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Abstract

High demand for hydrocarbons combined with declining reserves has contributed to a
surge in the use of seismic reservoir monitoring to optimize both production and recovery
of oil and gas. In this thesis, I analyze the contribution of fracture- and stress-induced
velocity anisotropy to seismic signatures typically used in reservoir characterization. To
gain insight into the behavior of seismic signatures, I develop closed-form analytic equations
parameterized in terms of the fracture compliances or subsurface stresses and strains.

In the study of fracture-related azimuthal anisotropy, I go beyond the conventional
model of penny-shaped cracks and develop analytic solutions for microcorrugated fracture
sets in isotropic background rock. The asperities of the fracture faces, for instance, cause the
shear-wave splitting coefficient at vertical incidence to become sensitive to fluid saturation,
especially for tight, low-porosity host rock. In contrast to the model with two orthogonal
sets of penny-shaped cracks, the influence of microcorrugation rotates the NMO (normal-
moveout) ellipses of all three reflection modes (P, S1, S2) with respect to the fracture strike
directions. These results can be used to identify the underlying physical model and, poten-
tially, to estimate the combinations of fracture parameters constrained by multicomponent,
multiazimuth seismic data.

In many hydrocarbon fields, reservoir compaction due to depletion can cause surface
subsidence or shearing of wells. The current technology to monitor compaction using travel-
time shifts of P-wave reflection events is limited to zero-offset rays, which restricts analysis
to the vertical-velocity (and stress) changes. To overcome such limitation, I give an analytic
3D descriptioin of traveltime shifts that can be efficiently used for numerical modeling in the
offset domain and, ultimately, for reconstructing the stress distribution around compacting
reservoirs. The approximated solution adequately reproduces the behavior of time shifts,
although its accuracy decreases for reflectors below areas with large velocity perturbations.
The sign and magnitude of the offset variation of time shifts are sensitive to the horizon-
tal and shear deviatoric stress components and depend on the CMP location with respect
to the reservoir. Large contrasts in the rigidity modulus µ (> 25%) across the reservoir
boundaries can reduce the offset variation of traveltime shifts but only for reflectors close
to the top or bottom of the reservoir. Overall, analysis of traveltime shifts as a function
of offset should provide better constraints on the geomechanical changes around depleting
reservoir blocks and improve interpretation of 4D seismic data.
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Maria Isaura Feĺıcio Fuck, and my in-laws, Pierre Julien and Neide Sabatier, for being
loving, caring and so dependable; I thank my sisters, Ana Carolina and Beatriz Helena,
and my brother Luciano, for being there when I need it and for never sparing a word of
encouragement.

I am grateful to my thesis adviser, Dr. Ilya Tsvankin, for his guidance, patience,
friendship and support, which were instrumental for my success in the Ph.D. program. I am
also thankful for the help, comments, suggestions and contributions that I received from the
members my of thesis committee, Dr. Mike Batzle, Dr. Terry Young, Dr. Dave Hale, Dr. Luis
Tenorio, and Dr. Eric Nelson. I am also in debt with Dr. Andrey Bakulin (WesternGeco)
for his invaluable help, suggestions, feedback and collaboration in the research project on
traveltime shifts.

I thank the Geophysics department as whole and, in particular, the faculty of the
Center for Wave Phenomena (CWP) and of the Reservoir Characterization project, for the
incredible educational and professional experience I had at the Colorado School of Mines. I
also thank the Geophysics department staff, especially Sara Summers, Susan Venable and
Dawn Umpleby for always being so professional and helpful. My stay at CWP was made
all the more special by Michele Szobody and Barbara McLenon, people who not only work
to make your life easier, but merrier. I am also in debt with John Stockwell for all his help
with computer related issues and for the many discussions about geophysics and math. My
internships were great learning experiences as well, and I was privileged to work with bright
people, which also contributed to my education: Dr. John Sumner, Dr. Grant Gist, Dr.
Chris Finn, Dr. Charlie Ching and Dr. Tommie Rape from ExxonMobil Upstream Research
Company; Dr. Leon Thomsen and Dr. Ganyuan Xia from BP America.

One of the best things of the Geophysics department is the culturally diverse and in-
credibly bright student body. They are special group of friendly people who are fun to be
around. In particular, for me was an honor and a pleasure to meet and to study with Al-
ison Malcolm, Carlos Pacheco, Kasper Van Wijk, Alex Grêt, Matt Haney, Matt Reynolds,
Reynaldo Cardona, Ludmila Adam, Kjeitl “KJ” Jansen, Farnoush Forghani, Myoung Jae
Kwon, Ronnie Hoffmann, Neil Dannemiller, Werner Heigl, John Mathewson, Derek Parks,
and the newcomers Francesco Perrone and Bharath Shekar. I also enjoyed a lot the friend-
ship of my colleagues of the A(nisotropy)-team, from whom I always learned something
new: Debashish Sarkar, Pawan Dewangan, Yaping Zhu, Xiaoxia Xu, Jyoti Behura, Steve

vi



Smith, Xiaoxiang Wang and Jia Yan. I also appreciate the support of my dear friends
Vinicio Sanchez, Amir Ghaderi, Dirk Gajewski, Ramzy Al-Zayer and Tagir Galikeev. A
big thank you goes to my pals of the “Brazilian mafia”, Ivan Vasconcelos, Gabriela Melo,
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Chapter 1

Introduction

The growing demand for hydrocarbons and declining oil and gas reserves have made
reservoir characterization an important area of research in geosciences. Indeed, even a
small increase in the recovery rate of oil or gas not only lengthens the life of the field but
also reduces operational costs. Therefore it is essential to study the reservoir architecture
and compartmentalization, as well as faults and fractures and production-induced dynamic
changes.

The areal coverage and high vertical resolution of reflection seismic data make them
a good source of information about the inter-well properties of reservoir rocks. Hence, re-
flection data are playing a leading role in the development of new technologies in reservoir
characterization and monitoring. Among these new technologies is application of seismic
velocity and amplitude anisotropy to map reservoir properties, such as fracturing and com-
partmentalization, and to monitor dynamic changes in the reservoir caused by depletion.
For example, the azimuthal variation of normal-moveout (NMO) velocities and amplitude-
variation-with-offset (AVO) attributes can help to estimate both the direction and intensity
of fracture sets, which can act as the fluid and gas pathways.

In this thesis, I analyze how velocity anisotropy affects commonly observed seismic
signatures used in reservoir characterization, such as the traveltime changes, NMO velocities
and AVO attributes. To gain insight into the behavior of seismic signatures, I develop
closed-form analytic equations in terms of the fracture parameters or subsurface stresses.
These analytic expressions are obtained by means of linearization assuming the stress- or
fracture-induced velocity anisotropy to be weak.

Chapters 2–5 of this thesis have been written as individual papers. In particular,
chapters 2 and 3 have already been published (Fuck and Tsvankin, 2006; Fuck et al., 2009).

In Chapter 2, I investigate how seismic signatures commonly used to detect reservoir
fractures can be influenced by complex fracture rheology. Instead of the commonly used
penny-shape crack model, I use one in which fracture faces contain asperities or micro-
corrugations. Motivation to take this approach came from Cardona (2002), which reports
misalignments among seismic signatures in Weyburn Field, Canada, that cannot be ex-
plained by models with penny-shape fractures. The microcorrugations allow coupling of
normal stresses to shear displacements across the fracture faces and vice-versa during wave
propagation through the fractured medium. This coupling causes the misalignment between
the directions of the fracture sets and the trends of seismic signatures, such as NMO ellipse
or azimuthally varying AVO gradient.

Chapter 3 focuses on using stress-induced anisotropy in monitoring pore-pressure
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changes and compaction of hydrocarbon reservoirs. Existing methodology employs time-
lapse traveltime shifts of events recorded above and below the reservoir on stacked data.
Such traveltime shifts, however, carry information about depletion-induced subsurface changes
only in the vertical direction. I derive an analytic expression that can be used to model
traveltime shifts in a completely general way. It allows reflectors to be described by 3D
surfaces and for traveltime shifts to be computed for nonzero offsets, taking into account
the heterogeneous and anisotropic compaction-induced velocity changes. Using first-order
perturbation, traveltime shifts are expressed as a linear combination of the geometric and
velocity changes brought about by the pore-pressure variation inside the reservoir. 2D nu-
merical modeling shows that traveltime shifts are largely caused by the anisotropic velocity
perturbations related to the deviatoric stress changes. Thus, the offset analysis of traveltime
shifts can help to constrain not only the vertical, but also the horizontal and shear stress
changes and improve interpretation of 4D seismic data.

The contrast in the elastic properties across the reservoir boundaries increases the
magnitude of isotropic velocity perturbations during reservoir compaction. To investigate
this issue in Chapter 4, I study the offset variation of traveltime shifts for models in which
the background velocity is heterogeneous. The first group of models is based on the ho-
mogeneous model used in Chapter 3, in which the contrast between the reservoir and the
host rocks is gradually changed. I also analyzed a layered model based on velocity profiles
from Valhall field in the North Sea. The numerical simulations demonstrate that significant
isotropic velocity perturbations are observed only for large contrasts in rigidity modulus µ
(¿ 25%) and are restricted to reflections close to the reservoir. Overall, the offset varia-
tion of traveltime shifts still provides critically important information needed to constrain
depletion-induced stress and strain changes around compacting reservoirs.

Stress-induced velocity perturbations in Chapters 3 and 4 are expressed not in terms of
a fracture model—a more common approach adopted in the literature—but through strain-
sensitivity tensors. These so-called third-order elastic (TOE) tensors, allow for a general
solution to the problem of translating stress and strain subsurface changes into velocity
perturbations. However, sixth-rank TOE tensors are difficult to manipulate because of the
large number of their components. In particular, determination of the symmetry of the
elastic stiffness tensor for a stressed medium (this tensor is responsible for traveltime shifts)
is cumbersome even for an isotropic strain-sensitivity tensor. In Chapter 5 I present a matrix
representation of these tensors that simplifies the process of evaluating the symmetry of the
stressed medium given any type of symmetry of the TOE and strain tensors.

Finally, the general conclusions and recommendations for future work are given in
Chapter 6.
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Chapter 2

Seismic signatures of two orthogonal sets of

vertical microcorrugated fractures

2.1 Summary

Conventional fracture-characterization techniques operate with the idealized model of
penny-shaped (rotationally invariant) cracks and ignore the roughness (microcorrugation)
of fracture surfaces. Here, we develop analytic solutions based on the linear-slip theory
to examine wave propagation through an effective anisotropic medium that contains two
microcorrugated, vertical, orthogonal fracture sets in isotropic background rock.

The off-diagonal elements of the compliance matrix associated with the corrugation
cause the deviation of the polarization vectors of the vertically traveling S-waves from the
horizontal plane. Also, the shear-wave splitting coefficient at vertical incidence becomes
sensitive to fluid saturation, especially for tight, low-porosity host rock. In contrast to
the model with two orthogonal sets of penny-shaped cracks, the NMO (normal-moveout)
ellipses of all three reflection modes (P, S1, S2) are rotated with respect to the fracture strike
directions. Another unusual property of the fast shear wave S1, which can help to distinguish
between models with one and two microcorrugated fracture sets, is the misalignment of its
polarization vector at vertical incidence and the semi-major axis of the NMO ellipse.

The model analyzed here may adequately describe the orthogonal fracture sets at
Weyburn Field in Canada, where the axes of the P-wave NMO ellipse deviate from the
S1-wave polarization direction. Our results can be used to identify the underlying physical
model and, potentially, to estimate the combinations of fracture parameters constrained by
multicomponent, multiazimuth seismic data.

2.2 Introduction

A key element in reservoir characterization is identification of fluid pathways that
control the production of hydrocarbons. Since such pathways are often formed by fracture
networks and joints, detection and analysis of fractures using seismic data is an important
area of reservoir geophysics (e.g., Lynn et al., 1995; Pérez et al., 1999; Mallick et al.,
1998; DeVault et al., 2002). In a series of three papers, Bakulin et al. (2000a,b,c) outlined
several practical approaches to estimating fracture parameters from surface seismic and
VSP (vertical seismic profiling) data. Using the linear-slip theory described by Schoenberg
(1980) and Schoenberg and Sayers (1995), they expressed the equations describing the NMO
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(normal-moveout) ellipses and AVO (amplitude-variation-with-offset) gradients of reflected
waves in terms of the fracture compliances and orientations. These analytic expressions
helped Bakulin et al. (2000a,b,c) to devise fracture-characterization methods based on the
inversion of multicomponent, mutliazimuth reflection data.

The work of Bakulin et al. (2000a,b,c) was largely focused on the idealized model of ro-
tationally invariant fractures (i.e., oblate spheroids), which have perfectly smooth surfaces
and are often called “penny-shaped cracks.” Grechka et al. (2003) extended the results
of Bakulin et al. (2000a) by considering a single set of the most general vertical fractures
allowed by the linear-slip formalism. Physically, such “general” fractures have rough (micro-
corrugated) surfaces and are described by a compliance matrix that has nonzero off-diagonal
elements. The results of Grechka et al. (2003) show that fracture rheology has a strong im-
pact on the velocities and reflection moveout of pure modes, as well as on the shear-wave
splitting coefficient. For instance, if the fractures are rotationally invariant, the axes of
the NMO ellipses from horizontal reflectors are always parallel and perpendicular to the
fracture strike. By contrast, for a set of general fractures only the NMO ellipse of the fast
shear wave S1 maintains its alignment with the fractures, while the ellipses of the P- and
S2-waves may have different orientations.

While the methodology of Grechka et al. (2003) helps to treat realistic fracture rheolo-
gies, their results are limited to effective media that include only one general fracture set.
Many naturally fractured reservoirs, however, contain two (or even more) systems of frac-
tures, which are often orthogonal to each other (Schoenberg and Sayers, 1995; Grechka and
Tsvankin, 2003). Here, we study an effective anisotropic medium formed by two vertical,
orthogonal, microcorrugated fracture sets embedded in isotropic background rock.

Our motivation for investigating this model comes from analysis of multiazimuth P-
and S-wave reflection data acquired at Weyburn Field in Canada, where borehole imaging
and geological information reveal the presence of three open vertical fracture sets (Cardona,
2002). Over most of the field two of these sets, which have relatively close orientations, seem
to act as a single effective fracture set orthogonal to the dominant NE-SW fracture trend.
If these two orthogonal sets are rotationally invariant, the effective medium should have
orthorhombic symmetry, which is confirmed by analysis of seismic data (Cardona, 2002).
In the southern part of the field, however, the orthorhombic model fails to explain the
misalignment of the P-wave NMO ellipse and the fast S-wave polarization direction. As
shown by Cardona (2002), even the introduction of a third set of penny-shaped cracks is
insufficient to fit the seismic signatures in that area. Making the fractures microcorrugated
can help to develop an effective model with two orthogonal fracture sets that fully accounts
for the observed anomaly.

The objective of this paper is to analyze the influence of two orthogonal sets of mi-
crocorrugated fractures on the NMO ellipses and AVO gradients of reflected waves, as well
as on the shear-wave splitting coefficient. Applying the weak-anisotropy approximation,
we derive closed-form analytic expressions for these common seismic signatures in terms of
the fracture compliances. Although the feasibility study by Grechka and Tsvankin (2003)
indicates that the individual compliances of two general fracture sets cannot be resolved
even from the complete effective stiffness tensor, our results can assist in retrieving certain
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combinations of the compliances and identifying the presence of two fracture sets.

2.3 Effective Medium

The model considered here includes two orthogonal sets of vertical fractures of the most
general rheology embedded in a purely isotropic background (Figure 2.1). To compute the
elastic stiffnesses for the fractured model, we employ the linear-slip theory introduced by
Schoenberg (1980) and further discussed by Schoenberg and Sayers (1995) and others (see
Appendix AA). According to the linear-slip formalism, fractures can be described as non-
welded interfaces that cause discontinuities in the displacement field (i.e., slips). The slips
are taken to be proportional to the product of the (continuous) tractions that act across
the fractures and the excess fracture compliances.

The most general mathematical description of a fracture set in the linear-slip theory
is a 3 × 3 symmetric matrix of the excess compliances (Grechka et al., 2003):

K =





KN KNH KNV

KNH KH KV H

KNV KV H KV



 , (2.1)

where KN is the normal compliance that relates the normal traction (stress) across
the fracture surface to the normal slip, and KV and KH are the tangential compliances
relating the shear stresses to the tangential slips. The off-diagonal compliances incorporate
the mechanical effects of irregularities and asperities on the fracture surfaces (Figure 2.2)
by coupling the normal slips to the shear stresses and vice versa (Schoenberg and Douma,
1988). Due to lack of experimental data on this coupling mechanism (with the exception of
Nakagawa et al., 2000), it is unclear what scale of microcorrugations is needed to produce
measurable off-diagonal compliances. As follows from the theoretical analysis of Kachanov
and Sevostianov (2005), microcorrugations should be mismatched and should provide con-
tact points between the two fracture surfaces to ensure significant coupling.

Fractures are usually classified in accordance with the structure of their compliance
matrix K (equation 2.1). If at least one of the off-diagonal elements does not vanish, the
fractures are sometimes called “monoclinic” (Schoenberg and Douma, 1988). Fractures
described by a diagonal matrix K are called “orthotropic” or simply “diagonal;” rotation-
ally invariant fractures are a special subset of diagonal fractures corresponding to equal
tangential compliances KV = KH .

In the linear-slip theory, the compliance matrix of the effective model is obtained by
adding the compliance matrices of the two corrugated fracture sets to that of the isotropic
background (Appendix A). The effective stiffness elements cij , obtained by inverting the
compliance matrix, can be simplified by linearizing the exact values in the normalized com-
pliances called fracture weaknesses (Schoenberg and Douma, 1988; Bakulin et al., 2000a).
The weaknesses vary from zero for unfractured medium to unity for intensely fractured rock
in which the body-wave velocities go to zero in a certain direction. Since the weaknesses
for typical fractured formations are much smaller than unity, they can be conveniently used
in developing closed-form approximations for seismic signatures. The fracture weaknesses
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x3

x1 x2

Figure 2.1. Model of two sets of orthogonal vertical fractures. Since the linear-slip theory
does not account for the interaction of fracture sets, fractures are not supposed to intersect
each other. The parameters of the fracture set with the normal parallel to the x1-axis are
denoted by the subscript “1” in the text.

x3

x1

Figure 2.2. Idealized fracture with corrugations that are offset from one face to the other
(adapted from Schoenberg and Douma, 1988). In such a model, the normal slips (disconti-
nuities in displacement) are coupled to the shear stresses and vice-versa. For example, slip
in the x3-direction will cause the coupling of the fracture faces and, therefore, shear stress
in the x1-direction.
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∆N , ∆V , ∆H , ∆NV , ∆NH , and ∆V H for our model are defined in equations B.1–B.6.
The effective stiffness matrix linearized in the weaknesses of both fracture sets can be

represented as (see Appendix B)

c =











c11 c12 c13 χc24 c15 c16

c12 c22 c23 c24 χc15 c26

c13 c23 c33 χc24 χc15 c36

χc24 c24 χc24 c44 0 c46

c15 χc15 χc15 0 c55 c56

c16 c26 c36 c46 c56 c66











, (2.2)

where

χ ≡ λ

(λ + 2µ)
.

The linearized stiffnesses cij are given in equations B.10–B.30. According to equa-
tion 2.2, the effective model has the most general, triclinic symmetry (i.e., it does not have
symmetry planes or axes of rotational symmetry), with only one vanishing elastic constant,
c45 = c54. This is not surprising since even a single set of microcorrugated fractures cre-
ates an effective triclinic medium. Nonetheless, only 14 out of the 20 elastic constants are
independent because the effective model is constructed using the two Lamé parameters of
the isotropic background (λ and µ) and 12 fracture compliances (six for each fracture set).
Note that if the fracture azimuth is unknown, it is also necessary to introduce an orientation
angle that defines the azimuth of one of the sets in a specified coordinate frame.

By dividing the matrix c into 3×3 submatrices ci, it can be represented in block form:

c =

(
c

1
c

2

cT
2

c
3

)

; (2.3)

the superscript “T” denotes transposition. The influence of the complex fracture rheology
in our model on the structure of the stiffness matrix can be understood by comparing the
matrix 2.3 with that for an effective orthorhombic medium due to two orthogonal sets of
rotationally invariant fractures (Bakulin et al., 2000b):

corth =

(
corth

1
0

0 corth
3

)

. (2.4)

Clearly, the block c
2

vanishes if the fractures are rotationally invariant. Note that the
matrix corth

3
in equation 2.4 is diagonal, and c66 contained in corth

3
is a linear combination

of c44 and c55.

2.4 Vertical Wave Propagation

In this section we examine how the microcorrugations of the fracture faces affect the
propagation of plane waves in the veritcal direction.
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2.4.1 Approximate Velocities and Polarizations

The phase velocities and polarization vectors of vertically propagating plane waves can
be obtained by solving the Christoffel equation for the effective medium described by the
stiffness matrix 2.2. Applying the first-order perturbation theory (e.g., Jech and Pšenčik,
1989; Pšenčik and Vavryčuk, 2002) and linearizing the vertical velocities of the P-, S1-, and
S2-waves in the weaknesses yields

VP = VPb

[

1 − 1

2
(∆N1

+ ∆N2
)χ2

]

, (2.5)

VS1 = VSb

(

1 − ∆V2

2

)

, (2.6)

VS2 = VSb

(

1 − ∆V1

2

)

, (2.7)

where VPb and VSb are the P- and S-wave velocities in the isotropic background, whereas ∆Ni

and ∆Vi
denote the normal and vertical weaknesses of fracture sets 1 and 2, as indicated by

the subscript i. It is assumed that the first set has a larger weakness ∆V than the second set;
otherwise, equation 2.6 for VS1 would give the vertical velocity of the slow S-wave. Although
the vertical velocities are influenced by the presence of fractures, equations 2.5–2.7 do not
contain off-diagonal weaknesses and, therefore, coincide with the linearized velocities for
rotationally invariant fractures (Bakulin et al., 2000b).

In contrast, the polarization vectors (U) of the vertically traveling waves contain first-
order contributions of the off-diagonal compliances ∆NVi

:

UP ≈ (a∆NV1
, a∆NV2

, 1)T , (2.8)

US1 ≈ (0, 1, −a∆NV2
)T , (2.9)

US2 ≈ (1, 0, −a∆NV1
)T , (2.10)

where

a ≡ (1 − 2gb)

(1 − gb)

√
gb , gb ≡

(
VSb

VPb

)2

.

Because of the corrugation of fracture surfaces, the P-wave polarization vector deviates
from the vertical, and the vertically propagating shear waves are no longer polarized in the
horizontal plane. Equations 2.9 and 2.10, however, show that the shear-wave polarization
vectors are still confined to the planes of the two fracture sets.1

Therefore, Alford-style rotation of the horizontal displacement components of near-
offset S-wave reflections can be used to estimate the fracture azimuths. To measure the
vertical components of the shear-wave polarization vectors, which are indicative of the

1Due to the limitations of the first-order perturbation theory, the shear-wave polarization vectors are
no longer orthogonal, despite being perpendicular to the P-wave polarization vector. Also, the perturbed
polarization vectors were not normalized; still, to the first order in the fracture weaknesses, the magnitude
of the vectors UP , US1 and US2 is equal to unity.
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presence of microcorrugated fractures, it is necessary to apply 3D polarization analysis.

