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Abstract

Attenuation and attenuation anisotropy can furnish valuable information about lithol-
ogy, fluids, and fractures in rocks. Properties such as permeability, fluid mobility and
saturation that are difficult to measure using conventional velocity or amplitude-variation-
with-offset (AVO) analysis could possibly be extracted from attenuation measurements.

To understand the response of such highly viscoelastic rocks as oil shales to seismic
waves and thermal stimulation, I study their shear-wave properties within the seismic fre-
quency band (0.01 Hz to 80 Hz) for a wide range of temperatures (30°C-350°C). The physical
state of the kerogen in the shales is extremely sensitive to heat, which makes estimation of
shear-wave properties of oil shales particularly attractive. Although the shear-wave moduli
and attenuation have a negligible dependence on frequency, they show substantial .varia-
tion with temperature. The melting of kerogen can increase attenuation by a factor of
10 and at the same time decrease the shear-wave velocity by a factor of five. Velocity
and attenuation anisotropy also show significant variations with temperature; the SH-wave
velocity-anisotropy parameter v could attain anomalously large values approaching three.

Using first-order perturbation theory, I analyze the influence of the inhomogeneity
angle ¢ (the angle between the real and imaginary parts of the wave vector) on velocity
and attenuation in arbitrarily anisotropic media. For a wide range of small and moderate
angles £, the group attenuation coefficient A4 practically coincides with the phase atten-
uation coefficient Al,_go = 1/(2Q) which suggests that the estimated attenuation (A) is
a direct measure of the intrinsic attenuation of the subsurface. I then analyze reflection
coefficients at boundaries between attenuative anisotropic media by developing linearized
expressions for plane-wave reflection/transmission coefficients in terms of the velocity- and
attenuation-anisotropy parameters, as well as the velocity and attenuation contrasts across
the interface. Only in the presence of strong attenuation (Q < 10) does the contribution of
the attenuation-related terms become comparable to that of the velocity terms. Interest-
ingly, for an incident wave with a nonzero inhomogeneity angle £, the form of the linearized
reflection coefficients is different from the conventional AVO expression.

To estimate interval anisotropic attenuation from reflection seismic data, I adopt a
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layer-stripping approach that incorporates a modified spectral-ratio method. While there
are no restrictions on heterogeneity and anisotropy of the target layer, the overburden has to
be composed of laterally homogeneous layers with a horizontal symmetry plane (e.g., layers
may be orthorhombic). Numerical examples for horizontally layered VTI (transversely
isotropic with a vertical symmetry axis) and orthorhombic media confirm that the method
yields accurate interval phase attenuation coefficients even for models with uncommonly
strong attenuation and substantial velocity and attenuation anisotropy.

I apply the layer-stripping approach to wide-azimuth P-wave data acquired over a gas
reservoir in the Coronation Field, Alberta and estimate the interval anisotropic P-wave
velocity and attenuation fields. The lower half of the survey area shows strong azimuthal
velocity anisotropy with the vertical symmetry planes aligned consistently along the NS-
and EW-directions. The vertical attenuation coefficient shows a reasonable correspondence
with existing gas-producing well locations. Interval attenuation anisotropy is anomalously

strong and much higher than velocity anisotropy.

ii



This thesis is dedicated to
Bapa, Maa, Lulu bhai, Tukunu apa, and Jinu apa

for their unconditional love and support.

iii




Do not go where the path may lead, go instead where there is no path and leave

a trail.
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Chapter 1

Introduction

1.1 Attenuation of Seismic Waves and Attenuation Anisotropy

Attenuation is the gradual loss of intensity of a wave as it travels through a medium.
In physics, attenuation generally refers to loss of energy arising from scattering as well as
absorption. In geophysics, however, attenuation typically refers only to partial conversion of
seismic energy to other forms of energy such as heat. This loss of energy manifests itself in
a decrease of amplitude and alteration of the frequency content of waves traveling through
the subsurface. Also, in the presence of attenuation, waves exhibit velocity dispersion.

Attenuation analysis can provide valuable information about lithology, presence of flu-
ids, and physical properties of subsurface rocks (e.g., Johnston et al., 1979; Johnston &
Toksdz, 1981; Winkler & Nur, 1982; Vo-Thanh, 1990; Gautam et al., 2003; Prasad & Nur,
2003; Batzle et al., 2006; Behura et al., 2007). Several publications exploit this property to
delineate steam floods (Macrides et al., 1988; Hedlin et al., 2001) and monitor the thermal
recovery of hydrocarbons (Eastwood et al., 1994; Dilay & Eastwood, 1995), while Rapoport
et al. (2004) use it as a direct hydrocarbon indicator (DHI). Valle-Garcia & Ramirez-Cruz
(2002) note that zones of relatively high attenuation coincide with the producing formations
in a mature oil field; Quan & Harris (1997) claim that their attenuation-tomography results
have good correlation with lithology. In addition, other properties such as permeability,
mobility of fluids, and fluid saturation that cannot be inferred from velocity or amplitude-
variation-with-offset (AVO) analysis could possibly be extracted from attenuation analysis.
Patchy-saturation models of Pride & Berryman (2003) and Johnson (2001) provide ade-
quate physical explanation for the relationship between attenuation and saturation. Using
a mesoscopic-loss model, Pride & Berryman (2003) show that fluid flow can result in high
attenuation within the seismic bandwidth. Their model predicts a linear relation between

Q and permeability and therefore the measured attenuation should be an indicator of per-
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meability. Experimental verification of their model is provided by Gautam et al. (2003) who
observe a direct relationship between attenuation and fluid mobility - the lower the mobil-
ity, the smaller is the frequency of maximum attenuation. Using many field-data examples
and rock-physics models, Pride et al. (2003) argue that permeability is related to seismic
attenuation.

The angular velocity variation (velocity anisotropy) and its influence on traveltimes
and amplitudes of seismic waves has been extensively studied in the literature (e.g., Backus,
1962; Thomsen, 1986; Helbig, 1994; Alkhalifah & Tsvankin, 1995; Tsvankin, 1997; Riiger,
1997, 1998; Grechka & Tsvankin, 1998; Wang, 2002; Crampin & Peacock, 2005; Tsvankin,
2005). Like velocity, attenuation can also be anisotropic, as demonstrated by many labora-
tory experiments (e.g., Hosten et al., 1987; Tao & King, 1990; Best, 1994; Prasad & Nur,
2003; Behura et al., 2006; Zhu et al., 2007b) and field studies (e.g., Ganley & Kanasewich,
1980; Hiramatsu & Ando, 1995; Liu et al., 2007; Maultzsch et al., 2007). In fact, atten-
uation anisotropy often is stronger than velocity anisotropy (Hosten et al., 1987; Arts &
Rasolofosaon, 1992; Zhu et al., 2007b).

Many of the factors that cause velocity anisotropy, such as directionally-dependent
stress and interbedding of thin layers, are also responsible for attenuation anisotropy (e.g.,
Liu et al., 1993; Carcione, 1992; Molotkov & Bakulin, 1998; Stanley & Christensen, 2001;
Prasad & Nur, 2003; Behura et al., 2006; Zhu et al., 2007a). The structural arrangement of
the rock matrix can also cause anisotropic attenuation. For example, frictional loss (Walsh,
1966; Buckingham, 2000) due to bedding-parallel shearing should be higher than the loss
from bedding-perpendicular shearing.

The primary cause of attenuation anisotropy, however, is believed to be the preferential
flow of fluids in the rock (e.g., Mavko & Nur, 1979; Akbar et al., 1993; Parra, 1997; MacBeth,
1999; Brajanovski et al., 2005). Using different fluid-flow models, Pointer et al. (2000) show
that aligned fluid-filled cracks can result in anisotropic attenuation. The poroelastic model
of Chapman (2003) can explain strong anisotropic attenuation in the seismic bandwidth.
Azimuthal scattering (Willis et al., 2004) and anisotropy of the density tensor in poroelastic
Biot media (Molotkov & Bakulin, 1998) are some other possible causes of the angular
variation of attenuation coefficients.

In isotropic media, attenuation is most commonly quantified in terms of the quality
factor @ and the attenuation coefficient (Johnston & Toksoz, 1981). Wave propagation in at-

tenuative anisotropic media is more complicated as seen from the detailed study of Carcione
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(2000). His results, expressed in terms of stiffness coefficients, however, are not suitable for
seismic data processing purposes. Zhu & Tsvankin (2006) introduced the Thomsen-style
notation — two isotropic reference quantities (Apo and Ago) and three dimensionless pa-
rameters (eq, 44, and ’yQ) — for describing attenuation coefficients in transversely isotropic
(TT) media. The coefficients Apg and Agp represent the symmetry direction P- and S-wave

normalized attenuation coefficients:

1
Apo = ——, 1.1
Po= 50 (1.1)
Aso = — (1.2)
S0 2Q55’ *

where Q;; = c% /c{j is the Q-factor matrix and ¢;; is the complex stiffness tensor. The
attenuation-anisotropy parameter €, represents the fractional difference in P-wave attenu-

ation coefficients along the symmetry direction and the isotropy plane:

€

Q33— Qn
=" Qn (1.3)

the parameter ,, controls the attenuation in the vicinity of the symmetry axis:

1 d>A(9) 4 Q33— Qs5 Q33— Q13 ( 2 )
5 = S +2 1426— =), 14
@ Apy dO? jg_go 92 Qs Q13 g? (14)

and v, is responsible for the attenuation anisotropy of SH-waves:

Qs5 — Qes
=2 TR 1.5
where g = Vpg/Vso is the velocity ratio, Vpo, Vso are the symmetry-direction P- and
S-wave velocities, and § is the Thomsen velocity-anisotropy parameter (Thomsen, 1986).
A similar Tsvankin-style notation (Tsvankin, 1997) describing attenuation coefficients in
orthorhombic media was introduced later by Zhu & Tsvankin (2007).

1.2 Rock-physics of Viscoelastic Materials

Although many publications have studied the magnitude of attenuation and attenua-
tion mechanisms in the laboratory, almost all existing measurements (e.g., Lockner et al.,
1977; Toksoz et al., 1979; Winkler & Nur, 1982; Murphy et al., 1986; O’Hara, 1989; Vo-
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Figure 1.1: The pitch-drop experiment is a long-term test which measures the flow of a
piece of pitch over many years (Edgeworth et al., 1984). Pitch (bitumen) is a highly viscous
liquid which appears solid at room temperature. Tar pitch flows extremely slowly at room
temperature, eventually forming a drop.

Thanh, 1990) are in the ultrasonic frequency bandwidth. In contrast, the bandwidth of
typical seismic surveys is between 5 Hz and 100 Hz. Consequently, there might not be a
direct correspondence between the laboratory measurements and field data. Application
of ultrasonic measurements to interpretation of seismic data involves extrapolation which
could contain large errors (Tutuncu et al., 1998; Batzle et al., 2006). In fact, attenuation
mechanisms inferred from laboratory experiments might not even exist within the seismic
bandwidth. Note that velocities in attenuative rocks can vary substantially with frequency
(Batzle et al., 2006). Therefore, experimentally-determined velocities at ultrasonic frequen-
cies likely differ from the velocity of seismic waves (Tutuncu et al., 1998).

This is especially true for focks saturated with viscoelastic fluids, such as heavy oils
(in tar sands, Figure 1.1) and kerogen (organic matter in shales). Since the “pore-fluids”
are viscoelastic, the rock properties in the seismic band would be significantly different from
those in the logging-frequency range and the ultrasonic band. Also, unlike common fluids

(e.g. brine and light oil), kerogens and heavy oils act as solids at room temperatures and
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fluids at higher temperatures. The physical properties of these rocks can change substan-
tially during the thermal hydrocarbon-recovery procedures. Therefore, experimental study
of the physical properties of such strongly viscoelastic rocks in the laboratory should be

done within the seismic bandwidth and thermal-recovery temperatures.

1.3 Influence of the Inhomogeneity Angle

Although experimental measurements provide ﬁseful _physical insight into the possi-
ble attenuation mechanisms and the magnitude of attenuation coefficients, it is extremely
difficult to study different aspects of wave propagation in isolation in the laboratory. One
such issue is the influence of the so-called inhomogeneity angle. In attenuative media, the
direction of maximum attenuation (k!) might differ from the direction of wave propagation
(k®), and the angle between these two directions is referred to as the inhomogeneity angle
¢ (Figure 1.2). The inhomogeneity angle has been measured only in laboratory experiments
(Huang et al., 1994; Deschamps & Assouline, 2000). Estimating this angle from seismic data
is extremely difficult. Because of the complexity arising from the introduction of the in-
homogeneity angle, wave propagation has been traditionally studied in the “homogeneous”
regime (Hauge, 1981; Tonn, 1991; Hiramatsu & Ando, 1995; Neep et al., 1996; Dasgupta
& Clark, 1998; Vasconcelos & Jenner, 2005; Maultzsch et al., 2007; Zhu et al., 2007b). For
point-source radiation in weakly attenuative anisotropic media, the angle £ is usually small
and can be ignored (Zhu, 2006; Vavry¢uk, 2008). In the presence of layering and other types
of heterogeneity, however, £ can attain large values. For the model in Figure 1.3, the wave
vector in the elastic cap rock is real, while the wave vector of the transmitted wave in the
attenuative reservoir is complex. According to Snell’s law, the projection of the slowness
vector onto the interface has to be preserved, which means that the attenuation vector (k)
of the transmitted wave has to be orthogonal to the interface. Then the resulting inhomo-
geneity angle of the transmitted wave is equal to the transmission angle and can approach
90°.

It is natural to expect that the inhomogeneity angle should influence the attenua-
tion coefficient measured from seismic data. In addition, attenuation analysis becomes
particularly involved in anisotropic media where the ray may significantly deviate from
both the phase direction and the direction of maximum attenuation. When the medium
is anisotropic, the relationship between the angle £ and the attenuation coefficients is ob-

scured by the complexity of the exact equations. Therefore, one of the primary goals of this
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Figure 1.2: Plane wave with a nonzero inhomogeneity angle £. The wave propagates in the
direction kf (perpendicular to the planes of constant phase) and attenuates most rapidly
in the direction k.

Elastic
cap rock

Attenuative . }_
reservoir MY JcRrefl

Figure 1.3: Illustration of the reflection/transmission problem at the interface between a
purely elastic cap rock and an attenuative reservoir. k® and k! are the real and imaginary
parts of the wave vector of the transmitted wave, while kfefl and klrefl correspond to
the reflected wave. The inhomogeneity angle £ of the transmitted wave is equal to the
transmission angle 6.
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thesis is to address the influence of the inhomogeneity angle on phase and group attenuation

coefficients.

1.4 Reflection Coefficients in Attenuative Media

While most existing attenuation studies are focused on plane-wave attenuation coeffi-
cients, which determine the amplitude decay along the raypath of seismic waves, it is also
important to evaluate the influence of attenuation and attenuation anisotropy on reflection
coefficients. Conventional AVO analysis is carried out under the assumption that the sub-
surface is purely elastic, which leads Luh (1988) and Samec et al. (1990) to attribute some
failures of AVO studies to the influence of attenuation. A number of publications have been
devoted to the analysis of reflection coefficients in elastic isotropic (e.g., Bortfeld, 1961;
Shuey, 1985; Aki & Richards, 2002) and anisotropic (e.g., Banik, 1987; Riiger, 1997, 1998;
Vavryéuk & Psencik, 1998; Jilek, 2002b) media. Whereas a handful of studies have focused
on reflection coefficients in attenuative isotropic media (Krebes, 1983; Ursin & Stovas, 2002;
Nechtschein & Hron, 1997; Hearn & Krebes, 1990), the influence of attenuation anisotropy
on reflection coefficients has not been sufficiently addressed. Existing publications (Stovas
& Ursin, 2003; Carcione, 2007) do not provide insight into the behavior of reflection coefhi-
cients in attenuative anisotropic media and do not take the influence of the inhomogeneity
angle into account. Therefore, the thesis also addresses the important practical problem of
the behavior of plane-wave reflection coefficients for an interface between two anisotropic

attenuative media.

1.5 Estimating Attenuation from Seismic Data

Since attenuation and attenuation anisotropy can provide valuable information about
the lithology, physical properties, and fluid properties of rocks, it is highly desirable to
estimate attenuation coefficients from seismic data. However, despite significant progress in
the understanding of attenuation mechanisms and wave propagation in attenuative media,
estimation of attenuation coefficients from seismic data remains to be a challenging problem.
Although there have been some recent advances in estimating attenuation from vertical
seismic profiling (VSP) (Ganley & Kanasewich, 1980; Amundsen & Mittet, 1994; Hedlin
et al., 2001; Maultzsch et al., 2007) and crosswell (Macrides et al., 1988; Neep et al., 1996)

data, extraction of interval attenuation from reflection seismic data remains to be elusive. In
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a few existing case studies of attenuation analysis using reflection data (e.g., Vasconcelos &
Jenner, 2005), the attenuation coefficient is estimated for a stack of layers above the reflector.
Dasgupta & Clark (1998) introduce a technique for estimating interval attenuation from
reflection data based on the spectral-ratio method. Their algorithm, however, is restricted
to zero-offset reflections and requires knowledge of the source signature. One of the goals
of the thesis is to develop an algorithm for extracting the interval anisotropic attenuation
from reflection seismic data.

This thesis addresses all the above issues and spans over laboratory, theoretical, and
field studies.

1.6 Thesis Overview

As discussed above, to develop a better rock physics model, one needs to conduct
experiments at seismic frequencies, which is done in Chapter 2. The velocity, attenuation,
and anisotropy of two shale samples, one rich in organic content and the other a lean shale,
are studied in the laboratory under varying temperatures. The frequency of investigation
ranges from 0.01 Hz to 80 Hz (to include the seismic bandwidth) and the temperatures
range between 30°C and 350°C to simulate thermal-recovery conditions of hydrocarbons
in oil shales. This experiment sheds new light on the attenuation mechanisms in shales
at seismic frequencies and thermal-recovery temperatures. Increasing temperature results
in liquefaction and subsequent volatilization of the organic content (kerogen). Such phase
changes not only cause significant fluctuations in velocity and attenuation, but also lead to
strong velocity and attenuation anisotropy.

The influence of the inhomogeneity angle on phase and group attenuation coefficients
is analyzed in Chapter 3. Using a perturbation approach, I show that for a wide range of
small and moderate values of ¢, the group attenuation coefficient (estimated from seismic
data) is not influenced by ¢ and represents a measure of the intrinsic attenuation. This con-
clusion remains valid even for uncommonly high attenuation (Q ~ 10) and strong velocity
and attenuation anisotropy. For large ¢ approaching the so-called “forbidden directions”,
however, the group attenuation coefficient depends on the inhomogeneity angle and no
longer yields the intrinsic attenuation.

In Chapter 4, using a perturbation approach (similar to that of Vavryéuk & Psencik,
1998), I study the influence of anisotropic attenuation on reflection coefficients for an in-

terface between two arbitrarily anisotropic media. I show that only when attenuation is
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strong (the quality factor @ < 10), its contribution to the reflection coefficients is substan-
tial. For such highly attenuative media, it is also necessary to take attenuation anisotropy
into account, if the magnitude of the Thomsen-style attenuation-anisotropy parameters is
relatively large. Also, a nonzero inhomogeneity angle of the incident wave introduces ad-
ditional terms into the PP- and PS-wave reflection coefficients, which makes conventional
AVO analysis inadequate for strongly attenuative media.

In Chapter 5, I introduce a novel technique for extracting interval anisotropic attenu-
ation coefficients from reflection data. This method is based on the kinematic layer-stripping
technique developed by Dewangan & Tsvankin (2006) and uses a modified version of the
spectral-ratio method (Johnston & Toksdz, 1981). While no information about velocity
and attenuation anywhere in the medium is required, the overburden has to be laterally
homogeneous with a horizontal symmetry plane.

As a test of this algorithm, in Chapter 6 I process a 3D wide-azimuth land dataset
from Coronation, Alberta, Canada. I compute the interval P-wave anisotropic velocity and
attenuation fields within a target layer comprising the gas-sand reservoir. The estimated
vertical attenuation coefficient shows a reasonable correspondence with locations of existing

gas-producing wells.
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Chapter 2

The Shear Properties of Oil Shales

2.1 Summary

Organic-rich shales house large untapped amounts of hydrocarbons. In-situ recov-
ery of hydrocarbons from oil shales involves thermal cracking and steam-flooding of these
reservoirs, which changes their physical properties, in particular shear properties. I study,
within the seismic band, the shear properties (the rigidity moduli and attenuation) of two
types of oil shales, one rich and the other low in organic content (kerogen). To understand
the influence of thermal recovery processes, I also analyze these shales for a wide range of
temperatures. '

Both the kerogen-rich and lean shales show a weak dependence of rigidity (shear)
moduli and attenuation on frequency within the seismic bandwidth. These shales, however,
show a dramatic change in shear-wave velocity and attenuation with temperature. Their
shear moduli and quality factor (Q) decrease with melting of the kerogen; however, with
further loss of some of the kerogen, both shear moduli and @ increase. The magnitude of
these changes along the direction of the bedding and perpendicular to the bedding differ,
which makes velocity and attenuation anisotropy potentially valuable attributes. Both
velocity and attenuation anisotropy of the shales can change significantly with temperature,
in some cases by more than an order of magnitude. The SH-wave anisotropy parameter vy
is closely related to the physical state of kerogen in the shale and could possibly be used as
a direct indicator of the extent of kerogen-melt in the rock. The kerogen content in shales
also influences their velocity and attenuation. The greater the organic content, the lower is
the shear modulus and the higher the attenuation. In addition, shales with higher organic
content show a substantially greater change in the shear moduli with temperature compared
to lean shales. Such dramatic changes in velocity and attenuation in oil shales with heating

should be clearly visible in seismic data, offering the promise that these measurements can
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be qualitatively and quantitatively used in seismic analysis.

2.2 Introduction

Increased demand has fostered interest in unconventional hydrocarbon sources such as
heavy oils and oil shales. These energy resources have reserves that are nearly triple the
world reserves of conventional oil and gas.

A vast unexploited source of hydrocarbons is oil shales, i.e., shales rich in kerogen. The
Schlumberger Oilfield Glossary defines kerogen as “the naturally occurring, solid, insoluble
organic matter that occurs in source rocks and can yield oil upon heating.” The original
organic constituents of kerogen are algae and woody plant material. Kerogens have a
high molecular weight relative to bitumen, or soluble organic matter. Bitumen forms from
kerogen during petroleum generation.

Estimates vary as to how much oil is contained in oil shale reserves. The US Office of
Naval Petroleum and Oil Shale Reserves estimates there are some 1.6 trillion barrels of oil
contained in oil shales around the world, with 60-70% of reserves (1.0-1.2 trillion barrels)
in the United States. Most U.S. oil shale is concentrated in the Green River Formation
in Wyoming, Utah, and Colorado. These oil shale resources occupy a total area of 16,000
square miles.

Technical challenges and environmental concerns, however, hinder oil-shale exploita-
tion. Environmental considerations, for example, have prohibited surface mining. This
calls for in-situ recovery, which, in turn, poses new technical challenges. One promising
in-situ project is being carried out by Shell Oil Company under the name of the Mahogany
Research Project in Colorado, which uses electrical heating. A heating element is lowered
into the well and allowed to heat the kerogen over time, slowly converting it into oil and
gas, which are then pumped to the surface.

