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Abstract

That faults are of fundamental importance in petroleum systems cannot be stressed
enough. The role the faults play, however, is complicated by their dual nature as fluid seals
and conduits. Understanding a fault’s behavior demands extensive knowledge of its past
geologic history, core samples, pressure measurements, and well logs. Further complicating
matters, the sealing capacity of a fault usually varies directionally and the along-fault
permeability episodically increases in response to slip.

Seismic reflection images offer an attractive means to measure the internal properties
of fault zones remotely; for instance, direct evidence of faults (e.g., fault-plane reflections)
occasionally shows up on migrated seismic data. We describe three basic models that give
rise to fault-plane reflections: juxtaposition (e.g., sand/shale) contacts, effective linear-slip
behavior at the fault, and large pore pressure jumps across the fault. From the point of
view of fault properties, the first of these three models, juxtaposition contacts, is the least
interesting. Reflectivity from a fault originating from one of the other two models directly
relates to the sealing and conducting behavior of the fault. To enhance the information
on the sealing and conducting properties of a fault, we propose a seismic data processing
technique to attenuate the reflectivity due to juxtaposition contacts and layer boundaries.
Utilizing a 2D spectral-element implementation of the elastic wave equation, we model
examples and combinations of these three basic models and their imprint on reflected waves.

A 3D seismic survey from Blocks 314, 315, 330, and 331 of the South Eugene Island
field, offshore Louisiana, contains reflections from a major growth fault system. We find
that differences in pore pressure across a fault known as the A-fault give rise to reflections
from the fault-plane. Thus, the presence of the reflections point to the fault providing a
significant seal. The ability of the reflected waves to sense the sharp onsets of overpressure,
or pore pressure in excess of hydrostatic, has implications for the prediction of potential
drilling hazards. Along another fault known as the B-fault, we study the possibility of
geologically fast, pressure-driven fluid flow along the fault. We observe the first evidence
from seismic reflection images of a fluid pulse, or “fault burp”, propagating up the B-fault.
In reflection images from 1985 and 1992, areas of high reflectivity systematically move up the
fault 1 km, for an average speed of 140m/yr. The average pulse speed can be explained with
a model of a permeable fault zone connecting the shallow, normally pressured sediments to
a deep, overpressured compartment. The presence of geologically fast fluid movement along
growth faults sheds light on hydrocarbon migration mechanisms and the rate of reservoir
recharge at South Eugene Island.
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“A mausician, if he is a messenger, is like a child who hasn’t been handled too many times
by man, hasn’t had too many fingerprints across his brain. That’s why music is so much
heavier than anything you ever felt.”

Jimi Hendrix, to an interviewer, April 1969

“Pressure, pushing down on you, pressing down on me.”
David Bowie, lyrics to Under Pressure, 1981
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Chapter 1

Introduction: faults, pore fluid pressure, and
material properties

Interest in the properties of fault zones spans many different aspects of Earth science.
Miners pursue economic deposits of minerals in veins that form along faults due to past fluid
flow. In fact, most of the terminology associated with faults (e.g., hangingwall, footwall)
originates from mining (Hickman et al., 1995). Earthquake seismologists study the mechan-
ics of failure along faults to better understand the source of their seismic signals and the
danger facing large populations in seismically active areas. Petroleum geoscientists look for
hydrocarbons in structural traps formed by faulting while simultaneously implicating fault
zones as fluid migration pathways. Drillers attempt to avoid intersecting faults because of
the uncertainties associated with their strength and fluid pressure regimes nearby. Adams
& Kuhlman (1994) warn that “a connection of two or more faults via an intersecting well-
bore creates a situation conducive to an underground blowout.” In the petroleum industry,
blowouts have caused the abandonment of several multi-million dollar wells (Hatchell, 2000).
One of the most dangerous scenarios encountered while tunneling occurs when a perched
water table, sealed by an impermeable fault, is breached (Domenico & Schwartz, 1990).

With all this talk of how important and pervasive faults are, it is fair to ask “what
makes fault zones unique?”. Besides the fact that seismicity originates at faults and that
faults are usually associated with a high heat flux, one of the hallmarks of faults is how
they interact with fluids. Flow tests conducted in fault zones reveal that, because of high
fracturing, the permeability of fault rock varies strongly as a function of pore pressure
(Anderson et al., 1995; Fisher et al., 1996). This leads to a nonlinear fluid flow equation
(Rice, 1992) that I discuss in the final chapter of this thesis. Faults also show evidence for
anisotropic permeability (Zhang & Tullis, 1998) by virtue of their split personality as both
lateral fluid seals and vertical conduits. Moreover, there appears to be a generic permeability
structure associated with faults: a central cataclastic zone, or fault gouge layer, surrounded
by a damage, or process, zone (Scholz & Anders, 1994). Contact forces along faults, which
are responsible for the formation of cataclasite, can mechanically undo the rock compaction
process by crushing the rocks into a powder. As a result, thin layers, known as deformation
bands that are virtually impermeable, sometimes form near faults. Deformation bands serve
to compartmentalize a reservoir, forcing the need for precise placement of multiple producing
wells to efficiently tap the hydrocarbons that are present. At the least, deformation bands
act as baffles and severely hinder fluid flow.

Seeing how faults distinguish themselves, 1 decided the title of my thesis should em-
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phasize the role of fluids and settled on, “An investigation of sealing and episodic pulsing of
fluids at a minibasin-bounding growth fault from seismic reflection images.” I have chosen
to describe the thesis as an investigation after seeing a presentation by Malcolm Sambridge
of ANU during the summer of 2004. In it, he quipped that every scientific endeavor has a
bit of Sherlock Holmes in it. Looking back at my research on faults, I get the feeling that
it has been a bit of an interrogation of the subject. From the title, there is also a hint of
the dual behavior of faults as seals and, occasionally, significant fluid conduits. The specific
type of fault that I study is prominently mentioned. This is done since there are as many
types of faults as there are rocks in the subsurface. Needham & Yielding (1996) and Yield-
ing et al. (1991) have demonstrated that there exists an inverse power-law scaling between
the number and size of faults, with the spatial range extending from small fractures all the
way to large, plate-boundary faults. The faults discussed in this thesis fall well between
these two extremes. Finally, the tool I use to draw information about the faults comes from
seismic reflection images.

The thesis is organized with technical chapters coming first and interpretation chapters
at the end.