2.4.2 Shear-Wave Splitting

The shear-wave splitting coefficient (γS) at vertical incidence is defined as (Thomsen,
1988; Tsvankin, 2001)

γS ≡ V 2
S1 − V 2

S2

2V 2
S2

, (2.11)

where VS1 is the velocity of the fast shear wave. Applying the second-order pertur-
bation theory (Farra, 2001) and retaining terms quadratic in the fracture weaknesses, we
find

γS =
1

2

{

(∆V1
− ∆V2

) (1 + ∆V1
− ∆V2

)

− gb

[
(
∆2

V H1
− ∆2

V H2

)
+

(
∆2

NV1
− ∆2

NV2

) (3 − 4gb)

1 − gb

]}

.

(2.12)

As expected, γS at vertical incidence vanishes when the two fracture sets have identical
weaknesses. If the terms quadratic in the weaknesses are dropped from equation 2.12, the
splitting coefficient reduces to the difference between the diagonal tangential weaknesses
∆V1

and ∆V2
(see equations 2.6 and 2.7). Therefore, to the first order γS coincides with the

splitting coefficient for rotationally invariant fractures, which is controlled by the difference
between the fracture densities of the two sets (Thomsen, 1988; Bakulin et al., 2000a,b).

However, if the second-order terms are substantial, γS is also influenced by the off-
diagonal weaknesses ∆V Hi

and ∆NVi
. Note that the weakness ∆NVi

depends on saturation
and takes different values for fractures filled with compressible gas, brine, or oil (Bakulin
et al., 2000c).2 Therefore, the vertical-incidence splitting coefficient for microcorrugated
fractures with relatively large off-diagonal weaknesses may serve as an indicator of fluid
saturation.

As illustrated by Figure 2.3, the exact coefficient γS can vary by as much as 50% over
the entire range of plausible values of ∆NV1

(∆NV2
was fixed). We would like to emphasize

that the exact γS (as well as the exact NMO ellipses below) is computed from the exact

(not linearized) stiffness matrix for our model obtained using the linear-slip theory (see
Appendix A). For a tight (non-porous) host rock, ∆NV1

= 0 corresponds to fractures filled
with incompressible fluid such as brine, whereas nonzero values of ∆NV1

describe fractures
at least partially saturated with gas (Bakulin et al., 2000c). Although the weak-anisotropy
approximation 2.12 correctly reproduces the overall character of the curve γS(∆NV1

), it
understimates the sensitivity of the shear splitting to the weakness ∆NV1

.

2Equation 2.12 is more accurate than equation (30) of Bakulin et al. (2000c) because it includes all terms
quadratic in the weaknesses.
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Figure 2.3. Variation of the shear-wave splitting coefficient (γS) for vertical propagation as
a function of the weakness ∆NV1

and the VPb/VSb ratio. The solid curves mark the exact
γS from equation 2.11, where the velocities are computed from the Christoffel equation; the
dashed curves are the approximation 2.12. The VPb/VSb ratio is equal to two (black lines)
and three (gray). The other model parameters are VPb = 3 km/s, ∆N1

= 0.5, ∆V1
= ∆H1

=
0.25, and ∆NH1

= ∆V H1
= 0.1. Each weakness of the second fracture set except for ∆NV2

is equal one-third of the corresponding weakness of the first set; ∆NV2
= (1/3)∆NH1

.
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If the saturation of both both fracture sets changes simultaneously and ∆NV2
varies

similarly to ∆NV1
, the splitting coefficient becomes less sensitive to fluid content. Also,

when the host rock has pore space hydraulically connected to the fractures, the weaknesses
∆NVi

do not necessarily vanish even for incompressible saturating fluids (Cardona, 2002;
Gurevich, 2003). As a consequence, for porous rocks the variation of γS with saturation may
be less pronounced than that suggested by Figure 2.3. Finally, γS becomes less sensitive to
the off-diagonal compliances and saturation for softer rocks (e.g., marine sediments) with
smaller values of the ratio gb , i.e., higher VP /VS ratios.

2.5 NMO Ellipses from Horizontal Reflectors

Important information for fracture detection is provided by azimuthally varying trav-
eltimes (moveout) of reflected waves, in particular by their normal-moveout (NMO) ellipses.
For a horizontal, homogeneous layer of arbitrary anisotropic symmetry, the NMO velocity
of pure (non-converted) reflection modes as a function of the azimuth α is given by (Grechka
et al., 1999):

V −2
nmo = W11 cos2 α + 2W12 sinα cos α + W22 sin2 α , (2.13)

where W is a symmetric 2 × 2 matrix,

W =
q

q2
,12 − q,11q,22

(
q,22 −q,12

−q,12 q,11

)

. (2.14)

Here, q is the vertical component of the slowness vector p = [p1, p2, q] of the zero-offset ray
and q,ij denote the following partial derivatives evaluated at zero offset:

q,ij ≡
∂2q(p1, p2)

∂pi∂pj
. (2.15)

The vertical slowness and its derivatives can be obtained from the Christoffel equation,
as discussed by Grechka et al. (1999). If the eigenvalues of the matrix W are positive (the
most typical case), equation 2.13 describes an ellipse in the horizontal plane.

To analyze the dependence of the NMO ellipses on the medium parameters, it is
convenient to linearize equation 2.14 in the fracture weaknesses (equations B.1–B.6). For
P-waves, the linearized matrix W takes the form

WP =
1

V 2
Pb

(
WP

11 WP
12

WP
12 WP

22

)

, (2.16)

where

WP
11 = 1 + ∆N1

(
1 − 4g2

b

)
+ ∆N2

(1 − 2gb)
2 + 4gb ∆V1

, (2.17)

WP
12 = 2 (∆NH1 + ∆NH2

) (1 − 2gb)
√

gb , (2.18)

WP
22 = 1 + ∆N2

(
1 − 4g2

b

)
+ ∆N1

(1 − 2gb)
2 + 4gb ∆V2

. (2.19)
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The structure of equations 2.17–2.19 can be understood from the “addition rule” formulated
by Bakulin et al. (2000b). To find the linearized weak-anisotropy approximation for most
seismic signatures (one exception is discussed below), the anisotropic terms due to each
fracture set can be simply added together taking into account the fracture orientation.
This recipe can be used to obtain equations 2.17–2.19 from the P-wave NMO ellipse for a
single set of microcorrugated fractures given in equation (56) of Grechka et al. (2003).

For the fast shear wave S1 the matrix W becomes

WS1 =
1

V 2
Sb

(
WS1

11 WS1
12

WS1
12 WS1

22

)

, (2.20)

with

WS1
11 = 1 + ∆H1

+ ∆H2
−A , (2.21)

WS1
12 =

√
gb (2∆NH2

− C) , (2.22)

WS1
22 = 1 − 3∆V2

+ 4gb ∆N2
− B . (2.23)

Here,

A ≡ D∆2
V H1

, (2.24)

B ≡ D∆2
V H2

, (2.25)

C ≡ D∆V H1
∆V H2

, (2.26)

and
D ≡ gb

(∆V1
− ∆V2

)
. (2.27)

Although the factors A, B, and C are proportional to products of the weaknesses
∆V Hi

, their denominator contains the difference in the tangential weaknesses ∆Vi
(see

equation 2.27). For that reason, A, B, and C have to be retained in the linearized approxi-
mation for the NMO ellipse WS1. In such a case, the addition rule discussed above is not
valid, and the approximate NMO ellipse of the S1-wave cannot be obtained as the sum of
the contributions of each fracture set.

The linearized matrix W for the S2-wave is given by

WS2 =
1

V 2
Sb

(
WS2

11 WS2
12

WS2
12 WS2

22

)

, (2.28)

where

WS2
11 = 1 − 3∆V1

+ 4gb ∆N1
+ A , (2.29)

WS2
12 =

√
gb (2∆NH1

+ C) , (2.30)

WS2
22 = 1 + ∆H1

+ ∆H2
+ B . (2.31)
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Equations 2.16–2.31 show that only the presence of the off-diagonal weaknesses can
explain the misalignment of the NMO ellipses with the fracture planes. If both fracture
sets were rotationally invariant, the matrices W for all three modes (equations 2.16, 2.20,
and 2.28) would be diagonal, and the axes of the NMO ellipses would be parallel to the
fracture strike directions. In an effective orthorhombic medium due to two orthogonal sets
of rotationally invariant fractures, the semi-major axes of the NMO ellipses of the P- and
S1-waves (Figure 2.4) are aligned with the strike of the dominant fracture set (Bakulin et al.,
2000b).

By contrast, when both fracture sets are microcorrugated, all three NMO ellipses
generally have different orientations, and none of them is aligned with the fracture azimuths
(Figure 2.5). The deviation of the semi-major axis of the NMO ellipse from the azimuth of
the dominant fracture set reaches 30◦ for the P-wave and 20◦ for the S1-wave. The weak-
anisotropy approximations for the NMO ellipses are close to the exact solutions for the full
range of azimuths (Figure 2.6). The error of the approximate solution, caused primarily
by the misalignment of the axes of the exact and approximate NMO ellipses, is noticeable
only for the slow shear wave S2. The higher accuracy of the approximation for the S1-wave
compared to that for the S2-wave is not surprising since equations 2.22 and 2.23 for the
matrix elements WS1

12 and WS1
22 become exact for one set of fractures (Grechka et al., 2003).

The orientation of the NMO ellipse of the fast wave S1 can help to distinguish be-
tween the models with one or two microcorrugated fracture sets. If the second set does
not exist, then ∆NH2

= ∆V H2
= 0, and the element W12 for the S1-wave vanishes (equa-

tions 2.22 and 2.26). In this case, the matrix WS1 (equation 2.20) becomes diagonal, and
the semi-major axis of the NMO ellipse of the S1-wave is parallel to both the fast shear-
wave polarization direction (equation 2.9) and the fracture strike. Moreover, for the model
with one set of microcorrugated fractures, both the S1-wave vertical velocity and the NMO
velocity in the fracture-strike direction coincide with the background velocity VSb. This
result, discussed by Grechka et al. (2003), follows from equations 2.6, 2.20, and 2.23.

Grechka et al. (2000) defined the Thomsen-style parameters ζ(i) (i = 1, 2, 3) responsible
for the orientations of the NMO ellipses of pure modes in a horizontal monoclinic layer with
a horizontal symmetry plane. Equations 2.16–2.31 can be used to generalize their result
for our triclinic model because the elements W12 include the parameters ζ(i) and, for the
shear waves, additional correction terms. Using equations B.21 and B.24, the element WP

12

(equation 2.18) responsible for the rotation of the P-wave NMO ellipse with respect to the
x1-axis can be represented as

WP
12 = −2

c36

c33
= −2ζ(3) , (2.32)

which coincides with the expression for WP
12 in Grechka et al. (2000). For our model, the

parameter ζ(3) is proportional to the sum of the weaknesses ∆NH1
and ∆NH2

.
Similarly, the off-diagonal elements WS1

12 and WS2
12 for the S-waves (equations 2.22
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main fracture
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Figure 2.4. Exact NMO ellipses of P-waves (dotted), S1-waves (solid black) and S2-waves
(solid gray) for an effective orthorhombic model formed by two vertical, orthogonal sets of
rotationally invariant fractures. The semi-major axes (black arrows) of the P- and S1-wave
NMO ellipses are parallel to the strike of the dominant fractured set (azimuth 90◦). The
semi-major axis of S2-wave ellipse (gray arrow) is orthogonal to the main fracture set. The
parameters are VPb = 2 km/s, VSb = 1 km/s, ∆N1

= 0.25, and ∆V1
= ∆H1

= 0.12. Each
weakness of the second fracture set is equal to one-third of the corresponding weakness of
the first set. The radius of the external circle corresponds to 2 km/s.
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Figure 2.5. Exact NMO ellipses for two vertical, orthogonal sets of microcorrugated frac-
tures. The strike azimuth of the dominant (first) fracture set is 90◦. The parameters
are VPb=2 km/s, VSb=1 km/s, ∆N1

= 0.25, ∆V1
= ∆H1

= 0.12, ∆NV1
= ∆NH1

= 0.17,
and ∆V H1

= 0.12. Each weakness of the second fracture set is equal to one-third of the
corresponding weakness of the first set.
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Figure 2.6. Comparison between the exact NMO ellipses of the P- and S2-waves from
Figure 2.5 (solid lines) and the weak-anisotropy approximations (dots for the P-wave and
the dashed line for the S2-wave). The approximations are computed from equations 2.17–
2.19 and 2.29–2.31. The exact and approximate NMO ellipses of the S1-wave (not shown)
practically coincide with each other.
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and 2.30) can be expressed through the parameters ζ(1) and ζ(2):

WS1
12 = −2

c16 − c36

2V 2
Pb gb

+ C = −2
ζ(1)

gb

+ C , (2.33)

WS2
12 = −2

c26 − c36

2V 2
Pb gb

− C = −2
ζ(2)

gb

− C , (2.34)

where C (equation 2.26) is an additional correction factor needed to account for the nonzero
stiffnesses c46 and c56 in the triclinic model (equation 2.3). The parameters ζ(1) and ζ(2)

depend on the weaknesses ∆NH2
and ∆NH1

, respectively.
Our approximations for the NMO ellipses of both S-waves break down when tangential

weaknesses ∆V1
and ∆V2

are identical and the weaknesses ∆V Hi
6= 0. In this case, the

parameter D (equation 2.27) goes to infinity, which reflects the fact that a point shear-wave
singularity develops in a close vicinity of the zero-offset ray. Analysis of the influence of
singularities on normal moveout for models with two orthogonal sets of penny-shaped cracks
can be found in Bakulin et al. (2000b).

2.6 P-Wave Reflection Coefficient

Another seismic signature that can be effectively used in fracture detection is the
azimuthally varying reflection coefficient, in particular the AVO (amplitude variation with
offset) gradient responsible for small- and moderate-offset reflection amplitudes. Here, we
present a linearized expression for the P-wave AVO response in our model and discuss its
dependence on the fracture weaknesses.

We consider an isotropic incidence halfspace separated by a plane boundary from
the triclinic medium described by equation 2.2 and assume a weak contrast in the elastic
properties across the interface and weak anisotropy in the reflecting halfspace (i.e., the
triclinic medium is treated as a perturbation of the incidence isotropic medium caused by
small fracture weaknesses). The weak-contrast, weak-anisotropy approximation for the P-
wave reflection coefficient in arbitrary anisotropic media is derived in Vavryčuk and Pšenčik
(1998). By combining their general result with the linearized stiffness coefficients for our
model (equations B.10–B.30), we find the P-wave reflection coefficient R

PP
as a function of

the phase incidence angle θ:

R
PP

= A + B sin2 θ + C sin2 θ tan2 θ

= Aiso + Aani + (Biso + Bani) sin2 θ + (Ciso + Cani) sin2 θ tan2 θ . (2.35)

Here, A is the normal-incidence reflection coefficient (“AVO intercept”), B is the AVO
gradient, and C is the so-called “curvature” (large-angle) term. In the weak-contrast, weak-
anisotropy approximation, each term can be separated into the isotropic (subscript “iso”)
and anisotropic (subscript “ani”) part. Since the isotropic part of the linearized reflection
coefficient is well known (it is expressed through the background velocities and densities),
we will discuss only the additional anisotropic terms. The anisotropic component of the
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AVO intercept A is formed by the contribution of the normal fracture weaknesses to the
P-wave vertical velocity in the fractured layer:

Aani = − (∆N1
+ ∆N2

)χ2

4
. (2.36)

The anisotropic part of the AVO gradient is given by

Bani(φ) = Aani + B1 cos2 φ + B2 sin 2φ + B3 sin2 φ , (2.37)

where φ is the azimuthal phase angle measured from the x1-axis, and

B1 = gb

(
∆V1

− ∆N1
χ
)
, (2.38)

B2 = −χ
√

gb

2
(∆NH1

+ ∆NH2
) , (2.39)

B3 = gb

(
∆V2

− ∆N2
χ
)
. (2.40)

The anisotropic curvature term is obtained as

Cani(φ) = Aani + C1 cos4 φ + C2 sin4 φ

+
(
C3 cos2 φ + C4 sin 2φ + C5 sin2 φ

)
sin 2φ ,

(2.41)

with

C1 = gb (1 − gb)∆N1
, (2.42)

C2 = gb (1 − gb)∆N2
, (2.43)

C3 =

√
gb

2

(
∆NH1

+ ∆NH2
χ
)
, (2.44)

C4 =

√
gb

4

[
∆H1

+ ∆H2
+ (∆N1

+ ∆N2
)χ

]
, (2.45)

C5 =

√
gb

2

(
∆NH1

χ + ∆NH2

)
. (2.46)

There are interesting similarities between equations 2.37–2.46 and equations 2.16–
2.19 for the P-wave NMO ellipse. First, if the sign of the AVO gradient does not change
with azimuth, |Bani(φ)| plotted as the radius-vector traces out a curve close to an ellipse
in the horizontal plane, with B−2

ani(φ) being exactly elliptical. (Note that the shape of
the azimuthally varying curvature term is more complicated and is not represented by a
quadratic function in the horizontal coordinates.) Second, the only off-diagonal weaknesses
appearing in the linearized equations for both the reflection coefficient and NMO ellipse are
∆NH1

and ∆NH2
. Third, the “principal directions” of the curve |Bani(φ)| are are rotated

with respect to the horizontal coordinate axes (i.e., with respect to the fracture azimuths)
only when ∆NH1

6= 0 or ∆NH2
6= 0. Furthermore, the rotation angle of both the NMO ellipse

(equation 2.18) and AVO gradient (equation 2.39) is controlled by the sum ∆NH1
+ ∆NH2

.
As shown above, the rotation angle can be also expressed through the anisotropy coefficient
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ζ(3) (equation 2.32).
The example in Figure 2.7 illustrates the orientation and shape of the magnitude of

the azimuthally varying AVO gradient from equation 2.37. The curve |Bani(φ)| (Bani < 0)
is close to an ellipse with the semi-major axis deviating by about 55◦ from the strike of the
dominant fracture set. If the weaknesses ∆NH1

and ∆NH2
are set to zero, the direction of

the largest (by absolute value) AVO gradient is perpendicular to the dominant fracture set.
Despite the small value of ∆NH1

= 0.05, the contribution of the off-diagonal weaknesses
is sufficient for rotating this direction by about 35◦. This high sensitivity of the orientation of
the AVO-gradient curve to the off-diagonal terms is explained by equations 2.38–2.40. While
the element B2 is a weighted average of the weaknesses ∆NHj

(j = 1, 2), the coefficients B1

and B3 are proportional to the difference ∆Vi
− ∆Ni

χ. Since for our model this difference
is small, it does not take large off-diagonal weaknesses to cause a significant rotation of the
AVO gradient.

2.7 Discussion and Conclusions

We studied seismic signatures of an effective medium formed by two sets of vertical,
orthogonal fractures with microcorrugated surfaces embedded in isotropic host rock. Each
fracture set is described by the most general compliance matrix allowed within the frame-
work of the linear-slip theory, with the off-diagonal compliance elements responsible for the
character and degree of corrugation. The effective model is triclinic and has no symmetry
planes, although only 15 stiffness elements are independent.

By applying expansions in the fracture weaknesses (normalized compliances), we de-
rived closed-form analytic expressions for shear-wave splitting, the NMO ellipses of hori-
zontal reflection events, and the P-wave reflection coefficient. These weak-anisotropy ap-
proximations provide valuable insight into the influence of the fracture rheology on seismic
signatures commonly used in reservoir characterization. For instance, the presence of the
off-diagonal weaknesses makes the shear-wave splitting coefficient γS at vertical incidence
sensitive (to the second order) to fluid saturation. The variation of γS with saturation may
be substantial in tight, high-velocity formations where fluids cannot easily move from the
fractures into pore space.

The fracture weaknesses also control the orientation and eccentricity of the NMO
ellipses of the reflected P-, S1, and S2-waves. In particular, the contributions of the off-
diagonal weaknesses ∆NHi

and ∆V Hi
(i = 1, 2) lead to the rotation of the NMO ellipses

with respect to the fracture strike directions. In contrast to the effective orthorhombic
medium formed by two orthogonal sets of penny-shaped cracks, all three NMO ellipses in
our model have different orientations. Extending existing results for monoclinic models, we
expressed the rotation angles of the NMO ellipses in triclinic media through the anisotropy
parameters ζ(1), ζ(2), and ζ(3).

Analysis of the NMO ellipse of the fast shear wave S1 suggests a simple way to dis-
tinguish between models with one and two microcorrugated fracture sets. For a single set
of fractures, the semi-major axis of the S1-wave NMO ellipse and the polarization vector
of the S1-wave at vertical incidence are parallel to each other and to the fracture strike.
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Figure 2.7. Azimuthal variation of the absolute value of the P-wave AVO gradient for our
triclinic model computed from equation 2.37. The strike azimuth of the dominant fracture
set is 90◦; the direction of the largest gradient (black arrow) is close to 35◦. The parameters
are VPb/VSb = 3, ∆N1

= 0.25, ∆V1
= ∆H1

= 0.12, and ∆NH1
= 0.05. Each weakness of the

second fracture set is equal to one-third of the corresponding weakness of the first set.
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This is no longer the case for the model with two fracture sets where the angle between the
polarization vector and the semi-major axis of the NMO ellipse for the S1-wave can reach
20-30◦.

For P-waves, the principal azimuthal directions of both the NMO ellipse and AVO
gradient depend on the sum of the off-diagonal weaknesses ∆NH1

and ∆NH2
. If both ∆NH1

and ∆NH2
vanish, then the NMO ellipse and AVO gradient are aligned with the fracture

strike directions, as is always the case for penny-shaped cracks. Whereas the azimuthally
varying P-wave AVO gradient traces out a quasi-elliptical curve (if it does not change
sign with azimuth), the large-angle AVO term has a much more complicated azimuthal
dependence.

The results of this work can be instrumental in developing inversion algorithms for
estimating the fracture parameters from multicomponent seismic data. Unfortunately, it
has been shown that the inversion for all 15 independent parameters of this model is ill-
posed. Even if all 21 elastic constants of the triclinic medium are recovered with high
accuracy, it is impossible to resolve the fracture weaknesses individually. The equations
presented here, however, can help to estimate certain parameter combinations and verify
whether the underlying physical model is appropriate. Lack of data on the magnitude of
the off-diagonal weaknesses for natural fracture networks makes such experimental studies
particularly important.

As discussed above, comparison of the NMO ellipse and polarization direction of the
S1-wave makes it possible to discriminate between the effective models with one and two
sets of microcorrugated fractures. Our results also indicate that it may be possible to invert
seismic data for the velocity ratio gb and the differences between the diagonal weaknesses
∆Ni

, ∆Vi
and ∆Hi

of the two sets, if the vertical velocities are available. Also, the P-wave
ellipses and AVO gradient can potentially constrain the sum of the off-diagonal weaknesses
∆NHi

.
The weaknesses ∆NVi

do not appear in the linearized equations for any of the NMO
ellipses or for the P-wave AVO gradient and contribute only to the second-order term in the
shear-wave splitting coefficient. The only quantities that contain first-order contributions of
∆NVi

are the vertical components of the S-wave polarization vectors, which may be difficult
to measure on field data. Likewise, the weaknesses ∆V Hi

are contained only in relatively
small terms in the equations for the shear-wave NMO ellipses and for the splitting coefficient
γS . Therefore, estimation of the weaknesses ∆V Hi

and ∆NVi
is likely to be unstable. For

a single microcorrugated fracture set, both ∆V H and ∆NV can be determined from VSP
data using the slowness surface of P-waves. It is not clear, however, if such an algorithm
can be extended to the more complicated model treated here.
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Chapter 3

Theory of traveltime shifts around compacting

reservoirs: 3D solutions for heterogeneous

anisotropic media

3.1 Summary

Time-lapse traveltime shifts of reflection events recorded above hydrocarbon reservoirs
can be used to monitor production-related compaction and pore-pressure changes. Existing
methodology, however, is limited to zero-offset rays and cannot be applied to traveltime
shifts measured on prestack seismic data. Here, we give an analytic 3D description of stress-
related traveltime shifts for rays propagating along arbitrary trajectories in heterogeneous
anisotropic media.