Heating changes such physical properties as velocity, anisotropy, and attenuation,
which can have a substantial influence on seismic wave propagation. Seismic techniques
can play an important role in monitoring changes in these oil shale reservoirs. The seismic
response of oil shales to varying temperature and pressure, however, is not well understood.
To address this problem, experiments have been carried out under controlled conditions
in the laboratory (Parker, 1968; Johnston, 1987; Mah, 2005). These studies, however, are
limited to the ultrasonic frequency bandwidth.

Unlike common fluids (e.g., brine and light oil), kerogens found in oil shales act as solids
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at room temperatures and fluids at higher temperatures. Therefore, at room temperature,
kerogens support shear waves, but not at higher temperatures where the shear modulus
approaches zero. They would, however, have a nonzero bulk modulus at all temperatures,
and the percentage change in the bulk modulus should be smaller compared to the change
in the shear properties. So the shear study of these rocks is more attractive than the study
of their bulk properties, which makes acquisition of multicomponent seismic data all the
more important.

To understand the shear behavior of oil shales in the seismic frequency band, I conduct
experiments to estimate their shear moduli and attenuation under varying temperature
(encompassing the thermal recovery process: 0°C-350°C) and frequency (encompassing the
seismic bandwidth: 0.01Hz-80 Hz). I analyze two shale samples with different amounts of
organic content from the Green River Formation, Colorado. To my knowledge, no such

studies with a simultaneous change in temperature and frequency have yet been published.

2.3 Experiment

This method of calculating the complex shear modulus is well-known in polymer and
soil science (Moyal & Fletcher, 1945; Wilhelm, 2002) and needs only minor corrections for
the geometry of the sample. In fact, this method is not much different from the methodology
used for rock measurements by Jackson & Paterson (1987). The same technique is also
employed by Behura et al. (2007) to measure the shear properties of heavy oils and heavy-
oil saturated rocks. For detailed mathematical description of the above operation, one
can refer to the mechanical deformation of circular and rectangular shafts found in most
textbooks on mechanics of solids (e.g., Crandall et al., 1999). Measurements are carried out
using a shear rheometer shown in Figure 2.1, and the experiment is schematically shown in
Figure 2.2.

Apart from the mechanical components in Figure 2.1, the rheometer consists of an
assemblage of electronics and a computer interface to electronically control the mechanical
parts and acquire data. After selecting the geometry of the sample used in the analysis, the
user defines the deformational sequence to be applied to the sample. The microprocessor
translates the strain and strain rate history into the motion of the servo-controlled motor
based upon the employed geometry. The sample is clamped at both ends, and in this
case, measurements are conducted for dry rock samples and with no lateral confining stress.

The sample temperature history is controlled during the test using convected gas in the
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Figure 2.1: Rheometer used in the study.

Figure 2.2: Schematic diagram of harmonic loading applied to one end of a rock sample.
The applied torque T results in stress 7 (red curve), which lags behind the strain € (blue
curve) by the phase angle (.
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surrounding environmental chamber. A sinusoidal torsional strain is applied to one (free)
end of the sample, and the resulting response is measured by a transducer at the other
end, which is fixed. From this response, the computer calculates the resulting stresses and
strains and generates values of the rheological properties.

This method of calculating the complex shear modulus is well-known in polymer and
soil science (Moyal & Fletcher, 1945; Wilhelm, 2002) and needs only minor corrections for
the geometry of the sample. In fact, this method is not much different from the methodology
used for rock measurements by Jackson & Paterson (1987). The same technique is also
employed by Behura et al. (2007) to measure the shear properties of heavy oils and heavy-
oil saturated rocks. For detailed mathematical description of the above operation, one
can refer to the mechanical deformation of circular and rectangular shafts found in most
textbooks on mechanics of solids (e.g., Crandall et al., 1999).

When a viscoelastic material is subjected to a sinusoidally varying strain, a steady state
will be reached when the resulting stress is also sinusoidal with the same angular frequency,
but a phase lag of ¢, which represents a measure of attenuation of that body (Gray, 1972;
Nowick & Berry, 1972; Chow, 1995; Braun et al., 2001). For an elastic material, { = 0,
while for a purely viscous fluid, ¢ can approach m/2. The value of ¢ for a viscoelastic body
is between these two limits.

The harmonic strain ¢ and stress 7 can be represented as
£ = goe ", (2.1)

7 = rpe=i@t=0). (2.2)

where w and ¢q are the excitation frequency and amplitude, respectively and 79 is the peak
amplitude of the resulting stress. The above complex form of the stress function is divided

by the strain to give the complex dynamic shear modulus c:

c=18/e0 + i 18 /0, (2.3)
where

78 = 79 cos(, (2.4)

78 = 79 sin (. (2.5)
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The in-phase part of the stress 7% gives the “real” or “storage” modulus c® and the out-

of-phase part of the stress gives the “imaginary” or “loss” modulus, ¢/,
B = T({Z/Eo, (2.6)

f =7 /eo. (2.7)

We use the common definition of the quality factor, Q (inversely proportional to the atten-
uation coefficient) defined as (Gray, 1972; Nowick & Berry, 1972; Chow, 1995; Lakes, 1998;
Braun et al., 2001; Aki & Richards, 2002)

1 o Wst

Q tan(= Wais®

(2.8)

where Wy, is the maximum elastic stored energy during a cycle of loading at the frequency
under consideration and Wy;, is the energy dissipation per cycle.

The mechanical work done over time T is given by
Wdis = / Tde. (29)
T

Using equation 2.9, Wy;s can be calculated by integrating the out-of-phase component of
stress over an entire cycle (Gray, 1972; Nowick & Berry, 1972; Chow, 1995; Braun et al.,
2001):

27 fw
Wyis =/ (7-({ sin wt)(—eow sinwt) dt, (2.10)
0
— —1['7'({60, (2.11)
= —mcled. (2.12)

Equation 2.12 can be interpreted to imply that the energy supplied to the material by
the out-of-phase components is irreversibly converted to heat. Similarly, integration of the
in-phase components over the full cycle yields zero work, implying that energy associated
with the in-phase components is reversible, so there is no loss of energy for the in-phase

components over a full cycle. The maximum energy stored by the in-phase components
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occurs at a quarter of the cycle and is calculated as (Gray, 1972; Nowick & Berry, 1972)

/2w
Wy = / (T({z coswt)(—eow sinwt) dt, (2.13)
0
l g
= — 1l (2.14)
2
_ _%cRE%_ (2.15)

Substituting equations 2.12 and 2.15 into equation 2.8, I get

1 ol
= tanC = T (2.16)

Q

As mentioned above, we use this definition (equation 2.16) of @ in our analysis, which is also
the standard definition of Q used in physics, classical mechanics, engineering, and material
science. The above definition of Q is valid for any strength of attenuation; @ is infinite for
purely elastic materials and vanishes for completely attenuative materials.

For torsion rectangular tests, the shear modulus is given by (e.g., Zhang et al., 2003)

le] =

ML (13+1.8(T/B) ) (2.17)

BT36 \1— 0.378(T/B)?

where M is the torque in the torque transducer, 6 is the shear angle of the motor, and
L, B, and T denote the length, breadth, and thickness, respectively, of the rectangular
sample. For the rheometer used in this study, the maximum error in the measured torque is
3.89 x 1072 Nm, in @ is the 5 x 107° radians, and in the phase angle ¢ it is 1 x 10-° radians.

2.4 Rock Samples

I examine two shale samples from the Green River Formation in Colorado. One of them
is a lean shale with a low organic content of about 5% and the other is rich in kerogen with
a high organic content (approximately 30%, Figure 2.3). The lean shales are gray-colored
because of the lack of kerogen in contrast to the kerogen-rich shales, which are brownish-
black. The typical dimensions of the samples used in the study are 45 x 12.8 x 3.2 mm.

For measuring shear-wave anisotropy, I cut samples along three orthogonal planes (Fig-

ure 2.4). I assume the shales to be transversely isotropic (TI), which has been established
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Figure 2.3: Shale samples used in the study. On the left is the dark organic-rich shale and
on the right is the lean shale with little organic content.

ry axis

Symmet

<

Figure 2.4: Shale samples cut in specific directions to measure cqyy = cs5 and cgg.
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in similar shales by many researchers (Vernik & Nur, 1992; Johnston & Christensen, 1996;
Vernik & Liu, 1997; Carcione, 2000). A sample cut parallel to the symmetry axis is used
to measure the complex stiffness c44 = c55 (Figure 2.4). As the shale is TI, a sample cut in
the vertical symmetry plane with its long axis orthogonal to the symmetry axis (Figure 2.4)
would give c4q4 = cs5 as well (Thomsen, 1986; Tsvankin, 2005). A sample cut in the isotropy
plane, as shown in Figure 2.4, is used to estimate cg¢.

The shales are examined under temperatures ranging from 30°C to 350°C at equal
intervals of 20°C. To understand the dispersion behavior, the sample is analyzed for fre-
quencies ranging from 0.01 to 80 Hz (with increments of 0.1 on the logio scale) at each
temperature. All measurements are made in the linear viscoelastic regime, which is tested
by conducting a strain-sweep experiment designed to measure the modulus of the rock for
increasing strain amplitudes. Within the linear viscoelastic regime, the modulus does not
change; and a strain amplitude lying within this linear region is selected for conducting
all other temperature-frequency measurements of the rock. For the shales, we use strains
between 6 x 1075 to 8 x 1075. Note that this strain amplitude is larger than the strains
encountered in exploration seismology [about 10~8; Winkler et al. (1979)].

As pointed out by Iwasaki et al. (1978), higher strain amplitudes might result in lower
moduli. To verify the validity of this statement, further experiments should be carried out
at lower strain amplitudes using more sensitive equipment. We should, however, remember
that this strain limit for linear behavior varies from one rock to another. For the time
being, we assume that the higher strain does not significantly change the modulus, and
the relaxation mechanisms remain the same. The measurements are carried out under a
variable applied axial stress, which does not allow the sample to expand vertically. This
is similar to reservoir recovery conditions where the shale is heated but its expansion is

restricted.

2.5 Kerogen-rich Shale

Figures 2.5a and 2.5b show the real part of the stiffness cs5 and the quality factor
Qss, respectively. The real part of cgs and Qg are shown in Figure 2.6. Here and in
the experiments below, the data have not been smoothed and are presented as collected,
without any processing.

Frequency dispersion is relatively weak in these kerogen-rich shales, as evident from the

small change in ¢ and c¢& with frequency (Figures 2.5a and 2.6a). Both storage moduli
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(c& and c&) increase with frequency, even though the increase is small, with the most
noticeable change occurring in the vicinity of 150°C. Attenuation in the directions both
parallel and perpendicular to the bedding is also weakly dependent on frequency, with an
attenuation peak near 150°C. At higher temperatures, however, attenuation decreases with
frequency.

Both moduli (05R5 and c£) and quality factors (@s5 and Qes) show a marked change
with temperature [also observed in typical inorganic shales by Johnston (1987)]. Figure 2.7
shows a comparison of the elastic moduli and attenuation (along the two directions) for
0.3 Hz. Both moduli (c and c&) drop steadily with temperature until it reaches 200°C.
The drop in cf is more pronounced that that in c&. With further increase in temperature,
65% rises, reaches a maximum, and then drops again. In contrast, cé% shows relatively little
change for temperatures greater than =~ 200°C.

The change in both Qs5 and Qgs with increasing temperature follows a similar pattern.
They drop from about 40 at room temperature to below 5 at 150°C, then increase with

temperature with s small drop near 300°C.

2.5.1 Attenuation Mechanisms

Since kerogen is viscoelastic, at low frequencies the molecules/chains have enough time
to come to equilibrium, resulting in a low storage modulus. In contrast, at relatively higher
frequencies the molecules/chains do not have sufficient time to relax as they are tangled
and “locked,” thereby making the material stiffer (high cf), as there is a more efficient
transfer of mechanical energy between the molecules/chains. Also, at low frequencies the
material has sufficient time to relax almost completely as the molecules/chains slide past
each other, which minimizes the energy loss (high Q). The “locking” of the molecules/chains
at higher frequencies translates into a high value of Q, as relative sliding is inhibited which
lowers frictional loss. For intermediate frequencies, however, the molecules/chains have the
maximum slip during a cycle of loading, leading to the maximum frictional loss of energy.

The same mechanism is observed by Behura et al. (2007) in heavy oils and is similar to
the maximum dielectric loss occurring at molecular resonant frequencies (Strobl, 1997).
Here, an analogy can be drawn with the Maxwell model comprised of a spring and a
dashpot in series. At high frequencies, the dashpot has little time to move, and thus the
system responds elastically (high Q). At intermediate relaxation frequencies, the vibration

frequency matches the rate of movement of the piston in the dashpot, resulting in the
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maximum energy loss (low Q). When the system is vibrated at a low frequency, the piston
moves by the same amount as for the resonant frequencies. However, because the time
period of each cycle is now long, most of the cycle is dominated by elastic movement of the
spring (after the piston in the dashpot has passed the point of the maximum displacement).
This results in a relatively large storage energy compared to the dissipated energy (high Q).

At low temperatures (< 100°C) the kerogen is close to a solid but melts with further
increase in temperature and is eventually volatilized for temperatures exceeding 200°C. Be-
cause the rock is dry and the kerogen is still close to a solid for temperatures less than
100°C, Coulomb frictional dissipation owing to relative motion at grain boundaries (Walsh,
1966) or at interfaces between mineral and kerogen surfaces dominates fluid movement.
Since frictional sliding is the dominant attenuation mechanism at these low temperatures,
the moduli and quality factors show a weak frequency dependence (Johnston & Toksoz,
1981). At intermediate temperatures (100°C - 200°C), however, the contribution of fluid
movement to attenuation increases because the kerogen melts. Whether it is attributable
to viscous relaxation of the fluid or to “squirting” of the fluid in the cracks can possibly
be determined by computing the crack aspect ratio, as suggested by O’Connell & Budi-
ansky (1977). For temperatures larger than 200°C, the kerogen is altered and partially
expelled, thereby increasing the stiffness and decreasing any frictional losses as well, as ev-
ident from the increase in Q (Figures 2.5b and 2.6b). Because of the lack of fluids in the
shale at these high temperatures, frictional sliding is the dominant attenuation mechanism,

as corroborated by the weak frequency dependence of the moduli and quality factors.

2.5.2 Anisotropy

Shales are usually laminated and therefore commonly transversely isotropic (Wang,
2002). Any change in the weaker layers comprising the shale will have a greater influ-
ence on the properties measured along the bedding-perpendicular direction compared to
the bedding-parallel direction. Carcione (2000) suggests that the stiffness css5 is primarily
controlled by the isotropic kerogen (compliant material) in the shales while cgg is dominated
by the clay (stiff material) in the layering. Thus, any change in the physical state of the
kerogen would be reflected in cs5, while the alterations in the clay layering would show up in
ce6. The liquefaction of the kerogen with heating and its subsequent evaporation explains
the initial rapid drop in C?s followed by an increase for temperatures above 200°C (Fig-

ure 2.5). The modulus cf§ (Figure 2.6), on the other hand, drops steadily with increasing
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Figure 2.7: (a) The moduli c¢& (triangles) and c& (squares) and the velocity-anisotropy
parameter v (circles) of the kerogen-rich shale at a frequency of 0.3 Hz. (b) The quality
factors Qss (triangles) and Qg (squares) and the attenuation-anisotropy parameter Yo
(circles) at the same frequency.
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temperature, which points to the possibility that the clay minerals are undergoing certain
physical and chemical changes but no phase changes. It is also possible that the constituents
of the clay layers include some kerogen which also contributes to the drop in cé%.

The difference in the moduli and attenuation along the bedding-parallel and bedding-
perpendicular directions can be conveniently represented using Thomsen’s SH-wave velocity-
anisotropy parameter v (Thomsen, 1986) and the SH-wave attenuation-anisotropy param-
eter 7, (Zhu, 2006) defined as the fractional difference between the SH-wave velocities and
attenuation coefficients A, respectively, in the directions orthogonal and parallel to the

symmetry axis:

R _ .R
_ %6 — C55 218
Y= TR (2.18)

o = Aes — Ass _ (55 — Qs
@ Ass Qes

Parameters v and 7, for the whole frequency and temperature range are shown in Fig-

(2.19)

ures 2.8a and 2.8b. SH-wave velocity anisotropy can be anomalously strong, with vy at-
taining values as large as three; attenuation anisotropy can also be significant, with v,
values approaching two. For typical shales, v does not exceed 0.5 (Wang, 2002), which is
significantly lower than the maximum value of  observed here. Note that the sign of v,
can change as well.

The weak frequency dependence of cs5 and cgg translates into a generally weak variation
of v and +,, with frequency. The parameter 7, however, shows a moderate dependence on
frequency for temperatures above 300°C.

Temperature, on the other hand, has a marked influence on both vy and v, (Figures 2.7).
The change in v with temperature arises from the difference in the behavior of c& and c&.
As the kerogen melts with increasing temperature, 0?5 drops more significantly compared
to cf, resulting in a jump in 4. The peak in v corresponds to the maximum amount of
melt in the shale. With further increase in temperature, kerogen starts evaporating, which
results in a drop in v as the shale becomes less compliant, which increases c but not cé%
(Figure 2.7a). Therefore, the parameter 7 could be used as an indicator of the physical state
of kerogen in shales. Note that the velocity-anisotropy parameter -y changes by a factor of
10 (Figure 2.8a), which should be detectable in 4D studies.

The initial drop in v, (Figure 2.8b) corresponds to the melting of the kerogen. Sub-
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Figure 2.8: The SH-wave (a) velocity anisotropy parameter v, and (b) attenuation
anisotropy parameter v, in the kerogen-rich shale.
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sequently, as the kerogen starts evaporating, Qss also increases, resulting in an increase
in 7,. As with velocity anisotropy, attenuation anisotropy also shows a large change with
temperature, which could have a substantial influence on SH-wave propagation. Although
the change in v, is not as prominent as in 7, it is high enough to be detectable in seismic
data.

2.6 Lean Shale

The moduli cé% and cé% of the lean shale and their corresponding quality factors are
shown in Figures 2.9 and 2.10. The temperature and frequency trends observed for the lean
shale are similar to those described above for the kerogen-rich shale. The moduli of the lean
shale, however, are larger than those of the kerogen-rich shale because of the lower content
of the more compliant kerogen.

The low organic content is also responsible for the weak frequency dispersion in the
lean shales (Figures 2.9a and 2.10a). The increase in both moduli is not significant, espe-
cially within the seismic band. Attenuation also shows a weak dependence on frequency
(Figure 2.9b), which implies that friction may be the dominant attenuation mechanism.
Although other mechanisms like “squirt flow” of fluids and viscous relaxation might also
be present (notably in the vicinity of 150°C), additional experiments are needed to fully
understand their role.

As with the kerogen-rich shales, the modulus cf of the lean shales is more sensitive to
temperature changes than is cé%. The initial drop in c§5 is most probably due to the lique-
faction of the small amount of kerogen sandwiched between clay layers. The liquefaction of
kerogen not only softens the rock, reducing c?s, but also sharply decreases the quality factor
Qss (Figure 2.9b). This is because the liquid kerogen facilitates sliding, thereby decreasing
the efficiency of transfer of mechanical energy between clay particles and increasing fric-
tional loss. With further heating above 200°C, the lighter kerogen components evaporate,
making the shale stiffer. The quality factor Q55 also increases as the frictional sliding be-
tween the clay layers is reduced. Again, only cs5 and not cgs is expected to be influenced,
which is clear from Figures 2.9 and 2.10. The changes in ¢gs and Qes, on the other hand, are
primarily because of physical and chemical alterations to the clay minerals which explains
the steady drop in cgg and attenuation with temperature.

The effect of melting of kerogen and its subsequent evaporation is more apparent in the

behavior of the anisotropy parameter v (Figure 2.11). With melting of kerogen, 7 increases
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Figure 2.10: Real part of shear modulus cfy (a) and the quality factor Qgs (b) of the
kerogen-rich shale.
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Figure 2.11: SH-wave velocity-anisotropy parameter v of the lean shale.

as the difference between the moduli (cf and cf) grows. Above 200°C, the drop in v is

caused by the loss of kerogen.

2.7 Discussion

This experiment also demonstrates the contribution of lamination to the strength of
anisotropy in TI media. Bakulin (2003) shows that the effect of layering on T1I anisotropy is
of second order compared to that of intrinsic anisotropy, but if the elastic contrast between
the different layers is large, the layer-induced anisotropy can be significant. At room tem-
peratures, the kerogen is solid and the contrast in the shear modulus of the solid clay (and
carbonate) layers and the kerogen layers is not significant. This results in a low value of 7 at
room temperatures (Figure 2.8a). With increase in temperature, the kerogen progressively
melts, thereby increasing the contrast between the layers, which results in a notable increase

in ~.
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2.8 Conclusions

Unlike common fluids (e.g. brine and light oil), kerogens in oil shales act as solids
at room temperatures and fluids at higher temperatures. In other words, at room tem-
perature, kerogens support a shear wave, while at higher temperatures the shear modulus
approaches zero. Kerogens, however, have a non-zero bulk modulus at all temperatures,
and the percentage change in the bulk modulus should be smaller compared to the change
in the shear properties. So shear information can be more diagnostic of physical changes
than bulk modulus properties, which makes acquisition of multicomponent seismic data all
the more important. Our shear-wave measurements, made for a wide range of tempera-
tures, simulate conditions encountered during in-situ steam flooding of oil shale reservoirs.
Moreover, as shales are effectively viscoelastic, their properties in the seismic band are sig-
nificantly different from those in the logging-frequency and ultrasonic bands. In the absence
of strong heterogeneity, the shear properties acquired at frequencies ranging from 0.01 to
80 Hz (which includes the seismic band), should be close to the seismic properties of oil
shales in the field.

The negligible frequency variation of the moduli and attenuation within the seismic
bandwidth makes application of frequency-dependent analysis unlikely. Most of the existing
methods for Q estimation from field data assume a constant @ within the seismic bandwidth,
an approximation confirmed by our laboratory measurements.

Oil shales show a strong dependence of the rigidity moduli and attenuation on temper-
ature. Heating melts the kerogen, which reduces the shear-wave velocity significantly, by a
factor of five in some cases. The shear-wave quality factor can also drop by a factor of 10
over the range from room temperature to about ~ 150°C. Therefore, reservoir areas affected
by heat should show a noticeable drop in velocities accompanied by a significant increase
in attenuation. Such differences should be clearly visible on amplitudes and traveltimes of
shear waves.

Heating of oil shales also substantially alters their velocity and attenuation anisotropy.
The SH-wave velocity-anisotropy parameter 7 could attain anomalously large values ap-
proaching three. The change in the attenuation-anisotropy parameter v, can also be sub-
stantial. Since the melting of kerogen manifests itself in an increase in -y, while the loss of
kerogen reduces v, this parameter could be used as an indicator of the degree of kerogen
melt in shales. SH-wave velocity and attenuation anisotropy could also be used to identify

heated compartments of the reservoir.
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Comparison of the kerogen-rich and lean shales indicates that the temperature depen-
dence of shale properties is closely related to its organic content. Lean-shales have higher
storage moduli and a higher ) than more organic-rich shales. Also, the temperature-related
change in velocity and attenuation anisotropy is greater in shales richer in organic content.
This can potentially be used to estimate the organic content of shales from seismic data.