1. Introduction: faults, pore fluid pressure, and material properties
Seismic data processing in the stationary phase approximation
Finite element modeling of slip-discontinuities in layered media
Spectral element modeling of fault-plane reflections

Fault-plane reflections as a diagnostic of pressure differences in reservoirs: a case study

S

Seismic detection of a spatially-limited fluid pulse ascending a growth fault

In Chapter 2, I analyze the entire “standard” seismic data, processing sequence using
the stationary phase approximation. Though state-of-the-art seismic data processing no
longer relies on such an approximation, a thorough knowledge of the subject is a must for
quantitative interpreters of seismic data. In particular, the nature of the errors in seismic
reflection images has an impact on subsequent interpretations of fault-plane reflections.

In Chapter 3, I present the nuts and bolts of a finite element implementation of the
elastic wave equation in a layered medium. The exercise is instructive, especially in the 1D
setting where the complicating aspects of meshing and assembly of the mass and stiffness
matrices are unnecessary. The concepts introduced in this section directly pertain to the
following section on spectral elements. In addition, a wave propagation code has come out
of this research that should be a useful tool for others involved in seismic related research.
For my own purposes, I use the code to do simple modeling of well logs in later chapters of
this thesis.

In Chapter 4, I model the full elastic wavefield via the spectral-element method and
process the simulated data to construct images. With this tool, I primarily focus on fault-
plane reflections and the underlying causes of seismic reflectivity at faults. I find that fault-
related pore-pressure contrasts above a certain threshold can be detected in the presence
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of reflections from bed terminations at the fault. I also use empirical relationships between
elastic properties (e.g., density, P-wave velocity) and pore pressure to relate a slipping fault
to a pressurized fault zone.

In Chapter 5, I interpret fault-plane reflections from a large, minibasin-bounding
growth fault at the South Eugene Island field. A dip-filter processing scheme acts to high-
light fault-plane reflections in seismic data obtained in a line shot in the direction of a system
of growth faults. I find that over large portions of the fault, the fault-plane reflections arise
from contrasts in pore pressure across the fault.

In Chapter 6, I extend the work begun in Chapter 5 and push the methodology into a
study of fault-hosted vertical fluid flow at the South Eugene Island field. Fluid flow along
faults is a poorly understood topic that sits at the crossroads of many fields of geoscience.
I begin by describing an unusually high-amplitude fault-plane reflection that, from well
data taken at South Eugene Island, correlates with a portion of a growth fault where other
scientists had previously speculated about the possibility of a fluid pulse ascending the fault.
By comparing 1985 and 1992 data, I observe that areas of high reflectivity at the B-fault
move systematically up the fault plane 1 km, for an average speed of 140 m/yr.

Finally, after the discussion on fault burps, I make conclusions about the main out-
comes of my research on faults and future paths to take. During the course of my thesis
work, I also had time to do research in the field of incoherent multiple wave scattering
(Haney et al., 2003a; Van Wijk et al., 2004; Haney et al., 2005). Though unrelated to the
topic of fault zones, the projects on multiple wave scattering taught me how to do scientific
research in general. In addition, I produced two original pieces of research in exploration
magnetics (Haney & Li, 2002; Haney et al., 2003b) and contributed to another (Li et al.,
2004).

In this introductory section, I discuss empirical relationships between pore pressure
and three basic rock properties - porosity, density, and sonic velocity. The data for this
analysis come from wells drilled at the South Eugene Island field, offshore Louisiana. The
fact that pore pressure largely controls rock matrix properties in compacting sedimentary
basins allows methods for imaging seismic reflections to indirectly measure spatially varying
pore pressure distributions. I use the evidence presented in this chapter as a springboard to
do precisely that with seismic data taken at the South Eugene Island field. The variation
of the three rock properties with effective stress reveals a fundamental hysteretic type of
behavior in the sediments. Evidence for both plastic (irreversible) and elastic (reversible)
deformation exists in the available well data and pressure tests. These two regimes point to
different underlying causes of overpressure (Hart et al., 1995). For these dual deformation
mechanisms, I construct two empirical relationships between each rock property and pore
pressure - one valid for each regime. Before I begin, I would like to cite Ronny Hofmann
of the Center for Rock Abuse at the Colorado School of Mines for his help and patience
in enhancing my understanding of overpressure mechanisms. The work in this chapter was
done in collaboration with him.
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1.1 Vertical effective stress

Pore pressures that exceed the hydrostatic pressure, or overpressures, lead to a low-
ering of density and seismic velocity and, as discussed in Chapters 5 and 6, significantly
contribute to the reflectivity of faults. Pennebaker (1968) was among the first geoscientists
to demonstrate the ability of seismic stacking velocities to detect fluid pressures in the sub-
surface. Terzaghi (1943), however, had previously discussed the basic principle, that of an
effective stress acting on the rock frame. According to his principle, it is the effective stress
that determines rock properties, in particular sonic velocity. Terzaghi denoted the effective
stress as the difference between the confining stress, o,, and the pore pressure p:

04 = 0y — . (1.1)

The subscript v stands for vertical since, in extensional regimes, the maximum stress is in
the vertical direction (the weight of the overburden). The quantity o4 is also called the
differential stress. Equation (1.1) states that rocks of similar composition but at different
confining stress and pore pressure have the same velocity so long as the difference between
the confining stress and pore pressure is the same. Hence, high pore pressure, which lowers
effective stress, leads to lower seismic velocities. The work in this thesis draws heavily upon
Terzaghi’s principle to relate the seismic signatures of fault zones to local pore-pressure
variations at the fault.

Following the work of Terzaghi, rock physicists began to postulate that the effective
stress governing rock properties is not simply the difference between the confining stress
and the pore pressure (Wang, 2000a). Today, the most general effective-stress law is instead

Oe = 0y — NP, (1.2)

where the parameter n is called the effective stress coefficient. Carcione & Tinivella (2001)
state that the value of n can differ for each physical quantity (e.g., permeability, com-
pressibility, or shear modulus), and that it depends linearly on the differential stress of
equation (1.1). Currently, the effective-stress coefficient is a controversial topic that is still
being sorted out by the rock physics community. For the remainder of this thesis, we do
not distinguish between differential stress, 04, and effective stress, o.; that is, we take n = 1
in equation (1.2).

