       

The left-to-right and right-to-left smoothing 

filter is an adaptive one-sided exponential filter (Op- 

penheim et al., 1999). The input of the filter is a 2D 

image, which is regarded as a set of 1D vertical traces. 

The image is processed trace-by-trace from left to right 

and right to left. The change made to the traditional 

one-sided exponential filter is to preserve the fault as 

much as possible during the smoothing. Normalized lo- 

cal crosscorrelation is used to find vertical shifts between 

consecutive traces. Traces are then warped with these 

shifts before they are used in the smoothing process. 

This operation is the key to avoid gathering informa- 

tion across faults before locating them. Coefficient a in 

this filter controls the effective length of the one-sided 

exponential filter (Oppenheim et al., 1999). 
This filter is efficient because the one-sided expo- 

nential filter is the cheapest smoothing technique. In 

addition, the smoothing is confined by discontinuities 

between traces. By comparing the images in Figure 9 

with the input image in Figure la, one sees that discon- 

tinuities are clearer and layers do not extend across the 

fault. 

In practice, we compute displacement fields by pick- 

ing one trace from the left-to-right smoothed image 

shown in Figure 9a and another trace from the right-to- 

left smoothed image shown in Figure 9b. This conforms 

to the process that a pair of eyes uses to find a fault: 

first scanning the image from left to right and then from
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right to left, and locating the fault curves as observed 

differences. 

4 SHEARING 

When faults are not vertical, we should correlate non- 

vertical sequences of pixels, as shown in Figure 10. Un- 

fortunately, we do not yet know the locations and orien- 

tations of faults. One possible way to solve this problem 

is to search for all orientations on each pixel of the im- 

age. Therefore, a filter that hence rotates the window 

locally is a plausible way. However, the computation of 

rotation around one pixel does not contribute to com- 

puting rotations in other places. This fact makes the 

orientation search time-consuming. 

Although the rotation-based search method is ex- 
pensive, it gives us a clue to reduce the cost. Paeth 

(1990) implements the rotation of an image by consecu- 

tively shearing the image three times. The shear trans- 

formation is an affine transformation where one coordi- 

nate of each point is changed in proportion to its another 

coordinate. In 2D, we have two kinds of shear transform: 

horizontal shear (x coordinates change in proportion to 

y coordinates) and vertical shear (y coordinates change 

in proportion to x coordinates), see Figure 11. 

As shown in Figure 12, we shear the seismic im- 

age horizontally to make the faults vertical. We define 

an integer /; as the maximum vertical displacement of 
a fault and a float s as the shear amount of the im- 

age that controls the number of samples will be moved. 

Mathematically, shearing a 2D scalar field f(2i, 22) is 

to create a new 2D scalar field f’(x1,22) and 

(6) 
where s > 0 indicates the rows will be moved to the 

right, s < O indicates the rows will be moved to the 

left. s € (—1,1) because we stipulate that a fault in 
our model must form less than a 45 degree angle from 
the vertical line. To sample the range of shear amount 

f’ (x1, 22) = f(ai,22 — 821), 
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Figure 10. Ideal trace-picking in a non-vertical fault zone: 
(a) the magnification of a part of 7c; (b) the ideal trace pick- 

ing for the image in Figure la. 

(—1,1), we define another integer l2 € (—i1,/1) and 
s= 2. Since s is not an integer, we should translate 

the sequence (row) by a float amount. We use sinc in- 
terpolation to perform this sub-pixel translation. 

The shear transform may move out and truncate
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Figure 11. Shear transform: (a)horizontal shear; (b) vertical shear. 
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Figure 12. By shearing the image shown in Figure la with 

shear amount s = 3: we make faults at some places vertical. 

a part of the input image. To avoid losing data after 

shearing, we extrapolate the image before shearing it. 

5 LOCATING 

We assess fault locations through a two-stage pattern 

analysis. In the first stage of analysis, we estimate the 

location of a rough fault zone; in the second stage, we 

pick out the precise one-pixel-wide fault out from the 

fault zone. 

In a seismic image which contains only horizontal 

geologic layers, vertical displacements between traces 

are zeros before and after shearing. However, the shear- 

ing may change the displacement between traces when 
the layers are dipping. As shown in Figure 13, f and f’ 

are images before and after shearing. 
We model a dipping geologic layer at a certain point 

as a line segment. Therefore, f becomes a univariate 

function g: 

_ p&2), (7) 

where p is the slope. As shown in equation 6, 

f'(1,Z2) = f(21, 22 — 821), therefore 

f(x1, 22) = g(x1 

f'(a1, 22) = g[z1 — p(x2 — 821)] 

= g[(1 + sp)ai — pra]. (8)   

  

  

yl2 

f of 
L1 

Figure 13. Shearing a dipping layer. 

Since f represents a line segment, we have 

ap = gh de. + Sham =0. (9) 
Thus, 

a 

_ An __ 3s (10) 
Are gt , 

EL 

Similarly, we have 

as’ 

p = or (11) 

Ox, 

where p’ is the slope of the layer after shearing. Substi- 

tuting f’ in equation 11 by equation 8, we obtain 

O9((itsp)z1—pza) 
fo or2 

p= Og[((1+sp)x1—pr2 
Oz, 

Og 

—P ase (12) 
(1+ sp) 22 

__?P 

1+<sp 
  

Here, p’ is a function of the shear amount s. Note that 

slopes p and p’ are also vertical displacements right 

at the selected point before and after shearing, respec- 

tively. When p = 0, p'(s) = p = 0, which indicate that 
the shearing does not affect the horizontal layer. 

The above analysis reveals the effect of shearing 
on a dipping layer where no fault exists. However, in a



zone where a fault exists, the function p’(s) does not fol- 
low the function shown in equation 12. Because s = 2 

and 1, is a constant, p’(s) is sampled according to le. 

Figure 14 illustrates different patterns of function re- 

lationships. One can see a peak in the black curve in 

Figure 14b, which corresponds to the black pixel in Fig- 

ure 14a. This pixel is right on a fault. In Figure 14b, 

the horizontal coordinate lz of the peak indicates that 

shearing the image by amount 2 makes the fault verti- 

cal. Curves in Figure 14c approximately conform to the 

relationship shown in equation 12. Figure 15 illustrates 

such relationship in real data. We can still distinguish 

the blue curve from others. 

In the first stage, we distinguish samples around a 

fault with samples far away from a fault according to 
the following criterion: if shifts vary slowly according to 

different shearings, there is no fault. In other words, if 

there is an outstanding point in the displacement-shear 

curve, as the black curve shown in Figure 14, there is a 

fault. 

In practice, we set a fault threshold 7 and compute 

the average value ave(p’(s)) as well as the maximum 
value max(p’(s)) of vertical displacements with differ- 
ent shearings at a particular point. If max(p’(s)) > 7 
and max(p’(s)) > clave(p'(s))|, there exists a fault. The 
coefficient c must be chosen carefully to distinguish the 

curves which are not slowly varying. We name c as the 

fault coefficient. The first-stage pattern analysis yields 

fault displacement zones shown in Figure 16a. 

A second-stage pattern analysis is required to pick 

one-pixel-wide fault curves from the fault zones. We plot 

the displacement-to-shearing function for five consecu- 

tive points along a horizontal line around fault location 

(105, 140). Five curves share a same pattern. However, 

only one of these five samples has fault. We choose the 

yellow point because its corresponding curve has the 

largest maximum displacement value. By scanning hor- 

izontally across every fault zones, we get the fault dis- 

placement field as shown in Figure 16b. 

5.1 Compute displacement vector 

After we obtain the vertical shift v: and the shear 

amount s, we can compute the displacement vector 

ui(@1,£2) = vi(@1, £2 — 821), 
u2(@1, £2) = —sui(x1, 22). 

The horizontal components of the fault displacement 

vector field is shown in Figure 18a. Signs of horizontal 

displacements indicate that geologic layers have been 
displaced either rightward (positive) or leftward (nega- 
tive). By combining the horizontal components with the 

vertical components (shown in Figure 18b), we finally 
get the fault displacement vector field. 
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6 PARAMETERS 

Because several changeable parameters exist in our al- 

gorithm (c, 7 and 11), we illustrate the effect of changing 
these coefficients in this section. The standard choices 
of these coefficients are c = 0.25, 7 = 0.4 and Il; = 15 

for the image shown in Figure la. When illustrating the 

effect of changing one of these coefficients, we keep two 
others unchanged. 

6.1 The fault coefficient c 

The fault coefficient c largely controls the identification 
of a fault. From Figure 14, one can easily tell the differ- 
ence between the pattern of fault place and the pattern 

of non-fault place. Consequently, c can be chosen in a 

large range in this synthetic image. However, in the real 
data, as shown in Figure 15, the pattern corresponding 

to the fault place is less distinguish. In this case, the 

possible range of c is largely confined. One can see some 

incorrect identifications of faults in the left half of the 
image in Figure 19a due to a relatively small value for c. 

When c increases, these inaccurate picks disappear, as 

shown in Figure 19b and c. However, the fault located 
at (105, 140) is not identified in Figure 19b and c. 

Because (1) seismic images are often contaminated 
by random noise and (2) dips are varying along geologic 

layers, an adaptive c or a more sophisticated pattern 

analysis is required for processing seismic images with 

lower illumination qualities. 

6.2 The fault threshold 7 

Choosing different fault thresholds 7 shows us different 
levels of detail for fault displacement fields. (Note Figure 

20a, b, c and d.) A reasonable fault threshold is related 
to the sampling interval of the image. Interpreters can 

change the fault threshold interactively to get the most 

satisfactory result. 

6.3. The maximum vertical displacement |, 

The continuity of fault curves is related to the maxi- 

mum vertical displacement /;. As mentioned above, we 

must investigate the problem in a relatively large area. 

1, controls the vertical window size, thus cannot be set 

too small. Figure 2la, b and c illustrate this effect on 

the displacement field by changing /. 
As Figure 21 demonstrates, a larger /; value yields 

more continuous fault curves. However, shorter faults 

with rapidly changing orientation can be well detected 

using a smaller 1,;. The reason is that using a larger 

l, tends to catch longer faults. Detailed differences be- 

tween 1; = 12 and l,; = 18 can be found in Figure 22.
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Figure 14. Investigating the function relationship between the vertical displacement and lz. Five curves in (b) correspond to 

five points selected from the synthetic image (a) with the same colors. Leaving the black curve (b) out, we get similar patterns 
(c). 

7 CONCLUSION 

Our estimation of fault displacement vector fields in 

seismic images consists of four primary steps: 

e filter the seismic image; 

e shear the image to make faults vertical; 

e estimate fault displacements from the sheared im- 

ages using normalized local crosscorrelation; 

e apply two-stage pattern analysis to exactly locate 

faults. 

By following these steps sequentially, one obtains fault 

curves as well as the displacement vector field defined in 

section 1.1. If one omits the second-stage pattern analy- 

sis, one can get a fault displacement zone which is sim- 

ilar to the fault zone model estimated by Kadlec et al. 

(2008). 
The fault displacement vector field estimated by 

our method has a sub-pixel precision in the vertical and 

horizontal components but does not have sub-pixel pre- 

cision fault locations. Exact faults are usually located 

between two pixels. 

This fault displacement vector field can be used to 

improve estimating the structure tensors (Hale, 2009b) 
at places around a fault. These tensors can be further 

used to adaptively smooth the seismic image or guide in- 

terpolation. Another potential usage is to place stream- 

lines on seismic images, which is similar to the auto-



Estimating fault displacements 173 

Sample index 2 
  

Shifts with different shears 

5 - “| 
3 | | 
a 44 i \ 

2 3] | \ 3 0 23 | | 
3 Oo & | | 
& a €& 23 { ! 

© a 8 ; | 
Q. & § 1: | | 
E a | | 
” 0: |          -15 

  

(b) 

Figure 15. Investigating the function relationship between the vertical displacement and lz. Five curves (b) correspond to five 

points selected from the synthetic image (a) with the same colors. 
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Figure 16. Applying the second stage pattern analysis on the fault displacement zone (a), we obtain the fault displacement 

field (b). 
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Figure 17. Investigating the function relationship between the vertical displacement and [2 in the fault zone around (105, 140). 

Five curves (b) correspond to five points selected from the image (a) with same colors.
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Figure 19. Vertical components of displacement vector fields estimated by using different fault coefficient c: (a) 0.2; (b)} 0.25; 
(c) 0.3. 

matic horizon picking. Furthermore, the fault displace- ACKNOWLEDGMENTS 
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Figure 20. Vertical components of displacement vector fields 
(c) 0.6; (d) 0.7. 
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Figure 1. A seismic image painted using a 3D digital paintbrush that conforms to features in the image 

ABSTRACT 
Seismic interpretation today includes picking seismic horizon surfaces or, more 
generally, the boundary between geologic bodies. A more efficient and useful 
approach may be to directly interpret those geologic bodies as 3D volumes. We 
do this by painting voxels in 3D seismic images of subsurface geology. In our 
painting method, a human interpreter controls the maximum size of a digital 
3D paintbrush, and as the interpreter interactively moves the brush, features in 
the 3D seismic image automatically control its shape, orientation and size. 

Key words: 3D painting seismic interpretation 

1 INTRODUCTION 

For decades, geophysicists and geologists have inter- 

preted seismic sections using colored pencils and paper, 

where different colors were used for different geologic 

layers. When painting software became widely avail- 

able on personal computers in the 1980s, one could use 

such software to perform seismic interpretation. Digital 

painting has a couple of advantages over drawing on pa- 

per: it can be applied in multiple overlays that can be 

toggled on and off and mistakes in digital painting are 

easy to undo. Whether with colored pencils or computer 

software, it is more direct and intuitive to color geologic 

bodies than to pick the seismic horizons that bounds 

these bodies. 

However, we live in a 3D world, and today we in- 

terpret 3D seismic images. For 3D images, 2D paint- 

ing techniques would be slow and tedious. For example, 

imagine interactively painting every 2D slice of a 3D 

image using 2D painting software. Typically, we instead 

pick horizon surfaces. 

1.1 What is 3D Painting? 

Many painting software packages offer a variety of tools 

for creating and editing images. Most of these tools as- 

sign color values to pixels of a 2D image displayed on 

a 2D computer screen. Painting in 3D requires paint- 

ing voxels (3D pixels) of a 3D image displayed on a 2D 

computer screen. Painting in 3D is inherently more dif- 

ficult, in part because of the projection from 3D to 2D, 

but also because 3D space-filling images can seldom be
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Figure 2. A seismic section being painted using GIMP, an 
open source 2D paint program. Repeating this process for a 

3D image would become cumbersome and tedious. 

displayed in their entirety. Usually we can only visualize 

2D slices of 3D images and paintings. 

However, recently introduced techniques enable 

painting on a 2D screen with a simulated 3D environ- 

ment. For example, an artist’s brush stroke may be re- 

alistically reproduced by constructing virtual brushes, 

and thereby transforming the user’s cursor into a con- 
vincing paintbrush (Baxter et al, 2001; Baxter and Lin, 

2004). Another simulated 3D painting method involves 
interactively painting texture directly onto a triangu- 

lated surface with perspective projection on a 2D screen. 

This method enables an artist to paint textures directly 
onto scanned surfaces in real-time (Hanrahan and Hae- 
berli, 1990; Agrawala et al, 1995). 

The techniques mentioned above use virtual 

brushes and surfaces to paint. While the painting envi- 
ronment is almost 3D, the user is unable to paint any- 

thing that does not lie within the surface on which the 

paintbrush is confined. Confinement of the paintbrush 

to a single surface inhibits efficient painting of 3D vol- 

umes, such as those filled by 3D seismic images. As Fig- 

ure 1 suggests, when painting 3D geologic structures, 

we should paint volumes directly. In this paper, we re- 

fer to such direct painting of volumes as painting in 3D 

or simply 3D painting. 

Methods for 3D painting of subsurface geology have 

been proposed by others. Like our method, these other 

painting methods employ image processing algorithms 

to guide the painting of imaged geologic structures. 

1.2 Predictive painting from plane-wave 

destruction 

Fomel (2008) proposed a method for 3D painting using 
local estimates of slopes of reflections in seismic images. 
The method he uses is called predictive painting because 

it estimates the reflection slopes using lateral (trace-to- 

trace) prediction-error filters. This method uses reflec- 
tion slopes to guide extrapolation of painted values from 

any reference trace to other traces in the seismic image. 

Fomel’s (2008) method is interactive in that a user spec- 
ifies one or more reference traces. Paint then flows auto- 

matically from those traces to other traces along imaged 

geologic layers. When multiple reference traces are spec- 

ified, this method averages painting values extrapolated 

from different reference traces. In effect, paint flows lat- 

erally in directions that minimize lateral prediction er- 

rors. 
Therefore, this painting method works best when 

traces in a seismic image can be well predicted by ad- 

jacent traces. However, this method works less well 

when painting across faults, or across unconformities 

and folds, within stratigraphic features such as chan- 

nels, or within steeply dipping layers and salt diapirs. 

The reason this method works poorly in these cases is 

because these geologic features are not well described by 
lateral trace-to-trace prediction of seismic reflections. 

1.3 GPU-accelerated “visulation” 

A different visualization and simulation (“visulation”) 
method developed by Kadlec (2009) uses structure ten- 
sors (van Vliet and Verbeek, 1995) computed from 3D 
images to guide the painting of those images. For ex- 

ample, an interpreter might first pick seed points on 2D 

slices of 3D seismic images. These seed points then serve 

as sources of paint in a simulation of an anisotropic fluid 

flow that is governed by the structure tensors. At each 

time step of the flow simulation, paint diffuses from the 

source voxels to other voxels in the 3D image, and a 

human interpreter can interactively stop the simulation, 

say, when paint has flowed far enough or when new seed 

points must be specified to fill in unpainted regions. 

1.4 Our painting method 

Like the two methods summarized above, our 3D paint- 

ing algorithm has three features: an ability to interac- 

tively select and paint a 3D voxel, a mechanism for au- 

tomatically painting other voxels, and a user-friendly 

interface. Of these two methods, our method is most 

similar to that of Kadlec (2009), in that our painting is 

guided by structure tensors computed from a 3D seismic 

image. 

Relative to these other methods, our method works 

more like typical 2D painting software, in which an in- 

terpreter drags a digital paintbrush across an image. 

All voxels inside the digital 3D paintbrush are painted, 

while those outside remain unchanged. The key differ- 
ence is that the size, shape, and orientation of our 3D 

paintbrush conforms to features in a 3D seismic image. 

In this way, our paintbrush facilitates efficient painting 

within, but not across, geologic features.



2 CONSTRUCTING THE BRUSH 

Suppose that one wants to paint an object displayed on 

the computer screen. In traditional painting software, 

the user is given a digital canvas (a 2D image) and a set 

of painting tools. These tools may for example include 

circles (or other simple brush shapes) in various sizes, 
like the one shown in Figure 2. 

With any of these tools, painting is interactive, be- 

cause the user selects pixels with a cursor, but software 

paints the selected pixels and other pixels nearby auto- 

matically. This automatic painting of nearby pixels is 

essential because users rarely want to paint every pixel 

one at a time. 

Our 3D painting algorithm is an expansion on the 

paintbrush concept. Our 3D paintbrush has a maximum 

size that the user controls, much like the radius of a 

circular brush in a 2D painting program. However, its 

actual size, shape, and orientation in 3D depend on fea- 

tures in the seismic image. More precisely, the aspects 

of our 3D paintbrush depend on structure tensors that 
we compute from a 3D seismic image. 

2.1 Structure tensors S(x) 

Before painting a 3D seismic image, we first compute a 

structure tensor field from that image. As described by 
van Vliet and Verbeek (1995) and Fehmers and Hocker 
(2003), each structure tensor in our 3D tensor field is a 

smoothed outer product of image gradients. 

Let g(x) = V f(x) denote the gradient vector field 
computed for an image f(x). Both the gradient g(x) 
and image f(x) are uniformly sampled functions of x, 

which represents the spatial coordinates of image voxels. 

Then, the structure tensor field is defined by 

S(x) = (g(x) g7(x)), (1) 
where ( - ) denotes Gaussian smoothing along all spatial 

coordinate axes. 

Intuitively, the gradient vector field g(x) repre- 
sents estimates of both the magnitudes and directions of 

greatest change in the image f(x). The structure tensor 

field S(x) represents much the same information, only 
it is averaged within a Gaussian window around each 

sample. This spatial averaging improves the fidelity of 

orientations and other attributes that we may extract 

from structure tensors, but it also decreases our ability 

to detect abrupt changes in those attributes. 

The eigen-decomposition of a 3D structure tensor 

S is 

S =A, uu? + Ayvv? + Awww’, (2) 

where the eigenvalues of A,,Av, and Aw are sorted so 

that 
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Au > Av > Aw > 0. (3) 

From the definition in equation 1 above, it is easy 

to show that each structure tensor S is positive semi- 

definite, so that all of the eigenvalues are non-negative. 

For any image voxel, the eigenvector u, which corre- 

sponds to the largest eigenvalues X,,, indicates the direc- 

tion in which the image changes most. In a seismic im- 

age, the eigenvector u is generally orthogonal to imaged 

geologic layers. The eigenvector w, which corresponds 

to the smallest eigenvalue 4,,, indicates the direction in 

which the image changes least; it may be aligned with 

images of buried channels. Both eigenvectors v and w 

tend to lie in planes of locally planar features in 3D 

seismic images. 

2.2. Our 3D paintbrush 

We compute our 3D paintbrush from a metric tensor 

field D(x) that we derive from the structure tensor field 
S(x). A metric tensor field defines a measure of distance 
between two points. For a constant metric tensor D, we 

may analytically compute the distance ¢(x) from a voxel 

to any point x as 

i(x) = VxTD-'x. (4) 

When D equals the identity matrix, t(x) is simply Eu- 

clidean distance. 

More generally, if D = D(x) is a non-constant met- 
ric tensor field, we must compute distances numerically 

by solving an eikonal equation: 

Vi(x) -D(x)Vt(x) = 1, (5) 

with the boundary condition t(0) = 0. In this case, ¢(x) 
denotes non-Euclidean distance from the voxel to any 

point x. 

The surface outline of the 3D paintbrush shown 

in Figure 1 is simply a contour of constant distance 

t(x) = tmaz, where tmaz denotes a user-specified max- 

imum brush size in voxels. In this example, that maxi- 

mum brush size is tmaz = 58 voxels. 

To compute distance t(x), we first interactively se- 
lect one voxel in the 3D seismic image. This voxel be- 

comes the origin at which the distance t(0) = 0. Be- 
ginning with this point, we then numerically solve the 

eikonal equation 5 for distances t(x). Voxels for which 
t(x) < tmez lie inside our 3D paintbrush, and voxels for 
which t(x) > tmaz lie outside. 

In geophysics, eikonal equations are often used to 

compute traveltimes. The eikonal equation 5 above, 

with anisotropic and spatially varying coefficients D(x), 
is the same used by Hale (2009a) for image-guided in- 
terpolation. In that application, as in our 3D painting
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Figure 3. A 3D seismic image (a), from which we computed eigenvalues s1 (b), s2 (c), and s3 (d). Note the apparent existence 
of geologic bedding in s; and sz. Note also the near-zero values for s3. 

algorithm, “time” is a synonym for “non-Euclidean dis- 

tance” as computed in a metric tensor field. 

2.3. Metric tensors D(x) 

When the Euclidean metric tensor D = I, the maxi- 

mum brush size tmaz is the radius, measured in voxels, 

of a simple spherical paintbrush. In common 2D image 

painting software, tmaz would denote the radius, mea- 

sured in pixels, of a circular paintbrush. Such a spherical 

(or, in 2D, circular) paintbrush might be appropriate in 

a region of a 3D seismic image with no significant fea- 

tures, say, within a large salt diapir. In this case, paint 

should flow isotropically from the user-specified voxel 

(the origin x = 0) to all points x for which t(x) < tmaz. 
In contrast, when painting imaged geologic bodies, 

such as depositional layers, fault blocks, and channels, 

paint should flow anisotropically within, but not across, 

the boundaries of these bodies. In other words, distances 

between points in different geologic bodies should be 

much greater than distances between points within a 

single geologic body. 

We construct an anisotropic paintbrush, like that 

  

Figure 4. Tensors derived from a seismic image are over- 

lain on that image. Each tensor is represented as an ellipsoid 

glyph. These tensors guide the eikonal equation which gives 
the paintbrush its shape.
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Figure 5. Three different views of a 3D paintbrush. Reference markers A and B show relative orientation. The shape and 

orientation of this brush depends on the metric tensor field D(x) in the vicinity of the voxel (inside the brush) that was selected 
interactively by the painter. 

shown in Figure 1, by computing an anisotropic metric 

tensor field D(x). We choose the eigenvectors of each 
metric tensor D to be the same as those for the corre- 

sponding structure tensor S. The difference between D 

and § lies only in their eigenvalues. 

Specifically, in the eigen-decomposition of D, 

D = ssuu? + sovv + siww?, (6) 

we construct eigenvalues s;, $2, and s3 such that “) 

O<s3<e.ca<1, (7) 

where $1, 82, and $3 are computed using semblance. 

Figure 3 shows slices of semblances 51, s2, and s3 

computed using data provided from the US Department 

of Energy. When representing these tensors D(x) as el- 

lipsoids (Engelsma and Hale, 2010) in a typical 3D seis- 
mic image, we expect these ellipsoids to be relatively 

flat and oblate. Figure 4 shows a set of ellipsoids which 

represents metric tensors in a 3D seismic image. Note 

that each ellipsoid is relatively oblate indicating that the 

local feature is more coherent along geologic boundaries 

and less so across each boundary. 

Semblances are useful, in part, because they are 

an amplitude-independent. measure of the coherence of 

features in seismic images. Semblances and, hence, the 

eigenvalues of D, are normalized in the range [0,1]. 

The largest eigenvalue s,, corresponding to the 

eigenvector w, is semblance computed within a locally 

linear (1D) set of voxels aligned with w. Each eigen- 

value so, corresponding to the eigenvector v, is sem- 
blance computed within a locally planar (2D) set of 

voxels orthogonal to the corresponding eigenvector u. 

(The plane orthogonal to u contains the eigenvectors v 

and w). Finally, each eigenvalue s3 represents semblance 

computed for a locally spherical (3D) set of voxels. We 

compute these three measures of semblance using the 

structure-oriented method proposed by Hale (2009b). 
Because the eigenvalues of D are bounded between 

[0,1], (x) computed using equation 5 will never exceed 

those computed for a constant identity tensor D = I. 

In other words, our non-Euclidean distances t(x) will 
always be less than or equal to Euclidean distances. 

Therefore, when specifying the maximum distance tex, 

one may think intuitively of Euclidean distance, and 

know that the 3D paintbrush, like that shown in Fig- 

ure 1, lies inside a sphere with radius tmaz. In noisy in- 

coherent regions of a 3D seismic image, where all three 

semblances are low, the brush will be much smaller than 

that sphere. 

The upper bound tmaz also simplifies computation 

of the distances ¢(x). When a user selects a voxel in 
the 3D seismic image, that point becomes the origin 

for the eikonal equation 5. In solving that equation, we 

need only consider voxels at locations x that lie inside 

a sphere centered at the origin with radius tmaz. For 

any voxels outside of that sphere, distances t(x) must 

exceed tnas- 

For typical 3D seismic images with zero mean, 3D 

(volume) semblance s3 tends to be much smaller than 

{D (linear) semblance s; or 2D (planar) semblance s9.
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Figure 6. A painter has dragged the cursor along one panel 
in a 3D seismic image. Because the paintbrush paints voxels, 

points in the formation which extend beyond the plane of 

the paintbrush are painted, honoring the geologic structure. 

That is, the sum of image voxels within any 3D window 
with radius greater than a seismic wavelength will be 
nearly zero. Any locally planar feature in a seismic im- 

age will yield a large semblance s2, which is computed 

from a locally planar set of voxels. However, for the 

same feature, semblance s2 should be no greater than 

semblance s;, computed for a linear subset of those vox- 

els. In other words, when the values of a locally planar 

set of image voxels are nearly constant, both s; and s2 

will be nearly one. In such cases, distances t(x) are rel- 
atively small within the plane of the eigenvectors v and 

w, and are much larger in the orthogonal direction of 
the eigenvector u. Figure 4 demonstrates the relative 
geometric relationship between all eigenvectors in the 

form of oblate ellipsoids. 

3 THE PAINTER’S INTERFACE 

We designed our 3D painting to work similar to com- 

puter programs for 2D painting. As illustrated in Fig- 

ure 1, we display our 3D paintbrush as a surface. We 

construct that surface by applying the marching cubes 

algorithm (Lorenson and Cline, 1987) to our numerically 
computed distance field t(x). This algorithm requires 
only a simple scan of the voxels within the bounding 

sphere of our paintbrush. It produces a set of triangle 

vertices and normal vectors that when rendered appear 

as the continuous red surface shown in Figure 1. 

Figure 5 displays multiple views of a 3D paintbrush 

with a different size, shape, and orientation. These at- 

tributes of the paintbrush vary, as they depend on both 

the tensor field D(x) and the location of the origin voxel 
selected by the painter. 

In Figure 6, a painter has dragged a mouse cursor 

along a set of voxels in one vertical slice of a 3D seismic 

image. As the painter’s cursor moves, the shape of the 

brush changes to conform to features in the image. 

4 DISCUSSION 

Painting geologic structures in 3D is a natural extension 

of classical interpretation techniques. It is also an im- 

provement on triangulating flat horizons by allowing the 

user to fill entire geologic structures rather than trace 
the horizons between layers. This added dimensional- 

ity of the structure allows for extensive and interactive 

reservoir estimation. It is important to note that our 

painting algorithm does not alter the seismic image. 
Instead, the painted voxels are painted on a separate 

canvas. This enables the painter to separate the painted 

areas from the image, allowing for further interpretation 

and extraction. 

4.1 Extracting geologic layers 

The same algorithm used to render the brush can be im- 

plemented to extract painted voxels in 3D. This allows 

for a macroscopic investigation of geologic structure. Be- 
cause painting is tensor-driven (not amplitude-driven), 
structures such as salt diapirs can be highlighted. Visu- 

alization of 3D volumes is analogous to visualizing tri- 
angulated horizon surfaces. The difference between ex- 
tracting horizons and extracting surfaces is that volumes 
provide further insight into the structure of the subsur- 

face. From an interpretation standpoint, this technique 

provides insight to the structural characteristics of geo- 

logic entities. 

4.2 Production estimation 

Aside from being a useful visual tool, the combination 

of a painted area with measured data from well logs 

permits us to estimate volumetric information. This 

method can be useful for hydrocarbon and mineral ex- 

traction. Well logs give an idea of locations of areas 
of interest because they consist of measured material 

properties. Therefore, we may use them as a guide to 

paint. For example, using gamma ray logs as a guide to 

paint sandstone may be done quickly using the inter- 

active 3D brush. By changing the blending properties 

of paint, the painter can choose to overwrite previously 

painted voxels or to mix them together. For instance, 
by choosing to overwrite previously painted voxels, a 

painter may want to specify whether a geologic layer 

is strictly sand or shale. By blending painted voxel val- 

ues together, however, allows for more realistic mixtures 

of rock layers (e.g. dirty sandstone). In either case, the 
painter is guided by the log information. Painting a tar- 

get body and integrating over all voxels produces an 

accurate volume measurement. Approximation of geo- 

logic volume could provide a different way to estimate 

the barrels of oil within a reservoir. 

5 CONCLUSIONS 

Painting images in 3D is an important topic in seismic 

interpretation. However, painting is typically restricted 

to a 2D canvas. Instead of painting images, interpreters



draw boundaries between layers for simplicity. We show 

that by constructing a paintbrush using metric tensors 

that are derived from structure tensors and from the 

semblances of the image, we are able to paint with a 

brush that conforms to the image. This enables one to 

more accurately paint voxels of data in a manner that 

is consistent with geologic structure of the subsurface. 

Our painting algorithm is much like 2D painting soft- 

ware, however, our paintbrush extends beyond the can- 

vas by painting volumes instead of surfaces. Moreover, 

our algorithm allows for both a level of interactivity and 

automation. 

We also keep the painted voxels separate from the 

original image, permitting further interpretation and 

visualization of the subsurface. By extracting geologic 

bodies, we can visualize the thickness and overall shape 

of a geologic entity such as a salt diapir or gas pockets. 

We suggest an alternative method for estimating origi- 

nal oil in place by integrating over painted voxels from 

a geologic area of interest. This involves coupling the 

seismic image with data measured from well logs. 
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Figure 1. A 3D seismic image with a traced layer displaying the tensors as ellipsoids (a), and removing that slice shows the 

3-dimensional structure of the tensors from that layer (b). 

ABSTRACT 
In image processing, tensors derived from seismic images are used as parameters 
in procedures such as structure-oriented smoothing. Visualizing these tensors 
allows us to qualitatively assess their computation and construction. We de- 
scribe a computationally effective technique to render these tensors as ellipsoid 

glyphs. 

Key words: seismic visualization ellipsoid tensor 

1 INTRODUCTION 

Visualizing tensor fields has always been a complicated 

task. While there are many ways in which scientists can 

visualize scalar or vector fields, displaying tensor fields 

in an intuitive manner remains a challenge. In recent 

years, a number of techniques have been proposed dis- 

cussing methods for displaying 3D tensors. In the med- 
ical industry, the continuity of tensor fields is empha- 

sized by constructing hyperstreamlines or streamtubes 

for diffusion MRI tensors (Delmarcelle and Hesselink, 
1993; Jianu et al, 2009). In stress evaluation, the effects 

of a tensor field on a given media have been visualized 

through bending mesh volumes, simulating the effects 

of a stress tensor to demonstrate anisotropic deforma- 

tion (Zheng and Pang, 2002). In geophysics, tensors are 
being used to help guide seismic horizon tracing (H6llt 

et al, 2009). Recently, a number of methods have been 

proposed for displaying 3D tensors. 

For the purposes of image processing in explo- 

ration geophysics, tensors are often derived directly 

from the images. While a method such as hyperstream- 

lining would give insight into the continuity of the tensor 

field, it is also advantageous to render each tensor in- 

dividually by depicting them in an intuitive manner as 

Figure 1 demonstrates. These discrete representations of 

tensors in 3D are called “glyphs”. Glyph representation 

can take many forms, and the benefits of choosing differ-
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(a) (c) 

Figure 2. A scalar field (a), a vector field (b), and a tensor field (c). The visualization complexity increases dramatically with 

the number of quantities represented at each node. 

ent shapes have been explored (Kindlmann, 2004). How- 
ever, for the purpose of this paper, each tensor glyph is 

represented as an ellipsoid. 

Tensors help increase the efficacy of image process- 

ing by guiding the orientation of the operation. This 

is the principle behind structure-oriented smoothing 

(Hale, 2009). Because these tensors are used as param- 

eters in different processing techniques, we must de- 

termine their accuracy. We therefore wish to explore a 

method of visualizing these parameters in a discretized 

manner, allowing us to evaluate any arbitrary tensor. 

We describe an algorithm to visualize tensors derived 

from seismic images, and demonstrate methods for eval- 

uating the tensor’s authenticity. By displaying tensors 

as ellipsoid glyphs, this visualization method provides 

an intuitive and interactive method for relating the ten- 

sors directly back to the image. We also expedite the 

rendering process by making our method computation- 

ally fast and efficient. 

2 TENSOR GEOMETRY 

The challenge with visualizing tensors stems from their 

multivariate nature. With scalar fields, each sample is a 

representative of one number. Vector fields follow the 

same concept, but each point is now represented by 

three numbers in 3D. Tensor fields introduce another 
step in intricacy because we are now representing six 

unique numbers at every point in space. A visual repre- 

sentation of this increasing complexity is shown in Fig- 

ure 2. Simultaneous visualization of six numbers extends 

beyond conventional visualization techniques unless we 

understand the geometry of the tensors. 

2.1 Metric tensor field D(x) 

An ideal structure-oriented procedure which honors the 

dominant structural features of our image (e.g. rock 

bedding layers and faults), requires a tensor field that 
accurately represents these features. This is accom- 

plished by first computing the structure tensors S(x) 

(van Vliet and Verbeek, 1995; Fehmers and Hécker, 

2003), which are smooth outer-products of image gradi- 

ents. The eigen-decomposition of a 3D structure tensor 

S(x) yields: 

S=),uu? +A vv? + Awww! , (1) 

where the eigenvalues of Au, Av, and Aw are sorted so 

that 

du > Av > Aw > 0. (2) 

By convention, u is defined as the eigenvector that tra- 

verses the direction of the largest gradient. In a 3D seis- 
mic image, this typically refers to the direction perpen- 

dicular to geologic layering. Both eigenvectors v and w 

tend to lie in the plane of locally planar features in the 

image. 

We then compute anisotropic metric tensors D(x), 

using a process outlined by Hale (2009), whereby we 
compute image semblances. We choose the eigenvectors 

of each metric tensor D to be the same as those for 
the corresponding structure tensor S. The difference be- 

tween D and S lie only in their eigenvalues. Specifically, 

the eigen-decomposition on D(x) is 

D = s3uu’ + sevv’ +s:ww’, (3) 

where we construct eigenvalues si, 52, and s3 such that 

O<s3<se<38, <1. (4) 

Our metric tensor D(x) is a 3 x 3 symmetric, positive- 
definite matrix. The largest eigenvalue 31, correspond- 
ing to the eigenvector w, is semblance computed within 
a locally linear (1D) set of voxels aligned with w. Each 
eigenvalue sz, corresponding to the eigenvector v, is 

semblance computed within a locally planar (2D) set 
of voxels orthogonal to the corresponding eigenvector 

u. (The plane orthogonal to u contains the eigenvec- 

tors v and w). Finally, each eigenvalue sz represents
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Figure 3. A non-axis-aligned ellipsoid. 

semblance computed for a locally spherical (3D) set of 

voxels. 

2.2 Ellipsoid glyphs 

We consider the definition of an ellipsoid to be 

x? Ax=1, (5) 

where A is a square symmetric positive-definite matrix, 

and x is any point along the surface of the ellipsoid 

which satisfies this equation (note Figure 3). We can 
likewise define a unit sphere in the same manner by 

replacing matrix A with the identity matrix I. 

Equation 2 provides a useful definition because it 

describes an ellipsoid that is not axis-aligned; the eigen- 

vectors of A are arbitrarily aligned in space. Consid- 

ering the definition of eigenvector orthonormality, we 

define the eigenvectors as the three principle axis radii, 

and the inverse of the square root of the eigenvalues as 

their respective sizes (see Figure 4) (Strang, 2003). This 
geometric relationship enables us to construct the ten- 

sors as ellipsoids; in a computer, these are illustrated as 

glyphs. 

2.3 Geologic analogy 

Ellipsoid glyph representations of metric tensors demon- 

strate the local orientation of the image. In particular, 

for a perfectly horizontal layer, we expect the ellipsoid 

to be oblate, because X,, > Ay ~ Ay. Likewise, for com- 

plete isotropy within an image, we expect our ellipsoid 

to be a sphere (Au = Av = Aw). The local geologic ori- 

entation of the formation is also reflected, so ellipsoids 

incorporate the same strike and dip qualities as their 

corresponding locations in the seismic image. Because 

the intention of displaying these ellipsoids is to qualita- 

tively assess the how accurately the tensors have been 

constructed, we expect that they follow the bedding lay- 

ers in the image. This allows us to judge the veracity of 

image processing techniques guided by these tensors. 
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AV =VD 
Figure 4. Eigenvalue and eigenvector relationship to the 

three principle radii of an ellipsoid. Each axis within the 

ellipsoid is equal to the eigenvector divided by the square 

root. of their eigenvalues. 

3 ACCELERATED RENDERING 

Constructing each glyph requires computing the loca- 

tion of roughly one thousand vertices to be used in a 

triangle mesh (see Figure 5). This computation becomes 

costly when one begins to display a large set. of ellipsoids 

throughout a 3D survey. We therefore expedite the ren- 

dering process. If we first compute the vertex locations 

for a unit circle, we then obtain the desired ellipsoid by 

applying the appropriate matrix transformations. This 

greatly reduces the computational cost. 

We compare the equations of a unit circle, 

x’x=1, (6) 

to our desired transformed ellipsoid coordinates, 

y Ay =1. (7) 
We also define the eigen-decomposition of A to be 

A=VDV’, (8) 

where V is a 3x3 orthogonal matrix containing the 

eigenvectors of A stored as column vectors, and D is 

a diagonal matrix storing eigenvalues A, > Av > Aw. 

We now replace A in equation 8 with equation 7, and 

we get 

y’ VDV'y =1. (9) 

Given the property of a diagonal matrix that D 

D?D2, we expand equation 9 to get 

y'VD?D?V'y =1. (10) 

Equation 10 is the equation of an ellipsoid in terms of
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Figure 5. Two glyphs: a unit sphere (a) and an ellipsoid (b). 

The ellipsoid was computed using matrix transformations on 
the sphere’s mesh. 

the eigenvectors and eigenvalues of A. From equation 6, 

we observe that the variable x represents the coordi- 

nates of a unit sphere. To transform the sphere into an 

ellipsoid, we derive our desired coordinates y in terms 

of our computed coordinates x: 

y = VD"? x. (11) 

V represents a rotation matrix which realigns the princi- 

ple axes of the unit sphere. The matrix D>? is a nonuni- 

form scaling matrix containing the inverse of the square 

root of the eigenvalues. Performing equation 11 is more 

computationally efficient than explicitly computing each 

vertex because this process passes 12 numbers to the 

graphics card instead of recalculating one thousand co- 

  

Figure 6. Ellipsoids selected to follow a single layer by 

“point-and-click” method. The strike and dip of the local 

formation is apparent. 

ordinates for each ellipsoid. The vertex coordinates for 

a unit sphere are only computed once and stored. 

4 IMPLEMENTATION METHODS 

Here we discuss two methods for overlaying ellipsoid 

glyphs on 3D seismic data. Both methods offer differ- 

ent techniques to visualize tensors, and both may be 

used for different investigative purposes. We show two 

approaches to displaying tensor fields: a point-and-click 

and an axis-aligned panel method. 

4.1 Point-and-click method 

Figure 6 shows ellipsoids that are selected along a given 

layer. This is performed by a succession of mouse clicks 

which place an ellipsoid’s center on the sample nearest 

to the cursor. Note that every ellipsoid appears oblate 

with varying thicknesses, and that each ellipsoid has 

a dip that reflects the local orientation. Focusing on 

the shape of the ellipsoids is important for determin- 

ing whether or not the tensor field has been correctly 
computed. Note also that the ellipsoids appear in 3D 

relative to the image slice. This allows the user to ro- 

tate freely, preserving the location and visibility of the 

tensor. 

In a similar way, the user can drag the cursor along 

the image and observe the changes in the ellipsoids at 

each point in space. By not sticking the ellipsoids as 

in Figure 6, the user can watch the tensor mold to the 

layers and identify discrepancies this way. 

4.2 Axis-aligned panels 

Placement of ellipsoids along an axis-aligned panel (see 

Figure 7) shows an overall distribution of tensor clus- 
ters. This process involves discretizing tensors along a
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Figure 7. A panel of tensor ellipsoids. Each ellipsoid represents a metric tensor, and is equally sampled along the x-axis panel. 

The closeup emphasizes the variation in shape as well as angle of each ellipsoid at each point in space. 

3D seismic panel, allowing the user to qualitatively as- 

sess many tensors simultaneously. From a macroscopic 

viewpoint, this will enable the user to grab a broad 

perspective of the underlying structure. While Figure 7 

shows ellipsoids attached to a single panel, displaying el- 

lipsoids on all three axis-aligned panels is a reasonable 

interpretation method as well. 

The caveat of this approach is that ellipsoids will 

not necessarily fall directly on a point of interest. Be- 

cause the ellipsoids are evenly sampled along the panel, 

the user is only permitted to see tensors that lie on that 

sampling interval. For a more detailed survey of tensor 

ellipsoids, the point-and-click approach is more effective. 

5 CONCLUSIONS 

Displaying tensor fields is an ongoing topic of research 

in the field of visualization. The inherent problem with 

displaying tensors is due to the amount of information 

contained in each sample. In geophysical applications of 

image processing, tensors are derived from the seismic 

images in order to design structure-oriented operations. 

For the purpose of quality assessment, we choose to dis- 

play these tensors as glyphs shaped as ellipsoids. 

Constructing ellipsoids from tensors works in our 

favor, as our metric tensors fit this geometric relation- 

ship. By performing an eigen-decomposition of the ten- 

sor matrix, we obtain three orthonormal eigenvectors 

and their corresponding eigenvalues, which can be rep- 

resented as the three principle axis directions and their 

corresponding radii. Expediting the process involves 

precomputing the vertices of a unit sphere, and per- 

forming both a rotation and scaling matrix. 

Because our tensors are derived from the seismic 

image, we show that the shape of the ellipsoid relates to 

the local orientation of the image. Flat layers yield disc- 

shaped, oblate ellipsoids, and isotropic environments are 

more spherical. Ellipsoids must have the same strike and 

dip of the surrounding area. 

We demonstrate two methods of displaying tensor 

fields: the first dynamically selects ellipsoids at a clicked 

voxel; the second involves discretizing ellipsoids along 

an axis-aligned panel. Both techniques provide intuitive 

visualization of the geologic substructure, with point- 

and-click placement allowing for detailed investigation 

of a specific point. 
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Figure 1. Slices of a 3D seismic image (a) with P-wave velocities measured in boreholes and an image-guided 3D interpolation 

(b) of those measured velocities. 

ABSTRACT 

A blended neighbor method for image-guided interpolation enables resampling 
of borehole data onto a uniform 3D sampling grid, without picking horizons 
and without flattening seismic images. Borehole measurements gridded in this 
way become new 3D images of subsurface properties. Property values conform 
to geologic layers and faults apparent in the seismic image that guided the 
interpolation. 
The freely available Teapot Dome data set, which includes a 3D seismic image, 
horizons picked from that image, and numerous well logs, provides an ideal 
demonstration of image-guided interpolation of borehole data. In this example, 
seismic horizons picked by others coincide with thin layers apparent in the new 
3D images of interpolated borehole data, even though the horizons were not 

used in the interpolation process. 

Key words: seismic image well logs interpolation interpretation 

1 INTRODUCTION 

Seismic images are often used to guide the interpola- 

tion of subsurface properties that are measured more 

directly and (usually) more precisely in boreholes. Fig- 
ure | provides an example for a 3D seismic image and 

sonic (P-wave velocity) logs from the Teapot Dome oil- 

field in Wyoming. These data are provided by the Rocky 

Mountain Oilfield Test Center, a facility of the U.S. De- 

partment of Energy (Anderson, 2009). Figure lb shows 
interpolated velocities, displayed with translucent color 

so that the corresponding three slices of the 3D seismic 

image are visible as well. At depths where sonic logs are 

available, the interpolation of velocities is guided by the 

seismic image. 

In a more conventional seismic interpretation, we 

might first pick horizons corresponding to coherent re-



194 D. Hale 

Ve
lo
ci
ty
 
(k

m/
s)

 

    

Ve
lo
ci
ty
 
(k

m/
s)

 

(b) 

Figure 2. Two low-velocity layers in the 3D interpolated velocity image conform to the Crow Mountain (a) and Tensleep (b) 

horizons that were picked interactively (by others) from the 3D seismic image. Only the seismic image, not the horizons, was 
used to guide the 3D interpolation of the velocity logs. 

flections in the seismic image. Two examples are shown 

in Figure 2. These two horizons correspond to the Crow 

Mountain and Tensleep formations, and are provided as 

part of the Teapot Dome data set. Typically, we would 

pick horizons like these interactively, with or without 
help from automatic event-tracking software. One rea- 

son we might construct horizon surfaces like these is to 

facilitate interpolation of properties measured in bore- 

holes. 

I interpolated the velocities shown in Figure 2 (and 
in Figure 1b) without using horizons. Instead, I used 
the seismic image to automatically and more directly 

guide 3D interpolation of the velocity logs. Although 

the horizons in Figure 2 were not used, they coincide 

with low-velocity layers apparent in the 3D interpola- 

tion shown in Figure 1b. 

An obvious advantage of image-guided interpola- 

tion without horizons is that we save the time and ef- 

fort of picking horizons. The savings may be significant, 

as seismic processing and interpretation have become 

interwoven parts of an iterative seismic imaging and in- 

version process. Another advantage in using a 3D seis- 

mic image directly is that we simultaneously interpolate 

at all locations between and on horizons that we might 

have picked. A third advantage is that our interpolation 

may be guided by images of geologic features, including 

unconformities and diapirs, that may be difficult to rep- 

resent accurately and efficiently with picked surfaces. 

Some of these advantages may be obtained by first 

flattening a seismic image (Stark, 2004; Lomask et al., 

2006). By removing structure from a 3D image, flatten- 

ing creates a stack of simpler 2D interpolation problems, 

like those we today solve routinely for 2D maps corre- 

sponding to picked horizons. However, automatic flat- 

tening as described by Stark (2004) and Lomask eé al. 
(2006) is perfomed using vertical shifts that may dis- 
tort distances measured within horizontal slices of a flat- 

tened image (Lee, 2001). Moreover, vertical shifts often 
cannot account for intrusions, such as overhanging salt 

diapirs; and flattened images are at best ambiguous in 

the presence of unconformities caused by erosion. Fi- 

nally, flattening highlights stratigraphic features, such 
as channels, in 3D seismic images; and we may wish to 

use those features to guide the sequence of 2D interpo- 

lations. In other words, image-guided interpolation may 

be desirable even after flattening. 

The purpose of this paper is to demonstrate image- 

guided interpolation of borehole data, without flatten- 

ing and without picking horizons. I first review the 

blended neighbor interpolation method described by 

Hale (2009) using a 2D seismic image. I then describe 
the application of this method to the 3D seismic im- 

age and well logs from the Teapot Dome data set, and 

illustrate the method with several examples. Finally, I 

discuss current limitations and potential extensions of 

image-guided interpolation. 

2 IMAGE-GUIDED INTERPOLATION 

Let us assume that spatially scattered data to be inter- 

polated are a set 

F = {fis far fx} (1) 
of kK known sample values f, € R that correspond to a 

set 

XH = {x1,X2,.-.,xK} (2) 

of K known sample points x, € R”. Together these two 

sets comprise a set 

K={(fi,*1), (fa, X2),..-,(fx,*xK)} (3) 

of K known samples. These samples may be scattered 

such that the n-dimensional sample points in the set



& may have no regular geometric structure. The classic 

interpolation problem is to use the known samples in 

K to construct a function g(x) : R” — R, such that 

a(xk) = fr. 
As stated, this problem has no unique solution; 

there exist an infinite number of functions q(x) that sat- 
isfy the interpolation conditions g(x.) = fx. Additional 
criteria may include measures of smoothness, robust- 

ness, and efficiency. Because tradeoffs exist among such 

criteria, a variety of methods for interpolating scattered 

data are commonly used today. 

In this paper I add the requirement that the in- 

terpolation should conform to features in a uniformly 

sampled image, as in Figures 1 and 2. That is, the in- 

terpolation must be image-guided. 

2.1 Blended neighbor interpolation 

The blended neighbor method (Hale, 2009) was devel- 
oped specifically to facilitate image-guided interpola- 

tion. This process consists of two steps: 
  

Step 1: solve the eikonal equation 

V t(x)-D(x) Vi(x)=1, x€X; 

t(x.)=0, xeEX (4) 

for 

t(x): the minimal time from x to the nearest 
known sample point x,, and 

p(x): the value f; corresponding to the sample 

point x; nearest to the point x. 

Step 2: solve the blending equation 

1 
a(x)—5V- t?(x)D(x) V a(x) = p(x), (5) 

for the blended neighbor interpolant q(x).       

Here, time is simply a short word for non-Euclidean 

distance. By this measure of distance, a sample point x, 

is nearest to a point x if the time é(x) along some path 
to x; is less than that for any other sample point. In step 

(1), I compute this minimal-time map t(x) by solving 
the eikonal equation 4. 

The metric tensor field D(x) provides the 
anisotropic and spatially varying coefficients of that 
eikonal equation. Intuitively, we must choose the ten- 

sor field D(x) so that, by our time measure of non- 
Euclidean distance, two points within the same geologic 

formation are near, while two points in different forma- 

tions are much farther away. In this way, known sam- 

ple values f, for sample points x, that are geologically 

nearby are given the most weight in any interpolated 

value q(x). 
In step (1), as I compute the time ¢(x) from each 

point x to the location x; of the nearest known sample, 

I also record the value p(x) = fx of that nearest known 
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sample. The function p(x) is therefore a nearest neighbor 

interpolant. 

In step (2), I compute the blended neighbor in- 

terpolant g(x) by smoothing the nearest neighbor in- 

terpolant p(x), and the extent of smoothing is con- 
trolled by the time map t(x). At any known sample 

point x,;, equation 4 states that ¢(x,) = 0, so that no 

smoothing is performed, and equation 5 becomes simply 

q(x) = p(xk) = fx. In other words, the function q(x) 
interpolates exactly the known sample values. 

Figure 3 illustrates the process of blended neigh- 
bor interpolation guided by a 2D seismic image. In this 

example I specified the 21 known samples illustated in 

Figure 3a. (For clarity, each sample is plotted with an 

opaque disk larger than the image pixel that represents 

the sample value.) The values f, € (0, 1] in this example 
are arbitrary; I chose them to alternate vertically, while 

generally decreasing from left to right. 

Figure 3b shows the time map t(x) computed in 
step (1) for these known samples. The time map is dis- 
played with translucent color on top of the seismic image 

displayed with shades of gray. Times are smallest near 

the known sample points x; and largest in the corners 

that are farthest from any of those points. Contours of 
constant-time are not circular, because they are warped 

by the metric tensor field D(x). As described below, I 
computed this tensor field so that times would increase 

slowly in directions in which the seismic image is most 

coherent, while increasing rapidly near strong reflections 

and faults. 

While computing the times ¢(x) in step (1), I also 
computed the nearest neighbor interpolant p(x) shown 
in Figure 3c. As expected, this interpolant conforms to 

structure in the seismic image, but it is discontinuous at 

locations x for which times £(x) to two or more nearest 
known sample points x, are equal. 

These discontinuities are removed by solving the 

blending equation in step (2), which yields the contin- 
uous blended neighbor interpolant q(x) shown in Fig- 
ure 3d. Contours of constant color are well aligned with 

structures and faults in the seismic image, and interpo- 

lated values (colors) match the known sample values fx 
at the known sample points xx. 

As in the eikonal equation 4, the coefficients D(x) 
in the blending equation 5 are anisotropic and spatially 

varying. Therefore, the direction and extent of blending 

of the nearest neighbor values in step (2) depend on the 
metric tensor field D(x), in addition to the time map 
i(x) computed in step (1). 

2.2 Computing the metric tensor field 

As discussed above, both steps (1) and (2) of blended 
neighbor interpolation are guided by a metric tensor 

field D(x). Blended neighbor interpolation becomes 
image-guided when we compute this tensor field from 

an image.
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Figure 3. A simple example of image-guided 2D interpolation. For a set K of known (here, painted) samples (a), we first 

use equation 4 to compute the time map (b) and nearest neighbor interpolant (c), and then solve equation 5 for the blended 
neighbor interpolant (d). 

I compute the metric tensor field D(x) from a seis- 
mic image by first computing structure tensors S(x). As 
described by van Vliet & Verbeek (1995) and Fehmers 
& Hécker (2003), these structure tensors are spatially 
smoothed outer products of image gradient vectors. In 

n dimensions, each structure tensor S is a symmetric 

positive-definite (SPD) n x n matrix, e.g., 2 x 2 for 2D 

images, and 3 x 3 for 3D images. I compute the eigen- 

vectors of the metric tensors D(x) to be the same as 
those in the structure tensors S(x), but I modify the 
eigenvalues. 

Equations 4 and 5 imply that the eigenvalues of 

D(x) have units of velocity squared. I scale the tensor 
field D(x) so that the maximum eigenvalue (maximum 
velocity squared) for any of these tensors is one. Eigen- 

values less than one therefore imply slower velocities and 

larger times in directions of the corresponding eigen- 

vectors. Times will be smaller in directions for which 
velocities (eigenvalues) are faster (larger). 

In the 2D example of Figure 3, I computed the met- 

ric tensor field D(x) from a structure tensor field S(x) 

by 

S~*(x) 

I computed the constant scale factor s so that the max- 

imum eigenvalue in the metric tensor field D(x) is one. 
The function c(x) is a measure of coherence or sem- 
blance (e.g., Bahorich & Farmer, 1995), computed for 

each image pixel along the slope of the most linear 

feature at that pixel. Any such measure in the range 

0 < c(x) < 1 could be used. The effect of the divisor 
1 — c(x) is to increase the eigenvalues of D(x), thereby 
decreasing times t(x), between locations where features 
in images are most coherent. 

Note that each matrix D in the metric tensor field 
D(x) is SPD, because the eigenvalues of each inverse 
matrix S~! in equation 6 are reciprocals of the corre- 

sponding positive eigenvalues of an SPD matrix S. 
I chose the values and colors in Figure 3 to highlight 

the ability of image-guided interpolation to conform to 

structures and faults apparent in a seismic image. In 

practice we might interactively paint values that are



more realistic. Alternatively, the known samples might 

correspond to geophysical data, such as well logs. 

3 TEAPOT DOME EXAMPLE 

The freely available Teapot Dome data set, which in- 

cludes a time-migrated 3D seismic image and hundreds 

of well logs (Anderson, 2009), enables a realistic demon- 
stration of image-guided 3D interpolation of borehole 

data. 

3.1 Seismic image 

To reduce the large number of zero traces in the 3D 

seismic image, I rotated and trimmed the seismic sur- 

vey coordinate rectangle, as shown in Figure 4. As illus- 

trated by the constant-time slice shown there, roughly 

half of the traces in the original 3D seismic image are 
zero. After resampling to a spatial grid aligned with 

the solid (red) coordinate rectangle, a smaller fraction 
of traces are zero, and the spatial coordinate axes are 

more nearly aligned with the anticlinal structure appar- 

ent in the. image. The original spatial sampling intervals 

are 110 ft in both inline and crossline directions. I used 

2D sinc interpolation to interpolate traces on the resam- 

pled grid with spatial sampling intervals of 25 m in both 

directions. 

In the original seismic survey coordinate system, 

the (east-west) axis is the inline direction, and the longer 
(north-south) axis is the crossline direction. Although 
the original and resampled coordinate grids are not 

aligned (because of the rotation in the coordinate trans- 
formation), I hereafter refer to the shorter (northeast- 
southwest) resampled coordinate axis as the inline di- 
rection and the longer (northwest-southeast) one as the 
crossline direction. 

Figure 5 shows two sets of three orthogonal slices 
of the resampled seismic image, after conversion of the 

vertical axis from time to depth. (I discuss the time- 
to-depth conversion process in the next section.) In a 

typical 3D seismic image, many such slices are possible. 

I chose these slices for their intersections with structural 
features apparent in the image and with wells. 

3.2 Well logs 

Well logs in the Teapot Dome data set are provided in 

two groups. The numerous so-called “shallow” wells do 

not penetrate to the depths displayed in Figure 5, None 

of the “deeper” wells extends to the bottom depth (2.2 

km) shown there, and less than twenty of them extend 
to the depth of the 1.5 km slice shown in Figure 5b. In 
the examples shown in this paper, I ignored all borehole 

data provided with the shallow wells. The velocity logs 

displayed in Figure | are those available for the deeper 

wells. 
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Figure 4. Original (dashed blue) and resampled (solid red) 

coordinate rectangles for the Teapot Dome data set. The 

(dotted green) polygon is the boundary of the Teapot Dome 
oilfield. The constant-time (0.95 s) slice shown here illus- 
trates the anticlinal structure apparent in the 3D seismic 

image. 

For the purpose of demonstrating image-guided in- 

terpolation, I selected four types of well logs: P-wave 

velocity, density, porosity and gamma ray. 

Well logs are provided in LAS (Log ASCII Stan- 
dard) format, and directional surveys are provided for 

boreholes that are not vertical. I performed only mini- 

mal pre-processing of the well logs. Specifically, I used 

elevations (of the kelly bushing, derrick floor, etc.) and 
directional survey data to convert distances measured 

along boreholes to inline, crossline and depth coordi- 

nates in the resampled seismic coordinate system. I dis- 

carded all logs with missing or clearly invalid elevation 

data, and all logs not entirely contained within the spa- 

tial boundaries of the resampled seismic image volume 

shown in Figure 5. 

1 also discarded entirely any well logs that contain 

clearly erroneous values: velocities outside the range 

[0.2,20] km/s, densities outside the range [0.5, 10.0} 
gm/cc, porosities outside the range [0,0.8], and gamma 
ray radioactivies outside the range [0,300] API units. 
These bounds are broad and were chosen to exclude 

only those logs that contained data that are obviously



198 D. Hale 
In

li
ne

 
(k
m)
 

Am
pl
it
ud
e 

De
pt
h 

(k
m)
 

  

Crossline (km) 

(a) 

Inline (km) 

In
li
ne
 
(k
m)
 

Am
pl
it
ud
e 

De
pt
h 

(k
m)
 

  

Crossline (km) 

(b) 

Inline (km) 

Figure 5. Two sets (a) and (b) of three orthogonal slices of the 3D seismic image used to guide interpolation of Teapot Dome 

borehole data. The horizontal constant-depth slice at 1 km (a) is intersected by many more wells than is the deeper slice at 1.5 

km (b). 

invalid. As shown below, the remaining well logs cer- 

tainly contain measurements with significant errors, and 

those errors are especially apparent after image-guided 

3D interpolation. 

Whereas well logs are sampled every six inches 

along the boreholes, the depth sampling interval for the 

seismic image is 4 m. This difference in spatial sampling 

intervals (roughly a factor of 25) raises an important 

question. How finely should we sample the interpolated 

borehole data? 

3.3 Initial gridding of well logs 

Interpolation on a fine grid that would preserve all de- 
tail in the well logs would be about 25 times more costly 

than interpolation on the vertically coarser seismic grid. 

This high cost might be reduced by interpolating for 

only a subset of the seismic image and well data. For 

computational efficiency and convenience in this demon- 

stration, I sampled interpolated values using the sam- 

pling intervals of the seismic image: 25 m in both inline 

and crossline directions, and 4 m in depth. Here the in- 

terpolation grid is that of the 3D seismic image. 

For each type of log — velocity, density, porosity 

and gamma ray — I obtained the set of known samples 

defined by equation 3 with a simple binning and averag- 

ing procedure. First, I rounded the spatial coordinates 

of each well log sample to the coordinates of the near- 

est bin in the interpolation grid. Each known sample 

location x; therefore corresponds to one such bin, and 

each known sample value f, is the average of all well 

log samples for which x; is the nearest bin. After this 

binning and averaging procedure, only those bins in the 

interpolation grid that are intersected by well logs of 

the appropriate type have values. Values for other bins 

in the grid are unknown and will be interpolated using 

the two-step process of equations 4 and 5. 

3.4 Computing the tensor field 

Before solving equations 4 and 5, we must first specify 

a metric tensor field D(x). As in the 2D example of 
Figure 3, I derived D(x) from structure tensors S(x) 
computed from the seismic image. For the 3D seismic 
image displayed in Figure 5, each structure tensor S is 

a 3x3 SPD matrix with eigen-decomposition 

S = ,uu7 + Ayvv" + Awww", (7) 

where Ax, A, and Ay are the eigenvalues and u, v and 

w the corresponding eigenvectors of S. 

Let us label the eigenvalues and eigenvectors of S 

so that Au > Av > Aw > 0. Then, eigenvectors u, cor- 

responding to the largest eigenvalues A,.,, indicate direc- 

tions in which image gradients are highest, orthogonal 

to features that are locally linear or planar. The eigen- 

vectors w, corresponding to the smallest eigenvalues Aw, 

will be aligned with locally linear features, such as chan- 

nels and the intersections of geologic faults and layers, 

in seismic images. Both eigenvectors v and w lie within 

the planes of any locally planar features. 

In other words, for each image sample, the or- 

thonormal eigenvectors u, v and w specify the local ori- 

entation of the predominant image feature. The corre- 

sponding eigenvalues X.., Ay and A contain information 

about the shape of that feature. For example, locally lin- 

ear features correspond to eigenvalues Ay © Ay >> Aw. 

For locally planar features, A, >> Av & Aw. 

The eigenvalues A, Ay and A, of structure tensors
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Figure 6. Image-guided nearest neighbor interpolation of velocity (a), density (b), porosity (c) and gamma. ray (d) logs. Slices 

here correspond to those displayed for the seismic image in Figure 5a. 

S are proportional to the magnitudes of image gradi- 

ents squared, and therefore depend on the amplitudes 

of events in seismic images. Geologically, weak events 

may be as significant as strong ones; important geologic 

interfaces may or may not correspond to large contrasts 

in acoustic impedance. 

Therefore, in image-guided interpolation, I discard 

the eigenvalues Au, Ay and Aw of the structure tensors 
S and use normalized local measures of semblance (co- 
herence) to compute metric tensors 

D = A3uu’ + A2vv"? + Aiww’, (8) 

such that 0 < A3 < A2 < Ai <1. 

Each eigenvalue 4; corresponds to a semblance of 

image samples measured along a 1D curvi-linear trajec- 

tory defined by eigenvectors w. Likewise, each eigen- 
value Az corresponds to a semblance of image samples 

along a 2D curvi-planar surface defined by the eigenvec- 

tors v and w. Finally, each eigenvalue 3 corresponds 

to a semblance of image samples within a local isotropic 

3D window. 

Recall that the eigenvalues of D have units of ve- 

locity squared. (See equation 4.) In equation 8 these 
eigenvalues are semblances, normalized measures of co- 

herence in the range [0,1]. Therefore, at locations and in 
directions where semblance equals one, time in the map 

t(x) is equivalent to Euclidean distance. Time exceeds 
Euclidean distance at locations and in directions where 
semblance is less than one, where image samples are less 
coherent. 

In regions with no seismic image, the dead traces 

in Figure 5, I specified eigenvalues 4; = A2 = 1, 

A3 = 0.01, and eigenvectors u, v and w aligned with 

depth, crossline and inline coordinate axes, respectively.
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Figure 7. Image-guided nearest neighbor interpolation of velocity (a), density (b), porosity (c) and gamma ray (d) logs. Slices 
here correspond to those displayed for the seismic image in Figure 5b. 

These default metric tensors D correspond to planar 

horizontal layering. 

3.5 Nearest neighbor interpolation 

The known samples (f;, xx) obtained by initial gridding 
of well log data and the tensor field D(x) computed 
from the image are the parameters required for step (1) 
of image-guided interpolation. In this step I simultane- 

ously compute both the time map f(x) and the nearest 
neighbor interpolant p(x) by solving a finite-difference 

approximation of the eikonal equation 4. 

Recall that “nearest” here implies nearest in time, 

based on a non-Euclidean distance that is defined by 

the metric tensor field D(x). Because the eigenvalues of 
D(x) are computed from semblances measured in local 
(u, v, w) coordinate systems, times along paths of high 

image semblance (within imaged layers) are relatively 
small, while those along paths of low semblance (across 

imaged faults or layers) are relatively large. 

Figures 6 and 7 display the nearest neighbor inter- 

polants p(x) for four different borehole measurements. 
Again, interpolated values are displayed with translu- 

cent color on top of the seismic image used to guide the 

interpolation. 

For each log type, black dots in the horizontal 

constant-depth slices indicate the intersections of well 

logs with those slices. These dots represent only a tiny 

subset of the well log samples used to perform the 3D 

interpolation. 

Figure 6 shows that a relatively small number of 

wells have velocity logs at a depth of 1 km, while a 

much larger number of wells have density, porosity and 

gamma ray logs at that depth. Well intersections plotted



at a depth of 1.5 km in Figure 7 indicate, for all four log 

types, that a much smaller number of well logs extend 

to this depth. 

For example, Figure 7a indicates that only six ve- 

locity logs extend to a depth of 1.5 km. However, the 

velocity variation seen in the constant-depth slice at 1.5 

km is not the result of interpolating only six logged ve- 
locities. The interpolation is three-dimensional, so that 

many logged velocities above and below this slice con- 
tribute to the interpolated velocities shown there. 

As in the 2D example of Figure 3c, all of the nearest 
neighbor interpolants shown in Figures 6 and 7 exhibit 

discontinuities. I chose the slices displayed in Figure 6 

specifically to highlight some of those discontinuities. 
Most of those discontinuities do not coincide with geo- 

logic faults. Rather, they reflect inconsistencies among 

properties measured within wells and those measured 

within their nearest neighbor wells. 

For example, anomalously low (light blue) porosi- 
ties are apparent in the upper middle part of the verti- 

cal crossline slice in Figure 6c. These low porosities are 

suspect because they are inconsistent with those mea- 

sured in wells that are nearby with respect to the non- 

Euclidean metric tensor field D(x) computed from the 
seismic image. Image-guided nearest neighbor interpo- 

lation may lead us to look more closely at the porosity 

logs of nearby wells, to look for possible sources of error. 

In the same way, we may use consistency with near- 

est. neighbors as a measure of the fidelity of each well 
log sample. For example, the three slices of interpolated 

velocities shown in Figure 6 intersect an apparent high- 

velocity anomaly. These high velocities are likely caused 

by erroneous samples in the nearest velocity log. This 
hypothesis is supported by the fact that the anomaly 

coincides with the shallowest samples, which were ac- 

quired last, for that log. In the well logs provided with 

the Teapot Dome data set, the deepest (first recorded) 
and shallowest (last recorded) samples often exhibit 
anomalous values. 

At depths greater than 1.9 km, large areas of con- 

stant interpolated values are apparent in Figures 6 

and 7. Because no wells extend to these depths, all of 

the well log samples that lie in shallower geologic lay- 

ers appear to be relatively far away, so that the nearest 

neighbor sample value is a poor interpolant. 

3.6 Blended neighbor interpolation 

Step (2) of image-guided interpolation is the solution of 
a finite-difference approximation of the blending equa- 

tion 5. Parameters in this equation include the metric 

tensor field D(x), as well as the time map é(x) and 
nearest neighbor interpolant p(x). Figures 8 and 9 show 

slices of blended neighbor interpolants q(x) correspond- 
ing to the nearest neighbor interpolants p(x) shown in 

Figures 6 and 7. 

As illustrated by these examples, the blending 
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equation 5 smooths the nearest neighbor interpolants, 

and the extent of smoothing is controlled by the time 
map t(x). Little smoothing is performed at locations 

x near the known well log samples, where times t(x) 

are small; more smoothing is performed where those 
times are larger. In step (2) the metric tensor field D(x) 
causes this smoothing to be performed along seismically 

imaged geologic layers, but not across those layers or 

across faults. In this sense, the blending step (2) is an 
averaging of values from neighbors that are geologically 

nearby. 

When solving the blending equation 5, I clipped all 

times in the time map t(x) to be less than 10. Recall 
that, at locations and in directions where semblances 

are highest (that is, where eigenvalues of D equal one), 

one unit of time is equivalent to one spatial sample. 

This time constraint limits the amount of smooth- 

ing performed. Where well log samples are dense, times 

are small anyway, and this limit has no effect on blended 

neighbor interpolants. In regions more sparsely sampled 

by well logs, this limit causes the blended neighbor in- 

terpolant to appear more like the nearest neighbor in- 

terpolant. 

Setting an upper bound on times in the map f(x) is 
analogous to setting an upper bound on the distance at 

which subsurface properties are correlated, as in kriging 
(e.g., Cressie, 1993). The difference here is that distance 
is defined by the metric tensor field D(x). 

This upper bound also reduces the computational 

cost of solving the finite-difference approximation of the 

blended equation 5. For the conjugate-gradient solver 

that I use, that cost grows linearly with times in the map 

t(x). For this example, the computation time required 
to solve the blending equation 5 is a few minutes on 

a modern workstation, roughly one tenth of the time 
required to solve the eikonal equation 4. If times had not 

been clipped, this cost would have been much higher. 

Finally, by limiting the times in the map t(x), we 
limit the range of influence of anomalous well-log values. 
After such values have been found and, if erroneous, cor- 

rected or discarded, we might increase the upper bound 

on times in ¢(x), and thereby permit smoothing over 

greater non-Euclidean distances. 

4 DISCUSSION 

The Teapot Dome example demonstrates the process of 

image-guided 3D interpolation of borehole data. Instead 

of first picking horizons or flattening a seismic image, 

we may use the image to define a non-Euclidean metric 

tensor field that directly guides interpolation. 

4.1 Two interpolants 

In practice both the nearest neighbor and blended 

neighbor interpolants may be useful. The nearest neigh-
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Figure 8. Image-guided blended-neighbor interpolation of velocity (a), density (b), porosity (c) and gamma ray (d) logs. Slices 
here correspond to those displayed for the seismic image in Figure 5a. 

bor interpolant may be used to detect inconsistencies in 

borehole data acquired within the same seismically im- 

aged geologic layers. Well log sample values that are in- 

consistent with those of geologically nearby log samples 

may be erroneous and perhaps should be discarded. 

For example, we might compute, for each well log 

sample, the difference between the sample value and the 

mean of its nearest neighbor values. We might then dis- 

card log samples for which that difference exceeds some 

multiple of the standard deviation of the nearest neigh- 

bor values. We could also use more robust statistical 

measures in similar ways. 

The nearest neighbor interpolant is also a useful 

first step toward computing the blended neighbor inter- 
polant. Within seismically imaged layers, the blended 

neighbor interpolant is continuous and therefore geolog- 

ically more reasonable than the discontinuous nearest 

neighbor interpolant. 

The blended neighbor interpolants shown in Fig- 

ures 8 and 9 are consistent with the borehole data 

and structures apparent in the corresponding seismic 

image. These interpolants are also consistent with ex- 
pected trends. Velocities tend to increase with depth 

and porosities tend to decrease with depth. Also evi- 

dent are some significant deviations from those trends. 

For example, the strong reflector at a depth of 

about 1.5 km coincides with a significant change in both 
velocity and density, the factors of acoustic impedance. 

A thin layer at that depth with relatively low velocity, 

low density, high porosity, and low gamma ray radioac- 

tivity corresponds to the Crow Mountain sandstone for- 

mation marked by the light-blue horizon displayed in
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Figure 9. Image-guided blended-neighbor interpolation of velocity (a), density (b), porosity (c) and gamma ray (d) logs. Slices 
here correspond to those displayed for the seismic image in Figure 5b. 

Figure 2a. The low (dark blue) density of this formation 
is especially visible in the slices of interpolated densities. 

As another example, the Tensleep sandstone for- 

mation marked by the light-yellow horizon in Figure 2b 

corresponds to the low-velocity (light yellow) layer ap- 
parent at a depth of about 1.8 km/s in Figures 8 and 9. 

At the depths of both the Tensleep and Crow Moun- 

tain formations, the interpolated velocities shown here 

depend on velocities logged in only six wells. 

After interpolating relevant borehole data onto a 
shared uniform 3D sampling grid, thereby creating 3D 

images of subsurface properties, we can easily combine 

them to create other images. For example, we might use 

the velocity and density images to compute a 3D image 

of acoustic impedance. 

4.2 Time-to-depth conversion 

Before seismic images can be used to guide interpola- 

tion of borehole data, the vertical axis of those images 

must be converted from vertical two-way time to depth. 

This conversion requires a uniformly sampled function 

r(x) = T(x, y, z) that specifies, for each point with hor- 
izontal coordinates z and y and depth coordinate z, the 

corresponding vertical two-way time 7. Given the uni- 

formly sampled function r(z, y, z), it is easy to convert 
a time-migrated seismic image s,(x,y,7) from time to 

depth using the mapping 

82(@,y, z) = 8,[2,y,T(2,y, Zz), (9) 

where s.(z, y, z) is the seismic image after time-to-depth 
conversion. The more difficult task is to construct the 

uniformly sampled function 7(z, y, z).
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In the Teapot Dome example, that function was 

constructed in a typical manner, by correlating seis- 

mic horizons picked on time-migrated images with cor- 

responding features in well logs (D. Witte, personnel 

communication, 2009). Specifically, for all well logs in- 

tersecting a seismic horizon, points with horizontal co- 

ordinates x and y and times 7 were chosen from the hori- 

zon, and corresponding points with approximately the 

same z and y coordinates and depths z were chosen from 
the log. Depths z where then interpolated, first within 

each horizon for all z and y, using a minimum-curvature 

algorithm (Briggs, 1974), and then vertically between 
horizons for all times, using a simple linear interpola- 

tion, to obtain a uniformly sampled function z(x,y, 7). 
A simple inverse linear interpolation was then used to 

obtain the required function 7(z, y, z). 
Image-guided interpolation suggests an alternative 

to this procedure that does not require picking seis- 

mic horizons. As in the typical procedure, we may first 

choose points (x, y, 7) from the seismic image and corre- 

sponding points (x, y, z) from the well logs. These points 

comprise scattered known samples of z(x,y, 7) that we 

may interpolate, using the time-migrated 3D seismic im- 

age s,(z,y,7) to guide our interpolation. Again, inverse 
linear interpolation would yield the required uniformly 

sampled function r(z, y, z). 
Other alternatives include direct interpolation of 

vertical traveltimes 7 measured in checkshot surveys or 

vertical seismic profiles. In all of these alternatives, we 

replace three steps — (1) horizon picking, (2) interpo- 
lation within horizons, and (3) interpolation between 
horizons — with image-guided 3D interpolation. 

4.3 Other interpolation methods 

I developed the two-step blended neighbor method for 

image-guided interpolation to be both intuitive and 

computationally efficient. The method is intuitive be- 

cause the blended neighbor interpolant is a smoothed 

version of the simplest nearest neighbor interpolant. 

The method is efficient primarily because it does not 

require the computation of times (non-Euclidean dis- 

tances) from every interpolation grid point x to every 

known sample point xx. 

Blended neighbor interpolation requires only the 

time t(x) to the nearest (smallest in time) known sample 
point x,. Computation of the time map t(x) displayed 
in Figure 3b does not require times from every interpo- 

lation grid point x to every known sample point xx. 

Some well-known alternative methods, such as in- 

terpolation using Green’s functions or radial basis func- 

tions (e.g., Wessel & Bercovici, 1998) or kriging (e.g., 
Cressie, 1993), require many more distance computa- 

tions. For a constant metric tensor field D(x) = D, the 
cost of computing these many distances is insignificant. 

However, the cost of computing non-Euclidean distances 

in a spatially varying metric tensor field D(x) is much 

higher, requiring numerical solution of the eikonal equa- 

tion 4. This high cost makes many well-known alterna- 

tive methods impractical for image-guided 3D interpo- 

lation of borehole data. 

4.4 Limitations 

When interpolating velocities and densities, properties 

that determine acoustic impedance, we should use seis- 

mic amplitudes to help estimate these properties be- 

tween boreholes. However, as described here, image- 

guided 3D interpolation uses only estimates of image 

structure and semblance to guide interpolation of bore- 
hole data. It does not directly use the amplitudes of 

seismic reflections. 
Seismic reflection amplitudes are especially use- 

ful in quantifying rapid vertical variations in velocities 

and densities. Those amplitudes are often less useful in 

quantifying long-wavelength vertical variations, because 

low frequencies are typically absent in recorded seismo- 

grams. One possible use of image-guided 3D interpo- 

lation would be to provide an a priori long-wavelength 

model for a more sophisticated joint inversion of seismic 

amplitudes and borehole data. 

Another current limitation of image-guided inter- 

polation is its reliance entirely on structure tensors S(x) 
computed from seismic images. While such automatic 

estimates of the orientations and shapes of subsurface 

structures are typically more reliable than reflection am- 

plitudes, seismic interpreters routinely pick reflectors in 

noisy 3D seismic images for which automatic methods 

would fail. Moreover, not all subsurface properties con- 

form to reflectors in seismic images. In practice a semi- 

automatic interpolation process, one guided by both 

seismic images and human interpreters, is likely to be 

optimal. 

5 CONCLUSION 

Notwithstanding its current limitations, image-guided 

interpolation provides an attractive new method for us- 

ing a 3D seismic image to interpolate subsurface proper- 

ties measured in boreholes. The method requires only a 

metric tensor field, which I compute automatically from 

the image, and the borehole data to be interpolated. In 

contrast to methods widely used today, image-guided 

interpolation does not require picking seismic horizons 

or faults; nor does it require image flattening. 

The examples for the Teapot Dome data shown in 

this paper illustrate that the method produces inter- 

polants consistent with seismic horizons picked by oth- 

ers. For depths where borehole data have been acquired, 

the most significant errors in the interpolants likely cor- 

respond to errors in well logs. The nearest neighbor in- 

terpolant naturally highlights such errors, as they cause



significant lateral discontinuities in interpolated subsur- 

face properties at locations halfway (in time) between 

well logs. This observation suggests that we might use 

nearest neighbor interpolants to quantify the spatial 

consistency and, hence, the fidelity of well log samples. 

Unlike nearest neighbor interpolants, blended 

neighbor interpolants are continuous, the latter being 

simply smoothed versions of the former. The extent of 

smoothing depends on times, non-Euclidean distances, 

to the nearest borehole measurements. By limiting these 

times to not exceed a specified maximum, we can reduce 

both the influence of erroneous measurements and the 

computational cost of image-guided interpolation. 
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Figure 1. 3D surfaces generated by two implementations of natural neighbor interpolation: (a) the proposed implementation 

and (b) compound signed decomposition implementation. 

ABSTRACT 
Natural neighbor interpolation is a powerful method for data estimation in geo- 
science applications where measurements are scattered. However, this method 
is not easy to implement, and some simple implementations are numerically un- 
stable. We describe a stable and fast implementation and make some in-depth 
comparisons with existing implementations. 

Key words: interpolation, natural neighbor, Voronoi diagram, Delaunay tri- 

angulation 

1 INTRODUCTION 

Interpolation of scattered data is fundamental for many 

applications in geoscience. These applications include 

numerical modeling of mantle convection, crustal defor- 

mation and associated thermal conduction/advection, 

seismic tomography, and the interpolation of topo- 

graphic, gravitational, magnetic or other data fields 

(Sambridge et al., 1995). 
For a given set of known samples, using different in- 

terpolation methods may yield totally different results. 

However, if we implement a single method in differ- 

ent ways, we may also get different results. Surfaces in 

Figure 1 are interpolated using two implementations of 
a single method called natural neighbor interpolation. 

The spike in surface (b) shows a numerical instability. 
This leads us to the principle focus of this paper: im- 

plementation is a crucial and often overlooked issue in 

natural neighbor interpolation. 

Generally, the purpose in interpolation of scattered 

data is to determine values of any point in space, using 

N pairs (xi, fi), (¢ = 1,2,...,N) as inputs, where x; € 
R” is the coordinate n-tuple of the ith known sample 

point and f; € R is the corresponding data value. 