Thus, this suite of measurements should be directly applicable to seismic analysis of oil-
shale reservoirs during their exploration, development, and production. The high sensitivity
of shear properties of oil shales to temperature makes 4D multicomponent seismic analysis

of these reservoirs promising.
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Chapter 3

The mystery of the inhomogeneity angle

3.1 Summary

The inhomogeneity angle (the angle between the real and imaginary parts of the wave
vector) is seldom taken into account in estimating attenuation coefficients from seismic
data. Wave propagation through the subsurface, however, can result in relatively large
inhomogeneity angles &, especially for models with significant attenuation contrasts across
layer boundaries. Here, I study the influence of the angle £ on phase and group attenuation
in arbitrarily anisotropic media using the first-order perturbation theory verified by exact
numerical modeling.

Application of the spectral-ratio method to transmitted or reflected waves yields the
normalized group attenuation coefficient Ag, which is responsible for the amplitude decay
along seismic rays. Our analytic solutions show that for a wide range of inhomogeneity an-
gles the coefficient Ay is close to the normalized phase attenuation coeflicient A computed
for £ = 0° (Al¢_go). The coefficient Al._q. can be inverted directly for the attenuation-
anisotropy parameters, so no knowledge of the inhomogeneity angle is required for atten-
uation analysis of seismic data. This conclusion remains valid even for uncommonly high
attenuation with the quality factor @ less than 10 and strong velocity and attenuation
anisotropy. However, the relationship between the group and phase attenuation coefficients
becomes more complicated for relatively large inhomogeneity angles approaching so-called
“forbidden directions.” I also demonstrate that the velocity function remains practically
independent of attenuation for a wide range of small and moderate angles &.

In principle, estimation of the attenuation-anisotropy parameters from the coefficient
A|§=00 requires computation of the phase angle, which depends on the anisotropic velocity
field. For moderately anisotropic models, however, the difference between the phase and

group directions should not significantly distort the results of attenuation analysis.
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3.2 Introduction

In attenuative media, the direction of maximum attenuation of a plane wave can differ
from the propagation direction. This implies that the real part of the wave vector k? (“prop-
agation vector”) deviates from the imaginary part k! (“attenuation vector”), as illustrated
in Figure 3.1. The angle between the vectors kf and k! is called the “inhomogeneity angle,”
denoted here by £. When £ = 0°, the plane wave is often characterized as “homogeneous;”
when { # 0°, it is called “inhomogeneous.” For plane-wave propagation, { represents a
free parameter except for certain “forbidden directions” (Krebes & Le, 1994; Carcione &
Cavallini, 1995; Cerveny & Psencik, 2005a,b) where solutions of the wave equation do not
exist. If the wavefield is excited by a point source, the inhomogeneity angle is determined
by the medium properties including the boundary conditions (Zhu, 2006; Vavrycuk, 2007).

Alternatively, the wave vector in attenuative media can be parameterized in terms of
the “inhomogeneity parameter” D (Boulanger & Hayes, 1993; Declercq et al., 2005; Cerveny
& Psencik, 2005a):

k = w(on + iDm), (3.1)
such that
m-n=0, (3.2)

where D is real, while o is complex. The vector n specifies the direction of wave propagation,
while the vector m is orthogonal to it. The main advantage of this parameterization is that
it eliminates forbidden directions from the solutions of the Christoffel equation (Cerveny &
Psencik, 2005a).

Many results on attenuation analysis are obtained under the assumption that the inho-
mogeneity angle can be ignored (Hauge, 1981; Dasgupta & Clark, 1998; Zhu et al., 2007b).
For point-source radiation in homogeneous media, the influence of the inhomogeneity angle
is indeed small, unless the medium is anomalously attenuative and anisotropic (Zhu, 2006;
Vavrycuk, 2007).

During wave propagation in layered media, however, the angle ¢ can attain significant
values. For the model in Figure 3.2, the wave vector in the elastic cap rock is real, while

that in the attenuative reservoir is complex. Because the projections of the incident (real)
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Figure 3.1: Plane wave with a nonzero inhomogeneity angle £. The wave propagates in the
direction k® (perpendicular to the planes of constant phase) and attenuates most rapidly
in the direction k.

and transmitted (complex) wave vectors onto the interface have to be the same according
to Snell’s law, the imaginary part k! of the wave vector in the reservoir is orthogonal to the
interface. This implies that the inhomogeneity angle of the transmitted wave is equal to
the transmission angle, which can reach 90°. It is also clear that the inhomogeneity angle
of the wave reflected from the base of the reservoir can be large as well. This situation, for
example, is always encountered in soft absorbing sediments beneath the ocean bottom.
Existing measurements of the inhomogeneity angle are limited to laboratory studies
(Deschamps & Assouline, 2000; Huang et al., 1994). Indeed, although the angle £ can be
significant, its estimation from seismic data is extremely difficult. It seems natural to expect
that the inhomogeneity angle should influence the attenuation along the raypath (group
attenuation), which is the only relevant attenuation measurement in seismic processing.
Attenuation analysis becomes particularly involved in anisotropic media where the ray
may significantly deviate from both the phase direction and the direction of maximum at-
tenuation. When the medium is anisotropic, the relationship between the angle £ and the
attenuation coefficients is obscured by the complexity of the exact equations. It can be
inferred from the work of Gajewski & Psenc¢ik (1992) that in weakly attenuative media the
group attenuation coefficient yields the quality factor of the medium. Numerical modeling

by Deschamps & Assouline (2000) also shows that group attenuation reflects the intrinsic
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Elastic
cap rock

Attenuative
reservoir kRrefl

Figure 3.2: Illustration of the reflection/transmission problem at the interface between a
purely elastic cap rock and an attenuative reservoir. k¥ and k! are the real and imaginary
parts of the wave vector of the transmitted wave, while k®7efl and k!""¢f! correspond to
the reflected wave. As discussed in the text, the inhomogeneity angle £ of the transmitted
wave is equal to the transmission angle 6.

viscoelasticity of the material. The analytic results of Vavryéuk (2008) and Cerveny &
Psencik (2008a) indicate that group attenuation is insensitive to the inhomogeneity param-
eter. Their asymptotic analysis, however, is valid only for weak attenuation and plane waves
with small values of the inhomogeneity parameter D.

Here, I use first-order perturbation theory to study the influence of the inhomogeneity
angle on the group and phase attenuation coefficients. By perturbing an isotropic attenu-
ative background, I obtain a weakly anisotropic medium with angular dependence of both
velocity and attenuation. In contrast to the methodology of Cerveny & Psencik (2008a)
and Vavryéuk (2008), our approach allows for arbitrarily large attenuation and “strongly
inhomogeneous” waves. Therefore, this perturbation scheme helps us to analyze wave prop-
agation for a wide range of angles £ including the vicinity of forbidden directions. First,
I develop closed-form linearized expressions for group and phase attenuation in arbitrarily
anisotropic media, which provide useful physical insight into the influence of the angle &.
The general equations are then simplified for the special case of TI media by expressing
them through the Thomsen-style anisotropy parameters. Finally, the conclusions drawn

from the analytic expressions are corroborated by exact numerical modeling.
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3.3 Phase and Group Attenuation Coefficients

The Christoffel equation, which describes plane-wave propagation in anisotropic media,
can be solved for the real (k) and imaginary (k) parts of the wave vector. The ratio
k!/k® yields the phase attenuation per wavelength, which is called the normalized phase
attenuation coefficient A (Zhu & Tsvankin, 2006):

A== (3.3)

For a nonzero inhomogeneity angle &, the coefficient A is a measure of attenuation
along the vector k! rather than kf. Also, in seismic data processing, the attenuation is
measured along the raypath, which deviates from the phase direction k* when the medium
is anisotropic.

Attenuation is commonly computed from seismic data using the spectral-ratio method
(e.g., Johnston & Toks6z, 1981; Tonn, 1991), which has been extended to anisotropic media
(Zhu et al., 2007b). If two receivers record the same event at two different locations along
a raypath, the attenuation coefficient can be estimated from the ratio S of the measured

amplitude spectra:
InS=1InG - k[, (3.4)

where G contains the reflection/transmission coefficients, source/receiver radiation patterns,
and geometrical spreading along the raypath, k; is the average group attenuation coefficient,
and [ is the distance between the two receivers. Assuming that the medium between the
receivers is homogeneous, equation 3.4 can be rewritten in terms of the group velocity Vj,

and traveltime t:
InS=1InG -k} V,t,
=InG —wAyt, (3.5)

where w is the angular frequency and A, = k; /k_f = k:; /(w/Vy) is the normalized group
attenuation coefficient. It follows from equation 3.5 that by estimating the slope of In S
expressed as a function of w, I can compute the group attenuation along the raypath, if the

traveltime ¢ is known. Therefore, A, is the measure of attenuation obtained from seismic
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data.

If the medium is anisotropic (or isotropic, but the inhomogeneity angle is large, as
discussed below), the group-velocity vector V4 deviates from the phase direction parallel
to kf. To simplify the analytic development, I choose a coordinate frame in which kf
coincides with the axis 3 and k! is confined to the [1, z3]-plane (Figure 3.3). The group
attenuation coefficient k:g can be found by projecting the phase attenuation vector k! onto

the group direction:

1
ky = Vi (k'-Vy,), (3.6)
= k!(cos & cosy + sin & siny cos o), (3.7)

where ¢ is the angle between k® and V4 (group angle) and ¢ is the azimuth of V4 with
respect to the [z;,z3]-plane (Figure 3.3). For isotropic media and symmetry planes in
anisotropic media, V lies in the plane formed by the vectors kf and kI (i.e., ¢ = 0), and

k; is given by
kg =kl cos(¢ — ). (3.8)
Using equation 3.7, the normalized group attenuation coefficient A4 can be represented as

k; _ k! cos & cos 1 (1 + tan € tan 9 cos @)

A= gE = oIV,

(3.9)

The group velocity can be obtained from the well-known relation (e.g., Cerveny & Psencik,
2006):

1
- Kr.v, =1, (3.10)
or

% = kR cosp. (3.11)
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Figure 3.3: Plane wave propagating along the coordinate axis z3 in an anisotropic attenua-
tive medium. The group angle 9 is the deviation of the group velocity vector V4 from the
real part kf of the wave vector. The azimuth of the vector V, with respect to the plane
formed by kE® and k! is denoted by ¢.

Substituting equation 3.11 into equation 3.9 yields

I
Ay = ]I:—R cos& (1 + tan& tan) cos @) . (3.12)

Equation 3.12 can be used to compute the exact coefficient A, for arbitrarily anisotropic,
attenuative media and any angle £. If the group-velocity vector is confined to the plane

formed by k® and k! (see above), cos ¢ = 1 and equation 3.12 becomes

_ k! cos(& — )
Ay = [ ——CW. (3.13)

For a zero inhomogeneity angle, the coefficient A4 reduces to

k:l
A6 =0°) = R = 'AIE=0° . (3.14)
£=0°
Equation 3.14 demonstrates that even for arbitrary anisotropy, the group attenuation coef-

ficient coincides with the phase attenuation coefficient for £ = 0° (Zhu, 2006). It is unclear,
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however, how A, is related to phase attenuation for a nonzero ¢ and what role is played by

the inhomogeneity angle in the estimation of the attenuation coefficient.

3.4 Isotropic Media

To evaluate the influence of the inhomogeneity angle on velocity and attenuation in
isotropic media, I obtain the real and imaginary parts of the vector k from the wave equation.
The derivation, discussed in Appendix A, shows that the solution exists only if k¥ -k > 0,
which means that the inhomogeneity angle in isotropic media should be smaller than 90°
(I assume that ¢ > 0 because positive and negative inhomogeneity angles are equivalent
in the absence of anisotropy). Therefore, the attenuation vector k! cannot deviate from
k® by 90° or more, and angles £ > 90° correspond to so-called “forbidden directions.”
Note that for isotropic non-attenuative media, the inhomogeneity angle of an evanescent
(inhomogeneous) plane wave is always equal to 90°, which explains the properties of surface
and nongeometrical modes (Tsvankin, 1995).

The squared magnitudes of the vectors kf and k! for £ < 90° (Appendix A) are given

by
(kR)2—w—2 14— 4 (3.15)
T2V (Qcos)? ' '
(k’)z—i 1yt (3.16)
T2V (Q cos &)? ' )
where V = y/af} is the real part of the medium velocity and a;; is the density-normalized

stiffness tensor. The only approximation used to derive equations 3.15 and 3.16 is that
quadratic and higher-order terms in the inverse quality factor 1/Q [but not in 1/(Q cos¢)]
can be neglected compared to unity. Equivalent solutions for £ and k! in isotropic media

are given in Cerveny & Psencik (2005a).

3.4.1 Small and Moderate Inhomogeneity Angles

The dependence of the wave vector on the inhomogeneity angle is controlled by the
product @ cos . If the angle £ is not close to 90° and the medium does not have uncommonly

strong attenuation, I can assume that (Qcos&) > 1 and simplify equations 3.15 and 3.16
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to (see Appendix A)

(3.17)

k! (3.18)

~ 2VQcosé
According to equation 3.17, for (Q cos&) > 1 the velocity of wave propagation is equal to
V and is independent of the inhomogeneity angle and of attenuation. Using equations 3.17

and 3.18, I find the normalized phase attenuation coeflicient A as

k! 1

A= kR~ 2Qcos&

(3.19)

In general, the inhomogeneity angle also influences the group velocity and the group

angle. For (Q cos&) > 1, however, the influence of ¢ is negligible (Appendix A):

tan &

tany = ———
any 11207

<1, (3.20)

and V; ~ V. The normalized group attenuation coefficient A, (equation 3.12) then becomes

Kl cosé
Ay = —r (3.21)
If the wave vector is described by equations 3.17 and 3.18, equation 3.21 yields
1
Ag = 2_Q— == A|E=0° . (3.22)

Therefore, for a wide range of common inhomogeneity angles, the group attenuation coef-
ficient Ay does not depend on the angle £ and is close to the phase attenuation coeflicient
A computed for ¢ = 0°. Later I demonstrate that this result remains valid for much more
complicated models with anisotropic velocity and attenuation functions. Equation 3.22 also
shows that seismic attenuation measurements (i.e., the coefficient Ay) for isotropic media
provide a direct estimate of the quality factor Q. This conclusion applies to both P- and

S-waves and a wide range of angles £ (Figure 3.4).
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3.4.2 Large Inhomogeneity Angles

For large inhomogeneity angles approaching 90°, the assumption (Q cos £) > 1 used to
derive equations 3.17 and 3.18 is no longer satisfied. In the limit of (Q cos &) < 1 (¢ — 90°),
equations 3.15 and 3.16 give completely different approximate solutions for the wave vector
(Appendix A):

R _ w Q cosé
= V0t B cos € (1 + — ) , (3.23)

I w _ Qcosé
k' = TTALTY 50 cosE (1 — ) . (3.24)

Dropping quadratic and higher-order terms in Qcos¢, I find

A=:—;=1—Qcos§. (3.25)

The velocity of wave propagation, determined by the denominator of the expression for k?

(equation 3.23), is proportional to /@ cos £ and goes to zero when the inhomogeneity angle
approaches 90°.

When £ — 90°, the influence of the inhomogeneity angle on the group quantities v,

V4, and Ay is no longer negligible. The group angle for large inhomogeneity angles becomes

(Appendix A)
tanty = % —cosé. (3.26)

Equation 3.26 demonstrates that for strong attenuation (small Q) the group-velocity vector
deviates from the phase direction toward the attenuation vector when £ — 90°. Note that
despite the medium being isotropic, the group and phase directions differ because of nonzero
values of &.

The coefficient A, for large angles £ can be obtained by substituting equations 3.25
and 3.26 into equation 3.12:

Ag = (1 — Qcosé) [cosf + (é— — cos f) sin{] . (3.27)
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(a) (b)
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-4 90°
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Figure 3.4: Exact P-wave (a) and S-wave (b) coefficient Al._q. (equation 3.3, gray curve)
and the normalized group attenuation .4, (equation 3.12, black curve) in isotropic media
as a function of the inhomogeneity angle £ (numbers on the perimeter). The quality factors

are Qp = Qs = 5.

Linearizing equation 3.27 in cos{ yields

Ag = % —cosé. (3.28)

Equation 3.28 shows that the group attenuation coefficient A, for large inhomogeneity
angles reduces to just tan 1) (see equation 3.26). Therefore, whereas the real and imaginary
parts of the wave vector (equations 3.23 and 3.24) become infinite as £ — 90°, the group
attenuation coefficient approaches 1/Q and is about twice as large as Al,_q. (Figure 3.4).
Hence, for large angles £ close to 90°, seismic attenuation measurements in isotropic media
do not provide a direct estimate of the quality factor because Ay rapidly increases with £
from 1/(2Q) to 1/Q.

Although the presence of anisotropy makes treatment of wave propagation in attenu-
ative media much more complicated, several key conclusions drawn above prove to be valid

for models with anisotropic velocity and attenuation functions.
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3.5 Anisotropic Media

The dependence of attenuation on the inhomogeneity angle £ in anisotropic media is
influenced by the angular variation of the phase quantities and by the difference between
the group and phase directions. Using the Christoffel equation B.1, the phase attenuation
coefficient A can be computed for arbitrary values of the angle £. Then general group-
velocity equations (e.g., Tsvankin, 2005) can be employed to obtain the group attenuation
coefficient. It would be useful, however, to develop analytic expressions for phase and group
attenuation that provide physical insight into the contribution of the inhomogeneity angle.
To derive analytic expressions for k¥, k!, and A, in arbitrarily anisotropic media, I use the
first-order perturbation theory, as discussed in Appendix B. The analytic development is

supported by numerical modeling based on exact solutions.

3.5.1 Perturbation of the Complex Wave Vector

I consider an isotropic, attenuative background medium, which is perturbed to obtain
anisotropic velocity and attenuation functions. The real and imaginary parts of the wave
vector in the background are denoted by k? and k!-9, respectively. I choose the coordinate
frame in which k®0 coincides with the z3-axis and k! lies in the [x1, z3}-plane. The angle
¢ is kept fixed, so the real and imaginary parts of the perturbed wave vector k = k — ik!
remain parallel to the corresponding parts of the background vector k°.

First, I obtain linearized expressions for the perturbations Akf and Ak! in arbitrarily
anisotropic media using the coordinate frame defined by k? and k! (equations B.15-B.20).
To express Ak® and Ak’ in a fixed coordinate frame, one has to rotate the perturbation
density-normalized stiffness tensor Aa;jx; accordingly. For example, to derive Ak® and Ak!
for TT media as a function of the phase angle # (the angle between k® and the symmetry
axis), the tensor Aa;jy; in equations B.15-B.20 is rotated about the z,-axis by the angle 6.

For the special case of P-wave propagation in TI media, the perturbations Ak® and
AK! take the form

AkE

TR0 = (6sin® 8 cos® § + esin* 9), (3.29)
P
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AkL
?’FP =6Q sin® 6 cos? 0 + €0 sin 6
P

— (6sin? 0 cos 0 + esin® §) — [0 + 2(e — 6) sin? 0] sin 20 tan¢, (3.30)

where € and ¢ are the Thomsen velocity-anisotropy parameters, and €, and §, are the
Thomsen-style attenuation-anisotropy parameters (Zhu & Tsvankin, 2006). The parameter
€, determines the fractional difference between the P-wave phase attenuation coefficients
Al¢_go in the horizontal and vertical directions, while d, controls the coefficient Al,_qo in
the vicinity of the symmetry axis. Equations 3.29 and 3.30 are derived for the attenuation
vector k! confined to the plane defined by k® and the symmetry axis. Similar expressions
for SV- and SH-waves in TI media are given in Appendix C (equations C.1-C.4).

Note that the real part Ak of the linearized perturbation in the wave vector in equa-
tions 3.29, C.1, and C.3 is independent of the inhomogeneity angle and is entirely governed
by velocity anisotropy. This conclusion is corroborated by the numerical example in Fig-
ure 3.5. As the inhomogeneity angle varies from 0° to 70°, there is no noticeable change
in k® even in the presence of velocity anisotropy (Figures 3.5¢ and 3.5d) and attenuation
anisotropy (Figures 3.5e and 3.5f). The “isotropic” behavior of kf in Figures 3.5e and 3.5f
indicates that attenuation anisotropy has little influence on the velocity function, which is
controlled by the velocity-anisotropy parameters (Figures 3.5¢c and 3.5d). Whereas equa-
tions 3.29, C.1, and C.3 remain accurate for a wide range of ¢ (Figures 3.5b, 3.5d, and 3.5f)
and strong attenuation anisotropy, they break down for the angle ¢ approaching 90°.

The attenuation vector k! (equations 3.30, C.2, and C.4), on the other hand, is influ-
enced by both velocity and attenuation anisotropy, as well as by the inhomogeneity angle
. The increase in £ from 0° to 70° in Figure 3.6 causes a substantial change in k!, both for
isotropic and TI media. Figures 3.6d-3.6i illustrate the dependence of k! on the velocity-
and attenuation-anisotropy parameters. It is interesting to note that for small { the contri-
bution of velocity and attenuation anisotropy to k! (equations 3.30, C.2, and C.4) is of the
same order. With increasing ¢, however, the influence of velocity anisotropy (Figure 3.6f)
becomes more pronounced compared to that of attenuation anisotropy (Figure 3.6i) because
the tan &-term in equation 3.30 depends just on € and 4. Figure 3.6 also demonstrates that
equation 3.30 deviates from the exact k! only for large angles £, with the error primarily

controlled by the velocity-anisotropy parameters.
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(a) £=0° (b) & = 70°

180°

(d) { =70°

(f) £ =70°

90°

Figure 3.5: Exact real part kf (in 100 m~!) of the P-wave vector k (solid lines) and
approximate kf = k0 + Ak® from equation 3.29 (dashed lines) for ¢ = 0° (a,c,e) and
£ = 70° (b,d,f) as a function of the phase angle (numbers on the perimeter). The model in
(a,b) is isotropic; in (c,d) it is anisotropic in terms of velocity but has isotropic attenuation,
while in (e,f) it has isotropic velocity and anisotropic attenuation (Table 3.1). The frequency
is 30 Hz. '
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(a) £ =0° (b) £ = 45° (c) & =T0°

180°

-{9¢°

(f) £ = 70°

Figure 3.6: Exact imaginary part k! of the P-wave vector k (solid lines) and approximate
k' = k10 + Ak (in 100 m™!) from equation 3.30 (dashed lines) for £ = 0° (a,d,g), £ = 45°
(b,e,h) and & = 70° (c,f,i) as a function of the angle between k! and the symmetry axis.
In (a,b,c) both velocity and attenuation are isotropic; in (d,e,f) only velocity varies with
angle, while attenuation is isotropic; in (g,h,i) attenuation varies with angle, while velocity
is isotropic. The model parameters are given in Table 3.1. The frequency is 30 Hz.
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3 € 6 v Qpro Qso ¢ &, 7
Figs. 3.5a,b 0°,70° 0O 0 o0 10 10 0 0 0
3.5¢,d 0°,70° 03 02 0 10 10 0 O 0
3.5¢,f 0°,70° 0O o0 o0 10 10 06 04 O
Figs. 3.6a,b,c || 0°,45°, 70° Same as in Figures 3.5a,b
3.6d,ef || 0°,45°,70° Same as in Figures 3.5¢,d
3.6g,h,i || 0°,45°,70° Same as in Figures 3.5e,f
Fig. 3.7a 0° 03 02 0 10 10 06 04 O
3.7b 0° 0 0 03 10 10 0 0 05
Fig. 3.8 - 03 02 O 5 5 06 04 O
Fig. 3.9a 60° 0O 0 o0 10 10 0 O 0
3.9b 60° 03 02 0 10 10 0 0 0
3.9¢ 60° 06 04 O 10 10 0 0 0
3.9d 60° 0O 0 o0 10 10 06 04 O
Fig. 3.10a,b 60° 06 04 0 10 10 06 04 O
3.10c,d 60° 0 0 05 10 10 0 0 05
Fig. 3.11 - 0 0 03 5 5 0 0 05
Fig. 3.12a - 0 0 1 0 0 -05
3.12b - 0 0 03 0 0 -05

Table 3.1: Medium parameters used in the numerical tests. For all models, the P- and S-
wave symmetry-direction velocities (Vpgp and Vo) are 2800 m/s and 1700 m/s, respectively.
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3.5.2 Normalized Group Attenuation Coefficient

As discussed above, for zero inhomogeneity angle the normalized group attenuation
coefficient A, coincides with Alc_q. (equation 3.14). This conclusion, which is valid for
all wave modes, is supported by Figures 3.7a and 3.7b where the coefficients A| £=0° (gray
curve) and Ag (blue) practically coincide when £ = 0°.