1.2 Porosity versus depth

As suggested by its name, compaction acts to reduce the porosity of sediments as they
are buried; however, this process can continue only as long as fluids in the diminishing pore
space are allowed to be expelled. Such would be the case in normal pressured, hydrostatic
sediments in which the fluids are in communication up to the seafloor. Once the movement
of the fluids out of the pore space is opposed, as in a compartment sealed-off by low perme-
ability or high capillary-entry-pressure shales or fault gouge, the porosity remains constant
with burial depth if the fluid is more or less incompressible. This situation is called under-
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Figure 1.1. Porosity versus depth at South Eugene Island. The thick, solid line is the
best-fit normal compaction trend using Athy’s Law (Athy, 1930). The faint solid lines
are density-derived porosity values from 11 wells at South Eugene Island. To obtain the
porosity, we assume that the solid grains have a density of 2650 kg/m3 and the fluid has a
density of 1000 kg/m3, as in Revil & Cathles (2002). There is a clear break from the shallow,
exponentially decreasing porosity trend at a depth of 1800 m, at which point the porosity
remains constant with increasing depth, as shown by the flat dashed line. The two circles are
density-derived porosities from the upthrown block to the north of the minibasin at South
Eugene Island. The dashed lines connecting the circles to the main compaction trend are
the interpreted porosity histories of the samples. They show a period of undercompaction,
depicted as a horizontal line deviating from the normal compaction trend, followed by a
vertical unloading path due to a late-stage pore-pressure increase.
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compaction (Huffman, 2002). Undercompaction means the sediments are “frozen” in time
and are simply buried in their unchanging earlier compaction state (Bowers, 1995). To com-
pound the situation, if fluid from outside the undercompacted sediments is pumped into the
pore space, or if hydrocarbons are generated from within the undercompacted sediments,
a process called unloading occurs (Huffman, 2002). Whereas undercompaction can only
cease the reduction of porosity (Bowers, 1995), unloading can actually reverse the trend
and increase porosity. Although unloading can reverse the trend, it cannot reclaim all of
the previously lost porosity. This is because the compaction process has a large irreversible
component. In contrast, unloading and loading of sediments by pumping fluid into and
then depressurizing the pore space is a reversible process, insofar as the fluid does not cause
hydrofracturing.

We have studied wireline data taken in wells at the South Eugene Island field, offshore
Louisiana, for indicators of overpressure, such as constant porosity as a function of depth.
Previous work by Hart et al. (1995) shows the crossover from hydrostatic to overpressured
conditions in porosities derived from sonic velocities. We take a slightly different, more
straightforward approach here based on the density log. The South Eugene Island field is a
Plio-Pleistocene minibasin formed by salt withdrawal and has yielded more than 300 million
barrels of oil in its lifetime. A cartoon depiction of the subsurface at South Eugene Island
is displayed in Figure 1.2. The main part of the field is a vertical stack of interbedded sand
and mostly shale layers bounded by two large growth faults to the north and south. In
Chapters 5 and 6, we discuss 3D seismic data volumes acquired at South Eugene Island in
1985, 1988, and 1992.

Figure 1.1 shows porosity derived from density logs taken in the following wells: A13,
A20ST, A140H, A15, A23, A6, B10, B1, B2, B7, and B8. Because the geology in the
minibasin is essentially horizontally layered, we ignore the fact that some wells may be
miles away from each other and simply look at the depth variation of their porosity. In
all the well logs shown in this chapter, we have done significant smoothing with depth to
remove any short-range lithologic influences (e.g., sand versus shale) on the density and
velocity. To obtain the porosity from the density log, we take the solid grains to have a
density of 2650 kg/m3 and the fluid to have a density of 1000 kg/m3, as in Revil & Cathles
(2002). There is a clear break from the shallow, decreasing porosity trend at a depth of
1800 m. Based on the work of Stump et al. (1998), we assume that this is the onset of
overpressures in the sedimentary section, beneath a shale bed located above a layer called
the JD-sand. We fit an exponential trend to the porosity values above 1800 m, known
as Athy’s Law (Athy, 1930), to get the normal compaction trend in the hydrostatically
pressured sediments

¢C(z) =047 6_0'00046 z’ (13)

where, in this equation, the depth z is in meters. The superscript ¢ in equation (1.3)
refers to the fact that this functional relationship characterizes normal compaction. In the
porosity-versus-depth plot of Figure 1.1, this relationship holds for any movement towards
the right on the normal compaction curve and any purely right-going horizontal deviations
from the normal compaction curve. For purely right-going horizontal deviations, the depth
z used in equation (1.3) is equal to the depth at which the horizontal deviation started.
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Figure 1.2. Regional map (top), from Anderson et al. (1995), and cartoon depth section
(bottom) of the subsurface at South Eugene Island. The four main faults discussed in this
thesis are shown in the bottom panel as the A, B, F, and Z faults. Throw across the faults
is depicted by the layer running from left to right. Most of the wells at South Eugene Island
were drilled into the shallow, hydrostatic section; the A20ST well was unusual in that it
was continued through the A-fault system and into the deep overpressured compartment.
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The two circles in Figure 1.1, represent samples taken in the A20ST well and are connected
to the normal compaction curve by both horizontal and vertical lines. The vertical lines
show the departure of the samples from the normal compaction trend. I return to these in
the next section.

The sediments deeper than 1800 m in Figure 1.1 maintain a nearly constant porosity
of around 0.2 during subsequent burial (a horizontal deviation from the compaction trend).
Though the depth of the sediments increases with burial, the effective stress experienced
by the sediments does not seem to change. Hence, the additional weight of the overburden
with increasing depth is borne by the fluids trapped in the pore space. As a result, the pore
pressure increases with the vertical gradient of the overburden stress and is said to have a
lithostatic gradient. This point is illustrated graphically in Figure 1.3. In this plot, we make
the crude approximation that the lithostatic gradient (or total weight density), pg, is twice
as large as the hydrostatic gradient (or fluid weight density), prg, with g the acceleration of
gravity. Since pg = 2pyg, the effective stress is equal to the hydrostatic stress down to 1800
m. At that point, the effective stress stays constant with depth due to undercompaction;
therefore, the pore pressure must increase at the rate of the lithostatic stress in order to
satisfy Terzaghi’s law, equation (1.1). In doing so, overpressure, or pore pressure in excess
of hydrostatic, is created below 1800 m.

1.3 Density versus vertical effective stress

Since density is a parameter widely used in the field of seismic wave propagation, we
study the variability of the bulk density in this section. By looking at bulk density, we also
avoid the assumption concerning the solid and fluid densities needed to obtain the porosity.
In contrast to the preceding section, we want to see how density changes with effective stress,
instead of depth. To accomplish this, we take only the measurements that are shallower than
1800 m, where the pore pressure is, by all indications, hydrostatic. Therefore we know the
pore pressure and can calculate the effective stress. In overpressured compartments, since
the pore pressure is unknown, direct measurements by Repeat Formation Tests (RFTs) are
necessary to calculate the effective stress.