Numerous interpolation methods exist in the liter- 

ature. Examples include inverse-distance weighted av- 

eraging (IDWA), kriging, adaptive normalized convo- 

lution (ANC), radial basis function (RBF) based in- 
terpolation, and natural neighbor interpolation. These 

methods can be divided into two categories, depending 

on which points are used to determine the interpolated 

value at a point x. These two categories are global and 

local interpolations. In global interpolations, all known 

data are used. The computational cost of global meth-
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ods increases with the amount of known data. In con- 

trast, local techniques only use part of the data that 

fall within a defined neighborhood of x. Therefore, if 
the number of known samples increases, the cost does 

not grow so quickly. 

IDWA and RBF based interpolations were initially 

introduced as global methods. However, local versions 
exist based on some simple definitions of local neigh- 

borhoods. For example, one can use a fixed number of 

nearest data (usually called k-nearest neighbors) to per- 
form the interpolation. Alternatively, one can simply use 

all data lying inside a circle centered at x with fixed 

radius. Since data in geoscience applications are often 

distributed sparsely and anisotropically, these simple lo- 

cality definitions may be inadequate. Natural neighbor 

interpolation, a local method based on the Voronoi dia- 

gram (Sibson, 1981; Berg et al., 2008), has an intrinsic 
advantage in dealing with geoscience interpolation prob- 

lems (Watson et al., 1987; Watson, 1992; Foster and 

Evans, 2008). The Voronoi diagram adapts automati- 
cally to the spatial distribution of scattered geoscience 

data. 

There have been a number of implementations pro- 

posed for natural neighbor interpolation. However, these 

methods are either computationally costly or difficult to 

implement. We propose a fast and stable implementa- 

tion of natural neighbor interpolation. The key idea of 

this implementation is to reuse intermediate results dur- 

ing computation as much as possible. We will describe 

our method after introducing some basic definitions and 

reviewing existing implementations. 

2 NATURAL NEIGHBOR 
INTERPOLATION 

Natural neighbor interpolation was first proposed by 

Sibson (1981). Before we go into further detail about 
this particular interpolation method, let’s consider the 

definitions of the Voronoi diagram and Delaunay trian- 

gulation as well as the relationship between them. These 

concepts are building blocks of natural neighbor inter- 
polation. 

2.1 Voronoi diangram and Delaunay 
triangulation 

The Voronoi diagram of known data sites x,(i = 

1,...,.N) is a space partition (Berg et al., 2008). Each 

site x; is encompassed by a convex polygon V (x;) called 
the Voronoi cell (see Figure 2), which is defined as a set 
of points that are closer to x; than to any other known 

data sites x;(j # 2). If two polygons V(x) and V(x,;) 
share an edge, we call them adjacent cells. For example 

in Figure 2, V(x1) and V(x2) are adjacent, but V(x1) 
is not adjacent to V(x3). 

Simply connecting sites with those in adjacent   

Figure 2. The Voronoi diagram (solid lines) and its dual 
graph—Delaunay triangulation (dashed lines). 

Voronoi cells yields the Delaunay triangulation of the 

sites. (See Figure 2.) The Voronoi diagram and its cor- 
responding Delaunay triangulation are dual (Berg et al., 

2008) which means that 

e Edges in the Delaunay triangulations are perpen- 

dicular to the corresponding Voronoi edge. For example, 

the Delaunay edge which connects x; and x; is perpen- 

dicular to the Voronoi edge shared by cells V(x;) and 
V(x;). If x; and x; are not adjacent, there is no edge 
connecting x; and x;. The Delaunay triangulation is 

unique because the Voronoi diagram is unique. 

e Vertices of Voronoi polygons are circumcenters 

(centers of circles passing through three vertices) of 
corresponding Delaunay triangles. The Voronoi vertex 

shared by cells V(xi), V(x;) and V(x,) is the circum- 
center of Delaunay triangle Ax;x;xx. 

Duality plays an important role in the definition and 

computation of natural neighbor interpolation. 

2.2 Definitions 

Natural neighbors are defined as two sites whose 

Voronoi cells share a common edge. To determine the 

natural neighbors of an interpolation point x, one can 

imagine this point is virtually inserted into the Voronoi 
diagram. This virtual insertion modifies the original 

Voronoi diagram and creates a new Voronoi cell V(x), 
a set of points that are closer to x than to any known 

x;. Figure 3c shows that V(x), V(x2), V(x3), V(x) 
and V(xs) share edges with V(x); consequently, sam- 
ple points x1, X2, x3, X4 and x5 are natural neighbors 

of x. Weighted averaging of the sample values for these 

natural neighbors gives the interpolated value at x. 

Different averaging functions yield a variety of nat- 

ural neighbor interpolants. Among them, Sibson’s inter- 

polant (Sibson, 1981) is the most commonly used one



in natural neighbor interpolation and is defined as 

f(a) = 2a LO), (1) 
where a; is the overlap area corresponding to the known 

data site x;. (See Figure 3c.) The term overlap area 
here refers to the area shared by V(xi) and V(x). [The 
overlap polygon is called the second-order Voronoi cell 

(Sambridge et al., 1995).] In this paper, we consider only 

Sibson’s interpolant. 

If sample point x; lies outside of the convex hull 

of all known sample points, the overlap polygon is un- 
bounded and a; in equation 1 is infinite. Therefore, only 

points that lie inside the convex hull of known sample 

points x; can be interpolated using equation 1. This 

brings about the extrapolation problem. 

2.3 Features and developments 

A number of advantages of natural neighbor interpola- 

tion are discussed in the literature (Sibson, 1981; Wat- 

son et al., 1987; Sambridge et al., 1995; Bobach et al., 

2006; Bobach et al., 2009). Some of these inherent ad- 

vantages allow this type of interpolation to conform well 

to geoscience requirements. Li and Gétze (1999) and 
Foster and Evans (2008) give benchmarks for a num- 
ber of scattered data interpolation methods with geo- 

physical applications. Comparisons show that natural 

neighbor interpolation performs best in their test cases. 

However, significant disadvantages of natural 

neighbor interpolation is that its implementation is rel- 

atively difficult. Several papers are concerned with the 

following implementation issues: 

e simplicity (Park et al., 2006) 
® numerical stability (Hiyoshi, 2008) 

e extrapolation (Park et al., 2006; Bobach et al., 

2009) 
e extension to 3D (Sambridge et al., 1995; Boissonnat 

and Cazals, 2000) 

Except for discrete sibson interpolation (Park et al., 

2006), all of the implementations mentioned above rely 

on the Voronoi diagram or Delaunay triangulation. In 

this paper, we refer to these methods as geometric im- 

plementations. Generally, interpolating a value f(x) at 

an arbitrary point x using a geometric implementation 

requires three steps: 
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(c) 

Figure 3. Three steps of the geometric method for comput- 

ing the value at x. The darker area in (c) is the overlap area 

corresponding to x)
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Natural Neighbor Interpolation (NNI) 

(1) Locate the point x. Does x lie inside the convex 
hull of known data sites? Which Delaunay triangle 
contains x? (See Figure 3a.) 
(2) Determine which triangles will no longer be 

Delaunay triangles if x is added to the Delaunay 

triangulation of known data sites. (Which triangles 
have circumcircles that contain x?) For example, 
shaded triangles in Figure 3b are in this set. 

(3) For all vertices of these triangles (the natural 
neighbors), compute Sibson’s weights. (See 
Figure 3c.)       

Henceforth, we will illustrate different geometric 

implementations by following this three-step process. 

2.4 Extension to 3D 

Natural neighbor interpolation is defined in R”. In prac- 

tice, 2D and 3D natural neighbor interpolations are 

most widely used. Hence, there is a need for an easy 

and efficient extension of a 2D implementation to 3D. 

3D geometric implementations rely on more complex 

data structures, for example, 3D Voronoi polyhedra and 

Delaunay tetrahedra. In 2D, the key to computing Sib- 

son’s weights in step (3) is to determine overlap areas. 

In 3D, one must compute volumes of overlap polyhedra. 

In addition, computational cost is higher in 3D imple- 

mentations. 

In the next section, we will first discuss implemen- 

tations in 2D and then investigate their extensions to 

3D version. 

3 GEOMETRIC IMPLEMENTATIONS 

In 2D, different methods for computing the overlap ar- 

eas in step (3) of NNI lead to different geometric im- 
plementations. Since the vertices of overlap polygons 

are circumcenters of Delaunay triangles, a brute-force 

method for computing Sibson’s weight is to collect the 

centers, and then determine areas of the overlap poly- 

gons. However, this implementation is computationally 

costly. Below, we introduce more efficient implementa- 

tions. 

3.1  Watson-Sambridge 

Watson et al. (1987) and Watson (1992) introduced the 
natural neighbor interpolation into geoscience with this 

implementation, which was first extended to 3D by Sam- 

bridge et al. (1995). Many applications using natural 
neighbor interpolation have adopted this implementa- 

tion (Li and Gétze, 1999). Watson (2001) used the name 
compound signed decomposition as he extended the im- 
plementation to n dimensions and spherical coordinates. 

area = +0.0008325075418331099 

  

(a) 

area = —0.0001533986751351382 

  

(b) 

area = +0.0006791088666979717 

  

(c) 

Figure 4. The computation of the overlap area for x, with 

the Watson-Sambridge implementation.



The compound signed decomposition implementa- 

tion is summarized by the sequence shown in Figure 4. 

To compute the overlap area corresponding to x1, the 

method walks through Delaunay triangles that reference 

x, and other natural neighbors of x. (See Figure 4a and 

b; x1X2X4 and x1X4Xs are such triangles.) Vertices of 
the shaded triangles in Figure 4a and b are circumcen- 
ters. The sign of a triangle’s area is determined by the 
order of its vertices. If its vertices lie in counterclock- 

wise order, the area is positive. In contrast, clockwise 

order yields a negative area. By summing up areas with 

appropriate signs, one can determine areas of overlap 

polygons. (See Figure 4c.) This implementation natu- 

rally combines steps (2) and (3) in the three-step pro- 
cess for NNI. 

Although widely used, this implementation is not 

ideal, as illustrated by the instability shown in Figure 

1b. The spike is caused by rounding errors, numerical 

instability addressed by Hiyoshi (2008). Sambridge et 
al. (1995) emphasize that this instability occurs when 
an interpolation point lies exactly on a Delaunay edge. 

However, in the case shown in Figure 1, the interpo- 

lation point does not lie exactly on a Delaunay edge. 

This singularity is caused by catastrophic cancellation, 

subtracting one large value from another large value, as 

shown in Figure 5. Here, x is close to Delaunay edge 

x1x4. This fact makes the center of the circle passing 

through x, x; and x, distant from x. Note that the cir- 

cumcenter of triangle Ax1xxz lies far outside this figure, 

so that the shaded areas in Figure 5a and b are huge. 

Even when using double precision, 16 significant digits, 

one cannot avoid this catastrophic cancellation in this 

implementation. 

3.2 Braun-Sambridge 

To avoid catastrophic cancellation, Braun and Sam- 

bridge (1995) developed another implementation, which 
computes areas using Lasserre’s method (Lasserre, 

1983). 
By definition, all points inside the overlap polygons 

satisfy a system of linear inequality constraints: 

Ax <b, (2) 

where A is a m x n matrix and b is a vector with n ele- 

ments. Here, m is the number of polygon boundaries and 

n is the dimensionality. In 2D, n = 2. For x, in Figure 6, 

the first bounding edge of the shaded overlap polygon is 

€iC2, the perpendicular bisector of xx1. Other bound- 

ing edges are perpendicular bisectors of x1 x2, X1X4 and 

x1x5. Note that x2, x4 and xs are natural neighbors of 

x and are also adjacent to x; in the Voronoi diagram. 

Lasserre (1983) designed a recursive formula to 
compute volume in n dimensions: 

1 bi x V(n,A,b) = — S° -Vz,(n-1,Ait,b:), (3 (n, ’ ) no Jait| a(n rt t) ( ) 
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1916138.9225 area = +61 

  

area = —6104B1916138.9172 

  
Figure 5. The computation of the overlap area for x4 in 
the Watson-Sambridge implementation when x is close to 

one Delaunay edge.
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Figure 6. Braun-Sambridge implementation. Perpendicular 
bisectors of dashed lines are boundaries of overlap polygons. 

where A; is the reduced matrix obtained from A by 
eliminating the éth variable using the equation a; - x = 

b;, where a; is the ith row by A, b; is the corresponding 

reduced vector and aj: is the éth element of a;. More 

detail can be found in Braun and Sambridge (1995). 
This method avoids the catastrophic cancellation in 

Watson-Sambridge implementation. However, it is com- 

putationally more costly. 

3.3  Hiyoshi 

To overcome the instability in the compound signed 

decomposition implementation, Hiyoshi (2008) presents 
another solution. 

The following typographical errors in his paper 

should be corrected as indicated below. 

e Lemma 2. on page 345 should be 

2: xix : mili,j = Et; (x). 

e In pages 334-337, all P(x) should be I'(x:). 

Hiyoshi’s idea is to replace subtractions in step (3) 
with dot products of vectors. In addition, he does not re- 

strict his implementation to Sibson’s interpolation, but 

he gives a general framework for all natural neighbor in- 

terpolants (for example, the Laplace interpolant). More 

detail can be found in Hiyoshi (2008). Unfortunately, 
this method is much difficult to implement than other 

methods. 

3.4 Boissonnat-Cazals 

Again, to avoid instabilities caused by subtractions in 

computing overlap areas, Boissonnat and Cazals (2000) 

propose another decomposition method. Instead of us- 

ing compound signed decomposition, they decompose 

the polygons into triangles with only positive areas, as 

shown in Figure 7. 

However, the extension to 3D of their decomposi- 

tion is complicated. 

3.5 3D implementations 

All implementations mentioned above, with the excep- 

tion of that by Hiyoshi (2008), have 3D versions. How- 

ever, same 3D versions are complicated and thus diffi- 

cult to implement. 

Compared to the 2D version, the 3D Watson- 

Sambridge implementation maintains a large table to 

store vertex orders, which determine signs of tetrahedra. 

Numerical instabilities present in the 2D implementa- 

tion remain in the 3D version. 
Extending the 2D Braun-Sambridge implementa- 

tion to 3D is more straightforward. The only change 

from 2D to 3D in this method is n = 3 rather than 

n = 2, so that in equation 2 matrix A has 3 columns 

and b has 3 elements. The same recursive scheme can 

be used to compute the volume bounded by the system 

of inequality constraints. 

In Boissonnat-Cazals implementation, some parts 

need to be modified for computing volumes. Instead 
of decomposing 2D overlap polygons into triangles, 

their 3D implementation decomposes overlap polyhedra 

into tetrahedra. The volumes of overlap polyhedra are 

thereby reduced to sums of volumes of tetrahedra. 

4 OUR IMPLEMENTATION 

In this section, we describe an efficient and stable im- 

plementation. Our implementation is similar to the 

Braun-Sambridge implementation and to the Boissonat- 

Cazals implementation, in that it also decomposes over- 

lap polygons into smaller parts. However, instead of de- 

composing polygons into triangles, we compute areas by 

accumulating edge contributions. The key idea of our 

implementation is to reuse edge contributions as much 

as possible. Triangles inside a polygon, like the shaded 

triangles in Figure 7, never appear inside another poly- 

gon. However, edges are always shared by more than one 
overlap polygon, as shown in Figure 8. This fact makes 

our implementation efficient. 

4.1 2D implementation 

Our implementation is simply a stable and efficient 

method for computing the overlap areas a; for the nat- 

ural neighbors. 

As in other implementations of natural neighbor in- 

terpolation, we first find the natural neighbor triangle 

that contains the point x, and then recursively visit ad- 

jacent triangles, taking care to visit no triangle more
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area = +0.00046918156890260094 

  

Figure 7. Illustration of the Boissonnat-Cazals implemen- 
tation for the situation shown in Figure 5. 
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Figure 8. An edge ci01 shared by two overlap polygons. 

This edge has one green endpoint 0; and one blue end- 
point ¢). 0; and c; are the circumcenters of Ax1x4x5 and 

Ax ,xXxX5, respectively. 

Pi 

P3 
Pp2 

Figure 9. Computing area of a polygon by accumulating 

edge contributions. 

than once, until we have visited all natural neighbor 

triangles. 

As in the Watson-Sambridge method, as we visit 
each natural neighbor triangle, we accumulate contri- 
butions to the overlap areas a; for the natural neigh- 

bors z;. However, to avoid catastrophic cancellation, we 

accumulate these overlap areas a; in a different way. 

We use the fact (Gelder, 1995) that the area of any 
polygon with k vertices p;(i = 1..k) is 

k 
1 

A=5 2s X Pit1)s (4) 

where the index i+ 1 is computed modulo k, so that 

Pk+1 = Pi. This formula for area is valid for any planar 

polygon in 2D or 3D (see Figure 9). The area of the
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polygon is the magnitude of the vector sum A, which is 

orthogonal to the plane containing all polygon vertices 

pi. The out-of-plane component of this vector is positive 

if the vertices p; are indexed in counterclockwise order 

when viewed from above the plane. 

All polygon vertices p; in Equation 4 are circum- 

centers of triangles. Some of those triangles are the so- 

called natural neighbor triangles. Let the 0; denote the 

corresponding circumcenters of these triangles. We ac- 

cumulate the contributions of cross products 0; x 0j41 

in the area formula as we visit each natural neighbor 

triangle (see Figure 10). 
Specifically, as we visit each natural neighbor tri- 

angle, we accumulate the contributions of up to three 

cross products in the area formula. Each such pair cor- 

responds to the natural neighbor triangle and one ad- 
jacent triangle, if the latter exists and is also a natural 

neighbor triangle. The circumcenters of these two nat- 

ural neighbor triangles contribute one cross product to 

the area formula. Each such cross product contributes 

to the overlap areas for the two natural neighbors shared 
by the two natural neighbor triangles. 

Because each triangle has three edges, it may have 

up to three adjacent triangles, and there exist up to 

three possible contributions of the sort 0; x 0j;41. There- 

fore, up to three overlap areas a; may be updated as we 

visit each natural neighbor triangle. 
For each edge of a natural neighbor triangle that 

we visit, if we find that an adjacent triangle does not 

exist or is not a natural neighbor triangle, then we know 

that the corresponding edge must be one of the natu- 
ral neighbor edges e;. (Indeed, this is how we find the 

natural neighbor edges, as we recursively visit natural 

neighbor triangles.) We store each such triangle edge e; 
that we find in a circular linked list of edges stored in 

counterclockwise order. We also store the circumcenter 

c; of the triangle formed by the edge e; and the inter- 

polation point x, along with the circumcenter 0; of the 

triangle being visited. We named c; new circumcenters, 
and o; old circumcenters. 

In Figure 10 and 11, we have 5 natural neighbors 

X1..X5 and 3 natural neighbor triangles. Thus we have 5 

natural neighbor edges e)..e5, 5 overlap areas a1..a5, 5 

new circumcenters ¢;..cs and 3 old circumcenters 01 ..03. 

In this case, i = 1..5 and j = 1..2. 

After we have visited all natural neighbor trian- 

gles, we then process the edges in circular linked list 

of natural neighbor edges e;. Each such edge e; con- 
tributes three cross products to the overlap areas. Two 

of these contributions correspond to the cross product 

c; X0;, where c; and 0; are the two circumcenters stored 
with the edge. The third contribution corresponds to 

the cross product c; x ¢;41. For example, in Figure 11c, 

1X2 (€2) contributes c202 to a1, O22 to az and cice 
toa. — 

Our accumulation of all overlap areas a; is complete 

after we have     

(b) 

  

(c) 

Figure 10. The first step: visiting natural neighbor trian- 
gles. During the visit, edge contributions 0; x 0j41,j = 1..2 

are accumulated into corresponding overlap areas. Moreover, 

linked list of natural neighbor edges e;,i = 1..5 are stored.



(1) visited all natural neighbor triangles and 
(2) processed all natural neighbor edges. 

We then compute the sum a of the overlap areas a; and 

the Sibson weights * for each natural neighbor of the 
a 

interpolation point x. 

Our implementation is similar to the Watson- 

Sambridge implementation. First, when computing the 

Sibson weights, we visit each natural neighbor triangle 

only once. Second, as we visit each natural neighbor 

triangle, we accumulate overlap areas for up to three 

natural neighbor vertices x;. 

The key difference is that, in our implementation, 

we never compute circumcenters of triangles formed by 

the interpolation point x and triangle edges that shared 

by two natural neighbor triangles (dashed lines in Figure 

10). These shared triangle edges lie inside the polygon 

formed by the natural neighbor edges, and numerical 

instabilities in the Watson-Sambridge implementation 
occur when the point x lies near these inside edges. 

Another difference is that, as we visit natural neigh- 

bor triangles, we construct a list of natural neighbor 

edges for processing later (solid lines in Figure 10). Con- 

struction of this edge list makes our implementation 

only slightly more costly than the Watson-Sambridge 

implementation. 

To further improve numerical stability, we perform 

all computations in a shifted coordinate system in which 

the interpolation point x is the origin. In other words, 

we subtract the point x from each of its natural neighbor 

vertices x;, before computing circumcenters and cross 

products. 

4.2 Extension to 3D 

This implementation can be naturally extended to 3D. 

In Gelder (1995), the volume of a polyhedron R, which 

has m faces (Fi, F,..., Fm), is given by 

1 m 

v= 3d Pa As (5) 

where A; is the vector area of F; (A; can be computed 
as A in equation 4) and Pr, is an arbitrary vertex of 

F;. Substituting equation 4 in equation 5, one can see 

that the volume computation simply involves computing 

edge contributions. 

Similar to the 2D case, boundaries of the natural 

neighbor region must be found and stored. In 3D, trian- 

gular faces of tetrahedra, rather than Delaunay edges, 

must be stored. Then, the corresponding green end- 

points and blue endpoints are determined by computing 
circumcenters of tetrahedra. 

4.3. Performance 

We illustrate Watson-Sambridge, Braun-Sambridge and 

our implementation for 2D in Figure 12. The nine black 
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Figure 13. The ratio of CPU time of the Braun-Sambridge 

implementation and our implementation, with different 

known samples. Here, the horizontal axis indicates how many 

samples are known in each dimension, e.g., 3 samples per di- 

mension means we have 3 x 3 x 3 = 27 known samples. 

dots represent the locations of known samples located 

uniformly in the space [0,1] x [0,1]. The value of a 
known sample (x,y) is f(x,y) = sin(wz)sin(zy). We 
interpolate between these known samples using natural 

neighbor interpolation and compute differences between 

the interpolation values and f(z,y) at all samples in 

{0, 1] x {0, 1] with the sampling interval 0.01. Colors rep- 
resent sample values. We can clearly see some shortcom- 

ings in the Watson-Sambridge implementation. As ex- 

plained earlier, instabilities occur near Delaunay edges. 

We benchmarked these implementations in 2D and 

3D. We selected 3 x 3,5 x 5, 7 x 7,9 x 9 and 11 x 11 

known samples in 2D and 3x3x3,5x5x*5,7x 7x 7, 

9x 9x 9x 9 and 11 x 11 x 11 known samples in 

3D from the functions f(x,y) = sin(rx)sin(zy) and 
f(z,y,z) = sin(wx)sin(ry)sin(z), respectively. Ta- 
bles 1-4 show the time consumed by different imple- 

mentations (the unit is second). The terms “scattered” 
and “uniform” in these tables show the distributions of 

known samples. 

We benchmarked these implementations on an Ap- 

ple Mac Pro apple workstation with 3 GHz Intel Xeon 

CPU. Our method is slower than the Watson-Sambridge 

implementation but faster than the Braun-Sambridge 

implementation. Figure 13 demonstrates the efficiency 

of our method compared to the Braun-Sambridge 

method in different situations. 

5 CONCLUSION 

An efficient and stable implementation of natural neigh- 

bor interpolation is described in this report. The key 

idea is to reuse terms in the area formula as much as 

possible, without sacrificing accuracy. In addition, sev- 

eral simple improvements in computational issues are
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Figure 11. The second step: traversing the linked edge list stored in the first step. Edge contributions are computed and 

accumulated into corresponding areas when boundaries (dashed lines) are traversed.
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Figure 12. Comparisons of different implementations: (a)-(c) are interpolation results of the Watson-Sambridge implementa- 

tion, the Braun-Sambridge implementation and our implementation, respectively. 

  

  

Watson-Sambridge Braun-Sambridge Our 

3x3 1.22 5.02 1.59 

5x5 1.23 5.44 1.68 

7x7 1.39 6.14 1.86 

9x9 1.41 6.42 1.89 

11x11 1.55 7.10 1.96 
  

Table 1. The computational time of different implementations of natural neighbor interpolation in 2D for scattered data. 

  

  

Watson-Sambridge Braun-Sambridge Our 

3x3 1.12 6.47 1.43 

5x5 1.14 6.70 1.52 

7x7 1.21 3.94 1.50 

9x9 1.24 4.24 1.62 

11x11 1.30 4.13 1.61 
  

Table 2. The computational time of different implementations of natural neighbor interpolation in 2D for uniform data. 

  

  

Watson-Sambridge Braun-Sambridge Our 

3x3x3 0.63 8.42 0.75 

5xX5xX5 0.98 16.45 1.14 

TXTx7 1.02 17.02 1.22 

9x9x9 ~ 1.13 19.50 1.36 

l1lx11x1l 1.22 20.86 1.44 
  

Table 3. The computational time of different implementations of natural neighbor interpolation in 3D for scattered data.
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Watson-Sambridge Braun-Sambridge Our 
  

3x3x3 0.67 

5x5x5 0.85 

TXT7x7 0.91 

9x9x9 0.92 

11x 11x11 0.99 

10.90 0.81 

13.33 1.01 

14.76 1.10 

14.27 1.11 

15.48 1.21 
  

Table 4. The computational time of different implementations of natural neighbor interpolation in 3D for uniform data. 

introduced, such as preventing substantial value sub- 
traction and avoiding the use of formulas which have 

divisions. 

Instead of using geometric implementations, one 

can also implement natural neighbor interpolation us- 

ing discrete sibson interpolation (Park et al., 2006). The 
main advantage of discrete sibson interpolation is that 

this method is easy to implement because overlap areas 

need not be explicitly computed. The main disadvan- 

tage is that one has to compute values at every sample 

points in order to determine the value at one particular 

sample point. 

We also restrict the topic to 2D and 3D implemen- 

tations. In some applications, like the natural-elements 

method (Braun and Sambridge, 1995) for solving par- 
tial differential equations, the extension to higher di- 

mensions may be useful. In the implementations men- 

tioned above, the Braun-Sambridge implementation is 

the most straightforward one for extending to higher 

than three dimensions; this is the implementation used 

in the natural-elements method (Braun and Sambridge, 
1995). However, in most cases, solving partial differ- 

ential equations using the natural-elements method 

only requires 2D or 3D natural neighbor interpolation. 

Hence, the proposed method can be a good substitution 

for the Braun-Sambridge implementation because of its 

high efficiency. 

The code for our implementation can be found in 

Mines Java Toolkit: http://boole.mines.edu/jtk/trunk/ 
src/edu/mines/jtk/interp/. 

ACKNOWLEDGMENTS 

We’d like to thank our colleagues for their discussions 

and feedback on this research. We also want to thank 

Prof. Hisamoto Hiyoshi for the generous provision of his 
manuscript. We especially thank Diane Witters for her 

help with writing. 

REFERENCES 

Berg, M. D., O. Cheong, M. V. Kreveld, and M. Overmars, 

2008. Computational Geometry: Algorithms and Appli- 

cations (Third Edition). 
Bobach, T., M. Hering-Bertram, and G. Umlauf, 2006. Com- 

parison of Voronoi based scattered data interpolation 

schemes. Proceeding of 6th International Conference on 

Visualization, Imaging, and Image Processing. 

Bobach, T., G. Farin, D. Hansford, and G. Umlauf, 

2009. Natural neighbor extrapolation using ghost points. 
Computer-Aided Design, 41(5), 350-365. 

Boissonnat, J. D. and F. Cazals, 2000. Smooth surface recon- 

struction via natural neighbour interpolation of distance 
functions. Proceedings of the sixteenth annual symposium 

on Computational geometry, 223-232. 
Braun, J. and M. Sambridge, 1995. A numerical method for 

solving partial differential equations on highly irregular 

evolving grids. Nature, 378, 655-660. 

Foster, M. P. and A. N. Evans, 2008. An evaluation of inter- 

polation techniques for reconstructing ionospheric TEC 

maps. IEEE Transactions on Geoscience and Remote 

Sensing., 46, 2153-2164. 

Gelder, A. V., 1995. Efficient Computation of Polygon Area 

and Polyhedron. Graphics Gem, 4th edition. Academic 

Press. 

Hiyoshi, H., 2008. Stable Computation of Natural Neighbor 

Interpolation. International Journal of Computational 

Geometry & Applications., 18(4), 321-341. 

Hoff, K. E., J. Keyser, M. Lin, D. Manocha, and T. Cul- 

ver, 1999. Fast Computation of Generalized Voronoi Di- 

agrams Using Graphics Hardware. Proc. SIGGRAPH 99 

Conf., 277-286. 

Lasserre, J. B., 1983. An analytical expression and an al- 

gorithm for the volume of a convex polyhedron in R” 

Journal of optimization theory and applications, 39(3), 
363-377. 

Li, X. and H. J. G6tze, 1999. Comparison of Some Gridding 

Methods. The Leading Edge, 18(8), 898-900. 
Park, S. W., L. Linsen, O. Kreylos, J. D. Owens, and 

B. Hamann, 2006. Discrete Sibson Interpolation. JEEE 

Transactions on visualization and computer graphics., 

12(2), 243-253. 
Sambridge, M., J. Braun, and H. McQueen, 1995. Geophys- 

ical parameterization and interpolation of irregular data 

using natural neighbours. Geophys. J. Int., 122, 837-857. 
Sibson, R., 1981, A brief description of natural neighbor in- 

terpolation, in V. Barnett, ed., Interpreting Multivariate 

Data: John Wiley & Sons, 21-36. 

Watson, D. F. and G.M. Philip, 1987. Neighborhood-based 

interpolation. Geobyte, 2(2), 12~16. 

Watson, D. F., 1992. Contouring: A Guide to the Analysis



and Display of Spatial Data. Pergamon, Oxford. 

Watson, D. F., 2001. Compound = signed’ de- 

composition, the core of natural neigh- 

bor interpolation in n-Dimensional Space. 
www.iamg.org/images/File/documents/oldftp/Watson/core.ps 

Natural neighbor interpretation 219



220 = L. Liang & D. Hale



CWP-658 

Tutorial on seismic interferometry. Part I: Basic 
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ABSTRACT 

In part I of this two-part tutorial we explain the basic principles of seismic in- 
terferometry (also known as Green’s function retrieval) step-by-step and discuss 
its applications. We start with a 1D example (a plane wave propagating along 
the x-axis) and show that the crosscorrelation of the responses at two receivers 
along the z-axis gives the Green’s function of the direct wave between these re- 
ceivers. The 1D analysis continues with the introduction of the different aspects 
of interferometry with transient sources (as in exploration seismology) and with 
noise sources (as in passive seismology). Next we discuss 2D and 3D direct wave 
interferometry and show that the main contributions to the retrieved Green’s 
function come from sources in Fresnel zones around stationary points. The main 
application of direct wave interferometry is the retrieval of seismic surface wave 
responses from ambient noise and the subsequent tomographic determination 
of the surface-wave velocity distribution of the subsurface. 
In a classic paper, Claerbout showed that the autocorrelation of the transmis- 
sion response of a layered medium gives the reflection response of that medium. 
This is essentially 1D reflected wave interferometry. We discuss this extensively 
as an introduction to 2D and 3D reflected wave interferometry. One of the main 
applications of reflected wave interferometry is the retrieval of the seismic reflec- 
tion response from ambient noise and the subsequent imaging of the reflectors 
in the subsurface. 
A common aspect of direct and reflected wave interferometry is that virtual 
sources are created at: positions where there are only receivers, without requiring 

knowledge of the subsurface medium parameters nor of the positions of the 
actual sources. 

Key words: seismic interferometry 

INTRODUCTION controlled-source and passive seismic interferometry. 

Controlled-source seismic interferometry, pioneered by 

In this two-part tutorial we give an overview of the Schuster (2001), Bakulin and Calvert (2004) and others, 
basic principles and the underlying theory of seismic 

interferometry and discuss applications and new ad- 

vances. The term “seismic interferometry” refers to the 

principle of generating new seismic responses of virtual 

sources” by crosscorrelating seismic observations at dif- 

ferent receiver locations. One can distinguish between 

*In the literature on seismic interferometry, the term “virtual 

source” often refers to the method of Bakulin and Calvert 

(2004, 2006) which is discussed extensively in Part II. Note, 

however, that creating a virtual source is the essence of vir- 

tually all seismic interferometry methods (see e.g. Schuster 

(2001), who already used this terminology). In this paper 
(Parts I and II) we use the term “virtual source” whenever 

appropriate. When it refers to Bakulin and Calvert’s method 
we will mention this explicitly.
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comprises a new processing methodology for seismic ex- 

ploration data. Apart from crosscorrelation, controlled- 

source interferometry also involves summation of corre- 

lations over different source positions. Passive seismic 

interferometry, on the other hand, is a methodology 

for turning passive seismic measurements (ambient seis- 
mic noise or (micro-) earthquake responses) into deter- 
ministic seismic responses. Here we further distinguish 

between retrieving surface-wave transmission responses 
(Campillo and Paul, 2003; Shapiro and Campillo, 2004; 

Sabra et al., 2005a) and exploration-type reflection re- 

sponses (Claerbout, 1968; Scherbaum, 1987b; Draganov 

et al., 2007, 2009). In passive interferometry of ambient 

noise, no explicit summation of correlations over dif- 

ferent source positions is required, since the correlated 

responses are a superposition of simultaneously acting 

uncorrelated sources. 

In all cases, the response that is retrieved by cross- 

correlating two receiver recordings (and summing over 

different sources) can be interpreted as the response 

that would be measured at one of the receiver loca- 

tions as if there were a source at the other. Because 

such a point-source response is equal to a Green’s func- 

tion convolved with a wavelet, seismic interferometry 

is also often called “Green’s function retrieval”. Both 

terminologies are used in this paper. The term interfer- 

ometry is borrowed from radio astronomy, in which it 

refers to crosscorrelation methods applied to radio sig- 

nals from distant objects Thompson et al. (2001). The 
name Green’s function honors George Green who, in a 

privately published essay, introduced the use of impulse 

responses in field representations Green (1828). Challis 
and Sheard (2003) give a brief history of Green’s life 
and theorem. Ramirez and Weglein (2009) review ap- 
plications of Green’s theorem in seismic processing. 

Early successful results of Green’s function retrieval 

from noise correlations were obtained in the field of ul- 

trasonics Weaver and Lobkis (2001, 2002). The experi- 
ments were done with diffuse fields in a closed system. 

Here “diffuse” means that the amplitudes of the nor- 

mal modes are uncorrelated but have equal expected 

energies. Hence, the crosscorrelation of the field at two 

receiver positions does not contain cross-terms of un- 

equal normal modes. The sum of the remaining terms is 

proportional to the modal representation of the Green’s 

function of the closed system Lobkis and Weaver (2001). 
Hence, the crosscorrelation of a diffuse field in a closed 

system converges to its impulse response. Later it was 

recognized, e.g. Godin (2007), that this theoretical ex- 

planation is akin to the fluctuation-dissipation theorem 

(Callen and Welton, 1951; Rytov, 1956; Rytov et al., 

1989; Le Bellac et al., 2004). 

The Earth is a closed system, but at the scale of 

global seismology the wavefield is far from diffuse. At 

the scale of exploration seismology, an ambient noise 

field may have a diffuse character, but the encompass- 

ing system is not closed. Hence, for seismic interferome- 

try the normal-mode approach breaks down. Through- 

out this paper we consider seismic interferometry (or 
Green’s function retrieval) in open systems, including 

half-spaces below a free surface. Instead of a treatment 

per field of application or a chronological discussion, we 

have chosen for a setup in which we explain the prin- 

ciples of seismic interferometry step by step. In Part 

I we start with the basic principles of 1D direct-wave 

interferometry and conclude with a discussion of the 

principles of 3D reflected-wave interferometry. We dis- 

cuss applications in controlled-source as well as passive 

interferometry and, where appropriate, we review the 

historical background. To stay focussed on seismic ap- 

plications, we refrain from a further discussion of the 

normal-mode approach, nor do we discuss the many in- 

teresting applications of Green’s function retrieval in 

underwater acoustics (e.g. Roux and Fink (2003), Sabra 
et al. (2005c), Brooks and Gerstoft (2007)). 

DIRECT-WAVE INTERFEROMETRY 

1D analysis of direct-wave interferometry 

We start our explanation of seismic interferometry by 

considering an illustrative 1D analysis of direct-wave in- 
terferometry. Figure 1a shows a plane wave, radiated by 

an impulsive unit source at + = rg and t = 0, propa- 

gating in the rightward direction along the x-axis. We 

assume that the propagation velocity c is constant and 

the medium is lossless. There are two receivers along 

the z-axis, at x4 and xg, respectively. Figure 1b shows 

the response observed by the first receiver at x4. We 

denote this response as G(ra,xs,t), where G stands 

for Green’s function. Throughout this paper we use 
the common convention that the first two arguments 

in G(ra,xs,t) denote the receiver and source coordi- 

nates, respectively (here x4 and xs), whereas the last 
argument denotes time (t) or angular frequency (w). In 
our example this Green’s function consists of an impulse 

at ta = (ta — zs)/c, hence G(ra,25,t) = 6(t — ta), 

where 6(t) is the Dirac delta function. Similarly, the 
response at 2g is given by G(xe,zs,t) = 6(t — tg), 
with tg = (xe — xs)/ec (Figure 1c). Seismic interfer- 
ometry involves the crosscorrelation of responses at two 

receivers, in this case at x4 and xg. Looking at Fig- 

ure la, it appears that the raypaths associated with 

G(za,xzs,t) and G(xg,zs,t) have the path from zs 
to z4 in common. The traveltime along this common 

path cancels in the crosscorrelation process, leaving the 

traveltime along the remaining path from zr, to 22, 

ie., £3 —ta = (xe —2a)/c. Hence, the crosscorrelation 
of the responses in Figures 1b and Ic is an impulse at 

tg —ta, see Figure ld. This impulse can be interpreted 

as the response of a source at 24, observed by a receiver 

at ©p, i.e., the Green’s function G(vg,xa,t). An inter- 

esting observation is that the propagation velocity (c) 

and the position of the actual source (xs) need not be
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Figure 1. 1D example of direct-wave interferometry. (a) A 
plane wave traveling rightward along the x-axis, emitted by 
an impulsive source at z = xg and t = 0. (b). The response 

observed by a receiver at xa. This is the Green’s function 
G(x,,xg,t). (c) As in (b), but for a receiver at xg. (d) 

Crosscorrelation of the responses at x4 and xg. This is in- 

terpreted as the response of a source at 2,4, observed at rp, 

ie., G(vp,xra,t). 

known. The traveltimes along the common path from 

zg to x4 compensate each other, independent of the 

propagation velocity and the length of this path. Simi- 

larly, if the source impulse would occur at t = ts instead 

of at t = 0, the impulses observed at x4 and xg would 

be shifted by the same amount of time, ts, which would 

be canceled in the crosscorrelation. Hence, also the ab- 

solute time ts at which the source emits its pulse needs 

not be known. 

Let us discuss this example a bit more precisely. We 

denote the crosscorrelation of the impulse responses at 

za and xg as G(xB,xs,t)*G(ra,rs, —t). The asterisk 

denotes temporal convolution, but the time-reversal of 

the second Green’s function turns the convolution into 

a correlation, defined as G(rg,zrs,t) * G(ra,@s,—t) = 

f G(s, 2s,t+t')G(wa, 2s, t')dt’. Substituting the delta 
functions into the right-hand side gives f d(é + t’ — 
tp)d(t' —ta)dt’ = 6(t— (tp —ta)) = 6(t—(2B —2a)/c). 
This is indeed the Green’s function G(rg,za,t), prop- 

agating from x4 to ZB. Since we started this derivation 

with the crosscorrelation of the Green’s functions, we 

have obtained the following 1D Green’s function repre- 

sentation 

G(xp,ra,t) = G(xe, zs, t) * G(ra,zs, 1). (1) 

This representation formulates the principle that the 

crosscorrelation of observations at two receivers (x4 and 
xB) gives the response at one of those receivers (ag) as if 

there were a source at the other (za). It also shows why 
seismic interferometry is often called Green’s function 

retrieval. 

Note that the source is not necessarily an impulse. 

If the source function is defined by some wavelet s(t), 
then the responses at x4 and zg can be written as 

u(za,xs,t) = G(ra,zs,t) * s(t) and u(zg,zs,t) = 
G(xB,2s,t) x s(t), respectively. Let S;(t) be the auto- 
correlation of the wavelet, i.e., S;(t) = s(t)*s(—t). Then 
the crosscorrelation of u(x, zs,t) and u(xg, Zs, t) gives 
the right-hand side of equation 1, convolved with S(t). 
This is equal to the left-hand side of equation 1, con- 

volved with S(t), hence 

G(rp,za,t) * S,(t) = u(xe,zs,t) *u(ra,zs,—t). (2) 

In words: if the source function is a wavelet instead of 
an impulse, then the crosscorrelation of the responses 

at two receivers gives the Green’s function between 

these receivers, convolved with the autocorrelation of 

the source function. This principle holds true for any 

source function, including noise. Figures 2a and 2b show 
the responses at x4 and xg, respectively, of a bandlim- 

ited noise source N(t) at xs (the central frequency of 
the noise is 30 Hz; the figures show only 4 s of a total of 

160 s of noise). In this numerical example the distance 
between the receivers is 1200 m and the propagation ve- 
locity is 2000 m/s, hence, the traveltime between these 

receivers is 0.6 s. As a consequence, the noise response 

at rg in Figure 2b is 0.6 s delayed with respect to the 

response at x4 in Figure 2a (similar as the impulse in 

Figure lc is delayed with respect to the impulse in Fig- 

ure 1b). Crosscorrelation of these noise responses gives, 

analogous to equation 2, the impulse response between 

za and xp, convolved with Sy(t), i-e., the autocorre- 

lation of the noise N(t). The correlation is shown in 
Figure 2c, which indeed reveals a bandlimited impulse 

centered at t = 0.6 s (the traveltime from z,4 to zp). 
Note that from registrations at two receivers of a noise 

field from an unknown source in a medium with un- 

known propagation velocity, we have obtained a ban- 

dlimited version of the Green’s function. By dividing the 
distance between the receivers (1200 m) by the travel- 
time estimated from the bandlimited Green’s function 
(0.6 s) we obtain an estimate of the propagation velocity 
between the receivers (2000 m/s). This illustrates that 
direct-wave interferometry can be used for tomographic 

inversion. 

Until now we considered a single plane wave prop- 

agating in the positive x-direction. In Figure 3a we con- 

sider the same configuration as in Figure la, except 

that now an impulsive unit source at © = zg radi- 
ates a leftward-propagating plane wave. Figure 3b is 

the response at 24, given by G(za,2'5,t) = 6(t — ty), 
with t!, = (2's — va)/c. Similarly, the response at xg is 
G(2B,2%5,t) = 6(t — tg), with ty = (a's — ve)/e (Fig 
ure 3c). The crosscorrelation of these responses gives 

6(t — (te — t)) = 6(f+ (we —2a)/c), which is equal 
to the time-reversed Green’s function G(as,xa, —t). 
Hence, for the configuration of Figure 3a we obtain the 
following Green’s function representation 

G(ze,ra,—t) = G(xp, 2s, t) * G(ra, vs, —t). (3)
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Figure 2. As in Figure 1, but this time for a noise 

source N(t) at xg. (a) The response observed at x4, i.e., 
u(za,zg,t) = G(r,,z2¢s,t) * N(t). (b) As in (a), but for a 

receiver at xg. (c) The crosscorrelation, which is equal to 
G(zp,zra,t) * Sn(t), with Sy(t) the autocorrelation of the 
noise. 

  

  

  

    

a) — 

x, Xp —| x3 * 
b) | 

0 t' 1 
c) 

0. ts —1 

d) 

tO 1 
Figure 3. As in Figure 1, but this time for a leftward- 
traveling impulsive plane wave. The crosscorrelation in 

(d) is interpreted as the timereversed Green’s function 

G(ze, TA, ~t). 

We can combine equations 1 and 3 as follows 

G(ap,ra,t) + G(xe,va,—-t) = 

2 

>> G(as, 2$), t) * G(wa, 29, -2), (4) 

i=1 

where rz for i = 1, 2 stands for zs and 2's, respectively. 

For the 1D situation this combination may not seem 

very useful. We analyze it here, however, because this 

representation better resembles the 2D and 3D represen- 

tations we encounter later. Note that since G(s, xa, t) 

is the causal response of an impulse at £ = 0 (meaning 

it is non-zero only for t > 0), it does not overlap with 
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Figure 4. As in Figures 1 and 3, but with simultaneously 

rightward- and leftward-traveling impulsive plane waves. The 
crosscorrelation in (d) contains crossterms which have no 

physical meaning. 

G(zB,2a,—t) (which is non-zero only for ¢ < 0). Hence, 
G(ap,xra,t) can be resolved from the left-hand side of 
equation 4 simply by extracting the causal part. If the 

source function is a wavelet s(t) with autocorrelation 
S,(t), we obtain, analogous to equation 2, 

{G(zB,2ra,t) + G(zB, ra, —t)} * S,(t) = 
2 

S> u(za, 2$?, t) *u(za, 2, —t). (5) 
i=1 

Here G(ze, x,t) * S3(t}) may have some overlap with 
G(xp,ra,—t) * S(t) for small || (depending on the 
length of the autocorrelation function S,(t)). Hence 
G(zB,2a,t) * S,(é) can be extracted from the left-hand 
side of equation 5, except for small distances |zg — xa|. 

The right-hand sides of equations 4 and 5 state 
that the crosscorrelation is applied to the responses 

of each source separately, after which the summation 

over the sources is carried out. For impulsive sources 

or transient wavelets s(t) these steps should not be in- 
terchanged. Let us see why. Suppose the sources at rs 

and zg would act simultaneously, as illustrated in Fig- 

ure 4a. Then the response at 24 would be given by 

u(za,t) = 2, G(ea, 29,2) * s(t) and the response 

at zg by u(xg,t) = via G(r, 22, t) * s(t). These 
responses are shown in Figures 4b and 4c for an impul- 

sive source (s(t) = 4(t)). The crosscorrelation of these 
responses, shown in Figure 4d, contains two crossterms 

at tg — t', and tg — ta which have no physical mean- 
ing. Hence, for impulsive or transient sources the order 
of crosscorrelation and summation matters. This is dif- 
ferent for noise sources. Consider two simultaneously 

acting noise sources Ni(t) and No(é) at xs and 2's, re- 
spectively. Then the responses at xa and zp are given 

by u(ra,t) = >7?_, G(r, 2, t) « N,(t) and u(re,t) = 

Vi G(ze,2%, t) * N;(t), respectively, see Figures 5a
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and 5b. Note that, because each of these responses 

is the superposition of a rightward- and a leftward- 

propagating wave, the response in Figure 5b is not a 

shifted version of that in Figure 5a (unlike the responses 

in Figures 2a and b). We assume that the noise sources 
are uncorrelated, hence (N;(t) * Ni(—t)) = 6:;Sn(t), 
where 6;; is the Kronecker delta function and (-) denotes 
ensemble averaging. In practice the ensemble averaging 

is replaced by integrating over sufficiently long time. In 

the numerical example the duration of the noise signals 

is again 160 s (only 4s of noise is shown in Figures 5a 

and 5b). For the cross correlation of the responses at xa 
and zg we may now write 

2 2 

(u(xs,t) *u(za,—t)) = (> S_G(xe, 29), t) * Nj(t) 
j=li=1 

*G(za, &®, —t)* ni(-1)) 

2 

= 3° G(x, 2}, t) «G(wa,2$),-t)* Sn(t). (6) 
i=l 

Combining this with equation 4 we finally obtain 

{G(rp,2a,t) + G(as,zra,—t)} * Sn(t) = 

(u(ze,t) *u(wa,—t)). (7) 

This expression shows that the crosscorrelation of two 

observed fields at x4 and xg, each of which is the super- 

position of rightward- and leftward-propagating noise 

fields, gives the Green’s function between z4 and zB 
plus its time-reversed version, convolved with the auto- 

correlation of the noise, see Figure 5c. The crossterms, 

unlike in Figure 4d, do not contribute because the noise 

sources N,(t) and N2(é) are uncorrelated. 
Miyazawa et al. (2008) applied equation 7 with rz 

and xg at different depths along a borehole in the pres- 
ence of industrial noise, at Cold Lake, Alberta, Canada. 

By choosing for u different components of multicom- 

ponent sensors in the borehole, they retrieved separate 

Green’s functions for P- and S-waves, the latter with 

different polarizations. From the arrival times in the 

Green’s functions they derived the different propagation 

velocities and were able to accurately quantify shear- 

wave splitting. 

Despite the relative simplicity of our 1D analysis 

of direct-wave interferometry, we can make a number 

of observations about seismic interferometry that also 
hold true for more general situations: 

e We can distinguish between interferometry for im- 

pulsive or transient sources on the one hand (equations 

4 and 5) and interferometry for noise sources on the 

other hand (equation 7). In the case of impulsive or tran- 
sient sources, the responses of each of these sources must 

be crosscorrelated separately, after which a summation 

over the sources takes place. In the case of uncorrelated 

noise sources a single crosscorrelation suffices. 

e It appears that an isotropic illumination of the 
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Figure 5. As in Figure 4, but this time with simultaneously 
rightward- and leftward-traveling uncorrelated noise fields. 

The crosscorrelation in (c) contains no crossterms. 

receivers is required to obtain a time-symmetric re- 

sponse between the receivers (of which the causal part 
is the actual response). In 1D, “isotropic illumination” 

means equal illumination by rightward- and leftward- 

propagating waves. In 2D and 3D it means equal illu- 

mination from all directions (discussed in next subsec- 
tion). 

e Instead of the time-symmetric response 

G(vp,ca,t) + G(re,ra4,—t), in the _ literature 

we often encounter an anti-symmetric response 

G(xB,2ra,t) — G(x, xa,—t). This is merely a result of 
differently defined Green’s functions. Note that a simple 

time differentiation of the Green’s functions would turn 
the symmetric response into an anti-symmetric one 

and vice versa (see Wapenaar and Fokkema (2006) for 
a more detailed discussion on this aspect). 

2D and 3D analysis of direct-wave 

interferometry 

We extend our discussion of direct-wave interferometry 

to configurations with more dimensions. In the following 

we mainly use heuristic arguments, illustrated with a 

numerical example. For a more precise derivation, based 

on stationary-phase analysis, we refer to Snieder (2004). 
Consider the 2D configuration shown in Figure 6a. 

The horizontal dashed line corresponds to the 1D con- 

figuration of Figure la, with two receivers at x4 and 

xp, 1200 m apart (the boldface x denotes a Carte- 
sian coordinate vector). The propagation velocity c is 

2000 m/s and the medium is again assumed to be loss-
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less. Instead of plane-wave sources, we have many point 

sources denoted by the small black dots, distributed over 

a “pineapple slice”, emitting transient signals with a 

central frequency of 30 Hz. In polar coordinates, the po- 

sitions of the sources are denoted by (rs, és). The angle 
os is equidistantly sampled (Ads = 0.25°), whereas the 
distance rg to the center of the slice is chosen randomly 

between 2000 and 3000 m. The responses at the two re- 

ceivers at x4 and xg are shown in Figures 6b and 6c, 

respectively, as a function of the (polar) source coor- 
dinate ¢@s (for display purposes, only every 16th trace 

is shown). These responses are crosscorrelated (for each 
source separately) and the crosscorrelations are shown 

in Figure 6d, again as a function of @s. Such a gather is 

often called a “correlation gather”. Note that the trav- 

eltimes in this correlation gather vary smoothly with 

és, despite the randomness of the traveltimes in Fig- 

ures 6b and 6c. This is because in the crosscorrelation 

process only the time difference along the paths to xa 

and xg matters. Note that the source in Figure 6a with 

és = 0° plays the same role as the plane-wave source 

at xs in Figure la. For this source the crosscorrelation 

gives a signal at |xs — xa|/c = 0.6 s, which is seen 
in the trace at és = 0° in Figure 6d. Similarly, the 

source at ¢s = 180° plays the same role as the plane- 

wave source at z's in Figure 3a and leads to the trace 
at ds = 180° in Figure 6d with a signal at —0.6 s. 

Analogous to equation 5 we sum the crosscorrelations 

of all sources, that is, we sum all traces in Figure 6d, 

which leads to the time-symmetric response in Figure 

6e, with two events at 0.6 and —0.6s. These two events 

are again interpreted as the response of a source at 

xa, observed at xz, plus its time-reversed version, i.e., 

{G(xe,xa,t) + G(xe,xa,—t)} * S.(t), where S;(t) is 
the autocorrelation of the source wavelet. Because the 

sources have a finite frequency content, not only the 

sources exactly at ds = 0° and ds = 180° contribute 

to these events, but also the sources in Fresnel zones 

around these angles. These Fresnel zones are denoted 

by the thick dashed lines in Figures 6a and 6d. In Fig- 

ure 6d it can be seen that the centers of these Fresnel 

zones are the stationary points of the traveltime curve of 
the crosscorrelations. Note that the events in all traces 

outside the Fresnel zones in Figure 6d interfere destruc- 

tively and hence give no coherent contribution in Figure 

6e. The noise between the two events in Figure 6e is due 

to the fact that the traveltime curve in Figure 6d is not 

100 % smooth because of the randomness of the source 

positions in Figure 6a. 

The response in Figure 6e has been obtained 

by summing crosscorrelations of independent transient 

sources. Using the same arguments as in the previous 

subsection, we can replace the transient sources by si- 

multaneously acting noise sources. The crossterms dis- 

appear when the noise sources are uncorrelated, hence, 

a single crosscorrelation of noise observations at xa 

and xg gives, analogous to equation 7, {G(xB,xa,t) + 

G(xp,xa, —t)} *Sn(t), where Sy(t) is the autocorrela- 
tion of the noise, see Figure 6f. Note that the symmetry 

of the responses in Figures 6e and 6f relies again on the 

isotropic illumination of the receivers, i.e., on the net 

power-flux of the illuminating wavefield being (close to) 
zero (van Tiggelen, 2003; Malcolm et al., 2004; Sdnchez- 

Sesma et al., 2006; Snieder et al., 2007; Perton et al., 

2009; Weaver et al., 2009; Yao et al., 2009). 

Of course what has been demonstrated here for a 

2D distribution of sources also holds for a 3D source 

distribution. In that case all sources in Fresnel volumes 

rather than Fresnel zones contribute to the retrieval 

of the direct wave between x4 and xg. Furthermore, 

the sources (in 2D or 3D) are not necessarily primary 

sources, but can also be secondary sources, i.e., scat- 

terers in a homogeneous embedding. These secondary 

sources are not independent, but the late coda of the 

multiply scattered response reasonably resembles a dif- 

fuse wave field. Hence, in situations with few primary 

sources but many secondary sources only the late coda 

is used for Green’s function retrieval Campillo and Paul 

(2003). It is, however, not clear how well a scattering 

medium should be illuminated by different sources for 

the scatterers to act as independent secondary sources. 

Fan and Snieder (2009) show an example where the 
scattered waves excited by a single source are equipar- 

titioned, in the sense that energy propagates equally in 

all directions, but where the crosscorrelation of those 

scattered waves does not resemble the Green’s function 

at all. 

One of the most widely used applications of direct- 

wave interferometry is the retrieval of seismic surface 

waves between seismometers and the subsequent to- 

mographic determination of the surface-wave velocity 

distribution of the subsurface. This approach has been 

pioneered by Campillo and Paul (2003), Shapiro and 
Campillo (2004), Sabra et al. (2005b,a) and Shapiro et 
al. (2005). In layered media, surface waves consist of 
several propagating modes, of which the fundamental 

mode is usually the strongest. As long as only the fun- 

damental mode is considered, surface waves can be seen 

as an approximate solution of a 2D wave equation with 

a frequency-dependent propagation velocity. Hence, by 

considering the 2D configuration of Figure 6a as a plan 

view, the analysis above holds for ambient surface-wave 

noise. The Green’s function of the fundamental mode of 

the direct surface wave can thus be extracted by cross- 

correlating ambient noise recordings at two seismome- 

ters. When many seismometers are available, this can 

be repeated for any combination of two seismometers. 

In other words, each seismometer can be turned into a 

virtual source, the response of which is observed by all 

other seismometers. 
Figure 7, reproduced with permission from Lin et 

al. (2009), shows a beautiful example of the Rayleigh- 
wave response of a virtual source, southeast of Lake 

Tahoe, California. The white triangles represent over
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Figure 7. Two snapshots of the Rayleigh-wave response of a virtual source (the white star), southeast of Lake Tahoe, California 

Lin et al. (2009). The white triangles represent over 400 seismometers (USArray stations). The shown response was obtained 
by crosscorrelating three years of ambient noise, recorded at the station denoted by the star, with that recorded at all other 

stations. 

400 seismometers (USArray stations). Ocean-generated 
ambient seismic noise (Longuet-Higgins, 1950; Webb, 

1998; Stehly et al., 2006) was recorded between Octo- 

ber 2004 and November 2007. Since this noise is coming 

from the ocean, it is far from isotropic. This means that 

the crosscorrelation of the noise between any two sta- 

tions does not yield time-symmetric results like those in 

Figure 6. However, as long as one of the Fresnel zones is 

sufficiently covered with sources, it is possible to retrieve 

either G(xB, Xa, t)*Syn(t) or G(x, xa, —t)*Sn(t) (note 
that the location and shape of the Fresnel zone is dif- 

ferent for each combination of stations). The snapshots 
shown in Figures 7a and 7b were obtained by cross- 

correlating the noise recorded at the station denoted 

by the star with that recorded at all other stations. 

The amplitudes exhibit azimuthal variation due to the 

anisotropic illumination. Responses like this are used 

for tomographic inversion of the Rayleigh-wave veloc- 

ity of the crust and for the measurement of azimuthal 
anisotropy in the crust. 

Bensen et al. (2007) have shown that it is possible 
to retrieve the Rayleigh-wave velocity as a function of 

frequency. Brenguier et al. (2007) have combined these 
approaches to 3D tomographic inversion. From noise 

measurements at the Piton de la Fournaise volcano they 

retrieved the Rayleigh-wave group velocity distribution 

as a function of frequency and used this to derive a 3D 

S-wave velocity model of the interior of the volcano. 

In the past couple of years the applications of direct 

surface-wave interferometry have expanded spectacu- 

larly. Without any claim of completeness, we mention 

Larose et al. (2005, 2006), Gerstoft et al. (2006), Yao et 

al. (2006, 2008), Kang and Shin (2006), Bensen et al. 
(2008), Gouédard et al. (2008a,b), Liang and Langston 
(2008), Lin et al. (2008), Ma et al. (2008), Li et al. (2009) 
and Picozzi et al. (2009). The success of these applica- 
tions is explained by the fact that surface waves are by 

far the strongest events in ambient seismic noise. In the 

next section we show that the retrieval of reflected waves 

from ambient seismic noise is an order more difficult. 

Note that direct surface-wave interferometry has an 

interesting link with early work by Aki (1957, 1965) and 
Tokséz (1964) on the spatial autocorrelation method 
(SPAC). The SPAC method employs a circular ar- 
ray of seismometers, plus a seismometer at the cen- 

ter of the circle. Assuming a distribution of uncorre- 

lated fundamental-mode Rayleigh waves, propagating 

as plane waves in all directions, the spatial autocor- 

relation function obtained from the circular array re- 

veals the local surface-wave velocity as a function of 

frequency and, subsequently, the local depth-dependent 

velocity profile. An important difference with the inter- 

ferometry approach is that the distances between the 

receivers in the SPAC method are usually smaller than 

half a wavelength Henstridge (1979), making it a local 
method, whereas in direct-wave interferometry the dis- 

tances are assumed much larger than the wavelength be- 

cause otherwise the stationary-phase arguments would 

not hold. More recent discussions on the SPAC method 

are given by Okada (2003, 2006) and Asten (2006). An 
interesting discussion on the relation between the SPAC 
method and seismic interferometry is given by Yokoi and 

Margaryan (2008).
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Figure 8. Basic principle of reflected-wave interferometry 

Schuster (2001, 2009). (a) A subsurface source emits a wave 
to the surface where it is received by a geophone. (b) A sec- 
ond geophone receives a reflected wave. (c) Crosscorrelation 

eliminates the propagation along the path from the source to 

the first geophone. The result is interpreted as the reflection 

response of a source at the position of the first geophone, 

observed by the second geophone. 

REFLECTED-WAVE INTERFEROMETRY 

1D analysis of reflected-wave interferometry 

The figure on the cover of Schuster’s book on seismic 

interferometry Schuster (2009), reproduced in Figure 8, 
explains the basic principle of reflected wave interfer- 

ometry very well. Figure 8a shows a source in the sub- 

surface which radiates a transient wave to the Earth’s 

surface, where it is received by a geophone. The trace 

contains the delayed source wavelet. Figure 8b shows 

how the wave is reflected downward by the surface, re- 

flected upward again by a scatterer in the subsurface, 

and received by a second geophone at the Earth’s sur- 
face. The trace contains the wavelet, which is further de- 

layed due to the propagation along the additional path 

from receiver 1 via the scatterer to receiver 2. The prop- 

agation paths in Figures 8a and 8b have the path from 

the subsurface source to the first receiver in common. By 

crosscorrelating the two traces (Schuster denotes this by 

®), the propagation along this common path is elimi- 

nated, leaving the path from receiver 1 via the scatterer 

to receiver 2 (Figure 8c). Hence, the result can be inter- 
preted as a reflection experiment with a source at the 

position of the first geophone, of which the reflection 

response is received by the second geophone. 

Let us see how this method deals with multiple re- 

flections. To this end we consider a configuration con- 

sisting of a homogeneous lossless layer, sandwiched be- 

tween a free surface and a homogeneous lossless half- 

space, see Figure 9a. An impulsive unit source in the 

lower half-space emits a vertically upward-propagating 

plane wave, which reaches the surface after a time to. 

Since it was transmitted by a single interface on its way 

to the surface, the first arrival is given by 7d(t — to), 

a) 
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Figure 9. From transmission to reflection response (1D). (a) 
Simple layered medium with an upgoing plane wave radiated 

by a source in the lower half-space. (b) The transmission re- 
sponse T(t), observed at the free surface. (c) The autocorre- 

lation T(t) * T(—t). The causal part is, apart from a minus 
sign, the reflection response R(t). (d) Configuration, used to 

derive the same relation for an arbitrarily layered medium. 

where 7 is the transmission coefficient of the interface 

(we use lower-case symbols for local transmission and 
reflection coefficients). This arrival is represented by 

the impulse at t = to in Figure 9b. The wave is re-
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flected downward by the free surface (reflection coef- 
ficient —1) and subsequently reflected upward by the 

interface (reflection coefficient r). Hence, the next ar- 
rival reaching the surface is —rré(t — to ~ At), with 
At = 2Az/c, where Az is the thickness of the first 
layer and c its propagation velocity. Figure 9b shows 

the total upgoing wavefield reaching the free surface. 
It is denoted as T(t), where capital T stands for the 
global transmission response. It consists of an infinite 

series of impulses with regular intervals At (starting 
at to), and amplitudes ag = T, a1 = —rt, ag = r?7, 
a3 = —r°r, etc. Seismic interferometry for a vertically 

propagating plane wave reduces to evaluating the au- 

tocorrelation of the global transmission response, hence 

T(t) * T(—t). We obtain the simplest result if we con- 
sider so-called “power-flux normalized” up- and down- 

going waves (Frasier, 1970; Kennett et al., 1978; Ursin, 

1983; Chapman, 1994). This simply means that we de- 
fine the local transmission coefficient 7 as the square- 

root of the product of the transmission coefficients for 

acoustic pressure and particle velocity. Hence, for an up- 

going wave, 7 = ,/(1—r)(1+7r) = V1—r? (which is 
by the way also the transmission coefficient for a down- 
going wave). The autocorrelation for zero time-lag is 

(a3 +a} +a3+a3+---)6(t) = 7?(141r?+r4+r6+---)6(t) = 
r*(1 — r?)—'6(¢) = 6(t). This is represented by the im- 
pulse at ¢ = 0 in Figure 9c. The autocorrelation for 
time-lag At is (a1a9 + a2a1 + a3a2 + -- -)d(t — At) = 
—r7?(1t+r? +r44---)6(t — At) = —ré(t — At), which is 
represented by the impulse at At in Figure 9c. For time- 

lags 2At, 3At etc. we obtain r?5(t—2At), —r75(t—3At), 
etc. Apart from an overall minus-sign, these impulses 

together (except the one at t = 0) represent the global 
reflection response R(t) of a downgoing plane wave, il- 

luminating the medium from the free surface. Hence, 

the causal part of the autocorrelation is equal to — R(t). 
Similarly, the acausal part is —R(—t). Taking everything 
together, we have T(t) « T(—é) = 4(t) — R(t) — R(-12), 
or 

R(t) + R(—t) = 6(t) — T(t) *T(—1). (8) 

This expression shows that the global reflection re- 

sponse can be obtained from the autocorrelation of the 

global transmission response. This can be understood 
intuitively if one bears in mind that the reflection re- 

sponse, including all its multiples, is implicitly present 

in the coda of the transmission response, see Figure 

9b. Note the analogy of equation 8 with the expres- 

sion for direct-wave interferometry, equation 4. In both 

cases the left-hand side is a superposition of a causal 

response and its time-reversed version. The main dif- 

ference is that the right-hand side of equation 4 is 

a superposition of crosscorrelations of rightward- and 

leftward-propagating waves, which was necessary to get 

the time-symmetric response, whereas the right-hand 

side of equation 8 is a single autocorrelation. Note, how- 

ever, that the free surface in Figure 9a acts as a mir- 

ror, which removes the requirement of having sources at 

both sides of the receivers to obtain a time-symmetric 

response. 
It can easily be shown that equation 8 holds for 

arbitrary horizontally layered media. To this end con- 

sider the configuration shown in Figure 9d. Here the 

illuminating wavefield is an impulsive downgoing plane 

wave at the free surface (denoted by 6(£) in Figure 9d). 
The upgoing wave arriving at the free surface is the 

global reflection response R(t), which is reflected down- 
ward by the free surface with reflection coefficient —1. 

Hence, the total downgoing wavefield just below the 

surface is D(t) = 6(t) — R(t), and the total upgoing 
wavefield is U(t) = R(t). The total downgoing wavefield 
below the lowest interface is given by the global trans- 

mission response T(t). We assume again that the down- 
going and upgoing waves are flux-normalized. Hence, 

the global transmission response of the downgoing plane 

wave source at the free surface is equal to that of an 

upgoing plane wave source below the lowest interface 

Frasier (1970). Because we consider a lossless medium, 
we can use the principle of power conservation to derive 

a relation between the wavefields at the top and the bot- 

tom of the configuration. The power-flux is most easily 

defined in the frequency domain. To this end we define 
the Fourier transform of a time-dependent function as 

fw) = [ ” F(t) exp(—jut)dt, (9) 
where w is the angular frequency and j the imaginary 

unit. The net power-flux just below the free surface is 

given by 

DD*-—0U* = (1-—R&)(1- R*)- RR 

= 1-R-R’, (10) 

where the asterisk * denotes complex conjugation. Since 

the net power-flux is independent of depth, the right- 

hand side of equation 10 is equal to the net power-flux 

in the lower half-space, T'T*. Hence, 1— R— R* = TT", 

or 

R+R* =1-TT". (11) 

Because complex conjugation in the frequency domain 

corresponds to time-reversal in the time domain, the 

inverse Fourier transform of this equation gives again 
equation 8, which has now been proven to hold for ar- 

bitrarily layered media. 
Note that the central assumption in this derivation 

is the conservation of acoustic power, which of course 

only holds in lossless media. We assumed already in 

our discussions of direct-wave interferometry that the 

medium was lossless, but in the present derivation the 

essence of this assumption has become manifest. Most 

approaches to seismic interferometry rely on the as- 

sumption that the medium is lossless. In Part II we also 

encounter approaches that account for losses, or that



Tutorial on seismic interferometry, Part I 231 

use the essence of this assumption to estimate loss pa- 

rameters. 

We should note here that equation 8 for arbi- 

trarily layered media was derived more than 40 years 

ago by Jon Claerbout at Stanford University Claer- 

bout (1968). His expression looks slightly different be- 
cause he did not use flux-normalization. For his deriva- 

tion he used a recursive method introduced by Thom- 

son (1950), Haskell (1953) and others. Later he pro- 
posed the shorter derivation using energy conservation, 

see the discussion on acoustic daylight imaging on his 

website http://sepwww.stanford.edu/sep/jon/. Frasier 
(1970) generalized Claerbout’s result for obliquely prop- 

agating plane P- and SV-waves in a horizontally layered 

elastic medium. 

Analogous to equations 5 and 7, equation 8 can 

be modified for transient or noise signals. For example, 

let u(t) = T(t) « N(é) be the upgoing wavefield at the 
surface, with N(t) representing the noise signal emitted 
by the source in the lower half-space. Then, analogous 

to equation 7, we obtain from equation 8 

{R(t) + R(—t)} «Su (t) = Sn (t) — (u(t) * u(—t)), (12) 
where Sy(t) is the autocorrelation of the noise. This 
equation shows that the autocorrelation of passive noise 

measurements gives the reflection response of a tran- 

sient source at the surface. Quite remarkable indeed! 

Note again that the position of the actual source does 

not need to be known, but it should lie below the lowest 

interface. In the next subsection we show that the latter 

assumption can be relaxed in 2D and 3D configurations. 
Early applications of equation 12, some more suc- 

cessful than others, are discussed by Baskir and Weller 

(1975), Scherbaum (1987a,b), Daneshvar et al. (1995), 
Cole (1995) and Poletto and Petronio (2003, 2006). 

2D and 3D analysis of reflected-wave 

interferometry 

Claerbout conjectured for the 2D and 3D situation that 

“by crosscorrelating noise traces recorded at two loca- 

tions on the surface, we can construct the wavefield 

that would be recorded at one of the locations if there 

was a source at the other” (this citation is from Rick- 
ett and Claerbout (1999), but the conjecture was al- 

ready mentioned in the PhD thesis by Cole (1995)). 
Note that this statement could be applied literally to 

direct-wave interferometry, as discussed in the previous 

section, but Claerbout’s conjecture concerned reflected- 

wave interferometry. Of course this terminology was not 

used at that time and the links between direct-wave 

and reflected-wave interferometry were discovered sev- 

eral years later. Duvall et al. (1993) and Rickett and 
Claerbout (1999) applied crosscorrelations to noise ob- 

servations at the surface of the Sun and were able to 

retrieve helioseismological shot records. 

Claerbout’s 1D relation (equation 8) and his con- 
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Figure 10. Basic principle of reflected-wave interferometry 

revisited. (a) Configuration with multiple sources in the sub- 

surface. Only the ray emitted by the source at 21,5 = —300 

m has its specular reflection point at one of the geophone po- 

sitions. (b) Crosscorrelations of the responses at x4 and xg 

as a function of the source coordinate x;,5. The traveltime 
curve connecting these events is stationary at 21,5 = —300 

m. The thick dashed lines indicate the Fresnel zone. (c) The 
sum of the correlations in (b). This is interpreted as the re- 

flection response of a source at x4, observed by a receiver at 

XB. 

jecture for the 3D situation inspired Jerry Schuster at 

the University of Utah. During a sabbatical in 2000 at 

Stanford University he analyzed the conjecture by the 

method of stationary phase. Let us briefly review his line 

of thought (Schuster, 2001; Schuster et al., 2004; Schus- 

ter and Zhou, 2006). First, consider again the configu- 

ration shown in Figure 8. It was silently assumed that 
the first geophone is located precisely at the specular 

reflection point of the drawn ray in Figure 8b. As a con- 

sequence, the ray in Figure 8a coincides with the first 

branch of the ray in Figure 8b, so in a 1D crosscorrela- 
tion process the traveltime along this ray cancels, which 

leaves the traveltime of the reflection response. In prac- 

tice the source position and hence the position of the 

specular reflection point are unknown. However, when 

there are multiple (unknown) sources in the subsurface,
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Figure 11. Some examples of interferometric redatuming Schuster (2009). Each diagram shows that crosscorrelation of the 
trace recorded at A with the one at B, and summing over source locations, leads to the response of a source at A, closer to the 

target than the original sources. 

it is again possible to extract the reflection response. To 

see this, consider the situation depicted in Figure 10a, in 

which there are multiple noise sources buried in the sub- 

surface. The ray that leaves the source at 21,5 = —300 
m reflects at xa (the position of the first geophone) on 
its way to the scatterer at xp and the second geophone 

at xs, hence this is the specular ray. The rays leaving 

the other sources have their specular reflection points 

left and right from x, (the solid rays in Figure 10a). 
The direct arrivals at x, follow the dashed paths and 

do not coincide with the solid rays, except for the source 

at 21,5 = —300 m. For each of the sources we crosscor- 

relate the direct arrival at x4 with the scattered wave 
recorded at xg. This gives the correlation gather shown 

in Figure 10b, in which the horizontal axis denotes the 

source coordinate 21,5. The trace at 21,5 = —300 m 

shows an impulse (indicated by the vertical arrow) at 
tas, which is the traveltime from x, via the scatterer 

to xg. The impulses in the surrounding traces arrive 

before tag. If we sum the traces for all 21,5, the main 
contribution comes from an area (the Fresnel zone, indi- 
cated by the dashed lines) around the point 21,5 = —300 

m where the traveltime curve is stationary (indicated 

by the vertical arrow); the other contributions cancel. 
Hence, the sum of the correlations, shown in Figure 10c, 

contains an impulse at t4g and can be interpreted as 

the reflection response that would be measured at xg if 

there was a source at x4. In other words, the source has 

been repositioned from its unknown position at depth 

to a known position x4 at the surface. Note that this 

procedure works for any x4 and xz, as long as the ar- 

ray of sources contains a source that emits a specular 

ray via xq and the scatterer to xg. In the Appendix 

we give a simple proof that the stationary point of the 

traveltime curve in a correlation gather corresponds to 
the source from which the rays to x4 and xg leave in 

the same direction. 

This example shows that it is possible to reposition 

(or “redatum”) sources without knowing the velocity 
model and the position of the original sources. In ex- 
ploration geophysics, redatuming is known as a process 

that brings sources and/or receivers from the acquisition 

level to another depth level, using extrapolation opera- 

tors based on a macro velocity model Berryhill (1979, 

1984). In seismic interferometry, as illustrated in Figure
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10, the extrapolation operator comes directly from the 

data (in this example the observed direct wave at x4). 
In the years following his sabbatical, Schuster 

showed that the interferometric redatuming concept, in- 

dicated in Figure 10, can be applied to a wide range of 

configurations (mostly for controlled-source data). His 
work inspired many other researchers to develop in- 

terferometric methods for exploration geophysics. We 

mention some examples. VSP data can be transformed 

into crosswell data Minato et al. (2007) or into single- 
well reflection profiles to improve salt-flank delineation 

and imaging (Willis et al., 2006; Xiao et al., 2006; 

Hornby and Yu, 2007; Lu et al., 2008). Interferome- 

try can be used to turn multiples in VSP data into 

primaries and in this way enlarge the illuminated area 

(Yu and Schuster, 2006; Jiang et al., 2007; He et al., 

2007). Surface multiples can be turned into primaries 

at the position of missing traces Wang et al. (2009). 
Crosscorrelation of refracted waves gives virtual refrac- 

tions which can be used for improved estimation of the 

subsurface parameters Dong et al. (2006b); Mikesell et 
al. (2009). Surface waves can be predicted by interfer- 
ometry and subsequently subtracted from exploration 

seismic data Curtis et al. (2006); Dong et al. (2006a); 
Halliday et al. (2007); Xue et al. (2009); Halliday et al. 
(2010). In his recent book, Schuster (2009) systemati- 
cally discusses all possible interferometric transforma- 

tions between surface data, VSP data, single well pro- 

files and cross-well data. Figure 11 shows some exam- 

ples. Another approach to interferometric redatuming 

of controlled-source data, known as the “virtual source 

method” Bakulin and Calvert (2004, 2006), is discussed 
in Part II of this paper. 

The example discussed in Figure 10 deals only with 

primary reflections and therefore confirms Claerbout’s 

conjecture only partly. The 1D analysis in the previous 

subsection showed that not only primary reflections, but 

also all multiples are recovered from the autocorrelation 

of the transmission response. Claerbout’s conjecture for 

the 3D situation can be proven along similar lines. In- 
stead of using the principle of power conservation, a so- 

called power reciprocity theorem is used as the starting 

point. In general, an acoustic reciprocity theorem for- 

mulates a relation between two acoustic states de Hoop 

(1988); Fokkema and van den Berg (1993). One can dis- 
tinguish between convolution- and correlation-type the- 

orems. The theorems of the correlation type reduce to 

power-conservation laws when the two states are cho- 

sen identical, which is why they are also called power 

reciprocity theorems. Because reflection and transmis- 

sion responses are defined for downgoing and upgoing 

waves, the derivation makes use of a correlation-type 

reciprocity theorem for (flux-normalized) one-way wave- 
fields Wapenaar and Grimbergen (1996). Consider the 
configuration in Figure 12a. An arbitrary inhomoge- 
neous lossless medium is sandwiched between a free 

surface and a homogeneous lower half-space. Impul- 
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Figure 12. From transmission to reflection response (3D). 

(a) Arbitrary inhomogeneous lossless medium, with sources 
in the homogeneous lower half-space and receivers at x4 and 

xg at the free surface. According to equation 13, the re 

flection response R(xg,x,,t), implicitly present in the coda 
of the transmission response, is retrieved by crosscorrelating 

transmission responses observed at x4 and xg and summing 

over the sources. (b) When the sources are simultaneously 

acting, mutually uncorrelated noise sources, the observed re- 
sponses at x4 and xg are each a superposition of trans- 

mission responses. According to equation 14, the reflection 

response R(x, x,,t) is now retrieved from the direct cross- 

correlation of the observations at x4 and xg. 

sive sources are distributed along a horizontal plane in 

this lower half-space. For this configuration we derived 
Wapenaar et al. (2002, 2004) 

R(xse,xa,t) + R(xe, xa, —t) © 6(xH,8 — XH,a)d(t) 

~ SOT (xa, x9) ,t) *T(xa,x@,— —t). (13) 

Here xy,4 and xu,gB denote the horizontal components 

of x4 and xg, respectively. T(x (a), x, t) is the upgo- 

ing transmission response of an impulsive point source 

at x in the subsurface, observed at x4,g) at the free 

surface. Its coda includes all surface-related and internal 

multiple reflections (only a few rays are shown in Fig- 

ure 12a). The right-hand side of equation 13 involves 
a crosscorrelation of transmission responses at x4 and 

xp for each source x), followed by a summation for 

all source positions. The time-symmetric response on 

the left-hand side is the reflection response that would 

be recorded at xg if there was a source at x4, plus 

its time-reversed version. The main approximation is 

the negligence of evanescent waves. Apart from that,
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the retrieved reflection response R(xg,xa,t) contains 

all primary, surface-related and internal multiple reflec- 

tions, which are unraveled by equation 13 from the coda 

of the transmission responses. 

When the impulsive sources are replaced by un- 

correlated noise sources, then the responses at x4 and 

Xp are given by u(xa,t) = Dd, T(xa,x®), t) + Ni(t) 

and u(xe,t) = >7, T(x, x, t) x N;(£), see Figure 12b 
(each dashed ray represents a complete transmission re- 

sponse). Using a similar derivation as the one that trans- 

formed equation 4 into equation 7 we obtain from equa- 

tion 13 

{R(xB,xa,t) + R(xB,xa,—t)} * Sn(t) & 

6(XH,B - xH,A) Sn (Et) —- (u(x,t) * u(Xa, -t)), 

where Sy(t) is the autocorrelation of the noise. This 
equation shows that the direct crosscorrelation of pas- 

sive noise measurements gives the reflection response of 

a transient source at the free surface. Although equa- 
tions 13 and 14 have been derived for the situation in 
which the sources at x lie all at the same depth (Fig- 
ure 12a), these equations remain approximately valid 

when the depths are randomly distributed (as in Figure 

12b), because in the crosscorrelation process only the 

time difference matters (we used a similar reasoning for 
direct-wave interferometry to explain why the travel- 
time curves in Figure 6d remained smooth). Moreover, 
despite the initial assumption that the medium is ho- 

mogeneous below the sources, Draganov et al. (2004) 
showed with numerical examples that the randomness 

of the source depths helps to suppress non-physical 

ghosts related to reflectors below the sources, whereas 

the physical response of these deeper reflectors shows 

up correctly in R(xs,xa,t). Later this has also been 
explained with theoretical arguments Wapenaar and 

Fokkema (2006). 
Equations 13 and 14 have been used by various au- 

thors to turn ambient seismic noise into exploration- 

like seismic reflection data Draganov et al. (2006); Hohl 
and Mateeva (2006); Torii et al. (2007); Draganov et 
al. (2007, 2009). It is interesting to note that in the 
teleseismic community it has been independently rec- 

ognized that the coda of transmission responses from 

distant sources contains reflection information that can 
be used to image the Earth’s crust (Bostock et al., 2001; 
Shragge et al., 2001, 2006; Rondenay, 2001; Mercier et 

al., 2006). The link between teleseismic coda imaging 
and seismic interferometry has been exploited by Ku- 

mar and Bostock (2006), Nowack et al. (2006), Chaput 
and Bostock (2007) and Tonegawa et al. (2009). 

We conclude this section with an example of re- 

trieving exploration-like seismic reflection data from 
ambient noise, recorded by Shell in a desert area near 

Ajdabeya, Libya. Figure 13a shows 10 s of noise, ar- 

bitrarily selected from a total of 11 hours of noise, 

recorded along a line of 20 km. Each receiver channel 

represents a group of 48 vertical-component geophones, 
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Figure 13. (a) 10 s of ambient noise, arbitrarily selected 
from a total of 11 hours of noise, recorded in a desert area 

near Ajdabeya, Libya. The main events are remnants of sur- 

face waves caused by traffic at 1 =14 km. (b) The same 
noise window, after further suppression of the surface waves. 

  

Figure 14. (a) Reflection response (shot record), obtained 

by crosscorrelating 11 hours of ambient noise Draganov et al. 