To examine the influence of the angle & on Ay, I linearize equation 3.12 in terms of

the perturbations of the wave vector:

k1O + AkT

A9 = RO T ARE

cos& (1 + tan € tan ¢ cos ¢)

k10 AkT AER
= LRO (1 + k10~ kRO ) cos¢ (1 +tan{tanycos¢). (3.31)

Taking into account that k/0/kR0 = 1/(2Q° cos €) (equation 3.19), I find

1 (1 AT AER

Ag = 300 + 20~ W) (1 + tan & tan ) cos ). (3.32)

Equation 3.32 is valid in arbitrarily anisotropic media for all wave modes. Substituting
equations B.15 and B.16 for Ak® and Ak’ and equation B.26 for the product tant cos ¢

into equation 3.32, I obtain the group attenuation coefficient for P-waves linearized in Aa;;:

R
o5 (- o).
where Qpo and Vpg are the P-wave quality factor and velocity, respectively, in the back-
ground. Similar expressions for S;- and Sp-waves are given in Appendix B (equations B.30
and B.31).

Below I analyze equation 3.33 for the special case of P-wave propagation in TI media
with arbitrary symmetry-axis orientation. As mentioned earlier, to express A, through
the phase angle 6 with the symmetry axis, the tensor Aa;jx; in equation 3.33 has to be
rotated around the xo-axis. Then I linearize Ag in the velocity- and attenuation-anisotropy

parameters to obtain

1 . 9 9 . 4
= — . 3.34
Ag.p 50r0 (1 + 6, sin® @ cos® @ + €, sin" 6) (3.34)
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Figure 3.7: Exact P-wave (a) and SH-wave (b) coefficients Ale_go (gray curves) and Ay
(black curves) in TI media as a function of the phase angle for ¢ = 0°. Because Ag = Ale_ges
the gray curves are coincident with the black curves. The model parameters are given in
Table 3.1.

Similar approximate expressions for the group attenuation coefficient of SV- and SH-waves
are given in Appendix C (equations C.10 and C.11).

Therefore, the inhomogeneity angle has no influence on the approximate group at-
tenuation coefficient. Furthermore, Ay p in equation 3.34 coincides with the linearized
P-wave phase attenuation coefficient for a zero inhomogeneity angle (Alg—go) derived by
Zhu and Tsvankin (2006). Equation 3.34 deviates from the exact Ay only when the angle
& approaches forbidden directions (Figure 3.8); the behavior of A for large inhomogeneity
angles is analyzed in more detail below.

Note that the linearized A4 (equations 3.34, C.10, and C.11) is controlled by attenua-
tion anisotropy and does not depend on the velocity-anisotropy parameters. This conclusion
is confirmed by the exact modeling results in Figures 3.9a and 3.9b where the coefficient
Ay remains insensitive even to strong velocity anisotropy with ¢ = 0.6 and § = 0.4 when
§ = 60° (Figure 3.9c). The presence of attenuation anisotropy, on the other hand, results

in a substantial change in A, (Figure 3.9d).
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180°

90°

Figure 3.8: Exact P-wave group attenuation coefficient Ay p (solid line) and approximate
Ag,p from equation 3.34 (dashed line) in TI media for § = 45° as a function of the angle §
(numbers on the perimeter). The model parameters are given in Table 3.1.

3.5.3 Relationship Between Group and Phase Attenuation

The normalized phase attenuation coefficient A|;_g. can be obtained from the Christof-
fel equation and expressed through the attenuation-anisotropy parameters (Zhu & Tsvankin,
2006). As shown above, the coefficient A, coincides with Al¢_q. for a wide range of £ in
isotropic media and for £ = 0° in anisotropic media.

Using perturbation analysis, I obtained closed-form expressions for the coefficient

.A|£=0° in arbitrarily anisotropic media linearized in Aq;; (Appendix B). For P-waves,

R
Ale—ge p = leo - 2‘230 (%‘Z? - Aa§3) . (3.35)
Similar expressions for S;- and Sp-waves are given in Appendix B. Comparison of equa-
tions 3.33 and 3.35 shows that for a wide range of angles £ (except for values close to 90°%;
see below), the linearized coefficient A, coincides with Al¢_g.. This conclusion is also valid
for Si- and Sp-waves (compare equations B.30 and B.31 with equations B.24 and B.25).
The approximate P-wave phase attenuation coefficient for TI media can be found as a

simple function of the attenuation-anisotropy parameters (Zhu & Tsvankin, 2006):

1 . .
Ale_ge p = %070 (1 + 6, sin”0 cos® 6 + €, sin* ) . (3.36)
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(a) (b)
180°

{90° {900

(c) (d)
180° 180°

190° ~Joo°
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Figure 3.9: Exact P-wave group attenuation coefficient Ay for £ = 60° in isotropic (a) and
TI (b,c,d) media. In (b,c) only velocity varies with angle, while attenuation is isotropic;
in (d) attenuation varies with angle, while velocity is isotropic. The model parameters are
given in Table 3.1.
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Zhu & Tsvankin (2006) also provide similar linearized expressions for SV- and SH-waves
reproduced in Appendix B. As is the case for arbitrary ansisotropy, the coefficient A| £=0°
in equation 3.36 coincides with A, in equation 3.34.

Figures 3.10a and 3.10b demonstrate that the maximum difference between the exact
coefficients Ay and Al;_qo does not exceed 10% even for strong attenuation (Q33 = 10) and
uncommonly large anisotropy parameters (¢ = ¢, = 0.6 and § = §,, = 0.4). The coeflicients
Ag and Al,_q. are also close for SV- and SH-waves, which confirms the analytic results of
Appendix C (Figures 3.10c and 3.10d).

3.5.4 Group Attenuation for Large Inhomogeneity Angles

The above conclusions about the influence of the inhomogeneity angle on phase veloc-
ity and attenuation no longer hold for large inhomogeneity angles approaching forbidden
directions. As shown above for isotropic media, when (Q cos§) < 1, the group attenuation
coefficient varies with the angle £ and differs from A| £=00"

To study the influence of large £ analytically, I follow the same perturbation-based
approach (Appendix B) but with different background values of the wave vector, group
velocity, and group angle (equations 3.23-3.26). For simplicity, here I analyze only the
special case of elliptical anisotropy in TI media (i.e., SH-waves); more general solutions
for shear waves in arbitrarily anisotropic media are given in Appendix D. Numerical tests
demonstrate that our conclusions remain valid for all wave modes and any anisotropic
symmetry.

According to equation D.6, the coefficient A4 for large inhomogeneity angles becomes
a function of £ and cannot serve as a measure of intrinsic attenuation. As was the case for
isotropy, A in anisotropic media is always finite (and does not go to zero), even though
the real and imaginary parts of the wave vector (equation D.3) become infinite.

When the medium is isotropic, a physical solution of the wave equation exists only
for —90° < £ < 90° [equation A.5; also see Cerveny & Psen¢ik (2005a)]. The bounds
for the inhomogeneity angle in arbitrarily anisotropic media depend on both velocity and
attenuation anisotropy and can be derived from equation D.3 using the inequalities kR >0
and k! > 0. For the special case of elliptical anisotropy (equation D.4), the inhomogeneity

angle should satisfy

vsin26 ¢ 7Y cos 20

cos§ + sin§ > ————,
T 1050

(3.37)
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Figure 3.10: Exact P-wave (a) and SH-wave (c¢) coefficients Ale_go (gray curve) and A
(black curve) and the percentage difference |4, — A| ¢=oe | (b,d) in TT media as a function
of the phase angle 6 for £ = 60°. The model parameters are listed in Table 3.1.
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which yields the following bounds for &:

—-B-a<é<pf-a, (3.38)
where
o = tan~! <::Y—S2l—n2—0> (3.39)
and
20
= cos™! <1&> . 3.40
B = cos 100 (3.40)

Equivalent expressions for the bounds on ¢ for SH-wave propagation in the symmetry plane
of a monoclinic medium are given by Cerveny & Psenéik (2005a) in terms of the inhomo-
geneity parameter D.

For wave propagation along the symmetry axis or perpendicular to it (§ = 0° or 90°),
the angle o = 0° and the bounds on ¢ are symmetric with respect to £ = 0° (equations 3.38
and 4.13; Figure 3.11). It is also clear from equation 4.13 tha.t-,B =~ 90° because the ratio
Yo /Qso0 typically is small. Hence, for § = 0° and 90° anisotropy does not signficantly change
the bounds on &, which remain close to £90°. As was the case for isotropic media, when the
angle ¢ approaches the “forbidden directions,” the group attenuation coefficient A4 rapidly
increases with |£| and reaches values approximately twice as large as .A[€=0° (Figure 3.11).

For oblique propagation angles, a does not vanish, and the bounds on { become asym-
metric with respect to £ = 0°. This asymmetry is controlled by the velocity-anisotropy
coefficient «y and reaches its maximum for the phase angle § = 45° (equation 4.12). The
model in Figure 3.12a, taken from Carcione & Cavallini (1995), has an uncommonly large
parameter v equal to unity, and for § = 45° the inhomogeneity angle can vary between only
—64° and 116°. Therefore, strong velocity anisotropy may result in forbidden directions for
angles |¢| much smaller than 90°.

Still, the range of possible inhomogeneity angles (23) remains close to 180° because
the parameter 3 ~ 90° (Figure 3.12a). For more common, smaller values of the parameter
7, the bounds on ¢ become more symmetric with respect to £ = 0° and do not differ
significantly from +90° (Figure 3.12b). The behavior of the coefficient A, for large angles

¢ in Figure 3.12 is similar to that in isotropic media.
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(a) (b)
180° 180°
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Figure 3.11: Exact SH-wave coefficients Al_q. (gray curve) and A, (black curve) in TI
media for propagation in the directions § = 0° (a) and 6 = 90° (b) plotted as a function
of the inhomogeneity angle £ (numbers on the perimeter). The black dashed line marks

the bounds of £ computed from equations 3.38-4.13. The model parameters are listed in
Table 3.1.

() (b)

Figure 3.12: Exact SH-wave coefficients A|;_q. (gray curve) and A, (blue) as a function of ¢
(numbers on the perimeter) for 6 = 45° and v = 1.0,7, = —0.5 (a) and v = 0.3,7, = —0.5
(b). The black dashed line marks the bounds of ¢ computed from equations 3.38-4.13. The
model parameters are listed in Table 3.1.
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3.6 Discussion

Our analytic and numerical results for plane-wave propagation prove that the normal-
ized group attenuation coefficient A, measured from seismic data is practically indepen-
dent of the inhomogeneity angle (except for angles ¢ approaching the forbidden directions)
and is close to the normalized phase attenuation coefficient Al;_g.. Behura & Tsvankin
(2008) corroborate this conclusion by applying attenuation layer stripping and the spectral-
ratio method to full-waveform P-wave synthetic data generated by a point source in lay-
ered anisotropic models. The interval coefficients A, and Al,gzoo estimated by Behura &
Tsvankin (2008) from reflection amplitudes practically coincide even at large offsets where
the inhomogeneity angle reaches 60°.

The coefficient A|¢_g. in TT and orthorhombic media can be inverted for the Thomsen-
style attenuation-anisotropy parameters using the formalism developed by Zhu & Tsvankin
(2006, 2007). Note that estimation of the attenuation-anisotropy parameters from Alc_go
requires computation of the corresponding phase angle, which depends on the anisotropic
velocity field. Even in strongly anisotropic models, however, the influence of attenuation
on velocity is of the second order (see above), which implies that velocity analysis can be
performed using existing methods. The reconstructed velocity field can then be employed
to recompute the known group direction into the phase direction needed in the inversion for
the attenuation-anisotropy parameters. Furthermore, given the large uncertainty of ampli-
tude measurements, the difference between the phase and group directions for moderately

anisotropic models should not significantly distort the results of attenuation analysis.

3.7 Conclusions

I applied the first-order perturbation theory to study the influence of the inhomo-
geneity angle on velocity and attenuation in arbitrarily anisotropic media. By adopting an
attenuative, isotropic background medium, I was able to specify a background wave vector
with an arbitrary inhomogeneity angle £&. The perturbation analysis yields concise analytic
expressions for the complex wave vector k, the phase attenuation coefficient A| £=0° and
the group attenuation coefficient Ag in terms of the perturbations of the complex stiffness
coefficients. To gain physical insight into the influence of the inhomogeneity angle, I also
derived closed-form expressions for TI media by linearizing the general solutions in the

dimensionless velocity- and attenuation-anisotropy parameters.
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For a wide range of small and moderate angles £, the phase-velocity function is prac-
tically independent of attenuation, while the group attenuation coefficient 4,4, which is
measured from seismic data, is insensitive to the inhomogeneity angle. Furthermore, A
practically coincides with the phase attenuation coefficient .A| £=0°> which is inversely pro-
portional to the angle-dependent quality factor in anisotropic media. This conclusion re-
mains valid even for uncommonly high attenuation (Q = 10) and strong velocity and atten-
uation anisotropy. The negligible difference between A, and A| g=0o Suggests that seismic
data can be inverted for the attenuation-anisotropy parameters without knowledge of the
inhomogeneity angle.

However, for larger angles ¢ approaching the forbidden directions (i.e., the directions
of the attenuation vector k! for which solutions of the wave equation do not exist) the inho-
mogeneity angle has a strong influence on both attenuation and phase velocity. While for
isotropic media the inhomogeneity angle can vary between -90° and 90°, velocity anisotropy
makes the bounds on the inhomogeneity angle asymmetric with respect to £ = 0°. In the
vicinity of the forbidden directions the coefficient A, rapidly increases with |£| and reaches
values approximately twice as large as A|c_go. The range of such “anomalous” inhomo-
geneity angles where Ay no longer represents a direct measure of the intrinsic attenuation

becomes wider for highly attenuative models.
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Chapter 4

Reflection coefficients in attenuative anisotropic

media

4.1 Summary

Such reservoir rocks as heavy oils are characterized by significant attenuation and, in
some cases, attenuation anisotropy. Most existing attenuation studies are focused on plane-
wave attenuation coefficients, which determine the amplitude decay along the raypath of
seismic waves. Here, I discuss the influence of attenuation on PP- and PS-wave reflection
coefficients for anisotropic media with the main emphasis on VTI (transversely isotropic
with a vertical symmetry axis) models.

Concise analytic solutions obtained by linearizing the exact plane-wave reflection coef-
ficients are verified by numerical modeling. To make a substantial contribution to reflection
coefficients, attenuation has to be strong, with the quality factor @ not exceeding 10. For
such highly attenuative media, it is also necessary to take attenuation anisotropy into ac-
count if the magnitude of the Thomsen-style attenuation-anisotropy parameters is relatively
large. In general, the linearized reflection coefficients in attenuative media include velocity-
anisotropy parameters but have almost “isotropic” dependence on attenuation.

Our formalism also helps to evaluate the influence of the inhomogeneity angle (the
angle between the real and imaginary parts of the slowness vector) on the reflection coef-
ficients. A nonzero inhomogeneity angle of the incident wave introduces additional terms
into the PP- and PS-wave reflection coefficients, which makes conventional AVO (amplitude-
variation-with-offset) analysis inadequate for strongly attenuative media. For instance, an
incident P-wave with a nonzero inhomogeneity angle generates a mode-converted PS-wave
at normal incidence, even if both halfspaces have a horizontal symmetry plane. The lin-
earized solutions developed here can be used in AVO inversion for highly attenuative (e.g.,

gas-sand and heavy-oil) reservoirs.
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4.2 Introduction

Conventional AVO analysis is carried out under the assumption that the subsurface is
purely elastic. However, direct measurements using vertical seismic profiling (VSP) (Hauge,
1981; Hedlin et al., 2001), well logs (Schmitt, 1999), and rock samples (Behura et al., 2007;
Winkler & Nur, 1982) show that attenuation (and, sometimes, velocity dispersion) can
be significant, especially within hydrocarbon-saturated zones. Luh (1988) and Samec et al.
(1990) attribute some failures of AVO analysis to the influence of attenuation. Furthermore,
physical-modeling experiments (Hosten et al., 1987; Maultzsch et al., 2003; Zhu et al.,
2007b), rock-physics studies (Behura et al., 2006; Prasad & Nur, 2003; Tao & King, 1990),
and analysis of field data (Liu et al., 1993; Lynn et al., 1999; Vasconcelos & Jenner, 2005)
indicate that attenuation can be directionally dependent, with attenuation anisotropy being
stronger than velocity anisotropy (Arts & Rasolofosaon, 1992; Hosten et al., 1987; Zhu et al.,
2007b).

While most attenuation studies are focused on attenuation coefficients, which de-
termine the amplitude decay along the raypath of seismic waves, it is also important
to evaluate the influence of attenuation and attenuation anisotropy on plane-wave reflec-
tion/transmission coefficients. Reflection coefficients for a boundary between isotropic at-
tenuative halfspaces have been studied both analytically (Krebes, 1983; Ursin & Stovas,
2002) and using numerical modeling (Nechtschein & Hron, 1997; Hearn & Krebes, 1990).
Sidler & Carcione (2007) and Stovas & Ursin (2003) discuss the influence of anisotropy on re-
flection/transmission coefficients in attenuative VTI media. Existing results for anisotropic
models, however, do not provide physical insight into the dependence of plane-wave reflec-
tivity on the medium properties, in particular on the anisotropy parameters that govern
both velocity and attenuation.

Here, I develop linearized approximations for PP- and PS-wave reflection coefficients
at a boundary between arbitrarily anisotropic, attenuative halfspaces. Then the general
solutions are simplified for vertical transverse isotropy and expressed through the Thomsen-
style parameters introduced by Zhu & Tsvankin (2006). It should be emphasized that
our formalism takes into account the inhomogeneity angle (the angle between the real
and the imaginary parts of the slowness vector) of the incident wave. Finally, I compute
exact reflection coefficients for a realistic range of the velocity- and attenuation-anisotropy

parameters and assess the accuracy of the linearized expressions.
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4.3 Perturbation Analysis of Reflection/Transmission Coefficients

For a welded contact between two arbitrary anisotropic, attenuative halfspaces, the
boundary conditions of the continuity of traction and displacement result in the following

system of six linear equations (e.g., Vavry¢uk & Psencik, 1998):

CU=8, (4.1)

where the accent “”~” denotes a complex quantity, C corresponds to the displacement-stress
matrix for the reflected and transmitted plane waves P, S; and Ss, B is the displacement-
stress vector of the incident wave, and U is the vector of the reflection (R) and transmission
(T) coeflicients. The matrix C and the vectors U and B are composed of complex elements
because the stiffness tensor in attenuative media is complex. Exact reflection/transmission
coefficients (U) can be computed by solving the system of equations 4.1 numerically.

Following Vavry¢uk & Psencik (1998) and Jilek (2002a,b), I apply the first-order per-
turbation theory to a background homogeneous medium, which is taken to be isotropic and
attenuative. Linearization of the boundary conditions (equation 4.1) yields the perturbation
6U in the form

80U = (C%~1 (6B — 6C1VY). (4.2)

Here, C? is the displacement-stress matrix for the reflected /transmitted waves in the back-
ground medium and §C represents the perturbation of CO. Similarly, 6B is the perturbation
of the displacement-stress vector of the incident wave. U, the vector of the amplitudes of

the reflected and transmitted waves in the homogeneous background, is given by
0°=1[0,0,0,0,0,1]"; (4.3)

the only nonzero term in equation 4.3 represents the P-wave transmission coefficient. A simi-
lar perturbation approach is adopted by Ursin & Stovas (2002) to derive reflection/transmission
coefficients for isotropic attenuative media. (Their formalism introduces a weak contrast
in parameters across the interface while keeping both halfspaces isotropic.) The change in
the slownesses and polarizations of the scattered waves, required for obtaining 5C and 6B
in equation 4.2, can be computed by perturbing the isotropic background medium (Jech &

Psencik, 1989). I extend their method, developed for purely elastic media, to attenuative
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models by taking the background attenuation into account.

The density-normalized complex stiffness tensor a;;x; of the perturbed medium can be

written as
Qijkl = &?_jkl + 0as5k1, (4.4)
where the tensor &?jkl = a’?jkl + ia?]’.il corresponds to the background medium, and the

perturbation da;ji; is responsible for both the velocity and attenuation anisotropy of the
perturbed medium.

The quality-factor (Q) matrix (in the two-index Voigt notation) is defined as (e.g.,
Carcione, 2007)

Qij = - (4.5)
For isotropic media, the Q-matrix takes the form
Qrpo Qi3 Qi3 0 0 0
Qs Qpro Qi3 0 O 0
Qiz Q3 Qpo 0 0 O
Q= : (4.6)
0 0 0 Qso O 0
0 0 0 0 Qso O

0 0 0 0 0 Qso

where Q) pp and Qgo control the P- and the S-wave attenuation, respectively, and Q;3 is the
following function of Qp¢ and Qgp (Zhu & Tsvankin, 2006):

az3z — 2ass

Q13 = Qpo (4.7)

asz — 2055%3?'