The nonlinear theory of elasticity helps to express the velocity changes in and around
the reservoir through the excess stresses associated with reservoir compaction. Since this
stress-induced velocity field is both heterogeneous and anisotropic, it should be studied
using prestack traveltimes or amplitudes. Then we obtain the traveltime shifts by first-
order perturbation of traveltimes that accounts not only for the velocity changes, but also
for 3D deformation of reflectors. The resulting closed-form expression can be efficiently
used for numerical modeling of traveltime shifts and, ultimately, for reconstructing the
stress distribution around compacting reservoirs.

The analytic results are applied to a 2D model of a compacting rectangular reser-
voir embedded in an initially homogeneous and isotropic medium. The computed velocity
changes around the reservoir are primarily caused by deviatoric stresses and produce a trans-
versely isotropic medium with a variable orientation of the symmetry axis and substantial
values of the Thomsen parameters ε and δ. The offset dependence of the traveltime shifts
should play a crucial role in estimating the anisotropy parameters and the compaction-
related deviatoric stress components.

3.2 Introduction

Traveltime shifts (differences), measured between two or more time-lapse seismic re-
flection surveys, have become an important tool for dynamic reservoir characterization.
Production-related pore-pressure changes and compaction inside the reservoir cause accu-
mulation of stress throughout the section. This excess stress modifies the elastic properties
of rocks inside and around the reservoir, and the corresponding velocity changes can be es-
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timated using reflection traveltimes recorded in time-lapse surveys. Analysis of traveltime
shifts can help to map compaction throughout a reservoir and, therefore, optimize infill
drilling and hydrocarbon production by identifying compartments and pressure cells inside
the producing units.

The stress dependence of traveltime shifts is well understood for vertically propagat-
ing waves and horizontal layers (i.e., for zero-offset data). Traveltime shifts estimated on
stacked seismic data from horizontally layered media have been successfully used to delin-
eate compartments in reservoirs (e.g., Landrø and Stammeijer, 2004; Hatchell and Bourne,
2005b). However, this theory breaks down in the presence of dip and cannot be applied to
prestack data, as demonstrated by data from South Arne field in the North Sea (Herwanger
et al., 2007). Offset-dependent traveltimes shifts were analyzed by Røste et al. (2006), but
their theory is restricted to horizontally layered isotropic media. Herwanger et al. (2007)
used nonlinear elasticity to model the offset variation of traveltime shifts, but they do not
present explicit expressions relating shifts to the stress field.

Here we provide an analytic 3D description of traveltime shifts around a compacting
reservoir embedded in a heterogeneous, layered, anisotropic medium. Taking heterogeneity
and anisotropy into account is necessary for an adequate physical description of traveltime
shifts. Indeed, the excess stress field created by compaction is anisotropic (in general, it is
triaxial) and heterogeneous because the magnitude of stress depends on reservoir geometry
and varies spatially around the reservoir.

Our analysis of traveltimes shifts in and around a compacting reservoir involves two
main steps. We start by expressing the velocity changes through the excess stress and strain
fields created by the compaction. Then the first-order perturbation of traveltimes is used
to obtain a linearized analytic approximation for the traveltime shifts. To describe stress-
related velocity changes, we apply the nonlinear theory of elasticity (e.g., Thurston and
Brugger, 1964a), which has several advantages over more conventional approaches to model
stress-sensitivity of velocity fields. First, it does not rely on a specific micromechanical
model and, therefore, is more general than approaches based on stiffening of grain contacts
and closing or opening of specific micro-crack distributions (Shapiro and Kaselow, 2005).
Second, nonlinear elasticity yields the full stiffness tensor of the deformed medium needed
to compute traveltimes and other signatures for arbitrarily anisotropic media. Third, all
possible mechanisms of stress sensitivity are absorbed by a small number of third-order
elastic coefficients. For instance, an isotropic third-order strain-sensitivity tensor is com-
pletely defined by three parameters. In contrast, fracture models include at least two sets
of penny-shape fractures, with each set defined by three parameters. Fourth, third-order
elastic coefficients can be directly measured in laboratory or wellbore experiments (e.g,
Sinha and Plona, 2001), whereas the fracture weaknesses have to be inverted from field
data (Sayers, 2006).

The nonlinear theory has been successfully applied to estimate stress-induced anisotropy
and the corresponding stress-sensitivity (or strain-sensitivity) tensor in sandstones and
shales. Examples include ultrasonic velocity experiments on rock samples (Johnson and
Rasolofosaon, 1996; Sarkar et al., 2003; Prioul et al., 2004) and in-situ stress estimation
in boreholes (Winkler et al., 1998; Sinha and Plona, 2001). Unfortunately, measurements
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of third-order elastic coefficients (which represent elements of a sixth-rank tensor) for sed-
imentary rocks are rare, with most existing results obtained for crystals and man-made
materials. This is an inherent limitation of our approach, but we expect more data to be
available in the near-future, in particular because of the straightforward way of measuring
third-order coefficients in the laboratory or boreholes. Also, the results by Prioul et al.
(2004) indicate that detailed knowledge of the sixth-order elasticity tensor is not critical,
and for most applications in exploration and reservoir geophysics that tensor can be assumed
to be isotropic.

We start by describing the variational problem related to the first-order perturba-
tion of traveltimes. Then perturbation theory and nonlinear elasticity are used to express
traveltime shifts in terms of the excess stresses and volumetric strains caused by reservoir
compaction. Synthetic tests for a 2D reservoir model confirm that the stress-induced veloc-
ity field is anisotropic and illustrate the offset dependence of traveltime shifts for reflectors
above and below the reservoir.

3.3 P-Wave Traveltime Shifts from First Principles

Assuming that reservoir compaction produces only small changes in the traveltimes
of seismic waves propagating through the medium, such traveltime shifts can be expressed
through small perturbations of the model parameters. The deformation caused by com-
paction changes the relative positions of the boundaries between layers, while the extra
stress alters the elastic properties. Therefore, traveltime shifts depend on the perturbations
of the geometry of the medium interfaces and the elastic (stiffness) moduli.

To obtain first-order traveltime perturbations, we apply Hamilton’s principle of least
action to traveltimes computed for rays traced in an unperturbed background medium.
For simplicity, we consider this background medium to be isotropic, with smoothly varying
velocity and density, and restrict the analysis to P-waves. Then the traveltime shifts δt are
described by the following equation well known in classical mechanics (e.g., Lanczos, 1986)
(Appendix C ):

δt = p · δx
∣
∣
∣
∣

τ2

τ1

−
∫ τ2

τ1

∆H dτ , (3.1)

where p is the slowness vector of the reference ray traced in the background medium,
δx is the first-order variation of the position vector of the reference ray in 3D Cartesian
coordinates, ∆H is the corresponding variation of the system’s Hamiltonian and τ is the
integration parameter along the reference ray. The Hamiltonian H of the system is the
scaled Eikonal equation, in which the integration parameter τ represents the traveltime
along the reference ray (e.g., Červený, 2001):

H(x,p) =
1

2

[
V 2(x,p) pk pk − 1

]
= 0 , (3.2)

where V (x,p) is the phase velocity; summation over repeated indices is implied throughout
the paper.
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Equation 3.1 provides important insights into the nature of the traveltime shifts caused
by reservoir compaction. First, in the linear approximation the contributions of the geo-
metric and velocity changes to traveltimes are independent. Second, the changes of the ray
trajectory (i.e., geometric changes) contained in the term p · δx do not contribute to first-
order traveltime perturbations, unless they occur at the endpoints. Third, the influence
of the velocity changes is represented by the perturbed Hamiltonian ∆H, which should be
integrated along the reference ray.

3.3.1 Traveltime Shifts in Layered Media

Equation 3.1 is designed for rays traced in smoothly heterogeneous media (Figure
3.1a). If the medium is stratified, it is necessary to account for deformation of the reflectors
that move the reflection/transmission points along the ray. This can be done by dividing
the reference ray into segments, applying equation 3.1 to each of them and then summing
up the results (Farra and Le Bégat, 1995). For the ray in Figure 3.1b, equation 3.1 is
applied to segments SA, AB, BC, and CR separately, with subsequent summation of the
individual contributions. Therefore, extension of equation 3.1 to layered media accounts for
the movement of all N scattering (reflection/transmission) points along the raypath:

δti = (p̀ − ṕ)i · δxi (i = 1, 2, ...N), (3.3)

where p̀ and ṕ are the slowness vectors of the incident and scattered (reflected or trans-
mitted) rays, respectively. Note that each scattering point i belongs to two ray segments.
By separating the contribution of the endpoints (δte) from that of the scattering points
(i = 1, 2, ...N), equation 3.1 can be generalized for any number of layers arbitrarily de-
formed in 3D space:

δt =δte +

N∑

i=1

δti −
∫ τ2

τ1

∆Hdτ , (3.4)

where

δte =p · δx
∣
∣
∣
∣

τ2

τ1

, δti = (p̀ − ṕ) · δx . (3.5)

Equation 3.4 can be further simplified by taking Snell’s law into consideration. Since
the projection of the slowness vector onto the interface is conserved, the only nonzero com-
ponent of vector (p̀ − ṕ) is that orthogonal to the interfaces. If layer boundaries are hori-
zontal, the traveltime shifts depend just on the vertical components of the vector (p̀ − ṕ).
For interfaces with arbitrary orientation, the unit normal vector (i.e., the vector perpendic-
ular to the interface) at the reflection/transmission point x is given by the gradient of the
unperturbed interface f(x) = 0:

N(x) =
∇f(x)

|∇f(x)| . (3.6)
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Figure 3.1. Equation 3.1 is valid for rays traced in a smoothly heterogeneous medium (plot
a). For layered media (plot b), it is necessary to account for the movement of reflection (B)
and transmission (A,C) points (see equation 3.4).
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To find the component of the vector p̀ − ṕ in the direction of N(x), we use the projection
operator A(x):

A =
NNT

NTN
. (3.7)

Applying equation 3.7 to each term (p̀ − ṕ) · δx in equation 3.4 gives

(p̀i − ṕi) δxi = Aij (p̀j − ṕj) δxi . (3.8)

3.3.2 Traveltime Shifts in Heterogeneous Anisotropic Media

As discussed above, reservoir compaction causes the velocity field around the reservoir
to become both heterogeneous and anisotropic. Note that equation 3.1 involves no as-
sumptions regarding the heterogeneity or anisotropy of the Hamiltonian or its perturbation
∆H. The generality of equation 3.1 helps to construct ray-tracing solutions for heteroge-
neous, arbitrarily anisotropic media (e.g., Jech and Pšenčik, 1989; Chapman and Pratt,
1992; Červený, 2001). The perturbation ∆H = ∆V/V is obtained from equation 3.2 for the
reference ray with the components pi held constant. Perturbing the Christoffel equation
for P-waves leads to the following expression for the term ∆V under the assumption that
reference rays are traced in an isotropic medium (Červený, 2001):

∆H =
1

2

∆aijkl(x)ninjnknl

V 2(x)
, (3.9)

where ∆aijkl are the perturbations of the density-normalized stiffness coefficients, and ni

are the components of the unit slowness vector.

3.4 Relating Velocity Changes to Excess Stresses

Equations 3.4 and 3.9 provide the basis for analytic description of compaction-induced
traveltime shifts. The next step is to express the density-normalized stiffnesses ∆aijkl in
terms of the strains and excess stresses caused by reservoir compaction. As discussed in the
introduction, we apply the nonlinear theory of elasticity to describe the stress sensitivity of
the stiffness coefficients. The two main assumptions used here are that the strain-sensitivity
tensor is isotropic and stress-induced anisotropy is weak.

3.4.1 Nonlinear Elasticity

According to Prioul et al. (2004), the effective stiffness coefficients cijkl of an elastic
medium deformed under stress can be written in terms of the pre-deformation stiffnesses
(c0

ijkl) and the deformation-induced changes of the stress (∆Sij) and strain (∆eij) tensors:

cijkl =c0
ijkl + ∆Sikδjl + cijklmn ∆emn

+ c0
ijpl ∆ekp + c0

ipkl ∆ejp , (3.10)
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where δij is Kronecker’s symbol and cijklmn is a sixth-rank tensor with no more than 56
independent elements (Hearmon, 1953)1. Provided that deformation is small and elastic,
equation 3.10 represents a suitable local linear approximation for the changes in the stiffness
elements, similar to a Taylor series expansion around c0

ijkl. We reduce the number of
independent components of cijklmn to three by assuming that this tensor is isotropic, as
suggested by Prioul et al. (2004).

For typical magnitudes of compaction-related stress changes (from 2–10 MPa inside
the reservoir and one-tenth of that outside), equation 3.10 can be simplified further by
dropping relatively small terms. Indeed, laboratory measurements have shown that typically
∆Sij � cijkl � cijklmn (e.g., Johnson and Rasolofosaon, 1996), which allows us to neglect
the terms ∆Sikδjl, c0

ijpl∆ekp and c0
ipkl∆ejp in equation 3.10 (Prioul et al., 2004):

cijkl ≈ c0
ijkl + cijklmn ∆emn . (3.11)

Equation 3.11 shows that the tensor cijklmn is a measure of the sensitivity of the stiffnesses
cijkl to deformation. Indeed, the definition of cijklmn in terms of the strain-energy function
W (e.g., Hearmon, 1953) corroborates equation 3.11:

cijklmn ≡ ∂3W

∂eij∂ekl∂emn
=

∂cijkl

∂emn
. (3.12)

If the medium density ρ is assumed to be constant, equation 3.11 yields the changes
in the density-normalized stiffnesses ∆aijkl needed in equation 3.9:

∆aijkl =ρ−1 ∂cijkl

∂emn
∆emn = ρ−1cijklmn ∆emn . (3.13)

Evaluation of the term cijklmn ∆emn is discussed in Appendix D. In the first-order approx-
imation, we can follow Sarkar et al. (2003) and employ linear Hooke’s law to relate ∆eij to
∆Sij :

∆aijkl = ρ−1cijklmn

(
c0
mnpq

)
−1

∆Spq . (3.14)

3.4.2 Traveltime Shifts Due to Compaction

A concise expression for traveltime shifts can be derived by substituting equation 3.14
into equation 3.9 for the perturbation of the Hamiltonian. Using the results of Appendix E
(equation E.8), we find:

∆H =
1

2

[

B1∆ekk + B2

(

nT∆σ n
)]

, (3.15)

1The qualifier “nonlinear” comes from the inclusion of the tensor cijklmn into Hooke’s law (Thurston and
Brugger, 1964a).



30 Chapter 3. 4D traveltime shifts around compacting reservoirs

B1 =
1

3Co
33

(

C111 + 2C112

)

, B2 = 2
C155

C0
33C

0
44

, (3.16)

where ∆ekk is the trace of the strain tensor and ∆σ is the tensor of deviatoric stress. The
constants C111, C112 and C155 are elements of the isotropic sixth-order tensor cijklmn written
in Voigt notation, while C0

33 and C0
44 are the stiffnesses of the background isotropic medium.

The traveltime shifts given by equation 3.4 can then be rewritten as

δt = δte +
N∑

i=1

δti

︸ ︷︷ ︸

geom

− 1

2

∫ τ2

τ1

[

B1∆ekk + B2

(

nT∆σ n
)]

dτ

︸ ︷︷ ︸

vel

, (3.17)

where “geom” and “vel” refer to the contributions of the geometric and velocity changes.
Except for possible influence of tides on offshore 4D surveys, typically, the “geometric”

term is relatively small. Indeed, for the geometric changes to produce a traveltime shift of
at least 1 ms, an unlikely set of conditions have to take place: the displacements should
be on the order of meters; for layered models, the slowness contrasts cannot be smaller
than 10−2 s/km; and summation should include from 10 to 100 scattering points. When
elastic deformation is caused by depletion, however, displacements throughout the section
are on the order of centimeters, consistent with the annual subsidence rates observed in
fields like Valhall (Herwanger and Horne, 2005). In addition, for layered models there is
little room to increase the number of reflection/transmission points without reducing the
slowness contrasts.

According to equation 3.17, the velocity-related traveltime shifts are given by the
arithmetic average of the isotropic (B1∆ekk) and anisotropic (B2 nT∆σ n) terms computed
along the raypath. In our sign convention, negative strains denote contraction, while positive
strains denote extension. (Likewise, negative stresses imply compression.) This means that
the coefficient C155 and the combination C111 + 2C112 should be negative. Then, according
to equations 3.15–3.17, compression leads to increase in velocity, which results in negative
traveltime shifts. In contrast, traveltime shifts due to extension are positive.

To clarify how equation 3.17 generalizes existing results, in Appendix F it is reduced to
the equation for zero-offset data from Hatchell and Bourne (2005b). In addition to extending
the results of Hatchell and Bourne (2005b) to nonzero offsets and dipping reflectors, equation
3.17 provides useful insight into the meaning of different terms. The result of Hatchell and
Bourne (2005b) for two-way traveltimes shifts has the form

δt = 2

∫ Z

0
(1 + R)

∆ezz

V (z)
dz . (3.18)

According to equation 3.17, the ratio R from equation 3.18 can be written as

δt = 2

∫ Z

0

[

1 +
1

2
(R1 + R2)

]
∆ezz

V (z)
dz ,
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θ1

θ2

z = 0

z = z1

z = z2

δz1

δz1 + δz2

Figure 3.2. Model of two horizontal layers above a compacting reservoir. The compaction
increases the thickness of layer 1 by δz1 and that of layer 2 by δz2. The velocities remain
constant after the deformation.

where

∆ezz R1 = −B1∆ekk ; ∆ezz R2 = −B2∆σ33 . (3.19)

Hence, the ratio R represents the average of two terms related to the volumetric strain
and vertical deviatoric stress changes. If the reservoir thickness is much smaller than its
depth, the volumetric changes are expected to be small. Then the ratio R can be used to
estimate ∆σ33 using reflectors at or above the reservoir. On the other hand, for reservoirs
with comparable depth and thickness R is likely to reflect both volumetric and deviatoric
stress changes.

3.5 Modeling of Traveltime Shifts

In this section we use equation 3.17 to study the influence of both reflector deformation
and velocity changes on traveltime shifts. First, we obtain an analytic expression for trav-
eltime shifts caused by the movement of reflectors in a simple horizontally layered medium.
Then we compute and discuss the spatial distribution of traveltime shifts in shot and CMP
(common-midpoint) gathers for a 2D model of a compacting reservoir.

3.5.1 Special Case: Reflector Deformation in A Layered Medium

We consider a ray that travels from the surface to the bottom of a model comprised of
two horizontal isotropic layers. The layers are assumed to have been deformed uniaxially
in the z-direction such that the thickness of layer 1 was increased by δz1 and that of layer
2 by δz2 (Figure 3.2).

To study the influence of the geometric changes, the velocities in the layers (v1 and
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v2) are kept constant after the deformation. Therefore, the exact one-way traveltime from
the top to the bottom of the model after the deformation can be written as

t =
z1 + δz1

v1 cos θ1
+

z2 + δz2

v2 cos θ2
, (3.20)

where θ1 and θ2 are the angles between the ray and the vertical in the first and second
layers, respectively. Hence, the exact traveltime difference due to the deformation is

∆tex =
δz1

v1 cos θ1
+

δz2

v2 cos θ2
. (3.21)

Expressing ∆tex in equation 3.21 in terms of the vertical components qi = cos θi/vi of the
slowness vector and the propagation angle θi (i = 1, 2), we find:

∆tex = δz1 q1

(
1 + tan2 θ1

)
+ δz2 q2

(
1 + tan2 θ2

)
. (3.22)

Applying equation 3.17 to the reference ray traced before the deformation (the ray in
Figure 3.2 with the same take-off angle θ1) yields an approximation (∆tpert) for ∆tex:

δte = (δz1 + δz2) q2 ,

δti =δz1 (q1 − q2) ,

∆tpert = δte + δti = δz1 q1 + δz2 q2 . (3.23)

For propagation angles of up to 25 − −30◦ equations 3.22 and 3.23 give similar results
because tan2 θ � 1. In particular, for zero-offset rays (θ1 = θ2 = 0) equation 3.23 is exact.
Note that multiplying equations 3.22 and 3.23 by a factor of two yields two-way traveltime
shifts for a reference ray with the source located at position s and receiver at r = s + 2X
(X = z1 tan θ1 + z2 tan θ2) on the surface of the model.

3.5.2 Traveltime Shifts Due to Velocity Changes

To illustrate the distribution of traveltime shifts in prestack data, we applied equation
3.17 to a 2D model that includes a rectangular reservoir embedded in a homogeneous
isotropic halfspace (Figure 3.3). In such a model, traveltime shifts can be attributed to
velocity changes only, because geometric terms will cause shifts not exceeding 10−2 ms.
The pore-pressure variation occurs only in the reservoir, and the resulting excess stress,
strain and displacement were computed using analytic expressions adapted from Hu (1989).
The strain was confined to the incidence plane [x, z], with no deformation in the y-direction
(e12 = e22 = e23 = 0).

Figure 3.4 shows the spatial distribution of the deviatoric stresses and volumetric
strains generated by the pore-pressure drop inside the reservoir. For the plane strain prob-
lem treated here, the stress tensor is triaxial, so the 3D stress-induced velocity field has
orthorhombic symmetry. The velocity function in the [x, z]-plane, however, can be de-
scribed by a heterogeneous transversely isotropic (TI) model with a tilted symmetry axis
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because this vertical plane represents a symmetry plane of the orthorhombic medium. Using
the perturbations of the stiffness coefficients, we computed the stress-related Thomsen pa-
rameters ε and δ and the rotation angle of the symmetry axis from the vertical (Figure 3.5).
Because the strain-sensitivity tensor and the background medium are isotropic, the result-
ing velocity anisotropy is elliptical (ε = δ). The absolute δ-values in and near the reservoir
reach 0.18, which indicates that the stress-induced anisotropy is non-negligible even for the
relatively small pressure drop (5 MPa) used in the test. The similarity between δ and the
normal deviatoric stress components (∆σ11 and ∆σ33) is explained by the fact that for our
model ∆σ11 ≈ −∆σ33. Then, for locations where ∆σ13 is small and the symmetry axis is
close to vertical, δ is given by (Sarkar et al., 2003)

δ =
C155

C0
33 C0

44

(∆σ11 − ∆σ33) ≈
2∆σ11 C155

C0
33 C0

44

. (3.24)

Close to the corners of the reservoir, accumulation of the shear stress ∆σ13 causes rota-
tion of the symmetry axis (Figure 3.5 b).stress-induced anisotropy is described by a tilted
orthorhombic model2.

Approximate and exact (ray-traced) traveltime shifts are compared in Figure 3.6. The
noticeable discrepancy for reflectors beneath the reservoir is caused by the large velocity
change inside the reservoir (as high as 27% for the P-wave vertical velocity). For deep
reflectors, the linearized approximation 3.17 is more accurate in models with lower velocity
sensitivity inside the reservoir.

The offset variation of traveltime shifts in Figure 3.6 is controlled by the spatial dis-
tribution of deviatoric stress and volumetric changes as well as by the incidence angle (see
equation 3.17). Since stress-induced velocity changes are mostly concentrated inside and
near the reservoir, traveltime shifts are largest for rays that probe the immediate vicinity of
the reservoir. We observe two distinct trends for traveltime shifts depending on the CMP
location with respect to the reservoir. For common midpoints within the projection of the
reservoir onto the surface, traveltime shifts tend to decrease by absolute value with offset
(Figures 3.6 and 3.7a). In contrast, the magnitude of traveltime shifts for CMP locations
outside the reservoir projection generally increases with offset (Figure 3.7b). Likewise, trav-
eltime shifts in shot gathers become mostly confined to longer offsets as the source is moved
away from the reservoir center (Figure 3.8).