(2009). (b) For comparison, an active shot record measured 
at the same location. 

designed to suppress surface waves. Nevertheless, the 

main events in Figure 13a are parts of the surface waves 

that fell outside the suppression band of the geophone 

groups; these surface waves were caused by traffic on 

a road intersecting the line at +; =14 km. Bandpass 

and k-f filtering was used to suppress the surface waves 

further, see Figure 13b. 

We use equation 14 to retrieve the reflection re- 

sponse. Strictly speaking, application of equation 14 re- 

quires decomposition of the filtered geophone data of 

Figure 13b into the upgoing transmission response. In 

the acoustic approximation, decomposition mainly in- 

volves the application of an angle-dependent amplitude 

filter. Since it is very difficult to obtain true amplitude



Tutorial on seismic interferometry, Part I 235 

responses from ambient noise anyway, the decomposi- 

tion step is skipped. Using equation 14, with x, fixed 

(z1,a = 1 km) and xg chosen variable (41,3 =0--- 4 
km), aseismic shot record R(xs,xa, t) is retrieved from 
the noise, of which the first 2.5 s are shown in Figure 

14a. The red star at 21,8 = 21,4 = 1 km denotes the po- 
sition of the virtual source. An active seismic reflection 

experiment, carried out with the source at the same po- 

sition, is shown in Figure 14b. Note that, particularly in 

the red shaded areas, the reflections retrieved from the 

ambient noise (Figure 14a) correspond quite well with 
those in the active shot gather (Figure 14b). For more 
details about this experiment as well as a pseudo 3D 

reflection image obtained from the ambient noise, see 

Draganov et al. (2009). 

CONCLUSIONS 

We have discussed the basic principles of seismic in- 

terferometry in a heuristic way. We have shown that, 

whether we consider controlled-source or passive inter- 

ferometry, virtual sources are created at positions where 

there are only receivers. Of course no new information 

is generated by interferometry, but information hidden 

in noise or in a complex scattering coda, is reorganized 

into easy interpretable responses that can be further 

processed by standard tomographic inversion or reflec- 

tion imaging methodologies. The main strength is that 

this “information unraveling” neither requires knowl- 

edge of the subsurface medium parameters nor of the 

positions or timing of the actual sources. Moreover, the 

processing consists of simple crosscorrelations and is al- 

most entirely data-driven. 

In Part II we discuss the relation between inter- 

ferometry and time-reversed acoustics, review a mathe- 

matically sound derivation, and indicate recent and new 

advances. 
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FIG. A-1 Two rays, A and B, that propagate from a common 

point on the surface with sources (dashed line) and their 

take-off angles at this source surface. 

results (Figures 13 and 14) and Shell in Libya for col- 
lecting and making available the passive data. 

APPENDIX A: STATIONARY-PHASE 
ANALYSIS 

We give a simple proof that the stationary point of the 

traveltime curve in a correlation gather corresponds to 

the source from which the rays to the receivers at xa 

and xg leave in the same direction. Consider two rays 

A and B that propagate from an arbitrary source point 

to the two receivers, see Figure A-1. This propagation 

may be direct, or it may involve bounces off reflectors 

or scatterers; the fate of these rays is irrelevant for the 

argument presented here. The sources involved in inter- 

ferometry are located on the surface indicated by the 

dashed line in Figure A-1. This surface, which need not 

be planar, is in 3D parameterized by two orthogonal co- 

ordinates qi and gz. We first keep qo fixed and consider 

only variations in q. 

The travel time from a given source to the receiver 

at x4 is denoted by ta, and the travel time from that 

source to the receiver at xg by tg. These travel times 

are, in general, functions of the source position qi. In 

seismic interferometry, the traveltimes of the signals 

that are crosscorrelated are subtracted. This means that 

the traveltime tcorr of the crosscorrelation for a given 
source position is given by 

tcorr (41) = ts(m) _ ta(qu). (Al) 

The condition that the traveltime is stationary means 
that 

Otcorr(q1) _ Ota(q) _ dta(n) 

On On Og 
  =0. (A2)



236 K. Wapenaar, et al. 

A standard derivation Aki and Richards (1980) relates 

the slowness along the surface to the take-off angle 

Ota(q) — sinta SAMA) _ SEA A3 Bn > (A3) 

with c the propagation velocity. A similar expression 

holds for tg. Inserting this in equation (A-2) implies 

that at the stationary point 

ta = te. (A4) 

This means that at the stationary source point the rays 

take off in the same direction. 

The reasoning above was applicable to variations 

in the source coordinate q,. The same reasoning applies 

to variations with the orthogonal source coordinate qe. 

This means that the rays take off in the same direction 

as measured in two orthogonal planes, hence, the rays 

have the same direction in three dimensions. Therefore, 

the rays radiating from the stationary source position 

are parallel. 
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INTRODUCTION 

In Part I we discussed the basic principles of seis- 

mic interferometry (also known as Green’s function re- 

ABSTRACT 

In part II of this two-part tutorial we review the underlying theory of seismic 
interferometry and discuss various new advances. In the 1990’s the method 
of time-reversed acoustics was developed. This method employs the fact that 
the acoustic wave equation for a lossless medium is invariant for time-reversal. 
When ultrasonic responses recorded by piezoelectric transducers are reversed in 
time and fed simultaneously as source signals to the transducers, they focus at 
the position of the original source, even when the medium is very complex. In 
seismic interferometry the time-reversed responses are not physically sent into 
the earth, but they are convolved with other measured responses. The effect 
is essentially the same: the time-reversed signals focus and create a virtual 
source which radiates waves into the medium that are subsequently recorded 
by receivers. A mathematical derivation, based on reciprocity theory, formalizes 
this principle: the crosscorrelation of responses at two receivers, integrated over 
different sources, gives the Green’s function emitted by a virtual source at the 
position of one of the receivers and observed by the other receiver. 
The basic Green’s function representations for seismic interferometry assume 
a lossless non-moving acoustic or elastic medium. We discuss many variants 
and extensions, including interferometric representations for attenuation and/or 
moving media, unified representations for waves and diffusion phenomena, bend- 
ing waves, quantum mechanical scattering, potential fields, elastodynamic, elec- 
tromagnetic, poroelastic and electroseismic waves. We discuss the relation with 
the generalized optical theorem, discuss variants for virtual receivers and virtual 
reflectors and indicate the potential applications of time-lapse interferometry. 
Finally we discuss the improvements that can be obtained with interferome- 
try by deconvolution. A trace-by-trace deconvolution process compensates for 
complex source functions and the attenuation of the medium. Interferometry 
by multidimensional deconvolution compensates in addition for the effects of 
one-sided and/or irregular illumination. 

Key words: seismic interferometry 

trieval*), using mainly heuristic arguments. In Part II 

we continue our discussion, starting with an analysis of 

the relation between seismic interferometry and the field 

*Note that by “Green’s function” we mean the response of 

an impulsive point source in the actual medium rather than 

in a background medium.
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of time-reversed acoustics, pioneered by Fink (1992, 

1997). This analysis includes a heuristic discussion of 
the “virtual source method” of Bakulin and Calvert 

(2004, 2006) and a review of an elegant physical deriva- 

tion by Derode et al. (2003b,a) of Green’s function re- 
trieval by crosscorrelation. After that, we review ex- 

act Green’s function representations for seismic interfer- 

ometry in arbitrary inhomogeneous anisotropic lossless 

solids Wapenaar (2004) and discuss the approximations 
that lead to the commonly used expressions. We con- 

clude with an overview of recent and new advances, in- 

cluding approaches that account for attenuating and/or 

non-reciprocal media, methods for obtaining virtual re- 

ceivers or virtual reflectors, the relationship with imag- 

ing theory, and last but not least, interferometry by de- 

convolution. The discussion of each of these advances 
is necessarily brief, but we include many references for 

further reading. 

INTERFEROMETRY AND 
TIME-REVERSED ACOUSTICS 

Review of time-reversed acoustics 

In the early 1990’s Mathias Fink and coworkers at the 

University of Paris VII initiated a new field of research, 

called time-reversed acoustics (Fink, 1992, 1997; Derode 

et al., 1995; Draeger and Fink, 1999; Fink and Prada, 

2001). Here we briefly review this research field and in 
the next subsections we discuss the links with seismic in- 
terferometry. Time-reversed acoustics makes use of the 

fact that the acoustic wave equation for a lossless acous- 

tic medium is invariant under time-reversal (because it 
only contains even-order time derivatives, i-e., zeroth 

and second order). This means that, when u(x, é) is a 
solution, then u(x,—t) is a solution as well. Figure 1 
illustrates the principle in the context of an ultrasonic 

experiment Derode et al. (1995); Fink (2006). A piezo- 
electric source at A in Figure la emits a short pulse 

(duration 1 ys) which propagates through a highly scat- 

tering medium (a set of 2000 randomly distributed steel 

rods with a diameter of 0.8 mm). The transmitted wave- 
field is received by an array of piezoelectric transducers 

at B. The received traces, of which three are shown in 

Figure la, exhibit a long coda (more than 200 ys) be- 
cause of multiple scattering between the rods. Next the 

traces are reversed in time and simultaneously fed as 

source signals to the transducers at B (Figure 1b). This 
time-reversed wavefield propagates through the scatter- 

ing medium and focuses at the position of the original 

source. Figure 1c shows the received signal at the origi- 

nal source position; the duration is of the same order as 

the original signal (~1 ys). Figure 1d shows beam pro- 

files around the source position (amplitudes measured 
along the z-axis denoted in Figure 1b). The narrow 

beam is the result of this experiment (back-propagation 

via the scattering medium), whereas the wide beam was 

obtained when the steel rods were removed. The reso- 

lution is impressive and at the time the stability of this 

experiment amazed many researchers. From a numer- 

ical experiment one might expect such a good recon- 

struction, but when waves have scattered at tens to hun- 

dreds of scatterers in a real experiment, the fact that the 

wavefield refocusses at the original source point is fas- 

cinating. Snieder and Scales (1998) have analyzed this 
phenomenon in detail. In their analysis they compared 

wave scattering with particle scattering. They showed 

for their model that, whereas particles behave chaoti- 

cally after having encountered typically eight scatterers, 

waves remain stable after thirty or more scatterers. The 

instability of particle scattering is explained by the fact 

that particles follow a single trajectory. A small distur- 

bance in initial conditions or scatterer positions causes 

the particle to follow a completely different trajectory 

after only a few encounters with the scatterers. Waves, 

on the other hand, have a finite wavelength and travel 
along all possible trajectories visiting all the scatter- 

ers in all possible combinations. Hence, a small pertur- 

bation in initial conditions or scatterer positions has a 

much less dramatic effect for wave scattering than for 

particle scattering. Consequently, wave propagation ex- 

periments through a strongly scattering medium have a 

high degree of repeatability. Combined with the invari- 

ance of the wave equation for time-reversal this explains 

the excellent reproduction of the source wavefield after 

back-propagation through the scattering medium. 

As a historical side note we mention that the idea of 

emitting time-reversed signals into a system was already 
proposed and implemented in the 1960’s Parvulescu 

(1961, 1995). This was a single channel method, aim- 

ing to compress a complicated response at a detector 

(for example in an ocean waveguide) into a single pulse. 
The method was proposed as a fast alternative to digital 

crosscorrelation, which with the computers at that time 

would cost in the order of ten days computation time 

per correlation for signal lengths typically considered in 

underwater acoustics Stewart et al. (1965). 
Snieder et al. (2002) and Grét et al. (2006) employ 

the repeatability of acoustic experiments in a method 

they call coda wave interferometry (here the term “in- 

terferometry” is used in the classical sense). Because 
the scattering coda is repeatable when an experiment is 

carried out twice under the same circumstances, any 

change in the coda between two experiments can be 

attributed to changes in the medium. Because of the 
relatively long duration of the coda, minor time-lapse 

changes in, for example, the background velocity can be 

monitored with high accuracy by coda wave interferom- 

etry. 

Apart from the repeatability, another important as- 

pect of time-reversed acoustics is its potential to image 

beyond the diffraction limit. Consider again the time- 

reversal experiment in Figure 1. An important effect of 

the scattering medium between the source at A and the
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Figure 1. Time-reversed acoustics in a strongly scattering random medium Derode et al. (1995); Fink (2006). (a) The source 
at A emits a short pulse which propagates through the random medium. The scattered waves are recorded by the array at B. 

(b). The array at B emits the time-reversed signals, which, after back-propagation through the random medium, focus at A. (c) 

The back-propagated response at A. (d) Beam profiles around A. 

transducer array at B is a widening of the effective aper- 

ture angle. That is, waves that arrive at each receiver 

include energy from a much wider range of take-off an- 

gles from the source location than would be the case 

without scatterers. A consequence is that time-reversal 

experiments in strongly scattering media have so-called 

super-resolution properties de Rosny and Fink (2002); 

Lerosey et al. (2007). Hanafy et al. (2009) and Cao et 
al. (2010) use this property in a seismic time-reversal 
method to accurately locate trapped miners after a mine 

collapse. 

An essential condition for the stability and high- 

resolution aspects of time-reversed acoustics is that the 

time-reversed waves propagate through the same phys- 

ical medium as in the forward experiment. Here we see 

a link between time-reversed acoustics and seismic in- 

terferometry. Instead of doing a real reverse-time exper- 

iment, in seismic interferometry one convolves forward 

and time-reversed responses. Since both responses are 

measured in one-and-the same physical medium, seis- 

mic interferometry has the same stability and high- 

resolution properties as time-reversed acoustics. This 

link is made more explicit in the next two subsections. 

Finally, note that time-reversed acoustics should be 
distinguished from reverse time migration, such as pro- 

posed by McMechan (1982, 1983), Baysal et al. (1983), 
Whitmore (1983) and Gajewski and Tessmer (2005), in 
which time-reversed waves are propagated numerically 

through a macro model. No matter how much detail one 

puts into a macro model, results like the one illustrated 

in Figure 1 can only be obtained when the same phys- 

ical medium is used in the forward as in the reverse- 

time experiment. Time-reversed acoustics and reverse 

time migration serve different purposes. The field of re- 

verse time migration has advanced significantly during 

the last few years and contractors and oil companies are 

now applying this routinely for depth imaging (Etgen et 

al., 2009; Zhang and Sun, 2009; Clapp et al., 2010). 

“Virtual source method” 

The method of time-reversed acoustics inspired Rod- 

ney Calvert and Andrey Bakulin at Shell to develop 
what they call the “virtual source method” Bakulin and 

Calvert (2004, 2006)" 
In essence, their virtual source method is an ele- 

gant data-driven alternative for model-driven redatum- 

ing, similar as Schuster’s methods discussed in Part I 
(we point out the differences in a moment). For an ac- 
quisition configuration with sources at the surface and 

receivers in the subsurface, for example in a near hor- 

izontal borehole (Figure 2), the reflection response is 

described as u(xp, x, t)= G(xe,x®, t) * s(t), where 

tRecall from part I that creating a virtual source is the 

essence of all seismic interferometry methods, hence, we use 

the term “virtual source” whenever appropriate. When it 

refers to Bakulin and Calvert’s method we mention this ex- 

plicitly (except when it is clear from the context).
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Figure 2. Basic principle of the “virtual source method” of 

Bakulin and Calvert (2004, 2006). Receivers in a borehole 

record both the downgoing wavefield through the complex 
overburden and the reflected signal from the deeper target. 

Crosscorrelation and summing over source locations gives the 
reflection response of a virtual source in the borehole, free of 

overburden distortions. 

s(t) is the source wavelet and G(xs, x, t) the Green’s 
function, describing propagation from a point source at 

x) via a target below the borehole to a receiver at xp 

in the borehole (we adopted the notation of Part I; the 

asterisk denotes temporal convolution). The downgoing 

wavefield observed by a downhole receiver at x4 is given 

by u(xa, x? st) = G(x4, x? rt) * s(t). Using. source- 

receiver reciprocity, i.e., u(xa, xo ,t) = u(x? »XA,t), 

this can also be interpreted as the response of a down- 

ne source at x4, observed by an array of receivers 

) after propagation through the complex overbur- 

den. This is comparable with the response of the ul- 

trasonic experiment in Figure la. Hence, if all traces 

u(x? , xa, t) would be reversed in time and fed simulta- 

neously as source signals to the sources at x), similar 

as in Figure 1b, the back-propagating wavefield would 

focus at x4. Instead of doing this physically, the time- 

reversed signals are convolved with the reflection re- 

sponses, and subsequently summed over the different 

source positions at the surface, according to 

C(xg,xa,t) = So u(xe, x? ,t) «u(x, x, — —t). (1) 
z 

The correlation function C(xg,xa,t) is interpreted 

as the response of a virtual downhole source at 

XA, Measured by a downhole receiver at xg, hence 

C(xp,Xa,t) * G(xs,xXa,t) * S3(t). The wavelet of 
the virtual source, S,(t), is the autocorrelation of the 
wavelet s(t) of the real sources at the acquisition surface. 
Similar to Schuster’s methods, equation 1 can be seen 

as a form of source redatuming, using a measured ver- 

sion of the redatuming operator, i.e., u(xa, xo ,-t) = 

G(x, x? , —t) * s(—t). Whereas in Schuster’s methods 
the emphasis is on aspects like transforming multiples 

into primaries, enlarging the illumination area, interpo- 

lating missing traces etc., the emphasis of Bakulin and 

Calvert’s virtual source method is on the elimination of 

the propagation distortions of the complex inhomoge- 

neous overburden. Similar to Figure 1, where the time- 

reversed complex signals at B back-propagate through 

the strongly scattering medium and focus to a short du- 
ration pulse at A, in Bakulin and Calvert’s method the 

sources at the surface are focused to a virtual source in 

the borehole, compensating for a complex overburden. 

Similar to the time-reversed acoustics method, the fo- 

cusing occurs with a time-reversed measured response, 

hence the redatuming takes place in the same physical 

medium as the one in which the data were measured. 

This distinguishes the virtual source method from classi- 

cal redatuming Berryhill (1979, 1984) and the Common 
Focal Point (CFP) method (Berkhout, 1997; Berkhout 
and Verschuur, 2001). Each of these methodologies has 
its own applications and hence its own right of exis- 

tence. Classical redatuming and the CFP method are 

applied to data acquired by sources and receivers at the 

surface, using as operators either model-based Green’s 

functions (redatuming) or dynamic focusing operators 
that are aimed to converge iteratively to the Green’s 

functions (CFP method). The virtual source method 
uses sources at the surface and receivers in a bore- 

hole that directly measure the operators. The idea of 

using measured Green’s functions as redatuming oper- 

ators may seem simple with hindsight, but the conse- 

quences are far reaching. Bakulin et al. (2007) give an 
impressive overview of the applications in imaging and 

reservoir monitoring. 

Note that a new method for wavelet estimation has 
been proposed as an interesting corollary of the virtual 

source method Behura (2010). When the virtual source 
coincides with a real source at x4, the response at xB 

from the real source is given by G(xs,xa,t) + s(t). The 
virtual source response, obtained by equation 1, is given 

by G(xs,xa,t)*S;,(é), with S,(t) = s(t) *s(—t). Hence, 
deconvolution of the virtual source response by the ac- 

tual response gives the (time-reversed) wavelet. 
Last but not least, we remark that an impor- 

tant difference of equation 1 with the previously dis- 

cussed expressions for seismic interferometry in Part 

I, is the single-sidedness of the correlation function 

C(xB,xa,t) © G(xB,xa,t) * S.(t) (there is no time- 
reversed term G(xg,xa,—t)). Moreover, this correla- 
tion function is only approximately proportional to the 

causal Green’s function. These are consequences of the 

anisotropic illumination of the receivers in the borehole, 

which are primarily illuminated from above. In the sub- 

section “Acoustic representation” we will come back on 

the approximations of one-sided illumination and indi- 

cate various improvements. The most effective improve- 

ment is discussed in the subsection “Interferometry by 

multidimensional deconvolution” .
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Derivation of seismic interferometry from 

time-reversed acoustics 

The virtual source method discussed in the previ- 

ous subsection, although very elegant, is an intuitive 

application of time-reversed acoustics. Derode et al. 

(2003b,a) show more precisely how the principle of 
Green’s function retrieval by crosscorrelation in open 

systems can be derived from time-reversed acoustics. 

Their derivation, which is based entirely on physical ar- 

guments, shows that Green’s function retrieval (which 
is equivalent to seismic interferometry), holds for arbi- 

trarily inhomogeneous lossless media, including highly 
scattering media as shown in Figure 1. Here we briefly 

review their arguments, but we replace their notation 

by that used in Part I. 

Consider a lossless arbitrary inhomogeneous acous- 

tic medium in a homogeneous embedding. In this config- 
uration we define two points with coordinate vectors x4 

and xg. Our aim is to show that the acoustic response at 

xg due to an impulsive source at x4 |i.e., the Green’s 
function G(xg,xa,t)] can be obtained by crosscorre- 
lating observations of wavefields at x4 and xg due to 

sources on a closed surface OD in the homogeneous em- 

bedding. The derivation starts by considering another 

experiment, namely an impulsive source at t = 0 at xa, 

and receivers at x on OD (Figure 3a). The response at 
any point x on OD is denoted by G(x,x.,¢). Imagine 

that we record this response for all x on OD, reverse the 

time axis, and simultaneously feed these time-reversed 

functions G(x, xa,—t) to sources at all positions x on 

6D (Figure 3b). The superposition principle states that 

the wavefield at any point x’ inside OD due to these 

sources on OD is given by 

u(x’, t) xf G(x’,x,t) * G(x,xa,—t)d’x, (2) 
a=_— Se 

“propagator” “source” 

where « denotes “proportional to”. According to this 

equation, G(x’,x,¢) propagates the source function 
G(x,xa,—t) from x to x’ and the result is integrated 
over all sources on OD. Due to the invariance of the 
acoustic wave equation for time-reversal, we know that 

the wavefield u(x’, £) must focus at x’ = x, and t= 0. 
This property is the basis of time-reversed acoustics and 

explains why the focusing in Figure 1 occurs. Derode et 

al. (2003a,b) go one step further in their interpretation 
of equation (2). Since u(x’,¢) focusses for x’ = x, at 
t = 0, the wavefield u(x’, t) for arbitrary x’ and ¢ can 
be seen as the response of a virtual source at x4 and 

t = 0. This virtual source response, however, consists of 

a causal and an acausal part, according to 

u(x’, t) = G(x’, xa,l) + G(x’, xa, —t). (3) 

This is explained as follows: the wavefield generated 

by the acausal sources on OD first propagates to all x’ 

where it gives an acausal contribution, next it focusses 

in x4 at t = 0 and finally, since the energy focussed 
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Figure 3. Derivation of Green’s function retrieval, us- 

ing arguments from time-reversed acoustics Derode et al. 
(2003a,b). (a) Response of a source at x4, observed at any x 

(the ray represents the full response, including primary and 

multiple scattering due to inhomogeneities). (b) The time 

reversed responses are emitted back into the medium. (c) 
The response of a virtual source at x4 can be obtained from 

the crosscorrelation of observations at two receivers and in- 

tegration along the sources. 

at that point is not extracted from the system, it must 

propagate outwards again to all x’ giving the causal con- 

tribution. The propagation paths from x’ to x are the 

same as those from x4 to x’, but are travelled in oppo- 

site direction, which explains the time-symmetric form 

of u(x’, t). Combining equations (2) and (3), applying 
source-receiver reciprocity to G(x,xa,—é) in equation
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(2) and setting x’ = xg yields 

G(xB,xa,t) + G(xB,xa,—t) « 

f G(xp,x,t) * G(xa,x,—t)d?x. (4) 
aD 

We recognize the by now well-known form of an in- 

terferometric relation, with on the left-hand side the 

Green’s function between x4 and xg plus its time 

reversed version and on the right-hand side crosscor- 

relations of wavefield observations at x4 and xz, inte- 

grated along the sources at x on OD (Figure 3c). The 
right-hand side can be reduced to a single crosscorrela- 

tion of noise observations in a similar way as discussed 

in Part I (we will briefly review this in the subsection 
“Acoustic representation” ). 

Note that equation 4 holds for an arbitrarily inho- 

mogeneous medium inside OD, hence, the reconstructed 

Green’s function G(xg, xa, t) contains the ballistic wave 
(i.e., the direct wave) as well as the coda due to mul- 
tiple scattering in the inhomogeneous medium. In itself 

this is not new, since equation 13 in Part I was also de- 

rived for inhomogeneous media. However, because equa- 

tion 4 was derived directly from the principle of time- 

reversed acoustics, it now follows that seismic interfer- 

ometry has the same favorable stability and resolution 

properties as time-reversed acoustics. Sens-Schénfelder 

and Wegler (2006) and Brenguier et al. (2008b) exploit 
the stability properties by applying coda wave inter- 

ferometry Snieder et al. (2002) to Green’s functions ob- 
tained by crosscorrelating noise observations at different 

seismometers on a volcano. They show that they can 

measure velocity variations with an accuracy of 0.1% 

with a temporal resolution of a single day. Brenguier et 

al. (2008a) use a similar method to monitor changes in 
seismic velocity associated with earthquakes near Park- 

field, California. 

The derivation of Derode et al. (2003b,a) that we 
have reviewed here is entirely based on elegant physi- 

cal arguments, but it is not mathematically exact. In 

the next section we derive exact expressions and show 

the approximations that need to be made to arrive at 

equation 4. 

GREEN’S FUNCTION REPRESENTATIONS 
FOR SEISMIC INTERFEROMETRY 

Equations 13 and 14 in Part I express the reflection 

response of a 3D inhomogeneous medium in terms of 

crosscorrelations of the transmission responses of that 

medium. We derived these relations in 2002, as a gener- 

alization of Claerbout’s 1D expressions (equations 8 and 
12 in Part I). The derivation was based on a correlation- 
type reciprocity theorem for one-way wavefields. In or- 

der to establish a link with the independently upcoming 

field of Green’s function retrieval, in 2004 we derived the 

equivalent of these relations in terms of Green’s func- 

tions for full wavefields Wapenaar (2004). The start- 
ing point was the Rayleigh-Betti reciprocity theorem 

for elastodynamic wavefields. Apart from establishing 

the mentioned link, this derivation has the additional 

advantage that the inherent approximations of the one- 
way reciprocity theorem of the correlation type are cir- 

cumvented (or at least postponed to a later stage in the 

derivation). 

Elastodynamic representation 

Here we briefly review our derivation of the elastody- 

namic Green’s function representation for interferom- 

etry and discuss the connection with the methods we 

have discussed in the previous section and in Part I. 

Consider an arbitrarily heterogeneous and anisotropic 

lossless solid medium with stiffness ¢;jx:(x) and mass 
density p(x). In this medium an external force distribu- 
tion f;(x,t) generates an elastodynamic wavefield, char- 

acterized by stress tensor 7;;(x,f) and particle velocity 
v;(x,t). The Fourier transforms of these time-dependent 
quantities are defined via 

fw) =f ” F(t) exp(—jwt)dt, (5) 

where w is the angular frequency and j the imaginary 

unit. In the space-frequency domain the stress-strain re- 

lation reads jwtiz — cijxiidx = 0 and the equation of 

motion jwpi; — 0;7i3 = fi. Here 0; denotes the partial 

derivative in the x;-direction and Einstein’s summation 
convention applies to repeated subscripts. In the follow- 

ing we consider two independent elastodynamic states 

(i.e., sources and wavefields), which are distinguished by 

subscripts A and B. For an arbitrary spatial domain D, 

enclosed by boundary OD with outward pointing normal 

n = (n1, 72,73), the Rayleigh-Betti reciprocity theorem 
that relates these two states is given by 

[th.ad.0 —ti,afi,e}d?x = 
D 

{0i,atij,B — fiz,ati,n}njd’x (6) 
aD 

(Knopoff and Gangi, 1959; de Hoop, 1966; Aki and 

Richards, 1980). This theorem is also known as a reci- 
procity theorem of the convolution type, because all 

products in the frequency domain, like @;,47i;,B, cor- 

respond to convolutions in the time domain. 

Similarly to the acoustic situation, we can apply the 

principle of time-reversal invariance for elastic waves in 
a lossless medium Bojarski (1983). Time-reversal corre- 
sponds to complex conjugation in the frequency domain. 

Hence, when stress tensor 7;; and particle velocity 6; are 

solutions of the stress-strain relation and the equation 

of motion with source term f;, then 7;; and —éj obey 

the same equations with source term ft (the minus- 

sign in —dj comes from the replacement (jw)* = —jw 
in the equation of motion). Making these substitutions
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for state A, we obtain 

[thiatin + tha fis}d?x = 
D 

{-@). afii,8 — 75,a0i,8}n;d°x. (7) 
aD 

This is an elastic reciprocity theorem of the correlation 

type, because products like 0j,47:;,8, correspond to cor- 

relations in the time domain. 

Next we replace the wavefields in both states in 

equation 7 by Green’s functions. This means that we 

replace the force distributions by unidirectional impul- 

sive point forces in both states, according to fi,a(x,¢t) = 
6(x — x4)d(t)dip and fi,a(x,t) = 6(x — xg)d(E)dig in 

the time domain, or fi,a(x,w) = 6(x — x4)6ip and 
fi,B(X,w) = d(x —xB)dig in the frequency domain, with 
xa and xg both in D and where indices p and q de- 

note the directions of the applied forces. Accordingly, 

for the particle velocities we substitute dj,4(x,w) = 
Gip(x,xa,w) and ti,8(x,w) = Giq(x,XB,w), respec- 
tively. Here Gip(x,xa,w) represents the i-component 

of the particle velocity at x, due to a unit force 

source in the p-direction at x4, etc. Substituting these 

sources and Green’s functions into equation 7, using 

the stress-strain relation and source-receiver reciprocity 

(i-e., Gip(x,XA,w) = Gpi(Ka,xX,w)), gives 

Gop(XB,XA,W) + G4,(xB,X4,W) = 

~ $ cajut) (Gon (xB X, w))Gri(xa, x, w) 
ep jw 

—Gailxp, x, w)AC ze (Asx) )njd?x, (8) 
or, in the time domain, 

O:{Gqp(xB, XA, t) + Gap(xB, xa, —t)} = 

- $ Ciznt(X) (%Gox(xe,x, t) * Gpi(xa,x, —t) 
aD 

—Geilxp,%,t) * AGpx(xA,x,—t))njd?x. (9) 

Note that this representation has a similar form as many 

of the expressions we have encountered before. It is an 

exact representation for the Green’s function between 

xa and xg plus its time-reversed version, expressed in 

terms of crosscorrelations of wavefield observations at 

xa and xz, integrated along the sources at x on OD. 

It holds for an arbitrarily inhomogeneous anisotropic 

medium (inside as well as outside OD), and the closed 
boundary OD containing the sources of the Green’s func- 
tions may have any shape. When a part ODpo of the 
boundary is a stress-free surface, like in Figure 4, then 

the integrand of the right-hand side of equation 7 is zero 

on ODo. Consequently, the boundary integral in equa- 

tion 9 needs only be evaluated over the remaining part 

OD; (meaning that sources are only required on that 

part of the boundary). Note that equation 9 still holds 

in the limiting case in which x, and xg lie at the free 

surface. In that case the Green’s functions on the left- 

  

Figure 4. Configuration for elastodynamic Green’s function 

retrieval (the rays represent the full response, including pri- 
mary and multiple scattering as well as mode conversion 

due to inhomogeneities). Since in this configuration a part 
of the closed boundary is a free surface (OD9), sources are 

only required on the remaining part of the boundary (0D1). 
The shallow sources (say above the dashed line) are mainly 
responsible for retrieving the surface waves and the direct 

and shallowly refracted waves in Ggp(xg,Xa,t), whereas the 

deeper sources mainly contribute to the retrieval of the re- 

flected waves in Ggp(xB, xa, t). 

hand side have a traction source at x4 Wapenaar and 

Fokkema (2006). 
An important difference with earlier expressions is 

that the right-hand side of representation 9 contains a 

combination of two terms, where each of the terms is a 

crosscorrelation of Green’s functions with different types 

of sources at x (e.g., the operator 0; in 0:;Gq%(xB, x,t) 
is a differentiation with respect to z;, which changes the 

character of the source at x of this Green’s function). 
For modeling applications this is not a problem, since 

in modeling any type of source can be defined. This is 

exploited by van Manen et al. (2006, 2007), who use 
equation 9 for what they call interferometric modeling. 

They model the response of different types of sources on 

a boundary and save the responses for all possible re- 

ceiver positions in the volume enclosed by the boundary. 

Next they apply equation 9 to obtain the responses of 

all possible source positions in that volume. Hence, for 

the cost of modeling responses of sources on a bound- 

ary (and calculating many crosscorrelations), they ob- 

tain responses of sources throughout a volume. This can 

be very useful for non-linear inversion schemes, where in 

each iteration Green’s functions for sources in a volume 

are required. 

The requirement of correlating responses of differ- 

ent types of sources makes equation 9 in its present form 

less practicable for application in seismic interferome- 

try. This is particularly true for passive data, where one 

has to rely on the availability of natural sources. To
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accommodate this, equation 9 can be modified Wape- 

naar and Fokkema (2006). Here we only indicate the 
main steps. Using a high-frequency approximation, as- 

suming the medium outside 0D is homogeneous and 

isotropic, the sources can be decomposed into P- and 

S-wave sources and their derivatives in the direction of 

the normal on OD. These derivatives can be approxi- 

mated, leading to a simplified version of equation 9 in 

which only crosscorrelations of Green’s functions with 

the same source type occur. This approximation is accu- 

rate when OD is a sphere with large radius. It can also 

be used for arbitrary surfaces OD, but at the expense 
of amplitude errors. Because the approximation does 

not affect the phase, it is usually considered acceptable 

for seismic interferometry. Finally, when the sources are 

mutually uncorrelated noise sources for P- and S-waves 

on OD, equation 9 reduces to 

{Gop(xs, XA; t) + Gop(xs, XA, —t)} * Sn(t) x 

 (ya(xe5,t) * vp(%4,—t)), (10) 
pep 

where vp(xa,t) and vuq(xs,t) are the p and q- 
components of the particle velocity of the noise re- 

sponses at x4 and xz, respectively, Sn(t) is the au- 

tocorrelation of the noise and cp the P-wave propaga- 

tion velocity of the homogeneous medium outside 0D. 
For the configuration of Figure 4, the Green’s function 

Gop(XB, Xa, t) retrieved by equation 10 contains the sur- 
face waves between x4 and xg as well as the reflected 

and refracted waves, assuming the noise sources are well 

distributed over the source boundary OD, in the half- 

space below the free surface. In practice equation 10 is 

used either for surface-wave or for reflected-wave inter- 

ferometry. 

For surface-wave interferometry, typically the 

sources at and close to the surface give the most rel- 

evant contributions, say the sources above the dashed 

line in Figure 4. In our earlier, more intuitive discussions 

on direct-wave interferometry in Part I, we considered 

the fundamental surface-wave mode as an approximate 

solution of a 2D wave equation in the horizontal plane 

and argued that the Green’s function of this fundamen- 

tal mode can be extracted by crosscorrelating ambient 

noise. Equation 10 is a corollary of the exact represen- 

tation 9 and thus accounts not only for the fundamental 

mode of the direct surface wave, but also for higher order 

modes as well as for scattered surface waves. Halliday 
and Curtis (2008) carefully analyze the contributions of 
the different sources to the retrieval of surface waves. 

They show that, when only sources at the surface are 

available, there is strong spurious interference between 

higher modes and the fundamental mode, whereas the 

presence of sources at depth (between the free surface 
and, say, the dashed line in Figure 4) enables the cor- 

rect recovery of all modes independently. Nevertheless, 

they show that it is possible to obtain the latter result 

using only surface sources if modes are separated before 

crosscorrelation, are correlated separately, and reassem- 

bled thereafter. Halliday and Curtis (2009b) analyze the 
requirements in terms of source distribution for the re- 

trieval of scattered surface waves. Halliday et al. (2010a) 
use the acquired insights to remove scattered surface 

waves (ground-roll) from seismic shot records (Figure 
5). 

For reflected-wave interferometry, the deeper situ- 

ated sources (typically those below the dashed line in 

Figure 4) give the main contributions. This is in agree- 

ment with our earlier discussion on the retrieval of the 

3D reflection response from transmission data, for which 

we considered a configuration with sources in the lower 

half-space (Figure 12 in Part I). For this configuration, 
the Green’s function representations 9 and 10 can be 

seen as alternatives for the reflection representations 13 

and 14 in Part I, generalized for an anisotropic solid 

medium. 

Acoustic representation 

Starting with Rayleigh’s reciprocity theorem (Rayleigh, 

1878; de Hoop, 1988; Fokkema and van den Berg, 1993) 

and the principle of time-reversal invariance Bojarski 

(1983); Fink (1992), we obtain the acoustic analogue of 
equation 8, according to 

G(x, xa,w) + G"(xB,Xa4,w) = 

1 s s 
- ———~ | (O0:G (xs, x,w))G" (xa, x,w 

—G (xB, x,w):G" (xa, x,w))nid?x (11) 

(van Manen et al., 2005; Wapenaar et al., 2005). Here 
G(xa,X,w) = G(x,xa,w) is a solution of the wave 
equation 

pdi(p 'O:G) + (w?/c?)G = —jwp6(x— xa), (12) 

for an arbitrarily inhomogeneous lossless fluid medium 
with propagation velocity c = c(x) and mass density 

p= p(x). 
Before we discuss its use in seismic interferome- 

try, we remark that equation 11 has been used in al- 

most the same form in optical holography Porter (1970), 
seismic migration Esmersoy and Oristaglio (1988) and 
acoustic inverse scattering Oristaglio (1989) (except 
that in those papers the Green’s functions are de- 

fined without the factor jwp in the right-hand side 

of equation 12, leading to a somewhat different form 

of equation 11). In the imaging and inversion litera- 

ture, G(xB,Xa,w) + G*(xB,Xa,w) is also called the 

homogeneous Green’s function, because Gp, (x,xXA,w) = 

G(x, x, w)+G"(x,x4,w) obeys the homogeneous wave 
equation 

p0:(p-*8:Gn) + (w?/c?)G), = 0 (13) 
(“homogeneous” meaning source-free in this context). 
Gn(x,Xa,w) can also be seen as the resolution function
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Figure 5. Example of interferometric ground-roll removal applied to shot records, while preserving the direct ground roll 

Halliday et al. (2010a). (a) Raw data. (b) Results of interferometric scattered ground roll removal. (c) The subtracted scattered 

ground roll. 

of the imaging integral. For a homogeneous medium it 
is given by 

e Ikr sin(kr) 

4ar Qar ’ 

with k = w/c and r = |x — xa|. This function has its 
maximum for r — 0, where the amplitude is equal to 

w*p/2nc. The width of the main lobe (measured at the 
zero crossings) is equal to the wavelength A = 27/k. 
For a further discussion on the relation between seis- 

mic interferometry and the migration resolution inte- 

gral, see van Manen et al. (2006), Thorbecke and Wape- 
naar (2007) and Halliday and Curtis (2010). 

Consider again the acoustic Green’s function repre- 

sentation for seismic interferometry (equation 11). Note 

that, in comparison with e.g. equation 4, the right-hand 

side contains a combination of two terms, where each 

term is a crosscorrelation of Green’s functions with dif- 

ferent types of sources (monopoles and dipoles) at x. 
Here we discuss in more detail how we can combine the 

two correlation products in equation 11 into a single 

term. To this end we assume that the medium outside 

OD is homogeneous, with constant propagation veloc- 

ity c and mass density p. In the high frequency regime, 

the derivatives of the Green’s functions can be approx- 

    
~ . eikr 

Gh(X,Xa,w) = jwp( - co) =w (14) 

imated by multiplying each constituent (direct wave, 

scattered wave etc.) by —jk|cosa|, where @ is the an- 
gle between the relevant ray and the normal on OD. The 

main contributions to the integral in equation 11 come 

from stationary points on OD. At those points the ray 

angles for both Green’s functions are identical (see the 
Appendix of Part I). This implies that the contributions 

of the two terms under the integral in equation 11 are 

approximately equal (but opposite in sign), hence 

G(xp,Xa,w) + G"(xB,xA,w) © 

-2 4 (niO:G(xB, x,w))G" (x4, x,w)d?x. (15) 
JWP Jap 

The integrand contains a single crosscorrelation product 

of dipole and monopole source responses. When only 

monopole responses are available, the operation 7,0; 

can be replaced by a pseudo-differential operator acting 

along OD, or by multiplications with —jk|cosa| at the 
stationary points when the ray angles are known. Hence, 

for controlled-source interferometry, in which case the 

source positions are known and OD is a smooth surface, 

equation 15 is a useful expression. In passive interferom- 

etry, the positions of the sources are unknown and 0D 

can be very irregular. In that case the best one can do
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is to replace the operation nO; by a factor —jk, which 

leads to 

G(xp,xa,w) + G" (xB,XaA,w) x 

<4 G(xp, x, w)G" (x4, x, w)d?x. (16) 
pC Jap 

This approximation is accurate when OD is a sphere 

with large radius so that all rays are approximately 

normal to OD (i.e., a ~ 0). For arbitrary surfaces this 
approximation involves an amplitude error. Moreover, 

spurious events may occur due to incomplete cancela- 

tion of contributions from different stationary points. 

However, since the approximation does not affect the 

phase, equation 16 is usually considered acceptable for 

seismic interferometry. Transforming both sides of equa- 

tion 16 back to the time domain yields 

G(xB,xa,t) + G(xB,xa,—t) & 

= 4 G(xp,x,t) * G(xa,x, —t)d?x, (17) 
PC Jap 

which is equal to equation 4, i.e., the expression ob- 

tained by Derode et al. (2003a,b), with proportionality 
factor 2/pc. 

Of course there are situations for which the deriva- 

tion presented above does not apply. For example, when 

OD is enclosing the water layer for marine seismology ap- 

plications, the assumption that the medium is homoge- 

neous outside OD breaks down and hence the derivatives 

of the Green’s functions need to be obtained in another 

way. Ramirez and Weglein (2009) discuss a correlation- 
based processing scheme for ocean bottom data, based 

on a variant of equation 11, in which the time-reversed 

Green’s function and its derivative are taken as analytic 

direct-wave solutions in the water layer. In the follow- 

ing we restrict the application of equations 15 — 17 to 

situations for which they were derived. 

The practical application of equations 11 and 15 

— 17 requires discretization of the integrals. The ac- 

curacy depends on the regularity of the distribution of 

the sources along OD (van Manen et al., 2005; Fan and 

Snieder, 2009; Yao and van der Hilst, 2009). A bias can 

be introduced in Green’s function estimates when ampli- 

tudes of energy have directional variations. Curtis and 
Halliday (2010a) present an algorithm to remove this 
bias. In the subsection “Interferometry by multidimen- 

sional deconvolution” we present another effective way 

to compensate for illumination irregularities. 

Equations 11 and 15 — 17 have been used for inter- 

ferometric wavefield modeling van Manen et al. (2005) 
as well as for the derivation of passive and controlled- 

source seismic interferometry. For passive interferome- 

try, the configuration is chosen similarly to Figure 4, 

in which a part of the closed boundary OD is a free 

surface at which no sources are required, hence, the 

closed boundary integral reduces to an integral over 

the remaining part 0D;. When the sources on OD, 

are noise sources, the responses at x4 and xg are 

given by u(xa,t) = Jao, G(xa,x,t) * N(x,t)d?x and 

u(xe,t) = Sov, G(xp,x’,t) « N(x’, t)d?x’, respectively. 

Assuming the noise sources are mutually uncorrelated, 

according to (N(x’, t) * N(x, —t)) = 6(x — x’)Sw(t) for 
x and x’ on QD), the crosscorrelation of the responses 

at x4 and xz gives 

(u(xg,t) * u(xa,—t)) = 

G(xp,x,t) * G(xa,x, —t) * Sw (t)d?x. (18) 
aD, 

Combining this with equation 17, we obtain 

{G(xs,xa, t) + G(xB,Xa, —t)} * Sn(t) es 

2 
pe UB» t) *u(xa, —t)). (19) 

Representations 17 and 19 can be seen as alternatives 

for equations 13 and 14 in Part I. The main difference is 

that in the present derivation we did not need to neglect 

evanescent waves and the receiver positions x4 and xg 

can be anywhere in D (instead of at the free surface). 
For controlled-source interferometry, equations 11 

and 15 — 17 apply to any of the configurations in Fig- 

ure 11 of Part I Schuster (2009) and Figure 2 in Part 

II Korneev and Bakulin (2006). However, in none of 
these configurations the sources form a closed bound- 

ary around the receivers at x4 and xs, as prescribed by 

the theory, so the closed boundary integral is by neces- 

sity replaced by an open boundary integral. Assuming 

the medium is sufficiently inhomogeneous such that all 

energy is scattered back to the receivers, one-sided illu- 

mination suffices Wapenaar (2006a). However, in many 

practical situations this condition is not fulfilled, so the 

open boundary integral introduces artifacts, often de- 

noted as spurious multiples Snieder et al. (2006b). A 
partial solution, implemented by Bakulin and Calvert 

(2006), is the application of a time window to G(xa, x, t) 

in equation 17 (or u(xa, x, t) in equation 1), with the 
aim of selecting direct waves only. The artifacts can 
be further suppressed by applying up/down decompo- 

sition to both Green’s functions at the right-hand side 

of equation 17 Mehta et al. (2007a); van der Neut and 
Wapenaar (2009). Note that in the latter two cases, the 

direct wave part of G(xa,x, €) (or u(xa, x, t) in equa- 
tion 1) propagates only through the overburden. This 

implies that the condition of having a lossless medium 
only applies to the overburden, hence, the medium be- 

low the receivers in Figure 2 may be attenuating. This is 

shown more rigorously by Slob and Wapenaar (2007a) 
and Vasconcelos et al. (2009). An even more effective 
suppression of artifacts related to one-sided illumina- 

tion is discussed in the subsection “Interferometry by 
multidimensional deconvolution” .
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RECENT AND NEW ADVANCES 

Most of what has been discussed in the previous sec- 

tions covers the state-of-the-art of seismic interferome- 

try. Here we briefly indicate some recent and new ad- 

vances. 

Media with losses 

Until now we generally assumed that the medium is 

lossless and non-moving, which is equivalent to as- 

suming that the underlying wave equation is invari- 

ant for time-reversal. Moreover, in all cases the Green’s 

functions obey source-receiver reciprocity. In a medium 

with losses the wave equation is no longer invariant 

for time-reversal, but, as long as the medium is not 

moving, source-receiver reciprocity still holds. When 

the losses are not too high, the methods discussed 

above yield a Green’s function with correct  travel- 
times and approximate amplitudes Roux et al. (2005); 
Slob and Wapenaar (2007b). Snieder (2007) shows 
that when the losses are significant a volume inte- 

gral —2w f, &i(x,w)G(xB, x,w)G*(xa,x,w)d?x (where 
&i(x,w) denotes the imaginary part of the compress- 

ibility) should be added to the right-hand side of any of 

equations 11, 15 or 16 (actually the minus sign in front 

of the integral is absent in Snieder’s analysis because 

he uses another convention for the Fourier transform). 
This means that, in addition to the requirement of hav- 

ing sources at the boundary OD (as in Figures 3c and 4), 

sources are required throughout the domain D. When 

these sources are uncorrelated noise sources, the final 

expression for Green’s function retrieval has again a sim- 

ilar form as equation 19. This volume integral approach 

to Green’s function retrieval is not restricted to acoustic 
waves in lossy media but also applies to electromagnetic 

waves in conducting media Slob and Wapenaar (2007a) 
as well as to pure diffusion phenomena Snieder (2006). 

In most practical situations sources are not avail- 

able throughout a volume. Interferometry by crosscon- 

volution (Slob et al., 2007a; Halliday and Curtis, 2009b) 
is another approach that accounts for losses. Draganov 

et al. (2010) compensate for losses with an inverse atten- 
uation filter. By doing this adaptively (aiming to min- 

imize artifacts) they estimate the attenuation parame- 

ters. The methodology discussed in the subsection “In- 

terferometry by multidimensional deconvolution” also 

accounts very effectively for losses. 

Non-reciprocal media 

In a moving medium (with or without losses), both the 
time-reversal invariance and source-receiver reciprocity 

break down. It has previously been shown that with 

some modifications time-reversed acoustic focusing (as 
in Figure 1) can still work in a moving medium Dowl- 

ing (1993); Roux et al. (2004). Using reciprocity theory, 
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Figure 6. 1D example of direct-wave interferometry in a 

moving medium. (a) Rightward- and leftward-propagating 

noise signals in a rightward flowing medium. (b) Crosscorre- 

lation of the responses at x4 and xg. The causal part stems 

from the rightward-propagating wave and is interpreted as 

the Green’s function propagating “downwind” from x, to 

xg. The acausal part stems from the leftward-propagating 

wave and is interpreted as the time-reversed Green’s func- 

tion propagating “upwind” from zg to 74. 

it has recently been shown that Green’s function re- 

trieval by crosscorrelation is also possible in a moving 
medium (Wapenaar, 2006b; Godin, 2006). The required 

modification to the Green’s function representation is 

surprisingly simple: the time-reversed Green’s function 

G(xB,xa,—t) on the left-hand side of equations 17 

and 19 should be replaced by G(x4,xs,—t) (assum- 
ing all Green’s functions appearing in the representa- 

tion are defined in the moving medium). Hence, in non- 
reciprocal media the retrieved function G(xg,xa,t) + 
G(xa,xXB,—t) is no longer time-symmetric, see Figure 

6 for a 1D illustration. Interferometry in moving media 

has potential applications in solar seismology and in in- 

frasound Evers and Siegmund (2009); Haney (2009). 
It has been shown that with similar simple mod- 

ifications, global scale interferometry accounts for the 

Coriolis force of a rotating earth Ruigrok et al. (2008) 
and electromagnetic interferometry accounts for non- 

reciprocal effects in bi-anisotropic media Slob and 

Wapenaar (2009). A moving conductive medium in the 
presence of a static magnetic field is an example of 

a bi-anisotropic medium. Electromagnetic interferom- 

etry in bi-anisotropic media may find applications in 

controlled-source electromagnetic (CSEM) acquisition 
with receivers in the air in areas with strong tidal cur- 

rents. 

Unified formulations 

The wave equation for a medium with losses can be seen 

as a special case of the more general differential equation 

N an 

> Qn(x, t) * am H (x, t)*| u(x, t) = (x,t), (20) 
n=l
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where the an(x,t) are medium parameters, H(x,t) is 
a spatial differential operator and s(x,t) is a source 
function. Snieder et al. (2007) derive unified Green’s 
function representations for fields obeying this differ- 

ential equation, assuming H(x,t) is either symmetric 
or antisymmetric. These representations, consisting of a 

boundary and a volume integral, capture interferometry 

for acoustic wave propagation (with or without losses), 
diffusion, advection, bending waves in mechanical struc- 

tures, and quantum mechanical scattering problems. 

Weaver (2008) provided an alternative derivation based 
on Ward identities. A recent extension Snieder et al. 
(2010) also accounts for potential fields (for which all 
an = 0 and H is independent of time in equation 20). 

Similarly, for a matrix-vector differential equation 

of the form 

[AC t) * a + Dx + B(x, t)*| u(x,t) = s(x,t), (21) 

where A and B are medium parameter matrices, Z 

the material time derivative and D, a spatial differ- 

ential operator matrix, a unified Green’s matrix rep- 

resentation has been derived Wapenaar et al. (2006). 
This representation, again consisting of a boundary and 

a volume integral, captures interferometry for acous- 

tic, elastodynamic, electromagnetic, poroelastic, piezo- 

electric and electroseismic wave propagation as well as 

for diffusion and flow. For the situation of uncorrelated 

noise sources distributed along a boundary (for the sit- 

uation of lossless media) or throughout a volume (for 
media with losses), the unified Green’s matrix represen- 
tation is given by 

{G(xB,xa, t) + G'(x4,xB, —t)} * Sn(t) ~ 

(u(xe, t) * u' (xa, —t)), (22) 

(superscript ‘ denotes transposition), where u(xa, t) 
and u(x,t) are the noise responses at x4 and xg, re- 

spectively. In subscript notation this becomes 

{Gqp(xB, XA, t) + Gpg(xa, XB, —E)} * S(t) © 

(ug (xz, t) * Up(xa, —t)). (23) 

Note the resemblance to equation 10 for elastodynamic 

Green’s function retrieval. For example, for electroseis- 

mic waves, u’ = (E’, H’, {v°}', —r{, -r$, -1$,w’,p*), 
where E and H are the electric and magnetic field vec- 

tors, v° the particle velocity of the solid phase, 7; the 

traction, w the filtration velocity of the fluid through 

the pores, and p’ the pressure of the fluid phase. Ac- 

cordingly, for example the (9,1)-element of G(xs, xa, €), 
ie., Go,1(x8,XaA,t), is the vertical particle velocity of 
the solid phase at xg due to an impulsive horizontal 

electric current source at x4. According to equations 22 

and 23 it is retrieved by crosscorrelating the 9th element 
of u(xa,t), i-e., the vertical velocity noise field at xz, 

with the first element of u(x,t), being the horizontal 
electric noise field at x4 (Figure 7). For a further dis- 

  

Figure 8. The generalized optical theorem for the 
angle-dependent scattering amplitude f(k4, kg) Heisenberg 
(1943) has a similar form as the Green’s function represen- 

tation for seismic interferometry. 
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Figure 9. Using reciprocity, Bakulin and Calvert’s virtual 

source method (Figure 2) can be reformulated into a virtual 
receiver method. Receivers at the surface record both the 

“direct” and the reflection responses of microseismic sources 

above a deeper target. Crosscorrelation and summing over 

receiver locations gives the reflection response at a virtual 

receiver at the position of a microseismic source, free of over- 

burden distortions. 

cussion on electroseismic interferometry, including nu- 

merical examples, see de Ridder et al. (2009). 

Relation with the generalized optical theorem 

It has recently been recognized (Snieder et al., 2008; 
Halliday and Curtis, 2009a) that the frequency domain 

Green’s function representation for seismic interferom- 

etry resembles the generalized optical theorem (Heisen- 

berg, 1943; Glauber and Schomaker, 1953; Newton, 

1976; Marston, 2001), given by 

Fy tilkaske) — f*(ke,ka)} = 

x $ f(k, ke) f* (k, ka)dQ, (24) 

where f(k4, kg) is the far field angle-dependent scatter- 
ing amplitude of a finite scatterer (Figure 8), including
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Figure 7. Principle of electroseismic interferometry for controlled transient sources at the surface or uncorrelated noise sources 
in the subsurface. In this example the vertical component of the particle velocity of the solid phase is crosscorrelated with the 

horizontal component. of the electric field, yielding the electroseismic response of a horizontal electric current source observed 

by a vertical geophone. 

all linear and non-linear interactions of the wavefield 

with the scatterer. Note that the optical theorem has 

a form similar to interferometry representation 16 for 

acoustic waves. The analysis of this resemblance has led 

to new insights in interferometry as well as in scatter- 

ing theorems. Snieder et al. (2008) use the generalized 

optical theorem to explain the cancellation of specific 

spurious arrivals in Green’s function extraction. Halli- 

day and Curtis (2009a) show that the generalized op- 
tical theorem can be derived from the interferometric 

Green’s function representation and use this to derive 

an optical theorem for surface waves in layered elastic 

media. Snieder et al. (2009b) discuss how the scatter- 
ing amplitude can be derived from field fluctuations. 

In other related work, Halliday and Curtis (2009b) and 
Wapenaar et al. (2010) show that the Born approxima- 
tion is an insufficient model to explain all aspects of 

seismic interferometry, even for the situation of a single 

point scatterer, and use this insight to derive improved 

models for the scattering amplitude of a point scatterer. 

Virtual receivers, reflectors, and imaging 

Until now we have discussed seismic interferometry as a 

method that retrieves the response of a virtual source by 

crosscorrelating responses at two receivers. Using reci- 

procity, it is also possible to create a virtual receiver 

by crosscorrelating the responses of two sources. Cur- 

tis et al. (2009) use this principle to turn earthquake 
sources into virtual seismometers with which real seis- 

mograms can be recorded, located non-invasively deep 

within the Earth’s subsurface. They argue that this 

methodology has the potential to improve the resolu- 

tion of imaging the earth’s interior by earthquake seis- 

mology. Since an earthquake source acts like a double 

couple, by reciprocity the virtual receiver acts like a 

strainmeter, a device that is not easily implemented by 

a physical instrument. In a similar way, microseismic 

sources near a reservoir could be turned into virtual re- 

ceivers to improve the resolution of reservoir imaging 

(Figure 9). Note that imaging using virtual receivers 
requires knowledge of the position of the sources, but 

simply recording seismograms on the virtual seismome- 

ters does not. 

Another variant is the virtual reflector method Po- 

letto and Farina (2008); Poletto and Wapenaar (2009). 
This method creates new seismic signals by processing 

real seismic responses of impulsive or transient sources. 

Under proper recording coverage conditions, this tech- 

nique allows obtaining seismograms as if at the position 

of the receivers (or sources) there was an ideal reflector. 
The algorithm consists of convolution of the recorded 

traces, followed by integration of the cross-convolved 

signals along the receivers (or sources). Similar to other 

interferometry methods, the virtual reflector method 

does not require information on the propagation velocity
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of the medium. Poletto and Farina (2010) illustrate the 
method with synthetic marine and real borehole data. 

Curtis (2009), Schuster (2009, Chapter 8) and Cur- 

tis and Halliday (2010b) discuss source-receiver interfer- 

ometry. This method combines the virtual source and 

the virtual receiver methodologies and thus involves a 
double integration over sources and receivers. It cre- 
ates the response of a virtual source observed by a vir- 

tual receiver. This method is related to prestack reda- 

tuming Berryhill (1984), in which sources and receivers 
are repositioned from the acquisition surface to a new 

datum plane in the subsurface, using one-way wave- 

field extrapolation operators based on a macro model. 

In source-receiver interferometry, the operators are re- 

placed by measured responses, for example in VSP’s, 

hence source-receiver interferometry can be seen as the 
data-driven variant of prestack redatuming. Note, how- 

ever, that in general the measured responses used in 

source-receiver interferometry are full wavefields rather 

than one-way operators. Therefore the application of 

source-receiver interferometry is not restricted to data- 

driven prestack redatuming, but it can be used for 

other applications as well. For example, Halliday et al. 

(2010b) show that the elastodynamic version of source- 
receiver interferometry can be seen as a generalization 

of a method that turns PP- and PS-data into SS-data, 

previously proposed by Grechka and Tsvankin (2002) 
and Grechka and Dewangan (2003). In a similar fashion, 
the internal multiple prediction method of Jakubowicz 

(1998) can be derived as a special case of source-receiver 
interferometry. Also, the surface wave removal methods 

of Dong et al. (2006), Curtis et al. (2006) and Halli- 
day et al. (2007, 2010a) require both physically recorded 
and interferometrically constructed Green’s function es- 

timates between the locations of an active source and 

active receiver. Previously the interferometric estimate 

was obtained by having to place a receiver beside every 

source, and turning the former into a virtual source (or 

vice versa using virtual receiver interferometry). How- 

ever, by using source-receiver interferometry this be- 
comes unnecessary since the interferometric wavefield 

estimate can be made between real source and real re- 

ceiver directly Curtis and Halliday (2010b). 
Similar double integrals appear in the acoustic 

inverse scattering imaging formulation of Oristaglio 

(1989). Halliday and Curtis (2010) were able to derive 
explicitly a generalized version of Oristaglio’s formula- 
tion from a version of source-receiver interferometry for 

a medium with scattering perturbations. This was pos- 

sible because this form of interferometry is the first to 

combine both active sources and receivers, similarly to 

geometries used for imaging. 

Time-lapse seismic interferometry 

As a consequence of the stability of time-reversed acous- 

tics, seismic interferometry has large potential for time- 

lapse methods. We already indicated the use of passive 

interferometry for monitoring changes in volcanic in- 

teriors (Sens-Schénfelder and Wegler, 2006; Brenguier 

et al., 2008b). Using the same principles, Brenguier et 

al. (20084) monitor post-seismic relaxation along the 
San Andreas Fault at Parkfield, and Ohmi et al. (2008) 
monitor temporal variations of the crustal structure in 

the source region of the 2007 Noto Hanto earhquake in 

central Japan. Kraeva et al. (2009) show a relation be- 
tween seasonal variations of ambient noise crosscorrela- 

tions and remote microseismic activity related to ocean 

storms, and Haney (2009) reports on time-dependent 
effects in correlations of infrasound that arise due to 

time-varying temperature fields and temperature inver- 

sion layers in the atmosphere. The interpretation in all 

these methods is based on measuring the time-shift in 

either the direct wave or the coda wave of the Green’s 

functions retrieved by interferometry. These time-shifts 

give information about the average velocity change be- 

tween the receivers, which can be further “regionalized” 

by tomographic inversion Brenguier et al. (2008b). 
In the field of controlled-source interferometry, 

Bakulin et al. (2007) and Mehta et al. (2008) discuss 
the potential of the “virtual source method” for time- 

lapse reservoir monitoring. They exploit the fact that 

virtual source data are obtained from permanent down- 

hole or ocean-bottom cable receivers, and hence have a 

high degree of repeatability. Because virtual source data 

represent reflection responses, local time-lapse changes 

in these data can be reliably attributed to local changes 
in the reservoir. 

In order to better quantify the time-lapse changes 

in the data obtained by seismic interferometry, the in- 

terferometric Green’s function representation (equation 

11) has been modified to account for time-lapse changes, 

according to 

G(xB,Xa,w) + G"(xB,XA,w) = 
1 a = 

- —— ( (0;G(xp,x, w))G* (xa,x,w 
f, jwp(x) (( (xe GT a ) 

—G (xp, x,w) AG" (xa, x,w) )rid?x 

+ jw [ A(x, w)G(xB,x,w)G"(xA,x,w)d2x, (25) 
D 

with A&(x,w) = &(x,w) — &*(x,w) (Vasconcelos and 
Snieder, 2008a; Vasconcelos et al., 2009; Douma, 2009). 

Here the quantities with/without a bar refer to the refer- 
ence/monitor state (for simplicity we assumed here that 
time-lapse changes occur only in the compressibility). 

The equivalent theory for source-receiver interferometry 

is given in Halliday and Curtis (2010). Equation 25 and 
its generalization for other wave types Wapenaar (2007) 
provides a basis for deriving local time-lapse changes of 

the medium parameters from interferometric time-lapse 

data. This is subject of ongoing research.
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Interferometry by deconvolution and 

crosscoherence 

In the previous treatment of interferometry we focused 

on Green’s function extraction by crosscorrelation. Since 

time-reversal corresponds to complex conjugation in the 

frequency domain, the crosscorrelation is, in the fre- 

quency domain, given by 

C(xp,Xa,w) = G(xp,w)a"(xa,w) . (26) 

According to expression 19 the crosscorrelation does 
not just give the superposition of the Green’s func- 

tion and it’s time-reversed counterpart, because the left- 

hand side of that expression is convolved with the auto- 

correlation of the noise that excites the field fluctua- 

tions. This means that equation 26 gives the product of 

the Green’s function and the power spectrum Sy (w) of 
the noise. The power spectrum thus leaves an imprint 

on the extracted Green’s function, unless it is properly 

accounted for. This imprint can be eliminated by us- 

ing deconvolution instead of crosscorrelation. In the fre- 

quency domain deconvolution corresponds to spectral 

division, hence the deconvolution approach consists of 

replacing expression 26 by 

i(xp,w) 
D(xp,Xa,w) = iea,w) * (27) 

When a(x.4,w) is small, this spectral division is unsta- 

ble. In practice one needs to regularize the deconvolu- 

tion. The simplest way to do this is to use the following 

water-level regularization 

i(xsp,w)a*(xa,w) 

D(xB, xv) = Eye +e » (28) 

where €? is a stabilization parameter. When «? = 0 

expression 28 reduces to equation 27, while for «? >> 

[a(x4,w)|? equation 28 corresponds to a scaled version 
of the correlation defined in expression 26. 

A significant difference between crosscorrelation 

and deconvolution is that crosscorrelation gives the 
Green’s function, but that deconvolution does not. This 

raises the question what wave state is retrieved by 

deconvolving field measurements recorded at different 

points? There is a simple proof that the wave states ob- 

tained by crosscorrelation, deconvolution, and regular- 

ized deconvolution all satisfy the same equation as the 

real system does Snieder et al. (2006a). Let us denote 
the field equation of the system by 

L(x,w)a(x,w) = 0. (29) 

For the acoustic wave equation in a constant den- 

sity medium, for example, the operator L is given by 

L(x,w) = V? + w?/c?(x). Since the right-hand side 
of expression 29 equals zero, this expression holds for 

source-free regions, which is the case at the receivers. 

Applying L to equation 27 with xg replaced by x gives 

2 d(x, w) 

Lon) (a) 

1 = igaw) L(x, w) G(x, w) 

= 0, (30) 

E(x,w)D(x, XA,w) 

where we used in the second identity that L(x,w) acts 

on the x-coordinates only, and where the field equa- 

tion 29 is used in the last identity. Note that the same 

reasoning applies to the correlation of expression 26 and 

the regularized deconvolution in expression 28. All these 
procedures thus produce a wave state that satisfies the 

same wave equation as the original system does. For the 

correlation this wave state is the Green’s function, but 

for the deconvolution a different wave state is obtained. 

To understand which wave state is extracted by de- 

convolution, we note that 

(xa,w) 
ii(xa,w) =1. (31) D(xa,Xa,w) = 

This corresponds, in the time, domain to 

D(xa,xa,t) = 4(€). (32) 

Deconvolution thus gives a wave state that for t # 0 
vanishes at the virtual source location x4. This means 

that the wave field vanishes at that location, and for 

this reason the phrase “clamped boundary condition” 

has been used Vasconcelos and Snieder (2008a). Decon- 
volution thus gives a wave state where the field vanishes 

at one point in space. This wave state is, in general, not 

equal to the Green’s function. 

Despite this strange boundary condition, interfer- 

ometry by deconvolution has a distinct advantage for 

attenuating media. Consider the example of Figure la 

of part I of this work where a plane wave propagates 

along a line from a source at xg to receivers at r4 
and xz, respectively. For a homogeneous attenuating 

medium, the field recorded at ra equals i(ra,w) = 
G(za,2s,w)N(w) = exp(—7(ra — 2s) exp(—ik(ra — 
as))N(w), where y is an attenuation coefficient and 
N(w) the source spectrum. A similar expression holds 
for the field at xg. The correlation of the fields recorded 

at x4 and zz is given by 

C(xp,xa,w) =e Wea trp ~ 22s) 9—tk(@B-FA) Sy (yy) , 

(33) 
with Sv(w) = |N(w)|?. This field has the same phase 
as the field that propagates from x4 to xg, but the 

attenuation is not correct because it depends on the 

source location xs, which is, of course, not related to the 

field that propagates between z4 and zz. In contrast, 

the deconvolution of the recorded fields satisfies 

e VB TA) e—tk(eB-2£A) 

= G(ap,ra,w), (34) 

D(zp,ra,w) 

which does correctly account for the phase and the am-
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Distance from SAF (km) 

Figure 10. Images of the San Andreas fault (SAF). An im- 

age from deconvolution interferometry using drill-bit noise 
Vasconcelos and Snieder (2008b) is superposed on an image 

obtained from surface seismic data and microseismic events 
from the SAF, measured at the surface and in the pilot hole 

Chavarria et al. (2003). Event 2 (red arrow) is a prominent 

reflector, consistent with the surface trace of the SAF. Event 

3 is interpreted to be a blind fault at Parkfield. Events 1 and 4 

are interpreted to be artifacts, possibly because of drillstring 

multiples and improperly handled converted-wave modes. 

plitude, and which does not depend on N(w). This prop- 
erty of the deconvolution approach for one-dimensional 

systems has been used to extract the velocity and at- 

tenuation in the near-surface (Trampert et al., 1993; 

Mehta et al., 2007b), and to determine the structural 

response of buildings from incoherent ground motion 

(Snieder and Safak, 2006; Thompson and Snieder, 2006; 

Kohler et al., 2007). This method has even been used to 
detect changes in the near-surface shear wave velocity 

during the shaking caused by an earthquake Sawazaki 

et al. (2009). 
The application of deconvolution interferometry 

changes when one can separate the wavefield into an un- 

perturbed wave uo and a perturbation ug Vasconcelos 

and Snieder (2008b). Such a separation can be achieved 
by time-gating when impulsive shots are used Mehta et 

al. (2007a); Bakulin et al. (2007), by using array meth- 
ods, or by using 4-component data. In this case one can 

define a new deconvolution 

tis(xB,w) 

fio(xa,w) ? (35) 
D'(xB,XA,w) = 

which gives an estimate of the perturbed Green’s func- 
tion Gs. This has been used to illuminate the San An- 
dreas fault from the side using drill-bit noise (Figure 

10) and to do subsalt imaging from below using inter- 
nal multiples Vasconcelos et al. (2008). A comparison of 
crosscorrelation, deconvolution, and multi-dimensional 

deconvolution (presented in the next section) is given 
by Snieder et al. (2009a). 

A method related to deconvolution is the crossco- 

herence, which is defined as 

i(xg,w) &*(xa,w) 

fi(xp,w)l la(a,w)) — 9) H (xB XA; w) = 

This can be seen as either a spectrally normalized cross- 

correlation, or as a variant of deconvolution that is sym- 

metric in &(xa,w) and &(xg,w). This method of com- 
bining data was proposed by Aki in his seminal pa- 

pers on retrieving surface waves from micro-tremors Aki 
(1957, 1965). It has been used extensively in engineering 
Bendat and Piersol (2000) in the extraction of response 
functions, and is commonly used in the determination 

of shallow shear velocity from ground vibrations, e.g. 

Chavez-Garcia and Luzén (2005). Note that the rea- 
soning leading to equation 30 is not applicable to the 

crosscoherence because of the presence of the normal- 

ized spectrum in the denominator of expression 36. This 

implies that the crosscoherence does not. necessarily lead 

to a wave state that satisfies the same equation as the 

real system does. 

Interferometry by multidimensional 

deconvolution 

Interferometry by multidimensional deconvolution 

(MDD) is the natural extension of interferometry by 
deconvolution to two or three dimensions. It has been 

proposed for controlled source data Schuster and Zhou 

(2006); Wapenaar et al. (2008a) as well as for passive 
data Wapenaar et al. (2008b). Here we discuss the 
principle for controlled source data and briefly indicate 

the modifications for noise data. Consider again Figure 

2, which we initially used to introduce the virtual 

source method of Bakulin and Calvert (2004). We 
express the upgoing wavefield at xg as follows 

u- (xp, x, t) = [e0xe,x4,1) +u*(xa,x®), t)dxa, 

(37) 
where superscripts + and ~ refer to downgoing and 

upgoing waves, respectively. Note that the integration 

takes place along the receivers at x4 in the borehole. 

This convolutional data representation is valid in me- 

dia with or without losses. However, unlike equation 1, 

which is an explicit, but approximate, expression for the 

Green’s function G(x, xa, t) (convolved with the auto- 
correlation S;(t) of the source wavelet), equation 37 is 
an implicit, but exact, expression for G(x, x,t) (with 
G(xg,xa, t) being the reflection response of the medium 

below the receiver level with a homogeneous half-space 

above it Wapenaar et al. (2008a)). Equation 37 can be 
solved by MDD, assuming responses are available for
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many source positions x), In that case equation 37 

holds for each source separately. In the frequency do- 

main, the resulting set of simultaneous equations can 

be represented in matrix notation (Berkhout, 1982), ac- 

cording to 

U = Gur", (38) 

(j,i)-element of U* is given by 
at (x? ,x@,w), etc. This equation can be solved 

where the 

for G for example via weighted least-squares inversion 

Menke (1989), according to 

G=O-w{0t} (Otwi{0t}t +71)", (39) 

where the superscript ' denotes transposition and com- 

plex conjugation, W is a diagonal weighting matrix, | the 

identity matrix, and e? a stabilization parameter. Equa- 

tion 39 is the multi-dimensional extension of equation 

28. Applying this equation for each frequency compo- 

nent and transforming the result to the time domain 
accomplishes interferometry by MDD. 

To get more insight in equation 37 and its solution 

by MDD, we convolve both sides with the time-reversed 

downgoing wave field u* (x’4, x, —t) and sum over the 

source positions x) van der Neut et al. (2010). This 
gives 

C(xp, x's, t) = | Gla, x08) * Zea, tae, (40) 

with 

C(xs,x/4,t) = Sou (xp, x,t) * ut (x4,x®, —t) (41) 
i 

and 

T(xa,x4,t) = Sout (xa,x¥),t) * ut (x4, x9, —t). (42) 
i 

Note that, according to equation 41, C(xa,x’,,t) is 

nearly identical to the correlation function of equation 1, 

hence, equation 41 represents the virtual source method 

of Bakulin and Calvert (2004, 2006), but applied to 
decomposed wavefields Mehta et al. (2007a). Accord- 
ing to equation 42, Z(x4,x‘,,£) contains the correla- 
tion of the incident wave fields. We call this the illu- 
mination function. For equidistant sources and a homo- 

geneous overburden, the illumination function will ap- 

proach Z(x4,x‘4,t) = 6(xa—x’4)S5(t) (with x4 and x’, 
both in the borehole). Hence, for this situation equation 
40 reduces to C(xa,x'4,t) = G(xB, x’4,t)*55(t) (mean- 
ing that for this situation the correlation method gives 

the correct Green’s function, convolved with S,(¢)). For 
the situation of an irregular source distribution and/or 
a complex overburden, the illumination function can be- 

come a complicated function of space and time. Equa- 

tion 40 shows that the correlation method (i.e., Bakulin 
and Calvert’s virtual source method) gives the Green’s 
function, distorted by the illumination function. These 

distortions manifest themselves as an irregular radia- 

tion pattern of the virtual source, and artifacts (spuri- 

ous multiples) related to the one-sided illumination. The 
true Green’s function follows by multidimensionally de- 

convolving the correlation function by the illumination 

function. Van der Neut and Bakulin (2009) demonstrate 
that this indeed improves the radiation pattern of the 

virtual source and suppresses the artifacts. 

Note that MDD can be carried out without knowing 

the source positions and the medium parameters (simi- 
lar to crosscorrelation interferometry) and without mak- 

ing assumptions about the regularity of the source posi- 

tions x) and the attenuation parameters of the medium 

(the latter properties are unique for the deconvolution 

approach). The application of equations 41 and 42 re- 

quires decomposition into downgoing and upgoing waves 

and hence the availability of pressure and particle ve- 

locity data. The retrievable source-receiver offset-range 

by MDD is limited by the highest velocity in the do- 

main between the sources and the receivers. The avail- 

able spatial bandwidth in the recorded data may not 

always be sufficient to retrieve full-range offsets. This is 

likely to occur in alternating velocity zones. This also 

occurs in areas where velocities decrease with increasing 

depth, which is the usual situation for electromagnetic 

waves Slob (2009). 
Note that for the situation of uncorrelated noise 

sources, equations 41 and 42 would need to be re 

placed by C(xp,x/4,t) = (u7 (xB, t) * ut (x'4, -t)) and 
T(xa,x'4,t) = (ut(xa,t) * ut (x4, -t)), analogous to 
equation 19. For a further discussion of MDD applied to 

passive data, see Wapenaar et al. (2008b), van Groen- 
estijn and Verschuur (2009) and van der Neut et al. 
(2010). 

The MDD principle is not entirely new. It has been 

applied for example for multiple elimination of ocean 

bottom data (Wapenaar and Verschuur, 1996; Amund- 

sen, 1999; Holvik and Amundsen, 2005). Like the 1D de- 

convolution method of Snieder et al. (2006a) discussed 
above, this can be seen as a methodology that changes 

the boundary conditions of the system: it transforms the 

response of the subsurface including the reflecting ocean 

bottom and water surface into the response of a subsur- 

face without these reflecting boundaries. In hindsight 
this methodology appears to be an extension of a 1D 

deconvolution approach proposed by Riley and Claer- 

bout (1976). Slob et al. (2007b) apply MDD to up/down 
decomposed CSEM data Amundsen et al. (2006) and 
demonstrate the insensitivity to dissipation as well as 

the effect of changing the boundary conditions: the ef- 

fect of the air wave, a notorious problem in CSEM 

prospecting, is largely suppressed. 

Interferometry by MDD is from a theoretical point 

of view more accurate than the crosscorrelation ap- 

proach but the involved processing is less attractive be- 

cause it is not a trace-by-trace process but involves in- 

version of large matrices. Moreover, in most cases it re-
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quires decomposition into downgoing and upgoing fields. 

Nevertheless, the fact that interferometry by MDD cor- 

rects for an irregular source distribution, suppresses spu- 

rious multiples due to one-sided illumination, improves 

the radiation pattern of the virtual source, and accounts 

for dissipation, makes it a worthwhile method to be 

further investigated as an alternative to interferometry 
by crosscorrelation, both for passive as for controlled- 

source data applications. 

CONCLUSIONS 

In part I we discussed the basic principles of seismic in- 

terferometry in a heuristic way. In this paper (part IE) 
we discussed interferometry in a more formal way. First 
we reviewed the methodology of time-reversed acous- 

tics, pioneered by Mathias Fink and coworkers, and used 

physical arguments due to Arnaud Derode to derive seis- 

mic interferometry from the principle of time-reversed 

acoustics. We continued with a mathematical deriva- 

tion, based on general reciprocity theory, leading to ex- 

act Green’s function representations which are the basis 

for controlled-source as well as passive interferometry. 

Finally we discussed generalizations and variations of 
these representations and showed that these form the 

basis for a rich variety of new applications. 

The fact that seismic interferometry leads to new 

responses directly from measured data has stirred a lot 

of enthusiasm and cooperation between researchers in 

seismology, acoustics and electromagnetic prospecting 

in the past decennium. We believe we have only seen 

the start and expect to see many new developments and 

applications in different fields in the years to come. 
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ABSTRACT 

The extraction of the earth’s Green’s function from field fluctuations is a rapidly 
growing area of research. The principle of Green’s function extraction is often 
related to the requirement of equipartitioning, which stipulates that the energy 
of field fluctuations is distributed evenly in some sense. We show the meaning 
of equipartitioning for a variety of different formulations for Green’s function 
retrieval. We show that equipartitioning is not a sufficient condition, and provide 
several examples that illustrate this point. We discuss the implications of lack 
of equipartitioning for various schemes for the reconstruction of the Green’s 
function in seismology. The theory for Green’s function extraction is usually 
based on a statistical theory that relies on ensemble averages. Since there is 
only one earth, one usually replaces the ensemble average with a time average. 
We show that such a replacement only makes sense when attenuation is taken 
into account, and show how the theory based for Green’s function extraction 
for oscillating systems can be extended to incorporate attenuation. 

Key words: seismic interferometry, equipartitioning, field fluctuations 

1 INTRODUCTION 

The extraction of the elastic earth response from field 

fluctuations is an area of research that has spectacularly 

grown over the last decade (Larose et al., 2006; Cur- 

tis et al., 2006; Wapenaar et al., 2008; Schuster, 2009). 

This line of research was spurred to a large extent by 

the seminal work of Lobkis and Weaver (2001). In seis- 
mology, the principle of Green’s function retrieval from 

field fluctuations is known by other names that include 

Green’s function extraction and seismic interferometry. 

The principle of Green’s function retrieval relies on 

various formulations of wave theory that all require in 

one form or another for field fluctuations to be “evenly” 

distributed in space. As we show in section 2, the precise 

meaning of this requirement differs for different formula- 

tions, but in all cases the required distribution of sources 

implies that the energy of the field fluctuations is evenly 

distributed in space. Using the classical mechanics ter- 

minology (Goldstein, 1980), this principle is referred to 
as equipartitioning. Since the energy of strongly scat- 

tered waves diffuses through space, the expression dif- 

fuse waves is also used, e.g. (Campillo & Paul, 2003; 

Malcolm et al., 2004; Weaver & Lobkis, 2006; Sanchez- 

Sesma et al., 2008). The concepts of equipartitioning 

and diffuse waves have received so much attention that 

one might think that the Green’s function can be re- 

trieved whenever the wavefield is equipartitioned, but 

we show in this work that this not the case. 

In section 2 we review different formulations of 

equipartitioning and discuss what the requirement of 

equipartitioning means for the distribution of sources 

of field fluctuations. We provide in section 3 a number 

of examples of equipartitioned fields that do not allow 

for Green’s function extraction. We discuss in sections 

4 and 5 the implications of a lack of adequate sources 

of field fluctuations for Green’s function retrieval in the 

earth, and argue that attenuation plays an essential role 

in practical Green’s function extraction of the earth re- 

sponse. In appendix A we show how attenuation can 

be incorporated in Green’s function retrieval of damped 

oscillating systems.
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2 VARIOUS REQUIREMENTS FOR 
EQUIPARTITIONING 

The retrieval of the Green’s function has been linked to 

the equipartitioning of waves, e.g. (Lobkis & Weaver, 

2001; Campillo & Paul, 2003; Snieder et al., 2007), 

which sometimes is referred to as the wavefield being 
diffuse. The latter term indicates that the waves are 

strongly scattered and propagate with equal strength in 

each direction. In different studies, the equipartitioning 

requirement is presented in different ways. In the next 

subsections review the meaning of equipartitioning as 

presented in different studies. 

2.1 An acoustic source 

The first explanation of equipartitioning, as given by 

Snieder et al. (2007), is heuristic. Consider an explosive 
point source in an acoustic medium at location A, as 

shown in the left panel of figure 1. The medium can be 

inhomogeneous, but if the medium is locally homoge- 

neous in the vicinity of the source, the waves radiate 

isotropically as show in the left panel. Because of the 

isotropic character of the source, the waves propagate 

towards points B and C with equal amplitude. 

Consider next the situation shown in right panel of 

figure 1 where the source at location A is replaced by 

a receiver acting as a virtual source. The waves radi- 

ated toward points B and C can be retrieved by cross- 
correlating the waves recorded at A with the waves 

recorded at locations B and C, respectively. In this sit- 

uation one can only hope to retrieve the waves propa- 

gating to point B if there is a physical wave propagating 

from A to B, as indicated by the dashed arrow in figure 

1, because no amount of data processing can produce 

a wave that does not propagate through the physical 

system. Similarly, a wave propagating along the solid 

arrow must be present to give, after cross-correlation, 

the wave propagating from A to C. Because in a real 

medium the waves propagating from an isotropic source 
at point A towards B and C have equal amplitude, the 

waves obtained from cross-correlation in the right panel 

must also propagate from point A in all directions with 

the same amplitude if the true Green’s function is to be 

retrieved. This means that the wave propagating along 

the dashed and solid arrows in figure 1 must have the 

same intensity. This only happens when the energy of 

the waves propagating through the point A is indepen- 

dent. of direction. In other words, the wavefield must be 

equipartitioned in the sense that the energy propagation 

is independent of direction. 