If the medium is attenuative, the wave vector becomes complex, and its real (k) and
imaginary (k') parts may have different orientations. The angle ¢ between k® and k! is usu-
ally called the inhomogeneity angle (Figure 5.2b). For £ = 0 (so-called “homogeneous wave

propagation, ” Figure 5.2a), the phase direction coincides with the direction of maximum
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(a) §=0° (b) £ #0°

%

k'

Figure 4.1: Incident plane wave with (a) zero inhomogeneity angle and (b) nonzero inho-
mogeneity angle ¢&. kf and k! are the real and imaginary components (respectively) of the
wave vector, and 0 is the incidence phase angle.

attenuation.
Plane-wave propagation in anisotropic media is described by the Christoffel equation,
which can be solved for the phase velocity, polarization vector, and phase attenuation

coefficient. The Christoffel equation for a zero inhomogeneity angle can be written as
(Gijir k2 mimy — w8jk) & = 0, (4.8)

where n is the unit slowness vector, w is the frequency, g is the polarization vector, and

k=kR -kl (4.9)

k® = |k®| controls the phase velocity and k! = |k?| is responsible for the phase attenuation.
The ratio of k! and k defines the normalized attenuation coefficient A, which yields the

rate of amplitude decay per wavelength (Zhu & Tsvankin, 2006):

A==, (4.10)

Ax —. (4.11)
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The perturbations of the wave (3k) and polarization (§g) vectors, obtained by substi-
tuting the perturbed tensor a;;x; (equation 4.4) into the Christoffel equation 4.8, are used in
equation 4.2 to derive the perturbation §U of the reflection/transmission coefficients (Jech
& Psencik, 1989; Vavrycuk & Psencik, 1998; Jilek, 2002b). Note that the perturbation anal-
ysis based on equation 4.8 is strictly valid only for plane waves with a zero inhomogeneity
angle £. Nevertheless, as shown below, our results can be extended in a straightforward way
to waves with moderate angles &, even if the model has strong attenuation with Q < 10.

The complex P- and S-wave velocities (Vpo and Vgo) in the background attenuative

isotropic medium have the form

Vpo = ~ Vpo (1 +iApo), (4.12)

w

kpo

~ w i

Vso = =— =~ Vg0 (1 + iAso), (4.13)
kso

where Vpg and Vgg are the phase velocities of P- and S-waves, respectively, and Apg and

Ago are the corresponding normalized attenuation coefficients. In equations 4.12 and 4.13,

terms of the second and higher order in 1/Q are neglected.

4.4 Incident P-wave with a Zero Inhomogeneity Angle

If the angle £ is set to zero, all terms in equation 4.2 coincide with those given in
Vavrycuk & Psencik (1998) and Jilek (2002a,b) for non-attenuative media, but they become
complex quantities. Hence, the linearized reflection coefficients for P-waves (Vavrycuk &
Psencik, 1998) and PS-waves (Jilek, 2002a) can be adapted in a straightforward way for

attenuative media.

4.4.1 PP-wave Reflection Coefficient

Arbitrarily Anisotropic Media The linearized PP-wave reflection coefficient in

arbitrarily anisotropic media obtained from equation 4.2 is given by

RH _Ap_ Al~133 <A&13 _ A6,33 _ A&55 _ 2‘7520 é_p) sin20

PP 200 T avz)  \ 22, avE, VR, V2, po
a1l . o 2
——— sin“ # tan“ 0, 4.14
e (4.14)

PO
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where the superscript “H” (“homogeneous”) indicates that the incident wave has a zero
inhomogeneity angle, A is the contrast in a certain parameter across the interface, pp is the
density of the background medium, a;; are the density-normalized complex stiffness coeffi-
cients in Voigt notation (i.e., the stiffness matrix), and 6 the incidence angle (Figure 5.2a).

Equation 4.14 is derived under the assumption that the contrasts in the medium prop-
erties across the interface are small (|Adsjpi| < [|adll, |Ap| < p% @y, and p° are the back-
ground stiffness tensor and density). The linearized reflection coefficient in equation 4.14
reduces to that in purely elastic media, if all complex quantities are made real. Although
equation 4.14 is strictly valid only if all waves have a zero inhomogeneity angle, it remains
sufficiently accurate for a wide range of £ values, unless the medium is strongly attenuative

(see below).

VTI Media Next, I analyze equation 4.14 for the special case of attenuative VTI
media using Thomsen-style notation. In addition to the well-known Thomsen velocity
parameters Vpo, Vs, €, §, and v, I employ the attenuation parameters Apo, Aso, €, 9g,
and v, introduced by Zhu & Tsvankin (2006). Apo ~ 1/(2Qpo) and Aso = 1/(2Qs0) are
the normalized symmetry-direction (vertical) attenuation coefficients of P- and S-waves,
respectively, €, and J, control the angular variation of the P- and SV-wave attenuation
coefficients, and -y, governs SH-wave attenuation anisotropy.

To simplify the reflection coefficient, it is convenient to assume that terms proportional
to 1/Q%, and 1/Q%, are sufficiently small to be dropped. Then equation 4.14 takes the

form:
REp = RHEL(0) + GHpsin? 0 + Chp sin® ftan® 4, (4.15)

where R, (0) is the normal-incidence PP-wave reflection coefficient (AVO intercept), Ghp
is the AVO gradient, and Cgp is the curvature term. Equation 4.15 is a Shuey-type approx-
imation for the PP reflection coefficient in attenuative media, in which all three terms are

complex:

Ap  AVpo  Adpg (i-i— 1), (4.16)

H —
Rep(0) = 2p0 * 2Vpo 2 Qro
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GH _ —2 Ap AVpg 4 AVygg " _& n (A.Apo _ 4AA30>

PP 702 po ' 2Vee g2 Vso 2 2 g?
i (2Ap 4 AV s, )
+ = SLVs0 b A.A + L Adgo+ =2
Qpro (g po g% Vso PO 50 4
i Ap AVS())
+2 , 4.17
" Qs0g? ( Po Vso (4.17)
and
AV Ae 1 AA i
u _ AVpo  Ae po i )
Cpp 2V = 2 + A-APO “+ _on (—2 + 4 Aéo) H (418)
9 = Vpo/Vso.

Eliminating the influence of attenuation on REp(0), GEp, and Cl in equations 4.16-
4.18 reduces them to the expressions for the PP-wave intercept, gradient, and curvature
(respectively) for purely elastic VTI media (Riiger, 2002). As illustrated by Figure 4.2, the
linearized approximation stays close to the exact reflection coefficient for a wide range of 6
values, even when @ pg is as low as 10. The decrease in the accuracy of equation 4.15 with
incidence angle (Figure 4.2) is typical for weak-contrast, weak-anisotropy approximations
for reflection coefficients.

Since the attenuation coeflicient A ~ 1/2Q), it is clear from equations 4.16-4.18 that the
influence of attenuation on the reflection coefficient is comparable to that of the velocity and
density contrasts only if the quality factor is small (e.g., Qpo, @so < 10). This conclusion
is confirmed by the test in Figure 4.3 with the model parameters simulating an interface
between purely elastic shale and attenuative oil sand. When the attenuation in the sand is
moderate (Qp2 = 2Qs2 = 50), the coefficient Rgp is almost identical to that in the elastic
case. Even a small Q)-value of 10 does not noticeably change the reflection coefficient.
However, when the attenuation is extremely strong (Qp2 = 2Qs2 = 2.5 or 5), the reflection
coeflicient substantially deviates from that for the purely elastic model.

The “isotropic” parameter AApg in equation 4.16 is responsible for the influence of
attenuation on the normal-incidence reflection coefficient. Also, AApy makes a more signif-
icant contribution to Ggp and Cgp than do €, and 5Q because the attenuation-anisotropy
parameters in equations 4.17 and 4.18 are scaled by 1/Qpg. In general, the contribution of

the terms multiplied with 1/Qpp and 1/Qgo in equations 4.16-4.18 is of the second order,
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0° 10° 20° 30°

Figure 4.2: Magnitude of the PP-wave reflection coefficient at the ocean floor for different
values of the quality factor @ of the ocean-floor sediments (Q = Qpo,2 = 2Q@s0,2). The solid
lines are the exact coefficients; the dashed lines mark the linearized approximation 4.15.
The model parameters are listed in Table 4.1.

10
0° 10° 20° 30°
0

Figure 4.3: Magnitude of the exact PP-wave reflection coefficient for an interface between
VTI shale with negligible attenuation and attenuative isotropic oil sand (Table 4.1). The
solid lines correspond to different Q-values in the sand (Q = Qpo,2 = 2Qs0,2); the dashed
line corresponds to zero attenuation (Qpo2 = Qso0,2 = 0).
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Parameters ” Fig. 2 Fig. 3 Fig. 4 Figs. 5& 6 Fig. 8 Fig. 9

;I 1.0 2.0 2.0 2.0 2.3 2.3
Vpoi || 1.5 2.0 2.0 2.0 3.3 3.3
Vso,1 0 1.1 1.1 1.1 1.9 1.9

8 0 0.2 0.2 0.2 0

€1 0 0.1 0.1 0.1
QPo,1 00 500 500 - 5 N
Qson || o0 250 250 - 2.5 -

b0 0 0.8 0.8 0.8 0 0
€on 0 04  -04 -0.4

pa | 1.1 2.0 2.0 2.0 2.0 2.0
Veoo || 1.7 1.8 1.8 1.8 2.5 2.5
Vsoz || 0.1 1.0 1.0 1.0 1.3 1.3

8o 0 0 0 0 0 0.1

€ 0 0 0 0 0 0.2
Qpo,2 - - - - 10 -
Qs0,2 - - - - 5 -

80 0 - 0 0.8
€0 0 0 0 0 0 0.4

Table 4.1: Medium parameters used in the numerical tests. For all models, the symmetry-
direction velocities (Vpg and Vgp) are in km/s and density (p) is in gm/cm®. A dash means
that the parameter value is shown on the plot.
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unless the medium has extremely high attenuation.

As is the case for purely elastic VTI media, the linearized P-wave AVO gradient (equa-
tion 4.17) is sensitive to the velocity-anisotropy parameter §. Although the attenuation-
anisotropy parameter 6, governs the P-wave attenuation near the symmetry axis, the scaling
factor 1/Q) po makes its influence on GHp, less significant than that of 4. Similarly, the cur-
vature term CHp (equation 4.18) is more sensitive to the parameter € than to €, (note that
€, does not contribute to the linearized AVO gradient). The parameters  and <, control
only the anisotropy of SH-waves, which are decoupled from P- and SV-waves analyzed here.
On the whole, the reflection coefficient for typical subsurface formations with @ > 10 is
more sensitive to velocity anisotropy than to attenuation anisotropy.

The influence of the parameter §, on the AVO gradient is illustrated in Figure 4.4
where the model is similar to that in Figure 4.3, but the oil sand (reflecting medium) exhibits
attenuation anisotropy. When attenuation is weak (@ = 50), the AVO gradient barely varies
with &,. However, as the magnitude of attenuation increases (Q < 10), the influence of
attenuation anisotropy becomes pronounced; strong attenuation can even change the sign
of the AVO gradient. Our results confirm the common view that moderate attenuation does
not substantially distort reflection coefficients. For highly attenuative media with Q < 10,
however, it is necessary to take not just attenuation, but also attenuation anisotropy into

account.
4.4.2 PS-wave Reflection Coeflicient for VTI Media
Using the approach outlined above, I obtained the following closed-form linearized
expression for the PS-wave reflection (conversion) coefficient in attenuative VTT media:
RIS = Bfgsin@ + Khgsin® 9, (4.19)
where the coefficients BIP{S and Kgs (the gradient and curvature terms, respectively, in

conventional PS-wave AVO analysis) are given by

24+9gAp 2AVg g .2
Bl =_-"2=F_ = + AS—iZAA
Ps 29 po g Veo 2(1+g) g 0

i

@fz , (4.20)

1
+ o fi-
PO




70 Chapter 4. Reflection coefficients in attenuative anisotropic media

Figure 4.4: PP-wave AVO gradient as a function of the attenuation-anisotropy parameter
0o, in the reflecting halfspace. The gradient is estimated numerically as the initial slope
of the exact PP-wave reflection coefficient computed as a function of sin?6. The model is
similar to that in Figure 4.3, but the attenuation in the reflecting oil sand is anisotropic
(Table 4.1). The curves correspond to different Q-values in the sand (Q = Qpo,2 = 2Qs0,2)-

3+29)Ap 2+gAVsy  1-4g g 2+g
KH =(————+ AS + Ae+1i AA
PS4 po | g% Vso @ 2(1+g) l+g g2 S0
St ety (4.21)
2Qpo”° " 2Qs0” ’

Here, fi1, f2, f3, and f; are linear combinations of the parameter contrasts across the
interface listed in Appendix E. The contributions of fj 234 to the reflection coefficient are
of the second order because these functions are scaled by 1/Qpg or 1/Qsp.

The real part of the reflection coefficient in equation 4.19 coincides with the correspond-
ing linearized expression for PS-waves in a purely elastic VTT medium. Most conclusions
drawn above for PP-waves remain valid for the PS-wave reflection coefficient as well. In
particular, the influence of the attenuation contrasts on R}}}s becomes comparable to that of
the velocity and density contrasts only when Qpo, Qso < 10. The attenuation-related part
of Rgs is controlled primarily by the contrast in the vertical S-wave attenuation coefficient

Aso because Ae, and A, contribute only to the functions fi3 multiplied with 1/Qpo
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(equations E.1 and E.3).

4.5 Incident P-wave with a Nonzero Inhomogeneity Angle

If the upper halfspace is attenuative, the incident P-wave can have a nonzero inhomo-
geneity angle ¢ (Figure 5.2b). This situation may be typical, for example, for the bottom of
an attenuative reservoir. Since the angle £ is determined by the medium properties along
the whole raypath, the imaginary part k! of the wave vector may even deviate from the
vertical incidence plane. However, for simplicity I assume that this deviation can be ignored.

For a nonzero angle £, the real and imaginary parts of the wave vector k are not

parallel, and the Christoffel equation becomes
(Gijke i by — w Sjk) 5 = 0. (4.22)

Although the perturbation analysis of Jech & Psenéik (1989) is not strictly valid for
equation 4.22, it remains sufficiently accurate for moderate values of &, if the quality factor
is not uncommonly small (Zhu & Tsvankin, 2006). Therefore, the formulation of Vavrycuk
& Psencik (1998) and Jilek (2002a,b) can be applied in a straightforward way to linearize
the reflection coefficient for an incident wave with a nonzero {. The numerical results below
confirm that this approach yields an accurate approximation for most plausible attenuative

models.

4.5.1 PP-wave Reflection Coeflicient

The linearized PP-wave reflection coefficient R{;If, for arbitrarily anisotropic media and

the incident wave with £ # 0° represents a linear function fy of the following parameters:
REL = fo(Ap/P°, Vipo, Viso, Adny, Ads, Adis, Adiss, Adizs, Adiss, 0, €) - (4.23)

Due to the complicated form of fy, it is not shown in the paper explicitly. The reflection
coefficient in equation 4.23 depends on three additional stiffness contrasts (Aa;;, Aa;s, and
Aags) compared to that for £ = 0° (equation 4.14).

For VTI media, the perturbation result 4.23 reduces to

REL = RIL(0) + BiLsin 0 + GHLsin 9, (4.24)
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where
=2
sin
REN0) = RE(0) + 2t s, (4:25)
QpPo
B = TSt (4.26)
Qpo
. . 2
1811
Gt = Gl + 8 (4.27)

8Qpo

Here, RE,(0) and GEp, are the solutions for £ = 0° (superscript “H”) given by equations 4.16
and 4.17, respectively, and fs, f, and f7 are linear functions listed in Appendix E.

As illustrated by Figure 4.5, equation 4.24 remains accurate for moderate inhomogene-
ity angles reaching 30°. Even for @ = 2.5 and £ = 30° (Figure 4.5i), approximation 4.24
deviates from the exact reflection coefficient by less than 10%.

In contrast to the conventional AVO equation for pure (non-converted) waves, which
represents an even function of # (e.g., equation 4.15), equation 4.24 includes the sin§-
term. Therefore, the contribution of the inhomogeneity angle makes the basic equation of
conventional PP-wave AVO analysis inadequate, which may have significant implications
for AVO inversion and interpretation.

However, since the angle £ is associated with the terms f5, fg, and f7, which are scaled
by 1/@Q po, its influence becomes pronounced only in strongly attenuative media. Indeed, the
variation of the inhomogeneity angle from 0° to 50° does not significantly change the exact
reflection coefficient for @ > 10 (Figure 4.6a,b). Only when @ = 5 and the inhomogeneity
angle exceeds 30°, its contribution to the reflection coefficient (in particular, to the term
BHL) becomes substantial (Figure 4.6c).

The asymmetry of the reflection coefficient with respect to 8 = 0° (Figures 4.6b
and 4.6c), which increases with the inhomogeneity angle, is explained in Figure 4.7. In
our modeling, the inhomogeneity angle of the incident wave is fixed (i.e., it is independent
of 9), which implies that the imaginary part k! of the wave vector makes different angles
with the vertical for the incidence angles # and —6. As a result, the reflection coefficient
for positive incidence angles differs from that for negative angles.

In reality, it is unlikely for the incident wave to have a constant inhomogeneity angle
for a wide range of . A more plausible scenario is depicted in Figure 4.8a. The model

includes an attenuative reservoir beneath a purely elastic cap rock. Because the cap rock is
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Figure 4.5: Magnitude of the exact (solid lines) and approximate (dashed lines, equa-
tion 4.24) PP-wave reflection coefficient at a VTI/isotropic interface for different inhomo-
geneity angles. The quality factors are Q@ = Qpo,1 = 2Qs0,1 = Qpo,2/2 = Qso,2; the other
model parameters are listed in Table 4.1.
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Figure 4.6: Magnitude of the exact PP-wave reflection coefficient at a VTI/isotropic in-
terface for different inhomogeneity angles. The quality factors are Q@ = Qpo,1 = 2Qs0,1 =
2Q po,2 = 4Qs0,2; the other model parameters are listed in Table 4.1.
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Figure 4.7: PP-wave reflection coefficient may become asymmetric with respect to 8 = 0°
for a nonzero inhomogeneity angle £. As before, k’* and k! are the real and imaginary
parts, respectively, of the wave vector of the incident P-wave.

non-attenuative, the wave incident upon the reservoir has a real wave vector. According to
Snell’s law, the horizontal slowness (and the horizontal component of the wave vector) has
to be preserved during reflection and transmission. Therefore, the imaginary part k! of the
wave vector in the reservoir cannot have a horizontal component, and the inhomogeneity
angle of the transmitted wave is equal to the transmission angle 67 (Figure 4.8a). For the
reflection from the bottom of the reservoir, 87 becomes the incidence angle. Therefore, the
vector k! for both positive and negative incidence angles remains vertical (i.e., the wave
vector as a whole is symmetric with respect to the reflector normal), and the PP-wave
reflection coefficient is an even function of 6 (Figure 4.8b, gray line). However, for more
complicated overburden models, the inhomogeneity angle can be different from the incidence
angle, which makes the reflection coefficient asymmetric with respect to  (Figure 4.8b, black

line; £ = 50° was held constant).

4.5.2 PS-wave Reflection Coefficient

As is the case for PP-waves, the influence of the inhomogeneity angle of the incident P-
wave changes the conventional PS-wave AVO equation. The linearized PS-wave coefficient
for ¢ # 0 becomes

REL = RIL(0) + Bl sing + Gl sin0, (4.28)
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(a)

Elastic
cap rock

Attenuative
reservoir 1N IcRref

(b)

0.20

010
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Figure 4.8: (a) Wave vectors of the incident and reflected waves in an attenuative layer
(reservoir) overlaid by a purely elastic medium (cap rock). The inhomogeneity angle £ of
the wave transmitted through the top of the reservoir is equal to the transmission angle 0r.
kfref and k!'"¢f are the real and imaginary components, respectively, of the wave vector
for the reflection from the bottom of the reservoir. (b) Magnitude of the exact PP-wave
reflection coefficient from the reservoir bottom for £ = 61 (gray line) and for a constant
inhomogeneity angle £ = 50° (black line). The model parameters are listed in Table 4.1.
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where
RIL(0) = 228 7, (4.29)
Qpo
Bpd = Bps, (4.30)
Gl = —S2E p, (4.31)
QPo

Equations 4.28-4.31 do not include cubic and higher-order terms in sin § and sin€. Bl is the
PS-wave AVO gradient for an incident wave with a zero inhomogeneity angle (equation 4.20),
and the terms fg and fg are linear combinations of the parameter contrasts across the
interface (Appendix A).

Equation 4.28 is different from equation 4.19 for £ = 0°, in which only the coefficients
of odd powers in sin@ are nonzero (i.e., the reflection coefficient is an odd function of 8).
The deviation of equation 4.28 from the conventional PS-wave AVO equation is illustrated
in Figure 4.9, where the absolute value of the PS-wave reflection coefficient in strongly
attenuative media (Q = 2.5) for £ = 50° is visibly asymmetric with respect to # = 0°. While
the coefficient R{p% for @@ = 50 almost coincides with that for a purely elastic medium, the
influence of attenuation and the inhomogeneity angle becomes pronounced for low values
of Q.

Because the linearized AVO gradient BEL (equation 4.30) does not depend on £, the
inhomogeneity angle has a greater influence on R}%(O) and G{,}é than on B}L%. For a zero
inhomogeneity angle of the incident wave, R};}é (0) and G’{,}é vanish and equation 4.28 reduces
to the term proportional to siné in equation 4.19.

For £ # 0 and small Q-values, the magnitude of the normal-incidence PS-wave re-
flection coefficient RIL(0) can be substantial (Figure 4.9). A nonzero inhomogeneity angle
of the vertically traveling P-wave makes its wave vector asymmetric with respect to the
reflector normal, which generates the PS conversion. Note that generation of reflected or
transmitted PS-waves at normal incidence can be also caused by such factors as lateral het-
erogeneity, the deviation of the reflector from the symmetry planes of the model (Behura &
Tsvankin, 2006), and the influence of additional terms of the ray-series expansion on point-
source radiation (Tsvankin, 1995). Here, however, the model is composed of homogeneous
VTI halfspaces with a common horizontal symmetry plane, and I consider only plane-wave

reflection coefficients.
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|RE]

—20° 0° 20°

Figure 4.9: Magnitude of the exact PS-wave reflection coefficient at an isotropic/VTI in-
terface for a nonzero inhomogeneity angle (£ = 50°) of the incident P-wave and variable
quality factor @ = Qpo,1 = 2Qs0,1 = Qpo,2/2 = Qso,2. The other model parameters are
listed in Table 4.1.

4.6 Discussion

The plane-wave reflection coefficients analyzed here are derived for plane interfaces
and, therefore, break down in the presence of significant reflector curvature (van der Baan
& Smit, 2006; Ayzenberg et al., 2008). Reflections from curved interfaces can be analyzed by
employing so-called “effective reflection coefficients (ERC)” extended to anisotropic media
by Ayzenberg et al. (2008). Plane-wave reflection coefficients are often incorporated into
the geometrical-seismics approximation to describe wavefields generated by point sources.
Geometrical seismics, however, loses accuracy for near- and post-critical incidence angles
and for source/receiver locations near the reflector. If the interface is plane, the exact
scattered wavefields can be modeleled using Weyl-type integrals, which include plane-wave
reflection /transmission coefficients (Tsvankin, 1995).