For a fixed CMP or shot location, the offset dependence of traveltime shifts is largely
governed by the term ∆σijninj in equation 3.17. For instance, the reflectors above the
reservoir in Figure 3.7 show an increase rather than a decrease in the magnitude of the
shifts for larger offsets.

Ultimately, this variation of traveltime shifts with incidence angle (i.e., with direction
n) may help to estimate the components of the deviatoric stress tensor from prestack seismic
data. Therefore, it is important to analyze the relative magnitude of traveltime shifts
caused by isotropic and anisotropic velocity changes. For the homogeneous and isotropic
background model used in the test, volumetric (i.e., isotropic) changes are significant only

2The medium symmetry can be verified by setting e22 = e12 = e23 = 0 in equations D.16–D.33.
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inside the reservoir (see Figure 3.4). Thus, traveltime shifts above the reservoir are primarily
produced by deviatoric stress (i.e., anisotropic) changes, while volumetric changes make a
non-negligible contribution for reflectors at and below the reservoir level (see Figure 3.9).

Still, the character of the offset variation of traveltime shifts is largely controlled by
the anisotropic terms even for deep reflectors, especially for common midpoints close to the
center of the reservoir (Figure 3.10). For CMP locations inside the reservoir projection onto
the surface, the isotropic and anisotropic components of the traveltime shifts have slopes of
opposite sign (Figures 3.10a–3.10d). In contrast, the slopes have the same sign for common
midpoints outside the reservoir projection (Figures 3.10e and 3.10f). Therefore, if the volu-
metric term is neglected in a inversion scheme, deviatoric stress changes reconstructed from
traveltime shifts will be underestimated for CMP locations inside the reservoir projection
and overestimated for those outside it. The sharp variations of the small-offset shifts near
the reservoir edges (x = ±1 km) in Figure 3.10 are caused by singularities in the analytic
solutions for stress used in the modeling.

Figure 3.11 demonstrates that the vertical stress change (∆σ33) governs small-offset
traveltime shifts, while the contributions of the horizontal and shear stresses gradually
increase with offset. Indeed, for our 2D model the term ∆σijninj in equation 3.17 takes
the form

∆σijninj = ∆σ33 cos2 θ + 2∆σ13 cos θ sin θ + ∆σ11 sin2 θ , (3.25)

where θ, as before, is the incidence angle. Clearly, the sensitivity of traveltime shifts to
the components ∆σ13 and ∆σ11 increases with offset. Equation 3.25 and Figure 3.11 indi-
cate that, in principle, the horizontal and shear stress changes can be estimated from the
offset dependence of traveltime shifts. Reconstruction of the stress components, however,
is complicated by the strong heterogeneity of the excess stress field around the reservoir.
As illustrated by Figure 3.12a, for a relatively shallow reflection event recorded above the
center of the reservoir, the slope of the function δt up to relatively long offsets is governed
mostly by ∆σ11. However, when the CMP is located above the edge of the reservoir (Fig-
ure 3.12b), the offset variation of traveltime shifts is dominated by ∆σ13 with contributions
from ∆σ33 and ∆σ11.

3.6 Conclusions

Our analytic description of compaction-related traveltime shifts is based on three main
assumptions. First, a closed-form expression for traveltime shifts was obtained using first-
order traveltime perturbations. Anisotropic ray tracing for a 2D model of a compacting
reservoir confirms that the first-order approximation reproduces the general behavior of
traveltime shifts. The approximate solution produces substantial errors for deep reflectors
when the velocity changes inside the reservoir are large (30% or so). However, case studies
of compaction-related traveltime shifts suggest that the our model likely exaggerates the
strain sensitivity inside the reservoir. Second, we used an isotropic sixth-order strain-
sensitivity tensor to describe the influence of stress on the stiffness coefficients. While
this assumption limits the stress-induced anisotropic model to the special case of tilted
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orthorhombic symmetry3, it also reduces the number of model parameters and helps to
derive concise expressions for traveltime shifts.

Third, deformation was assumed to be purely elastic, which is not always appropriate
for velocity changes inside a compacting reservoir (or within a reactivated fault zone outside
it) where the contribution of anelastic processes may be substantial. We believe, however,
that the physical insight provided by our relatively simple equations justifies neglecting plas-
tic deformation. Also, experimental studies confirm that elastic theory adequately describes
a wide range of deformation processes caused by reservoir depletion in various geological
settings.

The main result of our analytic development is equation 3.17, which generalizes the
expressions for zero-offset traveltime shifts and those for offset-dependent traveltime shifts
in isotropic media. The simple structure of equation 3.17 helped us to gain valuable insight
into the behavior of compaction-related traveltime shifts in common-midpoint (CMP) and
shot gathers.

Traveltime shifts are caused by two different factors – geometric and velocity changes.
Analysis of equation 3.17 indicates that the geometric component of the traveltime shifts
typically is at least an order of magnitude smaller than the contribution of the velocity
changes. Traveltime shifts due to the velocity changes could be further separated into
two components, one of which is related to volumetric changes and the other to deviatoric
stresses. Significant volumetric changes are restricted to the reservoir and to the vicinity of
the model surface. The deviatoric stress term, which is related to changes in nonhydrostatic
stress, controls the velocity anisotropy of the deformed elastic medium. Equations 3.16 and
3.17 also reveal the role of different components of the strain-sensitivity tensor. In particular,
the combination C111 +2C112 is responsible for the isotropic P-wave velocity changes, while
(in agreement with previously published results) C155 governs the magnitude of the stress-
induced velocity anisotropy.

Although our numerical results are obtained for a simple 2D model, they illustrate
several important properties of stress-induced variations in reflection traveltimes. First,
traveltime shifts for reflectors at and above the reservoir are associated primarily with the
deviatoric stress components (i.e., with stress-induced anisotropy). Because anisotropy pa-
rameters should be estimated from offset-dependent traveltimes, it would be highly benefi-
cial to include prestack data in time-lapse analysis. Second, the magnitude of the anisotropy
parameters may be substantial, and the orientation of the symmetry axis rapidly varies in
space around the reservoir corners (similar variation is also observed for ellipsoidal reservoirs
models close to the points of maximum curvature). Third, the modeling helps to under-
stand the complex spatial distribution of traveltime shifts caused by the interplay between
the propagation direction and different stress components. On the whole, adding an extra
dimension (offset) to time-lapse analysis should help to better constrain the geomechanical
changes around depleting blocks and improve interpretation of 4D seismic data.

One of the main practical difficulties in modeling and interpretation of compaction-
related traveltime shifts is their dependence on the sixth-order strain-sensitivity tensor. Our
analytic results, obtained under the simplifying assumption that this tensor is isotropic,

3In each of the symmetry planes, the stress-induced anisotropy is elliptical.
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include two independent strain-sensitivity elements. Reliable constraints on these two el-
ements can be provided by laboratory measurements of stress sensitivity of reservoir and
overburden rocks similar to those already described in the literature.

Further development of the theory presented here could involve several possible di-
rections. The first is to incorporate second-order phenomena, especially those related to
the influence of lithostatic and regional stress fields and of plastic deformation. Then it
may be possible to evaluate whether the contributions of compressive and tensile stress
changes are indeed asymmetric. Note that existing measurements of traveltime shifts in-
dicate that velocity is much more sensitive to tensile than to compressive stress. Indeed,
velocity changes observed inside reservoirs are relatively small despite the strong compres-
sion of reservoir rocks. The second topic for future research is to derive similar equations for
traveltime shifts of converted modes and pure shear waves. Time-lapse prestack shear-wave
data should provide additional constraints on the parameters of the stress field. Third,
our analytic results can be extended to incorporate intrinsic anisotropy, while keeping the
strain-sensitivity tensor isotropic.
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Figure 3.3. 2D model of a rectangular reservoir embedded in an isotropic homogeneous
medium. The pressure drop inside the reservoir is 5 MPa. The medium parameters are
taken from the laboratory results of Sarkar et al. (2003) for Berea sandstone: VP = 2.3 km/s,
VP /VS = 1.58, ρ = 2.14 g/cm3, C111 = −13904 GPa, C112 = 533 GPa and C155 = −3609
GPa. To compute the excess stress, we set the Biot-Willis coefficient α to 0.85 (the closer is
α to unity, the more stress is generated by reducing the pore pressure in the reservoir). To
simulate the static stiffness coefficients, VP was reduced by 10%, which yields the typical
difference between the static and dynamic stiffnesses for well-consolidated rocks with low
porosity (Yale and Jamieson, 1994).
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Figure 3.4. Stress and strain changes for the model from Figure 3.3 caused by the reservoir
compaction. The top row shows changes in the vertical (∆σ33) and horizontal (∆σ11)
normal deviatoric stresses. The shear deviatoric stress (∆σ13) and the trace of the strain
tensor ∆ekk are shown in the second row. Negative values imply compression for stress
and contraction (shortening) for strain. Outside the reservoir, ∆σ11 ≈ −∆σ33. Inside the
reservoir, the maximum stress values are ∆σ33 = −2.2 MPa and ∆σ11 = 1.7 MPa, while
the volumetric change is constant: ∆ekk = −4.6 × 10−4 (the plots were clipped for better
visualization).
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Figure 3.5. Reservoir compaction makes the medium heterogeneous and anisotropic. a)
The anisotropy parameter δ = ε (color scale is clipped); b) contours of the angle between
the symmetry axis and the vertical (positive angle corresponds to counterclockwise tilt of
the axis) near the reservoir right edge (solid gray outline). Inside the reservoir δ = −0.18,
while the tilt of the symmetry axis at the reservoir corners approaches ±45◦.
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Figure 3.6. Comparison between traveltime shifts in CMP geometry computed by ray
tracing (solid lines) and from approximation 3.17 (dashed). The CMP is located above the
center of the reservoir (x = 0 km in Figure 3.3). The depths of imaginary reflectors are a)
1 km (gray) and 1.45 km (black); b) 1.55 km (gray) and 2 km (black). For this geometry,
X = 1

2 (s − r), where s and r denote the source and receiver positions.
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Figure 3.7. Traveltime shifts in CMP geometry for common midpoints at a) x = 1 km
and b) x = 2 km. The gray lines correspond to imaginary reflectors above the reservoir at
depths 1 km (dashed) and 1.45 km (solid). The black lines correspond to reflectors below
the reservoir at 1.55 km (dashed) and 2 km (solid). X/Z is the ratio of the half-offset and
reflector depth, which is equal to tan θ for the reference ray.
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by the asterisk. The shift plotted at each (x, z) point would be recorded at the source-
receiver offset 2x (i.e., the midpoint is at location x) from an imaginary horizontal interface
at depth z. The reservoir is marked by the black rectangle. Revised version of orignal figure
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reservoir (same display as in Figure 3.8). The contributions of the volumetric changes (a)
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Figure 3.10. Traveltime shifts in CMP geometry for three different midpoints x (each row
corresponds to a midpoint) and two different reflector depths z. a) x = 0 km, z = 1.55 km;
b) x = 0 km, z = 2 km; c) x = 1 km, z = 1.55 km; d) x = 1 km, z = 2 km; e) x = 2 km,
z = 1.55 km; and d) x = 2 km, z = 2 km. The total shifts (solid black lines) are plotted
along with the shifts due to the volumetric changes (dashed gray) and deviatoric stress
changes (dashed black).



44 Chapter 3. 4D traveltime shifts around compacting reservoirs

0 1 2

3

2

1

0

Midpoint (km)

D
ep

th
(k

m
)

-6
-4

-4

-2

-2

0

0

2

2

4

(a)

0 1 2

3

2

1

0

Midpoint (km)

-6
-4

-2
0

0
0

2
4

(b)

0 1 2

3

2

1

0

Midpoint (km)

D
ep

th
(k

m
)

-2

0
0

0
2

2

4
6

8

(c)

0 1 2

3

2

1

0

Midpoint (km)

-6

-6-4

-4

-4

-2

0

2

(d)

-12 -8 -4 0 4 8 12

traveltime shift (ms)

Figure 3.11. Contributions of the three deviatoric stress components to the traveltime shifts
for the shot at x = 2 km (asterisk) from Figure 3.8. The shift due to a) the total deviatoric
stress change (∆σ11 + ∆σ13 + ∆σ33); b) ∆σ11; c) ∆σ13; and d) ∆σ33.
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Figure 3.12. Contributions of the three deviatoric stress components to traveltime shifts
in CMP geometry for a) x = 0 km, z = 1 km; and b) x = 1.1 km, z = 1.45 km. The
shifts due to the total deviatoric stress change (solid black lines) are plotted along with the
contributions of ∆σ11 (dashed), ∆σ13 (dash-dotted), and ∆σ33 (solid gray).
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Chapter 4

Influence of Background Heterogeneity on

Traveltime Shifts for Compacting Reservoirs

4.1 Summary

Compaction induced by pore-pressure decrease inside a reservoir can be monitored by
traveltime shifts of reflection events in time-lapse seismic data. Recently, we demonstrated
that anisotropic velocity perturbations govern the traveltime shifts caused by compaction
in homogeneous background models. Thus, analysis of these shifts in the offset domain pro-
vides additional information about the velocity perturbation field that cannot be retrieved
from zero-offset data.

In this paper we model and analyze traveltime shifts for compacting reservoirs whose
elastic properties are different from those of the surrounding medium. Synthetic examples
show that large contrasts in rigidity modulus µ (> 25%) across the reservoir boundaries
produce significantly larger isotropic velocity perturbations outside the reservoir, in com-
parison with homogeneous models. Nevertheless, this effect is mostly confined to interfaces
close to the top and bottom of the reservoir. Hence, anisotropic velocity perturbations
remain the dominant component of traveltime shifts. As a consequence, prestack analysis
of traveltime shifts is required to help constrain the compaction-induced velocity perturba-
tions in heterogeneous background models as well. In addition, our analysis gives insight on
how traveltime shifts behave when reservoirs are stiffer or softer than the host rocks. For
example, compaction of softer reservoirs yields larger anisotropic velocity perturbations in-
side the reservoir, but smaller ones outside it, in comparison with homogeneous background
models. As a result, traveltime shifts show more offset variation if reflections come from
below the softer reservoir. Finally, analysis of a layered model, based on velocity profiles
from Valhall field in the North Sea, indicates that compaction-induced strain changes are
similar to simpler models, despite discontinuities in strain across layer boundaries. Substan-
tial differences, however, are observed on the patterns of traveltime shifts, because velocity
perturbations were largely confined to the softer and more stress-sensitive upper part of the
model. Thus, larger offset variation of traveltime shifts are observed for reflections from
interfaces above the reservoir, recorded in CMPs close to the edges of the reservoir.
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4.2 Introduction

Traveltime shifts (i.e., the differences in traveltime for the same reflector measured
between time-lapse seismic surveys) are increasingly used to monitor dynamic changes in
hydrocarbon reservoirs caused by depletion. For example, Guilbot and Smith (2002) employ
traveltime shifts to detect and monitor reservoir compaction and surface subsidence in
Ekofisk field in the North Sea. Hatchell and Bourne (2005b) introduce a method to estimate
the ratio of the perturbations in the vertical velocity and vertical strain from traveltime
shifts measured on stacked data. This ratio (“R”) can be used to monitor compaction
and detect compartments in a reservoir. Hodgson et al. (2007) use the vertical derivatives
of traveltime shifts computed from stacked data to estimate the pressure changes in the
Genesis reservoir.

In a recent paper (Fuck et al., 2009), we derive an analytic expression for traveltime
shifts that provides valuable physical insight into the influence of compaction-related stress
on reflection traveltimes. In contrast to previously published papers (e.g. Landrø and Stam-
meijer, 2004; Hatchell and Bourne, 2005a; Røste et al., 2006), our approximation permits
analysis of traveltime shifts in the offset domain while honoring the fact that reservoir
compaction produces heterogeneous, anisotropic velocity perturbations. The numerical ex-
amples in Fuck et al. (2009) are given for the simple model of a 2D homogeneous halfspace,
with pore-pressure changes confined to a rectangular reservoir. Traveltime shifts in this
model are primarily controlled by the anisotropic velocity perturbations, which should be
estimated from prestack data.

Here we model and analyze traveltime shifts for a compacting reservoir whose elastic
properties are different from those of the surrounding medium. These numerical simulations
are designed to evaluate how the elastic contrast influences traveltime shifts created by
the pore-pressure drop inside the reservoir. First, we review the properties of the excess
stress and strain in and around a reservoir undergoing a pore-pressure drop in an initially
homogeneous model. Then, we discuss the approximation for traveltime shifts presented by
Fuck et al. (2009) and review the modeling algorithm used here to simulate traveltime shifts
for the two types of 2D models. The first type includes a rectangular reservoir embedded in
an otherwise homogeneous host rock; for the second-type models, the background medium
is horizontally layered. The numerical results demonstrate that although the contrast in
the elastic properties between the reservoir and host rock changes traveltime shifts, they
are still controlled primarily by the anisotropic velocity perturbations.

4.3 Excess Stress and Strain for Compacting Reservoirs

Compaction of hydrocarbon reservoirs results from both elastic and anelastic deforma-
tion induced by depletion. Elastic deformation, in general, is caused by the pore-pressure
drop inside the reservoir; anelastic (i.e., irreversible) deformation may include the crushing
of grains and pores or dissolution of reservoir rocks by injected fluids used to enhance oil
recovery.

We restrict our treatment to elastic strains, following the approach of Geertsma (1973),
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Segall (1992) and Segall et al. (1994), who successfully explained depletion-induced phe-
nomena using linear poroelastic behavior of the reservoir rocks. Poroelastic rocks can be
deformed not only by external forces, but also by pressure changes inside the pores 1. Due to
the spatial variation of the pore-pressure changes (which are restricted to the reservoir), the
excess strain field includes not only normal but also shear components. For homogeneous
models of this type, it is possible to obtain analytic solutions for the particle displacement,
stress and strains, if the reservoir has a relatively simple shape. Hu (1989), for instance, pro-
vides a concise analytic description of the excess stress field for a 3D reservoir that has the
shape of a parallelepiped2. Such analytic solutions provide important physical insight into
the behavior of offset-dependent traveltime shifts. For instance, Hu (1989) demonstrates
that volumetric strain changes (i.e., the trace ∆ekk of the strain tensor) vanish outside
the reservoir, if the background model is homogeneous, while Downes et al. (1997) show
that ∆ekk inside the reservoir should be constant3. Nonzero volumetric changes outside the
reservoir occur only if the model includes a free surface. In this case, the largest values of
∆ekk are observed near the surface (Hu, 1989); this anomaly decreases for deeper reservoirs.

Furthermore, it can be inferred from the equations of Hu (1989) that the deviatoric
stress changes ∆σij are inversely proportional to the squared ratio of P- and S-waves ve-
locities (VP /VS):

∆σij ∝
(

VS

VP

)2

α ∆P , (4.1)

where ∆P is the pore-pressure change inside the reservoir and α is the Biot-Willis co-
efficient4. Substituting Hooke’s law for isotropic media into equation 4.1, we obtain the
deviatoric strain changes (∆εij = ∆eij − 1

3∆ekk) as

∆εij ∝
α ∆P

ρV 2
P

. (4.2)

The volumetric strain change is given by

∆ekk ∝ α ∆P

ρV 2
P

g

(3 − 4g)
≈ α ∆P

ρV 2
P

g

3

(

1 +
4g

3

)

, (4.3)

where g = (VP /VS)−2. Since g << 1 for most rocks, ∆ekk is inversely proportional to both
to V 2

P and to V 2
P /V 2

S .

1A good survey of poroelasticity can be found in Wang (2000).
2Hu (1989) actually considers the equivalent thermoelastic problem (i.e., the excess stress are caused not

by pore-pressure changes, but by temperature changes). Excess strains are obtained by Hooke’s law.
3The total effective stress inside the reservoir is computed by adding the initial pore-pressure drop to

Hu’s solution (Glas, 1991).
4α varies from 0 to 1 and quantifies the pore-pressure response to external forces.
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4.4 Traveltime Shifts

To reach an analytic description of P-wave traveltime shifts observed above a compact-
ing reservoir, Fuck et al. (2009) assume that the corresponding velocity perturbations are
small. Traveltime shifts can be obtained from a first-order perturbation of the traveltimes of
reference P-wave rays traced in the background velocity model. The approximation includes
two terms, one of which is “geometric” (i.e., related to the displacement of the sources, re-
ceivers and interfaces), while the other depends on the velocity pertubations along the ray.
The stress-induced velocity perturbations are computed using nonlinear theory of elasticity,
which represents the stiffness tensor cijkl of the deformed medium as

cijkl ≈ c◦ijkl + cijklmn ∆emn , (4.4)

where c◦ijkl is the stiffness tensor of the background medium, cijklmn is the strain-sensitivity
tensor, and ∆emn is the tensor of the elastic strains induced by the reservoir depletion.
Hereafter, the summation convention over repeated indices is assumed. Voigt notation
maps each pair of indices ij in equation 4.4 to a single index

α = iδij + (9 − i − j) (1 − δij) , (4.5)

where δij is Kronecker’s delta. Equation 4.4 then takes a more concise matrix form (Fuck
and Tsvankin, 2009):

Cαβ ≈ C◦

αβ + Cαβγ∆Eγ . (4.6)

Since the compaction-related displacements in the elastic regime yield negligibly small
traveltime shifts, the observed shifts are largely caused by the velocity perturbations. As-
suming both C◦

αβ and Cαβγ to be isotropic, we represent the velocity-related P-wave trav-

eltime shifts as (Fuck et al., 2009)5:

δt = −1

2

∫ τ2

τ1

[
B1∆ekk
︸ ︷︷ ︸

volumetric

+ B2

(
nT∆εn

)

︸ ︷︷ ︸

deviatoric

]
dτ , (4.7)

where n is the unit slowness vector of the reference ray, and τ is the time along the reference
ray. The constants B1 and B2 are defined by:

B1 =
C111 + 2C112

3C◦

33

, (4.8)

B2 =
4C155

C◦

33

. (4.9)

Since C155 = (C111 − C112)/4, traveltime shifts in equation 4.7 depend on just two com-
binations of the three linearly independent elements Cαβγ . Equation 4.7 separates the
velocity-related traveltime shifts into the isotropic term, which depends on the volumet-

5Here, we express the traveltime shifts in terms of the deviatoric strain rather than deviatoric stress to
facilitate the comparison between the contributions of the isotropic and anisotropic velocity changes.
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ric changes (∆ekk) and the anisotropic term associated with the deviatoric strain changes
(∆εij).

4.5 Method

Following Fuck et al. (2009), we employ a three-step procedure to model depletion-
related traveltime shifts. First, the excess stress and strain fields are computed for several
2D models with heterogeneous background. We use finite elements (COMSOLTM package)
to solve for the displacements, stresses and strains resulting from a pore-pressure drop inside
a rectangular reservoir. The modeling is carried out in 2D by assuming a plane-strain model
(i.e., there is no deformation in the x2-direction). The accuracy of the numerical solutions
is checked by comparing the results for a homogeneous model with those obtained from
the analytic expressions of Hu (1989). The top of the model is specified as a free surface;
to avoid artifacts due to the finite model dimensions, the computations are performed for
models with the height and width 10 times larger than those of the reservoir. Since the
pore-pressure changes are confined to the reservoir, the surrounding rock mass was modeled
as linearly elastic.

At the second step, we compute the stiffness and velocity perturbations from the
strain changes using equation 4.6. Finally, the traveltime shifts are obtained either from
approximation 4.7 or by subtraction of the exact (ray-traced) traveltimes calculated for the
perturbed and background velocity models. The anisotropic ray-tracing algorithm is based
on the equations of Červený (2001) for heterogeneous anisotropic media, which are solved
by the fifth-order Runge-Kutta method (Press et al., 1992). To avoid errors in traveltime
shifts caused by smoothing of velocity models, we account for reflection/transmission at
interfaces using Snell’s law.