We rewrite equation (1.3) in terms of density and effective stress using the relationships

p=ps(1—¢) + dpy, (1.4)

and
04 = pfgz, (1.5)

where p is the bulk density and p; and py are the densities of the solid and fluid components.
Note that the relationship for o4 holds only under hydrostatic conditions. From these
relationships and equation (1.3), we obtain the normal compaction curve for density

p(0q) = ps — 047 (ps — p 6_0‘0003%’ L6
f

where p, and ps are the densities of the solid and fluid components, taken as 2650 kg/ m3
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Figure 1.3. A depth section of the pressure regime for pure undercompaction. The symbols
are as follows: o, is the effective stress, Pp is the hydrostatic pressure, P is the pore
pressure, and o, is the overburden, or lithostatic, stress. Note that, before 1800 m, the
effective stress stays constant, as seen from the porosity versus-depth-plot in Figure 1.1,
and the pore pressure increases at a rate equal to that of the overburden stress.
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Figure 1.4. Density versus effective stress at South Eugene Island. The thick solid line is
the same normal compaction trend shown in Figure 1.1, except transformed into density
and effective stress. The faint solid lines are also the same as in Figure 1.1, except that
they are now limited to the hydrostatic depths down to 1800 m. The circles represent two
pressure measurements, labeled 1 and 2, which were made in the overpressured upthrown
block where a density log also existed. For each pressure measurement, we plot the data
point twice - one where it should lie on the normal compaction curve were it to have been
normally pressured, and the other where it actually does plot because of severe overpressure.
Note that sample 1 is from a greater depth than sample 2.
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and 1000 kg/m? respectively, and oq4 is in psi. We plot this normal compaction curve in
Figure 1.4 together with the density measurements. Also, in Figure 1.4, we show as circles
two data points obtained from RFT pressure measurements and density log measurements
in the overpressured upthrown block. We show the circles in two locations - one on the
normal compaction trend where they would plot if the measurements were at hydrostatically
pressured locations, and the other where they actually plot because of severe overpressures
being present in the upthrown block.

At this point, we don’t know exactly how the samples taken in the upthrown block came
to be off the normal compaction trend. Using a laboratory measurement of the unloading
coefficient by Elliott (1999) on a core sample taken near the locations of samples 1 and 2,
the path that these samples took to their present locations can be estimated. Elliott (1999)
characterized the unloading, or elastic swelling, for the porosity of the core samples to be

¢"(0a) = ¢o (1 — Boa), (1.7)

where ¢g and (3 characterize the deviation of the unloading path from the normal compaction
trend. Note the superscript u, in contrast to equation (1.3), indicating the unloading path
instead of the normal compaction trend. Elliott (1999) found that ¢o = 0.37 and 8 =
0.98 x 10~8 Pa~! for the unloading path. Though these parameters describe the porosity,
we use them to find the slope of the unloading path for density using the relationships
between porosity and density described earlier. After finding this slope, we can construct
the unloading path for the density from equation (1.6) and the slope

p*(0q) = 0.04 (04 — Omaz) + ps —0.47 (ps — p ¢~ 0-00030maz 1.8
f

This expression contains an extra parameter omq, that refers to the value of the effective
stress when the sample began to be unloaded. We do not know 0,4, for samples 1 and 2,
but we do know that o, must lie on the main compaction trend. Hence, we can construct
linear unloading paths for the density, as shown by the dashed lines in Figure 1.4. With
these unloading paths, we can then find the value for the maximum past effective stress
Omaz- 1t is worth mentioning that the maximum past effective stress for sample 1 comes out
to be ~ 1500 psi by our approach of using Elliott’s experimental results. In an independent
measurement, Stump & Flemings (2002) performed uniaxial strain tests on a core sample
taken from the same location as sample 1 to find the maximum past effective stress. Stump
& Flemings (2002) report a value of 1248 psi for this sample, close to our estimate of ~ 1500
psi; visually, the discrepancy lies within the error bars of the normal compaction curve's fit
to the density log data.

With the estimate of the maximum past effective stress, we can also return to Figure 1.1
and find the depth at which samples 1 and 2 left the normal compaction trend, since in the
hydrostatic zone the depth is a linearly scaled version of the effective stress. These depths
correspond to a slightly lower porosity than that of samples 1 and 2. We interpret this as
being the result of a late stage porosity increase and represent it as a vertical unloading
path for samples 1 and 2 in Figure 1.1.
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1.4 Sonic velocity versus vertical effective stress

For the purposes of modeling faults and to make inferences about the distribution
of pore pressure from seismic interval velocity inversions, accurate pore-pressure-versus-
velocity relationships are critical Dutta (1997). In general, sonic velocity has a normal
compaction curve and unloading paths as a function of effective stress that are similar to
those we just described for the density well log data. To obtain these relationships, we
proceed as for the density logs: 1) We take 12 shallow wells to make up a data set of sonic
velocity versus effective stress. 2) We select the depth range with hydrostatic pressures
and plot the sonic velocity versus effective stress. 3) We fit this with a power law relation
for the normal compaction trend. 4) We then look at where the two samples from the
overpressured upthrown block lie and construct unloading curves using the estimate for the
maximum past effective stress that we obtained in the previous section on density. The
wells we use for characterizing the sonic velocity come from A20ST, A140H, A23, A6, B10,
B1, B2, B7, B8, Al, B14, and B20.

In Figure 1.5, we plot the normal compaction trend for sonic velocity as a thick solid
line described by the power law equation (Bowers, 1995)

v5(0a) = 1500+ 2.3 6377, (1.9)
where v, is in m/s and o4 is in psi. Note again the superscript ¢ for the normal com-

paction relation. We also construct the unloading curve for v, following the relationship
first suggested by Bowers (1995)

vy (0a) = 1500 + 2.3

Omazx

1/6.2 0.77
O'ma,z( 9d ) :l 3 (110)

where 0¢ and 0pq, are in psi and v, is again in m/s.