In contrast to most previous publications, our formalism takes into account the in-
homogeneity angle £ of the incident wave. As demonstrated above, reflection coefficients
of both PP- and PS-waves become sensitive to the angle ¢ only when it is relatively large

and the medium is highly attenuative. This result facilitates AVO analysis in attenuative
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media because the inhomogeneity angle is extremely difficult to evaluate from seismic data.
Indeed, the group attenuation coefficient (i.e., the attenuation along the raypath) measured
from seismic amplitudes is independent of ¢ for a wide range of small and moderate inho-
mogeneity angles (Behura & Tsvankin, 2009). Potentially, the inhomogeneity angle can be
estimated from the reflection coefficient provided a priori information about the parameter
contrasts is available and £ is sufficiently large. However, the increase in the group atten-
uation coeflicient for large values of £ (Behura & Tsvankin, 2009) reduces the reflection
amplitude and makes AVO analysis less reliable.

The stiffness tensor in attenuative media is not only complex, but also varies with
frequency, which makes velocity, normalized attenuation coefficient and other quantities
frequency-dependent. Our analytic expressions are derived for a fixed frequency of the
harmonic plane wave and can be applied to arbitrarily dispersive models by treating the

stiffnesses or Thomsen-style parameters as functions of frequency.

4.7 Conclusions

To analyze PP- and PS-wave reflection coefficients in attenuative anisotropic media,
I developed linearized approximations using perturbation theory. For an incident P-wave
with a zero inhomogeneity angle, the form of the linearized PP- and PS-wave reflection
coefficients in arbitrarily anisotropic media is the same as in purely elastic models, but all
terms become complex. The general solutions were simplified for VT symmetry to obtain
simple closed-form expressions in Thomsen-style notation.

Both analytic and numerical results show that only in the presence of strong attenu-
ation (Q < 10) does the contribution of the imaginary part of the stiffness tensor (which
is responsible for attenuation) become comparable to that of the real part. In particular,
the influence of the attenuation-anisotropy parameters €, and §,, on the PP-wave reflection
coefficient typically is much weaker than that of the velocity-anisotropy parameters ¢ and
0. As expected from the parameter definitions, the PP-wave AVO gradient in attenuative
media includes &, while the large-angle reflection coefficient also depends on ¢,. However,
the largest attenuation-related terms in the reflection coefficients for both PP- and PS-
waves are proportional to the contrasts in the normalized symmetry-direction attenuation
coefficients App and .Agp because the contrasts in the attenuation-anisotropy parameters
are scaled by the inverse quality factor 1/Qpo. Therefore, the contribution of ¢, and 4,

becomes significant only for models with uncommonly high attenuation (@ < 10), such as
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heavy-oil-saturated rocks.

If the incident wave has a nonzero inhomogeneity angle &, the form of the linearized
reflection coeflicients is different from the conventional AVO expression. In particular, the
PP-wave reflection coefficient is no longer an even function of the incidence angle 6 and
includes a term proportional to sinf. Likewise, when ¢ # 0, the normal-incidence PS-
wave reflection coefficient (i.e., AVO intercept) does not vanish and may even attain values
comparable to the AVO intercept for the PP reflection. However, the inhomogeneity angle
makes a substantial contribution to the AVO response only for strongly attenuative media
with @ < 10.

Despite the presence of a number of attenuation-related terms, our linearized AVO
equations have an easily interpretable form that provides useful physical insight into the
reflectivity of anisotropic attenuative media. Their application can help to avoid errors
in AVO analysis and, potentially, invert prestack reflection amplitudes for the attenuation

parameters.



Jyoti Behura / Estimation and Analysis of Attenuation Anisotropy 81

Chapter 5

Estimation of interval anisotropic attenuation from

reflection data

5.1 Summary

Knowledge of interval attenuation can be highly beneficial in reservoir characteriza-
tion and lithology discrimination. Here, I combine the spectral-ratio method with velocity-
independent layer stripping to develop a technique for estimation of the interval attenuation
coefficient from reflection seismic data. The layer-stripping procedure is based on identifying
the reflections from the top and bottom of the target layer that share the same ray segments
in the overburden. The algorithm is designed for heterogeneous, arbitrarily anisotropic tar-
get layers, but the overburden is assumed to be laterally homogeneous with a horizontal
symmetry plane. Although no velocity information about the overburden is needed, inter-
pretation of the computed anisotropic attenuation coefficient involves the phase angle in
the target layer. Tests on synthetic P-wave data from layered transversely isotropic and
orthorhombic media confirm the high accuracy of both 2D and 3D versions of the algo-
rithm. I also demonstrate that the interval attenuation estimates are independent of the

inhomogeneity angle of the incident and reflected waves.

5.2 Introduction

The attenuation coefficient of subsurface rocks is closely linked to their lithology and
physical properties. In particular, attenuation may serve as an indicator of permeability,
mobility of fluids, and fluid saturation (e.g., Winkler & Nur, 1982; Batzle et al., 2006; Behura
et al., 2007). A number of laboratory measurements (Hosten et al., 1987; Tao & King, 1990;
Prasad & Nur, 2003; Behura et al., 2006) and field studies (Ganley & Kanasewich, 1980; Liu
et al., 2007; Maultzsch et al., 2007) indicate that attenuation can be strongly anisotropic
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(directionally-dependent) because of the preferential alignment of fractures, interbedding of
thin attenuative layers, and/or nonhydrostatic stress. Furthermore, the symmetry of atten-
uation anisotropy may be different from that of velocity anisotropy (Maultzsch et al., 2007;
Zhu et al., 2007a). Therefore, measurements of attenuation anisotropy may provide valu-
able additional information about the properties of anisotropic (e.g., fractured) reservoirs
(Liu et al., 2007).

Most existing attenuation estimates from reflection data (e.g., Vasconcelos & Jenner,
2005) are obtained for the whole section above the reflecting interface. Dasgupta & Clark
(1998) introduce a technique for estimating interval attenuation from reflection data based
on the spectral-ratio method. Their algorithm, however, is restricted to zero-offset reflec-
tions and requires knowledge of the source signature. Moreover, they suggest to apply the
NMO stretch prior to attenuation analysis, which may distort the estimated attenuation
values.

Here, I present a method for computing the interval attenuation coefficient using an
extension of the layer-stripping technique originally introduced by Dewangan & Tsvankin
(2006) for reflection traveltimes. Our algorithm reconstructs the offset-dependent inter-
val attenuation in a heterogeneous, arbitrarily anisotropic target layer without knowledge
of the velocity and attenuation in the overburden. Synthetic examples for layered VTI
(transversely isotropic with a vertical symmetry axis) and orthorhombic media confirm the
accuracy of our method and its high potential in the inversion for the interval attenuation-

anisotropy parameters.

5.3 Methodology

I consider a pure-mode (PP or SS) reflection in a medium that includes an anisotropic,
heterogeneous target layer under a laterally homogeneous overburden with a horizontal
symmetry plane (Figure 5.1). For simplicity, the layer-stripping technique is introduced
here in 2D, although I have also implemented it for 3D wide-azimuth data (see below).
To make wave propagation two-dimensional, the vertical incidence plane has to coincide
with a plane of symmetry in all layers including the target. As discussed by Dewangan
& Tsvankin (2006), this restriction becomes unnecessary in the 3D extension of the layer-
stripping method.

The exact interval traveltime-offset function in the target layer can be constructed

by combining the target event with reflections from the bottom of the overburden (Fig-
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Figure 5.1: 2D ray diagram of the layer-stripping algorithm. Points B and E are located at
the bottom of the overburden. The target reflection ABCEG and the reflection ABD from
the bottom of the overburden share the same downgoing leg AB. The upgoing leg EG of
the target event coincides with a leg of another overburden reflection, GEF'.

ure 5.1). Dewangan & Tsvankin (2006) show that by matching the time slopes (slownesses)
on common-receiver gathers, it is possible to identify the overburden reflections ABD and
GEF that share the downgoing (AB) and upgoing (EG) legs with the target event ABCEG.
Under the assumptions made above, any reflection point at the bottom of the overburden
(e.g., points B and FE in Figure 5.1) coincides with the common midpoint for the correspond-
ing source-receiver pair, and the traveltimes along the downgoing and upgoing segments of
the reflected ray are equal to each other. Therefore, the interval traveltime in the target
layer along the path BCE can be found from
sce = tascee ~ tAﬂ;t__GEE’ (5.1)
where t, 5 p0) tapp, a0d t,p . are the traveltimes along the raypaths ABCEG, ABD, and
GEF, respectively. Implementation of the kinematic velocity-independent layer-stripping
algorithm is described in more detail by Dewangan & Tsvankin (2006).

Here, I extend this layer-stripping technique to attenuation analysis by applying the
spectral-ratio method to a specific combination of the target and overburden events. Since

the overburden is laterally homogeneous and has a horizontal symmetry plane, [,, = [,
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and l;, = I, wherel,, is the distance along the raypath XY . The ray-theory amplitudes

of the target and overburden reflections in the frequency domain can be written as

|UABCEG (w)l = S(“") gABCEG e—k;'o Gaptlsc) e—ké'T(lBC+lCE) ’ (5-2)

U spp @) = (W) G ppp € ¥sr0tantlan) = S(w)G,,, e oo lan; (5.3)
and

Ugpr@)| = Sw) Ggpp e Foroleatler) = Sw)G,,, e *s0 50, (5.4)

where k;,r and k;) o (“I” stands for the imaginary part of the wavenumber) are the average
group attenuation coeflicients in the target layer and overburden, respectively, S(w) is
the spectrum of the source wavelet, and the parameters G, .., G;ppy a0d G, 5o include
the source/receiver radiation patterns as well as the plane-wave reflection/transmission
coeflicients and geometrical spreading along the corresponding raypaths. The frequency-
domain amplitudes of the target and overburden reflections are obtained by windowing the
corresponding arrivals and applying the Fourier transform.

To eliminate the contribution of the overburden along with the source wavelet, equa-

tions 5.2, 5.3, and 5.4 can be combined in the following way:

U pzese @) _ opl
in ([ S 1) =) =2l + o) (5.5)

where the term G = G2

GispG is assumed to be independent of frequency. Equa-
ABCEG ABDYGEF

tion 5.5 can be used to estimate the interval attenuation coefficient in the target layer
without knowledge of the source wavelet and overburden parameters.

For an arbitrarily heterogeneous target layer, the attenuation coefficient varies along
the ray, and k:;T in equation 5.5 represents the average value along the raypath BCE.
However, if the target layer is horizontal, homogeneous, and has a horizontal symmetry
plane (or is purely isotropic), then I, +1., = Vyt,.,, where Vj is the group velocity along
the rays BC and CE. Then equation 5.5 takes the form

In ( IUABCEG (w)|2
IUABD (W) |UGEF (

w)|> =In(G) — 2k} Vytpep (5.6)

The coefficient k:; generally differs from the phase attenuation coefficient &/, which can
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be obtained analytically from the Christoffel equation (e.g., Zhu & Tsvankin, 2006). If the
inhomogeneity angle (the angle between the real and imaginary parts of the wave vector; see
Figure 5.2) is zero, the group and phase attenuation coefficients are related by k; = k! cosp,
where 1) is the angle between the group- and phase-velocity vectors (Zhu, 2006; Behura &
Tsvankin, 2009). Using this relationship and expressing Vj; through the phase velocity V'
(Vg = V/ cos ), the attenuation-related term in equation 5.6 can be represented as follows
(hereafter, the subscript “T” is omitted):
I I k!

kg Votges =k Vigep =w LR tpor = WA lgop s (5.7)
where A = k! /k® (k® = w/V) is the normalized phase attenuation coefficient responsible
for the rate of amplitude decay per wavelength (Zhu & Tsvankin, 2006). For isotropic media
A =1/2Q, where @ is the quality factor widely used as a measure of intrinsic attenuation.

Substitution of equation 5.7 into equation 5.6 yields

U w)|?
Do 5 o) =10 =20 e =
To relate the group and phase attenuation coefficients, I assumed a zero inhomogeneity
angle £ in the target layer (Figure 5.2a). However, as shown by Behura & Tsvankin (2009),
equation 5.8 yields the coefficient Al._go (i.e., the intrinsic attenuation) for a wide range
of inhomogeneity angles. This result, explained in more detail in the discussion section, is
confirmed by the synthetic examples below.

The slope of the logarithmic spectral ratio in equation 5.8 expressed as a function of w

yields the product 2. A¢ Since the interval traveltime ¢,., is obtained from the layer-

BCE*
stripping algorithm (equation 5.1), application of the spectral-ratio method to the amplitude
combination in equation 5.8 can be used to compute the phase attenuation coefficient A.
In the current analysis, I assume that A is independent of frequency (i.e., @ is constant),
and the slope of the logarithmic spectral ratio does not change within the frequency band
of the signal. However, if A is a function of frequency, then the instantaneous slope would
produce a frequency-dependent quality factor. Unless the medium exhibits anomalously
strong velocity dispersion, as that in heavy oils (Behura et al., 2007), the spectral-ratio
method should give reliable attenuation estimates.

Therefore, our method makes it possible to obtain the normalized phase attenuation

coefficient A = A[._q. — the quantity dependent on attenuation-anisotropy parameters. The
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(a) £=0° (b) &€ #0°

Figure 5.2: Inhomogeneity angle £ of a plane wave in attenuative media. k® and k! are the
real and imaginary components (respectively) of the wave vector, and @ is the phase angle
with the vertical.

coefficient A, however, is expressed analytically as a function of the corresponding phase
direction (Zhu & Tsvankin, 2006). Hence, inversion of .A for the relevant attenuation-
anisotropy parameters requires knowledge of the phase angle for each source-receiver pair.
This issue is addressed in more detail in the discussion section.

Computation of the interval values of A for different source-receiver pairs along the
acquisition line can help to evaluate both the in-plane anisotropy and the lateral variation
of attenuation. I also extended the methodology described here to wide-azimuth data
(see the synthetic example below) using the 3D version of the layer-stripping algorithm
presented by Dewangan & Tsvankin (2006) and Wang & Tsvankin (2009). In particular,
Wang & Tsvankin (2009) employed the nonhyperbolic moveout equation to develop an
efficient implementation of kinematic layer-stripping for wide-azimuth P-wave data from

horizontally layered orthorhombic media.

5.4 Synthetic Examples

First, I test the method on synthetic P-wave reflection data generated for a horizontally

stratified VIT model (Figure 5.3). Attenuation in VTI media can be conveniently charac-



Jyoti Behura / Estimation and Analysis of Attenuation Anisotropy 87

Figure 5.3: Model used to test the attenuation layer-stripping algorithm. The first layer is
water (purely elastic and isotropic) with the P-wave velocity Vp = 1500 m/s and thickness
d = 1000 m; the other three layers are VTI. For the second layer, the vertical P- and
S-wave velocities are Vpy = 1600 m/s and Vsp = 200 m/s, d = 300 m, and Thomsen
velocity-anisotropy parameters are ¢ = 0.3 and § = —0.2; the attenuation parameters are
Qpro = 10, Qso = 10, ¢, = —0.5, and §, = —1.0. The third layer has Vpo = 2000 m/s,
Vso = 1000 m/s, d = 1000 m, € = 0.1, = 0.6, Qpo = 200, Qso = 200, ¢, = —0.3,
and 6, = 1.0. For the bottom halfspace, Vpg = 2200 m/s, Vgo = 1100 m/s, € = 0, § =
—0.2, Qpo = 100, Qg0 = 100, ¢, = 0.5, and 4, = 0.5.

terized using the Thomsen-style parameters (Apo =~ 1/2Qpo, Aso ~ 1/2Qs0, €5, 05> Vq)
introduced by Zhu & Tsvankin (2006). Apg and Agp are the normalized symmetry-direction
attenuation coefficients of P- and S-waves, respectively, €, and §, control the angular vari-
ation of the P- and SV-wave attenuation coefficients, and -y, governs SH-wave attenuation
anisotropy.

Figure 5.4a displays a shot gather computed for the model in Figure 5.3 by an anisotropic
reflectivity code (Schmidt & Tango, 1986). Note that the reflections from the bottom of
the attenuative layers have a much lower frequency content than the water-bottom event
(Figure 5.4b). Although the second layer has uncommonly strong attenuation (Apg =
1/2Qpo = 0.05), the estimated interval attenuation coefficient is close to the exact values
for a wide range of propagation directions (Figure 5.5a). Attenuation coefficients for phase
angles exceeding 40° are missing because of the limited acquisition aperture. The estimated

interval attenuation in the third layer (Figure 5.5b) is accurate only up to 30°. For larger
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Offset (km) Offset (km)
1 2 4
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Figure 5.4: (a) Shot gather computed for the model in Figure 5.3. (b) A blow-up of the
gather showing reflections with different frequency content.
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(a)

OO

Figure 5.5: Normalized interval phase attenuation coefficient A (stars) estimated as a func-
tion of the phase angle (in degrees) for the second (a) and third (b) layers of the model
from Figure 5.3. The solid gray lines mark the exact values of A| £=00-




90 Chapter 5. Estimation of interval anisotropic attenuation from reflection data

1 2 1 2
oM 52 | 552)’522)’
p Vpo,Vso €D, 63 Qpo,Qso €),el) 68 ¢
0 1 2 01 2 0 03 0 0.510°10%2104-040 04 -1 0 1 0° 45°
0.5 b b H < - 4 N ] R |

1 - g B SO et B g
— i | i1
:E, - 1 j i1 1
g .l L - _ |
B, 5 1 - 1 r h 1 |
[ 1 1
Q = I .'
L |
5 i | ] L Iyt
2 i ll
1 |I
| |l
25} 1t H . | 8 1 F II- - 8
' Ll L

Figure 5.6: Horizontally layered model used to test the 3D attenuation layer-stripping
algorithm. The velocity and density are in km/s and g/cm?. ¢ is the azimuth of the [zr1, 3]
symmetry plane in the orthorhombic layers. The values of different parameters are shown
by the corresponding colors.
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Figure 5.7: Estimated interval phase attenuation coefficient A as a function of the phase
direction for the second (a) and third (c) layers of the model from Figure 5.6. The exact
Al¢—go in the second (b) and third (d) layers is shown for comparison. All attenuation
coeflicients are multiplied by 100. The radial axis represents the polar phase angle, and the
azimuth is marked on the perimeter.
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angles the target reflection interferes with the direct arrival and other events, which im-
pairs the performance of the spectral-ratio method. Interference-related distortions can be
mitigated by operating in the 7—p domain or suppressing the direct arrival and ground roll
before layer stripping.

The 3D version of the layer-stripping method was applied to wide-azimuth P-wave data
computed for the model in Figure 5.6. The second and fourth layers exhibit orthorhombic
attenuation anisotropy with different azimuths of the vertical symmetry planes, while the
third layer is VTI. Directionally-dependent attenuation coefficients in orthorhombic media
can be described using a notation similar to that developed by Tsvankin (1997) for the
velocity function. This parameter set includes the P- and S-wave vertical attenuation coef-
ficients (Apg and Agp) and seven anisotropy parameters - 6812), 68'2’3), and 'yg’z) (Zhu &
Tsvankin, 2007).

The estimated interval attenuation coefficient A in the second (orthorhombic) layer
(Figure 5.7a) practically coincides with the exact A (Figure 5.7b) for the whole range of the
polar and azimuthal phase angles. The interval attenuation in the third layer (VTI) is also
reconstructed with high accuracy (Figures 5.7c,d). As was the case for the 2D example,
the minor difference between the exact and computed attenuation coefficients is caused

primarily by interference of the overburden and target reflections with other events.

5.5 Discussion

Although the relationship between the group and phase attenuation coefficients used
in our derivation was originally proved for a zero inhomogeneity angle £ (Figure 5.2a), our
method remains accurate for a wide range of £. Indeed, as shown by Behura & Tsvankin
(2009), application of equations 5.6 and 5.7 for nonzero inhomogeneity angles yields the
normalized phase attenuation coefficient A corresponding to £ = 0° (\Al_q.). This con-
clusion, which remains valid even for large angles £ up to 80° and media with the quality
factor Q as low as 10, is confirmed by the tests in Figures 5.5 and 5.7. Our algorithm
produces accurate values of A| =00 €ven for long offsets where the inhomogeneity angle &
of the incident and reflected waves reaches 40°.

The coefficient A| £=0° quantifies the intrinsic angle-dependent attenuation of a partic-

ular wave mode. For P-waves in TI media, the phase attenuation coeflicient linearized in
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the anisotropy parameters is given by (Zhu & Tsvankin, 2006)
Ale_ge = Apo (1+ g sin @ cos® 6 + €0 sin* 9), (5.9)

where 8 is the phase angle with the symmetry axis. Equation 5.9 has the same form as the
well-known Thomsen (1986) weak-anisotropy approximation for the P-wave phase-velocity
function. Zhu & Tsvankin (2007) present a similar linearized expression for the coefficient
.A|€=0° of P-waves in attenuative orthorhombic media.

As demonstrated by Zhu et al. (2007b) on physical-modeling data, equation 5.9 can be
used to invert attenuation measurements for the anisotropy parameters €, and §,. In the
presence of strong velocity anisotropy, the inversion should be based on the exact solution
for Al;_q. obtained from the Christoffel equation.

Note that estimation of the angle # in an anisotropic target layer generally requires
knowledge of the velocity field. Because the influence of attenuation on velocity for a fixed
frequency typically is of the second order (Zhu & Tsvankin, 2006), velocity analysis can
be performed prior to attenuation processing using the interval traveltime. Anisotropic
velocity estimation, however, is often ill-posed without a priori information (e.g., the layer
thickness). For example, P-wave reflection moveout in a horizontal VTI layer does not
constrain reflector depth and, therefore, the group or phase angle for a given source-receiver
pair. Still, given typical uncertainties in amplitude measurements, errors in the phase
angle are not expected to produce substantial distortions in the attenuation coefficients for

moderately anisotropic media.

5.6 Conclusions

I extended velocity-independent layer stripping to amplitude analysis and employed
the spectral-ratio method to estimate interval offset- and azimuth-dependent attenuation
from reflection data. While there are no restrictions on heterogeneity and anisotropy in the
target horizon, the overburden has to be composed of laterally homogeneous layers with
a horizontal symmetry plane (e.g., layers may be orthorhombic). It should be emphasized
that our attenuation layer stripping is data-driven and does not require knowledge of the
overburden velocity and attenuation parameters. In general, the algorithm estimates the av-
erage interval group attenuation coefficient along the raypath of a reflected wave. However,

for homogeneous target layers it is possible to reconstruct the normalized phase attenuation
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coefficient A for each source-receiver pair. The coefficient A represents a measure of intrinsic
attenuation and can be inverted for the interval attenuation-anisotropy parameters.

Numerical examples for horizontally layered VTI and orthorhombic media confirm
that the method yields accurate interval phase attenuation coefficients even for models with
uncommonly strong attenuation and substantial velocity and attenuation anisotropy. The
algorithm is designed to process isolated overburden and target reflections, so the results
may be distorted by interference with other events. As any other layer-stripping technique,
the interval attenuation coefficient may become inaccurate for relatively thin layers.