2.2. Normal modes 

The theory and practice of Green’s function extraction 

was spurred by the work of Lobkis and Weaver (2001). 
Their derivation applies to any closed and undamped 

‘ 
°B 

Figure 1. Left panel: a point source in a homogeneous acous- 

tic medium at point A that emits equal amounts of energy 

toward points B and C. Right panel: equal energy transport 
along the dashed and solid arrows is needed to retrieve the 

Green’s function for the propagation from the source point 
A to the points B and C. 
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scalar system that has normal modes u,(r). We briefly 
review their derivation because the role of equiparti- 

tioning, which in this case stipulates that different nor- 

mal modes carry equal energy, is particularly clear. The 

Green’s function can be expressed in the normal modes 

(Snieder, 2004b) as 

G(r,r’,t) = > tem (etm (FD sin(wmt) H(t) . (1) 
m 

where w,, is the angular frequency of mode m and H(t) 
is the Heaviside function. 

We consider a state of the wavefield where the 

modal coefficients am and b,, are random variables: 

u(r, t) = > = (Qm COSWmt + bm sinwmt)uUm(r). (2) 
m 

The modal coefficients are assumed to have zero mean 

(am) = (bm) = 0, (3) 

and covariance given by 

(@n@m) = (anbm) = S*5nm , (Q@nbm) =0. (4) 

In this work (---) denotes the expectation 

value. The presence of the 1/w, term in ex- 
pression (2) can be understood as follows. The 
time derivative of equation (2) is given by 
a(r,t) = DOL (—amsinwmt + bm coswmt) Um(r). 
From condition (4) and the fact that the modes are 
normalized, it follows that the different modes in 

equation (2) have equal kinetic energy. Because the 
kinetic energy of a normal mode of a linear system 

is equal to the potential energy (Goldstein, 1980), 
condition (4) implies that the normal modes carry 
equal energy; they are equipartitioned. 

We next define the cross-correlation by 

Cas(T) = (u(ra, t)u(ra,t+7)) . (5)



Inserting the normal mode expansion (2) gives 

Caa(t)= Donm Un(ta)um(rB) x 
WnWm 

{(@nQm) COS Wnt COS Wm(t + 7) (6) 
+(anbm) coswat sin wm (t +7) 
+(bnam) sin wat coswm (t+ 7) 
+(bndm) sinwyztsinwm(t+T)} . 

Because of expression (4), the second and third term on 
the right hand side vanish and the cross-terms between 

different modes are zero so that 

Can(r) = $7, Umlralum(rs) 

“om (7) 
X {cosWmtcoswm(t+7) + sinwmtsinwm(t+7)} . 

The term in curly brackets is equal to coswm7, hence 

the cross-correlation is given by 

Can(r) = S? > um(FAa)tm (re) COSWmT . (8) 
m Wim 

Note that this expression does not depend on the ab- 

solute time ¢, but only on the lag-time 7. This may 

seem gratifying because only the lag time 7 has physi- 

cal meaning. Since ¢ is not present in expression (8) one 

might think that the ensemble average can be replaced 

by a time average, but we show in section 4 that this 

conclusion is not correct. 

The cross-correlation in expression (8) is not equal 
to the Green’s function in equation (1), and instead we 
consider the time-derivative: 

SIN WT . )) 
dCaa(r) _ -3° 57 Um(ra)Um(rB) 

dr Wm 
m 

This result is valid for all 7. For positive 7 the right hand 

side is equal to —S*G(ra,rp,T), while for negative 7 the 
right hand side is equal to S*G(ra,rg,—T), hence 

dCas(rT) _ 

dr ~ 

The cross-correlation is thus equal to the superposition 

of the Green’s function and its time-reversed counter- 

part. Also note that this derivation hinges on equipar- 

titioning as defined in equation (4). Note this definition 
of equipartitioning is different from the one given in sec- 

tion 2.1, and it is not obvious that these definitions are 

equivalent. 

—s? (G(ra,¥B,T) — G(ra,rB,—T)) . (10) 

2.3. Waves generated on a bounding surface 

We next treat the case of acoustic waves that are ex- 

cited on a surface surrounding receivers. Because waves 

propagate outward through this surface, the system is 

open and thus does not support discrete normal modes. 

The following treatment is valid in the frequency do- 

main using the following Fourier convention: f(t) = 
{ Fw) exp(iwt)dw. Assuming that the surface is a large 
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sphere OV, the radiation boundary condition on this 

sphere is 

where k is the wavenumber and n the distance orthogo- 

nal to OV. In this case Green’s function retrieval is ex- 

pressed as the following surface integral (Derode ef al., 

2003; Wapenaar et al., 2005; Snieder et al., 2007) 

G(ra,rs,w) — G*(ra,rB,w) = 

(12) 
iw fay, meer Or r,w)G(re,r,w)dS . 

(Equation (12) differs slightly from equivalent expres- 

sions published elsewhere (Derode et al., 2003; Wape- 

naar et al., 2005) because of different Fourier conven- 
tions.) Time-reversal corresponds, in the frequency do- 

main, to complex conjugation, hence G — G” in the left 

hand side of equation (12) accounts for the difference of 
the causal Green’s function and its time-reversed coun- 

terpart, as shown in equation (10). 
To complete the theory for Green’s function re- 

trieval one assumes uncorrelated sources q(r,w) of field 
fluctuations on the surface OV that satisfy 

(q(r1,w)q" (r2,w)) = wae —r2)|S(w)[?, (13) 

where |S(w)|? is the power spectrum of these sources. 
The factor 1/pc can be explained as follows. The power 
flux in an acoustic medium is given by puv* (Morse & 

Ingard, 1968), with p pressure and v velocity. The ve- 

locity is related to the pressure through the impedance: 

v = p/pc, hence the power flux is given by |p|?/pc. The 
factor 1/pc in equation (12) and the definition (13) for 
the sources thus ensures that all sources on the surface 

radiate the same amount of energy. Any wave that prop- 

agates back to the surface radiates outward by virtue of 

the radiation boundary condition (11). All sources on 
the surface radiate an equal power flux into the surface, 

and because of the lack of attenuation, the energy is ul- 

timately radiated out off the surface. This is yet another 

example of equipartitioning. 

Note that the treatment in this section treats each 

frequency independent from other frequencies. As a re- 

sult the power spectrum |S(w)|? may vary with fre- 
quency, ad thus there is no reason why there should 

be equipartitioning between different frequencies. This 

treatment is different from the use of equipartitioning 

in the normal-mode treatment of the previous section, 

where expression (4) stipulates that all modes do carry 

the same energy. 

2.4 Attenuating waves 

The Green’s function can also be extracted for atten- 

uating acoustic media. In the time domain, attenua- 

tion can be described by a time-dependent compress-
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ibility x that accounts for the relaxation of the acous- 
tic medium (Dahlen & Tromp, 1998). This corresponds 
to a frequency-dependent compressibility. Because of 

the Kramers-Kronig relations (Aki, 2002) the imaginary 
component of the compressibility is nonzero in the case 

of attenuation. For the case where the field or its nor- 

mal derivative vanishes at the bounding surface, Green’s 

function extraction can be expressed, in the frequency 

domain, as (Snieder, 2007) 

G(ra,rB,w) _ G*(ra,vB,w) = 

(14) 
Qu fy, (Im K(r,w)) G(ra,r,w)G*(ra,r,w)dV , 

where Im denotes the imaginary part. The Green’s func- 
tion can be retrieved by cross-correlating field fluctua- 
tions that are excited by uncorrelated sources through- 
out the volume that satisfy (Snieder, 2007) 

(a(r1,w)q" (r2,w)) = (Im x(r1,w)) 5(t1—ra)|S(w)|? (15) 

The source strength prescribed by expression (15) 
can be related to the attenuation. The potential energy 

of an acoustic wave p is equal to «|p|? (Morse & In- 
gard, 1968). The time derivative of the potential energy 

corresponds, in the frequency domain, to 

—iwn|p|? = —iw (Re x) |p|? + w (Im r) |p|? , (16) 

where Re denotes the real part. The first term in the 

right hand side denotes the transfer between potential 

and kinetic energy. This transfer is periodic and does 

not lead to an energy loss. The last term in expression 

(16) accounts for attenuation. The term Im x in the 
source strength (15) ensures that at every point in the 
medium the sources supply the same amount of energy 

that is locally dissipated. The source strength required 

for Green’s function extraction of attenuating acoustic 

waves thus requires a balance between the injected en- 
ergy and dissipated energy throughout the volume. This 

is another formulation of the equipartitioning require- 

ment. 

2.5 Potential fields 

The principle of Green’s function extraction can also be 

applied to potential fields. When the electrostatic po- 

tential V or the normal component of the electric field 

—98V/On vanishes at the boundary, Green’s function ex- 
traction is expressed as (Snieder et al., 2010) 

G(ra,re) = / e(r) (VG(ra,r):VG(ra,x)) dr, (17) 

where é(r) is the electrical permittivity. Since the poten- 
tial field is static, the Green’s function does not depend 

on frequency. The electrostatic potential is real, which 

explains the absence of complex conjugates in this ex- 

pression. 

The Green’s function for the electrostatic poten- 

tial follows (Snieder et al., 2010) by averaging over 

  

  

Figure 2. Geometry of the problem where sources dis- 

tributed on a sphere radiate waves in phase. 

quasi-static field fluctuations excited by random electric 

dipoles p that are spatially uncorrelated and satisfy 

(pi(ri)p;(r2)) = |S|?e(r1)6(r1 — 2) di; - (18) 

We next consider the energy of the field excited by such 

sources. The energy £ of an electric field E is given by 

(Griffiths, 1999) 

p= 5 fece-eyd'r=5 [e(vv-vv)a’r. (19) 

The last term in this expression has the same form as 

the right hand side of equation (17). Using field fluctu- 
ations excited by dipoles with a strength proportional 

to € ensures that the electrostatic energy is constant 

throughout space. This is yet another expression of the 

principle of equipartitioning. 

3 EQUIPARTITIONING MAY NOT BE 
SUFFICIENT 

The examples of the previous section show that in 

all cases the sources of the field fluctuations used for 

Green’s function extraction must have a position and 

strength such that the energy density in the system is 

constant. This principle is formulated in different ways 

in various examples. Because equipartitioning is such a 

unifying underlying principle, one might think that the 

Green’s function can be extracted whenever the field is 
equipartitioned. In this section we present counterex- 

amples to show that even though equipartitioning may 

be necessary, it is not a sufficient condition for Green’s 

function extraction. 

3.1 An acoustic source 

We first treat the case of acoustic waves excited on a 

spherical surface, as treated in section 2.1. We consider 

sources on a large sphere with radius R as shown in fig- 

ure 2 that radiate in phase with a common frequency



  

Figure 3. Sources in the stationary phase zone, indicated 

as the grey shaded area suffice for the extraction of the wave 
that propagates from A to C. 

spectrum S(w). The sources radiate inward from all 
points on the surface with the same intensity, and the 

associated wave field is certainly equipartitioned. The 

wavefield recorded at location rg is given by 

etkRs 

4nRp 

where the distance Rg is defined in figure 2. A similar 

expression holds for the waves recorded at location r 4. 

The integral can be evaluated exactly (Martin, 2006), 

but for simplicity we approximate it assuming that the 

radius R of the sphere is large compared to r4 and rg. 

This approximation is exact in the limit R — oo. In that 

case we can use the approximation Rg = R—rgcos@ 

in the exponent of equation (20), and we replace Rg by 

R in the denominator. This gives 

eik(R-rB cos 8) 

u(rs) “So $ tak 2 

  u(re) = — ds , (20) 

eikR ‘k 5 ikR 
—ikr pg cos _ ——— ge dS = — 

4nrR R 

A similar expression holds for u(r,), hence 

  sinc(krs) . (21) 

(u(ra)u*(rB)) = SS)" we I sinc(kra)sinc(krs) . (22) 

According to expression (12), exact Green’s func- 
tion extraction should give 

G(ra, rB,w) ~~ G*(ra4,rB,w) 

' (23) 
= 2iIm(G(ra,rB,w)) = 5, sinc(klra — resi), 

where we used that for the employed homogeneous 

medium G(ra,ra,w) = —exp(iklra ~ rel) /4r(klra — 
rp|). Expressions (22) and (23) have different space de- 
pendencies, and thus describe different physical func- 

tions. This means that the cross-correlation of fields ex- 

cited by simultaneous sources on the sphere does not 

give the Green’s function, despite the fact that the wave 

field is equipartitioned. This should not be surprising, 

because we violated condition (13) which calls for uncor- 
related sources. This example shows that while equipar- 

titioning may be a necessary condition, but it is not a 

sufficient condition. 

In this particular example, one may construct the 

Green’s function for a given pair of receivers without 

equipartitioning. In order to extract the wave propagat- 

ing from point A to point C in figure 3 it suffices to 

have sources in the grey area (Snieder, 2004a). Waves 

excited in the grey area provide a cross-correlation that 
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is, to first order, independent of the source location. The 

grey area is called the stationary phase region. Sources 

outside this region do not give a net contribution to the 

cross-correlation, and hence for the wave that propa- 

gates from A to C one only needs sources in the sta- 

tionary phase region. Equipartitioning is thus not even 

necessary if one only seeks to retrieve the direct wave 

that propagates from A to C. In fact, there are several 

studies that indicate that the surface wave extracted 

from the cross-correlation of microseismic noise prop- 

agate preferentially away from coastlines, e.g. (Stehly 

et al., 2006). This is an indication that although the 
surface waves are not equipartitioned, it is still possible 

to extract surface waves from the cross-correlation of 

such measurements. Alternatively, one can pre-process 

data that are not equipartitioned to make the energy 

flux less dependent on direction (Mulargia & Castellaro, 

2008; Curtis & Halliday, 2010). 

3.2 Normal modes 

Let us next consider a closed undamped system with 

normal modes as treated in section 2.2. We assume that 

all the modes carry the same energy, but we drop the 

condition that the excitation coefficients of the modes 

are uncorrelated. This means that instead of equation 

(4) we assume that 

=b, = —. 24 an ne wn ( ) 

This state is clearly equipartitioned. Repeating the steps 

leading to equation (9) gives for these modal coefficients 

dCan(t) > _ S? s- Un(ra)Um(rB) 

Wn nym 

x {sin((wm — wn)t + WmT) + cos((wm + wWn)t +wmT)} . 

(25) 

Note that this expression is different from expression (9) 
in two ways: first, it contains a double sum over modes 

rather than a single sum; second, it depends on 7+ and 

t instead of 7 only. Both differences are due to the fact 

that we used correlated modal coefficients. This example 

also illustrates that equipartitioning is not a sufficient 

condition for Green’s function retrieval. 

3.3 Waves generated on a bounding surface 

In the previous examples we violated the requirement 

for Green’s function retrieval in trivial ways. In this sec- 
tion we show a more subtle example of a wave state that 

is equipartitioned, but that does not give the correct 

Green’s function. We consider an open acoustic system, 

as discussed in section 2.3, and present a numerical ex- 

ample in two space dimensions (Fan & Snieder, 2009) 
with the geometry shown in figure 4. In an area of 80
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Figure 4. Geometry for the numerical example of 2D scat- 

tering by 200 scatterers (dots) of waves excited by sources 
on a circle. Receivers are indicated by triangles. 

m by 80 m, 200 strong isotropic point scatterers are lo- 

cated. We computed synthetic seismograms using a vari- 

ation of Foldy’s method (Groenenboom, 1995). Sources 
are placed on a circle with a radius of 90 m. Two re- 

ceivers are placed in the center of the scattering region 
at a distance of 20 m. The distance between both re- 

ceivers and the edge of the region with scatterers is 30 

m. We show the true Green’s function within the em- 

ployed frequency band by the red lines in both panels 

of figure 5. The Green’s function estimated from equa- 

tion (12) using 300 sources placed uniformly on a circle 
with a radius of 90 m is indicated by the black lines in 

the bottom panel of figure 5. In this case the Green’s 

function is retrieved accurately. 

In the numerical example, the transport scattering 

mean free path is given by l. = 1/(No) (Sheng, 1995), 
where o is the scattering cross section and N is the 

scatterer density. The transport mean free path is de- 

fined as the distance over which the direction of wave 

propagation is randomized by scattering (Sheng, 1995). 

For the employed scatterer configuration, 7 = 1.6 m, 

N = 200/(80 m)’, hence 1, = 5 m. Both receivers are 
separated by a distance of 30 m from the edge of the 

scattering domain, which means that any wave recorded 

at the receivers has propagated over at least six times 

the transport mean free path. The waves used in this 

numerical experiment have propagated over at least six 

times this distance, and thus for all practical purposes 

are equipartitioned. 

We next consider the case where one source is 

placed at a distance of 90 m from the center of the 

scattering array. Since this wave field is equipartitioned 

because of strong scattering, one might think that com- 

puting the cross-correlation of the waves generated by 

this single source would give the Green’s function. The 

cross-correlation of these waves is shown by the black 

solid line in the upper panel of figure 5. This cross- 
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Figure 5. Top panel: the true Green’s function (red line) and 

the Green’s function estimated from the cross correlation of 
waves excited by a single source (black line). Bottom panel: 

the true Green’s function (red line) and the Green’s function 

estimated from the cross correlation of waves excited by 300 

sources placed uniformly on a circle (black line). 

correlation does not resemble the true Green’s function 

(indicated in red) at all. The cross-correlation of waves 
excited by a single source does not give the Green’s func- 

tion because equation (12) requires sources everywhere 

on a closed surface; replacing this by a single source on 

that surface is not an adequate discretization of the sur- 

face integral. Yet the wave state generated by a single 

source is for all practical purposes equipartitioned after 

it has propagated over at least six times the transport 

mean free path to the receivers. This is another example 

of an equipartitioned wave state that does not suffice to 

give the Green’s function. 

4 WHAT DOES THIS MEAN FOR THE 
EARTH? 

One might wonder which of the schemes for Green’s 

function retrieval presented in section 2 is applicable 

to the earth. The short answer is that none of these 

methods is applicable for all types of wave propagation 

at all frequencies in the earth. The different schemes 

each have different restrictions that we discuss below. 

First consider the model of sources that gener- 
ate waves propagating in all possible directions, as dis- 

cussed in section 2.1. Conceptually, this model is appli- 

cable to surface waves that are excited by uncorrelated 

noise sources near the earth’s surface. The extraction 
of surface wave from the cross-correlation of noise has 
been very successful in the microseismic band with pe- 

riods between 5 s and 10 s (Campillo & Paul, 2003). 
The path coverage obtained by cross-correlating waves 

recorded at numerous receivers pairs has fundamentally 
changed crustal tomography (Shapiro et al., 2005; Sabra 

et al., 2005). The extraction of the surface waves from



noise has also been applied to longer periods (Shapiro & 

Campillo, 2004; Nishida eé al., 2009). The station den- 

sity currently offered by US Array makes it possible to 

even retrieve the full surface wave field propagating from 

one receiver through the array (Lin et al., 2009). In prac- 

tice, the microseismic noise is not generated with the 

same strength at all locations, and the retrieved surface 

waves are strongest in directions propagating away from 

oceanic regions with large wave activity (Stehly e¢ al., 
2006). When the isotropy in the microseismic noise is a 

limiting factor in the retrieval of the surface waves, one 

can cross-correlate the coda of extracted surface waves 

again in order to utilize surface waves that are better 
equipartitioned (Stehly eé al., 2008). One can retrieve 
the different elements of the Green’s tensor by cross- 

correlating different pairs of components of the recorded 
ground motion (Campillo & Paul, 2003; Snieder, 2004a). 

The work of Lobkis and Weaver (2001) had a huge 
impact because the theory is very elegant and the em- 

ployed formulation in normal modes is natural for global 

seismologists. Although the derivation is correct, it is 

strictly speaking not applicable to the earth for a num- 

ber of reasons. First, the modes of the earth certainly are 

not equipartitioned. Since most of the noise is generated 

near the surface of the earth, the modes that are con- 

fined to the near-surface carry more energy than modes 

that penetrate deep into the earth. In practice, the fun- 

damental mode surface wave carries the most energy, 

and it is for this reason that estimates of the earth’s 

Green’s function usually are dominated by the funda- 

mental mode surface wave. The second reason why the 

method is not applicable to the earth is that the formal- 

ism truly calls for an ensemble average. The employed 

model assumes there is no attenuation, which means 

that once the modes are excited, they oscillate forever 

without any change in the modal excitation. This means 

that a time average is not equivalent to an ensemble 

average, and one would need an ensemble of earths to 

implement the theory. We show in appendix A that for 

a damped oscillator that is periodically kicked for ¢ > 0, 

the cross-correlation C(r) = (x(t)a(t + 7)) is given by 

2 

oO = - hak (6) - 6-7). (26) 
In this expression T is the time between kicks, (F?) 
is the average of the square of the forces during the 

kicks, and y is the damping parameter. This equation 

shows that expression (10) can be generalized to include 
attenuation. Third, for an undamped oscillator that is 

excited by random forces with zero mean, the cross- 

correlation grows linearly with time 

dC(r) __ (F’) 
Ge amet (G(r) — G(-7)) - (27) 

(In essence the change from expression 

(26) to (27) follows from taking the limit: 
lim,—o {1 — exp(—2yt)}/y = 2t.) Because of this 
secular growth, such a system cannot be in equilibrium. 

Equipartitioning and interferomery 271 

  

Figure 6. Teleseismic waves propagating through a bound- 
ing surface illuminate the crust from below. 

This growth is due to the fact that the energy of an 

undamped kicked oscillator grows linearly with time, 

even when the average of the forces vanishes (Snieder 
et al., 2010). These last two points are mostly academic, 

because in practice there is attenuation, and when the 

earth is continuously excited, the modal coefficients are 

effectively “reset” at a time equal to the attenuation 

time of waves in the earth. For thermal fluctuations 

this can be described by using time-dependent modal 

coefficients that satisfy in the notation of this paper 

(an(t)am(t')) = Snm2keT exp(y|t — t'|), where keT 
is the thermal energy (Weaver & Lobkis, 2003). As 
we show in expression (26), the theory of Lobkis and 
Weaver (2001) can be extended to include attenuation 
and an explicit description of the force that excites 

field fluctuations. 

As discussed in section 2.3, the Green’s function 

can be retrieved from the cross-correlation of field fluc- 

tuations excited by sources on a bounding surface. This 
principle can be extended to elastic waves without in- 

cluding sources at the earth’s surface (Wapenaar, 2004). 
In practice, however, there are insufficient sources in the 

interior of the earth to provide the required excitation 

for field fluctuations on the closed surface surrounding 

the receivers. This hurdle has been overcome (Bostock, 
2004; Bostock et al., 2002; Kumar & Bostock, 2006) by 

using teleseismic waves that impinge on the crust from 

below, as shown in figure 6. In that case the teleseismic 

waves propagating through the dashed surface in figure 

6 replace the sources on that surface. The reflections of 

these waves by the earth’s free surface can be used to 

image the crust. This principle was theoretically shown 

earlier by Claerbout (1968) who demonstrated that the 
reflection response of a layered system can be retrieved 

from the cross-correlation of the transmission response. 
In reality the earth is attenuating, and one may 

wonder whether the formalism for attenuating waves 
presented in section 2.4 can be the basis for Green’s 

function extraction. In order to use this theory one 
must have sources that are proportional to the atten- 

uation. For a damped system in equilibrium, the excita- 

tion must balance the attenuation; otherwise the system 

would not be in equilibrium. This principle was shown 

originally for voltage fluctuations in a resistor (Nyquist, 

1928) and was later generalized as the fluctuation dissi- 

pation theorem (Greene & Callen, 1951; Callen & Wel- 

ton, 1951; Weber, 1956). According to this theorem, the
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response of a system in thermal equilibrium can be ex- 

tracted from field fluctuations. The condition of equi- 

librium implies that thermal fluctuations must balance 

the dissipation. Unfortunately, thermal fluctuations in 

the earth are extremely weak. Boltzman’s constant is 

given by kp = 1.4 x 10-*° J/K, and the thermal en- 
ergy for a mantle temperature of 600 K is equal to 

kpT = 8.4 x 107?! J. In comparison, a child with a 
mass of 50 kg jumping from a table 1 m high releases 

an energy equal to 500 J. It is thus clear that thermal 

fluctuations and the fluctuation dissipation theorem are 

irrelevant for observable field fluctuations in the earth. 

Thermal fluctuations are more for electrical fields where 

the accuracy of voltmeters is getting close to the voltage 
generated by thermal fluctuations (Slob e¢ al., 2010). 

5 DISCUSSION 

The different examples in this work require equiparti- 

tioning in some sense for Green’s function retrieval, but 
it it not clear to what extent these different require- 

ments are equivalent. For example, does the condition 

that the modes of a closed system carry the same energy 
imply that the energy density is homogeneous in space 

and that energy propagates equally in all directions? 

Questions like this require further research. As we show 

in by several examples in section 3, the requirement of 

equipartitioning is not sufficient for Green’s function re- 

trieval. 

As shown in the previous section, none of the 

sources of field fluctuations in the earth is adequate to 

provide the full Green’s function. In general, the surface 

waves in the retrieved Green’s function are strongest, 

e.g. (Shapiro & Campillo, 2004; Halliday et al., 2008a). 
The body waves are usually underrepresented, and, with 

the exception of studies based on teleseismic body waves 
(Bostock, 2004; Bostock et al., 2002; Kumar & Bo- 
stock, 2006), the number of studies that report extract- 

ing body waves is modest (Roux eé al., 2005; Gerstoft 
et al., 2006; Draganov e¢ al., 2007; Draganov eé al., 

2009). The reason for the under-representation of body 

waves is that for the retrieval of the direct surface wave 
it suffices to have sources anywhere on the earth sur- 

face in a region that straddles a line through the used 
receivers, as sketched in figure 3. This is a relatively 

weak condition that is readily satisfied. Forghani and 

Snieder (2010) show in more detail why it is more diffi- 
cult to extract body waves from field fluctuations then 

it is for surface waves. The dominance of the fundamen- 

tal mode surface waves in Green’s function extraction 

has led to spectacular advances in surface wave tomog- 

raphy, e.g. (Shapiro et al., 2005; Sabra e¢ al., 2005). 

The extension of this principle beyond the microseismic 

band (Shapiro & Campillo, 2004; Nishida eé al., 2009) 
holds promise for the determination of mantle struc- 

ture as well. In most applications of Green’s function 

extraction the surface wave is very strong. For this rea- 

son Draganov et al. (2009) process the recorded noise 
extensively before cross-correlation in order to suppress 

surface waves. The over-representation of surface waves 

in Green’s function retrieval can be advantageous when 

using the retrieved surface wave for adaptive ground- 

roll removal in exploration seismology (Halliday et al., 

2008b; Xue et al., 2009). 

Green’s function extraction has also been success- 

ful in quasi one-dimensional problems, because for waves 

propagating along a line one needs only sources on the 

line on both sides of the receiver. In fact, in the presence 

of an open boundary one needs only a source on one side 

of the receivers. This has successfully been applied to 

Green’s function retrieval for buildings that are shaken 

at the base (Snieder & Safak, 2006; Kohler et ai., 2007). 

Another example is Green’s function retrieval for the 

shallow subsurface (Trampert et al., 1993; Mehta e¢ al., 

2007; Sawazaki et al., 2009). In this application, the low 

wave velocity in the near surface results in near-vertical 

wave propagation. In combination with a locally lay- 

ered earth structure, this makes the wave propagation 

quasi one-dimensional. In these quasi 1D applications, 

deconvolution rather than correlation is used because it 

removes the spectral variations of the excitation without 

introducing unwanted artifacts (Vasconcelos & Snieder, 
2008). 

Much research on Green’s function extraction was 

spurred by the work of Lobkis and Weaver (Lobkis & 
Weaver, 2001). Their normal mode formulation is only 
relevant for the long-wavelength motion of the earth 

that is described well by a superposition of normal 

modes. Although the theory of Lobkis and Weaver 

(2001) is correct for the low-frequency motion, it is 
not directly applicable to the earth because the lack 

of attenuation used in their theory implies one of two 

things: either the earth is excited once and the modal 

coefficient keep their value in time, or the earth is 

excited continuously and the elastic energy in the earth 
grows linearly with time. In the former case the en- 

semble average needed in their theory cannot be taken 

because we have only one realization. In the latter case, 

the earth is not in equilibrium. These inconsistencies 

are resolved by accounting for the (weak) attenuation 
that is present in the earth. Because of attenuation, 

the vibrations of the earth damp out over a typical 

attenuation time. This causes the ambient vibrations 

of the earth to be in equilibrium, and the modal coef- 

ficients are effectively “reset” after the characteristic 

attenuation time. We have shown that attenuation 

can be incorporated in Green’s function extraction 

based on normal modes, which explains why the theory 

the Lobkis and Weaver (2001) not only inspired the 
seismological community; it also provided a recipe for 

Green’s function extraction (by cross-correlation) that 
is for practical purposes correct.
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APPENDIX A: RETRIEVING THE 
GREEN’S FUNCTION OF A KICKED 
OSCILLATOR BY CROSS-CORRELATION 

As a prototype of the behavior of an excited mode we 

consider the response of a kicked damped oscillator that 

satisfies 

mé + 2ya + wer = F(t), (Al) 

where F(t) is the excitation and 7 the damping. The 
Green’s function of the oscillator is the solution to a 
force F(t) = 6(t) and is given by 

OW) = Le sin(wt) H() , (A2) 

where H(t) is the Heaviside function and 

w= sug. (A3) 
We consider a forcing that for t > 0 consists of a 

sequence of kicks at times t, = nT: 

F(t) = > F,6(t — nT) . (A4) 
n=0 

The kicks F,, are random with zero mean, while the 

different kicks are uncorrelated 

(Fr) =0 ’ (Fa Fim) = (F?)6nm > (A5) 

where (-+-) denotes an ensemble average. The response 
to this forcing is given by 

a(t) = = >> Gta). (A6) 
O<nT<t 

Because of the random nature of the kicks, z(t) is a 
random function. Since the kicks have zero mean, the 

expectation value of z(t) vanishes 

(x(é)) =0. (A7) 

We define the cross-correlation as 

C(r) = (a(t)a(t+7)) . (A8) 

Using expression (A6) the covariance is given by 

1 
C(r) = m2 Docar<t DocmTr<t+r 

(A9) 
xG(t —nT)G(t +7 — mT)(FaFm) . 

We consider the case 7 > 0 first. Using expression 

(A5) for the expectation value of the kicks one can re- 
duce the double sum in equation (A9) to a single sum 
where only the kicks at times 0 < nT < t contribute 

(F?) 
m2 
  C(r) = S> G(t-nT)G(t+7r-—nT). (A10) 

O<nTK<t 

We assume that the time interval between kicks is much 
less than the period (wT < 1). In that case the sum over



kicks in expression (A10) can be replaced by an integral 

using 

Docaree f(t nT) + Si f(b tae 
(A11) 

1 t t , 

where the change of variable t' —> ¢ — t’ is used in the 
last identity. Using this in equation (A10) gives 

(F?) (F*) [ “Gta! + 7)dt. 
0 C(r) = m2T 

(A12) 

Inserting expression (A2) in the right hand side, evalu- 

ating the time integral and using equation (A4) gives 

(F?) ae 
lr) = 4m2weTy 

(cos wr + ¥ sin wr) 
w 

2 
_ (F ) en 2%ten IT Al13 
4m?w?Ty (A13) 

2 
(cos wT — Y cos w(2t + 7) + ” sin w(2t + 2) . 

wo wo 

Note the different frequencies in the denominator of the 

two terms in this expression. The second term in this 

expression decays exponentially with time because of 

the term exp(—2y#), this term accounts for the tran- 
sients associated with starting the kicks. For long times 

(yt — oo) only the first term remains. This term does 
not depend on ?t, and hence the average over time ¢ in 

the long time limit is equal to the expectation value. 

Taking the derivative of the first term with respect to 

T, and using equations (A2) and (A4), gives in the long 
time limit (yt — 00) 

2 ac(r) ___(F*)_ ea) 
dr 4m?T 

For rt < 0 the derivation is analogous, except that 

now only the kicks at times 0 < nT < t+ 7 contribute, 

and that the substitution (A11) should be modified into 

Moearcter f(t- nT) z wr f(t —t)dt' 

=ASft ftjde'. 

Using this, and taking the same steps as in the deriva- 

tion of expression (A13), gives for the long-time behav- 

ior of the cross-correlation 

_(F*) 
Am?weTy 

for7 >0. (A14) 

(A15) 

C(r) = e” (coswr — 7 sin wr) +O (e~?*')(A16) 

Taking the derivative and using equations (A2) and 
(A4) gives in the long-time limit 

for7 <0.     
dr 4m2Ty (Al?) 

Expressions (A14) and (A17) can be combined to the 
expression (26) that is valid for all 7. Note that the 
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factor that multiplies the Green’s function does not de- 

pend on frequency, this means that the kicked oscillator 

delivers an equal energy to the system regardless of the 

frequency, in the multi-mode system analyzed by Lobkis 

and Weaver (2001) this implies equipartitioning of en- 
ergy among modes. 

Let us next consider what happens when the atten- 

uation is switched off. Mathematically this is achieved 

by taking the lime y — 0. We take this limit for the 

case T > 0 and apply it to expression (A13). In the limit 
+ — 0 the transient terms in the last line of equation 

(A13) do not decay exponentially with time. Expand- 

ing all terms in -y and using that according to equation 

(A4) w and wo are equal to each other to first order in 
7, gives 

_ _(F’) 
Clr) = 4m?w2T 

(A18) 

x (28 cos wot + oo (sin wor — sin wo(r + 2t))) . 

Note that the first term grows linearly with time. This 
means that for the kicked undamped oscillator the corre- 

lation does not approach a constant value for long times, 

and that the ensemble average cannot be replaced by a 

time average. Physically this is due to the fact that the 

energy of a kicked undamped oscillator grows linearly 

with time, even when the mean of the kicks vanishes 

(Snieder et al., 2010). For long times (wot >>> 1) the 
first term in equation (A18) dominates, and a compari- 
son with expression (A2) shows that 

dC(r) ___ (F*) 
dr &m?T 

Apart from the secular growth term (é), the cross- 
correlation does produce the correct Green’s function. 

A similar analysis for 7 < 0 leads to equation (27). 

for 7 >0.     tG(r) (A19)
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ABSTRACT 
We present a new method of surface wave tomography based on applying the 
Eikonal equation to observed phase travel time surfaces computed from seismic 
ambient noise. The source-receiver reciprocity in the ambient noise method im- 
plies that each station can be considered to be an effective source and the phase 
travel time between that source and all other stations is used to track the phase 
front and construct the phase travel time surface. Assuming that the amplitude 
of the waveform varies smoothly, the Eikonal equation states that the gradient of 
the phase travel time surface can be used to estimate both the local phase speed 
and the direction of wave propagation. For each location, we statistically sum- 
marize the distribution of azimuthally dependent phase speed measurements 
based on the phase travel time surfaces centered on different effective source lo- 
cations to estimate both the isotropic and azimuthally anisotropic phase speeds 
and their uncertainties. Examples are presented for the 12 and 24 sec Rayleigh 

waves for the EarthScope/USArray Transportable Array stations in the western 
US. We show that: (i) the major resulting tomographic features are consistent 
with traditional inversion methods; (ii) reliable uncertainties can be estimated 
for both the isotropic and anisotropic phase speeds; (iii) “resolution” can be 
approximated by the coherence length of the phase speed measurements and is 
about equal to the station spacing; (iv) no explicit regularization is required in 
the inversion process; and (v) azimuthally dependent phase speed anisotropy 
can be observed directly without assuming its functional form. 

Key words: seismic interferometry, anisotropy, crustal structure 

1 INTRODUCTION 

The seismic surface wave tomography inverse problem 

is normally approached in one of two ways that can be 

thought of as either “single-station” or “array-based” 

methods. Both methods have proven effective at reveal- 

ing the spatial variability of surface wave speeds from 

global to regional scales. 

The first (single-station) approach to surface wave 
tomography is based on travel time measurements be- 

tween a set of seismic sources (typically earthquakes) 
and a set of receivers one receiver at a time. The travel 

times are then interpreted in terms of wave speeds in the 

medium of propagation using ray theory with straight or 

potentially bent rays (e.g., Trampert and Woodhouse, 

1996; Ekstrom et al., 1997; Ritzwoller and Levshin, 

1998; Yoshizawa and Kennett, 2002) or finite frequency 

kernels (e.g. Dahlen et al., 2000; Ritzwoller et al. 2002; 

Levshin et al., 2005). This method results in a set of 
frequency-dependent dispersion maps of either Rayleigh 

or Love wave group or phase speed. This approach also 

has been applied to ambient noise data (e.g. Sabra et 
al., 2005; Shapiro et al., 2005; Yao et al. 2006; Moschetti 

et al., 2007; Lin et al. 2007; Yang et al., 2007; Bensen 

et al., 2008), which provides wave travel times between 

pairs of receivers. In this case, one station can be con- 

sidered to be an “effective” source, but it is equivalent
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to the earthquake tomography problem in which the 

sources excite the wavefield. A variant of this method 

involves waveform fitting which in some cases bypasses 

the dispersion maps to construct the 3-D variation of 

shear wave speed directly in earths interior (e.g. Wood- 

house & Dziewonski 1984; Nolet, 1990; van der Lee and 

Fredriksen, 2005). 

The second approach to surface wave tomography 

deals with stations as components of an array and in- 

terprets the phase difference observed between waves 

recorded across the array in terms of the dispersion 

characteristics of the medium. In doing so, this method 

either applies geometrical constraints on the stations, 

typically that they lie nearly along a great circle with 

the earthquake (e.g. Brisbourne & Stuart 1998; Prindle 
& Tanimoto 2006), or inverts for the characteristics of 
the incoming wave-front along with the surface wave dis- 

persion characteristics of the medium lying within the 
array (e.g. Alsina et al. 1993; Friederich 1998; Yang & 
Forsyth 2006). 

In both approaches, the surface wave dispersion 

maps result from a regularized inverse problem that is 

typically solved by matrix inversion. Regularization in 

most cases is ad-hoc, and includes spatial smoothing 
as well as matrix damping. As in many geophysical in- 

verse problems, a trade-off between the amplitude of 

the heterogeneity and the resolution emerges that. af- 

fects confidence in the smaller structural scales when 

high resolution is desired. This trade-off is most severe 

for azimuthal anisotropy, as has been well documented 

by previous studies (e.g. Laske & Master 1998; Levshin 
et al. 2001; Trampert and Woodhouse 2003; Smith et al. 

2004; Deschamps et al. 2008), in which the amplitude 

of anisotropy is particularly poorly determined. These 

problems are exacerbated by the fact that uncertainty 

information that emerges for the maps tends to be un- 

reliable. Theoretical approximations made in the inver- 

sion, such as the assumption of straight (great-circle) 

rays or approximate sensitivity kernels, also affect the 

quality of the resulting maps. This particularly calls into 

question the robustness of information about azimuthal 

anisotropy because the magnitude of the travel time ef- 

fects of azimuthal anisotropy and ray bending, for ex- 

ample, is similar. 

The purpose of this paper is to present a new 

method of surface wave tomography that complements 

the traditional methods. The method is based on track- 

ing surface wavefronts across an array of seismometers 

(Pollitz 2008) and should, therefore, be seen to lie within 
the tradition of array-based methods, although as will 

be seen in the discussion below the method degener- 

ates to phase measurements obtained at single stations. 

The method is applicable, in principle, to surface waves 

generated both by earthquakes and ambient noise, but 

applications in this paper will concentrate on ambient 

noise recordings across the Transportable Array (TA) 
component of EarthScope/USArray (Fig. 1). Because it 
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Figure 1. The 499 stations used in this study are identified 

by black triangles. Waveforms are taken continuously from 

October, 2004 until November, 2007. Most stations are from 

the EarthScope/USArray Transportable Array (TA), but a 
few exceptions exist, such as NARS Array stations in Mex- 

ico. The four red symbols identify locations used later in the 
paper. 

is an array-based method, however, an array is needed. 

The TA provides an ideal setting, but large PASSCAL 

experiments are suitable for the method and the emer- 

gence of large-scale arrays in Europe and China that 

mimic the station spacing of the TA also provide nearly 

optimal targets. 

The method described in this paper is performed 

in three steps. We discuss the method here in the con- 

text of ambient noise tomography such that each station 

can be considered to be an effective source as well as a 
receiver. The relevance of the method to earthquake to- 

mography is discussed later in the paper. In the first 

step, a phase delay (or travel time) surface is computed 

across the array centered on each station. We refer to 

this step as wavefront or phase-front tracking. In the 

second step, the gradient of each travel time surface is 

computed at each spatial node. Invoking the Eikonal 

equation, the magnitude of the gradient approximates 

local phase slowness and the direction of the gradient 

is the direction of propagation of the geometrical ray. 

Steps 1 and 2 are performed with every station in the 

array as the effective source for the travel time surface.



Finally, in step 3, for each spatial node the local phase 

speeds and wave path directions are compiled and aver- 

aged from the travel time surfaces centered on each in- 

dividual station in the array. Because step 2 invokes the 

Eikonal equation, we refer to the method as “Eikonal 

tomography”. 

Eikonal tomography complements traditional sur- 

face wave tomography in several ways. First, there is 

no explicit regularization and, hence, the method is 

largely free from ad-hoc choices. The method as we im- 

plement it does, however, involve smoothing in track- 

ing the phase-fronts. Second, the method accounts for 
bent rays, but ray tracing is not needed. The gradient 

of the phase front provides information about the lo- 

cal direction of travel of the wave. The use of bent rays 

in traditional tomography would necessitate iteration 

with ray tracing performed on each iteration. Third, 

the method naturally generates error estimates for the 

resulting phase speed maps. In our opinion, this is more 

useful than relying on global misfit obtained by tradi- 

tional inversion methods. Fourth, in the context of es- 

timating azimuthal anisotropy, Eikonal tomography di- 

rectly measures azimuth dependent phase velocities at 

each node. Unlike the traditional tomographic method, 

no ad-hoc assumption about the functional dependence 

of the phase velocity with azimuth is made. Finally, in 

the construction of phase speed maps, the ray tracing 

and matrix construction and inversion of the traditional 

methods have been replaced by surface fitting, computa- 

tion of gradients, and averaging. The method, therefore, 

is computationally very fast and parallelizes trivially. 

Although we have applied Eikonal tomography suc- 

cessfully from 8 sec to 40 sec period across the western 

US, we present results here only for the 12 sec and 24 

sec Rayleigh waves. In principle, the same method can 

be applied to Love waves as well. The results shown in 

this study are presented to illustrate the method. In- 

terpretation of the results will be the subject of future 

contributions. 

2 THEORETICAL PRELIMINARIES 

The traditional approach to seismic tomography begins 

with a statement of the forward problem that links un- 

known earth functionals (such as seismic wave speeds, 

surface wave phase or group speeds, etc.) with obser- 

vations. In surface wave tomography, when mode cou- 

pling and the directionality of scattering are neglected, 

this involves the computation of travel times from the 

2-D distribution of (frequency dependent) surfacé wave 

phase speeds, c(r), that can be written in integral form 

as 

i(rs,rr) = [ Aten. FS (1) 

where r, and r, are the source and receiver lo- 

cations, r is an arbitrary point in the medium, and 
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m = 1 or 2 denotes line and area integrals, respec- 

tively. For “ray theories”, m = 1 and the integral ker- 
nel, A(r,rs,r,), vanishes except along the path, which 

is typically either a great-circle (straight ray) or a path 
determined by the spatial distribution of phase speed 

(geometrical ray theory) which is known only approx- 
imately. Ray theories are fully accurate at infinite fre- 

quency and approximate at any finite frequency. For 

m. = 2, the integral is over area, and the integral kernel 

represents the finite frequency spatial extent of struc- 

tural sensitivity. The sensitivity kernel may be ad-hoc 

(e.g., Gaussian beam) or determined from a scatter- 
ing theory (e.g, Born/Rytov) given a particular 1D or 
higher dimensional input model. Spatially extended ker- 

nels are referred to as finite frequency kernels, to con- 

trast them with ray theories. Much of recent theoreti- 

cal work in surface wave seismology has been devoted 

to developing increasingly sophisticated, and presum- 

ably accurate, representations of the integral kernel in 

equation 1 (e.g. Zhou et al. 2004; Tromp et al. 2005), 

although debate continues about whether approximate 

finite frequency kernels are preferable practically to ray 

theories based on bent rays with ad-hoc cross-sections 
(e.g., Yoshizawa and Kennett, 2002; van der Hilst & de 

Hoop 2005; Montelli et al. 2006; Trampert and Spetzler, 

2006). 
Equation 1 defines travel time as a “global” con- 

straint on structure; that is, it is a variable that de- 

pends on the unknown structure over an extended re- 

gion of model space and is defined to be contrasted with 

“local” constraints. The traditional primacy of the for- 

ward problem in defining the inverse problem necessi- 

tates that the inverse problem is similarly global in char- 

acter. Travel time observations constrain phase speeds 

non-locally, that is over an extended region of model 

space. 
In contrast, Eikonal tomography places the inverse 

problem in the primary role once the phase travel time 

surfaces, T(ri,r), for positions r relative to an effective 

source located at r; are known. The Eikonal equation 

(e.g., Wielandt, 1993; Shearer, 1999) is based on the 

following 

1 2 VAir) 
aye VTP) ~ Aw? (2) 

which is derived directly from the Helmholtz equa- 

tion. When the second term on the right is small, then 

ki 

ci(r) 
Here, c; is the phase speed for travel time surface 7 

at position r, w is frequency, and A is the amplitude of 

an elastic wave at position r. The gradient is computed 

relative to the field vector r and k, is the unit wave 

number vector for travel time surface i at position r. 

The Eikonal equation, equation 3, derives by ignoring 

the second term on the right hand side in equation 2. 

In this case, the magnitude of the gradient of the phase 

  
= Vr(ri ’ r) (3)
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travel time is simply related to the local phase slowness 

at r and the direction of the gradient provides the local 

direction of propagation of the wave. Thus, the Eikonal 

equation places local constraints on the surface wave 

speed. 

Dropping the second term on the right hand side 

of equation 2 is justified either at high frequencies or 

if the spatial variation of the amplitude field is small 

compared with the gradient of the travel time surface. 

The latter is the less restrictive constraint and will 
hold if lateral phase speed variations are sufficiently 

smooth to produce a relatively smooth amplitude field. 

Moreover, when repeated measurements are performed 

with phase travel time surfaces from different effective 

sources, the errors caused by dropping the amplitude 

term are likely to interfere destructively, but will con- 

tribute to the estimated uncertainty especially when the 
wavelength is shorter than the length-scale of velocity 
structure (Bodin & Maupin, 2008). We take this inter- 
pretation as the basis for the use of the Eikonal equation 

and use synthetic tests, presented in section 5.1, to con- 

firm that the effect of dropping the amplitude term is 

not a significant source of error in this study. In addi- 

tion, in ambient noise tomography, absolute amplitude 

information is typically lost due to time- and frequency- 

domain normalization prior to cross-correlation (Bensen 
et al., 2007). In this circumstance, the computation of 

the second term on the right hand side of equation 2 is 

impossible. 

The question may arise whether Eikonal tomogra- 

phy should be considered to be a geometrical ray the- 

ory or a finite frequency theory. The question is moti- 

vated by considering globally constrained inverse prob- 

lems and is somewhat inapt for a locally constrained 

inversion. We believe, however, that the answer is that 

Eikonal tomography has elements of both. Certainly, 
the Eikonal equation presents information about the lo- 

cal direction of propagation of a wave and is, there- 

fore, not a straight ray method but is “geometrical” 

in character. But, the phase travel time surfaces that 

are taken as data in the inversion possess spatially ex- 

tended sensitivity (finite frequency information) and Lin 
and Ritzwoller (On the determination of empirical sur- 
face wave sensitivity kernels, manuscript in preparation, 

2009) shows how approximate empirical finite frequency 

kernels can be determined from them. Thus, ignoring 
the second term on the right hand side of equation 2 

does not equate with rejecting finite frequency infor- 

mation. However, the resulting interpretation of the lo- 

cal gradient of the phase travel time surface in terms 

of a wave propagating with a single well-defined direc- 

tion, k, is consistent with a single forward scattering 

approximation. If there were more than one scatterer, 

i.e., multipathing, then the equation could not be inter- 

preted as defining an unambiguous direction of travel 
at each point. Thus, we do not see Eikonal tomography 

as a ray method, but summarize it as an approximate 

finite frequency, geometrical (i.e., bent ray), single for- 
ward scattering method. 

3 PHASE-FRONT TRACKING 

Eikonal tomography for ambient noise begins by con- 

structing cross-correlations between each station-pair. 

The ambient noise cross-correlation method to estimate 

the Rayleigh and Love wave empirical Greens functions 

(EGFs) is described by Bensen et al. (2007) and Lin 
et al. (2008). We use the method to produce Rayleigh 
wave EGF and phase velocity curves between 8 and 

40 sec period and have processed all available vertical 

component records from the USArray/TA observed be- 

tween October 2004 and November 2007. These stations 

are shown in Figure 1. The symmetric component cross- 

correlation (average of positive and negative lag wave- 

forms) between each station pair is used to construct 
the EGFs. 

Each phase travel time surface is defined relative to 

a given station location, r;, which is coincident with the 

effective source location of the wave field. If r denotes an 

arbitrary location, then the travel time surfaces relative 

to effective sources i is given by r(ri,r)forl <i <n, 
where n is the number of stations. The construction of 

the phase travel time surfaces across the array starts 
by mapping the phase travel times in space centered 

on the effective source locations. Figure 2a presents ex- 

ample great-circle ray paths for an effective source at 

TA station RO6C and Figure 2b shows the EGFs to all 

other TA stations plotted as a record section band-pass 

filtered from 15 to 30 sec period. The coherence of the 

information contained in this record section can be seen 
in wavefield snap-shots such as those in Figure 3, in 

which the amplitude of the normalized envelope func- 

tion for each EGF is color coded. Plots such as these 

illustrate that the entire Rayleigh wavefield can be seen 

to propagate away from the effective source. The plot 

also illustrates how the amplitude of the EGF varies 

with azimuth, with the largest amplitudes pointing di- 

rectly toward or away from the coast relative to the 

central station. Nevertheless, reliable phase times are 

measurable at nearly all azimuths, which is essential in 

order to map the phase travel time surface. 

Phase travel times to all stations from an effec- 

tive source are measured using the method of Lin et 

al. (2008) on each EGF between 8 and 40 sec period. 
For a fixed frequency, the measured phase travel time 

is assigned to each station whose EGF has a signal-to- 
noise ratio (SNR) exceeding 15, where SNR is defined 
by Bensen et al. (2007). To construct a phase travel time 
surface, these phase travel times must be interpolated 

onto a finer, regular grid. To do this, we fit a minimum 

curvature surface onto a 0.2° x 0.2° grid across the west- 
ern US. The result for central station RO6A for the 24 

sec Rayleigh wave is shown in Figure 4a. Variations in 

the method of interpolation have minimal effect on the
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Figure 2. (a) Great circle paths linking station RO6C (southeast of Lake Tahoe, identified by the white star) with all TA 

stations where cross-correlations were obtained. (b) Symmetric component record section for 15-30 sec period band-passed 

vertical-vertical cross-correlations with station RO6C in common. More than 450 cross-correlations are shown. Clear move-out 

near 3km/s is observed. 

resulting surface, averaging less than 0.2 sec except near 

the central station and on the maps periphery. An ex- 

ample is shown in Figure 4b in which a second interpola- 

tion scheme invokes an extra tension term in the surface 

fitting (Smith and Wesson, 1990). The difference near 
the center is expected because the real travel time sur- 

face will have singular curvature at the effective source. 

Accurate modeling of the phase time surface near the 

source, therefore, would require a different method of in- 

terpolation than that used here. In addition, travel time 

measurements obtained between stations separated by 

less than 1-2 wavelengths are less reliable than those 

from longer paths. Thus, from each travel time surface 

we remove the region within two wavelengths of the cen- 
tral station and also any region in which the phase travel 

time difference between the two interpolation methods 

is greater than 1.0 sec. Finally, as an added quality con- 

trol measure, for each location we include measurements 

from this location only when at least three of the four 

quadrants of the East-West and North-South axes are 

occupied by at least one station within 150 km. The 

resulting truncated phase travel time map centered on 

station RO6A for the 24 sec Rayleigh wave is shown in 

Figure 5a. Several other examples with either a differ- 
ent central station or a different period are also shown in 

Figure 5. This method of phase front tracking is not per- 

fect, as several irregularities in the contours of constant 

travel time in Figure 5c testify. Statistical averaging is 

needed to reduce the effects of these irregularities, as 

discussed later in section 4. 
The phase-front tracking process introduced here 

is essentially the only place in the Eikonal tomography 

method where the inverter has the freedom to make ad- 

hoc choices. The choice of using a minimum curvature 

surface fitting method as our interpolation scheme min- 

imizes the variation of the gradient and hence gives the 
smoothest resulting velocity variation. With this inter- 
polation scheme, however, the phase travel time sur- 

face within an area bounded by the three to four closest 

stations will always have similar gradients. This spatial 

coherence of the variation of the gradient, as we will 

discuss later on in section 4.2 and 5.1, limits our abil- 

ity to resolve velocity anomalies much smaller than the 

station spacing. If higher resolution is desired, a more 

sophisticated interpolation scheme will be required. 

4 EIKONAL TOMOGRAPHY 

For the Eikonal equation, equation 3, the magnitude of 

the gradient of the phase travel time is simply related 

to the local phase slowness at position r and the direc- 

tion of the gradient provides a measure of the direction 

of propagation of the wave. Taking the gradient on the
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Figure 3. Snapshots of the normalized amplitude of the ambient noise cross-correlation wavefield with TA station RO6C (star) 
in common at the center. Each of the 15-30 sec band-passed cross-correlations is first normalized by the rms of the trailing noise 

(Lin et al. 2008) and fit with an envelope function in the time domain. The resulting normalized envelope functions amplitudes are 
then interpolated spatially. Two instants in time are shown, illustrating clear move-out and the unequal azimuthal distribution 
of amplitude. 

phase travel time surface gives the local phase speed as 

a function of the direction of propagation of the wave. 

Hence, there is no need for a tomographic inversion. If 

the Eikonal equation is looked at as an inverse problem, 

the gradient is seen as the inverse operator that maps 

travel time observations into model values (phase slow- 
nesses) and is applied without the need first to construct 

the forward operator. 

4.1 Isotropic wave speeds 

Figure 6 shows the result of applying the Eikonal equa- 

tion to the phase travel time surface for the 24 sec 

Rayleigh wave shown in Figure 5a centered on station 

RO6A. For each individual central station 7, the resulting 

phase speed map is noisy (Figure 6a) due to imperfec- 
tions in the phase travel time map. This is caused by 

errors in the input phase travel times which, in a similar 

measurement, Lin et al. (2008) estimated to be about 
1 sec, on average. This is a significant error when spac- 

ing between stations is small. But, there are n stations, 

which in the present study for the TA is about 490. 

This allows the statistics of the phase speed estimates 

to be determined. For example, Figure 7a shows the 455 

Rayleigh wave phase speed measurements at a period of 

24 sec as a function of the propagation direction for the 

point in Nevada identified by the star in Figure 1. To 

determine the isotropic phase speed and its uncertainty 

for each point, we first calculate the mean slowness, so, 

and the standard deviation of the mean slowness, os), 

from the distribution of slowness measurements, si: 

1 
89 = n e. Si (4) 

O29? = aa (si — $0)? (5) 

where n is the number of effective sources. This in- 

termediate step properly accounts for error propagation.
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Figure 4. (a) The phase travel time surface for the 24 sec Rayleigh wave centered on TA station ROG6C (star). Contours are 
separated by 24 sec intervals. (b) The difference in phase speed travel time using two different phase-front interpolation schemes. 

The 48 sec contour is identified with a grey circle centered on station RO6C. 

The isotropic phase speed, co, and its uncertainty, oc, 

are then determined by 

co= = (6) 

1 
Teg = 302° (7) 

The local phase speed uncertainty, oc,, is mapped 

for the 24 sec Rayleigh wave in Figure 8a where only the 

region in which the number of measurements is greater 

than half the total number of the effective sources is 

shown. The average uncertainty across the map is about 

7 m/sec or about 0.2% of the phase speed. Note that 
this uncertainty estimate only accounts random errors 

within travel time measurements. Systematic errors in- 

troduced by the tomography method itself will be dis- 

cussed in Section 5.1. 

Example phase speed measurements and the uncer- 

tainty map for the 12 sec period Rayleigh wave are dis- 

played in Figures 7b and 8b, respectively. Uncertainty 

at this period is largest along the western and northern 
edges of the region which is most likely due to small 

scale wave-front distortion resulting from large velocity 

contrasts. The average uncertainty is about 8 m/sec, 

which is slightly larger than at 24 sec. This is not un- 

expected because the validity of the Eikonal equation 

relies on smoothly varying velocity structures and this 

is a less robust assumption for surface waves at shorter 

periods. 

The isotropic phase speed maps at periods of 24 

sec and 12 sec are plotted in Figures 9a and 10a, re- 

spectively. For comparison, the phase speed maps de- 

termined from the phase speed measurements using a 

traditional tomographic method based on the straight 
ray approximation (Barmin et al., 2001) are shown in 
Figures 9b and 10b. Differences between the methods 

are illustrated in Figures 9c and 10c. 

Agreement between the isotropic maps produced 

with Eikonal tomography and the traditional straight 

ray tomography is generally favorable, but there are re- 

gions of significant disagreement. At 24 sec period, the 

differences are greatest near the western boundary of 

the map where Eikonal tomography seems to recover 

crisper, more highly resolved features that correlate bet- 

ter with known geological structures. For the 24 sec 
Rayleigh wave, the phase velocity contrast between the 

fast and slow anomalies is generally too gentle to make 

ray paths deviate significantly from great circle paths.
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Figure 5. Rayleigh wave phase speed travel time surfaces at periods of (a,b) 24 sec and (c,d) 12 sec centered on two “effective 

sources”: stations RO6C (eastern California) and F10A (northeastern Oregon). Travel time level lines are presented in increments 
of the wave period. The maps are truncated within 2 wavelengths of the central station and where the three out of four quadrant 

selection criterion is not satisfied. These two criteria usually take effect only near the periphery of the station coverage.
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Figure 6. (a) The phase speed inferred from the Eikonal equation for the 24 sec Rayleigh wave travel time surface shown in 

Fig. 5a centered on station ROGA. (b) The propagation direction determined from the gradient of the phase travel time surface 
at each point is shown with arrows. The difference between the observed propagation direction and the straight ray prediction 

(radially away from stations RO6A) is shown as the background color. 

This is also indicated in Figure 6b where the average de- 

viation of propagation direction from great circle path 

is only about 3°. It is not likely, therefore, that the dif- 

ferences observed between Eikonal and traditional to- 

mography at this period are purely because Eikonal to- 

mography accounts for bent rays. Differences more likely 

result from the regularization applied in the straight ray 

inversion, which tends to distort the velocity anomalies 
near the edges of the map. At 12 sec period, however, 

velocity contrasts are more significant and the off-great- 

circle effect is more pronounced. The effect of modeling 

bent rays in Eikonal tomography can be seen in at least 

two features of the 12 sec map. First, a lineated anomaly 

associated with the Cascade Range is better observed 

with Eikonal tomography. Second, Eikonal tomography 

also produces wave speeds that are systematically slower 

than the straight ray inversion (Figure 10c) in most of 
the region. The bent rays travel faster than the straight 

rays (Roth et al. 1993) and to fit the data equally well 
with bent rays requires depression of wave speeds, on 

average. This can be seen clearly in the histograms of 

differences presented in Figure 11, where the mean dif- 

ference between the two 12 sec maps is about 10 m/sec 

(about 0.3% of the phase speed), whereas the 24 sec 

maps differ, on average, only by ~5 m/sec. 

4.2 Coherence length of the measurements 

Traditional estimates of resolution typically are based 

on applying the inverse operator (relating observations 

to model variables) to the forward operator (relating 
model variables to observations) in an inverse problem. 
With Eikonal tomography, neither an inverse nor a for- 

ward operator are constructed explicitly, so resolution 

is not straightforward to determine. Checkerboard tests 
are possible, but numerical simulations would need to 

accurately calculate the phase travel time between each 

station pair. 

We take a different approach and attempt to es- 

timate the resolution based on the coherence length of 

the measurements. To do so, we first estimate the statis- 

tical correlation, p, of slowness measurements between 

locations j and k by 

[Sc (32 — 8j0)(8ei — sxo)]” 
jo1 (83s — $50)? D2} (Ski — 8x0)? 
  (8) Pjk =
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Figure 7. (a) Example of the azimuthal distribution of the Rayleigh wave phase velocity measurements at 24 sec period for 

the point in central Nevada indicated by the star in Figure 1. (b) Same as (a), but for the 12 sec Rayleigh wave phase speed at 
the same location. The mean and standard deviation of the mean are identified at upper left in each panel.
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Figure 8. (a) The 24 sec period isotropic Rayleigh wave phase speed uncertainty map, determined from the distribution of 
phase speed measurements based on applying the Eikonal equation to each of the phase travel time maps at each point. (b) 

The 12 sec isotropic Rayleigh wave phase speed uncertainty map. 
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Figure 9. (a) The 24 sec Rayleigh wave isotropic phase speed map derived from Eikonal tomography. The isotropic phase 

speed at each point is calculated from the distribution of local phase speeds determined from each of the phase travel time 
maps. (b) Same as (a), but the straight ray inversion of Barmin et al. (2001) is used. The black line is the 100 km resolution 

contour. (c) The difference between Eikonal and straight ray tomography is shown where positive values indicate that the 

Eikonal tomography gives a higher local phase speed.
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Figure 10. The same as Figure 9, but for the 12 sec Rayleigh wave. The result of Eikonal tomography is slightly slower 

(yellow-red shades), on average, than the straight ray tomography because it models off-great-circle propagation. 
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Figure 11. Normalized histograms of the Rayleigh wave phase speed difference across the studied region between Eikonal 

tomography and straight ray tomography at 12 and 24 sec period. The mean differences result because Eikonal tomography 

models off-great-circle propagation, which is more significant at 12 sec than 24 sec period. 

where i is the index of the effective sources and 

8j0 and sxo are the mean slowness at locations j and 

k, respectively. The statistical correlation, p, varies be- 

tween 0 and 1 and represents the degree of coherence or 

independence between the measurements made at the 

two locations. Using the point in central Nevada (Fig- 

ure 1) as an example again, the statistical correlation 

between the phase speed observations at that point and 

the neighboring points is summarized as a correlation 

surface shown in Figure 12a. We follow Barmin et al. 

(2001) and estimate the coherence length of the mea- 
surements by fitting the correlation surface with a cone, 

where the base radius of the cone is taken as the coher- 
ence length estimate R. 

Although this is different from the traditional def- 

inition of resolution, it does provide information about 

the length scale of features that can be resolved in a re- 

gion. The coherence length estimated in this way for the 

24 sec Rayleigh wave is shown in Figure 12b. In most 

regions, coherence length is somewhat smaller than the 

average inter-station spacing of 70 km across the west- 

ern US. Although this result is comparable to the reso- 

lution estimated by the straight ray tomography (Lin et 

al. 2008), there are fundamental differences between the 
two. When the observed phase travel times are affected 

by a velocity structure much smaller than the inter- 

station distance, without a more sophisticated interpo- 

lation scheme, the minimum curvature fitting method 

we use will smear the travel time anomalies to an area 

confined by the few closest nearby stations. This smear-
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Figure 12. (a) An example of the spatial coherence of the measurements for the 24 sec Rayleigh wave at the point in central 
Nevada indicated by the star in Figure 1. (b) The radius (R) of the cone fit to the coherence surface at each location, which 

bears a similarity to resolution. 

ing effect is further evidenced in out synthetic tests in 

section 5.1. Thus, the station spacing constrains the co- 

herence length as well as the smallest scale of structure 

that can be confidently resolved. Increasing the number 

of effective sources will tend to reduce the estimated un- 

certainty, but most likely will have little impact on the 

coherence length. 

4.3 Azimuthal anisotropy 

Eikonal tomography also provides an estimate of az- 

imuthal anisotropy. In traditional surface wave inver- 

sions, it is commonly assumed that the Rayleigh wave 

phase speed exhibits the following functional depen- 

dence on azimuth, which is derived based on theoretical 

studies of weakly anisotropic media (Smith & Dahlen, 

1973), 

c(Y) = co + Acos[2(¥ — y)] + Bcos[4(¥ —a)] (9) 

where WY is the azimuthal angle measured positive 

clockwise from north, A and B are the amplitude of 

anisotropy, and y and a define the orientation of the 

anisotropic fast axes for the 2V¥ and 4Y components 

of anisotropy. Although the estimated 2 fast direc- 

tions may be robust in the traditional inversion, the 

amplitude of the anisotropy almost inevitably depends 

on the regularization parameters chosen (e.g., Smith et 

al., 2004). In Eikonal tomography, the velocity as a func- 

tion of azimuth of the wave is measured directly and it 

is then determined if the relationship reflects a simple 

function of azimuth. 

As with the measurement of isotropic phase veloc- 

ity, the estimation of anisotropy begins with the set 

of phase speeds estimated at a single spatial location 

from the set of phase speed travel time maps segre- 

gated by azimuth, as in the example shown in Figure 

7a for the 24 sec Rayleigh wave for a point in central 

Nevada. Due to phase travel time errors in the maps, 

the measured phase speeds are significantly scattered 

and any azimuthally dependent trend is obscured. Scat- 

ter is reduced substantially by stacking and binning in 

two stages. First, we combine the azimuthally depen- 

dent phase speed measurements obtained at the tar- 

get point with measurements at the eight surrounding 

spatial points (3 x 3 grid with the target point at the 

center). We use a 0.6° grid separation approximately 
equal to the coherence length estimate described in the 

last section, which effectively guarantees that measure- 

ments are statistically independent from one another. 

To reduce mapping the lateral variation of isotropic 

phase speed into azimuthal anisotropy, we remove the 

isotropic speed difference between each point and the 

center point of the 3 x 3 grid for all of the measure- 

ments. This stacking process increases the number of 

measurements for the center point, but does so at the 

expense of reducing spatial resolution. Second, we com-
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bine all of the azimuthally dependent phase speed mea- 

surements in each 20° azimuthal bin into a mean speed 

and its standard deviation of the mean for that bin. 

Here, again, the mean slowness and the standard devi- 

ation of the mean slowness are first calculated and then 

converted to the mean speed and its uncertainty. 

Figure 13 shows examples for four different geo- 

graphical locations of the stacked azimuthally depen- 

dent phase speed measurements with their uncertain- 

ties for the 24 sec Rayleigh wave. For the examples 

in Utah and Nevada, Figures 13a and b, where good 

azimuthal data coverage exists, a clear 2V variation is 

observed for the entire 360° of azimuth. On the other 

hand, Figures 13c and d show two examples near the 

western boundary of the map where azimuthal cover- 

age is limited. Nevertheless, the 2W velocity signal is 

still observed robustly because measurements cover at 

least 180°. Based on these observations, for each pe- 

riod and location, we adopt the assumption of a weakly 

anisotropic medium, fit the results with the 2W part of 

the cosinusoid, and use it to estimate the amplitude and 

fast direction of anisotropy with associated uncertain- 

ties. Here, robust statistics are used. Measurements that 

cannot be fit within 2 standard deviations are removed 

to minimize the effect of significant outliers, but the 

difference between the robust statistics and non-robust 

statistics is small overall. Adding the 4Y term does not 
improve the data fit appreciably which indicates that 

the 4W variation of Rayleigh waves is weaker and our 

dataset is not sufficient to constrain it. The observed 20 

azimuthal anisotropy exhibits different amplitudes and 

fast directions in different locations. This minimizes con- 

cern about systematic errors in the input phase travel 

times due to azimuthally inhomogeneous ambient noise 
sources which could result in a uniform fast direction 

for the entire region. 

Azimuthal anisotropy for the 24 sec Rayleigh wave 

is summarized in Figure 14a. The peak-to-peak ampli- 

tude of anisotropy is presented in Figure 14b. Figure 15a 

presents the variance reduction after introducing the 2¥ 

anisotropy term. Significant improvements (> 80%) are 
observed over extended regions, which not only indi- 

cates the robustness of the measurements but also sug- 

gests that azimuthal anisotropy is a general feature of 

Rayleigh waves in the western US. We note that the 

regions with poor variance reduction (< 40%) are gen- 
erally accompanied by weak anisotropy (< 0.5%), which 

may be a real feature or may be due to a spatially rapid 

and unresolvable change in fast direction. The estimated 
uncertainty of the observed azimuthal anisotropy fast 

directions and amplitudes are summarized in Figure 15b 

and 15c, respectively. As in traditional anisotropy to- 

mography, the fast directions are generally robust fea- 

tures. We estimate the uncertainties of the fast direc- 

tions to be less than 6° in most of regions. Again, re- 

gions with larger uncertainties in the fast direction gen- 
erally result from weak anisotropy. Uncertainties in the 

amplitude of anisotropy are generally smaller (< 3m/s 
or 0.1% of the isotropic phase speed) in regions with 
nearly complete azimuthal data coverage than near the 
periphery of the studied region where only part of entire 

azimuthal range has measurements. 
For comparison, the 2 24 sec Rayleigh wave phase 

speed anisotropy determined by traditional straight ray 

inversion (e.g., Barmin et al., 2001) with two different 
smoothing strengths is summarized in Figure 16a and 

16d with amplitudes plotted in Figure 16b and 16e. 

The difference in fast directions compared to Eikonal 

tomography is also summarized as histograms in Figure 
16c and 16f, where only regions with anisotropy am- 

plitude larger than 0.5% in the Eikonal tomography are 

included. Overall, the observed anisotropy fast direction 

patterns are consistent between the two traditional in- 

versions and the Eikonal tomography inversion. This is 

not unexpected because the off-great-circle effect is rel- 

atively weak at 24 sec period. The anisotropy amplitude 

is significantly smaller in the second case of the straight 

ray inversion, which indicates that the smoothing regu- 

larization was too strong. Most places with a significant 

difference in fast directions (> 30°) occur near a transi- 
tion in the fast direction of anisotropy where the results 
of neither model are robust. 

With the traditional inversion method, it is tricky 

to select the right regularization parameters and meth- 

ods to do so are typically ad-hoc. Many studies use 

trade-off curves between misfit and model roughness 

or the number of degrees of freedom to select the 

preferred regularization parameters (e.g. Boschi 2006; 

Zhou et al. 2005). This is, however, difficult for az- 
imuthal anisotropy because by including 2V azimuthal 

anisotropy, for example, the number of degrees of free- 

dom at each node increases to 3 from 1 for an isotropic 

wave speed inversion despite the fact that the improve- 

ment in misfit is usually modest. For traditional to- 

mography applied to the 24 sec Rayleigh wave phase 
speed data, the standard deviation of travel time mis- 

fit drops from around 3 sec for a homogeneous refer- 

ence model to 1.57 sec after the straight ray isotropic 
speed inversion (Figure 9b). However, it then only de- 

creases slightly to 1.53 sec and 1.54 sec for the two 2U 

azimuthal anisotropy inversions (Figure 16a and 16d). 

With Eikonal tomography, through the stacking and 

binning process, we effectively separate the velocity vari- 

ation due to measurement error from anisotropy and 

are able to inspect the observed azimuthally dependent 

phase speed measurements visually. In this way, the ob- 

served variance reduction is statistically meaningful and 

can be used to indicate the confidence level of the result. 

The 12 sec Rayleigh wave 2W azimuthal anisotropy 

results based on Eikonal tomography are presented in 

Figure 17. Overall, the anisotropy is robustly mea- 

sured despite the fact that the amplitudes of anisotropy 

are generally weaker and the fast direction pattern is 

slightly different than the 24 sec results. Figure 18a
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Figure 13. Examples of the azimuthal dependence of phase velocity measurements for the 24 sec Rayleigh wave at four points 

in the western US where large amplitude 2 azimuthal variation can be observed: (a) Utah, (b) Nevada, (c) northern California, 
and (d) central California. The locations are indicated by the circle, star, square, and diamond in Figure 1, respectively. Error 

bars are estimated based on the distribution of phase velocity measurements in each 20° azimuthal bin for the given location 
and its 8 nearest neighboring grid points. For each case, the solid line is the best fit of the 2¥ azimuthal variation. 

shows an example of the 12 sec 2V azimuthal anisotropy 

determined by our traditional straight ray inversion 

with anisotropy amplitude plotted in Figure 18b. The 

difference in fast directions compared to the Eikonal 

tomography is summarized in the histogram in Figure 

18c. Compared to 24 sec period, more significant dif- 

ferences in both the fast directions and the amplitude 

patterns are observed, particularly near regions where 

there are discrepancies between the two isotropic wave 

speed maps (Figure 10). We believe that the off-great- 
circle effect, which is more important for 12 sec Rayleigh 

waves, is responsible for most of the observed differences 

between the methods at this period. 

5 DISCUSSION 

5.1 Numerical simulations to test for 

systematic errors 

To assess possible systematic errors due to approxima- 

tions in the Eikonal tomography method, which include 

both dropping the amplitude term in equation 2and us- 

ing a minimum curvature surface fitting method to in- 

terpolate the phase travel time surface, we perform a 

series of 2D finite difference simulations to solve the 

Helmholtz equation numerically and obtain a synthetic 

travel time database. We invert this database based 

on Eikonal tomography and evaluate the difference be- 

tween the tomography result and the input phase speed 

model to constrain the systematic errors. 

Two cases, 12 and 36 second periods, are studied 

here which represent periods at the short and long pe- 

riod ends of our study. The isotropic wave speed maps 

derived from the USArray dataset and Eikonal tomog- 

raphy are used here as the input models (Figure 19a 

and 20a). In each simulation, a periodic source cen- 
tered at one station location is used to generate a single 

frequency out-going wave which propagates in the 2D 

medium of the input wave speed model. The resulting 

waveforms observed at all other station locations are 

used to measure the phase travel times between those 

stations and the effective source, where the measure-
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Figure 14. (a) The 24 sec period Rayleigh wave azimuthal anisotropy fast axis directions and peak-to-peak amplitudes, 2A/co, 
which are proportional to the length of the bars. (b) Peak-to-peak amplitude of anisotropy presented in percent. 
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Figure 15. (a) Variance reduction of the 24 sec Rayleigh wave 2 azimuthal anisotropy relative to the isotropic speed at each 
point. (b) The uncertainty in the angle of the fast direction, y. (c) The uncertainty of the amplitude of anisotropy.
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Figure 16. (a)-(b) Same as Figure 14a-b, but here the 24 sec Rayleigh wave azimuthal anisotropy result is determined with 

the traditional straight ray method of Barmin et al. (2001) with a regularization chosen to approximate the amplitudes in Fig. 
14b. The black line is the 100 km resolution contour. (c) The normalized histogram of the difference in fast directions between 

the Eikonal tomography result (Fig. 14a) and the straight ray tomography result. (d)-(f) same as (a)-(c) but with stronger 

smoothing regularization. Patterns of anisotropy remain largely unchanged, but amplitudes diminish with greater the damping. 

ments are made when the waveform stabilizes after sev- 

eral cycles. Although synthetic travel times are avail- 

able between all station pairs, to be comparable with 

the inversion with real data, only those measurements 

included in the original datasets are included. We fol- 

low the same procedure described in Section 3 and 4 to 

invert these synthetic datasets based on Eikonal tomog- 
raphy and both the isotropic and anisotropy results are 

shown in Figures 19b, 19c, 20b, and 20c. 

Unsurprisingly, the resulting isotropic speed maps, 

for both 12 and 36 sec, closely replicate the large 

scale features of the input models, although small scale 

anomalies in the input models tend to be smoothed out. 
This smoothing effect is expected, as discussed in sec- 

tion 4.2. To assess other systematic errors, we smooth 

the input models with a spatial Gaussian filters with a 

standard deviation of 35 km and summarized the dif- 

ferences between the isotropic inversion results and the 

smoothed input models in Figure 19d and 20d. Devi- 

ations are most significant near the periphery of our 

station coverage, particularly near regions with large ve- 

locity contrasts such as regions near the Central Valley 

of California and the Sierra Nevada for the 12 second 

case and the Southern Sierra Nevada for the 36 second 

case where delamination is inferred by previous stud- 

ies (e.g. Yang & Forsyth 2006). Similar anisotropic de- 
viations are also observed for both the 12 and 36 sec 

cases (Figure 19c and 20c), where the amplitude of the 

anisotropy tends to correlate with the observed isotropic 

wave speed deviations. This suggests that rapid veloc- 
ity contrasts near the periphery of the maps tend to 

distort the wavefront dramatically and the method be- 

comes less robust. The observed isotropic (Figures 19d 

and 20d) and anisotropic (Figures 19c and 20c) devia- 
tions are also summarized as histograms in Figures 19e, 

20e, 19f, and 20f, respectively. 

We test whether we can reduce these deviations 

by including amplitude measurements in our synthetic
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Figure 17. Same as Figure 14, but for the 12 sec Rayleigh wave. 
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Figure 18. Same as Figure 16, but for the 12 sec Rayleigh wave. Agreement between the Eikonal and straight ray tomography 
is worse at 12 sec than 24 sec because of the larger effect of 

datasets. Again, minimum curvature surface fitting is 

used to first interpolate the synthetic amplitudes mea- 

sured at each station to construct amplitude surfaces 

before calculating the second term in equation 2 . The 

effect of including the amplitude term is in general un- 

noticeable, which is partly because the surface interpo- 

off-great-circle propagation. 

lation schemes we use here provides relatively smooth 

amplitude surfaces which tend to minimize the Lapla- 

cian term in the equation 2 . This is inevitable unless a 

denser station network is available. 

The observed isotropic and anisotropic amplitude 

deviations, with standard deviations approximately
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Figure 19. (a) The input wave speed model for the 12 sec simulations. The model is derived based on the isotropic result 
of Eikonal tomography with real data (Figure 10a) where the model gradually smears into a homogeneous model near the 

boundary of the station coverage. (b)-(c) The isotropic and anisotropic inversion results from Eikonal tomography with the 
12 sec synthetic dataset. (d) The difference between the synthetic inversion and smoothed input model where positive values 

indicate that the synthetic inversion gives a higher local phase speed. (e) Normalized histogram of the speed difference across 
the studied region between the synthetic inversion and the smoothed input model. (f) Normalized histogram of the anisotropic 

peak-to-peak amplitude of the synthetic inversion across the studied region. 

equal to 10m/s and 0.3% peak-to-peak (or 6m/s assum- 
ing 4km/s isotropic speed) (Figures 19e, 19f, 20e, and 
20f), respectively, are generally small relative to the ob- 

served isotropic velocity variations (Figure 9a and 10a) 
and anisotropy amplitudes (Figures 14b and 17b). They 
are, however, approximately on the same scale as the es- 

timated uncertainties derived from our statistical anal- 

ysis (Figures 8a, 8b, and 15c). This suggests that the es- 
timated uncertainties described in Section 4, which only 
accounts the random measurement errors, may under- 

estimate the difference between the tomography results 

and the real medium properties. When numerical solu- 

tions are available, such as here, systematic errors due to 

the tomography method can be numerically estimated 

and a better estimation of the uncertainty can be made 

by summing the effects of the systematic and random 

measurement errors. However, this may prove impracti- 
cal due to the heavy computation required. Considering 

the positive correlation between random (Figures 8a, 8b, 

and 15c) and systematic errors (Figures 19c, 19d, 20c, 

20d), here we propose 1.5 as a rule of thumb scaling 

factor to multiply the random error uncertainty estima- 

tions to provide a more realistic uncertainty estimate. 

We would like to emphasis here that the systematic
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Figure 20. Same as Figure 19, but for the 36 sec simulations. 

errors discussed here are solely due to the imperfection 

in the tomography method and do not account for sys- 

tematic errors in travel time measurements. Systematic 

travel time measurement errors can arise, for example, 

due to timing errors or inhomogeneous noise source dis- 

tributions for noise cross-correlation measurements. We 

believe that the effect of inhomogeneous noise source 

distribution in our results is small, however. Travel time 

errors due to inhomogeneous source distribution are 

likely similar between nearby stations. When the gra- 

dient is calculated in Eikonal tomography, these errors 

will cancel. 

5.2 Advantages and limitations of Eikonal 
tomography 

There are several significant advantages of Eikonal to- 

mography over traditional surface wave tomography 

methods. 

First, the implementation of the inverse operator 

for Eikonal tomography depends on operations to the 

data without explicitly solving the forward problem. For 

a wave propagating in an inhomogeneous medium, the 

observed wave properties such as phase travel time are 

only linearly related to the local velocity structure when 

structural perturbations are small. In other words, any 

linearized forward operator, such as the ray or finite 

frequency sensitivity integrals, and the inverse operator 

derived from it can only be considered approximate. Er- 

rors caused by this linearization are often overlooked or 

are unknown, and moving beyond them requires itera-



tive simulations which are computationally expensive. 

Eikonal tomography extracts the information about lo- 

cal velocity structure directly from the data without ex- 

plicitly constructing the forward operator. It, therefore, 

finesses the nonlinear nature of the problem and should 

result in a better estimate of both the local isotropic 

and anisotropic phase speeds, especially where off-great- 

circle propagation is important. 

Second, uncertainties in local phase speeds can be 

estimated with Eikonal tomography. Instead of minimiz- 
ing a penalty functional that usually includes some com- 

bination of global misfit and model norm or roughness 
constraints, Eikonal tomography directly estimates lo- 

cal phase speed from independent measurements based 

on different phase travel time surfaces. Therefore, the 

uncertainties of the resulting local phase speeds can be 

determined statistically in a straightforward way. The 

uncertainties are important for later 3D inversion and 

quantitative comparisons between different models. 

Third, Eikonal tomography is free from explicit 

model regularization. The method, therefore, eliminates 
the need to make ad-hoc choices of the damping and 

regularization parameters which are sometimes contro- 

versial and may result in dubious models. This particu- 

larly is a problem for studies of surface wave azimuthal 
anisotropy because the increased number of degrees of 

freedom is often not offset by a comparable improve- 

ment in misfit. Eikonal tomography with the additional 

smoothing intrinsically embedded in the phase front 

tracking process has no explicit regularization and the 

subjectivity of the inverter to affect the tomographic 

result is restricted. 

Fourth, the azimuthal dependence of phase speeds 

can be measured directly without assuming its para- 

metric form. Unlike classic studies of Pn azimuthal 

anisotropy (e.g., Morris et al. 1969) where the wave 
speed variation with the direction of propagation is 

observed directly, traditional surface wave tomography 

typically posits the relationship between phase speed 

and the direction of wave propagation based on theo- 

retical studies of weakly anisotropic media (e.g. Smith 
& Dahlen 1973). The ability to measure and observe the 
azimuthal dependence of phase speeds directly leads to 

greater confidence in the information about anisotropy. 