4.6 Numerical Results

This section is divided into two parts. First, we analyze models in which the reservoir
is embedded in an otherwise homogeneous halfspace (“homogeneous host rock” models).
Second, we present the results for a layered model based on velocity profiles from Valhall
field in the North Sea.

4.6.1 Homogeneous Host Rock Models

We introduce a contrast in the P- or S-wave velocity between the undeformed reservoir
and the host rock, while the density and the matrix Cαβγ are kept constant (Figure 4.1).
The velocity contrast ranges from 0% to 50%; the reference values for the stiffness constants
and the strain-sensitivity tensor are taken from the laboratory measurements of Sarkar et al.
(2003) for a sample of Berea sandstone. For all numerical experiments, the pore-pressure
drop is fixed at ∆p = −5 MPa.

To simulate the static stiffnesses, which are generally smaller than those computed
from traveltimes (Yale and Jamieson, 1994), the velocities were multiplied with 0.9. The
same scaling coefficient was used in the tests of Fuck et al. (2009).
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Stress and Strain Modeling The most prominent change caused by the velocity
contrast across the reservoir boundary is the presence of a nonzero volumetric strain ∆ekk

outside the reservoir that is not related to surface subsidence (Figure 4.2). This ∆ekk

anomaly, however, is observed only when there is a contrast in the rigidity modulus µ,
which is in agreement with the semi-analytic results of Soltanzadeh et al. (2007). Indeed,
for models with no contrast in µ the pattern of the subsurface distribution of ∆ekk is similar
to that for a homogeneous background model (Figure 4.2b). In contrast, Figures 4.2c and
4.2d show completely different patterns of the subsurface volumetric changes caused by the
contrast in µ. The spatial distribution of ∆ekk also depends on whether the reservoir is
more or less rigid than the host rock (compare Figures 4.2c and 4.2d).

The deviatoric strain distribution in the subsurface is also sensitive to the contrast in
the µ (Figure 4.3). In particular, for relatively stiff reservoirs the deviatoric strain increases
toward the reservoir and concentrates near its boundaries. If the reservoir rocks are softer,
the deviatoric strain spreads throughout the section (especially in the vertical direction)
and tends to accumulate at the reservoir corners6.

Figure 4.4 illustrates how the volumetric strain and deviatoric strain components
(∆εij = ∆σij/2µ) at the center of the reservoir depend on the contrast in VS across its
boundaries7. Then, a stiffer reservoir produces smaller deviatoric and larger volumetric
strains, increasing the influence of the isotropic velocity changes for reflectors beneath and
at the base of the reservoir. For softer reservoirs the opposite is true, as illustrated by
Figure 4.4.

Exceptions include uncommon models with a low P-wave velocity (<2 km/s) and low
VP /VS (< 1.6) inside the reservoir or with a much stiffer reservoir (i.e., with a high P-wave
velocity in excess of 3 km/s and low VP /VS). In both cases, however, the volumetric and
deviatoric strains change compared to the homogeneous case by almost the same amount.
Hence, the relative contributions of the isotropic and anisotropic velocity perturbations to
the traveltime shifts remain almost the same.

Finally, we note that the patterns observed in Figures 4.2–4.4 show that equations
4.2 and 4.3, which were derived for the homogeneous case, remain valid for heterogeneous
models.

Offset Variation of Traveltime Shifts Two important issues discussed here are
the magnitude of the variation of traveltime shifts with offset and the influence of the
anisotropic velocity perturbations on this variation. If the offset variation is detectable, it
provides new information about the excess stress field only if traveltime shifts are dominated
by the anisotropic velocity changes. Otherwise, compaction-related velocity perturbations
can be estimated from traveltime shifts on stacked data.

For homogeneous background models, the offset variation is significant, especially
for reflectors below the reservoir. Despite the large isotropic velocity changes inside the

6The deviatoric vertical and shear strains exhibit patterns similar to that for the horizontal component
in Figure 4.3

7The density is fixed, so the contrasts in VS are equivalent to contrasts in µ.
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reservoir, the offset variation below the reservoir is, nevertheless, largely controlled by the
anisotropic velocity perturbations (Fuck et al., 2009).

As expected from the above results of stress and strain modeling, the behavior of the
shifts in the absence of the contrast in µ is similar to that of a homogeneous medium.
Indeed, as illustrated by the example in Figure 4.5 the anisotropic velocity perturbations
are largely responsible for the traveltime shifts above the reservoir. Below the reservoir,
they control the offset variation of the traveltime shifts.

A contrast in µ, however, can cause significant changes in the offset-dependent travel-
time shifts. Comparison between Figures 4.6 and 4.7 shows that both the magnitude and
offset variation of the traveltime shifts increase for reflections from interfaces above a more
rigid reservoir. Conversely, when the reservoir is softer than the host rock, the magnitude
of the shifts and their offset variation increase for reflectors beneath the reservoir. These
changes in the behavior of the traveltime shifts can be explained by the variation in the
subsurface distribution of strain with the contrast in µ. For example, the shifts above the
reservoir result mostly from deviatoric strains. Therefore, the larger deviatoric strains ob-
served above a more rigid reservoir (compare Figures 4.3b and 4.3c) produce larger shifts
with more pronounced offset variation. Traveltime shifts beneath the reservoir are strongly
depedent on the strains accumulated inside it. In particular, the larger offset variation of
traveltime shifts beneath a softer reservoir is explained by the reduction in the volumetric
strain and increase in the deviatoric strains inside such reservoirs (Figures 4.4a and 4.4b).

Figures 4.8 and 4.9 help to understand how the contrast in µ influences the behavior
and composition of the traveltime shifts. In general, the offset variation of the traveltime
shifts becomes more pronounced, if the contrast in µ enhances the anisotropic component
of the shifts (i.e., increases the deviatoric strain).

On the whole, the anisotropic velocity perturbations largely govern the offset-dependent
traveltime shifts for this group of models.

4.6.2 Layered Model

This model consists of eight horizontal layers whose parameters were adapted from
velocity profiles measured in the Valhall Field in the North Sea (Figure 4.10). The compo-
nents of the strain-sensitivity tensor correspond to those estimated by Prioul et al. (2004)
for North Sea shales under two different ranges of hydrostatic load. Taking into account the
weight of the model column, the layers above 2 km were assigned Cijk that were estimated
for the shales under the hydrostatic load in the range from 5 to 30 MPa 8; the deeper layers
were assigned Cijk measured for the load between 30 and 100 MPa. In order to obtain the
static stiffness similar to those published in Herwanger and Horne (2005) for their Valhall
model, seismic velocities were reduced by 40%.

Stress and Strain Modeling Apart from the discontinuities in strain across the
layer boundaries, the depletion-induced strains for the layered model are, in general, similar
to those observed for the simpler models investigated above. For example, since the reservoir

8in the water layer (0-0.1 km), the strain-sensitivity tensor is set to zero
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is stiffer than the rocks of the overburden, the deviatoric strain above the reservoir tends
to concentrate around the reservoir rather than spreading throughout the upper part of
the model (Figure 4.11). Also, as predicted by equation 4.2, the deviatoric strain is larger
above the reservoir than beneath it because of the higher P-wave velocities in two bottom
layers (Figures 4.11a–c).

The volumetric strain ∆ekkis also largely confined to the reservoir, where it exceeds
the deviatoric strain ∆εij . Outside the reservoir, however, ∆ekk is an order of magnitude
smaller than the deviatoric strain ∆εij (compare Figures 4.11a and 4.11d). Some of the
features of the distribution of the volumetric strain in the layered model can be explained
using equation 4.3. For instance, because ∆ekk is inversely proportional to both V 2

P and to
V 2

P /V 2
S , the seventh layer accumulates more volumetric strain than any other layer (except

for the reservoir) due to its small VP /VS = 1.6.
Figure 4.12 summarizes the influence of the depletion-induced strains on the veloc-

ity perturbation. As expected from our previous results (Fuck et al., 2009), the initially
isotropic velocity model composed of homogeneous layers becomes anisotropic with a hetero-
geneous velocity field in each layer. In particular, each layer becomes elliptically anisotropic
with a tilted symmetry axis. Because the components Cijk are much larger for the shallow
layers (between 0.1 km and 2 km depth), the stress-induced velocity changes are restricted
primarily to the upper half of the model (Figure 4.12a). The sign of the anisotropy’s pa-
rameter ε = δ indicates that the horizontal velocity is higher than the vertical velocity
outside the reservoir (ε > 0) and smaller inside it (ε < 0, Figure 4.12a). The rotation of
the symmetry axis from the vertical by the shear strain does not exceed 1◦ (positive angles
in Figure 4.12b imply clockwise rotation from the vertical).

Offset Variation of Traveltime Shifts Figure 4.13 show ray-traced and approxi-
mate traveltime shifts for a range of reflector depths for a CMP located above the reservoir
center. In contrast to the results of Fuck et al. (2009) for the homogeneous model, the
approximation works better for deeper reflectors because the largest velocity perturbations
are concentrated in the upper half of the model.

Another factor contributing to the poor performance of the linearized approximation
for reflectors at the depths 0.85 km, 1.5 km and 2 km is ray bending, which is not taken
into account by equation 4.7. This bending makes the traveltimes more sensitive to the
horizontal and shear components of the deviatoric strain tensor, which increases the offset
variation of the exact (ray-traced) shifts. Also, the approximation deteriorates for common
midpoints near the reservoir edges due to the accumulation of the shear strain around
the reservoir corners (Figure 4.11b). For example, the difference between the ray-traced
and approximate time shifts for the reflectors above the reservoir increases as the CMP
approaches the corner of the reservoir at x = 1 km.

Since the velocity perturbations occur mostly above the reservoir, the largest shifts
(as well as their more pronounced offset variation) are observed for the shallow reflectors,
especially in CMPs located above the reservoir corner (Figure 4.14). As was the case
for the “homogeneous host rock” models with a relatively rigid reservoir, the reflections
from the base of the reservoir and close to it show the smallest offset variation of the
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shifts, particularly for CMP locations above the center of the reservoir (Figure 4.13c). The
magnitude of the traveltime shifts at small offsets for the deeper reflectors (3 and 4 km)
is about the same as that for the reflector immediately below the reservoir at depth 2.7
km. The offset variation of the shifts increases gradually with the depth of the interface
in Figures 4.13c, 4.14e and 4.14f, because events reflected from deeper interfaces are less
influenced by the almost constant velocity perturbations inside the reservoir.

Figure 4.15 shows that the traveltime shifts are mostly due to the deviatoric strain,
which also controls the offset variation of the shifts both above and below the reservoir.
As already observed, deviatoric strains are almost constant inside the reservoir. As a con-
sequence, contours of traveltime shifts have large spacing beneath the reservoir in Figure
4.15. Figure 4.16 further explores this issue by showing a decomposition of the traveltime
shifts into its isotropic and anisotropic components for two reflectors below the reservoir.
When the CMP is located above the reservoir center, both the isotropic and anisotropic
components are almost invariant with offset, especially for the base of the reservoir.

4.6.3 Influence of The Reservoir Shape

The subsurface strain distribution caused by reservoir compaction also depends on the
shape of the reservoir (e.g., Faux et al., 1997). Because pore-pressure changes inside the
reservoir are equilibrated, they cause the reservoir to contract equally in all directions. As
a result, it should be expected that one of the principal strain directions is perpendicular to
the reservoir boundaries. For example, the principal strain direction outside a cylindrical
reservoir is parallel to the radius of the circular cross-section of the reservoir. Shear strains
vanish outside the reservoir only along the lines parallel to the coordinate axes that go
through the center of the circular reservoir cross-section (Figure 4.17a). For reservoir with
elliptical cross-section, the shear strains behave in a similar way, but the strain distribution
is influenced by the elongation of the ellipse. The largest rotation of the principal strain
directions with respect to the vertical occurs near the area with the highest curvature of
the ellipse (Figure 4.17b). As the aspect ratio of the elliptical cross-section decreases, the
shear strains tend to accumulate near the reservoir end points, and the strain distribution
resembles that for a reservoir with rectangular cross-section (compare Figures 4.17c and
4.17d).

Figure 4.18 shows a comparison of the vertical deviatoric strains for rectangular and
elliptical reservoirs with same area and aspect ratio. The distribution and magnitude of
the compaction-induced strains for both reservoirs are similar, except for the larger strain
closer accumulation near the vertical edges of the rectangular reservoir.

Since the magnitude and offset variation of traveltime shifts is governed by the subsur-
face strain distribution, we conclude that given similar area and aspect ratio, the behavior
of traveltime shifts will not substantially change with the reservoir shape (if area and aspect
ratio are fixed), especially for reflectors above the reservoir.
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4.7 Discussion

Since our analysis is restricted to elastic deformation, the modeled traveltime shifts
result primarily from the velocity perturbations. Traveltime shifts caused by the geometric
changes, however, may become significant due to the displacement of sources and receivers
caused by tides. Such phenomena should be taken into account when analyzing marine
time-lapse data.

We believe that taking anelastic deformation into account would not significantly
change the behavior of traveltime shifts above the compacting reservoir. Indeed, Chin
and Nagel (2004) show that the large compaction and subsidence at Ekofisk field can be
explained by restricting anelastic deformation to the reservoir itself. Hence, the patterns of
stress and strain above the reservoir should remain similar to those discussed above. For
reflections from interfaces below the reservoir, the shifts are still likely to be controlled by
the anisotropic velocity changes. Indeed, anelastic deformation induces fracturing inside the
reservoir, which not only enhances velocity anisotropy, but also reduces seismic velocities
(Sinha and Plona, 2001). This effect can potentially compensate for the increase in the
isotropic velocity perturbations caused by the volumetric contraction of the reservoir.

Compaction-related deformation is treated here as a static problem. In particular, we
do not consider coupling between poroelastic deformation and fluid flow inside the reservoir.
Although this coupling allows for the pore-pressure inside the reservoir to be influenced by
the deformation of the host rock and vice-versa (Gutierrez and Lewis, 2002), such interaction
should be small over the typical intervals between time-lapse seismic surveys (i.e., a couple
of years). Also, since we assumed the pore-pressure drop to be equilibrated throughout the
reservoir, we did not account for spatial variations in the pore-pressure. In cases where
such a variation is significant, the velocity perturbations are likely to vary substantially
inside the reservoir, which may induce larger offset variations of traveltime shifts beneath
the reservoir.

Finally, the paper does not address potential problems in accurately measuring trav-
eltime shifts on field prestack seismic data. Such problems range from the repeatability of
the acquisition parameters to distortions caused by measuring time shifts on partial stacks
formed by near-, mid- and far-offset data.

4.8 Conclusions

We have studied the influence of heterogeneity of the background velocity model on
compaction-related traveltime shifts and their variation with offset. The main goal of our
numerical simulations was to verify whether prestack analysis of traveltime shifts provides
useful information for reservoir characterization in the presence of background heterogeneity.

When the reservoir is embedded in a medium with different elastic properties, the
contrast in the rigidity modulus µ may cause substantial changes in the compaction-related
strain. The background heterogeneity changes the relative magnitude of the isotropic and
anisotropic velocity perturbations that are responsible for traveltime shifts. Nevertheless,
traveltime shifts are mainly governed by the anisotropic velocity changes, because the most
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significant isotropic velocity changes are largely restricted to the reservoir itself. Thus,
stacked data are not sufficient for reconstruction of the subsurface velocity perturbations
caused by the reservoir compaction.

The numerical experiments allowed us to formulate some simple “rules of thumb”. For
example, the larger the deviatoric strains produced by reservoir compaction, the larger the
offset variation of traveltime shifts. If the reservoir is more rigid than the host rock, then
the deviatoric strains tend to increase outside the reservoir and decrease inside it. Hence,
in comparison with homogeneous models, the offset variation is larger above a more rigid
reservoir than below it. Conversely, the offset variation of traveltime shifts decreases above
a less rigid reservoir and increases below it.

Furthermore, the geomechanical modeling for the layered medium indicates that the
distribution of compaction-induced strains of more complex models is not drastically differ-
ent from that of simpler ones. For example, the deviatoric strains continue to be inversely
proportional to the squared P-wave velocity VP , while the volumetric strain is also inversely
proportional to V 2

P /V 2
S . Moreover, the subsurface strain patterns for models with different

background are similar, despite the discontinuities in strain across layer boundaries. For
instance, because the reservoir in the layered model is more rigid than the overburden, the
deviatoric strain is concentrated above the reservoir, while the volumetric strain dominates
inside it.

Despite the similar geomechanical behavior, deeper formations in the layered model are
stiffer and less strain-sensitive. As a result, the strain-induced velocity perturbations occur
mostly in the upper part of the geologic section. Therefore, the most pronounced offset-
varying traveltime shifts are observed for reflections from interfaces above the reservoir,
especially for those recorded in CMPs close to the reservoir edges. Finally, given similar area
and small aspect ratios of reservoirs whether the reservoir is represented by a rectangular or
elliptical shape, does not drastically change the subsurface patterns of strain. As a result,
traveltime shifts obtained for both types of cross-section should present similar magnitudes
and offset variation for equivalent shot and CMP positions.
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x1

x3

0

1.5 km

2 km

0.1 km ∆p=-5 MPa

Figure 4.1. 2D model of a rectangular reservoir embedded in an isotropic homogeneous
medium. The pressure drop inside the reservoir is 5 MPa. The medium parameters are
taken from the laboratory data for Berea sandstone: VP = 2.3 km/s, VP /VS = 1.58, ρ = 2.14
g/cm3, C111 = −13904 GPa, C112 = 533 GPa and C155 = −3609 GPa. To compute the
excess stress, we set the Biot-Willis coefficient α to 0.85 (the closer is α to unity, the more
stress is generated by reducing the pore-pressure in the reservoir). To simulate the static
stiffness coefficients, VP was reduced by 10%, a typical difference between the static and
dynamic stiffnesses for well-consolidated rocks with low porosity
.
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Figure 4.2. Compaction-related volumetric strain ∆ekk for models with different elastic
contrast between the reservoir and host rock. Homogeneous background model (a) and
models with b) VP 25% higher outside the reservoir; c) VS outside the reservoir is 20%
lower than inside; d) VS inside the reservoir is 20% lower than outside. Negative values are
contoured in white, while zero and positive ones in black. The contour step is 0.25 ×10−5.
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Figure 4.3. Compaction-related horizontal deviatoric strain ∆e11. Homogeneous back-
ground model (a) and models in which b) VS is 20% lower outside the reservoir; c) VS

is 20% higher outside the reservoir. The contrast in µ is created by varying the VP /VS

ratio, while holding both the density and P-wave velocity constant. The contour step is 0.5
×10−5.
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Figure 4.4. Relative strain changes at the center of the reservoir (0 km,1.5 km) compared
to the homogeneous model. a) Volumetric strain; b) deviatoric horizontal strain; and c)
deviatoric vertical strain. Black solid lines corresponds to reservoirs that are stiffer than
host rocks; gray solid lines refer to reservoirs that are softer than host rocks . Elastic
parameters of the homogeneous model are those from Figure 4.1.
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Figure 4.5. Approximate traveltime shifts for a shot above the center of the reservoir. The
shift plotted at each (x,z) point would be recorded at the source-receiver offset 2x from an
imaginary horizontal interface at depth z. The background model is heterogeneous, with
VP and VP /VS 25% higher outside the reservoir (i.e., no contrast in µ). Traveltime shifts
caused by a) isotropic velocity changes ; b) anisotropic velocity changes; and c) total shifts.
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Figure 4.6. Approximate traveltime shifts for a shot above the center of the reservoir. The
model is heterogeneous, with VS 20% smaller outside the reservoir. Traveltime shifts caused
by a) isotropic velocity changes, b) anisotropic velocity changes; and c) total shifts.



64 Chapter 4. 4D traveltime shifts from heterogeneous background models

-1 0 1

3

2

1

0

Midpoint (km)

D
ep

th
(k

m
)

−7 −7

−1

(a)

-1 0 1

3

2

1

0

Midpoint (km)

D
ep

th
(k

m
)

−12

−1
1

2
3

4

(b)

-1 0 1

3

2

1

0

Midpoint (km)

D
ep

th
(k

m
)

−20

−
1

Midpoint (km)

D
ep

th
(k

m
)

1

2
3

(c)

−20 −15 −10 −5 0 5 10

traveltime shifts (ms)

Figure 4.7. Approximate traveltime shifts for a shot above the center of the reservoir. The
model is heterogeneous, with VS 20% larger outside the reservoir. Traveltime shifts caused
by a) isotropic velocity changes, b) anisotropic velocity changes; and c) total shifts.
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Figure 4.8. Traveltime shifts for CMP above the center of the reservoir for different contrasts
in VS (µ is larger inside the reservoir). Traveltime shifts for the a) top and b) bottom of
the reservoir for the contrast in VS varying from 0% (solid black) to 40% (solid gray line) in
steps of 10%; X/Z is the offset-to-depth ratio. The decomposition of the traveltime shifts
for the c) top and d) bottom of the reservoir into the isotropic (iso) and anisotropic (ani)
components; the contrast in VS is 40%.
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Figure 4.9. Traveltime shifts for CMP above the center of the reservoir for different contrasts
in VS (µ is smaller inside the reservoir). Traveltime shifts for the a) top and b) bottom of
the reservoir for the contrast in VS varying from 0% (solid black) to 40% (solid gray line) in
steps of 10%; X/Z is the offset-to-depth ratio. The decomposition of the traveltime shifts
for the c) top and d) bottom of the reservoir into the isotropic (iso) and anisotropic (ani)
components; the contrast in VS is 40%.
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Figure 4.10. Velocity and density profiles adapted from data acquired at Valhall field in
the North Sea (adapted from Røste, 2007). The model is composed of eight homogeneous
layers, and the rectangular reservoir (the gray rectangle) is located within layer 6. The first
layer (water) is 100 m thick, with Cijk = 0 and VP /VS = ∞. For layers two through four,
C111 = −11300 GPa, C112 = −4800 GPa and C123 = 5800. For layers five through eight,
C111 = −3100 GPa, C112 = −800 GPa, and C123 = 40 GPa.
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Figure 4.11. Deviatoric and volumetric strains caused by the pore-pressure drop ∆p = −2.5
MPa inside the rectangular reservoir for the model from Figure 4.10. The deviatoric strains,
a) ∆ε11; b) ∆ε13; c) ∆ε33; and d) the volumetric strain ∆ekk. Negative strain values are
contoured in white; zero and positive strains in black; the contour step is 0.5 × 10−5 in
a), b), and c) and 0.25 × 10−5 in d). The color scale is clipped for better contrast. At
the center of the reservoir (0 km,2.55 km), ∆ε11 = 1.2 × 10−4, ∆ε33 = −2.5 × 10−4 and
∆ekk = −3.9 × 10−4.
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Figure 4.12. Stress-induced velocity anisotropy for the layered model. a) Thomsen’s pa-
rameter δ = ε; b) the tilt of the symmetry axis. Positive values on both plots are contoured
in black, while negative ones in white. Positive degrees mean clockwise rotation from the
vertical.
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Figure 4.13. Comparison between ray-traced (black lines) and approximate traveltime shifts
(gray) measured in a CMP above the reservoir center. Traveltime shifts for the reflectors
at a) 0.85 km (solid lines) and 1.5 km (dashed); b) 2 km (solid) and 2.5 km (dashed); c)
2.7 km (solid), 3 km (dashed) and 4 km (dot-dashed).
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Figure 4.14. Ray-traced traveltime shifts measured in CMPs at x = 1.1 km (near reservoir
corner) and at x = 2 km, for the reflectors at: a) and b), 0.85 km (solid line) and 1.5 km;
c) and d), 2 km (solid) and 2.5 km (dashed); e) and f) 2.7 km (solid lines), 3 km (dashed)
and 4 km (dot-dashed).
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Figure 4.15. Decomposition of traveltime shifts computed from approximation 4.7 for a
shot at X=0 km in the layered model. Traveltime shifts due to the a) isotropic and b)
anisotropic velocity changes; c) the total traveltime shifts.
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Figure 4.16. Comparison of the isotropic (iso) and anisotropic (ani) components of the
traveltime shifts for the CMP above the reservoir center for events reflected from a) the
base of the reservoir (2.6 km); and b) from the reflector at 3km depth.
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Figure 4.17. Shear strain ∆ε13 developed around compacting reservoirs of different shapes.
The reservoir cross-section is a) circular; b) elliptical with the aspect ratio 1/4; c) elliptical
with the aspect ratio 1/20; and d) rectangular with the aspect ratio 1/20; the area of the
cross-sections is fixed. The model parameters are taken from Figure 4.1, with no elastic
contrast between the reservoir and host rock (i.e., the background is homogeneous).
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Figure 4.18. Vertical deviatoric strain ∆ε33 for reservoirs with a) rectangular and b) ellip-
tical cross-sections. The area of the cross-section and its aspect ratio (1/20) are the same.
The model parameters are taken from Figure 4.1.