The attenuation coefficient in a reservoir can help to predict the presence and dis-
tribution of hydrocarbons (e.g., to distinguish between steam and heat fronts in heavy-oil
reservoirs). The 3D version of the method can be used to estimate the azimuthally varying
interval attenuation coefficient, which represents a sensitive attribute for fracture charac-

terization and reconstruction of the stress field.
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Chapter 6

A case study of interval attenuation analysis

6.1 Summary

Attenuation can be extremely valuable in characterizing gas sands. In fractured reser-
voirs, attenuation anisotropy can provide additional information about the distribution of
fractures. Here, I apply the layer-stripping approach to wide-azimuth P-wave data acquired
over a gas reservoir in the Coronation Field, Alberta. The main processing steps involve es-
timation of traveltimes from the top and bottom of the target layer followed by computation
of the interval attenuation using the spectral-ratio technique.

The lower half of the survey area shows strong azimuthal velocity anisotropy with the
vertical symmetry planes aligned consistently along the NS- and EW-directions. The verti-
cal attenuation coefficient shows a reasonable correspondence with existing gas-producing
well locations. The interval attenuation anisotropy is anomalously strong and much higher
than velocity anisotropy. More comprehensive reservoir characterization requires additional
data.

6.2 Introduction

Laboratory studies clearly indicate that attenuation is closely related to fluid saturation
and mobility (Spencer, 1979; Gautam et al., 2003). Well-log analysis by Klimentos (1995)
shows that P-wave attenuation is higher in gas-bearing rocks than in those saturated with
oil or water. He observed extremely low P-wave quality factors (Q), ranging between 5 and
10, in a gas reservoir. Similar low Q-values in gas sands are observed by Mavko & Dvorkin
(2005) in well-logs from the Gulf Coast.

Attenuation anisotropy might carry a wealth of information about fluid- or gas-filled
fractures. In fact, preferential flow of fluids in rocks is believed to be the primary cause of
attenuation anisotropy (e.g., Mavko & Nur, 1979; Akbar et al., 1993; Parra, 1997; MacBeth,
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1999; Brajanovski et al., 2005). Using different fluid-flow models, Pointer et al. (2000) show
that aligned fluid-filled cracks can result in anisotropic attenuation. The poroelastic model
of Chapman (2003) can explain strong anisotropic attenuation in the seismic bandwidth.
Vasco et al. (1996) observe attenuation anomalies coinciding with highly fractured zones
in a borehole near Raymond, California. Parra et al. (2002) make similar observation of
low Q-values from cross-well studies in fractured zones of a shale-sand sequence. They
also record strong attenuation anisotropy with the vertical attenuation coefficient five times
larger than the horizontal coefficient. Vertical seismic profiling (VSP) studies by Varela
et al. (2006) and Maultzsch et al. (2007) show attenuation anisotropy which they attribute
to fluid-filled fractures.

In Chapter 5 I introduced a layer-stripping technique to extract interval attenuation
from reflection data that implements a variation of the spectral-ratio method (Johnston
& Toksoz, 1981). While no information about velocity and attenuation anywhere in the
medium is required, the overburden has to be laterally homogeneous with a horizontal
symmetry plane. Using synthetic examples for VT1 and orthorhombic models, I demon-
strated that this algorithm can successfully estimate the interval anisotropic attenuation
in 2D and 3D. Here, I apply this technique to wide-azimuth data acquired at Coronation
Field, Alberta and investigate the distribution of gas accumulation and fracturing using
the obtained velocity and attenuation fields. The preliminary results of the velocity and

attenuation analysis are presented here.

6.3 Geologic Setting

The Coronation field is a gas reservoir located in East Central Alberta (Figure 6.1).
The reservoir is part of the Western Canadian Sedimentary Basin with the hydrocarbon
production mostly from the Mannville Group. The Mannville Group is of Cretaceous age
and corresponds to a major episode of subsidence and sedimentation following a long period
of uplift, exposure, and erosion of older strata (Putnam, 1982; Hayes et al., 2008). It
overlies a Paleozoic unconformity and is unconformably overlain by the marine shales of Joli
Fou Formation (Colorado Group). The Joli Fou shales form the cap rock and the Lower
Cretaceous shales and coals are believed to be the source of the hydrocarbons (Masters,
1984). The Mannville Group is usually divided into the Upper and Lower Mannville units
based on sandstone lithology (Figure 6.2); the Lower unit is more rich in quartz and chert

while the Upper unit has a more feldspathic and volcanic composition. Besides sandstones,
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Field (red dot) in Alberta, Canada.
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Figure 6.1
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Figure 6.2: Stratigraphic column of the regional geology at Coronation Field (Jackson,
1984). The reservoir sandstones of Mannville are bounded by the Joli Fou shales above and
the Paleozoic unconformity below.
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the lithology of the Mannville Group comprises non-marine shales, coal seams, and minor
marine shale (Putnam, 1982). Light oil and gas are usually trapped in numerous fluvial
and valley-fill reservoir sandstones, while heavy oil is found in more regionally extensive
shoreline sand complexes in the northern and central parts of Alberta and Saskatchewan.

The interval of primary interest at Coronation Field is the Rex member of the Man-
nville Group (Monk et al., 2006). The sand channels immediately underlie the coals of the
Rex member and could vary in thickness from 4 m to 10 m. The width of these channel
systems ranges between 200 m and 300 m. Good producers yield approximately 500 MCF
of gas per day with the total production of nearly 0.7 BCF per well. Because of the high
cost of developing this field, drilling success needs to be high.

6.4 Data Acquisition and Processing

To understand the lithology of the channel sands and help optimize well placement,
Apache Corporation acquired a 3D multicomponent seismic survey. In this study, I use only
the vertical-component data to estimate the P-wave velocity and attenuation fields. The
entire survey was shot using single-hole dynamite on a “shoot and roll” template of 12 x 94
receivers (Table 6.1) with the source at the center of the patch. This shooting template is
roughly square yielding an excellent azimuthal and offset distribution. The shot lines are
oblique to the receiver lines, as shown in Figure 6.3. The subsurface structure is fairly close
to layer-cake (no structural dip, Figure 6.4), which facilitates the layer-stripping technique
described in Chapter 5.

Prior to attenuation analysis, refraction statics corrections were applied to the data,
which were shifted to a smooth floating datum. Some traces were subsequently edited
to remove spikes and random noise. Denoising was followed by three passes of residual
statics corrections. The ground roll was suppressed using f-k filtering followed by a surface-
consistent median-gain process applied to account for the variation in the dynamite source
strength.

The most critical step in estimating interval parameters is to pick traveltimes of re-
flections from the top and bottom of the target layer which can be done using either an

auto-picker or semblance analysis. Here, I use the 3D nonhyperbolic semblance algorithm
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Figure 6.3: Seismic acquisition grid for the 3-C survey at Coronation Field. The black dots
represent the shot locations while the receiver locations are marked with red dots.
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Survey type 3D 3-C

Shot interval 42.43 m; single hole dynamite
Shot line interval 240 m

Receiver interval 30 m

Receiver line interval 210 m

Receiver patch 12 x 94 receivers

Total survey shots 11174

Total survey receivers 11255

Nominal fold (30 m x 30 m bins) 140

Maximum offset 2060 m

Table 6.1: Acquisition parameters of the survey (Monk et al., 2006).

2.5/

Figure 6.4: Seismic section spanning the whole length of the survey. The reflectors bounding
the interval of interest are marked.
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of Vasconcelos & Tsvankin (2006) for orthorhombic media based on the following equation:

x? 2n(a) z*

@) =t 32 ) V(@B Vaml@ + (T 2@

(6.1)

where z is the offset, #y is the two-way zero-offset reflection traveltime, a is the source-to-
receiver azimuth, V() is the azimuthally-varying normal-moveout velocity, and 7(c) is
the “anellipticity” coefficient responsible for the deviation from hyperbolic moveout at long

offsets. The velocity Vime(a) is obtained from the equation of the NMO ellipse:

_9 _sin®(a—¢) | cos?(a— )

Vamol@) = [<1>]2 [v(z)]"’ ’

nmo nmo

(6.2)

¢ is the azimuth of the [z;, 3] symmetry plane, and Vn(,}r,)o and Vn(?n)o are the NMO velocities

in the vertical symmetry planes [zo,z3] and [z1,z3], respectively. The parameter 7 is
approximately given by (Pech & Tsvankin, 2004; Xu & Tsvankin, 2006):

n(@) = 1M sin(a — ¢) + 1? cos’(a — ¢) — 1@ sin’(a — @) cos’(a — ¢),  (6:3)

where n), 7(® | and 7(® are the anellipticity coefficients defined in the [z3, x3], [z1, 23], and
[z1, 2] symmetry planes, respectively.
For stratified media, however, equation 6.3 is no more valid. Xu et al. (2005) modify

equation 6.3 by introducing an additional angle ¢,:
n(a) = pV sin?(a — Pn) + n® cos?(a — ©n) — 7® sin?(a — ©n) cos?(a — ©n). (6.4)

For aligned vertical symmetry planes in all layers, ¢, = . The semblance algorithm
estimates the parameters of the NMO ellipse (V,S,LE) and @) and the anellipticity parameters
7(123) and On-

The semblance algorithm of Vasconcelos & Tsvankin (2006) is designed to operate
strictly on CMP gathers. Implementation of the layer-stripping algorithm described in
Chapter 5, however, requires traveltime surfaces on source and receivers gathers. By as-
suming not just the overburden, but also the target layer to be laterally homogeneous, one
can apply the above semblance analysis to source and receiver gathers. Since we need the

horizontal slowness at both the source and receiver locations, the best-fit effective moveout
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parameters are computed for the source gathers gathers as well as receiver gathers. The
wide-azimuth reflection traveltimes for the top and bottom of the target layer are used for
estimating the interval traveltime, as described by Dewangan & Tsvankin (2006) in 2D and
Wang & Tsvankin (2009) for 3D wide-azimuth data.

The interval traveltime and windowed events along the moveout curves serve as the
input data to estimate the interval attenuation estimation using the technique described
in Chapter 5. The presence of notches in the source amplitude spectra complicates the
Q-estimation using the spectral-ratio method. To overcome this problem, I compute the
instantaneous @) at every frequency followed by median filtering to eliminate spikes. The
resulting average over the () values is taken as a measure of attenuation along the raypath.
The additional advantage of computing the instantaneous @ is that it provides a measure
of the variance of the normalized attenuation coefficient A.

To improve the azimuthal and offset coverage, I gather all traces with common mid-
points lying within the Fresnel zone of a given CMP location. The radius of the Fresnel
zone corresponding to the reservoir depth at the Coronation Field is about 70 m.

Assuming velocity anisotropy to have orthorhombic symmetry, I invert for the moveout
parameters by fitting equation 6.1 to the interval traveltimes. The attenuation-anisotropy
parameters are estimated by fitting the P-wave phase attenuation function in orthorhombic
media (Zhu & Tsvankin, 2007) to the interval attenuation coefficients Ap:

Ap(8,¢) = Apo [1 + 6, (¢) sin 6 cos? 0 + €, (¢) sin* 4] , (6.5)

where Apy is the attenuation coefficient along the vertical direction, § and ¢ are the polar

and azimuthal phase angles, respectively, and
8o (9) =63 sin>(¢ — 0g) + 6 cos®(§ — ), : (6.6)

e (9) =€) sin*(¢ — 0, ) + €2 cos’(¢ — ;)
+ (2eg) + eg)) sin?(¢p — ®o) cos?(¢p — ©q)- (6.7)

The angle ¢, is the azimuth of the [z, 3] symmetry plane and the parameters 5((21), 5222),
eg), eg), and eg’) govern the angular variation of the P-wave attenuation coeflicient (Zhu
& Tsvankin, 2007).

Although equation 6.5 describes the angular variation of the phase attenuation co-
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efficient A, it is valid for the group attenuation coefficient A, estimated from seismic
data because Ag = Al,_qo (see Chapter 3). As mentioned in Chapter 5, inversion for
the attenuation-anisotropy parameters requires knowledge of the anisotropic velocity field
which can be used to compute the phase angle from the measured group angle. I use a
well-log derived interval vertical P-wave velocity Vpg of 3200 m/s (Monk et al., 2006) to
estimate the velocity anisotropy parameters 6(1,23) and €2 from the moveout parameters.
Using these velocity anisotropy parameters, I estimate the phase angles from the computed
group angles. Note that it is possible to perform velocity analysis prior to attenuation pro-
cessing using the interval traveltime because the influence of attenuation on velocity for a
fixed frequency typically is of the second order (Zhu & Tsvankin, 2006; Behura & Tsvankin,
2009).

6.4.1 Error Analysis

To compute the variance of the estimated moveout parameters, I assume a 4 ms stan-
dard deviation (two times the sampling interval) of the semblance-derived traveltimes. Ap-
plying the method of error propagation to equation 6.1, I calculate the standard deviation
of the parameters V,f,l,;?, n(123) . and Py

Since the variance is available for every estimated value of A, I use the method of
weighted least squares (e.g., Bates & Watts, 2007) to estimate the attenuation-anisotropy
parameters and their variances. By using the inverse of the variances as weights, variables
with a smaller variance are given relatively larger weights. The method of error propaga-
tion is then used to calculate the variance-covariance matrix of the attenuation-anisotropy

parameters.

6.5 Results

Here, I discuss the results of azimuthal velocity and attenuation analysis for an interval
containing the reservoir at about 0.8 s (Figure 6.4). The interval NMO ellipse of the target
layer is represented by its eccentricity (Figure 6.5a) and the azimuth of /¢ (Figure 6.5b)
for each common midpoint. The nmo eccentricity is defined as |Vn(,},,)0 — Vn(,?,)ol / Vn{ﬁgt where
Vifast = maz{|Vilih, V&) and (9%t is the azimuth of V2. The lower half of the survey
area shows strong azimuthal velocity anisotropy within the target layer, while in the upper

half it is significantly weaker. The axes of the NMO ellipses have azimuths that show an
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even distribution about 90°. If the field has only one dominant fracture set, it most likely
has a strike parallel to the NS-direction. This would also imply that in the lower half of the
survey area, the target layer is more intensely fractured than it is in the upper half. In the
presence of more than one fracture set, however, interpretation becomes more complicated.

The vertical attenuation coefficient Ag is shown in Figure 6.6a and its standard de-
viation is in Figure 6.6b. Note that the standard deviation of Ay in most of the survey
area is below 0.02 (Figure 6.6b) which is much smaller than the average value of Ag (0.07).
Zones of higher attenuation (hot colors) in the lower half of the survey area show a rea-
sonable correspondence with locations of existing gas-producing wells (Figure 6.7; Monk
et al., 2006). Therefore, Ag could possibly be used as a reliable measure of gas distribution.
This would also mean that the area in the vicinity of £ = 7 km, y = 10 km possibly has
large gas accumulations. The coefficient .4¢ should be sensitive to gas present in pores and
is not influenced by vertical fractures; it should, therefore, be used as an indicator of gas
accumulation in porous sands. Note that Ag corresponds to the effective attenuation of the
whole target layer and therefore is influenced also by lithologies other than gas sands.

The magnitude of the attenuation-anisotropy parameters 68) and 6g) (Figure 6.8) can
be extremely high with maximum absolute values approaching 30. Thus, the attenuation
anisotropy is significantly higher than velocity anisotropy characterized by average ¢ values
about 0.4. Similar observations of stronger anisotropy of attenuation than that of velocity
have also been made by Hosten et al. (1987), Arts & Rasolofosaon (1992), and Zhu et al.
(2007b). Zones of strong attenuation anisotropy in the NW portion of the survey area might
also correspond to gas accumulations.

To obtain a measure of azimuthal attenuation anisotropy, I compute the difference
|<58) — (5&2)| (Figure 6.9a). Although the azimuthal variation of attenuation anisotropy is
strong, it shows no large-scale spatially coherent patterns within the survey area. The

azimuth of the symmetry plane <pg"” corresponding to 5’5“” is shown in Figure 6.9b. The

maz
Q

the azimuthal variation is below the noise level.

lack of a consistent pattern in ¢ suggests that attenuation is azimuthally isotropic or

6.6 Conclusions

P-wave interval attenuation analysis provides valuable information for reservoir char-
acterization at the Coronation Field. The interval anisotropic velocity and attenuation

fields within a subsurface zone containing the reservoir sands are estimated using the layer-
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Figure 6.6: Interval vertical attenuation coefficient Ag (a) its standard deviation (b) for the target layer.
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Figure 6.7: Location of gas-producing (circles with eight lines) and dry wells (circles with
four lines) in the Coronation Field (modified from Monk et al., 2006). The area shown is
centered about x = 9.5 km, y = 5.5 km.
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(b)

Figure 6.8: Larger (a) and smaller (b) of the two attenuation-anisotropy parameters 6&1) and 582) of the target layer.
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stripping approach introduced in Chapter 5. Nonhyperbolic semblance analysis yields the
wide-azimuth traveltimes of the reflectors bounding the target interval, while the windowed
events along the moveout curves are used for computing the interval anisotropic attenuation.

The lower half of the survey area shows strong azimuthal velocity anisotropy with the
azimuth of Vs consistently oriented close to the NS-direction. Areas of high interval
vertical attenuation coefficient Ag correlate with location of existing gas-producing wells,
which makes Aj a reliable indicator of gas sands. The interval attenuation anisotropy is
anomalously strong and much higher than velocity anisotropy. This is a work in progress and
requires additional analysis, especially with respect to fracture characterization. Additional
(e.g., production) data, however, are necessary to verify the above analysis and understand

its limitations for reservoir characterization.
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Chapter 7

Conclusions and recommendations

7.1 Conclusions

Knowledge of attenuation and attenuation anisotropy can be highly beneficial in lithol-
ogy discrimination, fracture and fluid characterization, and in evaluating the physical prop-
erties of rocks. In this thesis I addressed different aspects of attenuation analysis ranging
from rock-physics studies of attenuative rocks such as oil-shales, to describing wave propa-
gation in attenuative anisotropic media to extracting interval attenuation parameters from
reflection seismic data.

To understand the changes occurring in oil shales during a thermal recovery process,
I studied their seismic properties in the laboratory for a wide range of temperatures. The
physical state of the kerogen in the shales is extremely sensitive to heat, which makes
estimation of shear-wave properties of oil shales particularly attractive. Moreover, as oil
shales are strongly viscoelastic, I conducted experiments within the seismic frequency band
(0.01 to 80 Hz) where the shale properties are significantly different from those in the
well-log and ultrasonic bands.

The laboratory measurements show weak velocity dispersion and a negligible varia-
tion in @ with frequency, which corroborates the commonly used assumption of constant
@ within the seismic bandwidth. On the other hand, these shales are extremely sensitive
to changes in temperature. The melting of kerogen can reduce the shear-wave velocity
significantly (by a factor as five). The quality factor can also drop by a factor of 10 when
temperature is increased from room conditions to about 150°C. Therefore, reservoir rocks
affected by heat should show a noticeable decrease in shear-wave velocities accompanied
by significant increase in attenuation. Velocity and attenuation anisotropy of these rocks
are also highly sensitive to heating. In my measurements, the SH-wave velocity anisotropy

parameter v increased from 0.2 at room temperature to 2.5 at 200°C. Similarly, the maxi-
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mum change in attenuation-anisotropy parameter 7, was 0.8 for the temperature range of
investigation; even the sign of v, changed with heating. The whole suite of measurements
is directly applicable to seismic analysis of oil-shale reservoirs during their exploration, de-
velopment, and production. The high sensitivity of shear waves to temperature changes in
these reservoirs makes 4D multicomponent seismic analysis promising.

To analyze the influence of the inhomogeneity angle £ (the angle between the real and
imaginary parts of the wave vector) on velocity and attenuation in arbitrarily anisotropic
media, I used the first-order perturbation theory. The perturbation analysis yields concise
analytic expressions for the complex wave vector k, the phase attenuation coefficient A| £=00"
and the group attenuation coefficient 44 in terms of the perturbations of the complex stiff-
ness coefficients. For a wide range of small and moderate angles &, the group attenuation
coefficient Ay practically coincides with the phase attenuation coefficient A|E=Oo = 1/2Q,
which is proportional to the angle-dependent inverse quality factor. This conclusion remains
valid even for uncommonly high attenuation (@ ~ 10) and strong velocity and attenuation
anisotropy. The negligible difference between A4 and Al ¢=0o Suggests that seismic data can
be inverted for the attenuation-anisotropy parameters without knowledge of the inhomo-
geneity angle.

To gain physical insight into reflected/transmission at boundaries between attenuative
anisotropic media, I developed linearized expressions for plane-wave reflection/transmission
coefficients in terms of the velocity- and attenuation-anisotropy parameters, as well as the
velocity and attenuation contrasts across the interface. For an incident P-wave with a zero
inhomogeneity angle, the form of the linearized PP- and PS-wave reflection coefficients in
arbitrarily anisotropic media is the same as in purely elastic models, but all terms become
complex.

Both analytic and numerical results show that only in the presence of strong attenua-
tion (Q < 10) does the contribution of the imaginary part of the stiffness tensor (which is
responsible for attenuation) become comparable to that of the real part. In particular, the
influence of the attenuation-anisotropy parameters €, and J, on the PP-wave reflection co-
efficient for VTI media typically is much weaker than that of the velocity-anisotropy param-
eters € and 6. The largest attenuation-related terms in the reflection coefficients for both PP-
and PS-waves are proportional to the contrasts in the normalized symmetry-direction at-
tenuation coefficients of P- and S-waves because the contrasts in the attenuation-anisotropy

parameters are scaled by the inverse quality factor 1/Q po.
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If the incident wave has a nonzero inhomogeneity angle £, the form of the linearized
reflection coefficients is different from the conventional AVO expression. In particular, the
PP-wave reflection coefficient is no longer an even function of the incidence angle # and
includes a term proportional to sin @. Likewise, when £ # 0°, the normal-incidence PS-wave
reflection coefficient (i.e., the AVO intercept) does not vanish and may even attain values
comparable to the AVO intercept for the PP reflection. However, the inhomogeneity angle
makes a substantial contribution to the AVO response only for strongly attenuative media
with Q < 10.

Since most existing attenuation estimates from reflection data are obtained for the
whole section above the reflecting interface, I introduced a method to estimate interval
offset- and azimuth-dependent attenuation from reflection data. This technique is based on
combining a velocity-independent layer-stripping approach with a modified version of the
spectral-ratio method. While there are no restrictions on heterogeneity and anisotropy of
the target layer, the overburden has to be composed of laterally homogeneous layers with
a horizontal symmetry plane (e.g., layers may be orthorhombic). It should be emphasized
that this attenuation layer stripping is data-driven and does not require knowledge of the
overburden velocity and attenuation parameters. In general, the algorithm estimates the
average interval group attenuation coefficient along the raypath of a reflected wave. How-
ever, for homogeneous horizontal target layers it is possible to reconstruct the normalized
phase attenuation coefficient .A for each source-receiver pair. The coefficient A represents a
measure of intrinsic attenuation and can be inverted for the interval attenuation-anisotropy
parameters. Numerical examples for horizontally layered VTI and orthorhombic media con-
firm that the method yields accurate interval phase attenuation coefficients even for models
with uncommonly strong attenuation and substantial velocity and attenuation anisotropy.

The attenuation coefficient in a reservoir can help to predict the presence and dis-
tribution of hydrocarbons (e.g., to distinguish between steam and heat fronts in heavy-oil
reservoirs). The 3D version of the method can be used to estimate the azimuthally varying
interval attenuation coefficient, which represents a sensitive attribute for fracture charac-
terization and reconstruction of the stress field.