There are several limitations on Eikonal tomogra- 

phy worthy of note. First, unlike traditional inversion 

methods where the resolution is controlled by path or 

kernel densities, Eikonal tomography estimates the co- 

herence length of the measurements which is controlled 

by station spacing. Without applying a more sophis- 

ticated travel time surface interpolation method, this 

prohibits the use of this technique to resolve structures 

smaller than the inter-station spacing. 
Second, when long period or more complicated sur- 

face waves are considered, the second term in equation 

2 can have values more similar to the magnitude of 
the phase speed anomalies that we seek to resolve. Al- 
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though our simulations shows that the amplitude term 

is relatively unimportant for our dataset, other theo- 

retical and numerical studies, such as Wielandt (1993) 
and Friederich et al. (2000), suggest that when either 
the velocity anomaly is smaller than a wavelength or 

the incoming wave is complicated by multipathing, ne- 

glect of the amplitude term by the Eikonal equation 

can blur the velocity anomaly and cause systematic er- 

rors in the phase speed measurements. It is possible to 

solve this problem by inverting both phase and ampli- 

tude together which amounts to recasting the problem 

in terms of the Helmholtz equation. Amplitude mea- 

surements are, however, less accurate than phase mea- 

surements and the second spatial derivative of the am- 

plitude variation tends to be unstable and is underesti- 

mated, particularly when the station spacing is sparse. 

The situation is even worse for measurements based on 

ambient noise cross-correlations where amplitudes have 

been separately normalized for different stations so that 

meaningful amplitude information has been lost. Am- 
plitude anomalies then mainly reflect the distribution 

of ambient noise sources not structural gradients. 

Third, travel time interpolation schemes usually are 

unreliable near the periphery of the station coverage 

which results in increasing both random and system- 
atic errors. Hence, the area that can be imaged by the 

Eikonal tomography method is generally smaller than 

when a traditional tomography method is applied (Fig- 

ure 9 and 10). It requires a large scale array, such as 

the TA, to really take the advantages of the Eikonal to- 

mography method where both applicable area can be 

extended and measurement uncertainties can be signif- 
icantly reduced when ambient noise method is applied. 

5.3 Applicability to earthquake tomography 

To construct the phase travel time surfaces in this study 

we use measurements of ambient noise. In principle, 

however, Eikonal tomography can be applied to phase 

travel time measurements based on earthquake wave- 

forms. There are a few differences, however, considering 

the nature of earthquake measurements. 

First, surface waves emitted by a distant source 

usually develop a certain amount of multipathing that 

can potentially invalidate the assumption of smoothly 

varying amplitudes. In fact, this is the fundamental con- 

cept of the two plane wave inversion method (e.g., Yang 

& Forsyth 2006). Friederich et al. (2000) showed numer- 
ically how wave complexity can contribute to uncertain- 

ties in the local phase speeds inferred from the Eikonal 

equation. This problem is relatively minor for measure- 

ments based on ambient noise cross-correlations in the 

western US because the effective sources (i.e., the sta- 
tions in the ambient noise method) usually are relatively 

close, with average distances near 700 km. Other than 
at the short period end of our study and near regions 

with sharp velocity contrasts, this is usually too short



298 F-C. Lin, M. H. Ritzwoller & R. Snieder 

for multipathing to be well developed. Second, surface 

wave studies based on teleseismic events usually focus 

on longer periods (> 25 sec) due to the strong scatter- 
ing and attenuation of shorter period signals. At longer 

periods, when a wavelength is larger than the size of 

a velocity anomaly, the second term in equation 2 can 

blur and distort the velocity anomaly which we wish to 

resolve (Friederich et al. 2000). 
Considering these factors, the amplitude term may 

play a bigger role in Eikonal tomography based on 

earthquake measurements and the second term in equa- 

tion 2 should probably be properly taken into account. 

Unlike ambient noise cross-correlation measurements 
where only the phase information is retained, the am- 

plitude of the surface wave emitted by an earthquake 

can be used in the inversion as well. By including am- 

plitude information, the Helmholtz equation can be ap- 

plied instead of the Eikonal equation, and may resolve 

the local phase velocity structure with greater certainty 

(Wielandt 1993; Friederich et al. 2000; Pollitz 2008). 

6 CONCLUSIONS 

We present a new method of surface wave tomography 

called Eikonal tomography and argue that this method 

presents an improvement over traditional methods of 

ambient noise tomography, particularly as the method 

is applied to data from the Transportable Array com- 

ponent of EarthScope/USArray. The method initiates 

by tracking phase fronts across the array to produce 

phase travel time maps centered on each station, con- 

sidered as an “effective source”. The method culminates 

by interpreting the local gradients of the phase time sur- 

faces in terms of local phase speed and the direction of 

propagation of the wave. The most significant advan- 

tages of Eikonal tomography compared with traditional 

straight-ray tomography is its more accurate represen- 

tation of wave propagation, its ability to produce mean- 

ingful uncertainty information about the inferred phase 

speed maps, and its production of more reliable informa- 

tion about azimuthal anisotropy. Improvements in the 

isotropic dispersion maps result predominantly from the 

methods ability to track the direction of propagation of 

waves, which is tantamount to use of off-great-circle ge- 

ometrical rays but without the need for iteration. Im- 

provements in information about azimuthal anisotropy 

derive from the methods freedom from ad-hoc choices in 

regularization. This provides more reliable information 

about the amplitude of anisotropy, in particular. In ad- 

dition, the method provides a local visualization of how 

phase speeds vary with azimuth, which we believe adds 

considerably to confidence in the results. Eikonal tomog- 
raphy is an approximate method. It accurately tracks 

the direction of wave propagation but only approxi- 

mately incorporates what may be traditionally thought 

of as finite-frequency effects and assumes a single wave 

propagating at each point in space. To improve the abil- 

ity to resolve small scale feature and reduce systematic 

errors, future work will focus on finding more sophisti- 

cated interpolation schemes as well as incorporating the 

amplitude term of equation 2 . 
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General representation theorem for perturbed media 
and application to Green’s function retrieval for 

scattering problems 

Clement Fleury, Roel Snieder, & Ken Larner 
Center for Wave Phenomena, Colorado School of Mines 

INTRODUCTION 

ABSTRACT 
Green’s function reconstruction relies on representation theorems. For acoustic 
waves, it has been shown theoretically and observationally that a representa- 
tion theorem of the correlation-type leads to the retrieval of the Green’s func- 
tion by cross-correlating fluctuations recorded at two locations and excited by 
uncorrelated sources. We extend the theory to any system that satisfies a lin- 
ear partial differential equation, and define an interferometric operation that is 
more general than cross-correlation for the reconstruction. We analyze Green’s 
function reconstruction for perturbed media and establish a representation the- 
orem specifically for field perturbations. That representation is then applied 
to the general treatment of scattering problems, enabling interpretation of the 
contributions to Green’s function reconstruction in terms of direct and scat- 
tered waves. Perhaps surprising, Green’s functions that account for scattered 
waves cannot be reconstructed from scattered waves alone. For acoustic waves, 

retrieval of scattered waves also requires cross-correlating direct and scattered 
waves at receiver locations. The addition of cross-correlated scattered waves 
with themselves is necessary to cancel the spurious events that contaminate the 
retrieval of scattered waves from the cross-correlation of direct with scattered 
waves. We illustrate these concepts with numerical examples for the case of 
an open scattering medium. The same reasoning holds for the retrieval of any 
type of perturbations, and can be applied to perturbation problems such as 
electromagnetic waves in conductive media, and elastic waves in heterogeneous 
media. 

Key words: representation theorem — Green’s function retrieval — interferom- 
etry — perturbation theory — scattering problem. 

ing (Sabra et al. 2007), structural engineering (Kohler 
et al. 2007; Snieder & Safak 2006; Thompson & Snieder 

The extraction of Green’s functions from wave field fluc- 

tuations has recently received considerable attention. 

The technique, known in much of the literature as inter- 

ferometry, is described in tutorials (Curtis et al. 2006; 

Larose et al. 2006; Wapenaar et al. 2007) and has been 

applied to a large variety of fields including ultrasonics 

(Lobkis & Weaver 2001; Malcolm et al. 2004; Weaver & 

Lobkis 2001), global (Campillo & Paul 2003; Sabra e¢ al. 
2005a; Shapiro ef al. 2005) and exploration (Bakulin & 
Calvert 2006; Miyazawa et al. 2008) seismology, helio- 
seismology (Rickett & Claerbout 1999), medical imag- 

2006), and ocean acoustics (Roux & Kuperman 2004; 
Sabra et al. 2005b). The theory relies on representa- 

tion theorems (of either the convolution or correlation 
type) and allows for the retrieval of Green’s functions for 

acoustic (Wapenaar & Fokkema 2006), elastic (Snieder 
2002; Van Manen et al. 2006; Wapenaar et al. 2004), 

and electromagnetic (Slob et al. 2007; Wapenaar et al. 

2006) waves. For acoustic media, the impulse response 

between two receivers is retrieved by cross-correlating 

and summing the signals recorded by the two receivers
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Figure 1. Two receivers, A and B, separated by a distance d = 1.9 km, are embedded in a two-dimensional acoustic scattering 

medium (unperturbed velocity co = 3.8 km/s) characterized by n uniformly distributed isotropic point scatterers localized 

inside a circle of radius r = 1.0 km. A dense distribution of N = 1000 sources evenly spaced along a circle of radius R = 4.0 km 
surrounds the medium. For n = 500, the heterogeneous medium is considered strongly scattering. For n = 10, the scattering 
regime is weak. 

for uncorrelated sources enclosing the studied system. 
This process, sometimes referred to as the virtual source 

method (Bakulin & Calvert 2006), is equivalent to hav- 

ing a source at one of the receiver locations. Further 

studies have extended the concept to a wide class of 

linear systems (Gouédard et al. 2008; Snieder et al. 
2007; Wapenaar & Fokkema 2004; Wapenaar et al. 2006; 

Weaver 2008), and our work aims to accomplish the 
same objective. 

We explore a general formulation of representation 

theorem for any system that satisfies a linear partial dif- 

ferential equation (or, mathematically, for any field in 

the appropriate Sobolev space). In particular, this for- 

mulation involves no assumption of spatial reciprocity 

or time-reversal invariance. We introduce a bilinear in- 
terferometric operator as a means of reconstructing the 

Green’s function and study the influence of perturba- 

tions on the interferometric operator, and thereby derive 

a general representation theorem for perturbed media. 

The perturbed field can be retrieved by using a process 

characterized by the interferometric operation, which 

is generally more complex than cross-correlation. For 

common systems, this interferometric operation can be 

simplified using the symmetry properties of differential 
operators. We apply the theory to scattering problems 

and illustrate the approach with an example involving 

scattered acoustic waves, obtaining a result that con- 

curs with that published by Vasconcelos et al. (2009) 
on the representation theorem for scattering in acoustic 

media. In geophysics, applications of perturbation re- 

construction exist in the areas of, for example, crustal 

seismology, seismic imaging, well monitoring, and wave- 

form inversion. 

After exposing this general representation theorem 
for perturbed media, we give an innovative interpreta- 

tion of Green’s function reconstruction. To emphasize 

the connection between the general formulation and the 

particular case of scattering problems, we refer to un- 

perturbed field as direct field, and field perturbation as 

scattered field. Perturbation retrieval can be understood 

in terms of interferences between unperturbed fields and 

field perturbations. One might think that field perturba- 

tions can be reconstructed with contributions from just 

field perturbations alone; the retrieval of field pertur- 

bations, however, requires the interferences with unper- 

turbed fields. For acoustic media, this means that the 

scattering response between two receivers cannot be re- 

trieved by cross-correlating only late coda waves. Here, 

the scattering response is defined as the superposition 

of the causal and acausal scattering Green’s functions 

between the two points. In the numerical experiments 

conducted here (see Figure 1), two receivers are embed-
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Figure 2. The blue curves show the actual scatiering response (superposition of the causal and acausal scattering Green’s 

functions) between two points embedded in a strongly heterogenous medium. The red curves represent the wave reconstructed 

by cross-correlating the waves recorded by two receivers at the same locations. Note the black arrow, which corresponds to the 

time of the first expected physical arrival. In panel (a), only scattered waves are cross-correlated. The reconstruction fails no 

matter how dense is the distribution of sources enclosing the medium. This failure of interferometry is not caused by restrictions 

of source distribution, aperture, or equipartitioning, but is a consequence of the missing contribution of recorded direct waves. 

In panel (b), both direct and scattered waves are cross-correlated, yielding a result confirming that the scattering response can 

be retrieved by interferometry. 

ded in a scattering medium and surrounded by sources 

that are activated seperately, and consequently, gener- 

ate uncorrelated wavefields. The numerical scheme is 

based on computation of the analytical solution to the 

two-dimensional heterogeneous acoustic wave equation 

for a distribution of isotropic point scatterers (Groe- 

nenboom & Snieder 1995). In Figure 2, we compare the 
actual scattering response for a source at the receiver lo-
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cation with the signal reconstructed by cross-correlating 

and summing the scattered waves recorded at the re- 

ceiver positions. For a strongly scattering medium (av- 

erage wavelength larger than several scattering mean 

free paths (Tourin et al. 2000)), Figure 2(a) shows that 
the reconstruction completely fails to retrieve the scat- 
tering response from cross-correlation of only the scat- 

tered waves recorded at the receiver locations. The re- 

constructed wave with only scattered waves is totally 

innaccurate: the early arrivals are non-physical because 

they do not respect causality, arriving before the min- 

imum travel-time between the two receivers, while the 

late arrivals show no resemblance to the actual scatter- 
ing response. Accurate retrieval of the scattered waves 
instead requires contributions from both direct and scat- 

tered waves, as shown in Figure 2(b). 
In this paper, we provide an interpretation of this 

result; one can find a similar approach by Halliday & 

Curtis (2009) and Snieder & Fleury (2010), the latter 
of which describes the case of multiple scattering by dis- 

crete scatterers. In Snieder & Fleury (2010), we identify 
different scattering paths, show their contributions to 

the retrieval of either physical or nonphysical arrivals, 

and analyze how cancelations occur to allow the scat- 

tering Green’s function to emerge. Our interpretation, 

along with that given by Halliday & Curtis (2009), leads 

to the same important conclusion: the cross-correlation 

of purely scattered waves does not allow extraction of 

the correct scattered waves. 

The paper is organized as follows. In section 2, we 

describe the general systems under consideration and 

introduce the concept of perturbation. In section 3, we 

define the interferometric operator and its relation to 

representation theorems, emphasizing the influence of 

perturbations on this operator. Section 4 presents the 

general representation theorems for perturbations that 

follow this approach. In section 5, we apply this theory 

to interpret the reconstruction of Green’s function per- 

turbations; section 6 offers discussions and conclusions. 

2 GREEN’S FUNCTION PERTURBATIONS 
FOR GENERAL SYSTEMS 

Consider a general system governed by a linear partial 

differential equation in the frequency domain. In order 

to avoid the complexity of formalism that could obscure 

the main purpose of this paper, we leave the vector case 

for Appendix A. Let the complex scalar field uo(r,w) 

be defined in a volume D;.:. One can adapt the result 

of this work to the time domain using the Fourier con- 

vention uo(r,t) = f uo(r,w)exp(—jwt)dw. Henceforth, 
we suppress the frequency dependence of variables and 

operators. The unperturbed field uo(r) is a solution of 
the unperturbed equation 

Ho(r) - uo(r) = s(r), (1) 

where Hp is the linear differential operator and s is the 

source term, associated with the unperturbed system. 

The dot denotes a contraction when vectors and tensors 

are considered. For acoustic waves, one may define Ho 

as the propagator for non-uniform density media: Hp = 

V - (99 °V) + po 'w?/c%, where p and c denote density 
and velocity, respectively. 

Assuming a perturbation of the system, the per- 

turbed field ui(r) follows from 

Ai(r)-ui(r) =  s(r) (2) 
Ao(r)-ui(r) = V(r)-ui(r) + s(r), (3) 

where V is the perturbation operator, and Hi; = Ho—V 

is the linear differential operator associated with the 

perturbed system. For example, for acoustic waves, with 

a change in velocity for the medium, the perturbation 

operator is V = pp ‘w?/c(1 — c3/c?). Alternatively, a 
change in experimental conditions might imply a vari- 
ation in density; then, a way to account for this per- 

turbation is to consider V = (p9' — pj ')w?/c8 + V - 
((p9  — py')V). One could also neglect attenuation in 
the medium in the first approximation and correct for it 

by introducing the perturbation V = jw*S(Kg '—«;'), 
where & denotes the imaginary part and x = pc? is 

the bulk modulus. We are free to arbitrarily choose or 

even interchange the reference 0 and perturbed 1 states 

for any perturbation problem. Indeed, the perturbation 

need not necessarily introduce more complexity; its defi- 

nition depends on the characteristics of the perturbation 

problem that one tries to solve. 

For a problem to be well-defined, one needs to 

specify boundary conditions. Assume that the bound- 

ary conditions are unperturbed, and consider a regular 

problem with homogeneous boundary conditions: 

B(r) - uo,i(r) = 0 on the boundary, (4) 

where B denotes the linear boundary condition oper- 

ator for the total volume Dioz. One can, for example, 

apply the Sommerfeld radiation condition for acoustic 

waves, but the boundary conditions need not be limited 

to being homogeneous. In Appendix B, we extend our 

reasoning to any unperturbed boundary conditions. 

The Green’s functions Go{r,rs) and Gi(r,rs) for 
both unperturbed and perturbed systems are defined as 

solutions for an impulsive source at location rg, 

s(r) = 6(r — rg). (5) 

From the above equations, one obtains the familiar 

relation between unperturbed and perturbed Green’s 

functions, known as the Lippmann-Schwinger equation 

(Rodberg & Thaler 1967):
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Gi(r,rs) = Go(ryrs) + I Go(r,m) + V(r1) «Gi(riyrs)d?rs, (6) 

where D is a subvolume of the total domain Dzo:. We introduce the notation, 

Ui) = ff £0) ar, (7) 
so that the Lippmann-Schwinger equation can be written as 

Gi(r,rs) = Go(r,rs) + (Go(r,r1)|V(r1)| Gi(ri,rs)). (8) 

Finally, we define the Green’s function perturbation or scattering Green’s function that characterizes the field per- 

turbation us(r) = ui(r) — uo(r) as 

Gs(r, rs) =Gi (r, rs) _~ Go(r, rs), (9) 

or 

Gs(r,rs) = (Go(r, ri) |V(r1)| Gi(ri,rs)). (10) 

To clarify the terminology used throughout this paper, the unperturbed field, perturbed field, and field perturbation 

are denoted by uo, ui, and us, respectively. 

3 DEFINITION OF THE INTERFEROMETRIC OPERATOR 

To establish a representation theorem for perturbations, we first derive a general expression for Green’s function 

retrieval by using a representation theorem of the correlation type (Wapenaar & Fokkema 2006). Consider two states 

of the field u, labeled A and B, governed by the partial differential equation £La,s, 

Lap: H(r)-ua,a(r) = sa,a(r), (11) 

where the subscript ,z refers to either state A or B. Following Fokkema & Van den Berg (1993) and Fokkema et al. 

(1996), we evaluate (ua|Le) — (tp|La), where f denotes the complex conjugate of f; consequently, 

(ua || Us) — (ta|H|ua) = (ualSe) — (iB|sa). (12) 

For impulsive sources, s4,8(r) = 6(r — ra,s), and the fields ua,a(r) = G(r,ra,s), the Green’s functions in states A 
and B, so (12) becomes the general representation theorem of correlation-type for interferometry, 

G(rs,ra) _ G(ra,rB) = (G(r,ra) |H(r)| G(r, rs)) 

(G(r, re) |H(r)| G(r, 14). 
(13) 

This result is a general extension of the representation theorem in Snieder eé al. (2007). In order to interpret and 

characterize the Green’s function reconstruction more conveniently, we define the operator I, 

Tu{f,9} = (f|Alo) - lA S), (14) 

so that the general representation theorem can be written as 

G(re,va) — G(ra,re) = In {G(r,ra), G(r, re)}. (15) 

The operation J{-,-} describes how Green’s functions in a subvolume D “interfere” to reconstruct the Green’s 
function between the two points A and B. We consequently refer to Ix as the interferometric operator, associated 

with H, that acts on functions f and g, and call the result of operation (14) an interference between f and g. For 

acoustic waves, the interferometric operation is the following volume integration: 

Ta{f,g} = [ue -(p'Va)(r) — g(r)V - (0 'VF)(x)]d°r. (16) 

Using Green’s theorem, this volume integral becomes an integral over the bounding surface 6D enclosing volume D: 

In{f.9} = £, p(x)[F(e) Vole) ~ g(t) VF (x)] - id? r, (17)
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where ni is the outward unit normal vector at r. Then, equation (15) retrieves the familiar representation theorem for 

acoustic waves (Wapenaar & Fokkema 2006): 

G(rs,ra) — G(ra,re) = f p '(r)[G(r,ra)(r)VG(r, re) — G(r,re)VG(r,ra)] - ad?r. (18) 
D 

Returning to the general case, just as the unperturbed linear partial differential operator Hp becomes H,; = Ho—V 

after perturbating the system, the interferometric operators for unperturbed and perturbed systems, Jo and Jh, relate 

in the following way: 

Io = Ing 

h = b-W. (19) 
Note that, in general, Ip and J, differ; that is, the interferometric operator is perturbed for a perturbed system. 

The exception (J; = Io) occurs when Iy = 0. Consider, for example, the acoustic case previously described. The 

unperturbed Green’s function is retrieved using expression (18), and, for a perturbation in velocity only, 

ita} = f (: - (2)) - (: - (2))| (e)g(e)d°r = 0, (20) 
so I; = Ip. If, instead, density rather than velocity is perturbed, 

Iv{f.g} = f 00" (8) ~ 05 "(e))LF(@) Vale) — gfe) VI (0)] har #0. (21) 

  

Therefore, the interferometric operator changes (11 # Jo) with such a perturbation. Similarly, with a perturbation in 

attenuation, 

Iv fig} = ju? [ (Ko? — Ky )g(r) Ff (e)d*r # 0. (22) 
These examples illustrate that, in general, the same interferometric operation cannot be used to reconstruct both 

perturbed and unperturbed Green’s functions; we need to estimate the perturbation of the interferometric operator, 

Iv, itself in order to apply interferometry for perturbed media. As seen in equations (21) and (22), the interferometric 

operator in general requires knowledge of medium properties for the perturbed system, a limiting factor because 

usually we know only the unperturbed medium properties. Equation (20), however, is a specific example of an 

interferometric operator that does remain unperturbed (Jo = 11) for nonzero perturbation. For benign cases such as 

this one, we need only know or estimate unperturbed medium properties, and measure or model both perturbed and 

unperturbed fields, in order to reconstruct the Green’s functions. 

Let us investigate such systems for which the interferometric operator is unperturbed (Iy = 0). Starting by 

reformulating the general representation theorem for both perturbed and unperturbed media, we retrieve the Green’s 

functions using 

Go(re,ra) — Gor(ra,re) = 1o,1{Go1(r, ra), Gor(r,re)}- (23) 

This expression clearly depends on the properties of the interferometric operator, and, according to definition (14), 

the reconstruction involves integration over the volume D. Because the integrand is a function of differential operators 

Ho or Mi, and of the Green’s functions between any point in D and points A or B, we need to know Ho, V, and the 

Green’s functions for all points in the volume D in order to apply the interferometric operator and retrieve the Green’s 

functions between A and B. In particular, estimation of the Green’s functions for all points in D requires having 

sources throughout the entire volume D. To apply interferometry in practice, this requirement for sources or receivers 

over the entire volume is yet more limiting than the need to estimate perturbations of the medium properties; it 

would severely restrict the possibility of retrieving even unperturbed Green’s functions. 

In practice, we are interested in systems for which we can reconstruct Green’s functions with a limited number 

of sources and receivers. Just as for acoustic waves in equation (18), we therefore aim for problems that enable us to 
transform the integration over volume D in expression (14) into integration over its boundary 6D. This transformation 
allows significant reduction in the number of sources. In Appendix C, we show that this transformation can be 

done if and only if operators are self-adjoint. We also demonstrate that the self-adjoint symmetry of the operators 

implies spatial reciprocity under specific boundary conditions. In addition, the transformation of volume into surface 

integrals-also constrains to just the surface 6D the medium properties that must be known for the reconstruction. For 

perturbation problems that we are considering, we can always find a boundary of integration 5D (for example, 5Dtot) 

along which the system is unperturbed (there are no changes of the medium properties along 6D). Then, under the 

assumption that Ho and V are self-adjoint, the interferometric operation associated with this particular volume D can
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be reduced to an integration over 6D, and the interferometric operator is then unperturbed under the assumption that 

the properties of the medium are unchanged along this boundary. Consequently, we can reconstruct the perturbed 

Green’s function independently of the perturbations in the rest of the volume. For example, for a perturbation of 

densities in an acoustic medium, expression (21) illustrates that the interferometric operator is unperturbed (Jy = 0) 

when the density is unchanged on the boundary 6D. 

To summarize, interferometry can be interpreted as the application of an interferometric operator. This tech- 

nique is practical for systems characterized by self-adjoint operators and for perturbation problems in which the 

interferometric operator is unperturbed. 

4 REPRESENTATION FOR GREEN’S FUNCTION PERTURBATIONS 

In the previous section, we established a general representation theorem for perturbed systems. Here, we derive a 

representation for field perturbations. This general representation differs from the traditional representation theorem 

for the special case of scattered acoustic waves (Vasconcelos et al. 2009) because, in general, we must take into account 

the perturbation of the interferometric operator. The perturbation of Green’s function, defined in section 2, can be 

retrieved by interferometry by taking the difference of the two equations (23) for the perturbed and unperturbed 

states to give 

Gs(rs,ra) — Gs(ra,ra) = h{Gi(r,ra), Gi(r,ra)} — lo{Go(r, ra), Go(r, ra)}. (24) 

Using relation (19) between unperturbed and perturbed interferometric operators, we have 

Gs(re,ra)—Gs(ra,re) = Io{Gi(r,ra),Gi(r,re)} — Io{Go(r,ra), Go(r, rs)} 

— Iy{Gi(r,ra),Gi(r,re)}. (25) 

Equation (25) is a general representation theorem for perturbation. Additionally, the interferometric operator is 

bilinear, i.e., Ja {of,g} = In{f,ag} = aln{f,g}, Ia{f,gth} = In{f,g}+Ja{f, hk}, and In{ft+g,h} =In{f,h}t 
In{g,h}. We exploit the bilinearity of Io and expand Io{Gi(r,ra),Gi(r,re)} in terms of unperturbed fields and field 
perturbations: 

Io{Gi(r,ra),Gi(r,re)} = Jo{Go(r,ra),Go(r,re)} + lo{Gs(r,ra),Gs(r,re)} 

+ Ip{Go(r,ra),Gs(r,r8)} + lo{Gs(r,ra), Go(r, re)}. (26) 

This decomposition allows for the identification of different types of interference between unperturbed Green’s func- 

tions and Green’s function perturbations. Then, inserting equation (26) into representation theorem (25), gives 

Gs(re,ra)—Gs(ra,ra) = Io{Gs(r,ra),Go(r,re)} + Jo{Go(r, ra), Gs(r,rB)} 
+ Io{Gs(r,ra),Gs(r,rB)} ~ Iv{Gi(r,ra),Gilr,re)}. (27) 

Representation theorem (27) illustrates that the retrieval of Green’s function perturbations requires a combination 
of interferences between both unperturbed Green’s functions and Green’s function perturbations. In section 5, we 

analyze the individual contributions of the different terms on the right-hand side of equation (27) to the reconstruction. 

Notice in particular the term Jy {Gi(r,ra),Gi(r,re)}, which represents the interference between perturbed Green’s 

functions associated with the operator V, and accounts for the perturbation of the interferometric operator. Where 

possible, we prefer to consider situations for which Iy = 0 because in such cases, 

Gs(rs,ra) — Gs(ra,rB) = Io{Gs(r, ra), Go(r,rs)} + lo{Go(r, ra), Gs(r,rB)} 

+ Io{Gs(r,ra),Gs(r,ra)}- (28) 

Representation theorem (28) is a function of only the unperturbed interferometric operator Jo, and, consequently, 

depends only on the properties of the unperturbed medium. For these special cases, such as acoustic waves with 

velocity perturbation, the preturbation retrieval does not require an estimation of the perturbation V. 

Now, let us return to the general case, [y # 0, and establish another form of representation theorem for perturba- 

tions, one that characterizes only the causal Green’s function perturbation, Gs(rg,ra), rather than the superposition 

of the causal and acausal functions, Gs(ra,ra) — Gs(ra,re). This representation will help in analyzing the individ- 

ual contribution of the interference between direct and scattered fields to the partial retrieval of the scattered field 

Gs(re,ra). Rearranging relation (23) for unperturbed systems and inserting it into equation (10) yields 

([fo{Go(r, r1), Go(r,rs)} + Go(ri,ra)| |V(r1)| Gi(ri, ra) 

To{(Go(r,r1) |V(r1)| Gi(ri,ra)) ,Go(r,re)} + (Gol, ra) |V(ri)|Gi(ri,ra)) . 

Gs(rg,ra) 

(29)
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Using once again expression (10), which defines the Green’s function perturbation, we identify the first term on the 

right-hand side of (29) with Io{Gs(r,ra), Go(r,re)} to obtain 

Gs(re,ra) = Io{Gs(r,r4), Go(r,re)} + (Go(r, re) |V(r)| Gi(r,ra)) - (30) 

This representation theorem for perturbations generalizes to any physical system the representation theorem for the 

special case of acoustic waves (Vasconcelos et al. 2009), 

Gs(re,ra) = f po1(r)[Gs(r,r4)VGo(r, re) — Go(r,re)VGs(r, r4)] - ad?r 
D 

+ [ aoe rp)V(r)Gi(r,ra)d°r. (31) 

Representation theorems (25) and (30) offer the possibility of extracting field perturbations (e.g., scattered waves) 
between points A and B as if one of these points acts as a source. They allow calculation of perturbation propagation 

between these two points without the need for a physical source at either of the two locations. These representation 

theorems have potential for estimating not only perturbations in fields but perturbations in medium properties by 

treating expression (30) as an integral equation for the perturbation V given the field perturbation Gs. They can 

therefore be used for detecting, locating, monitoring, and modeling medium perturbations. In geoscience, this theory 

has application to a diversity of techniques including passive imaging using seismic noise, seismic migration, modeling 

for inversion of electromagnetic data, and remote monitoring of hydrocarbon reservoirs, aquifers, and COz injection 

for carbon sequestration. 

5 ANALYSIS OF THE DIFFERENT CONTRIBUTIONS TO THE RETRIEVAL OF 
PERTURBATIONS 

Here, we analyze the different terms that contribute to representation theorem (27) for perturbations. In par- 

ticular, we interpret the contribution of the interference between field perturbations, corresponding to the term 

Io{Gs(r,ra),Gs(r,re)}, and explain why perturbations cannot be reconstructed by using solely the interference 
between perturbations; that is, the reconstruction of perturbations requires knowledge of the unperturbed fields for 

the system. We show that the contribution of the interference between unperturbed fields and field perturbations, 

corresponding to the terms Jo{Gs(r,ra),Go(r,rge)} and Io{Go(r,ra), Gs(r,rgB)}, is responsible for retrieving only 
field perturbations that are contaminated by spurious events. The interference between just the field perturbations is 

necessary to cancel these contaminants. To a certain extent, the cancelation mechanism involved in the reconstruction 

process can be connected to the general optical theorem as discussed below. 

5.1 Partial retrieval of field perturbations 

First, consider the contributions of the interferences between unperturbed fields and field perturbations. Rearranging 
the terms in representation theorem (30), we have the two following expressions, equation (33) being the negative 

conjugate of equation (32): 

Io{Gs(r, ra), Go(r,re)} = Gs(re,ra) — (Go(r, re) |V(r)| Gi(r,ra)) , (32) 

Io{Go(r, ra), Gs(r,rB)} = —Gs(ra,re) + (Go(r,ra) |V(r)| Gi(r,rB)) . (33) 

Equations (32) and (33) show that the terms Io{Gs(r,ra), Go(r,re)} and Io{Go(r, ra), Gs(r,re)} contribute to the 
causal and acausal Green’s function perturbation between A and B, respectively. Note, however, the two additional 

volume integrals that depend on the perturbation operator: 

(Go(r, rs) |V(r)| Gi(r,ra)) and (Go(r, ra) |V(r)| Gi(r,re)). Their presence thus contaminates the estimate of the 
Green’s function perturbation with spurious contributions (called spurious arrivals by Snieder et al. (2008)). In 
general, we cannot neglect them because they do not vanish regardless of the subspace D under consideration. 

Depending on the perturbation V, however, these spurious contributions can be relatively small. The summation of 

equations (32) and (33) thus gives a retrieval of the field perturbation, Gs(rs,ra) — Gs(ra,re), contaminated with 
spurious arrivals. 

To get insight into the physical meaning of this partial reconstuction, let us particularize the general description 

of equations (32) and (33) to the case of acoustic waves in which direct waves interfere with scattered waves. Figure 
3 illustrates the reconstruction obtained by cross-correlating just direct and scattered waves for both weakly and 

strongly scattering media (Figures 3(a) and 3(b), respectively). Interestingly, for a weakly scattering medium (average
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Figure 3. The causal part of the actual scattering response (blue curves) between two points embedded in heterogeneous media 

is compared to the reconstructed wave (red curves) obtained by cross-correlating direct and scattered waves recorded by two 

receivers at the same locations. Panels (a) and (b) show the signals for a weakly and strongly scattering medium, respectively. 
Panel (c) and (d) provide zooms on the late and early parts of experiment in weakly scattering regime, respectively. In both 

scattering regimes, the reconstruction is inaccurate. The weakly scattering case, however, suggests a partial retrieval of the 
scattering response: the reconstructed and reference signals are similar in their late parts (Panel (c)) while the early part of the 

reconstructed signal (i.e., the portion before the time of the direct arrival, denoted by the arrow) is purely erroneous (Panel 

(d)) and contains only the spurious arrivals. 

wavelength less or about the scattering mean free path), Figure 3(c) shows a reconstructed signal that fully retrieves 

the late portion of the scattering response. The early part of the signal, however, contains strong nonphysical arrivals, 

prior to the true first arrival (arrow), as seen in Figure 3(d). These observations suggest that while the signal 

reconstructed by cross-correlating direct and scattered waves does contain the scattering response, it is contaminated 

by spurious arrivals. Figure 3(a) shows that, for a strongly scattering medium, the reconstructed signal is contaminated 

so severely that no similarities can be found between the reconstructed and reference signals; the contribution of the 

spurious arrivals dominates the reconstruction. In summary, because the physical nature of the spurious arrival is 

the same for both weakly and strongly scattering media, cross-correlating direct and scattered waves retrieves the 

scattered waves but generates unexpected arrivals that can be more intense than the useful signal. These spurious 

arrivals must cancel in order for the retrieval of scattered waves to be completed.
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5.2 Cancelation of the spurious arrivals 

The interference between direct and scattered waves, i.e., the first two terms in (27), partially retrieves the scattered 

waves. We are interested in studying the mechanism for canceling the spurious arrivals described in the previous 

subsection. According to representation theorem (27), completion of the reconstruction requires the additional con- 

tributions from the interferences Io{Gs(r,ra),Gs(r,rs)}, and Ivy {Gi(r,ra),Gi(r,rg)}. In the introduction, we 
showed numerically that the interference between scattered waves alone does not correctly retrieve scattered waves. 
Taken individually, the interference between unperturbed fields and field perturbations, Jo{Gs(r,ra), Go(r,rs)} and 

Ion{Gs(r,ra),Go(r,re)} , the interference between just the field perturbations [o{Gs(r,ra), Gs(r, ra)}, or the inter- 
ference Iv {Gi(r,ra),Gi(r,rz)} does not reconstruct field perturbations. The summation of all their contributions, 
however, is expected to accurately retrieve the perturbations and, consequently, cancel the spurious arrivals. 

We develop the following relation for the interference between field perturbations by rewriting 

Ion{Gs(r, ra), Gs(r,rB)}: 

Io{Gs(r,r4),Gs(r,rB)} = Io{(Go(r,r1) |V(r1)|Ga(r1,r4)) , (Go(e,r2) [W(r2)| Gi(r2,rB))} 
((Zo{Go(r, r1), Go(r, r2)} |V(r1)| Gr (r1,1.4)) [V(r2)| Gi (re, rB)) 
(([Go(r2,r1) — Go(r1, r2)] |V(r1)| Gi(ri,ra)) [V(r2)| Gi(r2,rB)) 
((Go(ra, ri) |V(r1)| Giri, r)) |V (r2)| Gi (re, re) 
((Go(ri, r2) |W (r2)| Gi(r2,re)) |V(r1)| Gira, ra) - (34) 

Here, we used expression (10) for field perturbations in the first identity, the bilinearity of Io in the second identity, 

and representation theorem (23) in the third identity; so that finally, 

Io{Gs(r, ra), Gs(r,re)} = (Gs(ri,ra) [V(r1)| Gi(ti,re)) — (Gs(ri,re)|V(r1)| Gi(ri,ra)) - (35) 

We next show that the interaction between Green’s function perturbations indirectly retrieves the Green’s function 

perturbation by contributing to the cancelation of the spurious arrivals. The right-hand side of equation (35) is the 

complement of the spurious contributions — (Go(r, ra) |V(r)| Gi(r,ra)) and (Go(r, ra) |V(r)| Gi(r, re)) in equations 

(32) and (33); that is, the summation of these integrals retrieves the term —Jy{Gi(r,ra),Gi(r,re)}. For cases in 
which Iy = 0, the interaction between perturbations entirely cancels the spurious arrivals, 

Io{Gs(r,ra),Gs(r,re)} + (Go(r,ra) [V(r)| Gi(r,re)) — (Go(r, rs) |V(r)| Gi(r,ra)) = 0, (36) 

and the reconstruction is then completed by summing the contributions from equations (32), (33) and (35) (the sum 
reduces to representation theorem (28)). For the general case (Ivy # 0), 

Io{Gs(v,ra),Gs(r,re)} + (Go(r,ra) |V(r)| Gi(r,re)) — (Go(r, re) |V(r)| Gi(r,ra)) 

= —Iv{Gi(r,ra),Gi(r,r)}, (37) 

and the summation of equations (32), (33) and (35) gives 

(32) + (33) + (35) = Gs(re,ra) — Gs(ra,re) + Iv{Gi(r,ra), Gi(r,re)}. (38) 

The retrieval is incomplete and does not produce the Green’s function perturbation because of the term 

Iv {Gi(r,ra),Gi(r,rg)} that still contaminates the right-hand side of equation (38). Accurate reconstruction re- 
quires an additional estimate of this interaction between perturbed fields associated with V. 

In any case, a direct consequence for scattering problems is that we cannot reconstruct the scattering Green’s 

function by merely using the contribution of scattered waves alone. This explains the failure of interferometry based 

solely on the interference of scattered waves, as shown in Figure 2. The interference between Green’s function per- 

turbations nevertheless plays a fundamental role in the retrieval of the perturbation because they are needed to 

cancel spurious arrivals. Our numerical experiments illustrate this observation for scattered acoustic waves (Figure 

4). For both weakly and strongly scattering media, combining the contributions of both interference between direct 

and scattered waves and interference between just scattered waves cancels the spurious arrivals and reconstructs 

the superposition of the causal and acausal scattering Green’s functions. Note, additionally, that in order for this 

experiment to be successful, the distribution of sources must be sufficiently dense on a close surface surrounding the 

receivers (see numerical set-up description in Figure 1). Considerations of narrow aperture and limited number of 

sources are independent problems that limit the accuracy of reconstructions (Fan & Snieder 2009; Snieder 2004).
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Figure 4. The blue curves show the causal part of the scattering response between two points embedded in heterogeneous 

acoustic media. The red curves correspond to the reconstructed signals for the different individual contributions discussed in 

section 5. For strongly scattering media (left column), the summation of the reconstructed signal by cross-correlating direct and 

scattered waves (a) with that obtained by cross-correlating scattered waves (c) leads to the retrieval of the scattering response 
and cancelation of the spurious arrivals (e). Likewise, (b), (d), and (f) show success of the reconstruction for weakly scattering 

media(right column).
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5.3 Connection with the general optical theorem 

Above, we emphasize the process that leads to the reconstruction of perturbations. Interestingly, for problems with 

unperturbed interferometric operators, the interference between field perturbations alone contributes entirely to the 

cancelation of the spurious arrivals that arise from the interferences between unperturbed fields and field perturbations 

in the reconstruction process, and rewriting equation (36) gives 

(Go(r, ra) |V(r)| Gi(r,ra)) — (Go(r, ra) |V(r)| Gi(r, ra)) = Ip{Gs(r, ra), Gs(r,rB)}. (39) 

In a sense, we can interpret this mechanism as an extension of the general optical theorem, as has been suggested 

for acoustic waves (Snieder et al. 2009, 2008). The general optical theorem (Marston 2001; Schiff 1968) concerns the 

scattering amplitude f,(n, n’) of scattered waves with wave number k, and unit vectors @ and n’ representing the 

directions of the outgoing and incoming waves, respectively. With a far-field approximation in expression (17), the 

interferometric operator for the constant-density wave equation (9 = 1) becomes 

lof fa} = 25k $  f(e)ale)a’r (40) 
D 

en dkilr—rs ll 
for a homogenous medium as the unperturbed state (Go(r,rs) = anlrorsil” With the medium perturbed by a 

—Vrs 
single scattering object positioned at rz, the scattering Green’s function in the far field is given by 

Gs(r,rs) = 4nGo(r, rz) f(a, As)Go(re,rs). (41) 

If A and B are far from the scatterer and 5D is a sphere centered at rz with radius R, the interference between 

scattered Green’s functions is 

Ipn{Gs(r, ra), Gs(r,rB)} = 25k g Go(rz,ra)Go(rz,rB) fe (i, fa) f,(f, fip)(47)?Go(r,rz)Go(r, t2)d’r. (42) 
D 

The integration over the sphere 5D is equivalent to an integration over solid angle by d?r = R’ di, 
a 1 

and (47)*Go(r, rz)Go(r, rz) = Fp 8° that 

Ion{Gs(r,ra), Gs(r,rB)} = 27kGo(re,ra)Go(rz,rB) ¢ f(a, fa), (fa, ip) di. (43) 

In the far-field approximation for the scattering Green’s function, one can modify previously established equations by 

using expression (41) instead of (10) for the field perturbation. Consequently, the spurious contributions introduced 

in equations (32) and (33) are 

(Go(r, re) |V(r)| Gi(r,ra)) = 4nGo(rz, re) fe (fis, ia)Go(rs,ra), (44) 

(Go(r, ra) |V(r)| Gi (r,rz)) = 4nGo(rz,ra)f, (fa, fis)Go(rz,rs), (45) 

and we thus retrieve the general optical theorem from equation (39): 

nn sin a 27k a me \E oA AV ae fullip, iin) ~ Faliartin) = 2 § falta) F(A, nan. (46) 
This interpretation of the cancelations, however, is limited to problems with unperturbed interferometric op- 

erators. For general systems, the spurious arrivals do not cancel by summing the interferences associated with the 

unperturbed operator Ho. Unless the interferometric operator is unperturbed (Jy = 0), the interference associated 

with V on the right-hand side of equation (38) still contaminates the perturbations we desire to reconstruct by 

adding the contributions from equations (32), (33) and (35). In general, we have to evaluate the contribution of 
Iv{Gi(r,ra),Gi(r,re)} in order to cancel the spurious arrivals and reconstruct the exact field perturbations. Thus 

as stated in section 3, because the perturbation operator is usually unknown, interferometry appears practical for 

perturbation problems only with an interferometric operator that is unperturbed. 

In summary, we have shown that the scattering response cannot be retrieved by cross-correlating scattered waves 

alone. To reconstruct scattered waves, we need to consider the contribution from cross-correlation of direct and 

scattered waves. The key to the ability to cancel the spurious arrivals and succeed in the reconstruction for any kind 

of perturbation problem is that we consider systems for which the interferometric operator is unperturbed, Iy = 0.
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6 DISCUSSION AND CONCLUSION 

We have derived a representation theorem for general 
systems and in particular for perturbed media. This 

makes it. possible to retrieve Green’s functions and their 

perturbations for a large variety of linear differential sys- 

tems that include acoustic, elastic, and electromagnetic 

waves. We show the extension to vector fields in Ap- 

pendix A. We investigate the reconstruction of Green’s 

functions, applying an interferometric operator to un- 

perturbed fields and field perturbations. This mathe- 

matical description of interferometry simplifies the anal- 

ysis of the reconstruction of perturbations: we interpret 

this process as summing contributions from different 

types of interference between perturbations and unper- 

turbed Green’s functions. In geophysics, this description 

can be applied to a range of problems. For example, one 

can extend conventional interferometry techniques for 

seismic waves to some possible applications in imaging 

and inverse problems: the representation theorem can 

be related to sensitivity kernels used in waveform inver- 

sion (Tarantola & Tarantola 1987), in imaging (Colton 
& Kress 1998), or in tomography (Woodward 1992); the 
theorem also allows the establishment of formal connec- 

tions with seismic migration (Clearbout 1985) and with 
inverse scattering methods (Beyltkin 1985; Borcea et al. 

2002). 
Our study of the retrieval of perturbations differs 

from previous work because we show explicitly that not 

only fields are perturbed but the operator itself changes 

when the medium is perturbed. For most general sys- 

tems, we would need to modify the interferometric pro- 

cess used for the reconstruction after the application 

of a perturbation. We obtain this fundamental result 

after deriving the perturbation of the interferometric 

operator. Our analysis emphasizes the importance of 

those systems for which the interferometric operator 

is unperturbed because such systems appear to offer 

the prospect for practical application of interferome- 

try. In these cases, reconstruction of the Green’s func- 

tion perturbations does not require knowledge or esti- 

mation of the perturbations of the medium properties. 

We also demonstrate that perturbations cannot be re- 

trieved by measuring only field perturbations; knowl- 

edge of the unperturbed state of the studied system 

is essential as well. Perturbations are reconstructed by 

combining interferences between field perturbations and 

unperturbed fields. The contribution from interference 

of field perturbations alone cancels the erroneous ar- 

rivals generated by interference of unperturbed fields 

with field perturbations. . 

Simulations for scattering acoustic media show the 

importance of direct arrivals in the extraction of scatter- 

ing responses and verify the failure to reconstruct scat- 

tering Green’s function by cross-correlating just scat- 

tered waves. This result is intriguing and should be care- 

fully considered when designing applications because 

our result appears to be in contradiction to many re- 

sults in seismology. Campillo & Paul (2003), for exam- 
ple, have shown that cross-correlation of just late coda 

in earthquake data, allows for retrieval of direct surface 

waves. Also, Stehly et al. (2008) have used the coda of 
the cross-correlation of seismic noise for improving the 

reconstruction of Green’s functions. Indeed, the main 

components of late coda waves are scattered waves. So, 

what might be the source of this apparent discrepancy 

with our results? We base our reasoning on interpreta- 

tions of representation theorems for perturbed systems, 

and study the extraction of scattered waves without 

performing any time averaging as is done in the work 

published in these papers. Further work needs to be 

done to explore the hypothesis that it could be the av- 
eraging that allows reconstruction from scattered waves 

alone. Perhaps what is being reconstructed by the time 

averaging in those papers is just some component of 

the Green’s function, or some average Green’s function, 

not the Green’s function itself. In geoscience, Campillo 

& Paul (2003), Halliday & Curtis (2008), Roux eé al. 
(2005), and Shapiro et al. (2005) have shown that di- 
rect surface waves are beautifully extracted by inter- 
ferometry; but examples of reconstruction of scattered 

surface and body waves are lacking. Again, the general 

formulation of the representation theorem for perturbed 

media states that we can in principle retrieve any and 

all perturbations for a given system. 
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APPENDIX A: EXTENSION TO VECTOR SPACES AND N x N DIFFERENTIAL OPERATORS 

Here, we extend our reasoning to vector fields by using the tensor notation previously introduced. Consider the 

unperturbed field wo(r), defined in the vector space Dio: of dimension n, which is a solution of equation 

Ho(r) - uo(r) = s(r), (Al) 

where Ho and s are the n x n linear differential operator and the source term, respectively. For elastic waves, the 

propagator is 

Ho = pwS +V-e-V, (A2) 

where c is the elasticity tensor and 6 the Kronecker tensor; uo is the displacement vector. For electromagnetic waves 

in isotropic media (e, permittivity; o, conductivity; 1, permeability), the operator is 

_| Vx —jwpd . _ | @o 

Ho= (jwe—o)6 VX | with vo = ho | , (A3) 

where e and h denote the electric and magnetic fields, respectively. We give two examples of systems for which our 

reasoning applies; futher cases of study can be found in Wapenaar et al. (2006). The perturbed field u(r) satisfies 

Ho(r) -ui(r) = V(r) - ui(r) + 3(r), (A4) 

where V is the perturbation operator. Elastic waves can be perturbed in the presence of viscosity (7 tensor), in which 

case we write V as 

V =-jwV-n-V. (A5) 

A change in medium properties (de, do, 5) influences electromagnetic waves by a perturbation 

0 iw u5 
v= (60 —jw5e)6 0 |. (A6) 

Assume a regular problem with unperturbed homogeneous boundary conditions. We relate the Green’s tensors 

Gi(r,rs) and Go(r,rs) by using the Lippmann-Schwinger equation: 

Gi(r,rs) = Go(t,rs) + (Go(r, ri) |V(r1)| Gi(ti,rs)) ; (A7) 
let the perturbation of the Green’s tensor Gs(r,rs) be given by Gs(r,rs) = Gi(r,rs) — Go(r, rs). 

The new bilinear interferometric operator [4 now acts on matrices, 

In {F,G} = (F7 eal G) - (G7 |H|F) (A8) 

where F7 denotes the transpose of the matrix F. We introduce the unperturbed and perturbed interferometric 

operators as 

Ih{F,G} = TH {F,G} 

h{F,G} In, {F,G} — Iv {F, G}. (A9) 

Consequently, the general representation theorem for vector systems becomes 

Go, (rB,ra) — Gora, re) = Ioi{Gor(r,ra), Go,(r,rs)}, (A10) 

where Gi 1 denotes the hermitian conjugate of Go,1. For elastic waves, 

h{F,G}= $ > (FT (x) -e(r): V+ G(r) — G7 (r)-e(r)-V- F(r)) -fAd?r (All) 

and 

Iv {F,G} = jw I (FT (x) -V-n(r)-V- G(r) + G7 (r)-V-n(r)-V- F(r)) dr, (A12)



General representation theorem for perturbed media 317 

For electromagnetic waves, we derive 

b{F,G) = ¢ e")-| x 0 | FG) -aa’r 
5D 0 x 

T;, | 0 jwpd | 3 
+ [F (r) | lo + jued 0 G(r)d'r 

T,;, | 9 jwpd |- 3 + I GT (r) | (oe — jwe)s d F(r)ar, (A13) 

and 

_ T . 0 —jwdpd . 3 W{F,G} = [F (r) | Gio + jute) ; G(n)\@r 

T . 0 —jwd ud . 3 
+ fe (r) (jw5e — 60)6 0 F(r)d°r. (A14) 

Following the same reasoning as for scalar fields, the two representation theorems for perturbations are 

Gs(re,ra) — G8 (ra,re) = h{Gi(r,ra), Gi(r,re)} — lo{Go(r, ra), Go(r,rs)} (Al5) 

and 

Gs(re,ra) = Io{Gs(r, ra), Go(r, rs)} + (ae (r,re)|V(r)| Gi(r, ra)) (A16) 

This leads to the same analysis of contributions to the Green’s function reconstruction as in section 5 by applying 

the following decomposition: 

Io{Gs(r,ra),Go(r,r8)} = Gs(re,ra) — (Gé(r,r8) \V(r)| Gi(e, ra)) (A17) 

Ion{Go(r, ra), Gs(r,rB)} —G8 (ra,re) + (GS (r,r4) |V(r)| Gi(r,re)) (A18) 

lo{Gs(r,ra),Gs(r,re)} (G3 (rr) [V(r1)| @i(ri,r8)) - (G8 (ri,r8) |V(r1)| Gi(ri,ra)) 

(A19) 

APPENDIX B: TREATMENT OF GENERAL UNPERTURBED BOUNDARY CONDITIONS 

Here, we generalize the results of this paper to any unperturbed boundary conditions. For boundary conditions that 

remain unchanged after perturbing the system, both perturbed and unperturbed fields fulfill equation 

B(r) -uo,(r) = f(r) on boundary, (B1) 

where B is the boundary condition operator for the total volume considered Doz. In particular, the unperturbed and 

perturbed Green’s functions, Go(r,rs) and Gi(r,rg), between points r and rg each satisfy equation (B1). To account 
for this, relation (8) between unperturbed and perturbed Green’s functions is modified as follows: 

Gi(r,rs) = Go(r,rs) + (Go(r,r1) |V(r1)| Gi(ti,rs)) — G(r): (V(r1)|Gi(ri,rs)), (B2) 

where G is a solution of the homogeneous unperturbed system with boundary conditions (B1): 

Ho(r) - G(r) = 0. (B3) 

One can verify that this new formulation satisfies boundary conditions (B1) by applying operator B to equation (B2). 

The perturbation of Green’s function Gs(r,rs) satisfies a different expression: 

Gs(r,rs) = (Go(r,r1)|V(r1)| Gi(ri,rs)) — G(r): (V(r1)|Gi(ti,rs)). (B4) 

The main results of this article, however, remain unchanged. We introduce the interferometric operator and derive 

the same general representation theorem (23) as for homogeneous boundaries. Additional derivations are needed in 

order to demonstrate expression (30). Consider equation (B4) for Gs(ra,re), and insert the general representation
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theorem for unperturbed media Go(rs,ri) = Jo{Go(r,r1), Go(r,rs)} + Go(ri,rs) to obtain 

Gs(re,ra) = (Io{Go(r,ri),Go(r,re)} |V(r1)| Gi(ri,ra)) 
+ (Go(ri, re) |V(r1)| Gi(rti,ra)) 

— G(re)-(V(r1)|Gi(r1,r4)) 
Ipn{Gs(r, ra), Go(r,rB)} 

(Go(ri,rB) |V(r1)| Gi(ti,ra)) 

To{G(r) -(V(r1)|Gi(r1,r4)) ,Go(r,re)} 

— G(re)-(V(r1)|Gi(ri,ra)). (B5) 

Additionally, 

To{G(r) -(V(r1)|Gi(ri,ra)), Go(r, ra)} 

+ 
+ 

(G(r) - (V(r1)|Gi (ti, ra) | Ho(r)|Go(r, re)) 
6(r—-rg) 

(Go(r, ra)| Ho(r)|G(r) (V(r1)|Gi(ri,r4))) 
~~ wy 

=0 

G(re)- (V(r1)|Gi(ti,r4))- (B6) 
Summing these two equations yields 

Gs(ra,ra) = Io{Gs(r,r4), Go(r,ra)} + (Go(r,rB) IVir)| Gilt, ra)) . (B7) 

Equation (B7) is identical to representation theorem (30), which holds for unperturbed homogeneous boundary 
conditions. By analogy, one can show that all the results presented in section 5 holds for any type of unperturbed 

boundary conditions. 

APPENDIX C: PROPERTIES OF SELF-ADJOINT DIFFERENTIAL OPERATOR: 
VOLUME/SURFACE INTEGRALS AND SPATIAL RECIPROCITY 

The interferometric operator is defined as 

In{f,9} (f |H|9) — (9 lAIf) 

[ UG -Heg-9-H- fav. (C1) 
D 

In section 3, we explain why for practical applications it is useful to convert a volume into a surface integral to 

reduce the integration over the sub-volume D to its bounding surface 6D. In this appendix, we show how this relates 

to the concept of self-adjoint operator. We introduce what is sometimes referred to as extended Green’s identify in 

the literature (Lanczos 1996) and define the adjoint A of a linear differential operator H. The adjoint is the unique 
operator such that for any pair of functions (f,g), an operator Py exits and 

I (9-H-f-f-H-g) dV = ~ f Pu(J,9)- 8d = boundary term. (C2) 

A differential operator is self-adjoint if H = H. For self-adjoint operators, equation (C1) can be written using the 

extended Green’s identify and consequently, 

nth} = f Pu(f,g)- nds, (C3) 
D 

so the general representation theorem becomes 

G(ra,ra) — G(ra,rB) = $ Pu(G(r,ra), G(r,re)) - adS. (C4) 
6D 

For self-adjoint operators, in order to efficiently extract the Green’s function between two points A and B, we need 

to know the operator Pi, which depends on the properties of the system, and the Green’s functions on an enclosing 

surface 6D. For more general systems (H # H), relation (C4) is no longer valid, but we can alway decompose the
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interferometric operator into surface and volume integrals and express the representation theorem as 

G(rg,ra)—G(ra,rsa) = $ Pu(G(r, ra), G(r, rB)) fads 
5D 

4 [ Gt2a): (HA) -Gte,r0)av. (C5) 

Note that the results of this paper do not require space- and time-reciprocity. This means that the order of spatial 

coordinates matters in the relations we establish. To facilitate the use and interpretation of representation theorems 

(25) and (30) in practice, we desire systems that are spatially reciprocal, as holds for particular boundary conditions 

and symmetry of linear differential operators. For example, consider a representation theorem of the convolution type. 

By analogy with the representation theorem of the correlation type obtained in section 3, we get 

G(rg,ra) — G(ta,rB) = / (G(r,ra)- H(r)-G(r,rs) — G(r, re)- H(r)- G(r, ra)) dV. (C6) 
D 

For operators such that H = H, which include self-adjoint real operators, e.g., the wave propagator, use of Green’s 

identity (C2) with D = Dyot yields 

G(rsa,ra) — G(ra,ra) = f, Py(G(r,ra), G(r, rB)) - dS. (C7) 
tot 

Depending on boundary conditions, the right-hand side of equation (C7) vanishes and consequently, we obtain 

G(re,ra) = G(ra,rs), i.e., spatial reciprocity. Typically, the integral 

$5 Dio Py(G(r,ra),G(r,rg)) - dS will go to zero if the Green’s functions G(r,ra,s) or their derivatives vanish on 
6 Diot. For acoustic waves, the Sommerfield radiation and free surface conditions lead to spatial reciprocity. Systems 

with free boundaries, however, are of limited interest because we cannot practically apply interferometry. Indeed, for 

such systems, equation (C4) shows that G(rg,ra)— G(ra,ra) = 0; that is, for self-adjoint operators, free boundaries 

always lead to reconstruction of a null signal.
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retrieval of multiple scattered waves 

Roel Snieder & Clement Fleury 
Center for Wave Phenomena, Colorado School of Mines 

ABSTRACT 

The Green’s function for wave propagation can be extracted by cross-correlating 
field fluctuations excited on a closed surface that surrounds the employed re- 
ceivers. This study treats an acoustic multiple scattering medium with discrete 
scatterers and show that for a given source the cross-correlation of waves prop- 
agating along most combinations of scattering paths gives unphysical arrivals. 
Because theory predicts that the true Green’s function is retrieved, such un- 
physical arrivals must cancel after integration over all sources. This cancellation 
occurs because the scattering amplitude of each scatterer satisfies the general- 
ized optical theorem. The cross-correlation of scattered waves with themselves 
does not lead to the correct retrieval of scattered waves, because the cross-terms 

between the direct and scattered waves is essential. 

Key words: interferometry, multiple scattering 

1 INTRODUCTION 

The extraction of the Green’s function for wave propa- 

gation by correlation of field fluctuations is an active 
area of research in a variety of different fields that 

has reached the stage where material is documented 

in review papers and books (Larose et al., 2006; Cur- 

tis ef al., 2006; Wapenaar et al., 2008; Schuster, 2009; 

Snieder et al., 2009; Wapenaar et al., 2010a; Wapenaar 

et al., 2010b). The central idea is that field fluctations 
recorded at two points lead after cross-correlation to the 

superposition of the causal and time-reversed Green’s 

function for wave propagation between those points. 

This principle has recently been extended to other types 

of fields (Wapenaar et al., 2006; Snieder e¢ al., 2007; 

Weaver, 2008; Gouédard et al., 2008), including static 

fields (Slob et al., 2010; Snieder eé al., 2010). Green’s 

function retrieval for the acoustic waves treated here is 

based on the cross-correlation of field fluctuations that 

are excited by sources with equal power spectrum that 

are located on a closed surface surrounding the used 

receivers (Derode et al., 2003; Wapenaar et al., 2005). 
When these sources are located on a spherical surface 

OV where the waves satisfy a radiation boundary con- 

dition, the principle of Green’s function extraction for 

acoustic waves is, in the frequency domain, formulated 

as (Snieder et al., 2007) 

fay Grp, r)G* (ra,r)dS 

P * (1) 
= 95k (G(rp,r@) -G (rp,rq)) ’ 

where rp and rg denote the locations of receivers. In 
this expression we assumed that the density p and veloc- 

ity c are constant on the boundary OV, and the asterisk 

denotes complex conjugation. Throughout this paper we 

use a formulation in the frequency domain using the fol- 

lowing Fourier convention: F(t) = f f(w) exp(—iwt)dw. 
For brevity we omit the frequency dependence in the 

remainder of this work. 

For media with discrete scatterers or reflectors, the 

Green’s function can be seen as a superposition of the 

waves that propagate along all possible scattering paths. 

Both Green’s functions in the left hand side of equation 

(1) contain a sum over all scattering paths from the inte- 
gration point r to the locations rp and rq, respectively. 

The left hand side of expression (1) therefore consists 
of a double sum over scattering paths that end at rp 

and rg, respectively. An example of two such paths is 

shown in figure 1. Let us denote the travel time for the 

path on the left as fsi4p and the path on the right 

as tsenq. In the time domain, the arrival time of the 

cross-correlation is given by the difference of the arrival 

times of the waves that are being cross-correlated. The
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Figure 1. Two scattering paths from a source S to receivers 

at points P and Q where the first scatterer along each path 

is different. 

cross-correlation of the waves that propagate along the 

paths of figure 1 thus produces a wave arriving at time 

tsiap — tsoBq. This travel time does not correspond to 
a physical wave that propagates between the points P 

and Q via the scattering path A12B. Such a contribu- 

tion thus is a spurious arrival that does not correspond 

to a physical wave. These spurious arrivals arise because 

of the cross-correlation of wave propagating along dif- 

ferent scattering paths, we refer to such contributions 

as cross terms. Expression (1) guarantees, though, that 
the left hand side gives the true Green’s function after 

integration over surrounding sources, hence the spuri- 

ous arrivals should disappear after integration over all 

sources. Earlier work treated the cancellation of spuri- 

ous arrival in the case of one scatterer (Snieder et al., 
2008), here we analyze the mechanism by which spurious 

arrivals cancel upon integration over sources in multiple 

scattering acoustic media with isolated scatterers. 

Let us consider the cross-terms between different 

scattering paths in more detail. When we consider two 
different scattering paths that propagate from a source 

S to receivers P and Q, there are two possibilities; the 

first scatterer along these paths is the same (figure 2), 
or the first scatterer on both paths is different (figure 
1). Suppose that there are M scatterers in the medium, 

then there are M ways in which one can choose the 

first scatterer in figure 2. In contrast, for the cross-terms 

along the paths shown in figure 1 the are M(M — 1) 
ways to choose the first scatterers along those paths. 

For a medium with many scatterers, the cross-terms in 

figure 1 are thus more prevalent than the cross-terms 
shown in figure 2. We show in this work that despite 
the fact that that number of scattering paths shown in 

figure 1 is much larger than those in figure 2, it is the 

superposition of the scattering paths in both figures that 

leads to the cancellation of spurious arrivals. 

We review the employed scattering theory in sec- 

tion 2. In section 3 we show how the integrals that arise 

in the cross-correlation can be evaluated in the station- 

ary phase approximation. In section 4 we derive the cen- 

tral result that the sum of these contributions vanishes 

  

va 

Figure 2. Two scattering paths from a source S to receivers 
at points P and Q that share the first scatterer along the 

paths. 

by virtue of the generalized optical theorem. In section 5 

we evaluate the final nonzero contribution of the cross- 

correlation of waves that propagate from the source to 

scatterers to a common scattering path, and show that 

this correctly gives the scattered wave that propagates 

along that path. An essential element in the cancella- 

tion is that one needs cross-terms of the direct wave 

and scattered waves. In fact, when the Green’s function 

retrieval is based on scattered waves only, the spurious 

arrivals do not vanish and one does not retrieve the scat- 

tered waves. Numerical examples of this principle and 

an alternative derivation for a general linear system are 

shown in a companion paper (Fleury et al., 2010). 

2 THE MULTIPLE SCATTERED WAVES 

In this work we consider a homogeneous acoustic 

medium in which isolated scatterers are embedded. The 

employed acoustic wave equation is given by 

1 w? 
v: (vp) +@p=a, (2) 

where p is the mass density, « the bulk modulus, and 

q the (injection) source. The Green’s function G(r, ro) 
is defined as the solution of expression (2) with g(r) = 
6(r —ro). The Green’s function of the homogeneous ref- 
erence medium in which the scatterers are embedded 
is 

eklr-r’ | 

Golr, r’) = “ie PDF _ r’| ’ (3) 

where k = w./p/« is the wavenumber. Scatterer j has 

scattering amplitude f;(n,m’) (Morse & Ingard, 1968; 

Martin, 2006), where ni’ is the direction of the incoming 
wave and ni the direction of the outgoing wave. The con- 
tribution to the Green’s function of the wave propagat- 

ing from a source at ro via scatterers 1---N at locations 

r1,°°:,rn to a receiver at r is given by
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Figure 3. Definition of geometric variables for a scattering 
path involving N scatterers. 

ik|r—ry| 
wee € ~ a Gpath 1 N(r,r0) = ~ ae pore iN iw) 

(4) 
eklrn-rn-1l e*klri—rol 

fi, fo) + x —_——_—_—— + 

Irn —rn-1| ro| 

where the unit vector n; points from r; to ri+1. In this 
expression, the propagation between scatterers i and 7 

is denoted by exp(ik|r; — r;|)/|ri —r;|. This description 
of scattering is valid when the scatterers are in each 

other’s far field. When this condition is not valid one can 
expand the scattering coefficients in a sum over spheri- 

cal harmonics and replace the propagators by spherical 

Hankel functions (Martin, 2006); in that case the analy- 
sis presented here is not applicable. The same scatterer 

can occur twice, or more, along the path, allowing for 

loops. 

In the remainder of this work we focus on one par- 

ticular scattering path, the treatment presented here 

is applicable to each scattering path separately. For 

brevity we introduce the following notation 

etkirn-tn—-1l 

= Ten own) NEN 2 Ba) tte G1... (a) 

(5) 
e@klr2—ril . . 

x ——_fi(m,f rz —ri fi(fi, A) , 

where the corresponding scattering path and variables 
are defined in figure 3. This quantity describes the 

wave propagation for a wave incident from direction 

hn on scatterer 1, and then propagates via scatterers 

1,2,---,N — 1 to location ry. A comparison of expres- 

sions (4) and (5) shows that 

ikro. 
wee e Gypath 1 Nr, ro) = _P 

An TO1 

  G\...n(fo1) . (6) 

Throughout this work we use the notations 

ry =ry—r; and ry = rr, (7) 

hence in expression (6), ro1 = r1—Yro is the vector point- 
ing from a source at ro to the position r; of the first 

scatterer along the path considered. 

3 SPURIOUS ARRIVALS FROM 
CROSS-TERMS 

The waves traveling from the source S to receivers at 

rp and rg either encounter different scatterers as the 

first scatterer along their paths, as shown in figure 1, or 

they may encounter the same first scatterer along their 

paths, see figure 2. In the notation of figure 1 we denote 

the first scatterers encountered on the two scattering 

paths by the labels “1” and “2”, respectively. The next 

points along these paths are denoted with the labels “A” 

and “B”. These points can either be scatterers, or the 

receivers where the wave field is recorded. The scatterers 

along the path considered are not necessarily spatially 

adjacent, the figures only show them in spatial order for 

reasons of clarity. The scattering paths beyond points A 

and B is independent of the location of the source, and 

in the following we don’t show the continuation of those 

paths to the receivers P and Q. 

We consider the scattering diagrams shown in fig- 

ure 4. These diagrams show all the waves that propagate 

from the source and visit the scatterers 1 and 2 one or 

two times. As mentioned earlier, we do not show the 

fate of the waves beyond the points A and B because 

this part of the wave paths does not change during the 

integration over the sources on OV. There are five such 

diagrams, in the following we compute the contribution 

of each diagram to the cross-correlation. We evaluate 

the contribution of each diagram using the stationary 

phase approximation (Bleistein & Handelsman, 1975; 

Snieder, 2004) which becomes exact as the surface OV 
goes to infinity (van de Hulst, 1949). Note that the dia- 
grams T, and T> are topologically identical in the sense 

that both diagram describe a cross term between scat- 

tered waves that travel from the source to consecutive 

scatterers along the scattering path. Diagram T> follows 

from diagram T; by substituting 1 — A and 2— 1. In 

section 5 we take into account that the cross-correlation 

of scattered waves also contains cross-terms from scat- 

tering paths that propagate directly from the source to 

scatterers A and 1 instead of the scatterers 1 and 2. 

We first analyze the term 7; that corresponds to the 

diagram in the top left of figure 4. Using expressions (4) 
and (5), the wave that propagates along the left path of 
term T; in figure 4 from the source S via the scatterer 

A a receiver P is given by 

p etkrsi etkria 

= ria,t dn Psi fifia,Fs1) ma     Ga...p(fia), (8) Uleft = — 

where Ga...p(f14) accounts for the propagation from 

scatterer A to receiver P along the scattering path. The 

subscript S refers to the source location. The unit vector 

Fia is defined using expression (7). Similarly, the wave 

propagating along the right path of term 7; in figure 4 

is given by 

ikrs2 ikrog 

Uright = —-—— foe,t right An rs2 fa( 2B; 52) T2B 

e€ 
    Gp...q(teB) , (9)
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5    
Figure 4. Scattering diagrams for wave propagation from a source S to points A and B that visit the scatterers 1 and 2 one 

or two times. For simplicity the scattering paths from scatterer A to receiver P and scatterer B to receiver Q are not shown. 

  

Figure 5. Stationary points for the source integration in expression (11) for term T1. 

The contribution to the cross-correlation of these two paths is given by 

        
r p etkria etkrsi CG p et*r2B etkrsa CG * aS 

= -— Fia,t P(E -— fon,f ..Q(? 10 1 ¢ ( dn Ta fil®ia,®s1) ra CA P( 14)) ( dn Top fo(feB,fs2) rap CB a( 2»)) , (10) 

where the integration is over sources on a spherical surface surrounding the scatterers and the receivers. Rearranging 

terms, 7; can be written as 

rT. p\2 etk(ria—ree) CG C etk(rs1—rs2) as 
=(f£) 5 _¢, pg * olf ——_—-fi(fia,t 3 (fop,F . 11 1 (2) mare 04 p(fia)Gp elton) p rsirsa fi(fia, P51) f2 (Fes, fs2) (11) 

The surface integral can be evaluated with the stationary phase approximation following the steps taken by Snieder 

et al. (2008). Instead of repeating these steps, we recognize that, apart from the terms containing the scattering 

amplitude, the surface integral is equal to the superposition of the causal and a-causal unperturbed Green’s function 

of equation (3): 

    
p 2 etk(rs1-Ts2) as G as p CG p* e@kri2 e7 tkri2 

—_— _ = ri,r)Go(r r = -— ; —G5 = —— _ 12 (BE) $e = fooler 2) G5(e2, nd = —5F (Golesst2) ~ Gi(e1.82)) = ghee (SS - aa) 
where the first and last identities follow from equation (3) and the second equality from expression (1). We use this 
result in the stationary phase approximation of the integral (11), but must insert the stationary phase locations for 

the source position in the variables that depend on the source position. 

Following the analysis of Snieder eé al. (2008), the surface integral in equation (11) has two stationary phase 
points that are shown in figure 5. For the stationary phase point in the left panel of figure 5, fs; = fs2 = fie, and 

Ts1 — Ts2 = —T12. For the stationary phase point of the right panel fs1 = fs2 = —fi2, and rsi — rse = ri2. Using 

these results, expression (11) is in the stationary phase approximation given by 

Tt       
p* etk(t1a —T2Bp) etkri2 . . aya . -ikry2 

—_ ( fil®ia, —Pi2) f2 (fea, —Pi2) — filfia,Pi2) fe (Fos, =) 
8mxik riareB T12 

(13) 

xGia...P(F1A)GB...Q(F2B) - 

Note that apart from contributions from the scattering amplitude, the phase of the first term in this expression is 

given by k(ria + 712 — ree). In the time domain this corresponds to a wave arriving at time t = (ria + Ti2 —re2B)/c,
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Figure 6. Stationary points for the source integration in expression (14) for term T2. 

where c is the wave velocity of the reference medium. This wave, with an arrival time that depends on the difference 

of the travel times (rai + ri2)/e and ree/c along the scattering path rather than its sum, does not correspond to 
a physical arrival. The same consideration holds for the second term in expression (13), whose phase depends on 

k(ria — T12 — r2B). Hence both terms of T; are spurious arrivals that must ultimately be cancelled by other terms. 

4 CANCELLATION OF THE SPURIOUS ARRIVALS 

In this section we analyze the contributions of the diagrams T2 through Ts shown in figure 4. Using expression (4), 

the term 72 can be written as 

ikrogp e p elkrsa pe ikry2 e’krsi * 

T2 = — P(t -—— r r ri2,r Gg...Q(f dS 2 f( 4n Toa Ga elsa)) ( 4n Top fe(fen,Fi2) ra filét2,ts1) 75 CB o(éze))         

(14) 
  

p\2 e tkr2e e—tkri2 CG eMrsa 780) 4S 
= (—}) —— > (foB,F R..Q(F ——G4...p(f i (fi2, Ff . (2) a mo f2 (Fa, bi2)GB...9q( oo) p roars A. P(Esa) fT (#12, Fs1) 

The integral can be evaluated in the stationary phase approximation We consider the contribution of the stationary 

phase using expression (12) and evaluate the scattering amplitude for incoming waves excited at each stationary 

source position. The stationary phase points are shown in figure 6, and their contribution is given by Tz = T21 + To2 

with 

p” etk(ria—r28) e—ikri2 
Tn = Snik tarp Pn fi (£12,814) f2 (foB, f12)Ga...p(P1A)Ga...g (tes) , (15)     

2 pe tk(riatrap) e—ikri2 
    T22 = — fi (P12, Bai) f2 (Fee, fi2)Ga...p(Pa1)GB...Q(F28) 5 (16) 
8rik = riaT2B T12 

where we used fs; = Fai for the stationary phase point in the left panel of figure 6 that, and fs: = f14 for the 

other stationary point. Note that the directions 1A and Al are reversed in expressions (15) and (16) because of the 
opposite orientation of the stationary phase points in figure 6. In the time domain term To: corresponds to a wave 

arriving at. time t = (r14 — r28 — 112)/c. Because it contains the difference of arrival times, it does not correspond to 
any physical wave that propagates between the scatterers. 

Term T3 can be obtained from the analysis for T2 by interchanging points A and B, points 1 and 2 and taking 

the complex conjugate. Applying these substitutions to expression (15) gives for the spurious arrival of T3; due to 

one of the stationary phase points 

p? etk(ria—r2e) eikri2 
    T3, = — fi(®ia, —Pi2)fo(—Pi2, Fos)Ga...p(Pia)GB...q(P2B) , (17) 
8rik TIAT2B T12 

where we used that f21 = —fi2. This is, again, a spurious arrival because it corresponds to a wave arriving at a time 

difference t = (ria — r2B +1 12)/c. The contribution from the other stationary phase point follows by making the 
substitutions given above in expression (16) and is given by
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p? etk(riatrap) etkri2 

T32 =     Baik miafhos Pia fi(fia, —P12) fa(—fie, Pa2)Ga...p(fi14) GB... (fiz2) . (18) 

Using equation (4) the contributions to term T, of the paths shown in figure 4 are given by 

etkria . . e@krsi . 

T = f (-£ fi(fia,ts1) Gar(éa)) 
4nr T1A Ts1 
    

      fo(®eB, P12) fi(ti2,Fs1) 
p eikrap etkria e'krsi 

x — 

4n rap T12 Tsi 
Gp..a(é8)) "as 

(19) 
p etk(ria—r2B) e tkri2 

    1 = 3 (Pap, fia) pz f(Pia, &s1) fi (fia, fs1)dS 1672 ATOR ria fe (Fos na) b= filfia Fsi) ff (#12 fs1) 

xGa...P(PA1)GB...Q (#28) . 

The surface element dS is related to the increment dQ in solid angle by the relation (1/r3,)dS = dQ. Replacing #51, 

which depends on the source position over which we integrate, by a new integration variable fr gives 

p? etk(ria—r2B) e—tkri2 

Ts   = fy iene, ta) $ fa(Bva,#) ff (P12, #)d2 Ga...p(Ba1)GB..o (2B) - (20) 

Term Ts of figure 4 follows from this expression by interchanging A <= B, 1 < 2, and taking the complex conjugate 

p etk(ria—r2B) etkriz 

Ts     
= 16x? r1AToR ri2 filbiay—ti2) £5 (@a0,8) falta, F)dQ Ga...p(£a1)GB...q (#28) . (21) 

Note that T4 and Ts also depend on the difference of path length, and thus are unphysical arrivals. 

The sum Tspur = Ti + To1 + T31 +14 + Ts of the spurious terms of equations (13), (15), (17), (20) and (21) gives 
after a rearrangement of terms 

    
prelbria—rep) etkri2 . . e/a . e7 tkriz eye . . . 

Tspur = ( fi (fia, —fia) Fo (foB, —Fi2) + f2 (Fos, fi2)Fi (fia, 2) 
4irkriares T12 (22) 

XG a4...p(P41)GB...q (#28) 

with 

aw 1 a ls lo nesn 4 k ~  avptyn 
F,(P1a,f12) = ~ 9; fi (Fa, Fiz) + aft (f12,f14) + in filfia, 8) fT (#12, #)dQ , (23) 

and 

ern a 1 men A 1 a a k esa A ~ na 

F3 (f28,—fi2) = a7 (fap, —fi2) — 9, /2(Fiz, fap) + in fo (f2B,t) fo(—Fi2, F)dQ . (24) 

The scatterers 1 and 2 must both satisfy the generalized optical theorem 

1 a a een a k “a a esa ~ 3 (Siltate) — 5 la.ta)) = = fp Hla) Go, 240. (25) 
This theorem has been derived for quantum mechanics (Heisenberg, 1943; Glauber & Schomaker, 1953) and acoustics 

(Marston, 2001). By virtue of this theorem, both F; and F2 in expressions (23) and (24) vanish. Because of equation 
(22) the sum Tpur of the spurious arrivals of the diagrams of figure 4 is thus equal to zero. 

Since the sum T; + Toi + T31 + T4 + Ts vanishes, the only nonzero contribution comes from the terms T22 and 

T32, hence the sum T = T; + T2 + T3 + Ts + Ts of all diagrams in figure 4 is given by 

p" etka +ri2+rop) 
  = gnik marron fil®ia, —P12) fe(—fi2, Pa2)Ga...p(P1A)GB...q(FB2) 

(26) 
p? e k(r1a+712472B) 
  i (fi2,f 3 (Fr Pi2)Ga...p(PA1)GP r . 8nik  ma?isran ff (#12, a1) f2 (B28, fi2)Ga...p (P41) GB...¢(F2B) 

In the next section we consider the sum of the diagrams T; through T; and their contribution to expression (26) for 

all scatterers along the scattering path, and we treat the sum of all those contributions.
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TA" or TAs 

1 22 

  

Figure 7. Two different ways of accounting for the cross- 

terms of two scattering paths. 

5 THE ENDPOINT CONTRIBUTIONS 
FROM A SCATTERING PATH 

According to equation (26) the total contribution of 
the diagrams T; through Ts of figure 4 reduces to the 

term T22 of figure 6 and a corresponding diagram T32 

that connects to scatterer B. We consider the station- 

ary source position for term T22 in figure 7, but now we 

have added the next scatterer along the path from scat- 

terer A, and call this scatterer C. Comparing diagram 

To2 of figure 6 with diagram 7}, of figure 5 one recog- 

nizes that diagram T22 can be interpreted in two ways: 

first, as illustrated in figure 7 it can be seen either as dia- 

gram 7}; of the scatterers CA12, because it follows from 

diagram Ti; in figure 5 by replacing Al2B — CA12. 

Second, it can be seen as diagram 722 of the scatterers 

A128 because it is identical to the diagram shown in the 

right panel of figure 6. Ultimately, the cross-correlation 

of all waves excited by the source S that visit scatterers 

along the scattering path under consideration contains 

a sum over pairs of scatterers along that path. In the 

previous section, we called those scatterers 1 and 2, but 

the cross-correlation also contains a contribution from 

the scatterers A and 1 as shown in figure 7. We should 
avoid counting such a contribution twice, because, as 

shown in figure 7 this scattering diagram corresponds 

to the cross-correlation of the same waves. Therefore 

the contribution T22 for the scatterers A12B plays the 

role of contribution 71 of the scatterers CA12 and con- 

tributes to the cancellation of the terms T2 through Ts 

for the scatterers CA12. This means that the endpoint 

contribution for the scatterers A12B (indicated by the 
solid path in figure 8) contributes to the cancellation of 

the terms T; through Ts for the scatterers C.A12 (indi- 
cated by the dashed lines in figure 8). The diagrams T 

through Ts thus cancel when one sums the contribution 

of adjacent sets of four scatterers along the scattering 

path. This cancellation stops when one reaches one of 

the ends of the scattering path at one of the receivers; in 

figure 8 the three scatterers and receiver P that give a 

nonzero endpoint contribution are connected by dotted 

lines. According to expression (26), the net remaining 

  

Pv 
Figure 8. The terms T, + Tz + T3 + 74 + Ts cancel for the 

scatterers connected by the solid lines, for those connected 

by the dashed lines, and for those connected by the dashed 

lines. In the end only the path from the receiver P to the first 

scatterer along the path gives a nonzero contribution (with 
a similar contribution from receiver Q to the last scatterer 

along the path). 

contribution is given by the cross-term of the direct wave 
that propagates to the receiver P and a scattered wave 

that propagates to scatterer C. Because of symmetry, 

there is a similar contribution from receiver Q. 