To model elastic waves, one other parameter is needed in addition to p and Vp; for
instance, a seismologist would naturally want the shear velocity. In the absence of informa-
tion on the shear wave velocity vs; and pressure in the shallow, hydrostatic sediments, we
assume that

vs(0q) = vp(oq) — 1500, (1.11)

where this relationship holds on both the normal compaction curve and the unloading
path. The data presented by Zimmer et al. (2002) for unconsolidated sands supports this
assumption, in that the dependence they found for v, on effective stress is essentially a
down-shifted version of the v, curve. An additional piece of supporting evidence comes
from the only vs data available at South Eugene Island, a shear log from the A20ST well,
where samples 1 and 2 were taken. There, the ratio of v,/vs from the sonic and shear logs
falls between 3 to 3.5 in the overpressured upthrown block. Inserting the values for v, at
samples 1 and 2 into equation (1.11) to get vs and finding the corresponding ratio of vy/vs,
we get vp/vs = 3.48 at sample 1 and vp/v, = 2.96 at sample 2, within the range of the
ratios observed in the sonic and shear logs.
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Figure 1.5. Sonic velocity versus effective stress at South Eugene Island. The thick solid
line represents the normal compaction curve fitted to the shallow well data, shown in the
faint solid lines. We also plot samples 1 and 2 both where they should fall on the normal
compaction trend, were they to be normally pressured, and where they actually plot due to
the severe overpressure where they were obtained. Using the estimate for past maximum
effective stress from the density plot and the Bowers-type relation (Bowers, 1995) shown in
equation (1.10), we are able to construct the velocity unloading curves, shown as dashed

lines.
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1.5 Discussion

We have established two empirical relationships between each of three basic rock prop-
erties and pore pressure at the South Eugene Island field. Most important for subsequent
numerical modeling of wave propagation, we have found relationships for the density p
and the sonic velocity v, on both the normal compaction and unloading paths. With-
out shallow information on the shear velocity vs, we must make the assumption that it
is a down-shifted version of the v,(04) relationship. From looking at the density-derived
porosity-versus-depth-relationship, we are able to conclude that the deep, overpressured
sediments below the JD-sand are predominately overpressured because of compaction dis-
equilibrium, since their porosity did not change appreciably with depth. In contrast, both
compaction disequilibrium and unloading have contributed to the current overpressured
state of the sediments on the upthrown side. The latter conclusion is in agreement with a
previous study by Hart et al. (1995) on porosity and pressure at South Eugene Island.
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Chapter 2

Seismic data processing in the stationary phase
approximation

2.1 Summary

To gain insight into the pitfalls involved in interpreting, for instance, amplitudes on
post-stack time-migrated data, we describe a simple theory for gauging the amplitude and
phase errors in the complete seismic data processing sequence resulting from stacking and
migration velocity errors. Here, following Black et al. (1993), we take the standard sequence
to be: 1) geometrical spreading correction, 2) normal-moveout correction (NMO), 3) dip
moveout correction (DMO), and 4) zero-offset migration of stacked data. This is essentially
the sequence followed in the processing of the South Eugene Island data that are analyzed
in Chapters 5 and 6. After first deriving the amplitude and phase response of stacking
to errors in stacking velocity for the case of a horizontal reflector, we numerically model
post-stack time-migrated waveforms with stacking and migration errors using the spectral
element method (SEM) to generate synthetic seismograms over a simple normal fault model.
The SEM modeling code is presented and discussed fully in Chapter 4. We apply the
theoretical results for amplitude and phase errors to study reflections from horizontal layers
and then examine the changes in fault-plane reflectivity due to incorrect stacking velocities.
We observe that the fault-plane reflections are relatively less sensitive to the presence of
stacking velocity errors than are the associated layer reflections. Having completed the
analysis for the stack response, we turn to the zero-offset migration response. With the
same approach as for stacking, we are able to confirm the various correction factors that
must be applied to the result of simple diffraction summation in order to recover the original
waveform. We finish this chapter by examining the more complicated DMO response and
derive the correction factors necessary for a diffraction summation type of DMO. From
analysis of the DMO response, we are able to generalize the previous result for the stacking
response in the presence of dipping layers, such as fault-plane reflections. !

2.2 Introduction

An understanding of the filtering action of stacking is necessary to gauge the reliability
of amplitudes and phases in a post-stack time-migrated image. Haney et al. (2004) have

! Accepted as a technical comment in First Break, 2005
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shown that the amplitudes of post-stack time-migrated fault-plane reflections qualitatively
correspond to a section of a growth fault in the Gulf of Mexico that seals (see also Chapter 5).
Furthermore, in Chapter 6, we demonstrate that a strongly reflecting section of a growth
fault in the same minibasin (South Eugene Island Block 330) coincides with a the location
of a postulated fluid pulse caught in the act of ascending the fault (Losh et al., 1999; Revil
& Cathles, 2002). The most significant source of error in the amplitudes and phases of
these post-stack time-migrated images, besides the neglect of ray-bending and anisotropy,
likely arises from mis-stacking. Errors in the migration velocities should mainly result
in mis-positioning of the reflections. This problem is ameliorated the data examples in
Chapters 5 and 6 by the use of a dip-filter that locally searches for the maximum coherence
direction before filtering and manual picking of the fault-plane reflections, whether these lie
at the correct spatial position (bed terminations) or not. In the first section of this chapter,
we examine the errors due to incorrect stacking velocities. The same array-theory-based
methods we use to study the amplitude degradation and phase shifts caused by mis-stacking
are applied in later sections of this chapter to find the degradation attributable to errors
in migration velocities and the response of zero-offset migration and DMO. Before starting,
thanks go out to Jon Sheiman for sparking interest in this subject, Roel Snieder for making
the connection between the array-based approach and the method of stationary phase, and
Xiaoxia Xu for her copy of Lu (1993), which got the research started in the right direction.

2.3 The stack response

In a recent technical article in First Break, Gausland (2004) made the case that the
result of stacking is not limited to the often quoted factor of 1/4/n reduction in noise where
n is the fold of a CMP-gather. Through his figures and illustrations, Gausland showed that
stacking also acts as a frequency and wavenumber filter. Although the intentions of the
article were not to, as Gausland put it, “give methods or formulae” and that a “simplified
analysis can be made using simulation” instead of mathematics, we could not help but
see a connection between his main points and the method of stationary phase (Born &
Wolf, 1980). In this comment, we give an interpretation of Gausland’s results within the
language of stationary phase. All of Gausland’s conclusions are supported by the stationary
phase analysis, save for some details concerning the time-delay induced by mis-stacking. In
addition, we find other factors affecting the stacking response that were not pointed out
by Gausland. The issues on fold versus spreadlength brought up by Gausland cannot be
addressed explicitly within the stationary phase analysis; we return to them at the end of this
section. Arguments based on stationary phase have been used extensively in the literature
on imaging and migration (Bleistein et al., 2001). Hence, a result of this mathematical
excursion is a clear connection between stacking and migration, which Gausland alluded to
briefly when he stated that “a further analysis of the similarities between ... stacking and
migration is necessary for a full understanding of these important aspects of seismic data
processing ...”. This connection is further developed in the later sections of this chapter
on zero-offset migration and DMO.