I applied the layer-stripping method to wide-azimuth P-wave data acquired over a gas
reservoir in the Coronation Field, Alberta. The lower half of the survey area shows strong
azimuthal velocity anisotropy with the vertical symmetry planes aligned consistently along

the NS- and EW-directions. The vertical attenuation coefficient shows a reasonable corre-
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spondence with existing gas-producing well locations. The interval attenuation anisotropy

is anomalously strong and much higher than velocity anisotropy.

7.2 Recommendations

The rock-physics study in this thesis was limited to shear-wave properties of oil shales.
The majority of the existing seismic data, however, is P-waves, which generally have a
higher quality than S-waves and can be processed in a more robust way. P-wave anisotropy
of oil shales needs more attention because of the large sensitivity of shales to temperature
changes. Moreover, the in-situ pressure during thermal stimulation of oil shales should
be substantially different from the atmospheric pressure. Such pressure differences are
expected to have a significant influence on the shale properties, in particular their velocity
and attenuation anisotropy. It is, therefore, important to study the P-wave properties for
oil shales under variable pressure with particular emphasis on velocity and attenuation
anisotropy.

The algorithm for estimating interval anisotropic attenuation from seismic data is lim-
ited to a laterally homogeneous overburden with a horizontal symmetry plane. Although the
target layer can be arbitrarily anisotropic and heterogeneous, the assumption on the over-
burden limits its applicability to simple layer-cake sections such as most tight-gas plays. In
order to tackle more complicated subsurface structures, we need an algorithm that can han-
dle strong lateral heterogeneity and, possibly, arbitrary anisotropy. A potentially promising
option would be waveform inversion, which has been applied mostly to isotropic media to
estimate density, velocities, and in some cases, attenuation. The layer-stripping derived at-
tenuation coefficients could be used as the initial guess in the waveform inversion algorithm.

P-wave attenuation in combination with S-wave attenuation coefficient can be ex-
tremely valuable in locating gas-sands and condensate accumulations and distinguishing
them from water- and oil-saturated zones. This is because Qp < Qg in gas reservoirs,
while in oil zones, Qp > Qgs. Therefore, it would be useful to extend the layer-stripping
method to estimating the S-wave attenuation coefficient from mode-converted data. Shear-
wave attenuation could also be extracted from pure shear data without any modification to
the algorithm. Since traveltime picking plays a crucial role in estimating interval attenua-
tion using the layer-stripping method, a more accurate method of tracing reflections (e.g.,
automatic picking using cross-correlations) could be implemented.

The high sensitivity of attenuation to the presence of hydrocarbons makes time-lapse
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attenuation analysis extremely valuable. Laboratory measurements clearly indicate that P-
and S-wave attenuations are extremely sensitive to water saturation while velocities are not.
Therefore, attenuation analysis can complement traditional velocity analysis and add to the
understanding of the reservoir. The influence of fluid-filled cracks on attenuation anisotropy
might be different from their influence on velocity anisotropy. For example, dry cracks
would result in velocity anisotropy but have no influence on attenuation. 4D monitoring
could benefit immensely from attenuation analysis. For instance, CO2 sequestration would
have a significant attenuation imprint on seismic data. Oil production through primary or
secondary recovery processes could potentially benefit from attenuation analysis.

Another problem of significant interest is the influence of scattering vis-a-vis intrinsic
attenuation and their separation. Many field experiments suggest that intrinsic attenua-
tion usually dominates scattering effects. Techniques for separating scattering effects from
intrinsic attenuation, however, are not yet developed and should be of primary focus.

The ultimate goal of attenuation analysis is to evaluate rock properties that can be
used for fluid, lithology, and fracture characterization. Although there have been numerous
laboratory studies and theoretical advances in understanding wave propagation in attenua-
tive anisotropic media, physical mechanisms responsible for attenuation anisotropy are not
yet fully understood. New experiments and models have to be explored to better explain
the complex phenomenon of attenuation anisotropy.

With increasing demand for hydrocarbons comes strong demand for novel technologies,
such as attenuation analysis, to enhance our knowledge of reservoir properties. Attenuation
ought to be viewed as a stepping stone, and not as a stumbling block impending seismic pro-
cessing. Despite the many remaining challenges in attenuation analysis, I am optimistic that
we will be able to use attenuation and attenuation anisotropy for reservoir characterization

in the near future.
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Appendix A

Complex wave vector for isotropic attenuative

media

We consider a harmonic plane wave with an arbitrary inhomogeneity angle £ propa-

gating in isotropic attenuative media:
A(x,t) = AgelWt—kx) (A1)

where w is the angular frequency and k = k® — i k! is the complex wave vector responsible
for the velocity and the attenuation coefficient. Substitution of the plane wave A.1 into the

acoustic wave equation results in

w?

2 AN
ve (14 5)

where V' is the real part of the medium velocity, and @ is the quality factor. Dropping

k2 + k% + k3= (A.2)

quadratic and higher-order terms in 1/Q), we rewrite equation A.2 as

R\ o R oI e @ (i),
(K72 = 26K 1 — (k1) = 2 <1 Q), (A.3)

kR = |kF| and k! = |k|. Equation A.3 can be separated into the real and imaginary parts:

w?

(6P - (K1) = 2, (A4)
KR gl = (A.5)
W2Q

When the medium is non-attenuative and 1/@Q = 0, the right-hand side of equation A.5
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vanishes. Then the vectors k® and k! of an inhomogeneous (evanescent) plane wave have
to be orthogonal, with the relationship between kf and k! determined by equation A.4.

Because the factor @ responsible for attenuation is positive, equation A.5 can be
satisfied only if k¥ - k! > 0, which requires that cos¢ > 0 and ¢ < 90°. (We make the
assumption that £ > 0 because the solutions of equations A.4 and A.5 do not depend on
the sign of £.) With the inhomogeneity angle smaller than 90°, equation A.5 allows us to
express k! through k® as

w?

e —
2kRV2Qcos¢

(A.6)

Substitution of k! into equation A.4 yields a quadratic equation for (k®)2, which has only

one positive solution:

w? 1
(kR)?2 = 572 [1 1+ Qeost) + 1] . (A.7)

The corresponding imaginary part k! can be obtained from either equation A.4 or A.6:

w? 1
(kl)zzmli‘h-'_m —1:| . (A.8)

For typical large values of the quality factor, the product (Qcos&) > 1, unless the
inhomogeneity angle is close to 90°. Expanding the radical in equations A.7 and A.8 in
1/(Q cos €)?, we find

Ro ¥ _1_

25 [ e (49

e Y [1— ! ] (A.10)
2VQ cos & 8(Qcosé)? ]’

Equations A.9 and A.10 can be simplified further by neglecting the small (compared to
unity) term 1/[8(Q cos £)?]:

kR = (A.11)

I

</€

k! (A.12)

- 2VQcos&
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A.1 Large Inhomogeneity Angles

Although equations A.11 and A.12 are sufficiently accurate for a wide range of inhomo-
geneity angles, they break down when £ — 90°. For (Qcos{) < 1, equations A.7 and A.8

can be approximated by

kR + @ "°Sf) , (A.13)

_ (1
~ Vv2Qcosé 2

_ W _ Qcosé
RN (1 . ) . (A.14)

The phase attenuation coefficient A can be found from equations A.13 and A.14:

k[

kI
A=k—R=1—-Qcos§; (A.15)

here, we have dropped the term quadratic in (@) cos¢).

A.2 Group Angle

In elastic isotropic media, the group- and phase-velocity vectors are always parallel. If,
however, the medium is strongly attenuative and ¢ # 0°, the group direction might deviate
from the phase direction. The group-velocity vector in arbitrarily anisotropic, attenuative
media can be computed from (Cerveny & Psencik, 2006)

Si

_ (asjr g g m)?
(asjni gi & P)E P

(A.16)

where S is the energy flux, a;;x; is the density-normalized stiffness tensor, p is the slowness
vector, and g is the polarization vector; the superscripts “R” and “*” represent the real
part and complex conjugate, respectively.

For isotropic media, equation A.16 yields the following components of V:

w k!siné

Vg:ﬁ kRQ+klcos£’0’1

(A.17)
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From equation A.17, we find the group angle 1:

k!sin¢

kRQ+klcos¢’ (A.18)

tany =
To obtain the group angle for small and moderate inhomogeneity angles, we substitute

equations A.11 and A.12 into equation A.18, yielding

tané

=1+2Q2<<1' (A.19)

tan vy

For angles ¢ approaching 90°, we substitute equation A.15 into equation A.18 and linearize

the result in cos& to get

tany = — —cos¢. (A.20)

1
Q
It is clear that for large inhomogeneity angles and strongly attenuative media, the angle 9

may not be negligible.
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Appendix B

Perturbation analysis

Here, we derive analytic expressions for the real and imaginary parts of the wave vector
in arbitrarily anisotropic, attenuative media using first-order perturbation theory. A homo-
geneous, isotropic, attenuative full space is taken as the background medium (Figure B.1a).
The inhomogeneity angle ¢ between the real (k®9) and imaginary (k7?) parts of the wave
vector in the background can be arbitrarily large. The background medium is perturbed to
make it anisotropic in terms of both velocity and attenuation (Figure B.1b), which results
in perturbations of the real (Akf) and imaginary (Ak!) parts of the wave vector. Because
the inhomogeneity angle ¢ is a free parameter, we choose not to perturb it when making
the medium anisotropic. This implies that the vectors k® and k0, as well as k! and k!"°,
are parallel.

We choose k° such that k®0 coincides with the axis z3 and k!'° lies in the [z1, z3]-plane
(Figures B.1a and B.1b). This approach differs from the one adopted by Jech & Psenéik
(1989), Cerveny & Psencik (2008b), and Vavrycuk (2008), who used a fixed reference frame.
To compute the perturbations for a different vector k in the same medium, we rotate the
coordinate frame such that k® coincides with the axis 3 and k! lies in the [z1,z3}-plane.
This approach involves the rotation of the density-normalized stiffness tensor aijr; but
obviates the need for introducing two additional angles needed to define the orientations of
kf and Kk/.

B.1 Real and Imaginary Parts of the Wave Vector

We start with the Christoffel equation in the perturbed medium:

(Gik — 6ix) g =0, (B.1)
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(b)

T
¥

Figure B.1: Isotropic attenuative background medium (a) is perturbed to make it
anisotropic (b). k#0 and k! are the real and imaginary parts of the wave vector in
the background, and k# = kR0 4+ Ak® and k! = k!0 + Ak! form the wave vector in the
perturbed medium; ¢ is the inhomogeneity angle. The vectors k70 and k? are parallel to
the vertical z3 direction while k!'* and k! are confined to the [z}, z3]-plane. V(g) is the group
velocity in the background; 1 is the polar group angle after the perturbation, and ¢ is the
azimuth of the perturbed vector V4 with respect to the [z}, z3]-plane.
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where G = a;x p; pi is the Christoffel matrix, p is the complex slowness vector, and g is

the polarization vector of the plane wave. Perturbation of equation B.1 yields

(G + AGik — 6:x) (&) + Agi) =0, (B.2)
which can be linearized to obtain

(G — 0) Mg + AGu ) = 0, - (B.3)

where g is the plane-wave polarization in the background and Ag is the perturbation of
the polarization vector. The polarization g® defines whether the wave mode is P, SV, or
SH. The mode obtained by perturbing the SV-wave will be denoted S;, and the perturbed
SH-wave will be denoted S;. Multiplying equation B.3 with g2 (Jech & Psenéik, 1989)

reduces equation B.3 to

AGirg g =0, (B4)
with

AGik = Aayjp p] p} + 2005, Ap; pf (B.5)

where a?jkl and p® are defined in the isotropic background, and Aa;jk and Ap are the

perturbations. The tensors a?jkl and Aa;ji; are given by

0 _ RO, .I0 _ RO 1

Qijkt = Gijkr T 40550 = g | 1+ 50— | » (B.6)
ijkl

Aagn = Aafly + ila] (B.7)

Qijkl = A + 12055, .

where the superscripts “R” and “I” denote the real and imaginary parts, and Q?jkl is the

ratio a{}kl /a{jkl. The background slowness p® and its perturbation Ap can be expressed as
p? = [—ipI’O sin&, 0, p0 — ip’0 cos 5] , (B.8)

Ap = [—iAp'sing, 0, Ap® — iAp  cos¢], (B.9)




136 Appendix B. Perturbation analysis

where pf0, p!0 and ApF, Ap’ are the magnitudes of the real and imaginary parts of p°
and Ap, respectively.

Assuming (Q° cos£) > 1, we solve equation B.4 for AkR = wApR and Ak! = wAp':

AKR xBox! sec? ¢

kRO T T2 T Q0 (1 2 ) ’ (B.10)
Akl xB

w0 - ot Q°x’, (B.11)

where x® and x! are the real and imaginary parts of x = Aaijklp?p?g?gg. The above
analysis is valid for all three modes (P-, S;-, and Sy-waves). By choosing the corresponding
k° and x, we can compute the perturbations of the complex wave vector for any of the three

modes. The term x for P-, S1-, and Se-waves has the form

1 Aal 2Aal
=——(Aalk+ =3 + T35 tan )
Xp Vo ( BT Qro ' Qro ¢

+i— |- + Aazg — tanf |, B.12
17 ( Qro 3 Qpo ¢ (B.12)

1 I A I —A I
X8, (A%Rs + Aagg + a15 Q35 tan £)

TV Qso Qso
o1 Aaf 1 Adl - Aok )
+i— |- + Aags — —=——2 tanf |}, B.13
Vo ( Qso 55 Qso ¢ (B.13)

and

o1 Adk, Aaf
+ i (— Q(;tl + Aal, - QC;? ta,nﬁ) ; (B.14)

Q po and Qg are the P- and S-wave quality factors in the background medium. Substituting

equations B.12-B.14 into equations B.10 and B.11 and retaining only the terms linear in
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Aai 7 yields

R R
ARE 1 [Aaé?'s , Adly (1 ) sec2§) , Qats — Adgs tang] . (BIW)
ksl’ Vo 2 Qso 4 2Qs0

Akz’;%)l ~ —é (3A2a§5 — Qsolafs + (Aaf} — Aaf}) tan f) , (B.18)
R Il

and

Ak 1 (3Maf; I R
—k-I’—Oz- ~ —‘—/S% < 2 —_ QSOAa44 + Aa46 tan 6) . ) (B.20)
B.2 Normalized Phase Attenuation Coefficient

We linearize the normalized phase attenuation coefficient A for £ = 0° by retaining

only the first-order terms:

k! k10 + AK!
Afge = =5 = (B.21)
£=0 kR =00 kRO 1 ALR £=0°
1 Akl AKR .
—*2—@<1+W—'ER’—O>. (B22)

By substituting Ak® and Ak’ from equations B.15-B.20 into equation B.22, we obtain

A|§=Oo in arbitrarily anisotropic media for all three modes:

1 1 Aaé% I
o= _ ~ Aal,), B.23
‘A|§=O ,P 2QP0 2V1g() ( QPO azs ( )
1 1 [(Aaf I
- - ~ Adk ), B.24
A|§=O ,S1 2QSO 2V30 ( QSO Q55 ( )
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1 1 Aaﬁ I
o = - - . B.2
A|§=0 ,S2 2QSO 2ng0 < QSO Aa‘44 ( 5)

B.3 Normalized Group Attenuation Coefficient

To obtain the normalized group attenuation from equation 3.32, we find the quantity
tan cos ¢ = V41 /Vg3 from equation A.16:

R
tan¥p cos pp = %& , (B.26)

PO

Aol — Aol
tan s, cos s, = 15V2 35 (B.27)
S0
and

Aak
tan "/)5'2 cos ¢Sz = V246 ’ (B28)

S0

where only the leading-order terms are retained.
Next, we substitute Ak® and Ak! from equations B.15-B.20 and tani from equa-

tions B.26-B.28 into equation 3.32 and retain only the terms linear in Aa;;:

1 1 [Adk
Agp= - 3 _ Adl ) , B.29
2P = 2Qro 2V3, ( Qro 33 ( )

1 1 [Adk I
Ags1 = 2Qs0 2V, ( Qso Aass |, (B.30)
and

1 1 [Adk

Ags, = - 4 _ Aal ) B.31
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Appendix C

Shear-wave phase and group quantities in TI

media

Here, we present closed-form expressions for the shear-wave parameters Ak®, Ak!, A,
and Ag in TI media. Note that all equations in Appendix A are derived for the coordinate
frame defined by the vectors k and k!. Therefore, in order to obtain Ak Ak, A, and
Ay as a function of the phase angle 8 (the angle between kf and the z3-axis), one needs to
rotate the tensor Aa;ji; accordingly. Since k! is assumed to lie in the plane defined by k%,
Aajk in Appendix A is rotated by the phase angle 8 around the zs-axis.

By linearizing the rotated tensor Aa;ji; in the Thomsen velocity-anisotropy parameters
€, 0, and 7 and in the Thomsen-style attenuation-anisotropy parameters €1 0o, and v, (Zhu
& Tsvankin, 2006), we obtain the real (kf) and imaginary (k!) parts of the wave vector

from equations B.17-B.20:

A R
];S(}/ = —osin®fcos® 4, (C.1)
k y
sv
Akl 2 2-3
I%V =(€q — JQ)g— sin? 0 cos? 8 + o2 G2 cos? 6
k:S’V 9q 9q
—osin20cos20tan¢, (C.2)
AkE .
k:RL?g{ = —~sin?9, (C.3)
SH
Akl
klf)H =Y sin?@ — ysin? 0 — ysin20 tan ¢, ‘ (C4)

SH
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where g = Vpg/Vso, the parameter o = g%(e — 0) controls the SV-wave phase velocity,
9o = QPo/Qs0, and the parameters v and v, are responsible for the SH-wave velocity and
attenuation anisotropy, respectively (Zhu & Tsvankin, 2006).

The normalized SV- and SH-wave phase attenuation coefficients for £ = 0° can be

found from equations B.24 and B.25:

1
A|E=00,SV = m (1 + UQ Sin2 0COS2 0) s (C.5)

1 .
Ale—go,sa = 050 (141, sin?9) , (C.6)

where the parameter o, (Zhu & Tsvankin, 2006) controls the SV-wave attenuation coeffi-

cient:

oo = i [20(1—gg) + g2(eQ —-68,)] - (C.7)

To obtain the linearized shear-wave group angles in TT media, we use equations B.27
and B.28 (see also Tsvankin, 2005):

tan ¥gy cos pgy = o sin 26 cos 20 (C.8)
and
tan ¥ gy cos psy = ysin 20. (Cg)

Substituting the anisotropy parameters into equations B.30 and B.31 yields the fol-

lowing group attenuation coefficients:

Agsv = m% (140, sin? @ cos® 8), (C.10)
AgsH = L (1+~,sin?6). (C.11)

2Qs0
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Appendix D

Attenuation for large inhomogeneity angles

Here, we develop closed-form expressions for the wave vector k and group attenuation
coefficient Ay for large angles {. For simplicity, we analyze only Sy-waves; expressions for
P- and S;-waves can be derived using the same procedure. The development follows the
same approach as that described in Appendix B. The group angle 4° in the background,
however, does not vanish (equation 3.26), and the background vector k® = k0 — ;k/.0 jg
given by equations 3.23 and 3.24. (Note that for small and moderate angles ¢ considered
in Appendix B, the group angle ¢/° was zero.) For large &, the real (k%) and imaginary
(k") parts of the background wave vector are related by (equation 3.25)

1,0

k
TR0 = 1-Q%os¢, (D.1)

and the group angle ¥ is expressed as (equation 3.26)

tan® = —cos&, (D.2)

L
QO
where QU is the background quality factor. The perturbation produces a change in both
the wave vector (AkF — iAk!) and the group direction.

First, we obtain k% and k! by solving equation B.4 and linearizing the result in
Aa;j. Eliminating terms quadratic or higher-order in Q°cosé and those proportional to

Aa,-on cos&, as well as setting terms quadratic in sin £ to one, we find

k& kL 1 ( Ad}
=2 =] — —— AaR—i——ﬁ)tan
REO L0 T T g e T gy, ) e
1 Aal Aol
+-———(Aal, - =" — Aol + 66). D.3
4VZ cosé ( “ Qso %7 Qso (D3)
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For the special case of TI media, the Sy-mode becomes the SH-wave, and equation D.3

(after eliminating terms proportional to Q2%, and ~,/Q?%,) takes the form
S0 Q S0

kéﬁ k§2 ~ sin 20 Y, cos20 1
o0 = o 1t tan§ — = >——. D.4
ksy  ksy 2 $” T4Qs0 cost (D-4)
The product tan 1) cos ¢ needed to find A4 can be obtained from equation A.16:
1 1 [2Ad R
taniycosp =—— —cos& — —5 | —— — 6Aa
Yoosé Qso ¢ 4vy [ Qso 46
3A A
+ ( Q:;M + Q%G + Aaly - 5Aa66) sin {] (D.5)

The group attenuation coefficient A, is found by substituting equations D.1-D.5 into
equation 3.31:

1 1 [3AaE, Adl
Ay =—— —cos& — 44 4 T766 4 Agl, — 5Aal
77 Qso ¢ 4v2 [ Qso Q@so 4 66
I
-+ (——2Aa46 - 6Aafe) sin {]; (D.6)
Q@so

equation D.6 is linearized in Aa;; and (Qsg cos£), and terms proportional to (Aa;;Qso cos§ )
have been eliminated. The range of ¢ for which equation D.6 is valid is set by the assumption
Qsocosé < 1 which ensures that A, is positive. For the special case of TI media, A, takes

a simpler form after linearization in the anisotropy parameters:

1 3ysin20 . 2vcos20 Ygc0820 v, cos? 6
S ——ssiné + + +
e 1o R TP

(D.7)
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Appendix E

Linear functions in the approximate reflection

coefficients
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Here, we give explicit expressions for the linear functions f; in the approximate equa-

tions for the reflection coefficients.

The functions f), f2, f3, and f4 in equations 4.20 and 4.21 have the form

T (e LU TR e IO
B gt gV AT A A,
h= g e T T et g
+ i‘t—ngAso - Tpteat ﬁ;;) AS,,
f4=3+gA_p 4+94Vso g A6+—LA5+ilAASO,

262 po 92 Vso (1+g)?
where g = Vpg/Visg.

4(1+g)? g*

The functions fs, fs, and f7 in equations 4.25-4.27 are given by

AVpg

fs =~ Vo

+ A-'4P0 )

fe

_ —_2% AVpg B iAVso n g n <A.Ap0 _ 4A.Aso>
g2 po 2Vpy g2 Vs 2 2 g? ’

A
fr= <1+i2) BVP0 _ Agt <1+ %) AApo.
g°) Vpo g

(E.1)

(E.2)

(E.3)

(E.4)

(E.5)

(E.6)

(E.7)
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Finally, for the functions fg and fg in equations 4.29 and 4.31 we have

2+gAp AVgg g 1
- 27920 - AS+ 2AAso, ES8
8= 45 a0 TV A14g) 0 T2 (E8)
9+8g+g2Ap 3+29AVs 3-—13 3
fo=tt AT DR, 2T 2920 IAS+ L Ae

8¢ Po ¢ Vso 8(1+g) 2(1+g)

342
+i *g'ngAso. (E.9)