In the following we evaluate the contribution of 

equation (26) at the endpoints of the scattering path. 
As argued above, the contributions of expression (26) 
that end at the receivers P or Q are the only terms 

that give a nonzero contribution. For ease of notation, 

we rename the scatterers along the path with indices 

1,2,---,N; this index enumarates the scatterers along 

the path starting at receiver P. We first consider the 

cross-term that remains at the end of scattering path at 
receiver P as shown in figure 9. This cross-term consists 

of the the direct. wave Go that travels to receiver P with 

the scattered wave Gpeth |- that propagates along the 
scatterers 1,---N to receiver Q. 

The contribution of this cross-term is, in the nota- 

tion of figure 9, given by 

ikrs p 

Te. = $ (-£ < ) 
4n rsp 

ikrs) * 

«(-£5 G1..nalési)) dS (27) 
An TS1 

  

  

p\2 ek spors)) bes dS 

= (ae) freer, Se melEons 
Since we only need to account for the equivalent of term 

T22 we consider the contribution of the stationary phase 

point shown in figure 9, and using equation (12), the 

contribution of this stationary phase point is given by
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2     
Figure 9. The stationary source position that gives a 

nonzero contribution the scattering path P1---NQ. 

p? e7 trp 

T2200 = - = — 
8rik rp 

2 An a, wee * 

~ Sik (-*) (GP tN(p,rg))” (28) 

  Gi...va(Fs1) 

= a (Grath 1 (rp.rg))* , 

where we used that at the stationary point fs: = fp1, 

and expression (6) in the second identity. As indicated 
in figure 9, this contribution consists of the correlation 

of the direct wave Go(rp,rs), that propagates from the 
source to the receiver at rp with the scattered wave 
Gpeth *~" (ro, rg), that travels from the source via scat- 
terers 1---N to the receiver at rg. The contribution 
from the term 732 at the other end of the scattering 
path follows by taking the complex conjugate, replac- 

ing P and Q, and reversing the order of the scatterers 

(1---N — N.---1), which gives 

T32 = ——P_Gpath Nl (po, rp) 

Qik 
(29) 

~ 35 *"(ep,ra) , 

where we used reciprocity in the last identity. Adding 

the contributions from equations (28) and (30) finally 
yields 

Te2 + T32 = 

_ (crate IN (pp, rq) _ (GPath '-" (rp,rq))*) . 

2ik 

This is nothing but expression (1) for the wave propa- 
gating along the scattering path under consideration. 

6 DISCUSSION 

We have shown for a multiple scattering system with 

discrete scatterers that the cross-correlation of different 

scattering paths vanishes when one integrates over all 

sources on a surface that bound the region with scatter- 

ers and receivers. One might think that the cancellation 

of spurious arrivals occurs because the phase of each 

of these arrivals is different for different pairs of scatter- 

ing paths and that the resulting destructive interference 

causes the spurious arrivals to cancel, but this is not 

the reason. The cancellation process involves the sum 

of the five scattering diagrams shown in figure 4, and 

the sum of these scattering diagrams vanishes because 

every scatterer must satisfy the generalized optical the- 

orem. The cancellation of spurious arrivals for multi- 

ple scattered waves shown here complements an earlier 

proof that for an isolated scatterer the spurious arrivals 

cancel (Snieder et al., 2008). Because of the extremely 
large number of spurious cross-terms in a multiple scat- 
tering medium, the cancellation of spurious arrivals is 

much more important in a multiple scattering medium 

than in a medium with just one scatterer. For weakly 

scattering media where scattering can be treated in the 

Born approximation, the cross-terms of scattered waves 

with scattered waves is of higher order and can thus 
be ignored in Green’s function extraction (Sato, 2009; 
Sato, 2010). 

It is essential in the cancellation of the spurious ar- 

rivals that the power spectrum of the sources on the 

boundary OV is constant and that sources are present 

everywhere on this boundary because these require- 

ments ensure that the surface integral in the Green’s 

function extraction is adequately sampled. If these con- 

ditions are not met, the angular integrals in the terms 7; 

through Ts are multiplied with variations in the power 

spectrum and/or spatial density of sources, and as a. re- 

sult the spurious arrivals may not cancel (Snieder et al., 

2008; Fan & Snieder, 2009). This is important for prac- 

tical reasons, since in applications there may be gaps in 

the source distribution on OV, and even if sources are 

present everywhere on OV, the power spectrum of these 

source may vary. In that case the spurious arrivals may 

contaminate estimates for the Green’s function obtained 

from cross-correlation of field fluctuations. 

As shown in sections 4 and 5, the extraction of the 

wave propagating along the scattering path considered 

follows from the cross-correlation of the direct wave 

propagating to one receiver with the scattered wave 

propagating along the scattering path to the other 

receiver, because cross-terms between scattered waves 

ultimately cancel. Suppose one estimates the Green’s 
function by cross-correlating scattered waves only. 

In that case the cross-terms of scattered waves with 

the direct wave is missing and the extracted Green’s 

function contains spurious arrivals. It has been noted 

earlier that the cross-correlation of scattered waves 

with scattered waves does not give the scattered waves 

(Snieder et al., 2008; Snieder et al., 2006), and this 

study confirms that conclusion for multiple scattering 

media. The failure to extract scattered waves by 

cross-correlating only scattered waves is ultimately due
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to the fact that the scattered waves do not satisfy the 

wave equation (Vasconcelos et al., 2009). We show in a 

companion paper (Fleury et al., 2010) a general theory 

applicable to a large class of linear differential equations 

that confirms that cross-correlating perturbed fields 

does not lead to retrieval of field perturbations, and 

show a numerical example for wave propagation that 

shows that the scattered waves are only extracted by 

cross-correlation when the direct wave is included. The 

cancellation of spurious arrivals can also be shown 

using a diagrammatic analysis (Margerin & Sato, 2010). 
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Introduction 

ABSTRACT 

Controlled-source electromagnetics (CSEM) has been used as a de-risking tool 
in the hydrocarbon exploration industry. Although there have been successful 
applications of CSEM, this technique is still not widely used in the industry 
because the limited types of hydrocarbon reservoirs CSEM can detect. In this 
paper, we apply the concept of synthetic aperture to CSEM data. Synthetic 
aperture allows us to design sources with specific radiation patterns for differ- 
ent purposes. The ability to detect reservoirs is dramatically increased after 
forming an appropriate synthetic aperture antenna. Consequently, the types of 
hydrocarbon reservoirs that CSEM can detect are significantly extended. In 
this paper, we mainly show one type of synthetic aperture antenna whose field 
can be steered into a designed angle. Consequently, the field concentrates on 
the target reservoir and the airwave is reduced. We show a synthetic example 
and a data example to illustrate the increased sensitivity obtained by applying 
synthetic aperture CSEM source. Because synthetic apertures are constructed 
as a data processing step, there is no additional cost for the CSEM acquisition. 
Aside from the applications to marine CSEM, synthetic aperture can be widely 
applied to other electromagnetic methods such as on land electromagnetics and 
bore hole electromagnetics. 

the sea floor. A resistive hydrocarbon reservoir in the 

subsurface (a target with a resistivity of approximate 
After the development in academia starting in the late 

1970s (Spiess et al. 1980; Cox 1981; Young and Cox 

1981) and the early industry experiments (Srnka 1986; 
Constable et al. 1986; Chave et al. 1991; Hoversten and 

Unsworth 1994), CSEM was introduced to the industry 
at the beginning of this century as a method to explore 

hydrocarbons. Since then the research and commercial 

surveys on CSEM have boomed (Constable and Srnka 
2007; Chopra et al. 2007). 

The fundamental concept and the assumption of us- 

ing CSEM as a detector of hydrocarbons is that porous 

rocks are resistive when they are saturated with gas 

or oil (Edwards 2005; Constable and Srnka 2007). In a 
standard CSEM survey, a horizontal current dipole is 

used as the source to generate an electromagnetic field 

and is towed close to the sea floor to avoid energy loss in 

the conductive sea water. The receivers are located on 

50 to 100 Qm) embedded in the conductive background 
(about 1 Qm), acts as a secondary source that refracts 
the electromagnetic field back to the receivers. In this 

way, one can infer the presence of a resistive body in the 

subsurface from the measured electromagnetic field. 

The main challenge of CSEM is the diffusive nature 

of electromagnetic field in the conductive subsurface. 

Thus the secondary field that refracts from the target is 
significantly small at most of the offsets than the field 

which does not carry any information of the subsurface, 

such as the direct arrival and the air wave, (Edwards 
2005; Constable and Srnka 2007). So it is not surprise 

that most of the successful CSEM applications are in 

the deep water environment (deeper than lkm) with 

the shaliow target (less than 3km). 
We introduce the concept of synthetic aperture to 

CSEM data. Synthetic aperture allows us to design
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sources with specific radiation patterns for different pur- 

poses. Here we construct a synthetic aperture antenna 

to steer the electromagnetic field into a designed direc- 
tion (Note that the use of synthetic aperture is not lim- 
ited to field steering). By doing this, one can concentrate 

the energy into a direction where the target is located. 
At the same time, the air wave can be significantly re- 

duced by increasing the propagation path in the sea wa- 

ter. Consequently, the ability to detect the reservoirs is 

dramatically increased after applying appropriate syn- 

thetic apertures without any cost increase. Aside from 

the applications to CSEM, synthetic aperture can be 

widely applied to other electromagnetic methods such 

as CSEM on land and bore hole electromagnetics. 

1 SYNTHETIC APERTURE METHOD 

Although synthetic aperture is a widely used concept 

for waves such as radar and sonar (Barber 1985; Ral- 
ston et al. 2007; Zhou et al. 2009; Cutrona 1975; Riyait 

et al. 1995; Bellettini and Pinto 2002), to the best of the 
authors’ knowledge, this is the first time that synthetic 

aperture is introduced to a diffusive field like CSEM. 

A general formula for constructing a synthetic aper- 

ture S4 is 

N 

Sa(2,w) = >> ane’? s(x, tn, w). (1) 
n=1 

At a single angular frequency w, a synthetic aperture 

at location z is a superposition of the sequentially dis- 

tributed sources that are located from x1 to xn with 

an amplitude weighting a, and a phase shift ¢,. The 

source function for the individual source is represented 

by s(x, 2n,w). For example, a horizontal 100 m dipole 

source centered at z, with a current of 100 A and a 

frequency of 1 Hz can be represented by 

100 A (an —50 <2 < 2p +50), 
8(L,En,w) -{ 0 (otherwise). ) 

Using the combination of amplitude weighting and 

a phase shift for sequential sources, enables us to prop- 

agate the field with a specific radiation pattern. For 

example, with a linear phase shift, the field can be 

steered into a certain direction as illustrated in figure 1. 

The larger semicircle represents the field whose source 

starts earlier (smaller value of ¢n in frequency domain); 
while the smaller one is from the source that starts later 

(larger value of ¢, in frequency domain). In this partic- 
ular example, the total field is steered from the vertical 

direction to the right by applying a linear phase shift to 

individual sources. 

      TSE 
We 0 I 

\ 
I 
| 

Figure 1. Field steering by applying a linear phase shift 

2 SYNTHETIC AND FIELD DATA 
EXAMPLE 

2.1 Synthetic data example 

In the numerical model shown we use a hydrocarbon 

reservoir (5km in the x and y directions with a thick- 
ness of 100 m) located 1 km below the sea floor. The 
sea water is 1km deep with a resistivity of 0.3 Qm. The 

subsurface background is a half space with a resistiv- 
ity of 1 Qm. The resistivity of the reservoir is set to be 

100 Qm. The receivers are located at the sea floor and 
a 100 m dipole source with a current of 100 A is con- 

tinuously towed 100 m above the receivers. Although 

only the inline electrical field Ez is discussed in this pa- 

per, the synthetic aperture principle holds for the other 

components of the electrical and magnetic fields as well. 
In this example, we focus on the construction of 

a synthetic aperture with the field steered toward the 

target direction. Figure 2(a) shows the inline electrical 
fields with the reservoir (dashed line) and without the 
reservoir (solid line) from a single 100 m dipole whose 
center is located at x =-6.5 km. There is a slight in- 
crease in the field around the position z=0 km when 

the reservoir is present. This 20% difference is shown 

by the ratio of the field with the reservoir to the field 

without the reservoir (black solid curve in figure 2(e)). 

Simply superposing the 50 (N=50 in equation 1) 
employed sequential sources, is equivalent to setting the 

weighting function a,=1 and ¢,=0 in equation 1. This 

superposition gives a 5 km long dipole source with a cur- 

rent of 100 A. The total E, field is given by figure 2(b). 
The ratio of the fields with and without the reservoir is 
shown by the red dashed curve in panel (e). Although 
the overall signal strength increases compared to the 

single 100 m source (panel (a)), the difference between 
the models with and without the reservoir does not sig- 
nificantly increase by simply using a longer dipole. 

Instead of using a zero phase shift in equation 1, we 

next apply a linear phase shift to the sequential sources 

using ¢, = cik-;nAs, where As is the distance between 

the centers of two neighboring sources, k, is the real part 

of the complex wave number and c, is a coefficient to 

control how much the field is steered. The steering angle 

@ (as defined in figure 1) is related to this coefficient 
by ci = sin@. As shown in figure 1, this phase shift 

effectively deploys the sources on the left at an earlier 

time than those on the right. Consequently, the total 

field propagates toward the right. Figure 2(c) shows the 

Ex field excited by this new synthetic aperture source.
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Figure 2. Panels (a) to (d) show the inline electrical fields 
with the reservoir (dashed lines) and without the reservoir 

(solid) for four different sources; a 100 m dipole source (panel 
(a)); a 5 km dipole source (panel (b)); a 5 km synthetic source 

obtained from field steering toward the target by the phase 

shift (panel (c)); A 5 km synthetic source obtained from field 
steering toward the target by the phase shift and the ampli- 
tude compensation (panel (d)). Panel (e) shows the ratio 

between the fields with and without the reservoir. The four 
curves in panel (e) represent the ratios from each of the pan- 

els above. 

The ratio of the steered fields is illustrated by the blue 

solid curve in the bottom panel. This example shows 

that the detectability significantly increases by steering 

the field toward the target. 

There are two reasons for the improved detectabil- 

ity. First, the total electrical field as well as the z com- 

ponent of the F field increases at the target location 

when the field propagation is steered from the vertical 
direction to a tilted angle. The z component of the E 

field diagnoses changes in the conductivity in the verti- 

cal direction (Edwards 2005). The second reason is the 
reduction of the background field. We will investigate 
the mechanism of the background field reduction in the 

future. 

Although we already see the improvement of field 

steering with linear phase shift. The high decay factor 

makes the steering of the diffusive field not accurate 

by only using phase shift. The attenuation of a diffu- 

sive field, causes the sources on the left side to give a 

smaller contribution to the synthetic aperture construc- 

tion because they propagates longer. These sources are 

indicated by the bigger semicircles in figure 1. In order 

to have a more effective steered field, we use an en- 

ergy compensation term an = e~ °?*i"4°, where co is a 

constant that controls the amplitude weighting. In this 

particular example, cz is chosen to be 0.1 m~! as an 

empirical value that gives a maximum response.After 

we include this energy compensation, the difference be- 

Synthetic aperture CSEM = 333 

tween the models with and without the target further in- 

creases, as shown in figure 2(d). This difference is quan- 

tified by the ratio of the fields with and without the 

target and is illustrated by the magenta dashed line in 

panel (e). 
The examples show that the synthetic aperture 

technique dramatically increases the difference in elec- 

trical field response between the models with and with- 

out the reservoir by a factor of 30. Note that this is 

achieved without altering the data acquisition. If noise 

is added in the above example, the main observation 

still holds. But we can not steer the field as effective as 

the noise free data and therefore the anomaly ratio is 

not as big as the factor of 30. We also see the effect of 

noise in the real data example below. 

2.2 Real data example 

Next, we apply this steering concept to the real data. In 

the real data, the field ‘without’ the target is defined as 

the measured field at a reference site under which there 

is no reservoir. For a standard single dipole measure- 

ment, the inline electrical fields with and without the 

reservoir are shown by the pink and black solid curves, 

respectively, in the upper panel of figure 3. The corre- 

sponding ratio of the two fields is shown by the solid 

curve in the lower panel of figure 3. The reservoir is 

known to be located between z=3 km and z=6 km. A 

slight difference in the electrical field can be observed 

between the offset of 6 km and 10 km due to the pres- 

ence of the reservoir. Beyond the offset of 10 km, the 

ratio oscillates because the field reaches the noise level. 

This oscillation makes it difficult to interpret the data. 

Next, we construct a 4 km synthetic aperture source 

with no field steering (zero phase shift). The fields with 
and without the reservoir are shown by the pink and 
black dashed curves in the upper panel of figure 3, re- 

spectively, and the corresponding ratio is the dashed 

curve in the lower panel. Because the longer dipole 

source has a better signal to noise ratio (the signal is 
stronger), both the Ez field (upper panel) and the ratio 
(lower panel) are smoother than the field generated by 

an individual source . The overall difference between the 

models, however, does not change too much. 

As we did in the synthetic example, next we con- 

struct a 4km synthetic aperture source with field steer- 

ing toward the reservoir using a phase shift (ce: = 0.8) 
and amplitude weighting (cz = 0.7 m~'). Figure 4 shows 
that the difference between the models has significantly 

increased after we apply the field steering. One can be 

more confident to infer the presence of the reservoir from 

figure 4 than from figure 3. Note that the negative off- 

set does not show any difference in the field both before 

and after the field steering as we expect. This is be- 

cause there is no reservoir on the negative offset side. 

At the same time, the consistency on the negative offset
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Figure 3. Upper panel: inline electrical field with the reser- 
voir (pink lines) and without the reservoir (black lines) from 

a single dipole (solid lines) and 4 km synthetic aperture 
(dashed lines) without the field steering. Lower panel: ratio of 
the field with the reservoir to the field without the reservoir 

from the single dipole (solid lines) and the synthetic aperture 
(dashed lines). 
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Figure 4. Upper panel: inline electrical field with the reser- 

voir (pink lines) and without the reservoir (black lines) from 
a single dipole (solid lines) and 4 km synthetic aperture 
(dashed lines) with the field steering toward the reservoir. 

Lower panel: ratio of the field with the reservoir to the field 

without the reservoir from the single dipole (solid lines) and 
the synthetic aperture (dashed lines). 

side, where there is no reservoir, confirms that our field 

steering is only sensitive to the presence of the reservoir. 

3 DISCUSSION AND CONCLUSION 

The synthetic aperture technique opens a new line of 

research in CSEM data processing. Hidden information 

in CSEM data can be retrieved by using the synthetic 

aperture technique with little extra cost because there 

is no need to change the acquisition. The ability to de- 

tect the reservoirs is dramatically increased after apply- 

ing appropriate synthetic apertures. The depth of the 

reservoir that CSEM detects can also increase with the 

use of synthetic aperture methods. Consequently, the 

types of hydrocarbon reservoirs that CSEM can detect 

are extended. Other types of synthetic aperture, aside 

field steering, can be designed, e.g. field focusing and the 

synthetic vertical source. In this paper, we only show 

examples of constructing synthetic aperture source in a 

line (2D synthetic aperture). In principle, one can con- 
struct 3D synthetic aperture to better detect the 3D 

structure of the subsurface. For example, when data are 

collected with antennas along parallel lines, one not only 

can steer the field in the inline direction, but also in the 

crossline direction. The synthetic aperture technique is 

not limited to the source side. It can also be applied to 

the receiver side by the same principle. Besides the ap- 

plication to the current marine CSEM system, synthetic 

aperture can also be used in land surveys and bore hole 

applications. 
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Comparison of scattering series solutions for 
acoustic wave and electromagnetic diffusion equations 
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ABSTRACT 

Inverse scattering series (ISS) is a tool for the interpretation of geophysical data 
that theoretically does not require a priori knowledge about the target of an 
experiment. The ISS method has been applied to seismic exploration, in par- 
ticular to velocity estimation and multiple suppression. Compared to seismic 
exploration, electromagnetic methods are characterized by rapid spatial decay 
of the probing field and strong perturbation of the medium parameters. As a 
prototype for the convergence of the forward and inverse scattering series, we 
analyze the 3D Green function for homogeneous media. The analysis suggests 
that for parameters representing geophysical exploration of hydrocarbon reser- 
voirs, the convergence speed of scattering series solutions for electromagnetic 
diffusion is faster than that for acoustic wave propagation. The model tests also 
show that for the diffusion equation, one can improve the convergence of the 
inverse scattering series by choosing a reference medium that is less conductive 
than the actual medium is. This research provides insights into the convergence 
requirements of the ISS method and guidelines for further applications of the 
ISS method to the interpretation of field data. 

Key words: inverse scattering series (ISS), acoustic wave equation, electro- 
magnetic diffusion equation 

1 INTRODUCTION TO SCATTERING 
SERIES 

Scattering theory is a form of perturbation analysis, 

and the goal of the inverse scattering problem is to ob- 

tain a quantitative description of an unknown scatterer 

from knowledge of the scattering data. The theory orig- 

inates from inverse problems in quantum scattering the- 

ory and formal solutions of inverse scattering problems 

(Gel’fand & Levitan1951; Jost & Kohn1952; Moses1956; 

Prosser1969). Inverse scattering series (ISS) describes 
the model perturbation as a series in order of a scat- 

tered field. The ISS method was applied to seismic ex- 

ploration for reconstruction of subsurface velocity (We- 
glein e¢ al.1981) and attenuation of multiples in seismic 

reflection data (Weglein ef al.1997; Weglein et al.2003). 
The main advantage of the ISS method is that no a 

priori knowledge of the subsurface (e.g., velocity) is as- 

sumed and all refraction, diffraction, and multiple re- 

flection phenomena are, in principle, taken into account. 

Recent studies show that the ISS method can be applied 

to diverse seismic problems that include imaging, direct 

non-linear inversion, data reconstruction, and wavefield 

separation (Ramirez & Weglein2009; Weglein et al.2009; 

Zhang & Weglein2009a; Zhang & Weglein2009b). 
Scattering theory relates the difference between the 

actual (perturbed) and reference (unperturbed) fields 
to the difference between their corresponding medium 
properties (Figure 1). We consider the following differ- 

ential equations as governing equations for the actual 

and reference media: 

L{r;w) G(r, rs;w) = —4(r — rs), (1) 
Lo(r;w) Go(r,rs;w) = —d(r — rs), (2) 

where L, Lo and G, Go are the actual and reference 

differential operators and Green functions, respectively, 

for a single angular frequency w, 6(r — rs) is the Dirac 

delta function, and r and r, are the receiver and source
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Figure 1. Actual medium versus different choices of refer- 

ence medium. The symbols x and V7 indicate the source and 

receiver, respectively. G and Go are the Green functions for 

the actual and reference media, respectively. Note that given 

the actual medium, there are several possible choices of the 
reference medium. 

locations, respectively. The information about the ac- 

tual and reference media properties is encapsulated in 

LE and Lo. The perturbation P is defined as the differ- 

ence between two differential operators: 

P(r; w) = L(r;w) — Lo(r;w). (3) 

The Lippmann-Schwinger equation (Taylor1972; 

Colton & Kress1998) relates G, Go and P: 

G(r,rs;w) = Go(r,rs;w) 

+ [cote r’;w)P(r';w)G(r',rs3w) dr’, (4) 

or in operator form: 

G = Go + GoPG. (5) 

The scattered field is the difference between the two 
Green functions (G — Go) and can be expanded in an 
infinite series in order of the perturbation P (in operator 
form): 

S =GoPGo+ GoPGoPGot+:::. (6) 

Equation (6) is known as the Born, Neumann, or for- 

ward scattering series. This series provides an interpre- 

tation of the scattered field S in terms of Go and P. The 
interpretation of the forward scattering series is shown 

in Figure 2; Gop PGo denotes the portion of the scattered 

field S that experiences a single scattering event from 

points where the actual medium differs from the ref- 

erence medium; GoPGoPGo denotes the portion that 

experiences two scattering events, and so on. 

The inverse scattering series describes the pertur- 

bation P as a series expansion in order of the scattered 

field S: 

P=P,\+P2.2+P3+::-, (7) 

where P,, is the portion of P that is the nth order of 

the scattered field. Substituting the above equation into 

equation (6) and equating terms that are equal order 

of the scattered field S, we derive the following set of 

x Vv 

$= G\/G 
P 

x VW x v 
=G)\/Gy + GA Go /Go +... 

P PP 

Figure 2. Schematic illustration of the forward scattering 
series from Weglein et al. (2003). The symbols x and 7 in- 

dicate source and receiver. S, P, Go, and G are the scattered 

field, perturbation, and Green functions for the reference and 

actual media, respectively. The straight and wiggled arrows 

indicate signals through the reference and perturbed media, 

respectively. 

integral equations represented in operator form: 

S = GoPiGo, (8) 

0 = GoPeGo + GoPiGoPiGo, (9) 

0 = GoP3Go + GoPiGoP2Go + GoP2GoPiGo 

+ GoPiGoPiGoPiGo, (10) 

0 = GoPnrGo + GoPiGoPn-1Got+-:- 

+ GoPiGoPi---PiGoFiGo. (11) 

Solving the above set of equations, we determine the 

perturbation to the nth order of the scattered field. 

Equation (8) is the linear or Born approximation which 
allows P; to be determined from the scattered field S. 

P2 is then computed from P, with equation (9). Equa- 

tion (10) determines Pz from P; and P2. Continuing in 
this manner, the entire series for the perturbation P is 

constructed, starting with the scattered field. To derive 

the nth order term in the inverse series, we solve the 

following Fredholm integral equation of the first kind: 

fn(Go, S, Pi, Pay: ++, Pr-15w) 

= J Gote.x'sw)Pala'sw)Gole rai) de’ (12) 

Solving this equation efficiently for P, is an essential 

element of application of the inverse scattering series. 

In equation (7), we assume that P; is the portion 
of P that is linear in the scattered field. In fact, only 

the linear component in the scattered field ultimately 

contributes to the reconstruction of the model, and the 

non-linear components are subtracted in the inversion 

(Snieder1990a; Snieder1990b). Generally, the series so- 

lutions in equations (6) and (7) converge within finite 
range of perturbation and scattered field (radius of con- 

vergence), and the series solutions coincide with the ex- 
act solutions inside the radius of convergence. When the 

series converges, we only require the Green function for 

the reference medium Go and the scattered field S for 

the reconstruction of the perturbation. In other words, 

we utilize the measured data as it is and do not need 

a priori knowledge about the actual medium, which
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Figure 3. Schematic representation of controlled-source 

electromagnetic (CSEM) exploration from MacGregor et al. 
(2006). An electromagnetic transmitter is towed close to the 

seafloor to maximize the coupling of electric and magnetic 

fields with seafloor rocks. These fields are recorded by re- 

ceivers deployed on the seafloor some distance from the trans- 

mitter. 

most geophysical data processing requires. This prop- 

erty of the ISS method demonstrates the potential of 

the method for geophysical inversion or model recon- 

struction. 

2 COMPARISON OF WAVE 
PROPAGATION AND DIFFUSION IN 
GEOPHYSICAL EXPLORATION 

As existing hydrocarbon reservoirs are being depleted, 

we are forced to explore hydrocarbon in more challeng- 

ing environments. Seismic exploration, which is based 

on wave propagation, provides good structural informa- 

tion of the subsurface medium and has been the ma- 

jor exploration method for the discovery of hydrocar- 

bon reservoirs. Recently, the controlled-source electro- 

magnetic (CSEM) exploration method has been consid- 

ered a useful complementary tool for hydrocarbon dis- 

covery because the method can provide more decisive 

information about the reservoir composition than the 

seismic method does. The CSEM method is an electro- 

magnetic exploration method designed for marine en- 

vironments (Figure 3); the theoretical foundation for 
the CSEM method was laid in the 1980s (Chave & 
Cox1982; Cox et al.1986). Since then, the application 

of the CSEM method for hydrocarbon exploration has 

been extensively studied (Hoversten et al.2006; Consta- 
ble & Srnka2007). The electromagnetic field is sensitive 
to electric conductivity, which is predominantly influ- 

enced by water content within the subsurface: increasing 
water content causes larger conductivity. Hydrocarbons, 

whether gas or petroleum, are poor electric conductors. 

The significant difference of electric conductivity in wa- 

ter and hydrocarbon makes the CSEM method an ideal 

tool for distinguishing a hydrocarbon reservoir from a 

water saturated reservoir. 
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Assuming time harmonic dependency (e~*”*) and a 
given electric current source J*, the electric field E and 

magnetic field H responses within an isotropic medium 

are derived from the following frequency domain expres- 

sions of Maxwell’s equations (Jackson1999): 

V x E(r) — iwu(r)H(r) = 0, (13) 

V x H(r) - [o(r) — iwe(r)} E(r) = J*(r), (14) 

where y, o and ¢€ are magnetic permeability, electric 

conductivity and dielectric permittivity of the medium, 

respectively. The electric and magnetic fields can be ex- 

pressed in terms of vector potential A as 

E(r) = iwuA(r) + At) (15) 

H(r) = V x A(r). (16) 

Within a homogeneous medium, equations (13) and (14) 
yield the following Helmholtz equation of vector poten- 

tial: 

V?A(r) + (wpe + iwuc) A(r) = —J*(r), (17) 

where the two terms, je and suo, are related to the wave 

velocity c and diffusivity d of the response: 

pe = a and po = *. (18) 

In many geophysical applications, the magnetic perme- 

ability can be assumed to be that of free space. 

In geophysical applications of electromagnetic 

methods, wave propagation is significant in the high 

frequency range (i.e., ground penetrating radar) or in 

an insulating medium (i.e., air). For most earth materi- 
als and frequencies of electromagnetic methods used in 

hydrocarbon exploration, diffusion is dominant and the 

contribution of wave propagation is negligible. In con- 

trast, seismic exploration is always governed by wave 

propagation. Seismic exploration is performed over a 

scale of many wavelengths, whereas the CSEM signal 

exhibits strong spatial decay and diffuses over a few skin 

depths 6 that describe the length scale where the am- 

plitude decays to e~!. Furthermore, the strength of the 

medium perturbation in CSEM exploration is stronger 

than that in seismic exploration. In other words, the 

range of electric conductivity in the earth medium is 

generally wider than the range of seismic wave velocity 

(Palacky1987; Mavko e¢ al.1998). 
The application of the ISS method to geophysical 

exploration has focused on seismic exploration (Weglein 

et al.1981; Weglein et al.1997; Weglein et al.2003). In 

this study, we perform a comparative analysis of scat- 

tering series methods for acoustic wave and electromag- 
netic diffusion equations and study the feasibility of ap- 

plying the ISS method to electromagnetic exploration, 

which involves a diffusive field within a strongly per- 

turbed medium.



340 M. J. Kwon & R. Snieder 

3 FORMULATION OF SCATTERING 
SERIES SOLUTIONS 

For the identification of the differences of the properties 

of the scattering series method for the acoustic wave 

and electromagnetic diffusion equations, we consider the 

simplest case of a homogeneous 3D medium and com- 

pare two different states of this infinite homogeneous 

medium. We analyze the series expression between the 

perturbation and scattered field at a single point and 

study the spatial variation of the series expansion. 

We consider hydrocarbon exploration and assume 

that wave propagation of the electromagnetic response 

is negligible within the medium. We derive the electro- 

magnetic response from equations (15) - (17). Equation 
(17) is the Helmholtz equation of vector potential A, 
and each component of the vector potential is propor- 

tional to the corresponding component of the electric 

current source J;. We can therefore describe the elec- 

tromagnetic diffusion by the Helmholtz equation of a 

scalar field. The acoustic wave propagation also involves 

a scalar field, i.e., pressure field. Given a point source at 

the origin, both the acoustic wave propagation and elec- 

tromagnetic diffusion within the homogeneous medium 
are described by the Helmholtz equation of the scalar 

Green function G: 

V?G(r) + k?G(r) = —6(r), (19) 

where wavenumber k is given by 

w/c? (acoustic wave equation), 
P= (20) 

iwpo (electromagnetic diffusion equation). 

In this study, we assume that the magnetic permeability 

i is that of free space and that acoustic wave velocity c 

and electric conductivity o are real, which implies that 

wavenumber k is real for the wave equation and complex 

for the diffusion equation. The 3D Green function for the 

Helmholtz equation is given as (Morse & Feshbach1953) 

1 ikr 

G(r) = Tar’ Kr (21) 

where r = |r|. 

We denote wavenumbers of the reference and per- 

turbed media as ko and k, respectively. From equation 

(3), the perturbation is defined as 

P=k? —ké, (22) 

and wavenumber of the perturbed medium is expressed 

as 

k=ho/1+ 4. (23) 
ko 

The scattered field S(r) is the difference between the 
Green functions of the perturbed and reference media: 

S(r) = ce es (sor | 1+ z) — exp (tor , (24) 

and the forward scattering series expresses the scattered 

field S(r) as aseries in order of the perturbation P. Note 
that a function of a complex variable z, f(z) = /1+ z, 
has a singular point (branch point) at z = —1, and 
the radius of convergence of the Taylor series expansion 

around z = 0 extends up to the singular point. The se- 

ries for the exponential is absolutely convergent. There- 

fore, equation (24) shows that the forward scattering 
series converges only for small perturbations compared 

to the reference medium properties such that 

P 

kg 
The above requirement of convergence implies the fol- 

lowing convergence criteria: 

<1. (25) 
    

c > co/V2 (acoustic wave equation), 

(26) 
a@<209 (electromagnetic diffusion equation). 

Taylor series expansion on equation (24) shows that the 

nth order term in the forward series is expressed as 

Sn(t) = Go(r) on (ékor) lz - (27) 

where a@n(ikor) is nth order power series of ikor such 
that 

. 1< \n=m 
Qn (tkor) = arn » Baym (ikor) (28) 

“m=1 

and 

1 (m = 1), 

Brym = (29) 

1 
t=m— 

Bn,m—1 ca _ a Sot (m=2,3,4,-++ ,). 
1 

The convergence rate is, therefore, 

Sn+i(r) 
Sn(r) 

_ P = Z An+1 (ikor) 

On (ikor) Rn (r) = - (30) 
            

The above equation shows that R¥ is proportional to 

|P/k2|, and the forward scattering series converges fast 
for weak perturbation. To appreciate the contribution of 

Qn+1/Qn on the convergence rate, we consider an acous- 
tic wave problem where the frequency f is 50 Hz, wave 

velocity c is 3,000 m/s, and wavenumber kp is about 
0.1 m~*. Figure 4 shows the variation of |an41/an| at 
two spatial locations: one is 3 wavelengths apart from 

the source (kor = 67) and the other is 6 wavelengths 
(kor = 127). The figure shows that |an41/an| is larger 
for kor = 12m than for kor = 6a and implies that as 

the source-receiver offset increases, more series terms 

are necessary to reach convergence. 
The formal expression of convergence rate given in 

equation (30) is valid for both the wave and diffusion 
equations. The wavenumber of the diffusion problem 

(equation (20)) has real and imaginary parts, and the
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Figure 4. Convergence rate of forward scattering series. The 

ratio |an41/Qn| in equation (30) for increasing number of n is 

compared at two spatial locations: one is 3 wavelengths apart 

from the source (kor = 67) and the other is 6 wavelengths 

(kor = 127). 

Green function for the diffusion equation generally ex- 

hibits faster spatial decay than that for the wave equa- 

tion, which has real wavenumber. However, equation 

(30) indicates that there is no fundamental difference 
in the convergence rate between the forward scattering 

series for the diffusion equation and the series for the 

wave equation. In fact, fast spatial decay of the diffusive 

field does not necessarily mean fast convergence of the 

scattering series for the diffusion equation. This counter- 

intuitive behavior of the convergence rate can be com- 

prehended by considering the following three functions: 

e*, e-*, and e’*. The three functions exhibit different 

variations as a function of x, but their Taylor series ex- 

pansions in the variable x show the same convergence 

rate. This property of the convergence rate implies that 

the comparison of the convergence speed between wave 
propagation and diffusion depends on the specific pa- 

rameters that we incorporate instead of the difference 

in the behavior of the physical fields. In the following, 

we choose representative parameters that reflect the hy- 

drocarbon exploration situations and compare the con- 

vergence of the forward scattering series for the acoustic 
wave equation with that for the electromagnetic diffu- 

sion equation. The details of the parameters are intro- 

duced in the next section. 

While the forward scattering series expresses the 

scattered field S(r) as a power series in order of the 
perturbation P, the inverse series expresses the pertur- 

bation as a power series in order of the scattered field. 

Rewriting equation (24), the perturbation is expressed 

as a function of the scattered field: 

2iko S(r) 1 S(r) \]? 
| —-|Inj1 . P(r) ; nr gr 72 [In + Go(r) (31) 

Note that the function f(z) = In(1+z) is singular at z = 
—1, and the radius of convergence of the Taylor series 
expansion centered at z = 0 extends up to the singular 

point. Equation (31) therefore shows that the inverse 
scattering series converges only for weak scattered fields 
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that satisfy 

S(r) G(r) 
Go(r) Go(r) 

By performing a Taylor series expansion of equation 

(31), it can be shown that the nth order term in the 
inverse series is given by 

        
= |eie-kodr _ 1| <1. (32) 

  

  Patt) = 2{ralkosr) +e) [Se], (38) 
where 

*yn(ko, 1) = (-1)” m, (34) 

Gnlr) = a, (35) 
and 

0 (n= 1), 
In = 

—(n— 1)na-1 + (-1)""1(n — 2)! (n = 23,45), 
(36) 

The above formal expression of the inverse scattering 

series is valid for both the wave and diffusion equa- 

tions. Figure 5 shows the absolute values of 7, and Cy 

in equation (33). When the wavenumber of the refer- 
ence medium is ko = 0.1 m™', |¢,| is much smaller than 
\yn| at r = 100 m. The coefficient |y,| is proportional 
to ko/r and |¢n| is to 1/r?. Therefore, compared to Cn, 

Yn is significant at a large source-receiver offset and for 

a large wavenumber of the reference medium. Ignoring 
Gn, the convergence rate of the inverse scattering series 

is approximated as 

Pr41(r) Ynti S(r) | n  S(r) 
P,(r) yn Go(r) n+1Go(r) 

The above equation shows that as the scattering be- 

comes stronger, the convergence speed of the inverse 

scattering series becomes slower. 

Ri = ~ . (37) 
          

4 MODEL TESTS OF SCATTERING 

SERIES SOLUTIONS 

As noted in the previous section, a comparison of the 

convergence rates between wave propagation and diffu- 

sion depends on the specific parameters that we incor- 

porate. We therefore choose parameters that are widely 

applied for exploring hydrocarbon reservoirs. For the 

application of the scattering series expressions (given by 

equations (27) and (33)) to the acoustic wave and elec- 
tromagnetic diffusion problems, we adopt the parame- 

ters summarized in Table 1. Note we assume a velocity 

perturbation of 10% for the acoustic wave problem and 

a perturbation with a factor 10 (00/0 = 10) for the 
electromagnetic diffusion problem. We also assume that 
magnetic permeability of the medium is the same as 

that of free space (j2 = 44 x 1077 N/A’).
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Table 1. Summary of physical parameters adopted for model tests, where c and o represent acoustic wave velocity and electric 

conductivity, respectively. Wavenumber k is derived from equation (20). The perturbation is real for the acoustic wave problem 
and imaginary for the electromagnetic diffusion problem. 

  

Acoustic wave problem Electromagnetic diffusion problem 
  

f 50 Hz 

co 3.0 x 10? m/s 
c 3.3 x 10? m/s 
k2 1.10 x 107? m-? 
k2 0.91 x 107? m-2 

P=k?—k2 —-0.19 x 10-2 m~? 

f 10 Hz 
oo 1.0 x 10-1 S/m 
o 1.0 x 10-2 S/m 

|k2| 7.90 x 107-6 m=? 
|k?| 0.79 x 10-§ m~? 

{P| =|k2 —k2| 7.11 x 1078 m-? 
  

  

6 (mi?) 
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Figure 5. Comparison of the absolute values of yn and ¢n 
in equation (33). For ko = 0.1 m=! and r = 100 m, |¢,| is 
much smaller than |yn|. The two terms are dependent on 

ko/r and 1/r?, respectively, which implies yp, is significant 

at a large source-receiver offset and for a large wavenumber 
of the reference medium. 

Figures 6 and 7 show the spatial variation of the 
forward scattering series for the acoustic wave and elec- 

tromagnetic diffusion equations, respectively. The solu- 

tions derived from the forward series (solid curve) are 
compared with the analytic solution of the scattered 

field (dotted curve), which is expressed as 

ik etkr _ etkor 

S(r) = (38) 
Anr 

The scattered field of the acoustic wave equation (dot- 
ted curve in Figure 6) exhibits spatial oscillations, am- 

plitude modulation, and geometric spreading. The scat- 

tered field of the electromagnetic diffusion equation 

(dotted curve in Figure 7) shows exponential amplitude 
decay and monotonous phase change. From equation 

(27), the first order term in the forward series is 

Si(r) = a (39) 

and near the source, exhibits better agreement with 

the analytic solution than at the far receiver location. 

As we include higher order terms, the partial sum of 

the forward series approaches the analytical solution of 

the scattered field. Note that except for short source- 
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Figure 6. Spatial variation of forward scattering series for 

the acoustic wave equation (real part only). The employed 

parameters are summarized in Table 1. The solutions de- 

rived from the forward series (solid curve) are compared with 
the analytic solution of the scattered field (dotted curve). 

The top, middle, and bottom panels show the partial sum 

~N, Sn(r) for N = 1, N = 15, and N = 30, respectively. 
As we include higher order terms in the forward series, the 

partial sum of the forward series approaches the analytic so- 

lution of the scattered field at an increasing range of r. 

receiver offset, the forward scattering series for the elec- 

tromagnetic diffusion equation (N = 5 in the middle 

panel of Figure 7) requires fewer terms to achieve good 

agreement with the analytic solution than the series for 
the acoustic wave equation (N = 15 in the middle panel 
of Figure 6). We therefore conclude that for the em- 
ployed parameters (Table 1) which are representative 

of hydrocarbon exploration, the forward scattering se- 

ries for the electromagnetic diffusion equation converges
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Figure 7. Spatial variation of the forward scattering se- 

ries for the electromagnetic diffusion equation. The employed 

parameters are summarized in Table 1. The solutions de- 

rived from the forward series (solid curve) are compared with 
the analytic solution of the scattered field (dotted curve). 
The top, middle, and bottom panels show the partial sum 

vN, Sn(r) for N = 1, N = 5, and N = 10, respectively. 
As we include higher order terms in the forward series, the 

partial sum of the forward series approaches the analytic so- 

lution of the scattered field at an increasing range of r. 

faster and requires fewer series terms than does the se- 

ries for the acoustic wave equation. 

Figures 8 and 9 show the spatial variation of the in- 

verse scattering series for the acoustic wave and electro- 

magnetic diffusion equations, respectively. The solutions 

derived from the inverse series (solid curve) are com- 
pared with the exact value of the perturbation (dotted 
line) which is real for the wave equation and imaginary 
for the diffusion equation. In these figures, r, describes 

the maximum distance for which the inverse scatter- 
ing series converges as described below. Considering the 

convergence criterion given in equation (32), the varia- 

tion of |S/Go| (solid curve) is also compared with the 
threshold value for convergence (dotted line). The first 
order term in the inverse series exhibits significant de- 

viation from the exact value. The partial sum of the in- 

verse series up to the 20th order term converges to the 

exact value within the range that extends from r = 0 to 

the location where the convergence criterion is satisfied. 
However, the partial sum of the inverse series diverges 

for r > r,-. Compared to the inverse series for the acous- 

tic wave equation (Figure 8), the series for the electro- 

magnetic diffusion equation (Figure 9) converges to the 

exact value of the perturbation in a wider spatial range. 

This convergence pattern suggests that for the employed 

parameters, the inverse scattering series for the electro- 
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Figure 8. Spatial variation of the inverse scattering series for 

the acoustic wave equation (real part only). The employed 
parameters are summarized in Table 1. In the top and mid- 

dle panels, the solutions derived from the inverse series (solid 
curve) are compared with the exact value of the perturba- 

tion w?(1/c? — 1/¢2) (dotted line) which is real. The first 
term in the inverse series (the top panel) exhibits significant 
discrepancy from the exact value. The partial sum up to the 

20th order term in the inverse series (the middle panel) con- 
verges to the exact value within a limited range where r < r- 

and diverges elsewhere. The bottom panel shows the spatial 

variation of |S(r)/Go(r)|. 

magnetic diffusion equation converges faster than does 

the series for the acoustic wave equation. The above 

observations also reveal that the convergence criterion 
given in equation (32) plays a crucial role in the re- 
construction of the perturbation. We therefore perform 

more detailed analysis on the convergence criterion. 
As noted before, wavenumber k is real for the acous- 

tic wave equation. Denoting the spatial radius of con- 

vergence for the inverse series of the wave equation as 

Tc, we derive the following relation from equation (32): 

elk kodre _ 4} — 1, (40) 

The spatial radius of convergence is, therefore, given as 

T 
= ———_., 41 

3|k — kol (41) 

In case of the electromagnetic diffusion problem, the 

wavenumber is derived from k? = iwuc, and we denote 

the wavenumber as 

14+i 
k = ——Al. va 

The convergence criterion given in equation (32) is 

Te 

(42)
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Figure 9. Spatial variation of the inverse scattering series 
for the electromagnetic diffusion equation (imaginary part 

only). The employed parameters are summarized in Table 
1. In the top and middle panels, the solutions derived from 

the inverse series (solid curve) are compared with the exact 

value of the perturbation iwpu(o — oo) (dotted line) which 

is imaginary. The first term in the inverse series (the top 
panel) exhibits significant discrepancy from the exact value. 

The partial sum up to the 20th order term in the inverse 
series (the middle panel) converges to the exact value within 
a limited range where r < r;¢ and diverges elsewhere. The 
bottom panel shows the spatial variation of |S(r)/Go(r)|. 
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Figure 10. Derivation of the spatial radius of convergence 

Te for the electromagnetic diffusion problem. The dashed and 

solid curves show the left-hand side of equation (45) for € < 0 
and € > 0, respectively, while the dotted curve shows the 
right-hand side of equation (45). Applying the parameters 

summarized in Table 1, r¢ is derived as 398 m. On the other 

hand, by switching the two conductivity values in Table 1 

(a — 90), Tc is derived as 1070 m. 

  

  

  

  

  

  

  

  

        
  

x16 im 
T T 

2b 
= 
= 
a of boas 
E 

-2h 

500 1060 1500 ° r(m) 
x16 /m? 

T T 

= 2 4 
the = EE 

= oa 4 

= 

Rw a 

00 1500 0 500 Fr (my 1000 

T T 

2b 

S r=1070m 
wi 

9 500 000 1500 0 rim) 

Figure 11. Spatial variation of the inverse scattering series 

for the electromagnetic diffusion equation (imaginary part 

only). The medium properties of the perturbed and refer- 
ence media are switched from the previous case shown in 

Figure 9 and Table 1. Note that the spatial range where 

|S(r)/Go(r)| < 1 is wider than the case shown in Figure 9. 

rewritten as follows: 

  

  

lki-Ikol. , |kI-lkgI an alee ae ali. (43) 
0     

Denoting € = (|k| — |ko|)/W2, we establish the following 
relation at r =r. (the spatial radius of convergence for 

the inverse series of the diffusion equation): 

levsreter — 1| =1, (44) 

which can be simplified as 

e §" = 2cos€r. (45) 

Equation (45) is a transcendental equation for the spa- 
tial radius of convergence r, that is analyzed graphically 

in Figure 10. The dotted curve shows the right-hand side 

of equation (45) while the dashed and solid curves show 
the left-hand side for € < 0 and & > 0, respectively. 

The distance r, for which the inverse scattering series 

converges is larger for positive value of € (o > a0) than 
for negative value of € (a < oo). This means that the 
spatial radius of convergence is larger when choosing a 

reference model with a small electric conductivity. 

Equation (43) shows that as r increases, the ra- 
tio |S/Go| exhibits exponential variation with distance: 
there is exponential decrease when |k| > |ko| (a > a0) 
and exponential growth when |k| < |ko| (o < oo). The 
inverse scattering problem aims to recover the unknown
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Figure 12. The variation of S/Go in the complex plane for 

different values of r. The origin of the complex plane indicate 

r = 0, and the arrows denote the directions of increasing 

r. Three different cases shown in Figures 8, 9, and 11 are 

compared. The shaded region denotes the area where the 

inverse series converges. 

perturbation from the measured field and a reference 

model, and we have freedom of choosing a reference 

model. Therefore, the exponential variation of the ra- 

tio |S/Go| in equation (43) illustrates that given the 
actual medium, we can accelerate the convergence of 

the inverse series for the electromagnetic diffusion equa- 

tion by choosing a reference medium that is less con- 

ductive (smaller wavenumber) than the actual medium. 
On the other hand, the acoustic wave equation has a 

real wavenumber, and the sign of k — ko is irrelevant 
to the convergence criterion (equation (41)). Figure 11 

shows the spatial variation of the inverse scattering se- 

ries for the electromagnetic diffusion equation when the 
perturbed and reference media switch roles (g © go) 
from the previous case shown in Figure 9. Compared to 

the case when the reference medium is more conductive 

than the actual medium (Figure 9), the spatial range of 
the convergence shown in Figure 11 is wider. 

Figure 12 shows the path of S/Go in the com- 
plex plane as the source-receiver offset r increases for 

three different cases: the inverse scattering series for the 

acoustic wave equation (dotted curve), the series for the 

electromagnetic diffusion equation that corresponds to 

Figure 9 (dashed curve), and the series for the electro- 
magnetic diffusion equation with the reversed medium 

properties (solid curve). As the source-receiver distance 

increases, the value of S/Go moves away from the ori- 
gin. In the case of acoustic wave propagation, the path 

forms a closed circle, and the sign of c — co determines 

the direction of the movement as r increases (clockwise 
direction when c > co and counterclockwise direction 
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when c < co). On the other hand, the path of S/Go 
does not form a closed circle for the electromagnetic dif- 

fusion problem. Depending on the sign of o — ao, the ra- 

tio S/Go moves out of the convergence area (a < 0) or 

converges to the point where S/Go = —1 (¢ > a0). This 
shows that the convergence of the inverse series for the 

electromagnetic diffusion equation can be facilitated by 

choosing a reference medium that is less conductive than 

the actual medium. The different paths represented by 

the dashed curve (o < go) and solid curve (o > go) 
demonstrates the significance of the choice of the refer- 

ence medium for the convergence of the inverse scatter- 

ing series for the electromagnetic diffusion problem. 

5 CONCLUSIONS 

We analyzed the difference between applying the scat- 

tering series method to the acoustic wave and electro- 

magnetic diffusion equations for an infinite 3D medium. 

Analysis of the formal expressions of the scattering se- 

ries solutions shows that there is no fundamental differ- 

ence in the convergence rate between the forward scat- 
tering series for the acoustic wave equation and the se- 

ries for the electromagnetic diffusion equation; the anal- 

ysis also illustrates that rapid spatial decay of the dif- 

fusive field does not necessarily mean fast convergence 

of the scattering series for the diffusion equation. The 

model tests suggest, however, that for parameters repre- 

senting geophysical experiments, the convergence speed 

of the scattering series solutions for the electromagnetic 

diffusion equation is faster than that for the acoustic 

wave equation. The model tests also show that for the 

electromagnetic diffusion equation, we can facilitate the 

convergence of the inverse scattering series by design- 

ing a reference medium that is less conductive than the 
actual medium. In this study, we considered homoge- 

neous media where the electromagnetic signal diffuses 

away from the source, and there is no signal that diffuses 
back from any perturbed structure, which we eventually 

aim to reconstruct. It requires further research to iden- 

tify how much we can generalize the above conclusions 

to the inverse scattering series problems of a 2D or 3D 

model reconstruction. 
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ABSTRACT 

The theory of Green’s function extraction from field fluctuations has origi- 
nally been derived in geoscience applications for wave propagation problems. 
Although current application of this technique is not restricted to wave propa- 
gation, there was no theory for Green’s function extraction of static fields. We 
present the theory of Green’s function extraction of static fields and illustrate 
the theory with a numerical example. The theory presented here is applicable 
to potential fields and to DC resistivity problems. The ability to extract: static 
fields from field fluctuations makes it possible, in principle, to extract static 
fields from passive measurements of field fluctuations. This can be particularly 
relevant for continuous monitoring of the subsurface with electrical fields. 

Key words: Green’s function extraction, potential fields, static fields 

1 INTRODUCTION 

Extraction the Green’s function from field fluctuations 

is a rapidly growing field in science and engineering 

(Curtis et al., 2006; Larose e¢ al., 2006; Wapenaar et al., 

2008). In seismological applications this technique is 

usually referred to as seismic interferometry. The prin- 

ciple of Green’s function extraction has up to this point 

been applied to time-dependent problems. This may 

have been caused by the fact the underlying theory was 

originally related to time-reversal, e.g. (Derode eé al., 

2003). The current theory has mostly been applied to 

problems involving wave propagation, such problems are 

inherently time-dependent. 

In this work we show that the principle of Green’s 

function extraction can be applied to static fields. The 

theory presented here is a simplified version of the more 

general formulation of Lagrangian Green’s function ex- 

traction (Snieder et al., 2010), and we restrict ouiselves 
to the Green’s function extraction for a potential field 

problem. It may appear to be a paradox that one can 

extract the Green’s function of static fields from dy- 

namic field fluctuations. The underlying principle is, 

however, not complicated. As an example, we show nu- 

merical simulations where random dipoles are present 

in an electrostatic system. At every moment in time, 

different dipoles generate the field, which at any mo- 

ment in time depends only on the instantaneous dipole 

distribution. (This is actually the definition of the quasi- 
static response.) We show theoretically and numerically 
that by averaging over all dipole distributions one can 

extract the electrostatic response. Since the response is 

quasi-static, it does not matter whether the fields are 

generated by time-dependent electrical dipoles, or by 

an ensemble of dipoles; in the end this gives the same 

response. In the following section we derive the theory, 

which we illustrate with a numerical example in the sub- 

sequent section. 

2 GREEN’S FUNCTION EXTRACTION IN 
ELECTROSTATICS 

In linear dielectric media, the electric displacement D 

is related to the electric field E by the relation D = 

éB, with e(r) the electrical permittivity (Jackson, 1975). 
Using the field equation (V-D) = gq, with q(r) the 
charge density, and the relation E = —Vu, with u(r) 

the electric potential, the following field equation results 

0=V-(e(r)Vu(r)) + a(x) . (1)
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If instead of the electrostatic problem we consider di- 

rect currents in a conducting medium, then the charge 

density g(r) is replaced by a volume density of charge in- 
jection or extraction rate —q(r) (the minus sign comes 
from the historical convention that the loss of charge 

from the source region constitutes a positive electric cur- 

rent), and the electric permittivity e(r) is replaced by 
the conductivity o(r). This leaves equation (1) intact 
with different symbols (Stratton, 1941). This results in 

a formulation for the extraction of the resistivity tensor 

in conducting media from field fluctuations (Slob et al., 
2010). 

The derivation of the Green’s function extraction is 

based on representation theorems, but is actually sim- 

pler than earlier derivation for Green’s function extrac- 

tion for acoustic waves (Derode et al., 2003; Wapenaar 

et al., 2005) because the static fields considered here are 
real. We consider two states, labeled A and B, and take 

the field equation (1) for state A, multiply it with the 
field of state B and integrate over a volume V to give 

[ ve@aa@av =— [ vetev -(e(r)Vua(r)) dV . (2) 

Using the identity uaV - (eVua) = V- (eusVua) — 
é(Vua - Vus) and applying Gauss’ theorem gives 

Ipenae i = fy donate MDs 
° (3) 

+ f e(r) (Vua(r) . Vua(r)) dV , 

where OV denotes the boundary of the volume V. When 

the potential ug or the normal component of the electric 

field dua /On vanishes on the boundary, the first integral 

on the right hand side vanishes, and 

[ us(r)ga(r)dV = [ew (Vua(r)- Vua(r)) dV . (4) 

The fields decay sufficiently rapid with distance that 
the surface integral also vanishes when the surface is 

take at infinity. We next take use a point source for the 

two states (qa(r) = 6(r — ra) and qa(r) = d(r — ra)), 
the corresponding fields are, by definition, given by the 

Green’s functions G(r,ra) and G(r,rg), respectively. 

Inserting this in expression (4) gives 

G(ra,re) = / e(r) (VG(r,ra)-VG(r,rs)) dV. (5) 
V 

In order to establish the connection of this equation 

with the Green’s function extraction from field fluctu- 
ations we use the field generated by an electric dipole 
distribution p(r) (Jackson, 1975) 

u(ro) = [ (VG(ro,r)) - p(r)dV . (6) 

We next consider random dipole sources that are 

spatially and directionally uncorrelated and satisfy 

(pi(r1)p3(r2)) = |S|?e(r1)d(r1 — r2) diz , (7) 

where |S|? measures the strength of the dipole sources. 
For the moment we consider an ensemble of identical 
electrostatic systems, each with their own excitation by 

dipoles, and (---) denotes an ensemble average. Multi- 
plying expression (5) with |S|?, using the fact that for 
this problem G is real, and using the summation con- 

vention, gives 

G(ra,re)|S|? = |S)? f, e(r) G(r, r4)OG" (vr, re)dV 

= fy fy |SPe(r1)6(r1 — 12) 5: 

x0;G(r1,74)0;G" (ra, rB)dVidV2 

= (fy &G(r1,ra)pi(ti)dVi f, O;G* (v2, rB)p;(r2)dV2) 

= (u(ra)u"(re)) , 
where the identity f fi(r)gi(r)dV = ff fi(ri)6(m — 
r2)6i39;(r2)dVidV2 has been used in the second identity, 
expression (7) in the third equality, and expression (6) 
in the last identity. This means that the electrostatic 

Green’s function G(ra,re) follows from the ensemble 
average of the correlation of field fluctuations recorded 

at ra and rg that are excited by uncorrelated dipole 

sources. 
In reality one may not have an ensemble of identical 

electrostatic systems, but one may have a system where 

random sources fluctuate with time. When the charac- 

teristic time of the temporal variations in these dipole 

sources is large compared to the time it takes for light 

to propagate through the system, the response of the 

system is quasi-static. In that case the ensemble aver- 

age can be replaced by a temporal average over the field 

fluctuations. In fact, the approach to replace an ensem- 

ble average by an average over time is common in seis- 

mology where averaging over multiple non-overlapping 

time windows is used to extract the dynamic Green’s 

function (Larose et al., 2006; Sabra et al., 2005; Shapiro 

et al., 2005). By applying the same principle to quasi- 

static field fluctuations one can extract the electrostatic 

Green’s function from temporal field fluctuations. 

3 NUMERICAL SIMULATION OF 
GREEN’S FUNCTION RETRIEVAL IN 
ELECTROSTATICS 

In this example we illustrate the theory for the Green’s 

function extraction for the electrostatic potential by 

cross-correlating the fields generated by random elec- 

tric dipoles within a conducting spherical shell with 

radius R at which the potential vanishes. Using the 
method of images, one can show that the potential 

generated by a dipole p at location r inside the shell 

vanishes at the shell r = R when one adds the fields 

generated by a monopole q’ = (R/r?)(p-#) and a 
dipole p’ = —(R/r)* (p — 2(p-#)#), both at location 
r’ = (R/r)’r outside the shell (Snieder et al., 2010). We 

(8)
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Figure 1. Two hundred realizations of the potential at the 
z-axis at z = 0, « = 0.1, and x = 0.2, respectively. 

use a system of units scaled in such a way that 47é9 and 

R are both equal to 1. 

The Green’s function extraction is applied to equa- 

tion (8). In each realization the field u(r) is generated 
by ten random dipoles at locations that are drawn from 

a uniform distribution within the sphere. Each compo- 

nent from each dipole is drawn from a uniform dis- 

tribution between -1 and +1. In equation (8) we use 
rg = (0.3,0.2,0) and choose rag along the z-axis of a 
coordinate system that has its origin at the center of 

the sphere. Figure 1 shows the potential in 200 realiza- 

tions at three points along the z-axis. The potential at 

each point has the character of white noise, which is 

not surprising because the dipoles in every realization 

are uncorrelated and have zero mean. The potential at 

the different locations is, however, correlated. It is these 

correlations in the fields generated by random sources 

that contains the information that ultimately leads to 

the extraction of the Green’s function. Note that it does 

not matter whether one considers figure 1 to show differ- 

ent realizations, or whether it shows a time series of the 

quasi-static electric response of a system that exhibits 

quasi-random electric dipoles as a function of time. 

Figure 2 shows the cross correlation of 50,000 re- 

alizations of the field fluctuations recorded at location 

rp = (0.3, 0.2,0) and various locations along the z-axis. 
In all examples shown, the realizations are divided in 

10 bins that each contains 5,000 realizations that are 

drawn from the same statistical distribution. The cross- 

correlation of field fluctuations in the different bins is 

used to compute the mean of the cross-correlation of 

field fluctuations and the variance in this mean (Hogg 

& Craig, 1978). The variance of the mean is shown with 
the error bars on figure 2. The mean and error thus   
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Figure 2. Open symbols: the potential and its standard 

deviation reconstructed from 50,000 realizations of random 

dipoles. Solid line: the true potential for a monopole at 

(0.3, 0.2, 0). 

computed do not depend much on the number of bins 

chosen, which means that the averaging over the bins 
has the same statistical effect as the averaging over real- 

izations within each bin. The solid line in figure 2 shows 

the potential due to a unit point charge at location 
rg, which is the desired Green’s function. The cross- 

correlations of field fluctuations, and their errors, are 

multiplied with a common scale factor that minimizes 

the difference of the cross-correlation and the Green’s 

function. This scale factor accounts for the term |S|? in 
equation (8). Note that the potential estimated from the 
cross-correlation of field fluctuations generated by ran- 
dom dipole sources agrees with the true Green’s func- 

tion within the shown standard deviations. This con- 

firms that the Green’s function for this static example 

can indeed by extracted from the cross-correlation of 

field fluctuations. 

The Green’s function in the example of figure 2 

was extracted from the cross-correlation of field fluctu- 

ations excited by random dipoles. In each realization, 

the field was generated by the simultaneous action of 

10 dipoles. In order to investigate what happens when 

the dipoles do not have a random orientation, we re- 

peated the numerical experiment of figure 2, but now 

used the fixed dipole p = (1,1, 1) in every realization. 
Ten of these dipoles were placed randomly within the 

spherical shell in every realization. The estimate of the 

Green’s function estimated from the cross-correlations 

of the associated field fluctuations is shown in figure 3. 

In this case cross-correlation of field fluctuations does 

not lead to an acceptable estimate of the Green’s func- 

tion. The reason for this discrepancy is that according 

to equation (7) the orientation of different dipole vec-
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Figure 3. Open symbols: the potential and its standard 
deviation reconstructed from 50,000 realizations of aligned 

dipoles with dipole moment p = (1, 1, 1). Solid line: the true 
potential for a monopole at (0.3, 0.2, 0). 

tors must be uncorrelated. This assumption is violated 

when a constant dipole vector is used for every dipole. 

One might think that it does not really matter 
whether field fluctuations are generated by dipoles or 

by monopoles (point charges). We show in figure 4 the 
field extracted from cross-correlation of 10,000 realiza- 

tions of field fluctuations generated by monopoles. In 

each realization ten point charges are placed at random 

positions within the shell. Each point charge is drawn 

from a uniform distribution between -1 and 1. Note that 

the standard deviation in figure 4 is much smaller than 

that in figure 2, despite the fact that five time less 

realizations are used. There are two reasons for this. 

First, for random dipole orientations, one carries out an 

implicit averaging over the direction of the dipole vec- 
tors, such averaging is not needed for monopole sources. 

Second, the dipole fields vary more rapidly with space 

than the monopole field do, hence the dipole fields 

must be sampled more finely by point charges to mimic 

the volume integrals in expression (8). Note that the 
cross-correlation of field fluctuations caused by random 

monopoles does not lead to an acceptable extraction of 

the Green’s function. 

The examples of the figures 2 and 4 illustrate the 
paradox that one needs field fluctuations excited by ran- 

dom dipoles to extract the monopole field. This is for- 

tunate; natural field fluctuations cannot be caused by 

monopoles because the random occurrence of monopoles 

is not consistent with charge conservation. Charges are 

neither created nor destroyed in a source-free region. 

This means that only dipoles or higher order multipoles 

can excite field fluctuations. For the expected localized 

fluctuations, where the local charge separation is or- 
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Figure 4. Open symbols: the potential and its standard 

deviation reconstructed from 10,000 realizations of random 

monopoles. Solid line: the true potential for a monopole at 

(0.3, 0.2, 0). 

ders of magnitude smaller than that of the measurement 

scale, the contribution of the dipole moments dominates 

the potential field, and the electric potential is given by 

equation (6). The occurrence of dipole moments in a 

material can have four basic causes: electronic, ionic, 

dipolar and space charge polarization (Khesin eé al., 

1996). Relaxation times of the first three processes are 
usually smaller than 1 ys, while for the last process 

the relaxation time can be as large as 1 s. These time 

scales are extremely long compared to the propagation 

time of light through system of the size of a labora- 

tory experiment or geophysical field experiments. Field 

fluctuations can be generated, for example in natural 

rocks by electromagnetic radiation in fracturing rocks 

or in stressed rocks before fracturing. During fractur- 

ing, bonds are broken. The larger the number of cut 

bonds, the larger is the number of excited atoms, and 

hence the greater becomes the electromagnetic radia- 

tion amplitude. These electromagnetic oscillations be- 

have like surface vibrational optical waves, where pos- 

itive charges move together in a diametrically oppo- 

site phase to the negative ones and decay exponen- 

tially into the material like Rayleigh waves. The result- 
ing oscillating electric dipole is the source of the elec- 
tromagnetic radiation. The pulse amplitude decays due 

to an interaction with bulk phonons and the life time 

of the measurable electric field varies between several 

to 100 ys (Bahat et al., 2005). Random field fluctua- 
tions caused by charge separation have been observed in 

water-saturated porous media that were drained (Haas 
& Revil, 2009). Each charge separation in that system 
is thought to be caused by the burst of a meniscus in 
the pore space, the so-called Haines jump. The appli-
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cation to direct current resistivity problems and the 
connection with the fluctuation-dissipation theorem is 

discussed elsewhere in more detail (Slob et al., 2010). 

4 CONCLUSION 

The theory and numerical examples presented here 
show that the principle of Green’s function extrac- 

tion from field fluctuations can be applied to static 

problems. We illustrate this with an example from 

electrostatics, but we have shown elsewhere that the 

electrical conductivity tensor can be extracted from 

field fluctuations in a DC current problem (Slob et ail., 
2010). Extending the theory for Green’s function ex- 

traction from dynamic problems creates the possibility 

to extract the Green’s function for potential fields 

and DC currents from field fluctuations. This makes 

it possible, in principle, to interrogate the proper- 

ties of static fields in the subsurface without active 

sources. This is useful when active sources can not de 

deployed. Furthermore, extracting static fields from 

field fluctuations could make it possible to monitor the 

static fields in the subsurface in a continuous fashion. 

This can be a valuable tool for continuous monitoring. 

The spectacular examples of continuous monitoring 

from seismic noise (Wegler & Sens-Schénfelder, 2007; 

Brenguier et al., 2008) offer hope that the principle 

of Green’s function extraction can also be applied for 

continuous monitoring of quasi-static fields. 

Acknowledgments. This research was financed 

by the NSF (grant EAS-0609595) and by the spon- 
sors of the Consortium for Seismic Inverse Methods 

for Complex Structures at the Center for Wave 

Phenomena. 

REFERENCES 

Bahat, D., Rabinovitch, A., & Frid, V. 2005. Tensile Frac- 

turing in Rocks. Berlin: Springer-Verlag. 

Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N.., 

& Larose, E. 2008. Postseismic relaxation along the San 

Andreas Fault at Parkfield from continuous seismological 
observations. Science, 321, 1478-1481. 

Curtis, A., Gerstoft, P., Sato, H., Snieder, R., & Wapenaar, 

K. 2006. Seismic interferometry — turning noise into sig- 

nal. The Leading Edge, 25, 1082-1092. 

Derode, A., Larose, E., Tanter, M., de Rosny, J., Tourin, A., 

Campillo, M., & Fink, M. 2003. Recovering the Green’s 

function from far-field correlations in an open scattering 

medium. J. Acoust. Soc. Am., 113, 2973-2976. 

Haas, A., & Revil, A. 2009. Electrical burst signature of pore- 

scale displacements. Water Resources Res., 45, W10202. 

Hogg, R.V., & Craig, T. 1978. Introduction to mathematical 

statistics. Fourth edn. New York: Macmillan. 

Jackson, J.D. 1975. Classical electrodynamics. 2nd edn. New 
York: John Wiley. 

Khesin, B., Alexeyev, V., & Eppelbaum, L. 1996. Interpre- 

tation of geophysical fields in complicated environments. 

London: Kluwer Academic Publishers. 

Larose, E., Margerin, L., Derode, A., van Tiggelen, B., 

Campillo, M., Shapiro, N., Paul, A., Stehly, L., & Tanter, 

M. 2006. Correlation of random wavefields: an interdis- 

ciplinary review. Geophysics, 71, SI11—-SI21. 

Sabra, K.G., Gerstoft, P., Roux, P., Kuperman, W.A., & 

Fehler, M.C. 2005. Surface wave tomography from mi- 

croseisms in Southern California. Geophys. Res. Lett., 

32, L14311. 

Shapiro, N.M., Campillo, M., Stehly, L., & Ritzwoller, M.H. 

2005. High-resolution surface-wave tomography from am- 

bient seismic noise. Science, 307, 1615-1618. 

Slob, E., Snieder, R., & Revil, A. 2010. Retrieving elec- 

tric resistivity data from self-potential measurements by 

cross-correlation. Geophys. Res. Lett., 37, L04308. 

Snieder, R., E., Slob., & Wapenaar, K. 2010. Lagrangian 

Green’s function extraction, with applications to poten- 

tial fields, diffusion, and acoustic waves. New J. Phys., 

im press. 

Stratton, Julius. A. 1941. Electromagnetic theory. New York: 

McGraw-Hill Book Company Inc. 
Wapenaar, K., Fokkema, J., & Snieder, R. 2005. Retrieving 

the Green’s function by cross-correlation: a comparison 

of approaches. J. Acoust. Soc. Am., 118, 2783-2786. 

Wapenaar, K., Draganov, D., & Robertsson, J.O.A. (eds). 

2008. Seismic Interferometry: History and Present Sta- 

tus. SEG Geophysics Reprints Series, vol. 26. Tulsa, OK: 

Society of Exploration Geophysics. 

Wegler, U., & Sens-Schénfelder, C. 2007. Fault zone mon- 

itoring with passive image interferometry. Geophys. J. 

Int., 168, 1029-1033.



352 = R. Snieder, E. Slob & kK. Wapenaar



CWP-642P 

Seismic anisotropy in exploration and reservoir 
characterization: An overview 

I. Tsvankin!, J. Gaiser?, V. Grechka®, M. van der Baan*, & L. Thomsen® 
1 Colorado School of Mines, Department of Geophysics, Center for Wave Phenomena, Golden, CO, USA. 

2 Geokinetics, Denver, CO, USA. 

3 Shell Exploration & Production Company, Houston, TX, USA. 

4 University of Alberta, Department of Physics, CEB, 11322-89 Ave., Edmonton, Alberta, T6G 2G7, Canada. 

5 Delta Geophysics, Houston, TX, USA. 

1 INTRODUCTION 

ABSTRACT 

Recent advances in parameter estimation and seismic processing have allowed 
incorporation of anisotropic models into a wide range of seismic methods. In 
particular, vertical and tilted transverse isotropy are currently treated as an in- 
tegral part of velocity fields employed in prestack depth migration algorithms, 
especially those based on the wave equation. Here, we briefly review the state 
of the art in modeling, processing, and inversion of seismic data for anisotropic 
media. Topics include optimal parameterization, body-wave modeling methods, 
P-wave velocity analysis and imaging, processing in the r—p domain, anisotropy 
estimation from vertical seismic profiling (VSP) surveys, moveout inversion of 
wide-azimuth data, amplitude-variation-with-offset (AVO) analysis, processing 
and applications of shear and mode-converted waves, and fracture characteri- 
zation. When outlining future trends in anisotropy studies, we emphasize that 
continued progress in data-acquisition technology is likely to spur transition 
from transverse isotropy to lower anisotropic symmetries (e.g., orthorhombic). 
Further development of inversion and processing methods for such realistic 
anisotropic models should facilitate effective application of anisotropy parame- 
ters in lithology discrimination, fracture detection, and time-lapse seismology. 

Key words: Seismic anisotropy, velocity analysis, prestack migration, pa- 
rameter estimation, transverse isotropy, AVO analysis, multicomponent data, 
mode-converted waves, shear-wave splitting, fracture characterization, vertical 
seismic profiling 

rently, many seismic processing and inversion meth- 

ods operate with anisotropic models, and there is little 
The area of applied seismic anisotropy is undergoing 

rapid transformation and expansion. Whereas the theo- 

retical foundation for describing anisotropic wave prop- 

agation had been developed a long time ago, the multi- 

parameter nature of anisotropic models had precluded 

their widespread application in seismic exploration and 

reservoir monitoring. The role of anisotropy has dra- 

matically increased over the past two decades due to 

advances in parameter estimation, the transition from 

poststack imaging to prestack depth migration, the 

wider offset and azimuthal coverage of 3D surveys, and 

acquisition of high-quality multicomponent data. Cur- 

doubt that in the near future anisotropy will be treated 

as an inherent part of velocity fields. 

A detailed historical analysis of developments in 

seismic anisotropy can be found in Helbig and Thom- 

sen (2005), so here we mention just several milestones. 
The work of Crampin (1981, 1985), Lynn and Thomsen 
(1986), Willis et al. (1986), Martin and Davis (1987), 
and others convincingly demonstrated that anisotropy 

has a first-order influence on shear and mode-converted 

PS-waves, which split into the fast and slow modes 

with orthogonal polarizations. Shear-wave processing
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based on Alford (1986) rotation and its modifications 
has helped document ubiquitous azimuthal anisotropy 

in the upper crust typically caused by near-vertical sys- 

tems of aligned fractures and microcracks. Acquisition 

and processing of high-quality multicomponent offshore 

surveys starting in the mid-1990’s clearly showed that 

PP- and PS-wave sections could not be tied in depth 

without making the velocity model anisotropic. 

In contrast, anisotropy-induced distortions in P- 

wave imaging (the focus of the majority of exploration 

surveys) are less dramatic, especially for poststack pro- 

cessing of narrow-azimuth, moderate-spread data. Also, 

incorporating anisotropy into velocity analysis requires 

estimation of several independent, spatially variable pa- 

rameters, which may not be constrained by P-wave re- 

flection traveltimes. Hence, the progress in P-wave pro- 

cessing can be largely attributed to breakthroughs in 

parameterization of transversely isotropic (TI) models, 
most notably the introduction of Thomsen (1986) no- 
tation and the discovery of the P-wave time-processing 

parameter 7 (Alkhalifah and Tsvankin, 1995). The ex- 
ploding interest in anisotropy and the importance of 

the parameterization issue have made Thomsen’s clas- 

sical °86 article the top-cited paper ever published in the 

journal Geophysics. 

More recently, the inadequacy of isotropic velocity 

models was exposed by the advent of prestack depth 

migration, which is highly sensitive to the accuracy of 

the velocity field. As a result, TI models with a verti- 

cal (VTI) and tilted (TTI) axis of symmetry have be- 
come practically standard in prestack imaging projects 

all over the world. For instance, anisotropic algorithms 

produce markedly improved images of subsalt explo- 

ration targets in the Gulf of Mexico, which has long been 

considered as a region with relatively “mild” anisotropy. 
The goal of this paper is to give a brief description 

of the state of the art in anisotropic modeling, process- 

ing, and inversion and outline the main future trends. 
It is impossible to give a complete picture of the field 

in a journal article, and the selection of the material 

inevitably reflects the personal research experience and 
preferences of the authors. For in-depth discussion of 

theoretical and applied aspects of seismic anisotropy, we 

refer the reader to the books by Helbig (1994), Thomsen 
(2002), Tsvankin (2005), and Grechka (2009). 

2 NOTATION FOR ANISOTROPIC MEDIA 

One of the most critical issues in seismic data analysis 

for anisotropic media is a proper design of model pa- 

rameterization. Whereas the stiffness coefficients (c:;) 
are convenient to use in forward-modeling algorithms, 

they are not well-suited for application in seismic pro- 

cessing and inversion. An alternative notation for trans- 

verse isotropy was introduced by Thomsen (1986), who 
suggested to describe the medium by the symmetry- 

direction velocities of P- and S-waves (Vpo and Vso, 

respectively) and three dimensionless parameters (e, 6, 

and +), which characterize the magnitude of anisotropy. 

The parameter « is close to the fractional difference be- 

tween the P-wave velocities in the directions perpendic- 

ular and parallel to the symmetry axis, so it defines what 

is often simplistically called the “P-wave anisotropy.” 

Likewise, -y represents the same measure for SH-waves. 

While the definition of 6 seems less transparent, this 

parameter also has a clear meaning ~ it governs the P- 

wave velocity variation away from the symmetry axis 

and also influences the SV-wave velocity. 

Although Thomsen originally used the assump- 

tion of weak anisotropy (i.e., |e| < 1, |6| < 1, and 

ly| « 1), his notation has since emerged as the best 
choice in seismic processing for TI media with any mag- 

nitude of velocity variations. Indeed, Thomsen param- 

eters capture the combinations of the stiffness coeffi- 

cients constrained by seismic signatures (for details, see 
Tsvankin, 2005). In particular, P-wave kinematics for 

TI media with a given symmetry-axis orientation de- 

pend on just three Thomsen parameters (Vpo, €, and 

6; the contribution of Vso is negligible), rather than 

four stiffness coefficients (c11, ¢33, C13, and css). Thom- 

sen notation is especially convenient for reflection data 

processing because it greatly simplifies expressions for 

normal-moveout (NMO) velocity, quartic moveout coef- 
ficient, amplitude-variation-with-offset (AVO) response, 

and geometric spreading. Linearization of exact equa- 

tions in ¢, 6, and +y provides valuable insight into the in- 

fluence of transverse isotropy on seismic wavefields and 

helps guide inversion and processing algorithms. 

Moreover, the contribution of anisotropy to time- 

domain processing of P-wave reflection data for VTI 

media is absorbed by the single “anellipticity” parame- 

ter 7 close to the difference between « and 6 

In = (e— 6)/(1+26)] . 
The interval values of 7 and the NMO velocity for 
horizontal reflectors [Vamo(0)] are sufficient to perform 
normal-moveout and dip-moveout corrections, prestack 

and poststack time migration for VTI models with 

a laterally homogeneous overburden (Alkhalifah and 

Tsvankin, 1995). Most importantly, the time-processing 

parameters Vamo(0) and 7 can be estimated just from P- 
wave reflection traveltimes using NMO velocity of dip- 

ping events or nonhyperbolic moveout. 

The parameters required for P-wave imaging and 

AVO analysis in VTI media are listed in Table 1. 

Whereas € usually quantifies the magnitude of P-wave 

velocity variations, the parameters of more importance 

in seismic processing are 6 and 7. Laboratory mea- 

surements of the anisotropy parameters for sedimen- 

tary rocks from different regions are summarized by 

Wang (2002). Both rock-physics and seismic data indi- 
cate that vertical and tilted transverse isotropy in sedi- 

mentary basins are mostly associated with the intrinsic 

anisotropy of shales caused by aligned plate-shaped clay



Overview of seismic anisotropy 355 

  

  

  

  

  

Full set Depth imaging Time imaging AVO (intercept, gradient) 

Vpo Veo Vamo(0) Veo 

€orn €or7 n ~ 

6 6 - 6 

Vso - Vso 
  

Table 1. P-wave parameters for imaging and AVO analysis in VTI media. The parameter Vamo(0) = Vpp V1 + 26 is the NMO 

velocity for horizontal reflectors. 

particles. Many sedimentary formations including sands 

and carbonates, however, contain vertical or steeply dip- 

ping fracture sets and should be described by effective 

symmetries lower than TI, such as orthorhombic (see 
below). The effective anisotropy parameters are also in- 

fluenced by fine layering on a scale small compared to 

seismic wavelength (Backus, 1962). 
The principle of Thomsen notation has been ex- 

tended to orthorhombic (Tsvankin, 1997; 2005), mono- 
clinic (Grechka et al., 2000) and even the most general, 
triclinic (Mensch and Rasolofosaon, 1997) models. For 
instance, Tsvankin’s notation for orthorhombic media 

preserves the attractive features of Thomsen parame- 

ters in describing the symmetry-plane velocities, travel- 

times, and plane-wave reflection coefficients of P-, S:-, 

and Se-waves. It also reduces the number of parameters 

responsible for P-wave kinematics and provides a uni- 

fied framework for treating orthorhombic and TI models 

in parameter-estimation methods operating with wide- 

azimuth, multicomponent data (Grechka et al., 2005). 
Estimation of anisotropy from P-wave vertical seis- 

mic profiling (VSP) data acquired under a structurally 

complex overburden involves expressing the vertical 

slowness component in terms of the polarization direc- 

tion. This problem, discussed in more detail below, leads 

to the definition of Thomsen-style anisotropy parame- 

ters specifically tailored to VSP applications (Grechka 

and Mateeva, 2007; Grechka et al., 2007). 

Furthermore, Thomsen notation has been general- 

ized for attenuative TI and orthorhombic media in order 

to facilitate analytic description and inversion of body- 

wave attenuation coefficients (Zhu and Tsvankin, 2006, 

2007). For a model with VTI symmetry of both the real 
and imaginary parts of the stiffness matrix, this notation 

(in addition to Thomsen’s velocity-anisotropy parame- 

ters) includes the vertical attenuation coefficients of P- 
and S-waves (Apo and Aso) and three dimensionless pa- 
rameters (€,, 6g, and 7.) responsible for attenuation 
anisotropy. Linearization of the P-wave phase attenua- 

tion coefficient in the anisotropy parameters yields an 

expression that has exactly the same form as Thom- 

sen’s (1986) weak-anisotropy approximation for P-wave 
phase velocity. 

Whereas the optimal choice of notation is a pre- 

requisite for successful anisotropic parameter estimation 

and processing, it is also important in forward modeling, 

which is discussed next. 