Suppose that in a CMP-gather there is a single event, with a zero-offset waveform
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Figure 2.1. A CMP-gather containing an event at zero-offset two-way-time Ty. The hori-
zontal axis is offset, with h representing the half-offset spacing. The event is mis-stacked
because the moveout curve uses too high a stacking velocity, shown as a dashed line. The
mis-stacking induces a time shift between the moveout curve and the event, At.
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f(t) at zero-offset two-way-time Ty, that has hyperbolic moveout with NMO-velocity v and
a wavelet that does not change with offset (see Figure 2.1). The event is stacked with a
hyperbola whose apex is at Tp using a stacking velocity v not necessarily equal to v. When
vg¢ does not equal v, a time shift Aty occurs at the k-th offset trace before stacking. Hence,
the normalized stacking response, neglecting NMO-stretch, is

o) = 5oy (6= Ata) 4o+ [t - Ata)+
FO)+ft—At)+ -+ f(t — Aty)], (2.1)

where 2n + 1 is the total number of traces in the CMP-gather. In equation (2.1), we have
included a trace at zero offset, though this would not occur in practice. We have also
assumed that the traces have been corrected for geometrical spreading. For hyperbolic
moveout and hyperbolic stacking, the time delays are (Yilmaz, 1987)

4k2h2 2h2
Aty = \/TO2 + — - 4k2h —To, (22)

2
v Vgt

where h is the half-offset spacing (assumed to be regular) and the subscript k represents the
k-th trace from zero-offset (see Figure 2.1). Note that the time delays vanish when vy = v
(perfect stacking). Denoting the Fourier transforms of f(t) and g(t) as F(w) and G(w), the
transform of equation (2.1) may be written

G(w) = F(w)K(w), (2.3)
where the transfer function, K, is
— 1 = wAty
K(w)=5— k;_ne : (2.4)

At this point, since we are in the frequency domain, NMO-stretch could be included as an
amplitude and dilation factors in the exponentials in the series (Yilmaz, 1987); however, in
the interest of simplicity, we do not account for it here. For the particular case of linear
moveout (Tp = 0), the series in equation (2.4) is a geometric series and can be evaluated
exactly (Lu, 1993). This case is presented in chapter 4 in the section on dip-filtering. The
reference to a “familiar array equation” by Gausland (2004) comes from this geometric series
approach. The series is geometric because the respective time delays are regularly spaced
(Atr = kAt;). When the moveout is nonlinear, for instance hyperbolic, the time delays
are not regularly spaced and the series in equation (2.4) cannot be evaluated exactly. To
obtain his results, Gausland (2004) chose some values for Ty, n, w, h, and v and numerically
calculated K (w) with equation (2.4).

We proceed by approximating equation (2.4) with an integral and evaluating it by the
method of stationary phase (Born & Wolf, 1980; Bleistein et al., 2001). First, note that
the fold of the CMP-gather, 2n + 1, is related to the spreadlength, L, and the half-offset
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spacing, h
Ls+h

h

Using the definition from equation (2.5), the finite series of equation (2.4) may be rewritten
as

n+1=

(2.5)

1 & w
Kw) =t — > eAtkh, (2.6)

k=-n

The finite series in equation (2.6) looks like a discretized integral (Riemann sum) over offset.
Taking the limit of continuous sources and receivers, n — oo and h — 0, and allowing the
discrete variable 2kh to become the continuous variable z results in

K(w) = 31: /__; exp [iw <\/T02 +x? (;15 - U%) - To)] dz. (2.7)

We simplify the evaluation of the integral in equation (2.7) by letting the spreadlength go
to infinity, Ls — oo. This simplification avoids accounting for Cornu’s spiral (Born & Wolf,
1980). Denoting I(w) = K(w)Ls as a scaled version of the transfer function gives

I(w) = /_:exp [’iw <\/T02 + z2 <% - v—l—gt) - To)] dz. (2.8)

This type of integral can be approximately evaluated by the method of stationary phase
(Born & Wolf, 1980; Bleistein et al., 2001). Within this approximation, I (w) is given by

rore 2
I(w) = V2me™/4 [%] eid(@at), (2.9)

T==Xst

with z the stationary point of the phase function ¢(zx) of equation (2.8) where

(z) = w <\/T02 +a? (515 - ;12—) - T0> . (2.10)

In equation (2.9), the subscript z = z indicates the quantity is to be evaluated at the
stationary point. To find the stationary point, we set the z-derivative of ¢(z) to zero and
identify the stationary point x5 = 0, where the moveout curve and the stacking curve are
tangent (see Figure 2.1).

After calculating the second z-derivative of the phase function and evaluating it at the
stationary point, the scaled transfer function I(w) can be expressed, in the stationary phase

approximation, as
I(w) = vt 27Ty exp(i sgn(vse — v)27r/4) , (211)
w V1= (vst/v)? |
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Figure 2.2. Amplitude of the stacking response in the stationary phase approximation
(thick, black line) and the exact solution (thin, blue line) for the acquisition parameters:
To =2 s, w =25 Hz, v = 2500 m/s, n = 48, and L = 4800 m.
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Figure 2.3. Phase of the stacking response in the stationary phase approximation (thick,
black line) and the exact solution (thin, blue line) for the acquisition parameters: Tp = 2 s,
w = 25 Hz, v = 2500 m/s, n = 48, and L, = 4800 m.
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where
+1 whenz >0