76 Chapter 4. 4D traveltime shifts from heterogeneous background models
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Chapter 5

Analysis of the symmetry of a strained medium

using nonlinear elasticity

5.1 Summary

Velocity variations caused by subsurface stress/strain changes play an important role
in monitoring compacting reservoirs and in several other applications of seismic methods.
The most general way of describing strain-induced velocity fields is by employing the the-
ory of nonlinear elasticity, which operates with third-order elastic (TOE) tensors. These
sixth-rank strain-sensitivity tensors, however, are difficult to manipulate because of the
large number of terms involved in the algebraic operations. Thus, even evaluation of the
anisotropic symmetry of a medium under stress/strain proves to be a challenging task.
Here, we introduce a matrix representation of TOE tensors that allows computation of
strain-related stiffness perturbations from a linear combination of 6 × 6 matrices scaled by
the components of the strain tensor. In addition to streamlining the numerical algorithm,
our approach helps to predict the strain-induced symmetry using relatively straightforward
algebraic considerations. For example, our analysis shows that a transversely isotropic (TI)
medium acquires orthorhombic symmetry if one of the principal directions of the strain
tensor is aligned with the symmetry axis. Otherwise, the strained TI medium can become
monoclinic or even triclinic.

5.2 Introduction

Monitoring subsurface stress/strain fields and their time-lapse variations is an im-
portant research area with applications in velocity model-building (e.g., Sengupta and
Bachrach, 2008) and reservoir geophysics (e.g., Fuck et al., 2009). For example, pore-
pressure drop due to hydrocarbon production leads to reservoir compaction, which pro-
duces excess stress and strain not only in the reservoir itself, but also in the surrounding
rock mass.

Seismic velocities can help to monitor subsurface stress and strain because numer-
ous laboratory experiments have demonstrated that the stiffness tensor changes under
stress/strain (Eberhart-Phillips et al., 1989; Prasad and Manghnani, 1997). In the elas-
tic regime, stress stiffens grain contacts and closes fractures, making rocks more rigid
and increasing P- and S-wave velocities. Therefore, some theoretical models describe the
stress/strain sensitivity of seismic velocities through the stiffening of grain contacts (e.g.,
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Gassman and Hertz-Mindlin models discussed in Mavko et al., 1998), while others relate the
velocity variation to closing (or opening) of microcracks (e.g., Mavko et al., 1995; Sayers,
2006).

An alternative approach that has been successfully applied to this problem is based
on the nonlinear theory of elasticity (e.g. Sinha and Kostek, 1996; Winkler et al., 1998;
Sinha and Plona, 2001). In contrast to the Hertz-Mindlin theory, it employs a Taylor
series expansion that yields the full elastic tensor of the strained medium (Brugger, 1964).
Unlike fracture-based models, nonlinear elasticity operates not with the fracture orientations
and compliances, but with a third-order elastic (TOE) tensor responsible for the strain
sensitivity of the rock mass.

We start by reviewing the nonlinear theory of elasticity and application of TOE tensors
to model strain-induced velocity changes. Then we use Voigt notation to represent TOE
tensors as 6×6×6 matrices and analyze the structure of these matrices for several common
symmetry classes. This matrix representation naturally leads to an algebraic method to
predict the anisotropic symmetry of the strained medium from the symmetry of the TOE
tensor and the structure of the strain tensor. We use the proposed method to study the
symmetry of a wide range of strain-induced velocity models obtained by combining triclinic,
monoclinic, orthorhombic, hexagonal and isotropic TOE tensors with several types of the
strain tensor.

5.3 Physical Meaning of TOE Tensors

The nonlinear theory of elasticity (e.g. Prioul et al., 2004), provides the most general
way to model strain-induced velocity changes. The stiffness coefficients cijkl (each index
runs from 1 to 3) of a medium under stress/strain can be expressed in terms of the stiffnesses
(c◦ijkl) of the undeformed medium and the applied strains (∆eij) and stresses (∆Sij):

cijkl = c◦ijkl + cijklmn∆emn + ∆Sikδjl + c◦ijpl∆ekp + c◦ipkl∆ejp , (5.1)

where the summation convention over repeated indices is implied, and δjl is Kronecker’s
symbol. The elements cijklmn form the so-called third-order elastic (TOE) tensor, which
appears in the Taylor series expansion of the strain-energy function W (Hearmon, 1953):

W = W ◦ + Sijeij +
1

2
cijkleijekl +

1

6
cijklmneijeklemn + O(e4

ij) . (5.2)

Ultrasonic experiments in rocks have shown that typically ∆Sij � cijkl � cijklmn (Johnson
and Rasolofosaon, 1996; Prioul et al., 2004), so the largest perturbation term in equation
5.1 is the one that contains the tensor cijklmn. Therefore, equation 5.1 can be simplified to

cijkl = c◦ijkl + cijklmn ∆emn

= c◦ijkl + ∆cijkl . (5.3)
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According to approximation 5.3, the symmetry of the resulting stiffness tensor cijkl depends
on the symmetries of the background medium (c◦ijkl) and the TOE tensor cijklmn, as well
as on the structure of the strain tensor ∆emn.

The large number of terms involved in equation 5.3 obscures the influence of the TOE
and strain tensors on the stiffness perturbation ∆cijkl. To facilitate analysis of strain-
induced anisotropy, below we introduce a matrix representation of the main symmetry
groups of the TOE tensor and recast equation 5.3 as a matrix-vector expression.

5.4 Symmetry of The TOE Tensor

By analogy with the geometric symmetry of crystals, elastic tensors can be classified
into different symmetry groups in accordance with the invariance of their components with
respect to certain rotations of the coordinate frame (e.g., Helbig, 1994). Because of the
symmetry of the strain and stress tensors, the coefficients cijklmn are invariant with respect
to the permutation of the indices i and j, k and l, m and n. Hence, TOE tensors can be
represented using Voigt notation, which maps every pair of indices ij into a single index α
varying from 1 to 6:

α = iδij + (9 − i − j)(1 − δij) , (5.4)

which yields

11 7→ 1; 22 7→ 2; 33 7→ 3;

12 7→ 6; 13 7→ 5; 23 7→ 4 . (5.5)

In addition, because the strain-energy function W is invariant with respect to coordinate
transformations, the coefficients cijklmn remain the same if the pairs ij, kl and mn are
interchanged. In Voigt notation these symmetries can be succinctly written as

Cαβγ = Cβγα = Cγβα = Cβαγ . (5.6)

Application of Voigt notation to second-order elastic (SOE) tensors cijkl helps to replace
them by symmetric 6× 6 matrices (e.g., Helbig, 1994). Likewise, TOE tensors expressed in
Voigt notation are represented by 6 × 6 × 6 matrices or a six-element vector composed of
6 × 6 matrices:

Cα(βγ) =
(
C1(βγ) , C2(βγ) , C3(βγ) , C4(βγ) , C5(βγ) , C6(βγ)

)T
. (5.7)

Fumi (1951, 1952) and Hearmon (1953) describe the linearly independent elements of
the TOE tensor for all possible symmetry classes. Here, we use their results to construct
the matrix representation for several symmetries relevant in the context of exploration
geophysics. We proceed from the lowest possible symmetry (triclinic), which is characterized
by the absence of any symmetry elements (i.e., symmetry axes or planes), to the isotropic
tensor, which is invariant with respect to any coordinate transformation. A more detailed
analysis of the matrices Cαβγ for various symmetry classes can be found in Appendix G.



80 Chapter 5. Analysis of the symmetry of a strained medium using nonlinear elasticity

5.4.1 Triclinic Symmetry

Although the triclinic TOE tensor contains no symmetry elements, only 56 out of a
total of 36 = 729 elements are independent (equation 5.6). All six matrices that form the
vector Cα(βγ) in equation 5.7 are symmetric because the indices β and γ can be interchanged:

Cα(βγ) =











Cα11 Cα12 Cα13 Cα14 Cα15 Cα16

Cα12 Cα22 Cα23 Cα24 Cα25 Cα26

Cα13 Cα23 Cα33 Cα34 Cα35 Cα36

Cα14 Cα24 Cα34 Cα44 Cα45 Cα46

Cα15 Cα25 Cα35 Cα45 Cα55 Cα56

Cα16 Cα26 Cα36 Cα46 Cα56 Cα66











; (5.8)

α = 1, 2 . . . , 6.

5.4.2 Monoclinic Symmetry

The matrix representation of monoclinic TOE tensors can be derived from equation
5.8 by defining either a plane of mirror symmetry or a 2-fold symmetry axis (Winterstein,
1990).1 The independent elements Cαβγ are invariant with respect to rotation by θ = π
around the symmetry axis; the same set of independent Cαβγ can be obtained by using a
symmetry plane perpendicular to this axis. If the horizontal plane [x1, x2] is the plane of
symmetry, the monoclinic TOE matrices for α = 1, 2, 3, and 6 have the following form
(Appendix G):

Cα(βγ) =











Cα11 Cα12 Cα13 0 0 Cα16

Cα12 Cα22 Cα23 0 0 Cα26

Cα13 Cα23 Cα33 0 0 Cα36

0 0 0 Cα44 Cα45 0
0 0 0 Cα45 Cα55 0

Cα16 Cα26 Cα36 0 0 Cα66











. (5.9)

When α = 4 or 5,

Cα(βγ) =











0 0 0 Cα14 Cα15 0
0 0 0 Cα24 Cα25 0
0 0 0 Cα34 Cα35 0

Cα14 Cα24 Cα34 0 0 Cα46

Cα15 Cα25 Cα35 0 0 Cα56

0 0 0 Cα46 Cα56 0











. (5.10)

1A direction is called a k-fold symmetry axis when a tensor is invariant with respect to rotations by
θ = 2π/k around it (Helbig, 1994).
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Interestingly, the matrices described by equation 5.9 have the same structure (i.e., the same
nonzero elements) as the matrix representing the monoclinic SOE tensor (e.g., Helbig,
1994). The matrices in equation 5.10, however, contain nonzero elements in place of the
vanishing elements in equation 5.9. According to equations 5.9 and 5.10, the total number
of independent Cαβγ for monoclinic symmetry is 32.

5.4.3 Orthorhombic Symmetry

Orthorhombic symmetry is characterized by three orthogonal 2-fold symmetry axes,
or, correspondingly, by three orthogonal mirror symmetry planes (Helbig, 1994). Because
orthorhombic symmetry is a special case of the monoclinic model, the matrix representation
of the orthorhombic TOE tensor can be obtained from equations 5.9 and 5.10 by requiring
invariance with respect to rotations by θ = π around the x1- and x2-axes. These constraints
reduce the number of independent elements to 20, and the orthorhombic matrices Cαβγ can
be written as (see Appendix G)

Cα(βγ) =











Cα11 Cα12 Cα13 0 0 0
Cα12 Cα22 Cα23 0 0 0
Cα13 Cα23 Cα33 0 0 0

0 0 0 Cα44 0 0
0 0 0 0 Cα55 0
0 0 0 0 0 Cα66











, (5.11)

when α = 1, 2, and 3. For α = 4, 5, and 6,

C4(βγ) =











0 0 0 C144 0 0
0 0 0 C244 0 0
0 0 0 C344 0 0

C144 C244 C344 0 0 0
0 0 0 0 0 C456

0 0 0 0 C456 0











, (5.12)

C5(βγ) =











0 0 0 0 C155 0
0 0 0 0 C255 0
0 0 0 0 C355 0
0 0 0 0 0 C456

C155 C255 C355 0 0 0
0 0 0 C456 0 0











, (5.13)
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C6(βγ) =











0 0 0 0 0 C166

0 0 0 0 0 C266

0 0 0 0 0 C366

0 0 0 0 C456 0
0 0 0 C456 0 0

C166 C266 C366 0 0 0











. (5.14)

As was the case for monoclinic symmetry, the matrices Cαβγ with α = 1, 2 and 3 have the
same structure (i.e., the same nonzero elements) as the orthorhombic SOE matrix.

5.4.4 Hexagonal Symmetry

According to Hearmon (1953), there are two types of TOE tensors with hexagonal
symmetry. The first type is defined by a 6-fold symmetry axis perpendicular to a mirror
symmetry plane. The second (higher symmetry) type is obtained from the orthorhombic
model by introducing a 6-fold symmetry axis perpendicular to one of the three orthogonal
symmetry planes. Hereafter, we consider only TOE tensors of the second type.

The independent elements Cαβγ for type 2 hexagonal symmetry can be found by re-
quiring that the matrix elements in equations 5.11–5.14 remain invariant with respect to a
2π/3 rotation around the 6-fold symmetry axis, here assumed to point in the x3-direction
(more details are given in Appendix G). Note that if a certain element is invariant with
respect to rotations of both θ = π (which is the case for the orthorhombic TOE tensor)
and θ = 2π/3 around the same axis, then it is also invariant with respect to rotations of
θ = 2π/6 = π/3.

Except for the matrix C3(βγ), all other matrices representing the TOE tensor with
hexagonal symmetry have the same structure as those in equations 5.11–5.14. For hexagonal
symmetry, however, the number of independent elements reduces to 10. The additional
constraints are as follows2:

C112 =C111 − C166 − 3C266 ; (5.15)

C122 =C111 − 2C166 − 2C266 ; (5.16)

C222 =C111 + C166 − C266 ; (5.17)

C223 =C113 ; (5.18)

C233 =C133 ; (5.19)

C123 =C113 − 2C366 ; (5.20)

C244 =C155 = C144 + 2C456 ; (5.21)

C255 =C144 ; (5.22)

C355 =C344 . (5.23)

Equations 5.15–5.23 include nine independent elements of the TOE tensor; the tenth in-
dependent element is C333. Despite these constraints, C1(βγ) and C2(βγ) still retain the

2These constraints are obtained from the scheme of Fumi (1952), as discussed in Appendix G.
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structure of the SOE matrix with orthorhombic symmetry. The matrix C3(βγ), on the other
hand, has the VTI (transversely isotropic with a vertical symmetry axis) form:

C3(βγ) =











C113 C123 C133 0 0 0
C123 C113 C133 0 0 0
C133 C133 C333 0 0 0

0 0 0 C344 0 0
0 0 0 0 C344 0
0 0 0 0 0 C366











. (5.24)

Thus, C3(βγ) does not have the same structure as C1(βγ) and C2(βγ), as was the case for
the lower symmetries. It should be emphasized that in contrast to hexagonal SOE tensors,
TOE tensors considered here are not “transversely isotropic” in the sense that they are not
invariant with respect to arbitrary rotations around the 6-fold symmetry axis.

A similar pattern of matrix structures holds for α = 4, 5, and 6. While C6βγ has the
form described by equation 5.14, the constraints 5.21–5.23 show that C4(βγ) in equation 5.12
and C5(βγ) in equation 5.13 can be obtained from each other by permutation of columns
and rows:

C5(βγ) = R1C4(βγ)R1 , (5.25)

where

R1 =

(
P1 0

0 P1

)

. (5.26)

Here, 0 is a 3×3 matrix of zeros and P1 is a permutation matrix that interchanges the first
and second columns or rows of any 3 × 3 matrix:

P1 =





0 1 0
1 0 0
0 0 1



 . (5.27)

5.4.5 Isotropic TOE

The isotropic TOE tensor is described by three linearly independent elements (e.g.,
Barsch and Chang, 1968), here chosen to be C123, C144 and C456 (see Appendix G). The
complete Cαβγ matrix for isotropic media can be expressed through just two matrices, C1(βγ)

and C4(βγ):

C1(βγ) =











C111 C112 C112 0 0 0
C112 C112 C123 0 0 0
C112 C123 C112 0 0 0

0 0 0 C144 0 0
0 0 0 0 C155 0
0 0 0 0 0 C155











(5.28)
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and

C4(βγ) =











0 0 0 C144 0 0
0 0 0 C155 0 0
0 0 0 C155 0 0

C144 C155 C155 0 0 0
0 0 0 0 0 C456

0 0 0 0 C456 0











, (5.29)

where (Thurston and Brugger, 1964b)

C111 =C123 + 6C144 + 8C456 , (5.30)

C112 =C123 + 2C144 , (5.31)

C155 =C144 + 2C456 . (5.32)

The remaining matrices can be obtained from the following permutations:

C2(βγ) = R1C1(βγ)R1 , C3(βγ) = R2C1(βγ)R2 , (5.33)

C5(βγ) = R1C4(βγ)R1 , C6(βγ) = R2C4(βγ)R2 . (5.34)

The matrix R2 has the same block structure as R1 from equation 5.26, but with P1 sub-
stituted by P2, a matrix that interchanges the first and third rows or columns of 3 × 3
matrices:

P2 =





0 0 1
0 1 0
1 0 0



 . (5.35)

5.5 Symmetry of The Deformed Medium

The matrix representation of the TOE tensor helps to devise an algebraic procedure
to evaluate the symmetry of a medium under stress/strain. Using Voigt notation, equation
5.3 can be expressed in terms of the TOE matrix Cαβγ :

Cβγ = C◦

βγ + Cαβγ ∆Eα , (5.36)

where the vector ∆Eα = (e11, e22, e33, 2e23, 2e13, 2e12)
T is obtained from the symmetric

strain tensor ∆emn by applying Voigt notation. Hereafter, the strain tensor with vanishing
off-diagonal components ∆E4, ∆E5 and ∆E6 will be called diagonal. If the elements ∆E1,
∆E2 and ∆E3 of a diagonal strain tensor are equal, such a tensor represents volumetric

strain change (Fuck et al., 2008).
Each perturbation stiffness element ∆Cβγ = Cαβγ ∆Eα in equation 5.36 is obtained as

a linear combination of the Cα(βγ) matrices scaled by the components of the vector ∆Eα.
Due to the significant difference in the structure of the matrices Cα(βγ) for α = 1, 2, 3 and
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α = 4, 5, 6, it is possible to separate the contributions of the normal (diagonal) and shear
(off-diagonal) strain components in equation 5.36. Next, we analyze the symmetry of the
perturbation matrix ∆Cαβ using the results of the previous section. The structure of the
resulting stiffness matrix Cβγ is defined by the stiffnesses of the undeformed medium and
the nonzero elements of ∆Cβγ .

5.5.1 Isotropic TOE Tensor

When the TOE tensor is isotropic, the symmetry of the matrix ∆Cαβ is entirely
controlled by the structure of the strain tensor. This can be proved by substituting the
matrix representation of the isotropic TOE tensor into equation 5.36.

For a volumetric strain change (∆E1 = ∆E2 = ∆E3; ∆E4 = ∆E5 = ∆E6 = 0), the
term Cαβγ ∆Eα reduces to the sum of the matrix C1(βγ) from equation 5.28 and its two
permutations, C2(βγ) and C3(βγ), multiplied by the normal strain ∆E1. The resulting tensor
∆Cαβ is isotropic:

∆C11 = ∆C22 = ∆C33 = (C111 + 2C112)∆E1 ,

∆C44 = ∆C55 = ∆C66 = (C144 + 2C155)∆E1 ,

∆C12 = ∆C13 = ∆C23 = ∆C11 − 2∆C44 = (C123 + 2C111)∆E1 .

This confirms our expectation that any object undergoing volumetric change will remain
just a scaled version of itself by conserving its original shape or symmetry.

If the applied strain is uniaxial, then the stiffness perturbation from equation 5.36 is
transversely isotropic (TI). For example, the vertical strain ∆E3 yields the tensor ∆Cαβ

with VTI symmetry:

∆C11 =∆C22 = C112 ∆E3 ;

∆C33 =C111 ∆E3 ;

∆C44 =∆C55 = C155 ∆E3 ;

∆C66 =C144 ∆E3 ;

∆C12 =∆C11 − 2∆C66 = C123 ∆E3 ;

∆C13 =∆C23 = C112 ∆E3 .

When the strain tensor is diagonal, each matrix Cα(βγ) (α = 1, 2, 3) is multiplied with
a different normal strain component, which results in the stiffness perturbation that has
orthorhombic symmetry:

∆Cαβ =











∆C11 ∆C12 ∆C13 0 0 0
∆C12 ∆C22 ∆C23 0 0 0
∆C13 ∆C23 ∆C33 0 0 0

0 0 0 ∆C44 0 0
0 0 0 0 ∆C55 0
0 0 0 0 0 ∆C66











.
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In fact, if the TOE tensor is isotropic, the symmetry of ∆Cαβ is always orthorhombic
or higher, with the principal directions of the strain tensor defining the 2-fold symmetry
axes of the deformed medium. For example, a nonzero component ∆E6 causes a rotation of
the principal directions of the strain tensor around the x3-axis of the Cartesian coordinate
system. In addition to C1(βγ), C2(βγ) and C3(βγ), the stiffness perturbation for ∆E6 6= 0
also depends on the matrix C6(βγ) (equation 5.36):

∆Cαβ =











∆C11 ∆C12 ∆C13 0 0 ∆C16

∆C12 ∆C22 ∆C23 0 0 ∆C26

∆C11 ∆C12 ∆C13 0 0 ∆C36

0 0 0 ∆C44 ∆C45 0
0 0 0 ∆C45 ∆C55 0

∆C16 ∆C26 ∆C36 0 0 ∆C66











. (5.37)

The matrix ∆Cαβ in equation 5.37 describes an orthorhombic medium rotated around the
x3-axis because ∆C16, ∆C26, ∆C36 and ∆C45 are not independent. For instance, the
element ∆E6 in the coordinate system rotated by the angle θ around the x3-axis is given
by

∆E6 = 2∆e12 = 2(∆E′

2 − ∆E′

1) sin θ cos θ , (5.38)

where ∆E′

1 and ∆E′

2 denote the components of the strain tensor in the unrotated coordinate
system. Using equation 5.38, we find that

∆C36 =
(
∆C ′

23 − ∆C ′

13

)
sin θ cos θ , (5.39)

where, ∆C ′

ij are the components of the stiffness perturbation tensor in the unrotated coor-
dinate system. Thus, the orientation of the vertical symmetry planes of the orthorhombic
medium described by the matrix ∆Cαβ is determined by the element ∆E6.