3 FORWARD MODELING OF BODY 
WAVES 

The ability to compute synthetic seismograms has al- 

ways been a high priority in geophysics since accu- 

rate forward modeling can be a valuable aid in seis- 

mic interpretation and inversion. Unfortunately, a fully 

anisotropic (triclinic) Earth is characterized by 21 stiff- 
ness coefficients (or Thomsen-style parameters) and 

density, all of which may vary in space. 

Full-waveform modeling can be implemented by 

solving the wave equation for a general 3D (an)elastic 
medium using numerical techniques such as finite- 

difference, finite-element, pseudospectral and spectral- 

element methods (Kosloff and Baysal, 1982; Virieux, 

1986; Komatitsch and Tromp, 1999). Although orig- 
inally many of these approaches were developed for 

isotropic media, most have been extended to handle 

anisotropic, anelastic media (Carcione et al., 1988; Ko- 

matitsch et al., 2000); for a recent review, see Carcione 

et al. (2002). 
Despite the constantly increasing computational 

power, full anisotropic (i.e., with 21 stiffnesses) model- 
ing using the above techniques is still rarely attempted 

due to the scale of the problem and staggering number of 
possible models. In practice three avenues are commonly 

explored to facilitate interpretation and reduce compu- 

tation demands: (i) simplifications to theory; (ii) re- 
duction of information content in the acquired data; 

and (iii) limitations to considered structures, anisotropic 
symmetries, and/or medium types. For instance, seismic 

waves are often represented through rays, thereby in- 

voking a high-frequency approximation (simplifications 

to theory). Also, one can choose to analyze traveltimes 

and/or amplitudes only (reduction in information con- 
tent), treat only specific types of anisotropy, assume 

that wave motion can be described by P-wave propa- 

gation in acoustic media, and/or impose lateral conti- 

nuity and consider only vertically heterogeneous struc-



396 =I. Tsvankin, et al. 

tures (constraints on media and/or structures). Obvi- 
ously, several approaches can be combined to develop 

an appropriate interpretation strategy. 

The earliest efforts to compute body-wave synthet- 

ics in anisotropic media focused on either simulation of 

full waveforms for simple models with at most one in- 

terface (Buchwald, 1959; Lighthill, 1960) or traveltime 

calculations by means of geometric ray theory (Vlaar, 

1968; Cerveny, 1972). The former efforts were motivated 

by the development of ultrasonic techniques for the mea- 

surement of dynamic elastic constants of pure crystals 

and metals (Musgrave, 1970; Auld, 1973). The latter 

approach was largely directed at explaining and under- 

standing anomalous body-wave properties observed in 

refraction experiments and seismic arrays (Hess, 1964). 
The ray method is a far-field, high-frequency, 

asymptotic approximation, which can handle later- 

ally and vertically heterogeneous anisotropic media un- 

der the assumption that the medium parameters vary 

smoothly on the scale of wavelength. In addition to 

being much less computationally intensive than finite- 

difference schemes and similar numerical methods, ray 

theory makes it possible to model individual wave types 

rather than the whole wavefield. Ray tracing can be used 
to generate both traveltimes and amplitudes; yet serious 

difficulties arise (especially for amplitude computations) 
near singular areas, such as caustics, cusps and conical 

points on the wavefronts, shadow zones, and propaga- 

tion directions for which the velocities of the split S- 

waves are close (Gajewski and PSenéik, 1987). Some of 
these problems are related to wavefront folding when 

many rays pass through a common focal point or focal 
line — a phenomenon that complicates the evaluation 

of geometric spreading. Geometric ray theory also ex- 

cludes head waves. Despite its limitations, ray theory 

is still at the heart of many migration algorithms that 

employ ray tracing for efficient generation of traveltime 

tables. A more detailed discussion of ray theory can be 

found in the paper by Carcione et al. (2002) and mono- 

graphs by Cerveny (2001) and Chapman (2004). 
The reflectivity method takes an alternative avenue 

to compute full-waveform synthetics in laterally homo- 

geneous media (Kennett, 1983). The technique is based 

on plane-wave decomposition of point-source radiation 

combined with the solution of the plane-wave reflec- 

tion/transmission problem for layered media obtained 

using so-called “propagator matrices” (Haskell, 1953; 

Gilbert and Backus, 1966). It can model both kinematic 
and dynamic properties of recorded wavefields includ- 

ing all primary and multiple reflections, conversions and 

head waves, as long as the 1D assumption (i-e., the elas- 

tic properties vary only with depth) is satisfied (Fuchs 
and Miiller, 1971; Kennett, 1972). The anisotropic re- 

flectivity method, originally developed for VTI mod- 

els and symmetry-plane wave propagation (Keith and 

Crampin, 1977; Booth and Crampin, 1983), has been 

extended to azimuthally anisotropic media (Fryer and 

Frazer, 1984; Tsvankin and Chesnokov, 1990). 

Despite its 1D model assumption, the reflectivity 

method has proved to be a valuable tool for under- 

standing and interpreting wave-propagation phenom- 

ena in both VSP and surface-seismic acquisition geome- 

tries. For instance, Mallick and Frazer (1991) employ 
this technique to study P-wave amplitude variations 

with offset and azimuth in a medium containing verti- 

cal fractures and demonstrate how azimuthal amplitude 

anomalies can help reveal fracture orientation. 

4 P-WAVE VELOCITY ANALYSIS AND 
IMAGING 

Most isotropic time- and depth-migration algo- 

rithms {Kirchhoff, Stolt, phase-shift, phase-shift-plus- 

interpolation (PSPI), Gaussian beam, finite-difference, 
etc.] have been generalized for VTI and, in many cases, 

TTI media (e.g., Sena and Tokséz, 1993; Anderson et 

al., 1996; Alkhalifah, 1997; Ren et al., 2005; Zhu et al., 

2007a). The key issue in anisotropic processing, how- 

ever, is reliable estimation of the velocity model from 

reflection data combined with borehole and other infor- 

mation. The parameter 7 responsible for time process- 

ing in VTI media can be obtained by inverting either 

dip-dependent NMO velocity or nonhyperbolic (long- 

spread) reflection moveout (Alkhalifah and Tsvankin, 
1995; Alkhalifah, 1997; Toldi et al., 1999; Fomel, 2004; 

Tsvankin, 2005; Ursin and Stovas, 2006). Then the n- 
field can be refined in the migrated domain using mi- 
gration velocity analysis (Sarkar and Tsvankin, 2004) or 

reflection tomography (Woodward et al., 2008). 
Building VTI velocity models in the depth domain 

typically requires a priori constraints because the verti- 

cal velocity Vpo and the parameters ¢ and 6 can seldom 

be determined from P-wave reflection moveout alone. 

In many cases, Vpo is found from check shots or well 

logs at borehole locations and used in combination with 

the stacking (NMO) velocity to compute the parame- 
ter 6. Note that ignoring the contribution of 6 to NNO 

velocity in isotropic processing leads to misties in time- 

to-depth conversion. Then the velocity field can be con- 

structed by interpolating the parameters Vpo and 6 be- 

tween the boreholes and estimating 7 (and, therefore, 
€) from reflection data. Integration of seismic and bore- 
hole data can be facilitated by applying geologic con- 

straints in the process of interpretive model updating 

(Bear et al., 2005) or rec asting the generation of a dense 
anisotropic velocity field as an optimization problem. 

An efficient tool for building heterogeneous VTI mod- 

els is postmigration grid tomography based on iterative 

minimization of residual moveout after prestack depth 

migration (Woodward et al., 2008). 
Anisotropic migration with the estimated Thom- 

sen parameters typically produces sections with better 

focusing and positioning of reflectors for a wide range



of dips including steep interfaces, such as flanks of salt 

domes. The 2D line in Figure 1 is used by Alkhalifah 

et al. (1996) to illustrate the improvements achieved 
by anisotropic time processing in offshore West Africa 

where thick TI shale formations cause serious imaging 

problems (Ball, 1995). For example, VTI dip-moveout 
and poststack migration algorithms succeeded in imag- 

ing the fault plane at midpoint 7.5 km and depth 3 km 

(the right arrow in Figure 1b), which is absent on the 

isotropic section (Figure la). Also, the major fault plane 
between the midpoints at 2 km and 8 km (it stretches 
up and down from the middle arrow in Figures 1a,b) 

and gently dipping reflectors throughout the section ap- 

pear more crisp and continuous. Accurate fault imaging 

beneath the shales plays a major role in prospect iden- 

tification in the area. 

It is even more critical to properly account for 

anisotropy in prestack depth migration because the re- 

sults of prestack imaging are highly sensitive to the 
quality of the velocity model. The section in Figure 2b 

was produced by applying VTI migration velocity anal- 

ysis (MVA) and Kirchhoff prestack depth migration to 

the line from Figure 1 (Sarkar and Tsvankin, 2006). 
MVA was carried out by dividing the section into fac- 

torized VTI blocks, in which the parameters € and 6 are 

constant, while the velocity Vpo is a linear function of 

the spatial coordinates. Factorized VTI is the simplest 

model that allows for both anisotropy and heterogeneity 

and requires minimal a priori information to constrain 

the relevant parameters (Sarkar and Tsvankin, 2004). In 

the absence of pronounced velocity jumps across layer 

boundaries, knowledge of the vertical velocity at the 

top of a piecewise-factorized VTI medium is sufficient 

to estimate the parameters Vpo, €, and 6 along with the 

velocity gradients throughout the section using only P- 

wave data (Figures 3a,c,d). 
The velocity analysis revealed significant lateral ve- 

locity gradients in some of the layers (Figure 3a), which 
could not be handled by time-domain techniques. As 

a result, the depth-domain parameter estimation pro- 

duced a more reliable, laterally varying 7-field (Fig- 
ure 3b). The depth imaging facilitated structural inter- 

pretation of the deeper part of the section by remov- 

ing the false dips seen in Figure 2a. Also, most anti- 

thetic faults that look fuzzy on the time section are 

well focused, and subhorizontal reflectors within the 

anisotropic layers are better positioned and stacked. 

This and many other published case studies demon- 

strate that a major advantage of anisotropic depth 

imaging is in providing accurate well ties without sacri- 
ficing image quality. 

In tectonically active areas or in the presence of dip- 

ping fracture sets the symmetry axis of TI formations 

can be tilted, and the VTI model becomes inadequate. 

Tilted transverse isotropy is common in the Canadian 

Foothills, where shale layers are often bent and may 

have steep, variable dips (e.g., Vestrum et al., 1999). 
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Figure 1. Comparison between isotropic and VTI time 

imaging (after Alkhalifah et al., 1996, and Sarkar and 
Tsvankin, 2006). A 2D line from West Africa after (a) 

isotropic and (b) anisotropic time imaging. The processing 

sequence included NMO and DMO corrections and post- 

stack phase-shift time migration. Both time sections are 

stretched to depth. The arrows point to the main improve- 

ments achieved by taking anisotropy into account. 

Also, uptilted shale layers near salt domes may cause 

serious difficulties in imaging steeply dipping segments 

of the salt flanks (Tsvankin, 2005). A detailed descrip- 
tion of distortions caused by applying VTI algorithms 

to data from typical TTI media can be found in Behera 

and Tsvankin (2009), who extend MVA to TI models 
with the symmetry axis orthogonal to reflectors. In their 

case studies from the Gulf of Mexico, Huang et al. (2009) 
and Neal et al. (2009) demonstrate that accounting for 
the tilt of the symmetry axis produces significant im- 

provements in imaging of steep dips, fault resolution, 

and spatial positioning of reflectors. The inadequacy of 

VTI models for many subsalt plays in the Gulf of Mex- 

ico has become especially apparent with acquisition of 

wide-azimuth surveys. In complicated structural envi- 
ronments, the full benefits of TI imaging can be realized 

with reverse time migration (RTM) based on solving the 
two-way wave equation (Huang et al., 2009). RTM with 
TTI or VTI velocity models is already widely used in 

GoM subsalt imaging projects. 

Despite the recent successes, parameter estimation 

for heterogeneous TTI media remains a highly challeng- 

ing problem, even with the common assumption that the 

symmetry axis is orthogonal to reflectors. Methods cur- 

rently under development combine TI ray-based reflec- 

tion tomography with check shots and walkaway VSP
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Figure 2. Comparison between VTI time and depth imag- 
ing (after Sarkar and Tsvankin, 2006). The line from Figure 1 

after (a) anisotropic time processing (same as Figure 1b) and 
(b) anisotropic MVA and prestack depth migration. The ar- 

rows point to the main differences between the two sections. 

surveys (e.g., Bakulin et al., 2009). It is likely that pro- 
cessing of high-quality wide-azimuth surveys in some a 

reas will require employing more complicated (but more 

realistic), orthorhombic velocity models. A promising 

direction for high-resolution anisotropic velocity anal- 

ysis is full-waveform inversion, which so far has been 

developed mostly for acoustic models. 

5 SLOWNESS-BASED PROCESSING AND 
INVERSION 

Processing and inversion of surface seismic data is 

mostly done in the time-offset domain; yet other do- 

mains may offer advantages in terms of noise sup- 

pression and/or inversion for anisotropy parameters. 

It is especially beneficial to transform seismic data 

into the slowness domain, with applications as diverse 

as common-conversion-point sorting, anisotropy estima- 

tion, geometric-spreading correction, and amplitude and 

full-waveform inversion. 
Snell’s law states that the horizontal slowness p 

does not change along a ray in 1D models. This fact 

helps identify correlated pure-mode (PP) and converted 
(PS) reflections from the same interface that have com- 
mon downgoing P-wave ray segments (and, therefore, 

the same horizontal slownesses). Identification of com- 

mon ray segments leads to a straightforward common- 

conversion-point sorting scheme in both the time-offset 
and intercept time - horizontal slowness (r-p) domains 
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Figure 3. Estimated parameters (a) Vpo; (b) 7; (c) €; and 
(d) 6 used to generate the depth-migrated section in Fig- 
ure 2b (after Sarkar and Tsvankin, 2006).



(Van der Baan, 2005). In the presence of lateral and ver- 
tical velocity variations one can still identify PP and PS 
reflections with the same takeoff angles (i.e., the same 
horizontal slownesses) at the source by matching their 

time slopes in common-receiver gathers. This more gen- 

eral scheme called “PP+PS=SS” (discussed in more de- 
tail below) is designed to construct the traveltimes of 
pure-mode SS reflections solely from acquired PP- and 

PS-waves (Grechka and Tsvankin, 2002). 
Slowness-based traveltime inversion can also in- 

crease the accuracy of interval parameter estimation. 

Anisotropic traveltime inversion is often based on move- 

out approximations that become unnecessary if seismic 

data are processed by means of a plane-wave decom- 

position, such as the r-p transform. Indeed, plane-wave 

propagation is directly governed by phase rather than 

group velocities because the interval r(p) curves repre- 

sent rescaled versions of the slowness functions (Hake, 
1986). Note that phase velocities generally are less com- 

plex mathematically compared to group velocities. 

A t-p domain approach has been applied by Gaiser 

(1990) to analysis of VSP data, by Hake (1986) and 
Van der Baan and Kendall (2002, 2003) to inversion 
of reflections traveltimes, and by Mah and Schmitt 
(2003) to processing of ultrasonic measurements. Sim- 
ilar gains in accuracy can be obtained by formulat- 

ing slowness-based inversion algorithms directly in the 

time-offset domain (Douma and Van der Baan, 2008; 

Fowler et al., 2008; Dewangan and Tsvankin, 2006a; 

Wang and Tsvankin, 2009). It should be mentioned that 
the velocity-independent layer-stripping method of De- 

wangan and Tsvankin (2006a) is valid for an arbitrarily 
heterogeneous target horizon. An important feature of 
slowness-based algorithms is that they replace Dix-type 

differentiation of moveout parameters with traveltime 

stripping (Figure 4), which increases the accuracy and 
stability of interval parameter estimates. 

Plane-wave decomposition also represents a conve- 

nient tool for geometric-spreading correction in horizon- 

tally layered media. Indeed, plane waves in 1D mod- 

els are not subject to geometric spreading (in contrast 

to spherical waves); this is implicitly used in the re- 

flectivity method discussed above (Fuchs and Miller, 
1971; Kennett, 1983; Fryer and Frazer, 1984). Wang 

and McCowan (1989), Dunne and Beresford (1998) and 
Van der Baan (2004) explicitly employ plane-wave de- 

composition to remove the geometric-spreading factor 

from the amplitudes of all primary and multiple re- 

flections (including mode conversions) simultaneously. 

Subsequent moveout correction and stacking in the r- 

p domain (Stoffa et al., 1981, 1982) generates higher- 
quality stacked sections compared to those produced by 

the standard time-offset stacking process (Figure 5). In- 
terestingly, stacking in the slowness domain preserves 

head waves suppressed by conventional processing (Van 

der Baan, 2004). 
Finally, plane-wave decomposition may facilitate 
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amplitude analysis at far offsets near and beyond the 

critical angle, where the wavefield in the time-offset do- 

main cannot be described by plane-wave reflection co- 

efficients (Van der Baan, 2004; Van der Baan and Smit, 

2006; Tsvankin, 1995a). Thus, slowness-based_ process- 

ing and inversion has many advantages for data from 

anisotropic media. Indeed, it has been suggested in the 

literature that seismic inversion techniques should be 

applied to slant-stacked data obtained after a plane- 

wave decomposition (Miiller, 1971; Fryer, 1980; Trei- 

tel et al., 1982). This approach is also suitable for full- 

waveform inversion in stratified media (Kormendi and 
Dietrich, 1991; Martinez and McMechan, 1991; Ji and 

Singh, 2005) and separation of interfering PP and PS 
waves (Van der Baan, 2006). 

6 ANISOTROPY ESTIMATION FROM VSP 

DATA 

The concept of operating with slowness measurements 
is also essential in processing of vertical seismic profiling 

surveys. Although anisotropic velocity models have to 

be built based on surface reflection data for most appli- 

cations in seismic exploration, VSP can often provide 

useful complementary anisotropy estimates. Because 

those estimates are made at seismic frequencies, they 

have an important advantage over well-log anisotropy 

measurements, which pertain to the frequency range of 

10? — 10 Hz and require upscaling for use in seismic 

processing. The anisotropy parameters constrained by 

VSP data strongly depend on both the acquisition de- 

sign and the magnitude of lateral heterogeneity of the 

overburden. 

The simplest VSP experiment involves a single geo- 

phone placed in a well. First-break P-wave times picked 

from such VSP data reflect the influence of effective 

anisotropy between the earth’s surface, where the seis- 

mic sources are located, and the geophone’s depth. Be- 

cause this depth is known, P-wave walkaway VSP data 

(or the combination of surface reflection data and check 
shots) for laterally homogeneous VTI media yield the ef- 

fective Thomsen parameter 6. Whether or not it is pos- 

sible to estimate another anisotropy parameter (7 or €) 

governing P-wave kinematics depends on the presence 

of sufficiently large offsets in the data. While the useful- 

ness of such low-resolution anisotropy estimates might 

be questioned, P-wave traveltimes recorded in any VSP 

geometry help build an exact depth-migration operator 

suitable for constructing a subsurface image near the 

geophone. 

The opposite “end member” is a wide-azimuth, 

multicomponent VSP survey recorded by a string of geo- 

phones placed beneath a laterally homogeneous over- 

burden. Such VSP data make it possible to obtain a 

complete (triclinic) local stiffness tensor near the bore- 
hole. This is demonstrated by Dewangan and Grechka 

(2003) who apply the so-called slowness-polarization
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Figure 4. Layer stripping in the t-p domain (after Van der Baan and Kendall, 2002). A hyperbolic moveout curve in the 

time-offset domain maps onto an ellipse in the 7-p domain, and nonhyperbolic moveout manifests itself by a deviation from 

the ellipse. (a) Moveout curves in the 7-p domain are created by summing the contributions of the individual layers. Removing 

the influence of (b) the top layer or (c) the two top layers yields the moveout in the corresponding interval. The first and third 
layers are isotropic, whereas the second layer is anisotropic, as evidenced by the strong deviation of its interval moveout from 
an ellipse on plot (b). 
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Figure 5. Comparison of stacking techniques on field data (after Van der Baan, 2004). (a) A conventional t-x stacked section 

after the geometric-spreading correction. (b) The same section obtained by stacking in the t-p domain after applying plane-wave 
decomposition to remove geometric spreading. The two sections are structurally similar but 7-p processing produced a higher 
signal-to-noise ratio at small traveltimes and somewhat different reflector amplitudes between 1.3 s and 1.6 s. 

method (White et al., 1983; de Parscau, 1991; Hsu et al., 

1991; Horne and Leaney, 2000) to estimate anisotropy 

from the traveltimes and polarization directions of P-, 

S1-, and S2-waves recorded at Vacuum Field (New Mex- 
ico, USA). They conclude that the VSP measurements 
can be well-described by an orthorhombic model with 

a near-horizontal symmetry plane. Unfortunately, the 

slowness-polarization method can be successfully imple- 

mented only when lateral heterogeneity of the overbur- 

den is negligible. Then the horizontal slowness compo- 
nents, which are measured on common-receiver gathers 

and pertain to seismic sources at the earth’s surface, can 

be used to reconstruct the slowness surface at geophone 

locations (Gaiser, 1990; Miller and Spencer, 1994; Jilek 

et al., 2003). 

Strong lateral heterogeneity (for instance, due to 

the presence of salt in the overburden) renders recon- 
struction of the slowness surfaces inaccurate and of- 

ten makes shear-wave arrivals too noisy for anisotropic 

inversion. Consequently, anisotropy has to be inferred 

from P-waves only, which leads to the introduction of 

Thomsen-style parameters for P-wave VSP inversion.
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Figure 6. Comparison of (a) the anisotropy parameter 4 vsp (bold line) estimated from VSP for subsalt sediments in the Gulf 

of Mexico with (b) a gamma-ray log (after Grechka and Mateeva, 2007). The thin lines on plot (a) mark the standard deviation 

of dvsp. 

The measured quantities include the P-wave vertical 

slowness component, g, expressed as a function of the 

polar (zy) and azimuthal (y) angles of the polarization 
vector. The values of g, w, and y do not depend on the 

structural complexity of the overburden and correspond 

to the vicinity (with the spatial extent approximately 

equal to the wavelength) of downhole geophones. If the 

medium around the borehole is VTI, the vertical slow- 

ness q is independent of the polarization azimuth y, 

and the weak-anisotropy approximation for g({w) takes 
the form (Grechka and Mateeva, 2007) 

cos w   q() = =;— (1 + Svsp sin?) + nvsp sin’), — (1) Po : 
where 

dvsp 8 and 
(Vp0/Vso)? — 1 

nvsp = 17 (vP0/Vs0)? +1 (2) 
(Vpo/Vso)? — 1 

are the anisotropy parameters responsible for the P- 

wave slowness-of-polarization dependence. 

The pairs {6vsp, nvsp} and {6, 7} play compara- 
ble roles for processing of P-wave VSPs acquired along 

vertical boreholes and of P-wave surface reflection data, 

respectively, in VTI media. Indeed, equation 1 reveals 

that 6 vsp is responsible for the near-vertical variation of 

q(w), while 7vsp governs the vertical slowness at larger 

polarization angles. Importantly, dvsp and 7 vsp absorb 

the shear-wave velocity Vso, rendering its value unneces- 

sary for fitting the P-wave slowness-of-polarization func- 

tions. Grechka and Mateeva (2007) illustrate this point 
and present estimates of dvsp and nvsp in a salt body 

and subsalt sediments in the deepwater Gulf of Mexico. 

Wheras the salt proved to be nearly isotropic, dvsp in 

the subsalt sediments exhibits a clear correlation with 

lithology (Figure 6). As is usually the case for the pa- 
rameter 6, the value of dvsp is larger in shales than in 
a predominantly sandy interval. 

This technique of anisotropy estimation from P-
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wave VSP surveys has been extended to azimuthal 

anisotropy. For example, Grechka et al. (2007) invert 
wide-azimuth VSP data acquired at tight-gas Rulison 

Field (Colorado, USA) for Tsvankin’s (1997) parame- 
ters of orthorhombic media and show that the estimated 

anisotropic model is consistent with the presence of gas- 

filled vertical fractures in a VTI host rock. 

7 AZIMUTHAL MOVEOUT ANALYSIS 

Azimuthal variation of traveltimes, amplitudes, and at- 

tenuation coefficients of reflected waves can provide 

valuable information about anisotropy associated with 

natural fracture systems, nonhydrostatic stresses, or 

dipping TI layers (e.g., Lynn et al., 1999; Riiger, 2002). 
Wide-azimuth P-wave data are often acquired on land 

for purposes of fracture characterization via azimuthal 

moveout and AVO analysis. The rapid advent of wide- 

azimuth offshore technology, designed primarily for bet- 

ter imaging of subsalt exploration targets, is expected to 

further stimulate development of processing algorithms 

for azimuthally anisotropic models. 

Moveout analysis of wide-azimuth, conventional- 

spread data is based on the concept of the NMO ellipse 

and on the generalized Dix-type averaging equations 

(Grechka and Tsvankin, 1998; Grechka et al., 1999). 

The normal-moveout velocity of pure (non-converted) 
reflected waves expressed as a function of the azimuth 

a of the CMP line is given by the following quadratic 

form: 

Vinea(@®) = Whiicos?a + 2Wi2 sina cosa 

+ Wee sin? a ; (3) 

where W is a symmetric 2x2 matrix determined by 

the medium properties around the zero-offset ray. If the 

traveltime increases with offset in all azimuthal direc- 

tions (i.e., in the absence of reverse move out), Vamo(a) 
traces out an ellipse even for arbitrarily anisotropic, 

heterogeneous media. Furthermore, equation 3 can be 
applied to mode-converted waves, if their moveout in 

CMP geometry is symmetric with respect to zero offset 

(this is the case for horizontally layered models with a 

horizontal symmetry plane). 

The equation of the NMO ellipse provides a simple 

way to correct for the azimuthal variation in stacking 

velocity often ignored in conventional processing. Even 

more importantly, the semiaxes and orientation of the 

NMO ellipse can be used in anisotropic parameter esti- 

mation and fracture characterization. A critical issue in 

moveout analysis of wide-azimuth data is separation of 

the influence of anisotropy and lateral heterogeneity (in 

the form of velocity gradients, dipping interfaces, veloc- 

ity lenses, etc.) on reflection traveltimes (e.g., Jenner, 

2009). 
A data-driven correction of the NMO ellipse for lat- 

eral velocity variation in horizontally layered media is 

suggested by Grechka and Tsvankin (1999), who present 
a complete processing sequence for azimuthal moveout 

inversion that also includes 3D “global” semblance anal- 

ysis and generalized Dix differentiation of effective NMO 
ellipses. They show that the orientation of the P-wave 
interval NMO ellipses produced by this methodology 

in the Powder River Basin (Wyoming, USA) is well- 

correlated with the depth-varying fracture trends in the 

field. 
P-wave azimuthal moveout analysis has proved to 

be effective in predicting the dominant fracture orien- 

tation in many other exploration regions (e.g., Corrigan 

et al., 1996; Lynn et al., 1999; Tod et al., 2007). Jen- 

ner (2001), who has developed a trace-correlation ap- 
proach for estimating the NMO ellipse, shows that the 

fast NMO-velocity direction at Weyburn field in Canada 

is aligned with the dominant fracture strike and the po- 

larization vector of the fast S-wave; this implies that 

the medium symmetry is HTI or orthorhombic. Still, in 

some cases the NMO ellipse is rotated with respect to 

the shear-wave polarization directions, which may indi- 

cate the presence of lower symmetries. 

Since the P-wave NMO ellipse constrains only three 

combinations of the medium parameters, its inversion 

for the physical properties of fractures (e.g., fracture 

compliances) suffers from ambiguity, which can be re- 

duced by using the NMO ellipses of the split S-waves, 

nonhyperbolic moveout, or other (amplitude, borehole) 
information. For instance, joint inversion of the NMO el- 

lipses of P- and S-waves with a priori constraints helps 

build even orthorhombic and monoclinic velocity models 

(Grechka et al., 2000; Vasconcelos and Grechka, 2007); 
more details are given in the section on fracture charac- 
terization. 

Among the first to recognize the benefits of em- 

ploying nonhyperbolic (long-spread) reflection moveout 

in anisotropic parameter estimation was Sena (1991), 

whose analytic traveltime expressions for multilayered, 

weakly anisotropic media are based upon the “skewed” 

hyperbolic moveout formulation of Byun et al. (1989). 
Long-spread, wide-azimuth P-wave traveltime in az- 
imuthally anisotropic media can be accurately described 
by generalizing the nonhyperbolic moveout equations 

of Tsvankin and Thomsen (1994) and Alkhalifah and 
Tsvankin (1995) originally designed for VTI media. 
Vasconcelos and Tsvankin (2006) develop a moveout- 
inversion algorithm for horizontally layered orthorhom- 

bic media based on the extended Alkhalifah-Tsvankin 

equation: 

x 

Vina) 
_ 2n(a) x4 

Vitmo(@) [ t§ Vitmo(@) + (1 + 2n(a)) x?] ’ 
where to is the zero-offset time, Vamo(a) is the NMO 
ellipse (equation 3), and 7(a) is the azimuthally vary- 
ing anellipticity parameter. Equation 5 can be combined 

V(z,e) = t+ 

 



with the velocity-independent layer-stripping method 

(Dewangan and Tsvankin, 2006a) to compute the in- 
terval traveltime in the target layer and estimate the 

interval NMO ellipse and anellipticity parameters 7“, 

7, and 7 (Wang and Tsvankin, 2009). Nonhyper- 
bolic moveout inversion of wide-azimuth data not only 

represents a promising fracture-characterization tech- 

nique (see the case study in Vasconcelos and Tsvankin, 

2006), but also provides the input parameters for P- 

wave time imaging and geometric-spreading correction 

in layered orthorhombic media. 

8 PRESTACK AMPLITUDE ANALYSIS 

Angle-dependent reflection and transmission coefficients 
contain valuable information about the local medium 

properties on both sides of an interface. Therefore, 

analysis of amplitude variations with incidence angle 

(usually called AVO — amplitude variation with offset) 
and/or azimuth is often used in reservoir characteriza- 
tion. Because reflection coefficients are determined by 

the elastic properties averaged on the scale of seismic 

wavelength, AVO analysis can achieve a much higher 

vertical resolution than traveltime methods. 

Exact equations for plane-wave reflection coeffi- 

cients are cumbersome even for isotropy and, therefore, 

rarely used in processing. Whereas exact reflection co- 

efficients for VTI media and symmetry planes of or- 

thorhombic media can still be obtained in closed form 

(Daley and Hron, 1977; Riiger, 2002), for lower sym- 

metries it is necessary to apply computational schemes 

(e.g., Fryer and Frazer, 1984; Jilek, 2002a,b). Impor- 

tant insight into anisotropic reflectivity is provided by 

linearized weak-contrast, weak-anisotropy approxima- 

tions, which have a much simpler form and often reduce 

the number of free parameters. The approximate P-wave 

reflection coefficient for VTI media depends on the con- 

trasts in the vertical P- and S-wave velocities (Vpo and 

Vso), density, and the parameters 6 and € (Banik, 1987; 

Thomsen, 1993; Riiger, 1997). Although the contribu- 

tion of 6 distorts the AVO gradient, the P-wave AVO 

signatures in isotropic and VTI media are generally sim- 

ilar, which complicates amplitude inversion for the five 

independent parameters. Indeed, as shown by de Nico- 

lao et al. (1993), only two parameters can be resolved 
from the isotropic reflection coefficient. 

Analysis of azimuthal amplitude variations shows 

considerably more promise, in particular for estima- 

tion of dominant fracture directions in naturally frac- 

tured (e.g., tight-gas and tight-oil) reservoirs (Mallick 
and Frazer, 1991; Gray et al., 2002). Linearized P- 
wave reflection coefficients were derived for HTI media 

and symmetry planes of orthorhombic media by Riiger 

(1997, 1998) and for arbitrary anisotropy by Vavryéuk 

and Pgenéik (1998); for details, see Riiger’s (2002) com- 
prehensive monograph. Application of these analytic ex- 

pressions in quantitative AVO inversion, however, is hin- 
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dered by nonuniqueness in parameter estimation. In- 

stead, it is more common to reconstruct the azimuthal 

variation (which is close to elliptical) of the magni- 
tude of the AVO gradient (Gray et al., 2002; Hall and 

Kendall, 2003). For HTI and orthorhombic media, the 
extrema of the AVO gradient lie in the orthogonal ver- 

tical symmetry planes of the model. 

If azimuthal anisotropy is caused by one set of verti- 

cal fractures, the maximum AVO gradient may be either 

parallel or perpendicular to the fractures, which gener- 

ally leads to a 90°-uncertainty in the fracture azimuth. 

Despite this ambiguity, the azimuthally varying P-wave 

AVO response has been successfully used for estimating 

the dominant fracture orientation and, in some cases, 

mapping “sweet spots” of intense fracturing (e.g., Gray 

et al., 2002; Gray and Todorovic-Marinic, 2004; Xu and 

Tsvankin, 2007). For instance, Hall and Kendall (2003) 
demonstrate that the direction of the minimum AVO 

gradient at Valhall field is well-aligned with faults in- 
ferred from coherency analysis (Figure 7). 

For HTI and orthorhombic media with a single 

fracture set, the difference between the symmetry-plane 

AVO gradients is proportional to the fracture density 

(which is close to the shear-wave splitting parameter) 
and also depends on the fracture infill (Riiger, 2002). 

Therefore, even for such simple models the inversion 

of the P-wave AVO gradient for the fracture proper- 

ties is generally nonunique. In principle, fracture den- 

sity and saturation can be constrained by combining 

the P-wave AVO response and NMO ellipse, but this 

approach is applicable only to relatively thick, weakly 

heterogeneous reservoirs (e.g., Xu and Tsvankin, 2007). 
Additional complications may be caused by multiple 

fracture sets (which lower the symmetry to at least or- 

thorhombic) and the presence of fractures on both sides 
of the target reflector. For such realistic fractured reser- 

voirs, it is highly beneficial to employ multicomponent 

data in azimuthal AVO analysis (Bakulin et al., 2000; 

Jilek, 2002a,b; DeVault et al., 2002). In particular, Jilek 

(2002b) presents a methodology for joint nonlinear AVO 
inversion of wide-azimuth PP and PS reflections for TI 

and orthorhombic media. 

Another interesting possibility is to combine az- 

imuthal AVO and attenuation analysis, which helps re- 

move the uncertainty in estimating the fracture ori- 

entation for HTI media (Clark et al., 2009). Fur- 
thermore, body-wave attenuation coefficents are highly 

sensitive to anisotropy and fracturing and may po- 

tentially provide powerful fracture-characterization at- 

tributes (Chapman, 2003; Zhu et al., 2007b; Chichin- 

ina et al., 2009; Maultzsch et al., 2009). On the other 

hand, in some cases azimuthally varying attenuation (if 

unaccounted for) may distort the AVO signature. Effi- 

cient velocity-independent techniques for estimating in- 

terval offset- and azimuth-dependent attenuation from 

frequency-domain reflection amplitudes are suggested 

by Behura and Tsvankin (2009) and Reine et al. (2009).
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Figure 7. Application of P-wave azimuthal AVO analysis 

to fracture detection at Valhall field (after Hall and Kendall, 
2003). The fracture azimuths (ticks) estimated from the az- 

imuthally varying AVO gradient for the top-chalk horizon 
are compared with interpreted fault traces. Note the gen- 

eral alignment of fractures with large-scale faulting, espe 
cially near the faults trending from northwest to southeast. 

In the southeast corner, fractures also appear to be perpen- 

dicular to the surface curvature defined by the time contours 

(the contours are plotted at 20-ms intervals, with the red 
color indicating deeper areas). 

AVO analysis is designed to operate with the plane- 

wave reflection coefficient at the target interface. The 

recorded amplitude of reflected waves, however, also de- 

pends on the source/receiver directivity and such propa- 

gation factors as geometric spreading, transmission co- 

efficients, and attenuation (Martinez, 1993; Maultzsch 

et al., 2003). Anisotropic layers in the overburden focus 

or defocus seismic energy like an optical lens, thus dis- 

torting the amplitude distribution along the wavefront 
and causing pronounced angle variations of geometric 

spreading (Tsvankin, 1995b, 2005; Stovas and Ursin, 

2009). In that case, robust reconstruction of the angle- 
dependent reflection coefficient requires an anisotropic 

geometric-spreading correction. 

Geometric spreading in the time-offset domain is 
related to the convergence or divergence of ray beams 

(Gajewski and PSenéik, 1987) and, therefore, can be 
computed directly from the spatial derivatives of trav- 

eltime (Vanelle and Gajewski, 2003). This ray-theory 
result is exploited in the moveout-based geometric- 

spreading correction devised for horizontally layered 

VTI models by Ursin and Hokstad (2003) and extended 
to wide-azimuth, long-spread PP and PS data from az- 

imuthally anisotropic media by Xu and Tsvankin (2006, 

2008). In particular, this correction has proved to be es- 

sential in azimuthal AVO analysis of reflections from the 

bottom of relatively thick fractured reservoirs (Xu and 
Tsvankin, 2007). 

On the whole, recent developments have laid the 

groundwork for transforming anisotropic AVO analysis 

into a valuable reservoir-characterization tool. 

9 PROCESSING AND APPLICATIONS OF 
MULTICOMPONENT DATA 

Early applications of shear-wave seismology had to cope 

with erratic and unpredictable data quality and misties 

between SS-wave reflections at the intersection of 2D ac- 

quisition lines (Lynn and Thomsen, 1986; Willis et al., 

1986). This caused serious difficulties in generating in- 
terpretable shear-wave sections and using multicompo- 

nent data in lithology discrimination and fracture char- 
acterization. Alford (1986) suggested that these prob- 
lems are related to shear-wave splitting due to azimuthal 

anisotropy and proposed simple rotation operators to 

transform SS data into two principal sections contain- 

ing the fast and slow modes. Likewise, Martin and Davis 

(1987) discuss the need to rotate converted PS-waves 
acquired for fracture-characterization purposes at Silo 

Field (Colorado, USA). 
Shear waves in anisotropic media exhibit birefrin- 

gence (shear-wave splitting) and travel as two separate 
modes with different velocities and orthogonal (for the 
same phase direction) polarizations. If the medium is 

HTI or orthorhombic with a horizontal symmetry plane, 

the vertically traveling split S-waves are polarized in the 

symmetry planes of the model. The magnitude of shear- 

wave splitting at vertical incidence is described by the 

parameter +5), which is close to the fractional differ- 

ence between the velocities of the fast (Si) and slow 
(Sz) modes and can be estimated as y‘%) = (t, —ty)/ty, 
where ¢, and ty are the traveltimes of the waves Sz and 
$1, respectively. After separating the split shear waves 

on prestack data, it may be possible to evaluate their 

NMO ellipses and AVO signatures. 

9.1 Pure-mode SS-waves 

Processing surface shear-wave data for azimuthal 

anisotropy analysis has primarily involved 1D compen- 

sation for splitting at near-vertical propagation direc- 

tions. Alford’s (1986) rotation algorithm operates on 
four-component, stacked (supposed to be equivalent to 

zero-offset) data excited by two orthogonal sources and 

recorded by two orthogonal receivers. Data can be ac- 

quired on a 2D line, with sources and receivers oriented 

parallel (inline) and perpendicular (crossline) to the ac- 
quisition azimuth. The four recorded S-wave displace- 

ment components can be represented in the form of the 

following 2 x 2 matrix: 

Dxx Dxy 
D= 

( Dyx Dyy ) , (5) 

where X denotes inline and Y crossline; the first letter 

in the subscript refers to the source orientation, and the 

second letter to the receiver orientation. Prestack shear- 

wave data depend on the anisotropic velocity field and 

have polarization properties controlled by the azimuth 

of the line with respect to the symmetry planes. How- 

ever, stacking or performing AVO inversion of 4C data
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Figure 8. (a) Polarization azimuth of the PS;-wave and (b) the shear-wave splitting coefficient (in percent) above the Gessoso 

Solfifera formation at Emilio Field (after Gaiser et al., 2002). The north direction is rotated about 15° clockwise. 

can provide an estimate of the difference between the 

normal-incidence reflection coefficients (i.e., AVO inter- 
cepts) of the split S-waves, which is governed by the 

parameter >) regardless of the original propagation 

azimuth. 

Thus, even for 2D acquisition geometry, pure 

shear modes can yield information about azimuthal 

anisotropy. When the acquisition line is parallel to a 

vertical symmetry plane and the medium is laterally 

homogeneous, no reflection energy should be present 

on the off-diagonal components in equation 5. Out-of- 

plane (obliquely oriented) lines, however, may contain 
significant coherent energy on Dxy and Dy x. Alford’s 

(1986) 4C operator simultaneously rotates the sources 
and receivers in order to estimate the symmetry-plane 

azimuths and traveltime difference between the fast and 

slow S-waves: 

D’=R;5DRi, (6) 

where R is a 2x2 matrix of rotation around the vertical 

axis for sources (Rs) and receivers (Rx), and T denotes 
transpose. Rotation is applied to each CDP consisting 

of a 4C group of traces. For a certain rotation angle 

that corresponds to the minimum energy on the off- 

diagonal components Dy and Dy x, the data appear 

as if they were acquired in one of the symmetry planes. 

This means that the diagonal components, Dx and 

Dy, correspond to the fast and slow shear waves and 

can be processed to estimate the splitting coefficient. 

The 4C rotation dramatically improves the quality 

of shear-wave reflection data and makes them suitable 

for lithology discrimination (Alford, 1986). By combin- 

ing Alford rotation of VSP data with layer stripping, 

Winterstein and Meadows (1991) evaluate S-wave split- 
ting related to in-situ stress and fractures at Cymric 

and Railroad Gap oil fields (California, USA). Whereas 
Alford’s method assumes the principal anisotropy direc- 

tions (i-e., the azimuths of the symmetry planes) to be 
invariant with depth, Winterstein and Meadows (1991) 
identify well-resolved, abrupt changes in the splitting 

coefficient at several depth levels that could be im- 

portant for reservoir characterization. Thomsen et al. 

(1999) extend the layer-stripping technique to reflected 

S-waves and discuss the analytic basis for separating the 

split shear modes on both 4C and 2C (single-source) 
data. 

There have been numerous successful applications 

of shear-wave splitting for purposes of fracture charac- 

terization (e.g., Mueller, 1990; Crampin, 2003; Vascon- 

celos and Grechka, 2007). Traveltime and amplitude dif-
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ferences between the fast and slow shear waves, as well 

as their NMO ellipses, can help estimate fracture ori- 

entation, density and, in some cases, make inferences 

about fluid saturation. Also, Angerer et al. (2000) show 
that shear-wave splitting is a more sensitive time-lapse 

(4D) indicator of pressure changes in response to CO2 
injection than P-wave velocities. Their synthetic seis- 
mograms based on the anisotropic poroelastic theory of 

Zatsepin and Crampin (1997) match stacked data before 
and after injection. Terrell et al. (2002) arrive at sim- 
ilar conclusions in their time-lapse study of CO2 flood 

at Weyburn Field in Canada. There is little doubt that 

moveout and amplitude inversion of multicomponent, 

multiazimuth data offers the best hope of estimating 
the anisotropy parameters of subsurface formations. 

9.2 Mode-converted PS-waves 

The majority of multicomponent surveys is acquired 

without shear-wave sources, so the reflected wave- 

field is largely composed of compressional waves and 

mode-converted PS-waves. The most prominent P-to- 

S conversion typically happens at the reflector; such 

PS events are sometimes called “C-waves” (Thomsen, 
1999). For horizontally layered, azimuthally isotropic 

media converted PS-waves are polarized in the incidence 

(sagittal) plane (i.e., they result from P-to-SV conver- 
sion). However, if the incident P-wave propagates out- 

side vertical symmetry planes of azimuthally anisotropic 

media, the reflected PS-wave splits into the fast (PS:) 
and slow (PS2) modes, neither of which is generally po- 

larized in the sagittal plane (e.g., Jilek, 2002a). 

An important processing step for mode conversions 

in the presence of azimuthal anisotropy is rotation of 

receiver directions from an acquisition coordinate sys- 

tem to a source-centered, radial and transverse coordi- 

nate system (Gaiser, 1999). This procedure reveals az- 

imuthal traveltime variations of PS:- and PS2-waves on 

the stacked radial components, as well as polarity rever- 

sals in the principal anisotropy directions on the stacked 

transverse components (Li and MacBeth, 1999). 
Similar to pure-mode SS reflections, the fast and 

slow PS-waves have to be separated for further pro- 

cessing. The feasibility of PS-wave splitting analysis is 

demonstrated by Garotta and Granger (1988) who an- 
alyze the amplitude ratios of the transverse and radial 
components and apply 2C rotation and layer stripping. 

Gaiser (1997) shows that Alford rotation and layer strip- 
ping (a method similar to that of Winterstein and Mead- 

ows, 1991), are applicable to PS-waves in reverse VSP 

geometry. His technique operates with 4C data from 

equation 5 where the two rows correspond to source- 

receiver azimuths 90° apart. The principle of Alford ro- 

tation is extended to wide-azimuth PS-wave surveys by 

Dellinger et al. (2002) who replace stacking of PS; and 
PS2 reflections with an appropriately designed tensor 

migration. Their results from Valhall Field are mixed, 

which suggests that azimuthal and lateral velocity varia- 

tions may seriously complicate PS-wave processing. Re- 

cently there has been renewed interest in developing a 

more formal inversion approach to the PS-wave layer- 

stripping problem where the objective function is for- 

mulated in terms of the PS,-wave polarization azimuth 

and the traveltime difference between the split PS-waves 

(e.g., Bale et al., 2009; Haacke et al., 2009; Simmons, 

2009). 
In addition to such well-documented applications as 

imaging beneath gas clouds and lithology discrimina- 

tion, mode-converted data provide valuable attributes 

for fracture/stress characterization (Gaiser, 2000). Af 
ter performing layer stripping of 3D ocean-bottom-cable 
(OBC) PS-wave data over Valhall Field, Olofsson et 
al. (2002) describe a dramatic “ring of anisotropy” in 

the overburden where the PSi-wave is polarized trans- 

versely around the production platform. The correla- 

tion of this anisotropy pattern with sea-floor subsidence 

caused by the reservoir collapse after years of production 

suggests that shear waves are highly sensitive to local, 

deformation-induced stresses. Sensitivity of the polar- 

ization direction of the PS;-wave to local stresses over 

anticlines has also been observed at. Emilio Field in the 

Adriatic Sea (Gaiser et al., 2002), and at Pinedale Field 
in Wyoming, USA (Gaiser and Van Dok, 2005). As il- 
lustrated by Figure 8, the PS,-wave at Emilio Field is 

polarized parallel to the crest of a doubly plunging anti- 

cline (thick black arrows), where anisotropy is generally 

higher. 

Finally, it is important to note that the moveout 

asymmetry of PS-waves (i.e., their traveltime generally 

does not stay the same when the source and receiver are 

interchanged) helps constrain the parameters of tilted 

TI media (Dewangan and Tsvankin, 2006b) and char- 
acterize dipping (non-vertical) fracture sets (Angerer et 
al., 2002). 

9.3 Joint processing of PP and PS data 

Conventional isotropic processing of high-quality mul- 

ticomponent offshore OBC surveys routinely produces 

depth misties between PP and PS sections, in large part 

due to the strong influence of anisotropy on PS-wave 

moveout. The high sensitivity of mode conversions to 
anisotropy represents an asset for joint anisotropic in- 

version of PP and PS data (e.g., Grechka et al., 2002a; 

Foss et al., 2005). For example, the parameters Vpo, «, 

and 6 influence the kinematics of both P- and SV-waves 

in TI media, which underscores the importance of mul- 

ticomponent data in anisotropic velocity analysis. 

Widespread use of converted waves, however, is 

hindered not just by the higher acquisition cost of 

multicomponent surveys, but also by difficulties in 

PS-wave processing. Such properties of mode conver- 

sions as moveout asymmetry, reflection point disper- 

sal, and polarity reversals present significant challenges
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Figure 9. Common-conversion-point stacks of PSV-waves 

for a 2D line above the Siri reservoir in the North Sea (af- 
ter Grechka et al., 2002b). Acquired PP- and PSV-waves 

were processed using the PP-+-PS=SS method to compute the 

traveltimes of the corresponding SS (SVSV) reflections. The 

section on the left was computed with a VTI velocity model 
obtained from stacking-velocity tomography of the recorded 

PP-waves and constructed SS-waves. The section on the right 

was produced without taking anisotropy into account. 

for velocity-analysis and imaging algorithms. These 

problems motivated the development of the so-called 

“PP+PS=SS” method designed to construct primary 

SS (in general, both S; and Sz) reflections with the 
correct kinematics from PP and PS data (Grechka and 
Tsvankin, 2002). The key idea of the method, which op- 

erates on PP and PS reflections acquired in split-spread 

geometry, is to match the time slopes (horizontal slow- 

nesses) of PP- and PS-waves on common-receiver gath- 
ers. This procedure helps identify PP and PS events re- 

flected at the same (albeit unknown) subsurface points, 
and the SS-wave traveltime can be obtained as a sim- 

ple linear combination of the PP and PS times. To 

avoid time picking, Grechka and Dewangan (2003) de- 
vised the full-waveform (interferometric) version of the 
PP+PS=SS method based on a specially designed con- 

volution of PP and PS traces. 

Although the PP+PS=SS method should be pre- 

ceded by PP-PS event registration, it does not require 

information about the velocity field and is valid for arbi- 

trarily anisotropic, heterogeneous media. The moveouts 

of the recorded PP-waves and computed SS-waves can 

be combined in anisotropic velocity analysis using, for 

example, 3D stacking-velocity tomography (Grechka et 

al., 2002a). The case study from the North Sea in Fig- 

ure 9 demonstrates that this methodology greatly im- 

proves the quality of PS-wave stacked sections (Grechka 

et al., 2002b). Application of the PP+PS=SS method 

followed by VTI processing provided a much better im- 

age of the reservoir top (top Balder, the deepest ar- 

row on the left) and a crisp picture of faulting in the 
shallow layers. Accounting for anisotropy also boosted 

higher frequencies in the stack and, therefore, increased 

temporal resolution. 

10 FRACTURE CHARACTERIZATION 

By some estimates, fractured reservoirs contain about 
one-third of the world’s hydrocarbon reserves. Since 

aligned fractures create velocity and attenuation 

anisotropy on the scale of seismic wavelength, seis- 

mic fracture characterization is largely based on 

the anisotropic processing/inversion methods discussed 

above. 

In the past few years, significant progress has been 

achieved both in effective media theories and seismic 

characterization of multiple fracture sets. The theoreti- 

cal advances are mainly attributed to increased comput- 

ing power, which made it possible to construct so-called 

digital rocks and examine how such realistic features as 

crack intersections, shape irregularities, microcorruga- 

tion, and partial contacts of the fracture faces influence 

the effective elastic properties. It has been shown that 

multiple sets of irregular, possibly intersecting fractures 

that have random shape irregularities are well approx- 

imated by isolated, penny-shaped cracks (Grechka and 

Kachanov, 2006, and references therein). 

Another important result, known from theoretical 

studies of Kachanov (1980, 1993) and confirmed nu- 

merically by Grechka et al. (2006), is that multiple, 
arbitrarily oriented sets of fractures embedded in an 

otherwise isotropic host rock yield an effective medium 
of approximately orthorhombic symmetry. This state- 

ment is valid for both dry and liquid-filled fractures. 

The former are close to so-called scalar cracks (in ter- 

minology of Schoenberg and Sayers, 1995), which al- 

ways yield effective orthotropy (i.e., orthorhombic sym- 

metry) in the non-interaction approximation. The latter 

contribute mainly to shear-wave anisotropy (i.e., to pa- 

rameters analogous to the splitting coefficient ) and 

also do not produce any substantial deviations from or- 

thorhombic symmetry. 

The closeness of the effective elasticity of cracked 

solids to orthotropy implies that multiple systems of 

fractures appear to long (compared to the fracture sizes) 

seismic waves as three orthogonal or principal sets. For 

instance, N sets of dry fractures that have the individual 

crack densities e“) and the normals n“*) (k=1,..., N) 

to the fracture faces are equivalent to three “principal” 

sets, whose densities and orientations are found as the 

eigenvalues and eigenvectors of the crack-density tensor 

(Kachanov, 1980, 1993): 

N 
k) (k . 

Aj = > ef) nf nf ) (i, 7 =1, 2, 3). (7) 
k=1 

Vasconcelos and Grechka (2007) employ this the- 
ory to characterize multiple vertical fracture sets from 

wide-azimuth, multicomponent seismic reflection data
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recorded at Rulison Field. The fracture orientations ob- 

tained from seismic data are consistent with the FMI 

(Formation Microlmager) log acquired in the study 

area. In addition, Vasconcelos and Grechka (2007) con- 
struct an orthorhombic velocity model of the Ruli- 

son reservoir by jointly inverting P- and S-wave NMO 

ellipses. This inversion is possible primarily because 

crack-induced orthotropy is governed by fewer inde- 

pendent parameters than general orthorhombic media, 

making estimation of these parameters better posed and 

ea sier to implement. Still, comparison of the spatially 

varying crack densities with the estimated ultimate re- 
covery (EUR) of the available wells shows little correla- 
tion. This problem, typical for a number of other tight- 

gas fields in North America, should motivate further 

development of robust seismic technologies capable of 

detecting accumulations of hydrocarbons in fractured 

formations. 

11 THE ROAD AHEAD 

Progress in geophysics is usually driven by data; when- 

ever we acquire a new type of data, we can expect to 

discover unexpected features that cannot be handled 

by existing methodologies. In hindsight, these surprises 

should have been foreseen (and maybe were foreseen by 

a few savants), but they always do surprise most of us. 

Today, the industry routinely acquires high-quality 

wide-azimuth 3D marine data with the goal of better il- 

luminating subsalt targets. When processing such data, 

we are discovering that azimuthally variable seismic ve- 
locity is often required to flatten the wide-azimuth im- 

age gathers. This will surely lead us to further develop 

methods dealing with azimuthal anisotropy, which have 

been applied primarily to land data sets. Also, it is al- 

ready clear that horizontal transverse isotropy (HTI) is 
not an appropriate model for most formations with ver- 

tical cracks, and TTI is probably an oversimplified sym- 

metry for dipping beds. Future developments will in- 

clude extension of velocity-analysis and migration algo- 

rithms to more realistic orthorhombic models. Although 

a solid foundation for parameter estimation and imaging 

in orthorhombic media has already been built, finding 

robust and cost-effective processing solutions is a seri- 

ous challenge, especially for tilted orthotropy. Also, it 

would not be practical to operate with a parameter set 

that is not constrained by available seismic data. An- 

other direction of future research with a high potential 
payoff in velocity analysis is anisotropic full-waveform 

inversion of reflection data, which should become feasi- 

ble with continuing increase in computing power. 

An interesting feature of anisotropy is that, al- 

though usually it is weak (i.e., the dimensionless 

anisotropy parameters typically are much smaller than 

unity), in many contexts it has a strong influence on seis- 

mic data. In particular, the contribution of anisotropy 

to reflection coefficients is comparable to the isotropic 

“fluid” and “lithology” factors, which is particularly 

noticeable in the azimuthally varying P-wave AVO re- 

sponse. Anisotropy in the overburden also causes pro- 

nounced distortions in the geometric-spreading factor 

for reflected waves. Hence, it is easy to predict that more 
emphasis will be placed on understanding and utiliz- 

ing amplitude signatures in anisotropic media, likely in- 

cluding attenuation measurements. Experimental data 

indicate that attenuation anisotropy, especially that 

produced by fluid-saturated fractures, may be orders 

of magnitude higher than velocity anisotropy. There- 

fore, azimuthally varying (and, possibly, frequency- 

dependent) attenuation coefficients may provide sensi- 

tive reservoir-characterization attributes. 

Anisotropic phenomena are especially noticeable in 

shear and mode-converted wavefields; it is usually im- 

possible to deal with shear data without considering 

anisotropy. In so doing, completely new concepts (un- 

known in isotropy) arise, such as shear-wave splitting. 

For example, acquisition of high-quality PS-wave data in 

recent years revealed strong conversion of energy (P-to- 

S) at near-normal incidence, which is prohibited by the 

standard model of plane-wave reflection from a planar 

boundary between isotropic or VTI halfspaces. Some 

of candidate explanations of these anomalous PS ar- 

rivals involve anisotropy (e.g., tilted TI on either side 

of the reflector). Whatever the eventual solution to this 
problem, it will likely entail a revision of conventional 

AVO models and algorithms for both PP- and PS-waves. 

Also, wide-azimuth, multicomponent data will play a 
major role in robust parameter estimation for realistic 

orthorhombic and, in some cases, lower-symmetry me- 

dia. Note that the split shear-wave primary reflections 

(Si and S2) with the correct kinematics can be gener- 
ated from wide-azimuth PP and PS data using the 3D 

version of the PP+PS=SS method. 

Whereas anisotropic P-wave imaging essentially 

amounts to looking “past” anisotropy at exploration 

targets, progress in processing/inversion techniques is 

putting more emphasis on employing anisotropy pa- 

rameters as attributes in reservoir characterization and 

lithology discrimination. One of interesting emerging 

applications of anisotropic attributes is in time-lapse 

seismic for compacting reservoirs because the shear- 

wave splitting coefficient, traveltime shifts and other 

compaction-related signatures are strongly influenced 

by stress-induced anisotropy. Physical characterization 

of the subsurface in terms of lithology, fluids, fractures, 

pore pressure, and permeability will require improved 

rock-physics and geomechanics methods operating with 

anisotropic models. 
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1 INTRODUCTION 

ABSTRACT 

TTI (transversely isotropic with a tilted symmetry axis) models have been 
widely used for velocity analysis and imaging in many exploration areas, such 
as the Canadian Foothills and the Gulf of Mexico. In a previous publication, 
we discussed 2D stacking-velocity inversion for the interval parameters of TTI 
media composed of homogeneous layers separated by plane interfaces. Here, 
this 2D algorithm is extended to 3D wide-azimuth data by including P-wave 
NMO ellipses and two horizontal slowness components (time slopes) in the 
objective function. If the symmetry axis is perpendicular to the bottom of each 
layer, it is possible to estimate the interval symmetry-direction velocity Vpo, 
anisotropy parameter 6, and the reflector orientation using only one borehole 
constraint — the reflector depth. The algorithm can tolerate small (1/10 of the 
dip) deviation of the symmetry axis from the reflector normal. However, as is 
the case for the 2D problem, the parameter € can seldom be constrained without 
using nonhyperbolic moveout inversion. If the symmetry axis deviates from the 
reflector normal but is confined to the dip plane, stable parameter estimation 
requires a relationship between the tilt and dip in each layer. When the tilt 
represents a free parameter, the input data have to be supplemented by wide- 
azimuth VSP traveltimes with the offset reaching at least 1/4 of the maximum 
reflector depth. Moreover, the additional angle coverage provided by VSP data 

may help resolve the parameter € in the upper part of the model. 

Key words: transverse isotropy, tilted symmetry axis, TTI, P-wave, wide- 

azimuth, azimuthal anisotropy, NMO ellipse, borehole, VSP 

migration algorithms have been extended to TTI me- 

dia, accurate estimation of the interval anisotropy pa- 

Transversely isotropic media with a tilted symmetry 
axis (TTI) provide marked improvements in prestack 
imaging of P-wave data (Charles et al., 2008; Huang 

et al., 2008; Neal eé al., 2009). Allowing for the 

symmetry-axis tilt results in more plausible velocity 

models for sedimentary formations in complex geologi- 

cal settings (Vestrum et al., 1999; Behera & Tsvankin, 

2009; Bakulin et al., 2009). 

P-wave velocities and traveltimes in TTI media 
can be expressed through the symmetry-direction ve- 

locity Vpo and Thomsen (1986) anisotropy parameters 

e and 6 defined with respect to the symmetry axis. The 
symmetry-axis orientation is defined by the tilt angle 

vy with the vertical and the azimuth @. Although many 

rameters and the symmetry-axis orientation remains a 

difficult problem. 

For example, Grechka e¢ al. (2001) discuss 2D inver- 
sion of P-wave normal-moveout (NMO) velocities and 
zero-offset traveltimes for the parameters of a dipping 

TTI layer with the symmetry axis perpendicular to the 

bedding. Their algorithm is based on several a priori as- 

sumptions about the model and requires reflection data 

from a horizontal interface beneath the TTT layer. 

A review of several other parameter-estimation al- 

gorithms for TTI media (e.g., Grechka eé al., 2002a) can 
be found in our previous publication (Wang & Tsvankin, 
2010, hereafter referred to as Paper I), where we develop 

a 2D inversion methodology for a stack of homogeneous
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TTI layers separated by plane dipping interfaces. P- 

wave NMO velocities, reflection slopes, and zero-offset 

traveltimes are supplemented with reflector depths mea- 

sured in a borehole, as well as with check-shot and near- 

offset VSP traveltimes. Even for a single TTI layer, the 

medium parameters cannot be resolved without con- 

straining the tilt of the symmetry axis. Therefore, in 

Paper I the symmetry axis is assumed to be orthogo- 

nal to the layer’s bottom, which is typical for dipping 

shale layers (Isaac & Lawton, 1999; Vestrum et al., 1999; 

Charles et al., 2008). As a result, the 2D algorithm pro- 
duces stable estimates of the interval parameters Vpo 

and 6 provided the range of dips does not exceed 30°. 
Here, we present a 3D extension of the inversion 

algorithm from Paper I by including the NMO ellipses 

and two horizontal slownesses (reflection time slopes) in 

the objective function. Wide-azimuth data provide ad- 

ditional information for estimating the interval Thom- 

sen parameters, which helps relax the constraints on 

model geometry and increase the stability of the inver- 

sion. First, we discuss parameter estimation for models 

with the symmetry axis orthogonal to reflectors. Then 

we extend the method to models with arbitrary tilt and 

show that stable inversion requires the addition of VSP 

data. Synthetic tests on noise-contaminated data help 

evaluate the accuracy and stability of estimating the in- 

terval TTI parameters for different types of input data. 

2 8D INPUT DATA VECTOR 

As in Paper I, we consider a stack of homogeneous 

TTI layers separated by plane, dipping, non-intersecting 

boundaries (Figure 1). However, the dip planes of model 
interfaces no longer have to be aligned. From 3D multi- 
azimuth P-wave data recorded at a common midpoint 

(CMP) with the coordinates Y = [Y1,Y2], we ob- 
tain the zero-offset reflection traveltimes to(Y,7) for all 
reflectors, the corresponding NMO velocities Vamo(a) 
(a is the azimuth), and the time slopes p(Y,n) = 
[pi(Y,7),pe(¥,n)], where pi and p2 are the horizon- 
tal slowness components of the zero-offset ray. The 

azimuthally-dependent NMO velocity is described by 

an elliptical function in the horizontal plane (Grechka 

& Tsvankin, 1998): 

Vanzs(@) = Wir cos? a+2Wi2 sin acos a+ W22 sin? @ ,(1) 

where W is a symmetric matrix, 

a?r 
Wi; = To 4,9 = 1,2). 2 aj ° Ox,02; = , ( J ’ ) ( ) 

Here 7(x1,22) is the one-way traveltime from the zero- 
offset reflection point to the location x{z1, 22} at the 
surface and 79 is the one-way zero-offset traveltime. The 

matrices W(Y,n) can be obtained from azimuthal ve- 
locity analysis of reflection data based on the hyperbolic 

moveout equation parameterized by the NMO ellipse 

(Grechka & Tsvankin, 1999). 

Layer 1 

Layer N 

     zero-offset 
ray 

Figure 1. Zero-offset rays and a multiazimuth CMP gather 

for a model composed of a stack of TTI layers separated by 

plane dipping interfaces (after Grechka et al., 2002b). 

Grechka & Tsvankin (2002) devise a Dix-type aver- 
aging procedure to model the effective NMO ellipse for 

heterogeneous anisotropic media. They show that the 

exact NMO ellipse can be obtained by averaging the in- 

tersections of the interval NMO-velocity surfaces with 

the layer boundaries. All information for computing the 
NM0O ellipse of a given reflection event is contained in 

the results of tracing just one (zero-offset) ray. 
Because each layer is homogeneous with plane 

boundaries (Figure 1), it is sufficient to acquire the in- 
put data in a single multiazimuth CMP gather (Grechka 

et al., 2002b). The reflector depths z)(n) are assumed to 
be measured in a borehole, which may be placed away 

from the CMP location (the subscript “b” denotes bore- 
hole data). Therefore, the vector of input data for 3D 
inversion is as follows: 

d = {to(n), pi (7), po(n), Wii(n), Wi2(n), W2(n), zo(n)} 
(n =1,2,...,N), (3) 

where all components are the effective quantities for the 

n-th reflector. 

3 SYMMETRY AXIS ORTHOGONAL TO 
THE REFLECTOR 

It is common to put constraints on the symmetry-axis 

orientation using a priori information (Charles et al., 

2008; Huang et al., 2008; Bakulin et al., 2009). If TI 

layers were rotated by tectonic processes after sedimen-



tation, the symmetry axis typically remains perpendic- 

ular to the layering, which means that its tilt v and 

azimuth @ coincide with the dip ¢ and azimuth w of 

the reflector, respectively. The relative simplicity of this 

model significantly improves the stability of parameter 

estimation. 

3.1 Inversion for a single TTI layer 

First, we consider a homogeneous TTI layer with the 

symmetry axis orthogonal to its bottom. The dip plane 

of the reflector represents a vertical symmetry plane for 

the whole model, and therefore, includes one of the axes 

of the NMO ellipse. Thus, the orientation of the NMO 

ellipse yields the reflector azimuth ~ which coincides 

with the symmetry-axis azimuth (. 

The semiaxis of the NMO ellipse in the dip plane 

is obtained from the isotropic cosine-of-dip relationship 

(Tsvankin, 2005): 

Vamo(0) 
cos (4) 

where Vamo(0) = VroV1 + 26 is the NMO velocity from 
a horizontal interface beneath a VTI medium (i.e., the 
symmetry axis is rotated along with the reflector). Al- 

ternatively, the dip component of the NMO velocity can 

be represented using the ray parameter p = \/p? + p3 : 

Vamo(0) ( 5) 

V1—p?VBq 

where p = sing¢/Vpo because the phase-velocity vector 

of the zero-offset ray (and the ray itself) is parallel to 

the symmetry axis. The strike component V2, of the 

NMO velocity is given by (Grechka & Tsvankin, 2000): 

V2), = ‘amo(0) = VpoV1+ 26. (6) 

Therefore, by combining the two semiaxes of the NWVO 

ellipse (equations 5 and 6) and using the measured time 
slope p, we can find the symmetry-direction velocity 

Vpo. Then the dip ¢ = v is obtained from equation 4, 

and the anisotropy parameter 6 from equation 6. Depth 

information for a single layer is not needed because the 

reflector depth z below the CMP location can be com- 

puted from the zero-offset traveltime to: 

V20(¢) = 

V2o(p) = 

_ Vpoto 
a 2cos¢ (7) 

However, P-wave hyperbolic moveout in this model 

is independent from the anisotropy parameter €. In sum- 

mary, the geometry and the parameters Vpo and 6 of a 

single TTI layer can be resolved without using any bore- 

hole information. 

  

3.2 Inversion for layered TTI media 

Here, we present a 3D extension of the 2D stacking- 

velocity inversion algorithm from Paper I (“stacking- 
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velocity tomography” ) to layered TTI media. If the sym- 

metry axis in each layer is perpendicular to its bottom 

(vp = 6™ and B™ = yy), the model vector is 

m= {VE>, ™ 5” o™, yy} , (n =1,2,..., N) (8) 

First, we assume the depths z,(n) to be known from 

borehole measurements; later on, we discuss the inver- 

sion without using the depth constraint. 

3.2.1 Inversion methodology 

As in Paper I, we specify the trial set m of the inter- 

val parameters (equation 8) and trace zero-offset rays 

through the model with the geometry partially fixed 

by the known reflector depths. The ray-tracing results 

yield the zero-offset traveltimes t§*'°(n), the horizontal 
slowness components p{?!°(n) and p§?'*(n), and the Dix- 
type averaging procedure produces the effective NMO 

ellipses W°" (n). The NMO velocity V,c2'¢(n, a) for any 

azimuth @ can be computed from equation 1. 

The vector m (equation 8) is estimated by minimiz- 
ing the following objective function (based on L?-norm) 

for all N reflectors simultaneously: 

rim) = 3° lwinte(n) — pr(n)||? | [ps"(n) - pa(n)|   

  

a o?(pi(n)] o?[pe(n)] 

\le6""°(n) — to(n)||?_ || VSS (2, a) — Vamo(n, a) ||” 
o?[to(n)] o?[Vamo(7, a)] , 

(9) 

where o? represents the variance of each measurement, 

and the azimuth a varies from 0° to 180°. For 2D mod- 
els, the objective function also includes check-shot trav- 

eltimes, and reflector dips are assumed to be known. 

Here, wide-azimuth data provide additional information 

that replaces those borehole constraints. 

In a single TTI layer, the parameter € cannot be 

found from conventional-spread P-wave moveout. How- 

ever, as discussed in Paper I, p(n), to(n), and W(n) 
for layered TTI models are influenced by the values of 

e™ in the overburden (except for models with parallel 

interfaces). Therefore, the interval parameter e€ is esti- 
mated along with the other unknowns, although it is 

not expected to be well-constrained. 

3.2.2 Synthetic examples 

As in Paper I, the algorithm was tested for a suite of 

layered TTI models (0 < € < 0.5 and —0.2 <6 < 0.3) with 

reflector dips ranging from 0° to 60°. Table 2 shows 
the inversion results for a three-layer medium with rel- 

atively close azimuths of the interfaces (Table 1 and 
Figure 2). The results of a test for another three-layer 
medium with a wide range of interface azimuths but 

identical dips (Table 1 and Figure 3) are listed in Ta- 
ble 3. The inversion is performed for 200 realizations of
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Layer 1 Layer2 Layer 3 

Vpo (km/s) 1.5 2.0 2.5 

€ 0.10 0.20 0.25 

6 -0.10 0.10 0.12 

Table 1. Interval parameters of a three-layer TTI model. 
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Figure 2. Zero-offset P-wave rays in a three-layer TTI model 
with the interval parameters listed in Table 1. The input data 

are computed by anisotropic ray tracing. The symmetry axis 

in each layer is perpendicular to its bottom. The dips and 

azimuths are @) = g(?) = 50°, 62) = 20°, pl) = 10°, 
wp) = 20°, and ~) = 30°. The reflector depths below the 
CMP (located at the origin of the coordinate system) are 

zp(1) = 1 km, zp(2) = 2 km, and z2,(3) = 3 km. 

noise-contaminated input data using the measurement 

values as the variances o? in equation 9. 

For both models, the interval parameters Veo and 

6 and the reflector dips and azimuths are recovered with 

sufficiently high accuracy. As expected, the standard de- 

viations are higher in the third (deepest) layer (about 
5% for Vpo and 0.06 for 5), primarily due to the smaller 

contribution of the deeper layers to the effective reflec- 

tion traveltimes. However, in contrast to layer-stripping 

techniques, our tomography-style algorithm possesses 

the advantage of mitigating error accumulation with 

depth. An important factor that influences the inver- 

sion accuracy is the layer thickness; the thickness-to- 

depth ratio below the CMP location should reach at 

least 0.25 to ensure stable interval estimates. As ex- 
pected, the standard deviations of the parameter € are 

much larger than those of 6, although e-estimates are 

not substantially biased. 

For plausible ranges of € and 6 (|e| < 0.5; |6| < 0.3), 
the errors in the interval parameters Vpo, 6, ¢, and w 

remain small if the symmetry axis deviates from the re- 
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Figure 3. Zero-offset P-wave rays in a three-layer TTI model 

with the interval parameters listed in Table 1. The symmetry 
axis in each layer is perpendicular to its bottom. The dips 

and azimuths are &) = g@) = g@) = 30°, yp = 0°, 
p®) = 45°, and p@) = 90°. The reflector depths below the 
CMP are z,(1) = 1 km, zp(2) = 2 km, and z(3) = 3 km. 

flector normal in the dip plane by less than one tenth 

of the dip value (¢/10; ie., 8 = wy, but v # ¢). For 

example, we used the tilts vo) = 94/10 (n = 1, 2,3) 

for the second model (Table 1 and Figure 3) to gener- 
ate the input data and applied our algorithm assuming 

that v™ = g™ (Table 4). The slight deviation of the 
symmetry axis from the reflector normal causes a mild 

bias in the estimates, but the standard deviations are 

mostly controlled by the noise level, which is the same 

as in the previous tests. 

If the reflector depths are also unknown, the trade- 

off between z(n) and other parameters increases errors 

in the inversion results. For example, we performed the 

inversion for the previous model (Table 1 and Figure 3) 
without using depth information for the same level of 

noise in the input data. The standard deviations of Vpo 

and 6 in the third layer increase to 7% and 0.09, re- 

spectively. The mean values of Vpo (2.61 km/s) and 6 
(0.08) are also strongly biased. The mean value of z(3) 
(actual quantity is 3 km) is 3.04 km with the standard 
deviation 0.12 km. 

4 SYMMETRY AXIS DEVIATING FROM 
REFLECTOR NORMAL 

The assumption of the symmetry axis being perpendic- 

ular to the reflector is too restrictive when tectonic pro- 

cesses and sedimentation occur together (Bakulin et al., 
2009). Also, for stress-induced anisotropy in sediments
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Vpo (km/s) 6 € $(°) ¥(°) 

mean sd(%) mean sd mean sd mean sd mean_ sd 

Layer 1 1.50 1 -0.10 0.01 0.21 0.22 50.0 0.2 10.0 0.1 

Layer 2 2.00 3 0.10 0.03 025 O11 50.0 0.4 19.9 0.3 

Layer 3 2.49 5 0.12 0.06 0.25 0.23 20.2 2.2 30.1 1.9 

Table 2. Inversion results for the three-layer TTI model from Table 1 and Figure 2. The input data are distorted by Gaussian 

noise with the standard deviations equal to 1% for pi(n), po(n), and to(n), and 2% for the NMO velocities. The mean values 
and standard deviations of the inverted parameters are denoted by “mean” and “sd,” respectively. 

  

  

  

  

Vo (km/s) 5 ¢ $(°) wv (°) 
mean sd (%) mean sd mean sd mean sd mean sd 

Layer 1 1.50 1 -0.10 0.01 0.10 0.04 30.0 0.3 0.0 0.1 

Layer 2 2.00 2 0.10 0.03 0.20 0.07 30.0 0.3 45.1 1.4 

Layer 3 2.51 5 0.12 0.06 0.26 0.23 30.0 0.5 90.1 2.0 

Table 3. Inversion results for the three-layer TTI model from Table 1 and Figure 3. The noise level in the input data is the 

same as in Table 2. 

near salt bodies, the symmetry is largely controlled by 

the principal stress direction which is not necessarily 

aligned with the normal to the bedding (Bakulin et al., 

2009). 

To account for the deviation of the symmetry axis 

from the reflector normal, the tilt » can be expressed 

as a function of the dip ¢ using geologic data. For ex- 

ample, the simultaneous influence of tectonic forces and 

sedimentation typically makes v smaller than ¢ (e.g., 

vy = $/2 or v = 3/4). In the next test, we use the 
three-layer model with the interval parameters listed in 

Table 1 and the model geometry shown in Figure 2, but 

with v 4 @. The symmetry axis in each layer is confined 

to the dip plane (i.e., 8 = ¥™, n = 1, 2,3) with the 
tilt v = 6/2. The known relationship between v 
and ¢ is sufficient for the algorithm to produce stable 

estimates of the interval parameters Vpo and 6 and the 

reflector orientation (Table 5). 

4.1 Tilt as an unknown parameter 

Here, we relax the assumption that the tilt »v represents 

a known function of the dip @. It is still assumed that 

the symmetry-axis azimuth @ in each layer coincides 

with the dip-plane azimuth ~, but the parameter v has 

to be found from the inversion. Thus, the model vector 

includes one more unknown: 

m= {V&, ef 6, y™ | e™, ym} , 

(n = 1,2,...,N). (10) 

Making v a free parameter significantly increases 

the nonuniqueness of the inversion. For 2D models, si- 

multaneous estimation of Vpo, €, 6, and v proves to 

be ambiguous, even if the reflector depths and dips 

are measured in a borehole. Our tests indicate that 3D 

wide-azimuth data supplemented by the known reflector 

depths still cannot be used to resolve the tilt along with 
the other TTI parameters. Therefore, we propose to add 

wide-azimuth walkaway VSP (vertical seismic profiling) 
traveltimes ty,, to the input data: 

d = {to(n), pi(n), pa(n), 

Wii(n), Wia(n), We(n), zb(7), tvsp } - (11) 

We employ an array of sources at the surface and 

one VSP receiver per layer located close to the layer’s 

bottom. Similar to the zero-offset reflected rays, we 

trace VSP rays in a trial model and compute the dift 

ference between the modeled and observed traveltimes. 

Then, the objective function takes the form 

  Fie = yo { Weasel”, BoPie)— at 
o*[pi(n)| o?|p2(n)| 

e6""() = to(n)||* | llevss = tvsell” 
n=1 

  

+ oP [to(n)] Oltver| 
|| Vicals(n, a) — Vamo(n, @) ||” 

FY a2[Vamolr, 0) 0) 

4.1.1 Synthetic examples 

Numerical testing shows that it is sufficient to add 

one check-shot source and several VSP sources located 

around the borehole with the offset exceeding 1/4 of the 
largest reflector depth. To achieve full azimuthal cover- 

age, eight VSP sources are placed along a circle with a
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Vpo (km/s) 6 $ (°) ¥(°) 

mean sd (%) mean sd mean sd mean _ sd 

Layer 1 1.50 1 -0.10 0.01 29.8 0.3 0.0 0.0 

Layer 2 1.99 2 0.09 0.03 = 30.3 0.3 44.3 1.4 

Layer 3 2.50 5 0.10 0.06 30.1 0.5 89.5 2.0 

Table 4. Inversion results for the three-layer TTI model from Table 1 with the model geometry shown in Figure 3. The symmetry 

axis in each layer is confined in the dip plane, but is no longer perpendicular to the reflector (Vw = y@) = p(@) = 27°). The 

noise level is the same as in the previous tests. 

  

  

  

  

Veo (km/s) 5 v (°) v (°) 
mean sd(%) mean sd  =mean sd_ mean _ sd 

Layer 1 1.50 1 -0.10 0.01 25.0 0.2 10.0 0.0 

Layer 2 2.01 4 0.10 0.06 25.0 0.4 20.0 0.5 

Layer 3 2.50 4 0.12 0.04 10.0 0.6 30.0 0.8 

Table 5. Inversion results for the three-layer TTI model from Table 1 with the model geometry shown in Figure 2. The tilt of 

the symmetry axis in each layer is equal to one-half of the reflector dip. The noise level is the same as in the previous tests. 
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Figure 4. Distribution of VSP sources at the surface. The 

check-shot source is located close to the borehole (x; = 0.01, 

x2 = 0). The VSP lines are separated by 45°, and the offset 
of each VSP source is 1 km. 

45° increment in azimuth (Figure 4). With this distri- 
bution of the VSP sources, we compute the input data 

for a three-layer model (Table 1 and Figure 5) using 
anisotropic ray tracing. The inversion results for 100 

realizations of noise-contaminated data are listed in Ta- 

ble 6. We also test another model with larger tilt angles 

vy = p@) = y@) = 40° (Table 7). 

Despite the additional constraints provided by VSP 

data, the standard deviations in the tilt increase rapidly 

with depth because the inversion for v is still ill- 

conditioned. However, the interval parameters Veo and 
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Figure 5. VSP rays for the receiver located at the bottom of 

a three-layer TTI model with the interval parameters listed 
in Table 1. The symmetry axis in each layer is confined in 

the dip plane. The tilts, dips, and azimuths are y() = p@) = 
v@) = 20°, 6 = g@ = ¢@ = 30°, ap = 0°, pl) = 45°, 

and w(3) = 90°. The vertical borehole is below the coordinate 

origin, and the reflector depths at the borehole location are 

zp(1) = 1 km, z,(2) = 2 km, and z,(3) = 3 km. 

6 and the reflector orientation can be recovered with suf- 

ficient accuracy. Also, the VSP data help constrain the 

parameter ¢€ in the top two layers, while estimation of « 

in the bottom layer is ambiguous because of the reduced
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Veo (km/s) 5 v (°) ¢ (°) w (°) 
mean sd(%) mean sd mean sd mean sd mean sd mean sd 

Layer 1 1.50 1 -0.10 0.01 0.10 0.02 20.9 2.8 30.0 0.5 0.0 0.4 

Layer 2 2.00 1 0.09 0.03 0.21 0.06 20.3 5.0 30.0 0.6 45.3 1.0 

Layer 3 2.48 2 0.13 0.06 0.24 0.12 23.9 10.1 30.1 0.8 90.0 1.1 

Table 6. Inversion results for the three-layer TTI model from Table 1 using reflection and VSP data (Figure 5). The positions 

of the check-shot and VSP sources are shown in Figure 4. The tilts are v(!) = v(2) = v3) = 20°. The input data are distorted 
by Gaussian noise with the standard deviations equal to 1% for pi(n), p2(n), to(n), and teal, and 2% for the NMO velocities. 

  

  

  

  

Veo (km/s) 5 v (°) $(°) v (°) 
mean sd (%) mean sd mean sd mean sd mean sd =mean_ sd 

Layer 1 1.50 1 -0.10 0.01 0.10 0.01 40.0 0.9 30.0 0.5 0.1 0.5 

Layer 2 2.00 1 0.10 0.03 0.21 0.05 40.4 6.5 30.0 0.6 45.1 0.8 

Layer 3 2.50 3 0.12 0.06 0.31 0.11 39.0 12.5 29.9 0.8 90.0 1.1 

Table 7. Inversion results for the three-layer TTI model from Table 1 using reflection and VSP data (Figure 5). The positions 
of the check-shot and VSP sources are shown in Figure 4. The tilts are v©) = (2) = (3) = 40°. The noise level is the same as 
in Table 6. 

angle coverage of the VSP rays at depth. To resolve the 
parameter ¢€ in piecewise homogeneous TTI models, it 

is necessary to use long-offset VSP or reflection data. 

It should be mentioned that the deviation of the 

symmetry axis from the reflector normal reduces the 

stability of parameter estimation. When the difference 

between vy and @ is large, small errors in the input 

data are significantly amplified by the inversion algo- 

rithm. Therefore, the tilt should be confined to the range 

o/2 <v<3¢/2, which is typical for most TTI forma- 
tions. 