—1 whenz <0 (2.12)

sgn(z) = {
Note that the stationary phase approximation is an asymptotic series - it is valid in the
limit of w — oco. The limiting quantity can be expressed in terms of a dimensionless number
instead of w (Bleistein et al., 2001; p. 131). In this way, the accuracy of the stationary
phase approximation depends on w being large relative to another quantity. Equation (2.11)
states that, when an event is stacked with a velocity that is not the true velocity, a phase
shift of £45° results depending on whether the stacking velocity is higher or lower than
the true velocity. The amplitude of I(w) scales with /Tp and | /1 — (vst/v)? |71 as a
function of stacking velocity. It is worth noting that the amplitude of the scaled transfer
function I(w) “blows up” when vg = v. This is due to the fact that the stationary phase
approximation is not valid for vs; = v; in that case, the entire moveout curve is tangent
to the stacking curve. The stationary phase approximation is therefore meaningful only
when vg; # v. From equation (2.11), the amplitude response is inversely proportional to
/w. Hence, stacking errors cause the stacked waveform to be enriched in lower frequencies
- an effect identical to stacking NMO-stretched waveforms. This low-pass filtering of the
waveforms due to stacking errors has been mentioned previously by Bleistein et al. (2001).
On page 15, the authors state that “the high frequencies of the data may be suppressed by
stacking. This is because the arrivals may not be exactly aligned before stacking, causing
the stacking process to sum higher frequency components out of phase”. Through figures
showing the amplitude and time delay of the stacking response as a function of stacking
velocity, Gausland (2004) limited his discussion of the stacking response to the amplitude

decay term, | /1 — (vst/v)? |71, and the phase shift, sgn(ve — v)7/4.

In Figures 2.2 and 2.3, we plot the amplitude and phase as a function of stacking
velocity for the acquisition parameters used by Gausland (To = 2 s, w = 25 Hz, v = 2500
m/s, n = 48, and L, = 4800 m) and for the scaled transfer function in the stationary
phase approximation, equation (2.11). The trend of the exact solution agrees with the
stationary phase approximation. Note that, in his article, Gausland (2004) plotted the
phase shift 8, shown in Figure 2.3, as a time-delay by using tdeiay = 6/w. With this
relationship between time-delay and phase shift, Gausland claimed that the time-delay ...
is frequency dependent, and will be inversely proportional to frequency ...”. However, as
seen in equation (2.11), the effect of mis-stacking is not purely amplitude decay and phase-
shift as a function of stacking velocity. There is the factor of 1/+/w, which, when coupled
with the £+45° phase-shifts, acts to half-integrate a waveform in the process of mis-stacking.
This effect can be thought of as both a time-delay and blurring.

If an event had an infinite moveout velocity (v — oo) and was stacked in the offset
domain with a finite stacking velocity, an analogy would exist between the stacking response,
equation (2.11), and migration by diffraction summation. This analogy exists because an
event with an infinite moveout velocity in the offset domain looks like a horizontal reflector
in the midpoint domain, as shown in Figure 2.4. To pursue this further, as v — oo,
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Figure 2.4. Migration of a horizontal reflector by diffraction summation in the midpoint
domain. Stacking an event with infinite moveout velocity would look the same as in this
plot, except that it would be in the offset domain (compare with Figure 2.1). Hence, an
analogy exists between migration and stacking in this case.
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equation (2.11) becomes
2w To

IHw) = vg exp(—im/4). (2.13)

w

Two of the three corrections made to simple diffraction summation for Kirchhoff migration
are shown in equation (2.13). The factor v 1/Tp requires multiplying the result of diffraction
summation by 1 /vst\/ITo to recover the true waveform after diffraction summation. Yilmaz
(1987) calls this the 2D geometrical spreading factor. Furthermore, recovery of the true
waveform after diffraction summation also requires multiplying by exp(in/4)/w, the half-
derivative. This correction is called the wavelet shaping factor (Yilmaz, 1987). The final
correction to diffraction summation, known as the obliquity factor (Yilmaz, 1987), does
not appear in this analogy since the reflector we study here is horizontal. The obliquity
factor is only relevant for dipping reflectors. In a later section of this chapter, we derive the
migration response for a generally dipping reflector and recover the obliquity factor.

Finally, we come back to the issue why the important parameter for the stack response
is the spreadlength and not the fold. Gausland (2004) nicely made this observation in his
discussion of the stack as an array; where does the fold versus spreadlength issue appear in
our stationary phase analysis? Since we (a) took the sources and receivers to be continuously
distributed in equation (2.7) and (b) let the spreadlength be infinite in equation (2.8), the
result of the stationary phase analysis, equation (2.11), does not contain either the fold or
the spreadlength. Hence, equation (2.11) says nothing about the fold versus spreadlength
issue. Knowing the assumptions that brought the derivation to the point of applying the
stationary phase approximation, though, we can see why the spreadlength is the parameter
which governs the stack response and not the fold. The fold issue has to do with our
allowing the sources and receivers to be continuously distributed. Having a finite number
of sources and receivers instead is identical to approximating an integral of a curve with
a finite number of rectangles underneath the curve. This is why we invoked continuous
receivers in moving from a series to an integral in equation (2.7). Therefore, differences in
fold translate into differences in sampling of the integrand of equation (2.7). As long as
the sampling is sufficient to avoiding aliasing, the series quickly approaches the integral.
This fact is evident in Gausland’s third figure wherein the seemingly random “chatter” at
low stacking velocities, or steep moveouts, disappears when moving from a fold of 12 to a
fold of 48. As long as aliasing is not a problem, the issue of fold is purely one of sampling.
Regarding spreadlength, we earlier mentioned, prior to equation (2.8), that taking the
spreadlength to be infinite meant not accounting for Cornu’s spiral. Cornu’s spiral is a
parametric plot (see Figure 2.5) of the Fresnel cosine and sine integrals as their upper limit
(the spreadlength) goes to co (Born & Wolf, 1980). These integrals are central in the
development of the stationary phase approximation. As the spreadlength gets larger and
larger, the two integrals approach the same value, as seen in Figure 2.5. At this limiting
point, the angle they make with the x-axis is 45°; this is an indication of the 45° phase shifts
appearing in the stationary phase approximation, equation (2.11). Away from this limiting
point, the two integrals spiral around; this gives rise to the “wobble” seen in the phase shift
versus stacking velocity plot in Figure 2.3. The spiraling also gives rise to the “wobble”
seen in the amplitude versus stacking velocity plot in Figure 2.2. As seen in Figure 2.2 and
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Figure 2.5. Cornu’s spiral; adapted from Born & Wolf (1980). The x-axis is the Fresnel
cosine integral (FresnelC) and the y-axis is the Fresnel sine integral (FresnelS). This is a
parametric plot where the Fresnel cosine and sine integrals are plotted as a function of their
upper limit, with their lower limit at zero. When the upper limit is zero, the curve is at the
origin. As the upper limit — oo, the curve spirals in toward the point (0.5,0.5). Similarly,
as the upper limit — —oo, the curve spirals in toward the point (-0.5,-0.5). The fact that
the Fresnel cosine and sine integrals have equal values at their limiting point is an indication
of the 45° phase shift that comes from the stationary phase approximation, equation (2.9).
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| survey parameter l value ||
offset spacing, 2h 400 m
fold, 2n + 1 5
true NMO velocity, vy, 2000 m/s
erroneous stacking velocity, v 1800 m/s
zero-offset two-way-traveltime, Tp 09s
dominant frequency 20 Hz

Table 2.1. Parameters for studying stacking errors

Gausland’s fourth figure, the length scale of the “wobble” is directly related to the width
of the main lobe. Hence, the main factor of importance to the stack response, as long as
aliasing is not an issue, is the spreadlength, as witnessed by its role in Cornu’s spiral.