A numerical example of the stiffness perturbation ∆Cαβ that has orthorhombic sym-
metry resulting from the combination of a purely isotropic TOE tensor and an arbitrary
(non-diagonal) strain tensor is given by Fuck et al. (2009). In their model, a pore-pressure
drop inside a rectangular reservoir embedded in a homogeneous isotropic host rock induce
stress/strain changes throughout the medium (Figure 5.1). The spatially varying stiffness
perturbations caused by the excess stress/strain field are computed from equation 5.36.
As illustrated by Figure 5.2, the compaction-related strain makes the reservoir and the
surrounding medium both heterogeneous and anisotropic. In the vertical symmetry plane
[x1, x3] shown in Figures 5.1 and 5.2, the perturbation matrix ∆Cαβ corresponds to a trans-
versely isotropic medium with elliptical P-wave anisotropy (i.e., the Thomsen parameters ε
and δ are equal; Figure 5.2a). The accumulation of shear stress/strain near the corners of
the reservoir causes a significant tilt of the symmetry axis from the vertical (Figure 5.2b).

5.5.2 Hexagonal TOE Tensor

If the 6-fold symmetry axis is parallel to the x3-direction, the matrix C3(βγ) of the
hexagonal TOE tensor has VTI symmetry, whereas C1(βγ) and C2(βγ) are orthorhombic



Rodrigo Feĺıcio Fuck / Fracture- and stress-induced seismic signatures 87

Distance (km)

D
ep

th
(k

m
)

∆σ33

(MPa)

–3 –2 –1 0 1 2 3

–0.2

0

0.2

0

1

2

3

Distance (km)

∆σ11

(MPa)

–3 –2 –1 0 1 2 3

–0.2

0

0.2

0

1

2

3

Distance (km)

D
ep

th
(k

m
)

∆σ13

(MPa)

–3 –2 –1 0 1 2 3

–0.2

0

0.2

0

1

2

3

Distance (km)

∆ekk

×10−5

–3 –2 –1 0 1 2 3

–4

–2

0

0

1

2

3

Figure 5.1. 2D stress and strain changes due to a 5 MPa drop in pore pressure (i.e., due to
compaction) inside a rectangular reservoir (after Fuck et al., 2008). ∆σ33 and ∆σ11 are the
normal deviatoric stresses, ∆σ13 is the shear deviatoric stress, and ∆ekk is the trace of the
strain tensor. Negative values imply compression for stress and contraction (shortening)
for strain. Inside the reservoir the maximum stresses are ∆σ33 = −2.2 MPa and ∆σ11=1.7
MPa, while the volumetric change is constant: ∆ekk = −4.6×10−4. The plots were clipped
for better visualization.
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Figure 5.2. Anisotropy parameters and the symmetry-axis orientation of the strain-induced
TI medium for the reservoir model from Figure 5.1 (after Fuck et al., 2008). a) The
anisotropy parameter δ = ε (color scale is clipped); b) contours of the angle between the
symmetry axis and the vertical (positive angles correspond to clockwise axis rotation) near
the right edge of the reservoir (solid gray rectangle). Inside the reservoir δ = −0.18, while
the tilt of the symmetry axis at the reservoir corners approaches ±45◦.

(equations 5.11 and 5.24). Therefore, a uniaxial strain applied in the symmetry-axis di-
rection (i.e., ∆E3 6= 0) yields the stiffness perturbation with VTI symmetry. If a uniaxial
strain is parallel to the x1- or x2-axis, the stiffness perturbation inherits the orthorhombic
symmetry of either the C1(βγ) or the C2(βγ) matrix. Furthermore, any diagonal strain tensor
also produces ∆Cαβ with orthorhombic symmetry.

Volumetric strain (∆E1 = ∆E2 = ∆E3) leads to VTI symmetry of the matrix ∆Cαβ ,
because the sum of the matrices C1(βγ), C2(βγ) and C3(βγ) gives the well-known VTI rela-
tionships:

∆C11 =∆C22 = (2C111 − C166 − 3C266 + C113) ∆E1 , (5.40)

∆C12 =∆C11 − 2∆C66 = (C112 + C122 + C123)∆E1 , (5.41)

∆C13 =∆C23 = (C113 + C123 + C133)∆E1 , (5.42)

∆C44 =∆C55 = (C144 + C155 + C344)∆E1 . (5.43)

If the only non-vanishing shear strain is ∆E6 = 2∆e12, the matrix ∆Cαβ still has orthorhom-
bic symmetry, but its vertical symmetry planes are rotated with respect to the axes x1 and
x2. This can be verified by showing that the elements ∆C45 and ∆Ci6 (i = 1, 2, 3) are not
linearly independent (e.g., equation 5.39 remains valid). The presence of nonzero shear
strains defined in planes that are not perpendicular to the 6-fold symmetry axis of the TOE
tensor lowers the symmetry of the stiffness perturbation. For instance, when ∆E5 6= 0
(∆E4 = ∆E6 = 0), ∆C46 no longer represents a linear combination of ∆C66 and ∆C44
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because
∆C46 6= (∆C66 − ∆C44) sin θ cos θ .

Then the symmetry of ∆Cαβ becomes monoclinic with the [x1, x3] symmetry plane. Sim-
ilarly, if ∆E4 is the only nonzero strain element, the perturbation stiffness tensor is also
monoclinic, but the symmetry plane is [x2, x3]. If both ∆E4 and ∆E5 are nonzero, the
perturbation ∆Cαβ has triclinic symmetry.

5.5.3 Lower TOE Symmetries

The summation in equation 5.36 produces the stiffness perturbation that cannot have
a higher symmetry than that of the TOE tensor. When the TOE tensor is orthorhombic
or monoclinic, the symmetry of ∆Cαβ depends on the structure of the strain tensor only
if the shear strains are nonzero. The combination of diagonal strain and the TOE tensor
with orthorhombic or monoclinic symmetry always generates an orthorhombic or monoclinic
stiffness perturbation ∆Cαβ , respectively.

When the TOE tensor is orthorhombic, a single nonzero shear strain component pro-
duces the perturbation ∆Cαβ with monoclinic symmetry (equations 5.12–5.14). If two or
three shear strains are nonzero, the resulting perturbation tensor is triclinic. Likewise, for
a monoclinic TOE tensor, any shear strain not defined in the symmetry plane (i.e., in the
plane perpendicular to the 2-fold symmetry axis) produces a triclinic perturbation ∆Cαβ .
Therefore, misalignment of the principal strain directions with the symmetry elements of
the TOE tensor lowers the symmetry of ∆Cαβ .

Finally, if the TOE tensor is triclinic, the stiffness perturbation always has triclinic
symmetry as well, regardless of the structure of the strain tensor.

5.5.4 Symmetry of The Resulting Stiffness Tensor

The above discussion was focused on the symmetry of the perturbation stiffness matrix
∆Cβγ = Cαβγ ∆Eα in equation 5.36. Once this matrix has been obtained, it is straight-
forward to evaluate the symmetry of the effective elastic tensor Cαβ which describes the
medium after deformation. In principle, the symmetry of the strained medium should not be
higher than that of either C◦

αβ or ∆Cαβ . There might be situations, however, in which some
of the off-diagonal terms in C◦

αβ and ∆Cαβ cancel out, resulting in the deformed medium
with a higher symmetry than those of the background model and the stiffness perturbation.
Although this issue should be studied further, such strain-induced compensation of intrinsic
anisotropy seems unlikely.

5.6 Conclusions

Excess stresses and strains generated by reservoir compaction and other physical pro-
cesses in the subsurface cause velocity anisotropy that can be evaluated using seismic meth-
ods. Here, we used the theory of nonlinear elasticity based on third-order elastic (TOE)



90 Chapter 5. Analysis of the symmetry of a strained medium using nonlinear elasticity

tensors to analyze the symmetry of a medium under stress/strain. Employing Voigt no-
tation, we introduced a convenient representation of the TOE tensor cijklmn in terms of a
6 × 6 × 6 matrix Cαβγ . The strain-induced stiffness perturbation ∆Cβγ is then obtained
by summing 6 × 6 TOE submatrices scaled by the components of the strain tensor. This
formalism provides a direct way to assess the contribution of each strain component to the
stiffness perturbation for a given symmetry of the TOE tensor. In particular, our approach
helps to separate the influence of the normal and shear strains on the symmetry of the
perturbed medium.

In the simplest case of a purely isotropic TOE tensor, the perturbation ∆Cβγ always
has orthorhombic or higher symmetry with the the 2-fold symmetry axes defined by the
principal directions of the strain tensor. When the strain is uniaxial, the stiffness pertur-
bation is transversely isotropic, and the symmetry axis is parallel to the strain direction.
The deformed medium remains isotropic only if an isotropic TOE tensor is combined with
volumetric strain (i.e., the strain tensor has only identical diagonal elements).

When the TOE tensor is hexagonal (transversely isotropic), a uniaxial strain applied
in the direction of the symmetry axis results in TI symmetry. However, if the strain tensor
is diagonal or a uniaxial strain is confined to the plane orthogonal to the symmetry axis,
the stiffness perturbation becomes orthorhombic. The influence of the off-diagonal (shear)
strains may lower the symmetry of ∆Cβγ to monoclinic or even triclinic.

On the whole, our algebraic procedure significantly facilitates application of TOE
tensors to analysis of strain-induced velocity perturbations. The formalism introduced here
is as intuitive as that describing the strain sensitivity of seismic velocities through closing
or opening of microcracks. Our results should be helpful in modeling and inversion of
strain-induced anisotropic velocity fields near compacting hydrocarbon reservoirs and salt
bodies.
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Chapter 6

Conclusions and Future Work

In this thesis I investigated seismic signatures of effective anisotropic elastic media that
can be used in static and dynamic reservoir characterization. The analysis included both
fracture- and stress-induced anisotropy.

Chapter 2 is devoted to seismic signatures of an effective medium formed by two sets
of vertical, orthogonal fractures with microcorrugated surfaces embedded in isotropic host
rock. Using the weak-anisotropy approximation, I derived closed-form expressions for the
shear-wave splitting, NMO ellipses of horizontal reflection events and P-wave reflection
coefficient. These expressions provide valuable insight into the behavior of seismic signa-
tures as a function of fracture rheology. The fracture weaknesses, for instance, control the
orientation and eccentricity of the NMO ellipses of the reflected P-, S1-, and S2-waves.
In particular, the contributions of the off-diagonal weaknesses ∆NHi

and ∆V Hi
(i = 1, 2),

which are related to corrugation, lead to the rotation of the NMO ellipses with respect
to the fracture strike directions. In contrast to the effective orthorhombic medium formed
by two orthogonal sets of penny-shaped cracks, all three NMO ellipses in this model have
different orientations.

Due to the lack of experimental data about the off-diagonal fracture weaknesses in
reservoir rocks, an interesting future direction is to use the analytic equations from Chapter
2 to implement inversion for certain combinations of the weaknesses. For example, if the
vertical velocities are available from check-shots, one can invert for the VP /VS ratio and the
differences between the diagonal weaknesses ∆Ni

, ∆Vi
and ∆Hi

of the two sets. In addition,
the sum of the off-diagonal weaknesses ∆NHi

can be estimated from the P-wave NMO
ellipse and AVO gradient. Constraining the weaknesses ∆V Hi

and ∆NVi
, however, is more

difficult, because they only appear in relatively small terms. For a single microcorrugated
fracture set, both ∆V H and ∆NV can be determined from VSP data using the slowness
surface of P-waves. It is not clear, however, if such an algorithm can be extended to more
complicated models.

An analytic description of compaction-related traveltime shifts was given in Chapter
3. It was based on three assumptions: i) first-order traveltime perturbations provide good
approximation for the traveltime shifts; ii) depletion-induced velocity perturbations can be
described by a purely isotropic strain-sensitivity tensor; iii) reservoir compaction can be
explained by elastic deformation. The first assumption helps to obtain an approximation
that accurately describes ray-traced traveltime shifts, unless the velocity perturbations are
large. The second assumption limits the stress-induced anisotropy to the special case of a
tilted orthorhombic medium in 3D (equivalent to tilted TI in 2D), but it reduces the number
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of the independent third-order stiffnesses to three. The assumption of elastic deformation
facilitates modeling of compaction, subsidence and strain caused by pore-pressure changes
inside a reservoir.

The main result of Chapter 3 is equation 3.17, which generalizes existing expressions
for zero-offset shifts and those for offset-dependent traveltime shifts in isotropic media. This
equation helps to explain the behavior of compaction-related traveltime shifts in common-
midpoint (CMP) and shot gathers. The two first-order components of traveltime shifts are
related to the geometric and velocity changes. Analysis of equation 3.17 indicates that for
elastic deformation the geometric component typically is at least an order of magnitude
smaller than the contribution of the velocity perturbations. Traveltime shifts due to the
velocity changes could be further split into two terms, one of which is related to the volu-
metric changes and the other to the deviatoric stresses. Significant volumetric changes are
largely restricted to the reservoir and to the vicinity of the earth’s surface. The deviatoric
stress term, which is related to changes in the nonhydrostatic stress, controls the velocity
anisotropy of the deformed elastic medium.

Although the numerical results in Chapter 3 were obtained for a simple 2D model, they
illustrate the essential properties of stress-induced variations in reflection traveltimes. In
particular, traveltime shifts for reflectors at and above the reservoir are associated primarily
with the stress-induced anisotropy. Hence, adding an extra dimension (offset) to time-lapse
analysis should help to better constrain the geomechanical changes around depleting blocks
and improve interpretation of 4D seismic data.

Chapter 4 is focused on the influence of heterogeneity of the background velocity model
on traveltime shifts and their variation with offset. In particular, the contrast in the rigid-
ity modulus µ across the reservoir boundaries changes the compaction-induced strain and
modifies the relative contributions of the isotropic and anisotropic velocity perturbations.
Nevertheless, traveltime shifts are mainly governed by the anisotropic velocity perturbations
since the most significant isotropic velocity changes are largely restricted to the reservoir
itself. Thus, traveltime shifts should be studied in the prestack domain, since analysis of
stacked data is not sufficient for reconstruction of compaction-induced velocity perturba-
tions. In essence, the numerical experiments show that the larger the deviatoric strains
produced by reservoir compaction, the larger the offset variation of traveltime shifts. The
results for the Valhall-style layered model, in which deeper formations are stiffer and less
sensitive to stress, suggest that both traveltime shifts and their variation with offset are
largest for reflections from interfaces above the reservoir, recorded at CMP locations near
the reservoir edge.

There are several promising directions of future research on traveltime shifts. First,
the theory developed in Chapters 3 and 4 should be applied to analysis of field 4D datasets
acquired over compacting reservoirs. Measurements of traveltime shifts on prestack seismic
data present a number of challenges, such as noise in time-lapse signatures caused by non-
repeatability. For example, it is necessary to account for the relative movement of sources
and receivers due to sea tides between time-lapse marine surveys. Another important issue
is to evaluate the impact of stacking on traveltime shifts because time-lapse analysis of
partial stacks of near-, mid- and far-offsets is more stable than that on raw prestack data.
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Future work should also consider implementation of tomographic inversion to map the
stress-induced velocity field. It would be useful to derive similar equations describing trav-
eltime shifts for shear-wave data (both pure and converted modes), which could provide
valuable constraints on the stress distribution. Additional information for time-lapse anal-
ysis can be obtained from body-wave reflection coefficients, which provide a more localized
estimate of the stress-induced velocity perturbations caused by reservoir depletion.

Two other issues worth investigating are the influence of anelastic deformation in-
side the compacting reservoir and the impact of treating deformation as a time-dependent
variable. Addressing these problems should help to improve the description of traveltime
shifts below compacting reservoirs and make it possible to carry out time-lapse analysis
over longer time periods.

In Chapters 3 and 4, velocity perturbations in and around a compacting reservoir were
modeled using the strain-sensitivity tensors from nonlinear elasticity theory. In Chapter 5, I
introduced a new matrix representation of these third-order elastic (TOE) tensors that not
only simplifies computation of the velocity perturbations, but also leads to a simple algebraic
procedure to evaluate the symmetry of the stressed medium. Using Voigt notation, the
TOE tensor cijklmn was represented by a 6× 6× 6 matrix which allowed the stress-induced
perturbation to be obtained by summing 6 × 6 matrices scaled by the components of the
strain tensor. This matrix notation provides a direct way to account for the symmetry of
TOE tensors and to separate the influence of the normal and shear strains on the symmetry
of the perturbed medium.

Development of analytic expressions for traveltime shifts or other types of seismic
signatures for a more complicated anisotropic background should benefit from the matrix
representation proposed in Chapter 5. For example, this formalism predicts that for VTI
background velocity models and a purely isotropic TOE tensor, the perturbed velocity field
will have orthorhombic symmetry above and below the reservoir, but close to the reservoir
edges the symmetry is monoclinic.
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Appendix A

Elements of the linear-slip theory

The linear-slip theory (Schoenberg, 1980; Schoenberg and Sayers, 1995) is designed
to find an equivalent (long-wavelength) representation of a medium that contains one or
several fracture sets. Fractures are treated as planar and parallel surfaces of weakness, and
it is assumed that interaction between fractures can be ignored. The fracture length is taken
to be infinite, while fracture apertures have to be small compared to the dominant seismic
wavelength. According to the linear-slip theory, the jumps in the displacement vector [ui]
(i.e., “slips”) across a fracture are to the first order proportional to the (continuous) stresses
σjk:

[ui] = hKij σjk nk, (A.1)

where n is the normal to the fracture plane, h is the average spacing between fractures, and
Kij are called the “compliances” of the fracture set.

The effective compliance tensor s of a fractured medium is then found as the sum
of the background compliance sb and the excess compliances sfi

of all fracture sets (e.g.,
Schoenberg and Muir, 1989; Hood, 1991):

s = sb +
N∑

i=1

sfi
. (A.2)

The compliances Kij of each fracture set are mapped onto the corresponding compli-
ance tensor sijkl using Hooke’s law (Sayers and Kachanov, 1995):

sijkl =
1

4
(Kiknlnj + Kjkninl + Kilnjnk + Kjlnink) . (A.3)

Equation A.1 indicates that K is a 3×3 matrix that has to be symmetric and nonneg-
ative definite because of the symmetries of the compliance tensor. Hence, a fracture system
can be described by up to six independent compliance elements. The diagonal terms of the
matrix relate the jumps in the normal displacement (“normal slips”) to the normal trac-
tions acting across the surface of the fractures, as well as the tangential slips to the shear
stresses. The off-diagonal elements are responsible for the coupling of the normal slips and
shear stresses and vice-versa. Hereafter, we follow the notation of Grechka et al. (2003):

K11 → KN ; K22 → KH ; K33 → KV ;

K12 → KNH ; K13 → KNV ; K23 → KV H .
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We consider two vertical, orthogonal fracture sets oriented in such a way that that the x1-
axis is perpendicular to the first set. The summation in equation A.2 is more conveniently
carried out using the condensed Voigt notation, which allows the compliance tensor to be
replaced by a 6 × 6 compliance matrix. Then, according to equation A.3, the compliances
matrices for the two sets take the form

sf1 =











KN1
0 0 0 KNV1

KNH1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

KNV1
0 0 0 KV1

KV H1

KNH1
0 0 0 KV H1

KH1











, (A.4)

sf2 =











0 0 0 0 0 0
0 KN2

0 KNV2
0 KNH2

0 0 0 0 0 0
0 KNV2

0 KV2
0 KV H2

0 0 0 0 0 0
0 KNH2

0 KV H2
0 KH2











. (A.5)

The compliance matrix of the isotropic background can be written as

sb =











E−1 −ν/E −ν/E 0 0 0
−ν/E E−1 −ν/E 0 0 0
−ν/E −ν/E E−1 0 0 0

0 0 0 µ−1 0 0
0 0 0 0 µ−1 0
0 0 0 0 0 µ−1











, (A.6)

where E is Young’s modulus and ν is Poisson’s ratio, which can be expressed through the
Lamé parameters λ and µ:

E =
µ (3λ + 2µ)

λ + µ
; (A.7)

ν =
λ

2 (λ + µ)
. (A.8)
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Appendix B

Linearized stiffness matrix for two orthogonal

fracture sets

Wave phenomena are more conveniently described using the effective stiffness matrix
that can be obtained by inverting the compliance matrix A.2. To obtain weak-anisotropy
approximations for seismic signatures, the stiffness elements can be linearized in the normal-
ized quantities called fracture weaknesses. Following Grechka et al. (2003), the weaknesses
for our model can be defined as

∆Ni
≡ (λ + 2µ) KNi

1 + (λ + 2µ)KNi

, (B.1)

∆Vi
≡ µKVi

1 + µKVi

, (B.2)

∆Hi
≡ µKHi

1 + µKHi

, (B.3)

∆NVi
≡

√

µ (λ + 2µ)KNVi

1 +
√

µ (λ + 2µ)KNVi

, (B.4)

∆NHi
≡

√

µ (λ + 2µ)KNHi

1 +
√

µ (λ + 2µ)KNHi

, (B.5)

∆V Hi
≡

√

µ (λ + 2µ)KV Hi

1 +
√

µ (λ + 2µ)KV Hi

, (B.6)

where the subscript i = 1, 2 refers to the number of the fracture set. Since the matrix K

has to be nonnegative definite, the weaknesses satisfy the inequalities

∆2
IJ

≤ ∆
I
∆

J
, (B.7)

where I and J denote the subscripts N , V , and H.
Using equations A.2 and A.4–A.6 and linearizing the stiffness matrix c ≡ s−1 in the



Rodrigo Feĺıcio Fuck / Fracture- and stress-induced seismic signatures 103

fracture weaknesses (equations B.1–B.6), we obtain

c ≈











c11 c12 c13 χc24 c15 c16

c12 c22 c23 c24 χc15 c26

c13 c23 c33 χc24 χc15 c36

χc24 c24 χc24 c44 0 c46

c15 χc15 χc15 0 c55 c56

c16 c26 c36 c46 c56 c66











, (B.8)

where

χ ≡ λ

λ + 2µ
. (B.9)

The linearized stiffness elements are given by

c11 = (λ + 2µ)
(
1 − ∆N1

− χ2∆N2

)
, (B.10)

c12 = λ (1 − ∆N1
− ∆N2

) , (B.11)

c13 = λ (1 − ∆N1
− χ∆N2

) , (B.12)

c14 = −
√

λµχ ∆NV2
, (B.13)

c15 = −
√

µ (λ + 2µ) ∆NV1
, (B.14)

c16 = −
√

µ (λ + 2µ) (∆NH1
+ χ∆NH2

) , (B.15)

c22 = (λ + 2µ)
(
1 − ∆N2

− χ2∆N1

)
, (B.16)

c23 = λ (1 − χ∆N1
− ∆N2

) , (B.17)

c24 = −
√

µ (λ + 2µ) ∆NV2
, (B.18)

c25 = −
√

λµχ ∆NV1
, (B.19)

c26 = −
√

µ (λ + 2µ) (χ∆NH1
+ ∆NH2

) , (B.20)

c33 = (λ + 2µ)
[
1 − χ2 (∆N2

+ ∆N1
)
]
, (B.21)

c34 = −
√

λµχ ∆NV2
, (B.22)

c35 = −
√

λµχ ∆NV1
, (B.23)

c36 = −
√

λµχ (∆NH1
+ ∆NH2

) , (B.24)

c44 = µ (1 − ∆V2
) , (B.25)

c45 = 0 , (B.26)

c46 = −µ

√
µ

λ + 2µ
∆V H2

, (B.27)

c55 = µ (1 − ∆V1
) , (B.28)

c56 = −µ

√
µ

λ + 2µ
∆V H1

, (B.29)

c66 = µ (1 − ∆H1
− ∆H2

) . (B.30)
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If the weaknesses of the second fracture set are equal to zero, the linearized effec-
tive stiffnesses given above reduce to those obtained by Grechka et al. (2003) for a single
microcorrugated fracture set orthogonal to the x1-axis. Another special case is that of rota-
tionally invariant fractures, for which the off-diagonal weaknesses vanish and the tangential
weaknesses ∆Vi

and ∆Hi
are equal to each other. If both fracture sets are made rotationally

invariant, our stiffness matrix becomes identical to that in Bakulin et al. (2000b).
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Appendix C