5 DISCUSSION AND CONCLUSIONS 

The tilt of the symmetry axis in TI media makes the 

medium azimuthally anisotropic, and wide-azimuth P- 

wave data provide valuable constraints on the TTI pa- 

rameters. If the symmetry axis is perpendicular to the 

reflector, the P-wave NMO ellipse is sufficient for esti- 

mating the parameters Vpo and 6 of asingle dipping TTI 

layer. Conventional-spread P-wave data also yield the 

depth and orientation of the reflector, but the param- 

eter € remains unconstrained without using long-offset 

moveout. 

For homogeneous TTI layers separated by plane 

dipping interfaces, the input data include the effec- 

tive NMO ellipses, zero-offset traveltimes, and reflection 

slopes supplemented by the reflector depths measured 

in a borehole. The interval parameters are estimated by 

a 3D tomography-style algorithm that represents an ex- 

tension of the 2D method introduced in Paper I. As long 

as the symmetry axis in each layer is kept orthogonal 

to its bottom, the interval parameters Vpo and 6 and 

the reflector dips ¢ and azimuths w are well-resolved. If 

the magnitude of anisotropy is not uncommonly large 

(Je| < 0.5; [6] < 0.3), small deviations of the symmetry 
axis from the reflector normal (+¢/10) do not distort 
the inversion results. Inversion without depth informa- 

tion produces parameter estimates with larger bias and 

standard deviation. 

If the symmetry axis is not perpendicular to the re- 

flector but the tilt represents a known function of the re- 

flector dip ¢, the 3D inversion algorithm can still resolve 

Vpo, 6, and the reflector orientation. We also examined 

the possibility of estimating the tilt from the data under 

the assumption that the symmetry axis is confined to 

the dip plane of the reflector. Numerical testing demon- 

strates that stable inversion requires additional input 

data, such as check-shot and walkaway VSP traveltimes. 

VSP data should have full azimuthal coverage and the 
distance between the VSP sources and the borehole has 

to reach 1/4 of the largest reflector depth. Another es- 
sential requirement is for the tilt to fall into the range 

$/2<v<3¢/2. Depending on the offset range of VSP 

data, it may be possible to constrain the parameter e€ in 

the shallow part of the section. 

Velocity variations on the scale of conventional 

spread-length may cause errors in the estimated pa- 

rameters. Our aim, however, is to design an efficient 

algorithm for building an initial TTI model using wide- 
azimuth P-wave data at several borehole locations. An 

accurate initial model may help ensure the convergence 

of velocity-analysis algorithms that operate in the mi- 

grated domain (e.g., reflection tomography).
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1 INTRODUCTION 

ABSTRACT 

Nonhyperbolic moveout analysis plays an increasingly important role in velocity 
model building because it provides valuable information for anisotropic param- 
eter estimation. However, lateral heterogeneity associated with stratigraphic 
lenses such as channels and reefs can significantly distort the moveout parame- 
ters, even when the structure is relatively simple. 
Here, we discuss nonhyperbolic moveout inversion for 2D models that include a 
low-velocity isotropic lens embedded in a VTI (transversely isotropic with a ver- 
tical symmetry axis) medium. Synthetic tests demonstrate that a lens can cause 
substantial, laterally varying errors in the normal-moveout velocity (Vamo) and 
the anellipticity parameter 7. The area influenced by the lens can be identified 
using the residual moveout after the nonhyperbolic moveout correction and the 
dependence of errors in Vamo and 7 on spreadlength. 
To remove lens-induced traveltime distortions from prestack data, we propose 
an algorithm that involves estimation of the incidence angle of the ray passing 

through the lens for each recorded trace. Using the velocity-independent layer- 
stripping method of Dewangan and Tsvankin, we compute the lens-induced 
traveltime shift from the zero-offset time distortion (i-e., from “pull-up” or 

“push-down” anomalies). 
Synthetic tests demonstrate that this algorithm substantially reduces the errors 
in the effective and interval parameters Vamo and 7. The corrected traces and 
reconstructed “background” values of Vamo and 7 are suitable for anisotropic 
time imaging and producing a high-quality stack. 

Key words: P-waves, anisotropy, transverse isotropy, velocity analysis, lat- 
eral heterogeneity, velocity lenses, nonhyperbolic moveout inversion, traveltime 
shifts 

e-—6 

= Ty 95° (2) 
The parameters Vamo and 7, which control all P-wave 

time-processing steps, can be obtained from nonhyper- 

Kinematics of P-wave propagation in VTI (transversely 

isotropic with a vertical symmetry axis) media are gov- 

erned by the vertical velocity Vo and the Thomsen pa- 

rameters ¢ and 6 (Tsvankin & Thomsen, 1994). P-wave 
reflection traveltime in laterally homogeneous VTI me- 

dia above a horizontal or dipping reflector depends only 

on the normal moveout velocity Vamo and the anel- 

lipticity parameter 7 (Alkhalifah & Tsvankin, 1995; 

Tsvankin, 2005): 

Vamo = Vov1 + 26, (1) 

bolic moveout or dip-dependent NMO velocity. In par- 

ticular, the nonhyperbolic moveout equation introduced 

by Alkhalifah & Tsvankin (1995) and its extension for 
layered media (Alkhalifah, 1997; Grechka & Tsvankin, 

1998; Tsvankin, 2005) have been widely used for esti- 

mating Vamo and 7 and building anisotropic velocity 

models. 

Nonhyperbolic moveout analysis is performed un- 

der the assumption that the overburden is laterally ho- 

mogeneous on the scale of spreadlength. However, even
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gentle structures often contain small-thickness lenses 

(such as channels and carbonate reefs), whose width is 
smaller than the spreadlength (Armstrong et al., 2001; 

Fujimoto et al., 2007; Takanashi et al., 2008; Jenner, 

2009; see Figure 1). For isotropic media, lateral hetero- 

geneity of this type has been recognized as one of the 

sources of the difference between the moveout and true 

medium velocities (Al-Chalabi, 1979; Lynn & Claer- 
bout, 1982; Toldi, 1989; Blias, 2009). Such lens-induced 

errors in Vamo lead to misties between seismic and well 

data (Fujimoto et al., 2007). 

Although the moveout parameters (especially 7) 
were shown to be sensitive to correlated traveltime er- 

rors (Grechka & Tsvankin, 1998), overburden hetero- 
geneity is seldom taken into account in nonhyperbolic 

moveout inversion. Grechka (1998) shows analytically 

that a constant lateral velocity gradient does not distort 

the estimates of Vamo and 7, if anisotropy and lateral 

heterogeneity are weak. The second and fourth hori- 

zontal velocity derivatives, however, can cause errors in 

Vamo and 7. Still, Grechka’s (1998) results are limited to 
a single horizontal layer and cannot be directly applied 

to models with thin lenses. 

Recently, isotropic traveltime tomography has been 

used to estimate the velocity inside the lens and re- 

move the lens-induced velocity errors (Fujimoto et al., 

2007; Fruehn e¢ al., 2008). These case studies show 

the importance of integrating seismic and geologic in- 

formation and understanding the relationship between 

the overburden heterogeneity and velocity errors. In 

principle, laterally varying anisotropy parameters can 

be estimated from anisotropic reflection tomography 

(e.g. Woodward et al., 2008). However, if the lens lo- 

cation is unknown, lens-induced traveltimes shifts can 

hinder accurate parameter estimation on the scale of 

spreadlength. 

Here, we study the influence of velocity lenses on 

nonhyperbolic moveout inversion for 2D VTI models. To 

analyze lens-induced distortions of reflection data, we 

perform finite-difference modeling and apply moveout 

inversion using the Alkhalifah-Tsvankin (1995) nonhy- 
perbolic equation. We show that even a relatively thin 

velocity lens may cause pronounced errors in the move- 

out parameters Vamo and 7 and describe several crite- 

ria that can help identify range of common-midpoint 

(CMP) locations, for which reflected rays cross the 
lens. To remove lens-induced traveltime shifts, we pro- 

pose a correction algorithm designed for gently dip- 

ping anisotropic layers. Synthetic tests demonstrate 

that this algorithm suppresses lens-related distortions 

on the stacked section and substantially reduces errors 

in the effective and interval parameters Vamo and 7.   

Figure 1. Time-migrated section from the central North Sea 
(after Armstrong et al., 2001). Amplitude anomalies at the 

bottom of the channel-like structures (arrows) and pull-up 
anomalies below the structures (inside the rectangles) indi- 

cate the presence of lateral heterogeneity associated with the 
channel fills. Pull-up and push-down anomalies caused by 

high and low velocities, respectively, in channels or carbon- 

ate reefs are also observed in other hydrocarbon-producing 
regions, such as the Middle East and Northwest Australia. 

2 DISTORTIONS CAUSED BY VELOCITY 

LENSES 

To generate synthetic data, we perform finite-difference 

simulations (using Seismic Unix code suea2df; Juhlin, 

1995) and ray tracing for 2D models that include a low- 

velocity isotropic lens inside a VTI layer. The parame- 

ters Vamo and 7 are estimated from nonhyperbolic move- 

out inversion based on the Alkhalifah-Tsvankin (1995) 

equation: 

x 2nx4 
— ; 3 

where ¢ is the P-wave traveltime as a function of the 

offset + and to is the zero-offset time. Equation 3 can 

be applied to layered VTI media with the effective pa- 

rameters given by (Tsvankin, 2005): 

  = t+ 

N 

1 i i 
Vaino(N) = to(N) So (Vio)? tf , (4) 

t=1 

1 1 

n(N) = 3{ Vano(N) to(W) 

  

N 

Yo (Vamo)* (1 + 8) £8? 
4=1 

1}, (5) 
where t, V2, and 7 are the interval values, and N 
is the number of layers. 

Although the Alkhalifah-Tsvankin equation pro- 

vides a good approximation for P-wave moveout in VTI 

media, the estimates of 7 are sensitive to correlated trav- 

eltime errors because of the tradeoff between 7 and Vamo
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Figure 2. Single VTI layer with an isotropic lens. The 
lens velocity is 3 km/s; the background parameters are 

Vo = 4 km/s, 6 = 0.07 and « = 0.16. Points A, B and C 

correspond to CMP locations discussed in the text. The test 

is performed for a spreadiength of 4 km; the target depth is 

2 km. 

(Grechka & Tsvankin, 1998). In our model, such errors 
are caused by an isotropic velocity lens in the overbur- 

den. 

2.1 Single-layer model 

First, we consider a rectangular lens embedded in a ho- 

mogeneous VTI layer (Figure 2). The section in Fig- 

ure 3 is computed by a finite-difference algorithm for 
common-midpoint (CMP) gathers outside the lens (lo- 
cation A) and at the center of the lens (location B). 
Whereas the lens does not distort traveltimes at loca- 

tion A, it causes a near-offset time delay of 17 ms and 

waveform distortions (related to the influence of the side 
and edges of the lens) in the mid-offset range at location 

B. 
Using equation 3, we find the best-fit Vamo and 77 for 

the target reflector from a 2D semblance scan; for com- 

parison, we also perform conventional hyperbolic move- 

out inversion (Figure 4). The NMO velocity estimated 
from the nonhyperbolic equation at location A is close 

to the analytic value. At location B, however, Vamo is 

about 10% greater, although the exact effective NMO 

velocity should decrease by 2% due to the low veloc- 

ity inside the lens. At a CMP location near the edge 

of the lens (location C), Vamo is 7% smaller than the 
exact value. Interestingly, nonhyperbolic moveout inver- 

sion produces an error in Vamo, which is two times larger 

than that obtained from hyperbolic moveout analysis. 

The reason for the lens-induced distortion if Vamo 

is described in Al-Chalabi (1979) and Biondi (2006) 
(Figures 5a,b). Near-offset rays at location B pass twice 

through the lens, while far-offset rays miss the lens com- 

pletely. Since the lens has a lower velocity, this leads to a 

smaller traveltime difference between the near- and far- 

offset traces and, therefore, a higher NMO velocity. In 

contrast, for location C, the lens is missed by near-offset 

ORSEIKH = 
(b) 
  
Figure 3. Comparison of CMP gathers for the model from 

Figure 2 computed (a) outside the lens (location A) and 
(b) above the center of the lens (location B) with a finite- 

difference algorithm. The traveltime shifts at near offsets (ar- 
rows) at location B cause significant errors in the parameters 

Vamo and 7. The lens-related waveform distortion at location 

B is contoured by the ellipse. 

rays and the traveltime difference between the near and 

far offsets becomes larger, which reduces Vamo (Figure 

5b). 
The nonhyperbolic inversion gives a closer approxi- 

mation to the actual traveltime due to the contribution 

of the additional parameter 7. Hence, the best-fit non- 
hyperbolic moveout curve at location B reproduces the 

increase in the near-offset traveltime, which causes a 

pronounced deviation of the estimated Vimo from the 

exact value (Figure 5c). Note that the hyperbolic cor- 
rection distorts the velocity Vimo outside the lens due 
to the influence of nonhyperbolic moveout. 

The laterally varying 7-curve resembles the re- 

versed version of the Vamo-curve. While in the absence
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Figure 4. Lateral variation of the inverted (a) Vamo and (b) 

7 (bold solid lines) along the line using a spreadlength of 4 km 
(the spreadlength-to-depth ratio X/D = 2). The dashed 
line on plot (a) is the NMO velocity obtained from hyper- 

bolic moveout analysis for the same spreadlength. The exact 

effective Vamo (equation 4) and 7 (equation 5) are marked 
by thin solid lines. 

of the lens the effective 7 at location B should almost 
coincide with the background 7 = 0.08, the estimated 

7 = 0.07 is much smaller. The understated value of 7 

is explained by the need to compensate for the over- 

stated estimate of Vamo in reproducing traveltimes at 

moderate and large offsets (Grechka & Tsvankin, 1998; 

Tsvankin, 2005). The magnitude of the variation (the 
difference between the largest and smallest values) in 7 
along the line is close to 0.3. 

2.2 Dependence of distortions on the lens 

parameters 

Using ray-traced synthetic data, we investigate the de- 

pendence of the inverted moveout parameters on the ve- 

locity, width, and depth of the lens. The replacement of 

finite differences with ray tracing does not significantly 

change the inversion results. 

As expected, the magnitude of the errors in Vamo 

    
Figure 5. (a) Schematic picture of near- and far-offset ray- 

paths from a horizontal reflector beneath a low-velocity lens 
at three CMP locations (modified from Biondi, 2006). (b) 

The influence of the lens on the moveout curves. The ray- 

paths and moveout curves at locations A, B and C are shown 

by dotted, solid and dashed lines, respectively. (c) Schematic 
estimated moveout curves (dotted lines) obtained from hy- 
perbolic (left) and nonhyperbolic (right) inversion at location 

B. The actual moveouts at locations A and B are shown by 
thin and bold solid lines, respectively. 

and 77 is proportional to the velocity contrast between 

the lens and the background (Figure 6a). When the 
spreadlength is fixed, the time distortions depend on 

the ratio W/L’, where W is the width of the lens and 
L’ is the maximum horizontal distance between the in- 
cident and reflected rays at the lens depth (Figure 5a). 

Note that L’ decreases with increasing lens depth. For 
the model used in the test, the distortions in Vamo and 

n are largest when the width of the lens is 0.5 km (or 
W/L’ = 0.25) (Figure 6b). On the other hand, the error 
in Vamo estimated from hyperbolic moveout inversion 

has a flat maximum for the width ranging from 0.5 km 

to 1.5 km.
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Figure 6. Dependence of the magnitude of the variation in Vamo (left) and 7 (right) on (a) the velocity contrast defined as 
(Viens — Vback)/Vback, Where Viens is the lens velocity and Viack is the background velocity, (b) the width and (c) the depth of 

the lens. Vamo is obtained from nonhyperbolic (solid lines) and hyperbolic (dashed lines) moveout inversion. The spreadlength 

is 4 km (offset-to-depth ratio X/D = 2). 

Since W/L’ at the surface is 0.25 (W = 1 km, 
spreadlength is 4 km) in this model, a shallower lens 

causes larger errors in Vamo and 7 (Figure 6c). For a 
depth of 0.25 km (W/L’ = 0.29), the errors are close to 
the largest distortions for the test in Figure 6b. 

2.3 Identifying lens-induced distortions 

Identifying the range of CMP locations influenced by 

the lens is critical for avoiding the use of distorted pa- 

rameters. It is clear from the above results that large 

variations of Vamo and 7 on the scale of spreadlength 

are strong indications of the lens. Using the single-layer 

lens model, we suggest two additional indicators of the
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Figure 7. Semblance value for moveout-corrected gathers 
before (dashed line) and after (solid line) applying trim stat- 
ics. The data were contaminated by random noise with the 

signal-to-noise ratio equal to (a) 10 and (b) 5. 

lens — residual moveout after application of nonhyper- 

bolic moveout correction and the dependence of Vamo 

and 7 on spreadlength. 

The moveout curve distorted by the lens cannot 

be completely flattened by the nonhyperbolic move- 

out equation. To estimate the magnitude of the resid- 

ual moveout, one can use so-called trim statics (Ursen- 
bach & Bancroft, 2001). Trim statics involves cross- 
correlation between a near-offset trace and all offset 

traces, which helps evaluate the statics shifts needed 

to eliminate the residual moveout. Due to the presence 

of residual moveout in the area influenced by the lens, 

application of trim statics increases the semblance (Fig- 

ure 7). Still, the semblance value after trim statics at 
location B is lower than that at location A because of 

the lens-induced waveform distortions. 

Trim statics, however, may not perform well when 

the data contain random or coherent noise (Ursenbach 
& Bancroft, 2001). If the signal-to-noise (S/N) ratio 
is less than five, trim statics increases the semblance 

by aligning noise components in the statics-corrected 

gather (Figure 7). Thus, trim statics can be used to de- 
lineate the area influenced by the lens only for relatively 

high S/N ratios. 
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Figure 8. Dependence of (a) Vamo and (b) 7 on the 

spreadlength-to-depth ratio (X/D). 

Another possible lens indicator is the variation of 

the moveout parameters with spreadlength. As shown 

in Figure 8, the shape of the Vamo- and 7- curves 

is highly sensitive to the spreadlength-to-depth ratio 

(X/D). In contrast, the estimated moveout parameters 
at location A outside the lens are weakly dependent on 

spreadiength. 

2.4 Layered model 

The conclusions drawn above remain valid for a more 
realistic, layered model containing a parabola-shaped 

lens, which causes a maximum time distortion (or push- 
down anomaly) of 18 ms (Figure 9). We generate syn- 
thetic data with finite-differences and apply nonhyper- 

bolic moveout inversion for the two interfaces (A and 
B) below the lens (Figure 10). 

For a spreadlength of 4 km, the maximum distor- 

tion (the maximum deviation from the exact value) in 
Vamo reaches approximately 9% for interface A and 11% 

for interface B (Figure 10), while the distortion in 7
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Figure 10. Lateral variation of estimated Vamo (left) and 7 (right) for the model from Figure 9 for (a) interface A and (b) 

interface B. The dashed lines correspond to a spreadiength of 4 km, solid lines [only on plot (b)] to a spreadlength 6 km. The 

thin solid lines mark the exact parameters. 
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Figure 9. Layered model with a parabola-shaped lens. 

The first layer is isotropic and vertically heterogeneous; Vo 
changes from 1.5 km/s at the surface to 2.5 km/s at the 

1 km depth. The second layer is homogeneous VTI with 
Vo = 3.5 km/s, 6 = 0.07 and € = 0.16 and contains an 

isotropic lens with Vo = 2.7 km/s. The maximum thickness 

of the lens is 100 m. The third layer is homogeneous VTI 

with Vo = 4.2 km/s, 6 = 0.05 and ¢ = 0.1. 
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reaches 0.15 and 0.33, respectively. The larger errors for 

interface B are related to its lower ratio X/D. 
When we use a spreadlength of 6 km (X/D = 2), 

the distortions in Vamo and 7 for interface B decrease 
to 5% and 0.08, respectively. As is the case for a ho- 

mogeneous background medium, the moveout-corrected 

gather exhibits residual moveout in the area influenced 

by the lens (Figure 11). Thus, the presence of residual 
moveout and the dependence of the moveout parame- 

ters on the spreadlength can serve as lens indicators for 
layered media as well. 

3 CORRECTION ALGORITHM 

It is clear from the modeling results that even a thin lens 

can cause significant errors in the parameters Vamo and 

yn. Another serious lens-induced distortion is the push- 

down anomaly on the stacked time section (Figure 12a). 
Although the time anomaly becomes smaller if the stack 

is produced using the background moveout parameters 

estimated away from the lens, the stacked event then 

has a smaller power because of a larger residual moveout
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Figure 11. Moveout-corrected gathers computed using the 

best-fit parameters Vamo and 7. Residual moveout is ob- 

served inside the area marked by the dashed line. 
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Figure 12. Stacked section generated using (a) the best-fit 

moveout parameters and (b) the background parameters. 

(Figure 12b). Clearly, it is desirable to produce an accu- 
rate stacked section without reducing the stack power. 

Here, we introduce two methods for correcting P-wave 

data from layered VTI media for the influence of the 

lens. One of them is designed to mitigate the distor- 
tions on the stacked section using trim statics. The other   

method makes it possible to remove the traveltime dis- 

tortions from each recorded trace and, therefore, obtain 

both accurate moveout parameters and a high-quality 

stack. 

3.1 Trim statics 

By eliminating residual moveout, trim statics makes all 

traces kinematically equivalent to the zero-offset trace 

(Figure 13a). Thus, trim statics increases stack power 
and generates a stack that kinematically reproduces 

the zero-offset section (compare Figure 13b with Fig- 

ure 12a). 
To remove the zero-offset time distortion, we as- 

sume that the zero-offset raypath is not influenced by 

the lens and remains vertical for all horizontal inter- 

faces. Then the distortion of to should be the same at 

interfaces A and B. This assumption allows us to use 

the estimated push-down at interface A for correcting 
the time distortions for both interfaces. The resulting 
stacked section is kinematically correct and has a high 

stack power (Figure 13c). However, as discussed above, 
trim statics works only for high S/N ratios and cannot 

be used to estimate the background values of Vamo and 

n. 

3.2 Prestack traveltime shifts 

3.2.1 Method 

The correction algorithm discussed here is designed for 
a horizontally layered overburden containing the lens, 

but the target reflector can be dipping or curved. Unlike 

the statics correction, this technique involves computa- 

tion of traveltime shifts as functions of offset and target 

depth (Figure 14a). As the input data we use the zero- 
offset time shifts (“pull-up” or “push-down” anomalies, 

Ato) for the horizontal reflector immediately below the 
lens. The lens-related perturbation of the raypath is 

assumed to be negligible, so that the ray in the layer 
containing the lens can be considered straight. Then 

the ray crossing the lens can be reconstructed using the 

velocity-independent layer-stripping method (VILS) of 

Dewangan & Tsvankin (2006). 
VILS builds the interval traveltime-offset function 

by performing kinematic downward continuation of the 

wavefield without knowledge of the velocity model. Each 
layer in the overburden is supposed to be laterally ho- 

mogeneous with a horizontal symmetry plane, so that 

the raypath of any reflection event is symmetric with 

respect to the reflection point. The bottom of the tar- 

get layer, however, can be curved and the layer itself 

can be heterogeneous. Wang & Tsvankin (2009) show 
that VILS provides more robust estimates of the interval 

moveout parameters in VTI and orthorhombic models 

than Dix-type equations. 

VILS can be applied to our model under the as-
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Figure 13. (a) Moveout-corrected gather after application of trim statics; (b) the stacked section after trim statics, and (c) 
the stacked section from plot (b) after removing the push-down anomaly at interface A. 

sumption that the raypath in the overburden is not 

distorted by the lens. The idea of VILS is to identify 

reflections from the top and bottom of a certain layer 

that share the same upgoing and downgoing ray seg- 

ments. This is accomplished by matching time slopes 

on common-receiver and common-source gathers. Ap- 
plication of VILS to the reflections from the target and 

top of the layer containing the lens yields the horizontal 

coordinates z,, and z,, (Figure 14a). Likewise, the co- 
ordinates z,, and x, are estimated by combining the 
target event with the reflection from the bottom of the 

layer containing the lens. 

Under the straight-ray assumption, we find the hor- 

izontal coordinates of the crossing points and the ray 

angles (Figures 14a,b): 

' 
z. zx — 2. 

Lpy = Lp, + rp(@ra— Sri), (6) 

‘ 

z z —£ 
Leap =p, — Zp (Pei Fra) (7) 

z 
cos 6,.,. = ——————————. , 8 

™ V (2p. — Bp, )? + 2? ®) 

cos On) = — (9) 
V (a1 ~ Laz)? + 2? 

where z is the thickness of the layer with the lens, and 

zp , and Zp , are the distances from the lens to the top 

of the layer at locations x,, and z,, , respectively. 

If the lens produces a sufficiently strong reflection 

and the layer is vertically homogeneous, the ratio 2’ /z 

can be estimated from the corresponding zero-offset 

traveltimes (t’/t). In the layered model, we can clearly 
identify the lens reflection at t = 1.15 s on the stacked 

section (Figure 15a). This indicates that the horizontal 
coordinates and the ray angles can be estimated without 

complete information about the velocity and anisotropy 

parameters. Then the total lens-related traveltime shift 
for the target event (At,a) can be computed as 

1 (Ato(x,,,0) , Ato (tp,,0) es ee ee ee 1 
Ate 2 ( cos 05; + cos Op, (10) 

where Afo(z,,,0) and Aio(x,,,0) are the zero-offset 
time distortions below the lens at locations z,, and
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Figure 14. (a) Ray diagram of the correction algorithm. 
The horizontal coordinates 2,,, 27. and £p,, Lpo are deter- 

mined from the velocity-independent layer-stripping method. 

(b) Upgoing ray segment crossing the lens. Using the values 
of zn i and z, we can compute the horizontal location of the 

crossing point (z,,) and the ray angle (6, ). 

Ep,_, respectively. Both Atg(z,,,0) and Aio(r,, ,0) 
can be estimated from the near-offset stack. The ray 

angles 0,, and @,, do not have to be the same, which 
makes the algorithm suitable for dipping or curved tar- 

get reflectors. 

After the correction, the kinematics of the prestack 

data should be close to the reflection traveltime de- 

scribed by the background values of Vamo and 7. The in- 

terval parameters V2. and 7™ can be computed using 

the layer-stripped data corrected for the lens-induced 

time shifts. The removal of the time distortions also 
helps generate an accurate stacked section. 

3.2.2 Synthetic test 

The prestack correction algorithm is tested here on the 
layered model from Figure 9. First, we need to estimate 

the three required input quantities: Ato, the ratio 2’ /z, 

and the thickness z of the layer containing the lens. The 

values of Ato (Figure 15b) and 2’/z (t’/t) are obtained 
from the near-offset stacked section (Figure 15a). For 
purposes: of this test, the thickness of the layer contain- 

ing the lens is assumed to be known. 
Application of traveltime shifts computed from 

equation 10 eliminates the time-varying push-down 
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Figure 15. (a) Near-offset stacked section obtained for the 

offset range from 0 to 200 m, and (b) the magnitude of the 
push-down anomaly (solid line) estimated by picking the 

maximum amplitude along interface A. The dotted line in 
(b) is the exact Ato. 

anomaly and increased the S/N ratio of the stacked 
section (Figure 16a). Also, the correction significantly 
reduces the residual moveout in the moveout-corrected 

gathers (Figure 16b) and the errors in the effective 
parameters Vamo and 7 (Figure 17a). For interface B, 
the distortion in Vamo decreases from 5% to less than 

1%, and in 7 from 0.08 to 0.02. Figure 17b shows that 

the correction algorithm also produces much more ac- 

curate interval parameters Vamo and 7 estimated from 

the layer-stripped data. The remaining errors are largely 

caused by the straight-ray assumption for the layer con- 

taining the lens. 

It is important to evaluate the sensitivity of the pa- 

rameter estimation to errors in the input data. Exten- 

sive testing shows that when the error in Ato is smaller 

than 25%, the moveout-corrected gather is almost flat. 

To test the sensitivity to the ratio z’/z, we move the 

lens down by 100 m and 200 m, which corresponds to 

10% and 20% errors in z’/z. Although distortions in the 
moveout-corrected gather become noticeable when the 

error reaches 20%, the magnitude of the residual move- 

out is still much smaller than that before the correction.
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Figure 16. (a) Stacked section and (b) moveout-corrected 
gathers obtained after applying prestack traveltime shifts 

that compensate for the influence of the lens. 

Finally, a thickness error up to 20% proves to have lit- 

tle impact on the output of the correction algorithm. 

An accurate stacked section can be generated even for 

somewhat larger errors in these input quantities. 

4 DISCUSSION 

The correction algorithm requires knowledge of the zero- 

offset time anomaly Ato, the ratio z’/z and the thickness 
z of the lens-containing layer. In the synthetic test, Ato 

was accurately estimated from the push-down anomaly 

on the near-offset stacked section, and the ratio z’/z was 
obtained from the corresponding time ratio t’/t using 

the reflection from the lens (Figure 15). Since depth 
uncertainty seldom exceeds 20% in practice, errors in 

z are not expected to have a significant impact on the 

correction results. 
The suggested approach should be applicable to 

many field data sets. For example, the time section from 

the central North Sea in Figure 1 contains channel-like 
structures and pull-up anomalies (marked area in Figure 
1), which indicate the presence of high-velocity chan- 

nel fills (Armstrong eé al., 2001). The lens reflections 
are sufficiently strong for estimating the ratio ¢’/t (and, 
therefore, z’/z), and the pull-up time anomaly can be 
accurately measured as well. 

Our algorithm can also be applied to layered media 

with multiple lenses, if it is possible to estimate the val- 

ues of Ato and z’/z for each lens separately. Then the 

total traveltime shifts are obtained by summing the in- 

dividual lens-induced time distortions. However, the al- 

gorithm will produce distorted time shifts when a layer 

contains multiple lenses or the lens reflections cannot 

be identified. Also, the algorithm assumes a laterally 

homogeneous overburden and straight rays in the layers 

containing the lenses. Therefore, the correction may be- 

come inaccurate when the overburden includes dipping 

interfaces or has a strong velocity contrast between the 

lens and the background. 

5 CONCLUSIONS 

We demonstrated that a relatively thin velocity lens 

may cause significant, laterally varying distortions in 

the moveout parameters Vamo and 7 estimated from 

nonhyperbolic moveout analysis. The magnitude of the 

distortion depends on the width and depth of the lens 

and is proportional to the velocity contrast between the 

lens and the background. The error in Vamo is larger 

after nonhyperbolic moveout inversion compared with 

the conventional hyperbolic algorithm applied for the 

same spreadlength, particularly when the lens is narrow 

or is located in a shallow layer. Hence, although non- 

hyperbolic moveout analysis produces smaller residual 

moveout and higher stacking power than the hyperbolic 

equation, it does not guarantee a more accurate estima- 

tion of NMO velocity in the presence of lateral hetero- 

geneity. 

Identifying the area influenced by the lens is crit- 

ical for avoiding use of distorted moveout parameters. 

We showed that the residual moveout can serve as a lens 

indicator because the lens-induced distortion cannot be 

completely removed by nonhyperbolic moveout inver- 

sion. The presence of residual moveout can be identified 

from the increase in semblance after application of trim 

statics, provided the signal-to-noise ratio is sufficiently 

high. A lens also manifests itself by making the moveout 

parameters strongly dependent on spreadlength and the 

lateral coordinate. 

To correct for lens-induced traveltime shifts on 

prestack data, we developed an algorithm based on 

velocity-independent layer stripping (VILS). Synthetic 

tests confirmed that the algorithm successfully removes 

lens-induced distortions on the stacked section and sub- 

stantially reduces the errors in the effective and interval 

parameters Vamo and 7. The correction requires esti- 

mates of the zero-offset time distortion Ato, the thick- 

ness z of the layer containing the lens and the ratio 2’/z, 
where 2’ is the distance between the lens and the top of
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Figure 17. (a) Inverted effective parameters Vamo (left) and 7 (right) for interface B before (dashed line) and after (thick 

solid line) applying the correction algorithm (X/D = 2). (b) The interval parameters Vamo and 77 in the third layer (2-3 km) 
estimated before (dashed line) and after (thick solid line) applying the correction algorithm. The spreadlength (before applying 

VILS) is 6 km. Thin solid lines mark the exact parameters. 

the lens-containing layer. The parameters Ato and z’/z 

can be obtained from reflection data, while z cannot be 

found without additional (e.g., borehole) information. 
However, errors up to 20% in the Ato and z, as well 

as a 10% error in the ratio z’/z, do not significantly 
hamper the performance of the algorithm. 

Although we presented the correction method for 

a 2D model that contains a single lens, it can be ex- 

tended to wide-azimuth data from layered media with 

well-separated multiple lenses. Potentially, the 3D ver- 

sion of the algorithm can be used to correct for the influ- 

ence of small-scale lateral heterogeneities on azimuthal 

moveout inversion. 
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Estimation of interval shear-wave attenuation from 

mode-converted data 

Bharath Shekar & Ilya Tsvankin 

ABSTRACT 

Interval attenuation measurements provide valuable information for reservoir 
characterization and lithology discrimination. Here, we extend the attenuation 
layer-stripping method of Behura and Tsvankin to mode-converted (PS) waves 
with the goal of estimating the interval S-wave attenuation coefficient. By identi- 
fying PP and PS events with shared ray segments and applying the PP+PS=SS 
method, we first perform kinematic construction of pure shear (SS) events in the 
target layer and overburden. Then, the modified spectral-ratio method is used 
to compute the effective shear-wave attenuation coefficient for the target reflec- 
tion. Finally, application of the dynamic version of velocity-independent layer 
stripping to the constructed SS reflections yields the interval S-wave attenuation 
coefficient in the target layer. The attenuation coefficient estimated for a range 
of source-receiver offsets can be inverted for the interval attenuation-anisotropy 
parameters. The method is tested on a multicomponent synthetic data set from 
layered VTI (transversely isotropic with a vertical symmetry axis) media gen- 
erated with the anisotropic reflectivity method. 

Key words: attenuation, anisotropy, multicomponent data, shear waves 

Introduction 

Attenuation analysis provides seismic attributes sensi- 

tive to the physical properties of the subsurface. Re- 

liable attenuation measurements have become feasible 

with acquisition of high-quality reflection and borehole 

data. Attenuation is often found to be anisotropic (di- 
rectionally dependent) due to a variety of factors such as 

the intrinsic anisotropy of the material, the presence of 

aligned fluid-fractures (Batzle et al., 2005), or interbed- 

ding of thin layers with different properties (Zhu et al., 

2007). The magnitude of attenuation anisotropy can be 
much higher than that of velocity anisotropy, and the 

symmetry of the attenuation coefficient can be different 

than that of the velocity function (Liu et al., 2007). 
The quality factors Qp and Qs are widely used as 

measures of P- and S-wave intrinsic attenuation, respec- 

tively (Zhu, 2006). Dvorkin and Mavko (2006) observe 
that the ratio Q5'/Q,' can serve as an indicator of 

hydrocarbons because the values of Qp and Qs in fluid- 

saturated rocks are close, while in dry or gas-saturated 

rocks Qp >> Qs. Adam (2008) suggests that time-lapse 
studies of attenuation are useful in monitoring reser- 

voir fluids. Chichinina et al. (2009) conduct ultrasonic 
laboratory experiments for models with VTI symmetry. 

Their results show that the symmetry-axis attenuation 

of P-waves is much greater than that of S-waves in dry 

samples, while for oil-saturated models, the two models 

have comparable attenuation. Shear-wave attenuation 

in heavy oils is closely linked to temperature, and hence 

could be useful in seismic monitoring of thermal recov- 

ery processes (Behura et al., 2007). 
De et al. (1994) report measurements of the shear- 

wave quality factor from vertical seismic profiling (VSP) 

surveys and sonic logs. It is more difficult to study S- 

wave attenuation using reflection data due to such prob- 

lems as the high level of noise and statics problems for 

shear waves. Behura and Tsvankin (2009) combine the 
velocity-independent layer stripping (VILS) method of 

Dewangan and Tsvankin (2006) with the spectral-ratio 
method to estimate the interval attenuation of pure PP 

or SS reflected waves. They identify the overburden and 

target events that share ray segments in the overburden 

to compute the interval traveltime and then the interval 

attenuation coefficient in the target layer. Their algo-



398  B. Shekar & I. Tsvankin 

rithm is data-driven and does not require information 

about the velocity or attenuation in the overburden. 

Shear waves, however, cannot be excited offshore, 

and shear-wave sources are seldom used on land. There- 

fore, here we extend the technique of Behura and 

Tsvankin (2009) to mode-converted data by supple- 
menting it with the PP+PS=SS method of Grechka and 

Tsvankin (2002). First, we discuss how the PP+-PS=SS 
method can be combined with VILS to construct SS- 

wave moveout in the target layer and overburden from 

PP and PS data. Then the interval S-wave attenua- 

tion coefficient is obtained by extending the kimenatic 

construction procedure to frequency-domain amplitudes 

processed using the spectral-ratio method. Finally, we 

apply the algorithm to synthetic data generated for a 

layered VTI medium and investigate the accuracy of 

the inversion for the SV-wave attenuation-anisotropy 

parameters. 

Methodology 

For simplicity, the method is described for 2D models, 

but it can be extended to 3D wide-azimuth data. We 

operate with pure-mode (PP) and mode-converted (PS) 
reflections for a medium with an arbitrarily anisotropic, 

heterogeneous target layer overlaid by a laterally homo- 

geneous overburden with a horizontal symmetry plane 
in each layer. In the 2D version of the method the ver- 

tical incidence plane is supposed to be a plane of mirror 

symmetry for the whole model. Therefore, both rays and 

the corresponding phase-velocity vectors are confined to 

the incidence plane, and converted waves represent in- 

plane polarized PSV modes. The P-to-S conversion is 

assumed to occur only at the reflector. We begin with 

a description of the algorithm designed to compute the 

interval shear-wave traveltimes and then discuss estima- 

tion of the interval shear-wave attenuation coefficient in 

the target layer. 

Kinematic layer stripping for interval 

shear-wave traveltimes 

To estimate the interval shear-wave traveltimes in the 

target layer, we combine the PP+PS=SS method with 

velocity-independent layer stripping (VILS) developed 

by Dewangan and Tsvankin (2006). Suppose P-wave 
sources and receivers of both P- and S-waves are con- 

tinuously distributed along the acquisition line. As dis- 

cussed by Grechka and Tsvankin (2002), matching time 
slopes on common-receiver gathers at the source loca- 

tion A allows us to identify the PP (ARB) and PS 
(ARC) target events that share the downgoing segment 
AR and the reflection point R at the bottom of the 

target layer (Figure 1). Likewise, for a P-wave source 

at B, we find PP (BRA) and PS (BRD) target events 
that share the downgoing segment BR. This procedure 
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Figure 1. 2D ray diagram illustrating the PP+PS=SS 
method for PP and PS reflections from the bottom of the 

target layer. The wavefield is excited in split-spread geome- 

try by P-wave sources located at points A and B. Target PP 
(ARB) and PS (ARC) events share the downgoing segment 

AR and, therefore the reflection point R at the bottom of 

the target layer. Another pair of PP (BRA) and PS (BRD) 
target events share the downgoing segment BR. The con- 

structed SS target event corresponds to DRC. 

makes it possible to construct the SS event DRC, where 

C and D are the coordinates of S-wave receivers. For 

brevity, we denote the PP (ARB) and PS (ARC and 
BRD) events by PPg , PSk:, and PS ge (respectively) 
and the constructed SS event DRC by SSg (“E” refers 
to effective events reflected from the bottom of the tar- 

get layer). The exact shear-wave traveltime for the re- 

flection SS g is (Grechka and Tsvankin, 2002) 

tssp =tps_, ttpspo —tpPe- (1) 

The constructed event SS_ can be treated (in a kine- 
matic sense) as a pure reflection mode excited by a 

shear-wave source. 
Next, we find the interval shear-wave traveltime in 

the target layer, which requires knowledge of the travel- 

time in the overburden. Since the data are assumed to 
be generated with a P-wave source, it is necessary to ap- 

ply the PP+PS=SS method repeatedly to construct SS 

reflections in the overburden (Figure 2). To layer-strip 
the segment DR of the SS-wave, we need to obtain the 

coordinate of point I and the traveltime along the over- 

burden segment JD. Note that the horizontal slowness 

along any ray in the laterally homogeneous overburden 
should be preserved. 

First, we form a common-receiver gather of the PS- 
wave at location D and identify the point (&) where the 
time slope (horizontal slowness) coincides with that at 
D. The obtained overburden PS event EID shares the 
segment I D with the target SS event CRD (Figure 2b). 
Then we form a common-source PP gather at location 

E to find the point F' where the time slope (horizontal 
slowness) coincides with that at E, which means that
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Figure 2. Layer stripping of the constructed SS events. (a) Application of the PP-+PS=SS method is applied to kinematically 

construct pure SS-waves in the overburden. PP (EJF) and PS (EID) events share the downgoing segment EJ and the reflection 

point J at the bottom of the overburden. Another pair of PP (FIE) and PS (FIG) overburden events share the downgoing 
segment FJ. (b) The constructed overburden SS event DIG shares the segment JD with the target SS reflection. 

the overburden PP event EIF shares the downgoing 

segment EJ with the PS event EID (Figure 2a). 
The moveout functions of the overburden PP, PS, 

and SS events are symmetric with respect to zero offset. 

Therefore, the receiver coordinate of the overburden PS 

event FIG can be found from 

Lo =@pt@l,~-—Zp. (2) 

The constructed event DIG (denoted by SSo1, where 

“Q” refers to the overburden and “1” to the left segment 

of the target SS event in Figure 2b) shares the segment 

ID with the target SS event DRC (Figure 2b). The PP 
event EIF will be denoted by PP oi and the PS events 

EID and FIG by PSo1. The exact traveltime of the 

event SS 01 is then given by 

tsso, = 2tpso, —tpPo., (3) 
and the lateral coordinate of location J is 

Lyte 
L,= a (A) 

Likewise, we can apply the PP+PS=SS method to con- 

struct the overburden SS event HJC (SS 02) that shares 
the segment JC with the target event SS (Figure 3). 
The corresponding traveltime tss, and the lateral co- 
ordinate of point J are obtained using the algorithm 

discussed above. The interval shear-wave traveltime in 
the target layer is given by 

1 
tssp = tssp ~ 5 (isso, + tsSo2)- (5) 

The interval traveltime ts. corresponds to the raypath 

IRJ of the target event SS r. 

If the target is horizontal and laterally homoge- 

neous, the raypaths of the downgoing and upgoing over- 

burden events correspond to the same ray parameter 
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Figure 3. Raypaths of the constructed SS events. The target 
SS event DRC shares the segments [1D and JC with the 

overburden events DIG and HJC, respectively. The method 
produces the interval traveltime along the raypath [ RJ. 

and, therefore, are symmetric with respect to the verti- 

cal. Then tssg, = tssoz, and it is sufficient to apply 
the PP+PS=SS method just to one of the overburden 

segments of the target event SSg. 

Layer stripping for interval shear-wave 

attenuation 

Behura and Tsvankin (2009) combine VILS with the 
spectral-ratio method and apply their attenuation layer- 

stripping algorithm to frequency-domain amplitudes of 

pure-mode reflections. This technique can be extended 

to the combination of PP- and PS-waves analyzed
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above. The ray-theoretic frequency-domain amplitudes 

of the waves PP, PSg1 and PSee2 (Figure 1) can be 
written as 

I I 

|Upp,| = S(w)G pre e *P.ar'ar ~ Kp,RB 'Re (6) 

I I 

Ups py | = S(w)G esp, e *P,ARlAR e *s,RC ine | (7) 

L I 
[Ups go| = S(w)G ps po e *P,BR'BR e *3,RD tap | (8) 

where S(w) is the spectrum of the source wavelet. The 
coefficients kb, xy and k§ xy are the average P- and S- 
wave group attenuation coefficients along the raypath 

XY, the length of the raypath XY is denoted by Ixy. 

The coefficients Gpp,;,Gps,, and Gps,. include the 
source/receiver directivity, reflection/transmission coef- 
ficients along the raypath, and the geometrical spread- 

ing of the corresponding events. Equations 6, 7, and 8 

can be combined to compute the attenuation coefficient 

of the reflection SSg constructed by the PP+PS=SS 

method: 

Ups ge. | Urs gp | 
Uss = 

| | [Upp ,| 

= GrSw) e~*5,pR'DR—k5,rctRC | (9) 

where the ratio Ge = GrsizGrs25/GrP, is as- 

sumed to be independent of frequency. It should be 

noted that |Uss,,| in equation 9 does not represent the 
actual amplitude of the primary SS reflection. While 

the PP+PS=SS method reproduces the kinematics of 

shear-wave primaries, it cannot yield the true ampli- 

tudes without knowledge of the velocity model (Grechka 
and Tsvankin, 2002; Grechka and Dewangan, 2003). Al- 

though equation 9 can be used to obtain the effective 

S-wave attenuation coefficient by evaluating the slope 

of In|Uss,|, its application is hampered by the need 
to evaluate the source spectrum S(w), which is often 
difficult to do in practice. 

However, as shown below, S(w) is eliminated in the 
estimation of the interval S-wave attenuation coefficient. 
The ray-theoretic frequency-domain amplitudes of the 

waves PP 91 and PSo: (Figure 2) can be written as 

I 

lUpPo,| = SWw)Grrpo, e Fp.o1 (ler +lrr) 

I 
= S(w)G pro, e2*P,o1 ter (10) 

4 I 

IUpsoil =SW)GPso, e *p.o1tel e~ks,o1 4p | (11) 

where kpoi and kb on are the average P-wave and S- 

wave group attenuation coefficients along the raypaths 

PP o; and PS oi, respectively. Equations 10 and 11 can 

be combined to compute the attenuation of the con- 

structed shear-wave SS 01 in the overburden: 

Upsoy |? =GorS(w)e #5014, (49) 
UpPo,| 

Ussoi| = 

where G01 = GPs oy /G PPo, - Likewise, the attenuation 

coefficient for the overburden event SS o2 can be found 

from 

VPs oo!" =Go2S(w)e’ kS,o2 le ; (13) 
UpPos| 

[Usso2| = 

The problem is now reduced to the attenuation analy- 

sis of pure modes considered by Behura and Tsvankin 

(2009). Equations 9, 12 and 13 can be combined to com- 
pute the interval shear-wave attenuation in the target 

layer as follows: 

[Uss , |? 
[Uss-| ——— 

7 Usso1||Uss 02! 
Gre 2 *5,pR DR + k5,Rc IRc) 

I i 
e (ks o1 Up +kso2 lic) (14) 

where Gr = Gg, / (Go1Go2). Taking the logarithm of 

equation 14 yields: 

In|Uss;| = InGr —2( ki prlprt ké,rclrc) 

+2(kSoi lip + kS,02 luc). (15) 

Since k&. pr lpr = k§rrlier + kgo1 lrp and 
k§. rclrac = k&. as lrg + k§02 luc, equation 15 

can be rewritten as 

In|Ussp| = InGr —2kSrrlin —2k§,ps las 

= InGr —2k&7(lir + lr), (16) 

where the coefficient kor represents the average group 

attenuation coefficient along the shear-wave raypath in 

the target layer. 

Interval phase attenuation coefficient for a 

homogeneous target layer 

If the target layer is heterogeneous, equation 16 provides 
only the offset-dependent average interval attenuation 

coefficient. Interpretation of attenuation measurements 

can be significantly simplified for horizontal, homoge- 

neous layers with a horizontal symmetry plane. Then 

the length of the raypath in the target layer is given by 

lrr + lrs = Vgtss_, where V, is the shear-wave group 
velocity along the ray IR (Figure 3), and tss, is the 
interval shear-wave traveltime in the target layer. As a 

result, equation 16 reduces to 

In|Uss| = NGr —2k$.7 Vatss >. (17) 

Behura and Tsvankin (2009) show that equation 17 can 
be used to obtain the interval phase attenuation coeffi- 

cient of P- or S-waves. According to their results, equa- 

tion 17 can be rewritten as 

In|Uss;| = InGr —2wAstss,, (18) 

where w is the angular frequency and Ag = ki??? /K®Ph 
is the S-wave phase attenuation coefficient (Zhu, 2006) 
for a zero inhomogeneity angle (the angle between the 

real and imaginary parts of the wave vector); k/"? * and



k®PR are the magnitudes of the imaginary and real 
parts of the wave vector, respectively, for S-waves. 

The shear-wave interval traveltime in the target 

layer (tss) is computed from equation 5 using the 
kinematic layer stripping. Hence, the slope of the log- 

arithmic spectral ratio in equation 18 yields the phase 

attenuation coefficient for the phase angle correspond- 

ing to a given group direction (e.g., to the raypath IR 

in Figure 3). If the slope is constant, As and the quality 

factor Qs ~ 1/(2As) are independent of frequency. If 

the slope varies with frequency, As has to be computed 

from the instantaneous slope, which yields a frequency- 

dependent attenuation coefficient and quality factor. 

For VTI and orthorhombic media, the S-wave 

phase attenuation coefficient can be inverted for the 

attenuation-anisotropy parameters introduced by Zhu 

and Tsvankin (2006, 2007). The SV-wave phase atten- 
uation coefficient in VTI media is approximately given 
by (Zhu and Tsvankin, 2006): 

Asyv (0) = Aso (1 + a sin’ @ cos? 0), (19) 

where Aso ~ 1/(2Qso) is the symmetry-direction SV 
attenuation coefficient and Qso is the vertical quality 

factor. The parameter o, determines the variation of 

Asv away from the symmetry direction and depends 

on the attenuation-anisotropy parameters €, and 6,, 

as well as on the vertical velocities and quality factors 

P- and S-waves. 

Whereas the phase attenuation coefficient is ex- 

pressed as a function of the phase angle, our method 

computes Asv for a certain source-receiver offset at the 

top of the target layer. Estimating the phase angle for a 

given source-receiver pair generally requires knowledge 

of the anisotropic velocity field in the interval of inter- 

est. 

Synthetic example 

The method was tested on synthetic multicomponent 

data from a horizontally stratified VTI model (Figure 
4). The sources were placed on the top of the model, 

while the receivers were on the bottom of the water 

layer. Our method is applicable to this source-receiver 

geometry because it utilizes events with shared ray seg- 

ments in the overburden. 

Synthetic reflection data were generated using an 

anisotropic reflectivity code (Schmidt and Tango, 1986). 
PP and PS events from the top and bottom of the target 

were identified on the vertical and radial displacement 

components of the shot gather (Figure 5). Kinematic 
layer stripping of the shear-wave traveltimes produced 

the interval moveout in the third (target) layer shown in 
Figure 6. The layer-stripped interval traveltimes prac- 

tically coincide with the exact values computed by ray 

tracing. It should be noted that the maximum offset for 

the constructed shear-wave in the target layer is limited 
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Figure 4. Synthetic model used to test the algorithm. The 

source is placed on the top of the model and the receivers 

are on the water bottom. The water is purely isotropic and 

elastic with the P-wave velocity Vp = 1500m/s and thick- 

ness d = 2000 m. The other three layers have VTI symmetry 
for both velocity and attenuation. For the second layer, the 

vertical P- and S-wave velocities are Vpp = 1600m/s and 
Vso = 800 m/s, thickness d = 600m, and velocity-anisotropy 

parameters are ¢ = 0.30, and 6 = 0.10; the attenuation pa- 

rameters are Qpo = 20, Qso = 50, €g = 0.30, and 6, = 

0.20. In the third layer, Vpp = 1700m/s, Vso = 900m/s, 

d = 1000m, € = 0.25, 6 = 0.10, Qpo = 100, Qso = 20, 
€g = 0.20, and 8g = 0.10. The parameters of the bottom 

halfspace are Vpg = 2500m/s, Vso = 1400m/s , € = 0.30, 

6 = 0.10, Qpo = 50, Qso0 = 50, ¢g = 0.40, and 6g = 0.30. 

Offset (km) Offset (km) 
4 8 oo 2 ‘4 4 

Ti
me
 

(s)
    

(b) 

Figure 5. Vertical (a) and horizontal (b) displacement com- 

ponents of a shot gather for the model from Figure 4. The 
target PP and PS events are marked by the red arrows in (a) 
and (b), respectively. 

by the critical angle for SP mode conversions, which is 

equal to 32°. 

The input amplitudes were obtained by computing 

the vector sum of the radial and vertical displacement 

components. Frequency-domain amplitudes were found 

by windowing the arrivals and applying the Fourier 

transform. The target layer is horizontal, homogeneous,
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Figure 6. Interval shear-wave traveltime in the third layer 

(red stars) computed using the PP+PS=SS method and 

velocity-independent layer-stripping. The gray curve marks 
the exact traveltime. 
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Figure 7. Estimated S-wave interval phase attenuation co- 

efficient Asy for the third layer (red line) as a function of 
the phase angle 6. The gray line marks the exact coefficient 
Asv. 

and has a horizontal plane of symmetry (it is VTI). 
Therefore, the interval shear-wave phase attenuation co- 

efficient in the target layer was computed from equa- 

tion 18 using the algorithm discussed above. The SV- 
wave phase angles were obtained from the correspond- 

ing group angles using the known velocity function in 
the target layer. The parameters Aso = 0.025 and 

gq = —0.61 were found by least-squares fitting of equa- 

tion 19 to the estimated values of shear-wave phase at- 

tenuation coefficient Asy. The obtained parameter Aso 

is close to its actual value (0.025), but there is a sig- 
nificant error in the parameter a, (the actual value is 

~—0.78) due to the limited range of phase angles for the 

reflected S-leg of the PS-wave. The exact and best-fit 

curves of the shear-wave phase attenuation coefficient 

Asv are displayed in Figure 7. 

Discussion 

Despite the generally successful test results, the pro- 

posed method has several limitations. First, the range 

of phase angles for the constructed SS-wave is restricted 

due to two factors: the small amplitudes of PS-waves at 

near offsets and the critical angle for converted waves. 

Typical values for the critical angle are about 30°, which 

causes instability in the inversion for the attenuation- 

anisotropy parameter og. Estimation of ¢, may be 

more accurate for hard rocks with a high Vs/Vp ra- 

tio, for which the critical angle for SP mode conver- 

sions is higher. However, the algorithm should provide 

tight constraints on the symmetry-direction coefficient 

Aso. Second, because the data are generated by a P- 

wave source, it is necessary to repeatedly apply the 

PP+PS=SS method to construct SS events, which could 

lead to error accumulation in the attenuation analysis. 

Third, the algorithm is supposed to operate with iso- 

lated reflection events. Amplitude distortions due to in- 

terference (e.g. with multiples) may hinder S-wave at- 
tenuation estimates. 

To express Asy as a function of the phase an- 

gle (equation 19), it is necessary to know the veloc- 

ity function. However, as discussed by Behura and 

Tsvankin (2009), the difference between the phase and 
group angles for moderately anisotropic models does not 

substantially distort attenuation coefficients. It should 

be mentioned, however, that even computation of the 

group angle for a given source-receiver pair requires ve- 

locity information. 

Conclusions 

We extended the algorithm of Behura and Tsvankin 

(2009), originally introduced for pure modes, to the 
combination of PP- and PS-waves with the goal of 

estimating the shear-wave interval attenuation co- 

efficient. Our technique involves repeated applica- 

tion of the PP+PS=SS method followed by velocity- 

independent layer stripping (VILS), for both traveltime 
and frequency-domain amplitudes. In the 2D implemen- 

tation of the method discussed here, the vertical inci- 

dence plane has to be a plane of mirror symmetry in all 

layers including the target. VILS is designed for a later- 
ally homogeneous (although possibly vertically hetero- 

geneous) overburden with a horizontal symmetry plane 

in each layer. If this assumption is satisfied, our method 

does not require knowledge of the overburden velocity 

and attenuation parameters. 

For heterogeneous target layers, the algorithm es- 

timates the average S-wave interval group attenuation 

coefficient for a range of source-receiver offsets. If the 

target is horizontal, homogeneous, and has a horizon- 

tal symmetry plane, it is possible to obtain the inter- 

val phase attenuation coefficient for the constructed SS 

events.



Synthetic modeling for layered VTI media con- 

firmed the accuracy of the method in estimating the in- 
terval SV-wave phase attenuation coefficient Asy. The 

range of phase angles for the constructed SS reflection is 

limited by the small amplitudes of PS-waves at near off- 

sets and the critical angle for the reflected S-leg. The co- 

efficient Asy can be inverted for the symmetry-direction 

coefficient Ago and, under favorable circumstances, for 

the attenuation-anisotropy parameter o,. 

The combination of the shear-wave attenuation co- 

efficient with P-wave attenuation measurements can 

help detect the presence of fluids in a reservoir. The 3D 

version of our method can be applied to wide-azimuth 

data to evaluate the azimuthal variation of shear-wave 

attenuation, which is sensitive to fluid-filled natural 

fracture sets. 
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Coupled geomechanical and seismic modeling of 
compaction-induced traveltime shifts for 

multicomponent data 
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ABSTRACT 

Time-lapse seismic methods have proven successful in evaluating changes in 
reservoirs caused by production. Accurate modeling of compaction-related time 
shifts requires combining geomechanics with full-waveform simulation of seis- 
mic data. Here, we study the influence of compaction-induced stress and strain 
around a reservoir on compressional (P), mode-converted (PS), and shear (S) 
waves. Geomechanical reservoir models are used to generate stress-related stiff 
ness coefficients, which serve as input to 2D anisotropic finite-difference model- 
ing. Reflectors are placed at multiple depths to evaluate time-lapse anomalies 
for different source locations and a wide range of reservoir pressure. The baseline 
and monitor shot records are processed by windowed cross-correlation analysis 
to compute “visualization surfaces” of time shifts with respect to the baseline 
survey. Our modeling results show that the spatial pattern of time shifts for 
PS- and S-waves is generally similar to that for P-waves. However, while P- 
wave traveltimes above the reservoir increase after compaction, PS- and S-wave 
traveltimes there are slightly reduced. The traveltimes of all modes decrease for 
reflectors below the stressed reservoir. Almost constant time shifts of PS- and 
S-waves for a range of offsets and source locations indicate that the contribution 
of stress-induced velocity anisotropy to shear-wave signatures is weak, because 
the symmetry is close to elliptical. The developed methodology not only helps 
understand the behavior of traveltime shifts for PS- and S-waves, but can be 
used in the inversion for the stress field. 

Key words: geomechanics, seismic modeling, stress-induced anisotropy, con- 
verted waves, shear waves, time-lapse, compacting reservoir, transverse isotropy, 

VTI 

Introduction 

General Overview 

Time-lapse (4D) monitoring of oil and gas reservoirs 
is based on estimating the differences between seis- 

mic signatures measured for baseline and monitor sur- 

veys (Calvert, 2005). Pore-pressure reduction inside a 

reservoir causes stress, strain, and impedance changes 
throughout the section. The type, magnitude, and spa- 

tial distribution of differences between time-lapse data 

sets allow production engineers and interpreters to map 

oil drainage patterns and reservoir block connectivity. 

This information is helpful in enhanced recovery opera- 

tions, such as fracturing and flooding. 
Production-induced stress fields depend on both 

volumetric and shear strains associated with changes 

in pore fluid pressure and bulk modulus of the reser- 

voir. In addition to pressure drop and impedance vari- 

ations within the reservoir, the surrounding rock un- 

dergoes stress and strain redistribution. Compaction- 

induced stress and strain in the overburden can cre- 

ate or reactivate normal and reverse faults, resulting 

in small to moderate earthquakes in close proximity 

to the reservoir (Zoback, 2007). Concentrated regions
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of high subsurface stress (Bachrach et al., 2007) may 
cause shearing of wells, which must then be abandoned, 

repaired, or side-tracked to resume production. An ex- 

ample of widespread stress/compaction damage is found 

in Wilmington Field, Long Beach, California. This field 

experienced approximately 30 feet of subsidence from 

1931-1952, with significant damage to over 200 produc- 

tion wells, associated infrastructure, bridges, and wharfs 

of the Terminal Island area in Long Beach (McCann and 
Wilts, 1951; Strehle, 1987). 

Time-lapse seismic data are often migrated to gen- 

erate images reflecting changes in the reservoir. Signa- 

tures measured in time-lapse surveys also have poten- 

tial for estimating subsurface stress. Synthetic model- 

ing of pore-pressure-dependent time shifts for multiple 

horizons above and below the reservoir can be used to 

study the influence of spatially varying stresses on the 

kinematics of reflected waves. Traveltime shifts, coupled 

with well-pressure histories, can serve as input to inver- 

sion algorithms designed to reconstruct reservoir pres- 

sure at locations distant from existing wells. Time-shift 
measurements for reflectors and events most sensitive 

to changes in reservoir pressure and stress may be ex- 

ploited to devise a flexible monitoring program that re- 

duces repetition of full-scale monitoring surveys. 

In this paper, we describe a method for semi- 

coupled geomechanical and full-waveform seismic mod- 

eling of multicomponent data acquired above compact- 

ing reservoirs. First, we review recent advances in the 

field of uniaxial/vertical stress compaction and time- 
lapse processes in the reservoir. We also discuss the 

work of Fuck et al. (2009, 2010), who studied the in- 
fluence of compaction-induced stress and strain on the 

velocity field and P-wave time shifts using the nonlin- 

ear theory of elasticity. Then we introduce our semi- 

coupled geomechanical/seismic modeling methodology 

and describe the time shifts of P-, PS-, and S-waves for 

a simple model of a rectangular reservoir embedded in 

a homogeneous host rock. 

Compaction-Induced Velocity Perturbations 

Compaction and Stress 

A number of recent publications discuss seismic time 

shifts associated with compaction, subsidence and re- 

lated subsurface stress perturbations. These approaches 

typically involve some form of “semi-coupled” geome- 

chanical and seismic modeling. Semi-coupled models 

cyclically solve systems of equations for interrelated 

processes, but the partial differential equations (PDEs) 
and their solvers remain separate; for example, wave- 

propagation PDEs are not directly coupled to Navier 

stress/strain PDEs (Olden et al., 2001; Minkoff et al., 

2004; Sen and Settari, 2005). Most existing studies 

have been limited to evaluation of vertical stress/strain 
and analysis of time shifts on stacked/zero-offset data 

(Hatchell and Bourne, 2005; Roste, 2007; Landrg and 

Stammeijer, 2004). Zero-offset time shifts can help es- 
timate the change in the reservoir thickness, allowing 

improved monitoring of reservoir volume (i.e., barrels- 

in-place). Traveltime perturbations obtained from uni- 
axial compaction models are particularly significant 

for soft reservoir rock. However, more general stress- 

based formulations (including triaxial stress) help con- 
strain the deviatoric stress tensor responsible for stress- 

induced anisotropy (Fuck et al., 2009). Heterogeneous, 
anisotropic velocity fields caused by reservoir com- 

paction result in perturbations of shear-wave splitting 

and azimuthally varying moveout velocity (Olofsson 

et al., 2003; Herwanger and Horne, 2009). 

P-wave Time Shifts 

It has been shown that reservoir compaction induces 

stress changes resulting in spatially varying, anisotropic 

velocity fields inside and outside the reservoir (Her- 
wanger and Horne, 2005; Herwanger et al., 2007; Fuck 

et al., 2009). For 2D reservoir models, the stress-induced 
symmetry is transversely isotropic, with a nearly verti- 

cal symmetry axis (VTI); the symmetry axis noticeably 

deviates from the vertical only near the reservoir cor- 

ners (Fuck et al., 2009). Fuck and Tsvankin (2009), Pri- 
oul et al. (2004), and Shapiro and Kaselow (2005) show 
that stress-induced anisotropy is close to elliptical, with 

approximately equal values of the anisotropy parame- 

ters « and 6. 

Fuck et al. (2009) analyze stress-induced anisotropy 
caused by a pore pressure drop in a rectangular reservoir 
embedded in originally homogeneous host rock (Figure 

1). They derive an approximate expression for travel- 

time changes by using the nonlinear theory of elasticity 

and evaluating traveltime perturbations along reference 

rays traced through an unstressed background. Fuck 

et al. (2009) also model compaction-induced P-wave 
time shifts using anisotropic ray tracing for the reservoir 

model in Figure 1. They demonstrate that traveltime 

shifts are controlled by the combination of volumetric 

and deviatoric strains. The volumetric strain, given by 

1 
Aekk = 3 (Aer + Aea2 + Aegs). (1) 

is significant only inside the reservoir (Ae, is the di- 
latation component along the i'* axis). Therefore, trav- 

eltime shifts for reflections above the reservoir are gen- 
erated by deviatoric stress and strains. The most sig- 

nificant time shifts, however, occur for reflectors be- 

neath the reservoir. Raypaths for these events are in- 

fluenced by the deviatoric stress around of the reser- 

voir, but also pass through the reservoir itself, which 

experiences the bulk of compaction-induced volumetric 

strain (Aex,). Fuck et al. (2009) demonstrate that offset 
variations of time shifts for reflections both above and 

below the reservoir are largely controlled by the devia- 

toric strains responsible for velocity anisotropy. Figure
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Figure 1. Reservoir geometry used by Fuck (2009) and 

Fuck et al. (2009). Pore-pressure (Pp) reduction occurs only 
within the reservoir, resulting in an anisotropic velocity 
field due to the excess stress and strain. For geomechani- 

cal modeling, the reservoir is located in a model-space mea- 

suring 20,000 x 10,000 m. The model dimensions are suffi- 

cient for obtaining stress, strain, and displacement which are 

close to those for an infinite medium. The reservoir is com- 
prised of and embedded in homogeneous Berea sandstone 

(p = 2140 kg/m?, Vp = 2300 m/s, Vs = 1456 m/s) with 
the following, density-normalized third-order stiffness coef- 

ficients: C111/p = —13,904 GPa, Ci12/p = 533 GPa, and 

Ciss/p = 481 GPa (Prioul et al., 2004). The Biot coefficient 

is set to 0.85. Velocities in the model are reduced by 10% from 
the laboratory values to account for the difference between 

static and dynamic stiffnesses in low-porosity rocks (Yale and 
Jamieson, 1994). Here, we analyze PS- and S-wave time shifts 

for this model for 5 MPa and 20 MPa pore-pressure drops. 

2 shows both the magnitude and spatial distribution of 

P-wave traveltime perturbations obtained by ray trac- 

ing around the rectangular reservoir in Figure 1. If the 

unstressed medium is not homogeneous, the contrast in 

the rigidity modulus yz between the reservoir and sur- 

rounding rock influences the stress/strain perturbation 

inside and near the reservoir (Fuck et al., 2010). 
Seismic velocities change when the local stiffnesses 

of the rock are altered due to compression or shear- 

ing. This change for linearly elastic materials can be 

described using Hooke’s law: 

Siz = Cigkl El, (2) 

where s is the stress tensor (denoted by s to avoid con- 

fusion with the anisotropy parameter o), and «¢ is the 

strain tensor. Equation 2 implicitly assumes that the 

stiffness coefficients relating stress to strain remain con- 

stant. The stiffnesses, however, change as a function of 

strain (Prioul et al., 2004; Fuck et al., 2009): 

OCizkt   oO oO 

Cigkt = Cit + Aémn = Cijkt + Cigkimn Aémn. (3) 
mn 

In the Voigt matrix notation, equation 3 can be written 

as 

Cap = C2g + Cosa Mey. (4) 

The third-order stiffness coefficients cijxkimn are de- 

rived from higher-order terms of the strain-energy func- 

tion (Hearmon, 1953; Sarkar et al., 2003; Prioul et al., 

2004). The strain-induced changes in stiffness described 
by equations 3 and 4 result in spatially varying stiff- 

ness/velocity perturbations around a compacting reser- 

voir. The Voigt matrix notation is convenient because it 

simplifies the summation in equation 3 and analysis of 

the symmetry of the strain-induced velocity field (Fuck 

and Tsvankin, 2009). 
Fuck et al. (2009) express the P-wave traveltime in 

a stressed medium as the sum of the isotropic back- 

ground traveltime and a perturbation that depends 

on the stress-induced stiffness changes. Application of 

equations 3 and 4 yields compaction-related time shifts 

as a function of two independent third-order coefficients 

— Cin and Cyi2. 
Experimentally obtained Cag values (Prioul et al., 

2004) make it possible to model changes in the stiff- 
ness coefficients caused by stress/strain applied to an 

isotropic medium. Triaxial compaction-related stress 

causes a combination of volumetric and deviatoric strain 

perturbations resulting in orthorhombic symmetry. In 

two dimensions the symmetry is transversely isotropic, 

as discussed above. 

The spatial distribution of the compaction-induced 

stress/strain may be complex, depending on the back- 

ground properties and the structural geology /petrology 

of the reservoir (Fuck, 2009; Fuck et al., 2010). Addi- 
tional complexity is caused by pronounced reservoir het- 

erogeneity An example would be a tilted reservoir with 

multiple aggregate bulk moduli caused by the natural 

separation of brine and liquid/gas hydrocarbons (John- 
ston, 2010). 

Methodology 

We devised a modeling methodology and software pack- 

age to study time-lapse multicomponent wavefields for 

compacting reservoirs. 2D, semi-coupled geomechanical 

and full-waveform modeling was implemented employ- 

ing an approach similar to that of Minkoff et al. (2004), 
Herwanger and Horne (2005), Herwanger and Horne 
(2009) and Fuck (2009). The methodology can handle 
multi-compartment reservoirs of various shapes, depths, 

tilts, and independent pressure histories. 

Compaction-induced displacement, strain, and 

stresses for our geomechanical reservoir models are com- 

puted using COMSOL PDE software (COMSOL AB, 

2008). Geomechanical physics for a subsurface inclusion 

such as a reservoir are described by Zoback (2007). The 
fluid within the reservoir is under pore pressure (Pp) 
that counteracts overburden stress. Another pressure
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Figure 2. P-wave traveltime shifts computed by ray tracing for the model from Figure 1 (after Fuck et al. (2009)). The asterisk 

marks the source location at the surface. The time shift (ms) shown at each (X,Z) point corresponds to the reflection form a 
horizontal interface at depth Z recorded at the source-receiver offset 2(X — Xo), where Xo is the source coordinate. 

component is provided by grain-to-grain contact in the 

matrix via the viscoelastic Biot coefficient a: 

Poulk & Ps + Pmatrix ~ aP, (5) 

with 

o=1- 2, (6) 
where K, is the aggregate bulk modulus of the rock 

frame and fluids, and Kg, is the bulk modulus of the 
grain material (Mavko et al., 2003). Initially, the system 

is assumed to be in hydrostatic equilibrium such that 

the reservoir pressure balances that of the overburden 

column: 

Pres = Peover, (7) 

aP, = (1 - i) Ps = Pover * J * Zres- (8) 
Kg 

Changes in reservoir pressure are due just to changes 

in the pore fluid pressure P,. These pressure changes 

are linear, and are used as the force function for the 

Navier equation [—V - (cVu) = F] governing the sys- 
tem’s stress state (COMSOL AB, 2008). Due to the 

presence of the Biot coefficient, the pore pressure needed
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to maintain equilibrium results in an overpressured 

reservoir volume, which is typical for a freshly tapped 

reservoir. As verified by Fuck et al. (2009), the resulting 
numerical stress/strain fields for a rectangular inclusion 
are close to analytic solutions obtained by Hu (1989). 

The resulting stress/strain fields are processed with 
an algorithm based on the nonlinear theory of elastic- 

ity to calculate the stiffness coefficients (Fuck et al., 
2009). These stiffnesses serve as input to the SFEWE 
2D anisotropic finite-difference modeling code (Sava and 

Godwin, 2010), which generates multicomponent seis- 

mic data. The SFEWE software excites both P- and S- 

waves by applying directional forces oriented along the 

X and Z axes. The source signal is a Ricker wavelet with 

a center frequency of 44 Hz and an effective bandwidth 

of approximately 110 Hz. Time shifts for P, PSV, and 

SV waves are measured from the modeled wavefields 

by computing cross-correlations of windowed arrivals in 

the baseline and monitor surveys; the windowing is per- 

formed along the best-fit moveout curves. 

Synthetic Test 

We test our software package on the reservoir model of 

Fuck et al. (2009) in Figure 1. Use of homogeneous ma- 
terial in the geomechanical modeling is justified for two 

reasons. First, Kosloff et al. (1980a) advocate the use of 
homogeneous media at basin scales because depositional 

formations outside the reservoir are typically composed 

of uniform source sediments. Second, we aim to ob- 

serve only the influence of stress-induced anisotropy 

in the reservoir and overburden. Further, Fuck et al. 

(2010) show that the impact of background heterogene- 
ity around the reservoir is generally insignificant. Reser- 

voir geometry simulates a simplest case scenario, such 

as a fault-bound, relay-ramp block trap in a rift system 

like the North Sea, similar to Heidrun field (Whitley, 

1992). The pore pressure reductions of 5 MPa and 20 

MPa typically correspond to small to moderate reservoir 

pressure changes (Zoback, 2007). The use of anisotropic 
finite-different seismic modeling is important because it 

generates both kinematic and amplitude information. 

Furthermore, the output of the modeling code requires 

processing techniques that could be used on actual field 

data. 

To evaluate depth-dependent time shifts for the 

reservoir located at 1500 m, a 10-m thin reflecting layer 

is moved downward through the model. This reflector 

has a high density of 3000 kg/m? in order to generate 

sufficiently large reflection amplitudes. The reflector is 

so thin that it is not expected to perturb the overall 

structure of the heterogeneous stress, strain, and stiff- 

ness changes. Baseline and monitor wavefields are com- 

puted separately for each reflector to eliminate interfer- 

ence with multiple reflections. For the 2D (X-Z plane) 
geometry used in the experiment, changes occur only 

in the stiffness coefficients Ci1,Ci3,C33,Css,Cis, and 

C35, resulting in a tilted transversely isotropic (TTI) 
medium with a small tilt of the symmetry axis (as dis- 

cussed above). 
Throughout the process, the reservoir is assumed to 

have sufficiently large dimensions in the out-of-plane di- 

rection to allow the use of 2D modeling. We also assume 

that host rock with nonlinear compaction behavior may 

be modeled using Hooke’s law with a strain-dependent 

set of stiffness coefficients. Compaction-induced density 

changes in the overburden are neglected because our 
software is unable to model density or porosity changes 

at this time. 

Typical time-lapse common-shot gathers for a re- 

ceiver array spanning -3000 to +3000 meters are shown 

in Figure 3. Here, the 10 m thin reflector is located 50 

m above the top of the reservoir. The gather for the 

unstressed medium includes only the P-, PS-, and S- 

wave events from the reflector. The impedance change 

due to the pressure drop in the reservoir (Figure 3(b)) 
generates reflections from the reservoir boundaries with 

amplitudes comparable to those of the reflection events 

in Figure 3({a). 
Our resulting stresses, strains, displacements, and 

P-wave time shifts are close to those of Fuck et al. 

(2009). The time shifts for the reflections from the top 
of the reservoir (Figure 4(a)) are close to those obtained 
by Fuck (2009) with ray tracing (Figure 2). Directly at 
the top of the reservoir the P-wave time shifts are on the 

order of 7-8 ms. Secondary geomechanical validation is 

provided by comparing our stress/strain fields to those 

constructed by Kosloff et al. (1980a) for the Wilmington 
field, with both generating surface subsidence of similar 

magnitude. 

Analysis of Results 

Our primary goal is to study the time shifts of PS- and 

S-waves. The SV-wave velocity in TI media (in our case, 

anisotropy is induced by stress) is primarily controlled 

by the parameter o (Tsvankin, 2005): 

o= (Ye) (e- 5), (9) 
where Vpo and Vso are the vertical P- and S-wave ve- 
locities. The linearized SV-wave velocity as a function 

of the phase angle with the symmetry axis (@) can be 
written as 

Vsv (8) = Vso (1+ asin? 6 cos” 6) . (10) 

For elliptical anisotropy (« = 6) o = 0, Vsv * Vso, and 
the velocity is independent of angle (isotropic). For ex- 
ample, at the center of the reservoir, computed values 

of o are -0.08 for the 5 MPa pressure drop, and -0.15 

for the 20 MPa pressure drop. Therefore, compaction- 

induced changes in the shear-wave vertical velocity have 

the greatest impact on PS- and S- wave time shifts
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Receiver Offset (m) 

Figure 3. Common-shot gathers of the horizontal displacement for an isotropic, unstressed reservoir model (a) and for the 
model with the pressure drop AP, = 20 MPa inside the reservoir (b) (see Figure 1). For both cases a thin, high-density reflector 

is positioned immediately above the reservoir at 1400 m depth (the reservoir is between 1450 m and 1550 m). The isotropic 
case shows clear P-, PS-, and S-wave reflections. In addition to stress-induced anisotropy, pore-pressure decrease in the reservoir 

alters its impedance, generating reflections and diffraction tails. 

near and beneath the reservoir. Compaction-induced in- 

creases to Vso inside the reservoir are approximately 270 

m/s for the 5 MPa pressure drop, and 500 m/s for the 

20 MPa pressure drop. 

Figures 4, 5, and 6 show time shifts due to pres- 

sure drops of 5 MPa (left column) and 20 MPa. (right 

column). Each surface is comprised of “hull curves” 
of time shifts computed by cross-correlation of arrivals 

from the set of thin reflectors placed in the stressed and 

unstressed models. These hull curves span the entire 

model from left to right at 14 depths between 200 and
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3000 meters, with two reflectors positioned close to the 

upper and lower reservoir boundaries. 

Complete time-shift plots, generated by interpolat- 

ing between the hull curves, show lead/lag behavior sim- 

ilar to that obtained by Fuck (2009) using ray tracing 
(Figure 2). For all types of arrivals, time shifts above 

the reservoir are relatively small, with PS- and S-waves 

showing a traveltime decrease (or time lead), due to an 
increase in Vso inside the reservoir. For P-waves the 

shifts are positive, indicating a time lag. At the top 

of the reservoir, Figure 4(a) shows a 5 ms P-wave lag, 
which is close to the 4 ms lag computed by Fuck et al. 

(2009) (see Figure 2 for the source coordinate Xo = 0). 

For all wave modes, the traveltimes for reflectors 

beneath the reservoir decrease after compaction because 

of increased velocity within the reservoir and near its 

edges. Time “leads” from beneath the reservoir for PS- 

and S-waves are approximately 2-3 times those for P- 

waves. When AP, = 20 MPa, the time shifts of PS- and 
S-waves are up to two times larger than those for a drop 

of 5 MPa. 

The reservoir and small regions at its edges ex- 

perience the largest velocity changes that confine the 

most significant time shifts of PS- and S-waves to reflec- 

tions from interfaces beneath the reservoir. The zone of 

largest time shifts moves laterally to the opposite side 

of the reservoir from the source location with increasing 

X-coordinate of the source. The maximum time shifts 

below the reservoir occur along a line connecting the 

source with the far edge of the reservoir because waves 

propagating in that direction spend the longest time in 

the region of the most pronounced velocity change. The 

small variation of S-wave time shifts with offset confirms 

that compaction-induced anisotropy is close to elliptical 

and, therefore, has weak influence on shear waves (equa- 

tion 10). Time shifts for pure S-waves are controlled 
by the compaction-induced velocity Vso. However, PS- 

wave offset time-shifts are slightly higher, indicating 

that their P-wave branch experiences increased time 

shifts with offset due to the stress-induced anisotropy. 

Limitations 

Although the general behavior of the delay surfaces cor- 

rectly describes expected time shifts, there are anoma- 

lies indicative of processing artifacts. For example, an 

unusually large time-lead occurs on the SV data at ap- 

proximately 1000-1400 m depth, and +1800 m offset. 

Similarly implausible time shifts are observed at a depth 
close to 2000-2500 m and extreme left-hand offsets of 

the PS data. These anomalies are caused by diffraction 

tails from the edges of the reservoir interfering with 
returns from the thin reflector (for example, see Fig- 

ure 3(b)). This issue becomes more serious when the 
impedance contrast between the reservoir and host rock 

increases for larger pressure drops AP,. We fit the cross- 

correlation timeshift curves with a user-adjustable low- 

pass filter and produce smoothed time-delay measure- 
ments that follow the general trend of actual time shifts. 
However, the combination of diffraction-tail interference 

or cross-correlation jitter with the current smoothing fil- 

ter can cause noticeable anomalies. Post-processing im- 

provements can overcome this issue. Despite the limited 

number of anomalies related to cross-correlation difficul- 

ties, the modeling package reveals correct general trends 

in the data. 

Conclusions 

Using semi-coupled geomechanical and finite-difference 
seismic modeling, we have developed a methodology 

for simulating the influence of reservoir compaction 

on P-, PS-, and S-wave reflections. Our process com- 

bines geomechanical computation of stresses, strains 

and strain-induced stiffnesses perturbations with 2D 

full-waveform (finite-difference) modeling for heteroge- 
neous, anisotropic media. Velocity perturbations gener- 

ated by compaction-related stress and strain are sam- 

pled by a thin reflector moved at regular depth inter- 

vals through the model. Measurements of time shifts be- 

tween stressed and unstressed reservoir models are com- 

puted using windowed cross-correlations of the baseline 
and monitor surveys. 

Numerical results for a homogeneous model with a 

rectangular reservoir showed that time shifts of PS- and 
S-waves above the reservoir are smaller in magnitude 

and opposite in sign from P-wave shifts. For reflectors 

below reservoir, however, the PS- and S-wave time shifts 

are approximately two to three times the P-wave time 

shifts. A four-fold increase in the pressure drop from 5 

MPa to 20 MPa makes the time shifts up to two times 

larger. Time shifts for both PS- and S-waves have a 
similar spatial distribution as for P-waves but with a 

less significant dependence on the distance of the source 

from the center of the reservoir (Xo = 0 m). The offset 
variation of S-wave time shifts is weak because stress- 

induced anisotropy is close to elliptical, and the SV- 

wave velocity is almost independent of angle. 

Our processing generates full-waveform, multicom- 
ponent time-lapse seismic data and time shifts that can 

potentially be used to invert for the subsurface stress 

field. Finite-difference modeling also helps compute ac- 

curate amplitudes suitable for evaluating the AVO (am- 

plitude variation with offset) response. The software is 

capable of handling tilted and multi-compartment reser- 

voirs embedded in a heterogeneous background. 

Future work will include stress-dependent rock 

modeling using the method of Shapiro (2003) and 

derivation of analytic equations for describing time 

shifts of PS- and S-waves. Sensitivity kernel analysis of 

the overburden after Liu and Tromp (2006) will be em- 
ployed to identify stress-sensitive acquisition geometries 

and wave modes suitable for “reduced-footprint” seismic
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Figure 4. P-wave time shifts for the model in Figure 1 (same display as in Figure 2) produced by our modeling package for 

shot locations of X=0 m (a and b), X=1000 m (c and d), and X=2000 m (e and f). Pore-pressure drops are 5 MPa for the left 
column, and 20 MPa for the right column. The white rectangle marks the reservoir, while the white asterisk marks the shot 

location.
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reservoir monitoring. These developments should aid in 

drilling and asset management for producing fields. 
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