Time-lapse Variations of traveltimes

This appendix illustrates the ideas behind the variational approach that allowed us to
describe traveltime shifts in 3D space for heterogeneous, generally anisotropic medium. The
problem is to compute the variation of traveltimes t, within a certain time interval [t1, t2]:

δt = δ

∫ t2

t1

dt (C.1)

Using the definition of the slowness vector as the normal to the wavefront, pi = dt/dxi (i =
1, 2, 3) (e.g. Chapman, 2004), we express the variational problem in terms of the slowness
vector and the ray position vector x in Cartesian 3D space:

δt =δ

∫
x2

x1

pi dxi , (C.2)

where x1 and x2 denote the position vectors for the end points of the reference ray. Here,
the summation convention over repeated indexes is assumed. To allow variation of both
the slowness and position vectors of the reference ray, we introduce the parameter τ which
remains fixed during the perturbation of traveltimes:

δt = δ

∫ τ1

τ2

δ

(

pi
dxi

dτ

)

dτ = δ

∫ τ1

τ2

δ (piẋi) dτ . (C.3)

The variation of traveltimes should produce perturbed rays that also obey the eikonal
equation. To incorporate this “eikonal” constrain into the problem we express it as a
function H (Červený, 2001, e.g.):

H(xi, pi) =
1

2

[
V 2(xi, pi)pipi − 1

]
= 0 , (C.4)

where V (xi, pi) represents the phase velocity. Then, using a Lagrange multiplier Λ, we
incorporate the constrain (C.4) directly into the variation of the traveltime by writing:

t =

∫ τ2

τ1

(piẋi + ΛH) dτ . (C.5)
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If we set Λ = −1 in the above equation (C.5), the integrand will become a new function

L = piẋi −H , (C.6)

and the parameter τ then represents traveltime along the unperturbed ray. We prove this,
first by showing that from equation (C.4) we can define a new vector uk = V 2pk, which is
actually the group velocity vector, because

ukpk = 1 ⇔ uk =
dxk

dt
. (C.7)

Since traveltimes should come from integration of function L in equation C.6, then:

t =

∫ τ2

τ1

Ldτ =

∫ τ2

τ1

(piẋi −H) dτ , (C.8)

and by substituting equation C.4 into expression C.8, we obtain

t =

∫ τ2

τ1

(

piẋi −
1

2
piui +

1

2

)

dτ , (C.9)

By hypothesis, dt = dτ , which implies ẋ = u. Hence,

t =

∫ τ2

τ1

(
1

2
piui +

1

2

)

dτ =

∫ τ2

τ1

dτ ,

proving that indeed τ = t.
The form of L in equation C.6 indicates that it relates to H through a change of

variables from group velocity vector ẋ to the slowness vector p. Indeed, on account of
definition C.4 and equation C.7, the group velocity ẋ is the gradient of H in relation to the
slowness vector:

ẋi =
∂H
∂pi

. (C.10)

If for each p there is a corresponding ẋ, then equations C.10 are solvable for pi as a function
of ẋi, and L can be expressed as a function of xi and ẋi only. We note that xi variables
remain unchanged and so they are called passive variables (Lanczos, 1986). To account
for the one-time change in L caused by the deformation of the medium due to reservoir
compaction, we can add time t as another passive variable to the problem. The variation
of traveltimes is then the variation of L,

δt =

∫ τ2

τ1

δLdτ =

∫ τ2

τ1

δ (piẋi −H) dτ . (C.11)

Expanding the perturbations of the integral kernels in equation C.11 above, yields

∂L
∂xi

δxi +
∂L
∂ẋi

δẋi +
∂L
∂t

δt =
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(

ẋi −
∂H
∂pi

)

δpi + piδẋi −
∂H
∂xi

δxi −
∂H
∂t

δt . (C.12)

In principle, we should have expressed pi as functions of ẋi in the equation above. But this
is unnecessary, since term-by-term comparison shows that the coefficient of δpi is already
zero in equation C.12. In addition, this comparison implies that

pi =
∂L
∂ẋi

, (C.13)

and

∂L
∂t

= −∂H
∂t

, (C.14)

∂L
∂xi

= −∂H
∂xi

. (C.15)

Now to solve the perturbation problem we need to know what are the derivatives in equation
C.15. To that effect, we observe that the variation of traveltimes is

δt =

∫ τ2

τ1

(
∂L
∂xi

δxi +
∂L
∂ẋi

δẋi +
∂L
∂t

δt

)

dτ (C.16)

Using integration by parts we group the variations in relation to x and ẋ and, thus, the
variation of the traveltimes becomes

δt =
∂L
∂ẋi

δxi

∣
∣
∣
∣

τ2

τ1

+

∫ τ2

τ1

∂L
∂t

δt dτ

+

∫ τ2

τ1

(
∂L
∂xi

− d

dτ

∂L
∂ẋi

)

δxi dτ (C.17)

If the end-points are fixed, then the first term equals zero in equation (C.17). Likewise, if
there was no time variation of L, then the second term would also be zero. If these two
conditions hold, then we are back to tracing rays in the reference medium and the real ray
trajectory is, according to Fermat’s Principle, the one that renders δt = 0. So now we reach
the conclusion that the third term should then be zero, which implies that

∂L
∂xi

− d

dτ

∂L
∂ẋi

= 0 . (C.18)

The equations contained in expression (C.18) are in fact the Euler-Lagrange equations (e.g.,
Lanczos, 1986). By substituting equations C.15 into the Euler-Lagrange equations C.18,
we get:

ṗi =
∂L
∂xi

= −∂H
∂xi

. (C.19)

Hence, whereas the variation of L(xi, ẋi, t) depends on second order differential equations
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in xi, the variation of H(xi, pi, t) depends only on first-order differential equations, in ac-
cordance to equations C.10 and C.13 and C.19. Physically, this means that it is easier
to compute traveltime perturbations from variations of slowness surfaces (described by H,
the Hamiltonian in classical mechanics jargon) than from wavefronts (described by L, the
Lagrangian).

Using equations C.10, C.13 and C.19 the traveltime variation in equation C.11 can be
written as

δt =

∫ τ2

τ1

(

piδẋi + ṗiδxi −
∂H
∂t

δt

)

dτ

=

∫ τ2

τ1

[
d

dτ
(piδxi) −

∂H
∂t

δt

]

dτ (C.20)

The variation of H between time-lapse seismic surveys can be chosen as a constant,
∆H. Hence, the time interval δt, is arbitrary and we set it to unit. We then reach equation
(3.1), which shows that first-order traveltime shifts are produced by perturbation of the
Hamiltonian along the reference ray and by changes in its end-points:

δt = piδxi

∣
∣
∣
∣

τ2

τ1

−
∫ τ2

τ1

∆Hdτ (C.21)

It should be emphasized that this approach is only possible, because the relation
between slowness surface and the wavefront is one-to-one. Hence, it is not valid near trip-
lications in shear-wave wavefronts in anisotropic media, where ray-tracing approximations
break down anyway.

Now it is necessary to describe the Hamiltonian perturbation ∆H, which arises due to
reservoir compaction. Since the first-order perturbation operator works in the same way as
a first derivative operator, from equation C.4 we obtain

∆H =
1

2
[2V ∆V pkpk] =

∆V

V
. (C.22)

Note that perturbation of the slowness vector pi is not considered here because it
was already accounted for in the derivation of equation C.21. To obtain the perturbation
of the velocity, ∆V , it is necessary to perturb the Christoffel equation, which controls
the kinematics of seismic wave propagation in the ray theoretical sense. This first-order
perturbation approach was first published by Jech and Pšenčik (1989), and here we include
a simplified version of it for completeness. We start with the Christoffel equation:

(
Γik − V 2δik

)
Ui = 0 , (C.23)

where Ui is a component of the polarization vector and δij is the Kronecher delta. The
Christoffel matrix Γik is defined in terms of the unit slowness vector ni = V pi:

Γik = aijklnjnl .
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The first-order perturbation of equation (C.23) above leads to:

(∆Γik − 2V ∆V δik) Ui +
(
Γik − V 2δik

)
∆Ui = 0 . (C.24)

Further simplification is obtained by noting that multiplication a by polarization component
Uk allows the elimination of the term multiplied by ∆Ui on account of the definition of the
Christoffel equation (see equation C.23). Then,

∆ΓikUiUk − 2V ∆V UkUk = 0 .

Since the polarization vector is normalized, UkUk = 1, the equation above yields

∆V =
∆ΓikUiUk

2V
=

∆aijklnjnlUiUk

2V
. (C.25)

Plugging equation (C.25) into expression (C.22) we achieve a description for traveltime
changes in terms of the changes of density-normalized elastic parameters ∆aijkl and the
polarization and propagation direction of the reference rays. If we further assume that
perturbations are done for P-waves in isotropic background velocity model, then U = n.
As a result, traveltime shifts due to velocity perturbations can be computed along the
reference rays as:

δt = −
∫ τ2

τ1

∆V

V
dτ = −1

2

∫ τ2

τ1

∆aijkl ninjnknl

V 2
dτ . (C.26)
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Appendix D

Elements of the matrix ∆Cαβ

Here, we give a brief derivation of the perturbations of the stiffness coefficients obtained
from the equation ∆cijkl = cijklmn ∆emn. To simplify the summation over repeated indices
we take advantage of the following symmetries of the tensor cijklmn (e.g., Thurston and
Brugger, 1964a):

cijklmn = cjiklmn = cijlkmn = cijklnm = cklijmn = cmnklij . (D.1)

These symmetries make it possible to use Voigt notation, which reduces the number of
independent elements from 729 to 56. These elements are distributed in 6× 6× 6 matrices,
and the summation is accomplished by multiplying each cube face by the 6×1 vector formed
by the element ∆eij of the excess strain tensor:

∆Cαβ =Cαβγ ∆Eγ , (D.2)

where

∆Eγ =(∆e11, ∆e22, ∆e33, 2∆e23, 2∆e13, 2∆e12)
T . (D.3)

The indices α, β and γ run from 1 to 6. Application of equation D.2 is greatly simplified, if
the Cαβγ matrices are formed by isotropic tensors, because such a tensor includes only 20
non-zero elements (Hearmon, 1953):

C111 = C222 = C333 , (D.4)

C144 = C255 = C366 , (D.5)

C112 = C223 = C133 = C113 = C122 = C233 , (D.6)

C155 = C244 = C344 = C166 = C266 = C355 , (D.7)

C123 , (D.8)

C456 . (D.9)

The isotropic symmetry of the sixth-order tensor implies that only three of the components
listed above are linearly indepedent. Following the convention adopted in Thurston and
Brugger (1964a), non-zero elements Cαβγ for isotropic media can be expressed through
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linear combinations of three Lamé-type parameters νi:

C111 =ν1 + 6ν2 + 8ν3 , (D.10)

C112 =ν1 + 2ν2 , (D.11)

C123 =ν1 , (D.12)

C144 =ν2 , (D.13)

C155 =ν2 + 2ν3 , (D.14)

C456 =ν3 . (D.15)

Using the tensor symmetries D.1 and equations D.4–D.9, the perturbations ∆Cαβ from
equation D.2 can be written as

∆C11 = C111∆E1 + C112(∆E2 + ∆E3), (D.16)

∆C22 = C111∆E2 + C112(∆E1 + ∆E3), (D.17)

∆C33 = C111∆E3 + C112(∆E1 + ∆E2), (D.18)

∆C44 = C144∆E1 + C155(∆E2 + ∆E3), (D.19)

∆C55 = C144∆E2 + C155(∆E1 + ∆E3), (D.20)

∆C66 = C144∆E3 + C155(∆E1 + ∆E2), (D.21)

∆C12 = C123∆E3 + C112(∆E1 + ∆E2), (D.22)

∆C13 = C123∆E2 + C112(∆E1 + ∆E3), (D.23)

∆C23 = C123∆E1 + C112(∆E2 + ∆E3), (D.24)

∆C14 = C144∆E4, (D.25)

∆C15 = ∆C35 = C155∆E5, (D.26)

∆C16 = ∆C26 = C155∆E6, (D.27)

∆C24 = ∆C34 = C155∆E4, (D.28)

∆C25 = C144∆E5, (D.29)

∆C36 = C144∆E6, (D.30)

∆C45 = C456∆E6, (D.31)

∆C46 = C456∆E5, (D.32)

∆C56 = C456∆E4 . (D.33)
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Appendix E

Perturbation of the Hamiltonian

To derive the perturbation of the Hamiltonian in equation 3.9 of the main text, we use
equation 3.14 and assume that the strain-sensitivity tensor is isotropic (see Appendix D).
First, we evaluate the numerator B of equation 3.9:

B =∆aijkl ninjnknl , (E.1)

where ∆aijkl are the density-normalized stiffness perturbations, and n is the unit slowness
vector. Using Voigt notation to replace ∆aijkl by the 6×6 matrix ∆Aαβ (α and β run from
one to six), we find:

B =∆A11n
4
1 + ∆A22n

4
2 + ∆A33n

4
3 + 2 (∆A12 + 2∆A66) n2

1n
2
2

+ 2 (∆A13 + 2∆A55)n2
1n

2
3 + 2 (∆A23 + 2∆A44) n2

2n
2
3

+ 4
(
∆A16n

2
1 + ∆A26n

2
2

)
n1n2 + 4

(
∆A15n

2
1 + ∆A35n

2
3

)
n1n3

+ 4
(
∆A24n

2
2 + ∆A34n

2
3

)
n2n3 + 4 (∆A14 + 2∆A56) n2

1n2n3

+ 4 (∆A25 + 2∆A46)n1n
2
2n3 + 4 (∆A36 + 2∆A45)n1n2n

2
3 . (E.2)

Note that ∆Aαβ = ρ−1∆Cαβ , where ∆Cαβ are given by equations D.16–D.33. Substi-
tuting equations D.16–D.33 into equation E.2 and taking into consideration equations D.10–
D.15 leads to

ρB = [C111∆E1 + C112 (∆E2 + ∆E3)] n
4
1

+ [C111∆E2 + C112 (∆E1 + ∆E3)] n
4
2

+ [C112 (∆E1 + ∆E2) + C111∆E3] n
4
3

+ 2 [C112∆E3 + (C112 + 2C155) (∆E1 + ∆E2)] n
2
1n

2
2

+ 2 [C112∆E2 + (C112 + 2C155) (∆E1 + ∆E3)] n
2
1n

2
3

+ 2 [C112∆E1 + (C112 + 2C155) (∆E2 + ∆E3)] n
2
2n

2
3

+ 4C155n1n2n3 (∆E4n1 + ∆E5n2 + ∆E6n3)

+ 4C155

[
∆E6n1n2

(
n2

1 + n2
2

)

+∆E5n1n3

(
n2

1 + n2
3

)
+ ∆E4n2n3

(
n2

2 + n2
3

)]
. (E.3)
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Combining the terms containing C111, C112 and C155 in equation E.3 yields

ρB = (C111 − C112)
(
∆E1n

4
1 + ∆E2n

4
2 + ∆E3n

4
3

)

+ C112ekk + 4C155

[
∆E1

(
n2

1 − n4
1

)

+ ∆E2

(
n2

2 − n4
2

)
+ ∆E3

(
n2

3 − n4
3

)

+∆E6n1n2 + ∆E5n1n3 + ∆E4n2n3] , (E.4)

where ∆ekk is the trace of the excess strain tensor ∆eij = ∆Eγ . It follows from equa-
tions D.10–D.15 that C111 − C112 = 4C155, which allows us to obtain B as

ρB =C112∆ekk + 4C155

(
∆E1n

2
1 + ∆E6n1n2 + ∆E2n

2
2

+∆E5n1n3 + ∆E4n2n3 + ∆E3n
2
3

)
. (E.5)

In tensor notation, equation E.5 becomes

ρB = C112∆ekk + 4C155∆eijninj . (E.6)

The contribution of the quadratic form ∆eij ninj to the stiffness perturbations in equa-
tion E.6 causes the resulting velocity anisotropy to be elliptical.

Another interesting property of equation E.6 is that B is comprised of two terms, one
of which is controlled by the volumetric changes (i.e., by ∆ekk). The strain tensor ∆eij can
be represented through its deviatoric (∆εij) and dilational (∆ekk) components:

∆eij = ∆εij +
1

3
∆ekk δij ,

and equation E.6 takes the form

ρB =
1

3
(3C112 + 4C155)∆ekk + 4C155 ∆εijninj . (E.7)

Using equations D.10 – D.15, we find that 3C112 + 4C155 = C111 + 2C112. Linear
Hooke’s law helps to express the deviatoric strain through the deviatoric stress as ∆εij =
∆σij/(2c44), which leads to the following expression for the term B:

ρB =
1

3
(C111 + 2C112) ∆ekk + 2

c155

c44
∆σijninj . (E.8)

Equation E.8 represents B as the sum of the contributions of the volumetric changes ∆ekk

and the deviatoric stress changes ∆σij .
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Appendix F

Comparison with equations for zero-offset data

Here we compare our equation 3.17 with the equation of Hatchell and Bourne (2005b)
for zero-offset traveltime shifts. We consider zero-offset rays reflected from a horizontal
interface in an isotropic homogeneous background medium. In addition, displacements
are assumed to be vertical. Therefore, the only nonzero components of the slowness and
displacement vectors in equation 3.17 are p3 and δx3:

δt = p3u3

∣
∣
∣
∣

τ2

τ1

−
∫ τ1

τ2

∆V

V
dτ (F.1)

where δx3 = u3. Bringing the endpoint contributions under the integral, we obtain

δt =

∫ τ2

τ1

[
d (p3u3)

dτ
− ∆V

V

]

dτ . (F.2)

Expanding the derivative in the integrand and changing variables (dτ = dz/V ) yields the
two-way traveltime shift:

δt = 2

∫ Z

0

[

V p3
du3

dz
+ V u3

dp3

dz
− ∆V

V

]
dz

V
. (F.3)

The integration is carried out from the surface (z = 0) to the reflector depth Z. From the
eikonal equation it follows that p3 = 1/V , and

δt = 2

∫ Z

0

[
du3

dz
+ V u3

dp3

dz
− ∆V

V

]
dz

V
. (F.4)

Since the reference ray is traced in a homogeneous medium, dp3/dz = 0. Also, according
to the definition of the strain tensor, ∆ezz = du3/dz. Hence,

δt = 2

∫ Z

0

[

∆ezz −
∆V

V

]
dz

V
. (F.5)

Equation F.5 is equivalent to the zero-offset result of Hatchell and Bourne (2005b) who
rewrite δt as follows:

δt = 2

∫ Z

0
(1 + R)

∆ezz

V
dz, (F.6)
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where

R = −∆V

V

1

∆ezz
. (F.7)

The equivalence of equations F.5 and F.6 confirms that equation 3.17 represents a general-
ization of previously published results.
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Appendix G

Independent Elements of The TOE Tensor

Here, we follow Fumi (1951, 1952) and Hearmon (1953) to describe the independent
elements of the third-order elastic tensor for several common symmetry classes. Independent
elements cijklmn for a given class should remain invariant with respect to rotations around
a symmetry axis or reflections through a symmetry plane. According to the definition of a
sixth-rank Cartesian tensor, such invariance implies that any independent element cijklmn

should satisfy the following set of equations:

cijklmn − cpqrsuvRipRjqRkrRlsRmuRnv = 0 , (G.1)

where Rij is the unitary matrix describing the transformation of the tensor cijklmn due to a
coordinate change. Equation G.1 is used below to identify the set of independent elements
for triclinic, monoclinic, orthorhombic, hexagonal and isotropic TOE tensors starting with
the lower symmetries1.

G.1 Triclinic Symmetry

The number N of independent elements Cαβγ for triclinic media can be found from
the symmetry properties in equation 5.6 by taking into account that each index changes
from 1 to 6 (Toupin and Bernstein, 1961):

N =

(
6 + 3 − 1

3

)

=
8!

3! 5!
= 56 . (G.2)

These 56 independent elements populate six full 6 × 6 symmetric matrices (equation 5.8).

G.2 Monoclinic Symmetry

For monoclinic media, only a subset of the 56 elements Cαβγ is independent. Since
monoclinic symmetry has one mirror symmetry plane, the independent elements are the
solutions of equation G.1 written for a reflection with respect to this plane. Assuming that

1Helbig (1994) uses the same approach to identify the independent elements of SOE tensors.
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the symmetry plane is horizontal, the matrix Rij in equation G.1 is

R =





1 0 0
0 1 0
0 0 −1



 . (G.3)

Substituting equation G.3 into equation G.1, we find that each of the 56 equations reduces
to:

cijklmn = (−1)pcijklmn , (G.4)

where p is the number of times that the index 3 appears in cijklmn. Hence, only the elements
cijklmn with an even number of indices 3 satisfy equation G.4. The nonzero elements Cαβγ

for monoclinic symmetry with a horizontal symmetry plane are listed in equations 5.9 and
5.10.

G.3 Orthorhombic Symmetry

Orthorhombic models are characterized by three orthogonal symmetry planes or, alter-
natively, by three orthogonal 2-fold symmetry axes. To identify the independent elements
Cαβγ , one can start with the monoclinic TOE tensor analyzed above and require invariance
for reflection with respect to both vertical planes ( [x1, x3] or [x2, x3]). For example, the
matrix Rij for reflection with respect to the [x1, x3]-plane is

R =





1 0 0
0 −1 0
0 0 1



 . (G.5)

Substitution of equation G.5 into equation G.1 yields 32 equations (one for each independent
element of the monoclinic tensor cijklmn). These equations have the form of expression G.4,
but the exponent p now stands for the number of times the index 2 appears in cijklmn.
Therefore, the independent elements Cαβγ for orthorhombic symmetry should have an even
number of indices 2 and 3. A similar procedure is applied to reflection with respect to the
[x2, x3]-plane. The resulting matrix Cαβγ , given in equations 5.11–5.14, has 20 independent
elements.

G.4 Hexagonal Symmetry

To find out which components of the hexagonal tensor cijklmn are independent, we
require that the elements cijklmn for orthorhombic media remain invariant with respect to
rotation by θ = 2π/3 around the axis x3. The corresponding rotation matrix can be written
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as (Goldstein, 1980)

R =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 . (G.6)

Because the matrix R has nonzero off-diagonal elements, equations G.1 no longer reduce
to a simple form similar to that of equation G.4. Instead, one needs to solve systems
of equations that relate certain groups of nonzero elements Cαβγ . These systems can be
obtained by transposing equations A1–A10 of Hearmon (1953).2

From equations A1, A3 and A5–A7 of Hearmon (1953) one can deduce the constraints
given in equations 5.15–5.23 above. Finally, we note that for any rotation around the x3-
axis, C333 always remains the same. Hence, it is the tenth (and last) independent element
of the hexagonal TOE tensor.

G.5 Isotropy

A simple way of making the TOE tensor isotropic is to require that the 10 independent
elements of the hexagonal tensor remain unchanged for arbitrary rotation around any axis.
For example, cijklmn should stay the same when we interchange any two indices. Hence,

C111 =C222 = C333; (G.7)

C112 =C133 = C223 = C113 = C122 = C233; (G.8)

C144 =C255 = C366; (G.9)

C155 =C266 = C344 = C166 = C244 = C355; (G.10)

Taking into consideration the constraints in equations 5.15–5.23, the identities in equations
G.7–G.10 also imply that

C112 =C123 + 2C144 , (G.11)

C111 =C123 + 6C144 + 8C456 . (G.12)

Therefore, the isotropic TOE tensor is completely defined by three independent constants
(C123, C144 and C456), as shown in several publications (e.g. Barsch and Chang, 1968). The
matrix representation of the isotropic TOE tensor is given in equations 5.28–5.34.

2This transposition is necessary because in our notation C112 = c111122, as in Fumi (1952), and not
C112 = 3c111122, as in Hearmon (1953).
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