2.4 Numerical test of mis-stacking horizontal-interface and fault-plane reflec-
tions

We illustrate the impact of stacking velocity errors on a post-stack migrated image
with a numerical example, using the spectral-element method (SEM) code discussed in
Chapter 4. The SEM code has been developed by researchers (Komatitsch & Tromp,
2003; Komatitsch & Vilotte, 1998; Ampuero, 2002) over the past 5-10 years in the global
seismology community. The example does not satisfy the approximations that we made
above to obtain analytic results for the stack response; it has finite spreadlength, discrete
receivers, and finite frequency. To evaluate the stack response, we numerically calculate
the exact transfer function K (w) - the finite series appearing in equation (2.4). Table 2.1
summarizes the parameters from the numerical survey that are necessary to evaluate the
exact transfer function. Note that the offset spacing is twice the shot spacing (see Figure 2.6)
and that the velocity of layer 1 serves as the true NMO velocity. We generate two tests
for the stacking velocity - one with the true NMO velocity (2000 m/s) and another with a
-10% error (1800 m/s). The material properties for the model investigated here are shown
in Table 2.2, with the geometry depicted in Figure 2.6.

We first simulated the stack response exactly from equation (2.4). Both the amplitude
and phase of the stacked waveform are displayed in Figure 2.7 as a function of error in
stacking velocity. When vs; = vy, the stacked amplitude is maximized and the phase shift
is zero. Away from the true velocity, though, significant amplitude degradation and phase
error occur. We highlight with circles in Figure 2.7 the amplitude and phase at an erroneous
value of vg; = 1800 m/s. For such a -10% error in stacking velocity, the stacked amplitude
of a horizontal reflector should be reduced by a factor of ~ 0.6 relative to the amplitude
at the correct stacking velocity and have acquired a phase shift of ~ 65°. For these survey
parameters, it is evident that the geometrical optics limit, in which the phase shifts away
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Figure 2.6. The entire numerical model with a zoom-in of the normal fault. The zoom area
is shown on the entire numerical model with a dashed rectangle. The lengths of the source
and receiver arrays are shown by extended arrows. Eleven sources are evenly-spaced over
2000 m (200-m shot interval), and 241 receivers span 3000 m (12.5-m receiver interval). In
the zoom, the layers are labeled with numbers 1-7 corresponding to the material properties
for models listed in Table 2.2.

Layer Thickness (m) v, (m/s) p (kg/m?)

1 900 2000 2000
2 50 2350 2080
3 30 2000 2000
4 50 2350 2080
5 30 2000 2000
6 90 2350 2080
7 850 2000 2000

Table 2.2. The model for the SEM examples in this chapter. vy = v,/ V3, where v and Vp
refer to the S-wave and P-wave speeds. The symbol p refers to density.
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Figure 2.7. Amplitude and phase of the stack response as a function of percent error in
stacking velocity for the survey parameters in Table 2.1. These plots are for a frequency of 20
Hz; the amplitude and phase behavior is thus a good approximation of what would happen
for a wavelet with a peak frequency of 20 Hz. The solid line is for a horizontal reflector,
and the dashed line is for a flat reflector with 45° dip. The curve for the horizontal reflector
is calculated from equation (2.4) using the time delays in equation (2.2). The curve for the
dipping reflector is calculated from the time delays in equation (2.66), derived in a later
section of this chapter. The values for a -10% error in stacking velocity are highlighted
by circles, since this case is presented in subsequent figures. Due to a later zero-offset
traveltime, the dipping event is less sensitive to amplitude and phase errors.
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Figure 2.8. Two migrated images for the model described in Table 2.2: on the left is the
image for the correct stacking velocity and on the right is the image for a -10% error in
stacking velocity. The -10% error occurs for all reflections. The image for -10% error has
been degraded. The vertical white dashed lines indicate slices from the migrated image and
are analyzed in subsequent figures.
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Figure 2.9. Overlap of the trace migrated with the correct stacking velocity (solid) and
the convolutional model (dashed) along the white, dashed line of Figure 2.8.

from the true stacking velocity should be + 45°, has not been reached. This demonstrates
that, away from the geometrical optics limit, the errors caused by stacking-velocity errors
are determined in large part by the specifics of the survey and acquisition geometry.

To test the array-based theory for stacking-velocity errors presented in the previous
section, we performed a complete sequence of full-waveform SEM modeling and processing
with Seismic Unx (SU) code (Stockwell, 1997) and formed migrated images both with and
without stacking-velocity errors. The full-waveform SEM modeling utilizes a Ricker source
wavelet with a peak frequency of 20 Hz. This value of peak frequency is the same value as the
frequency used in Figure 2.7. The migration velocity for the following examples is kept as the
correct migration velocity. Two migrated images are displayed in Figure 2.8. In comparing
the migration without stacking errors to the migration with them, the degradation of the
image with errors is noticeable. In order to quantify the error in the images, we first took
a trace from the migrated image shown by the white dashed lines in Figure 2.8. This trace
is shown as a solid line in Figure 2.9. Also plotted in Figure 2.9 is the convolutional model
(i.e., the model without multiples) obtained from the far-field P-waveform (Ricker) and the
known reflectivity series. Good agreement exists between the zero-offset migration of the
stacked data and the convolutional model, as there should be. The agreement is not exact
since both interbed and intrabed multiples are ignored in the convolutional model.

In the left panel of Figure 2.10, we plot the same convolutional model as in Figure 2.9,
but now show the slice of the migration with incorrect stacking velocity in the solid line. As
discussed before, amplitude degradation and phase shift is evident between the convolutional
model and the migration with erroneous stacking velocity. As a further check if the array-
based theory for stacking errors accurately describes the migrated waveform in the top
panel of Figure 2.10, we multiplied the far-field P-waveform by 0.6, phase-shifted it by
65°, and recomputed the convolutional model. These factors come from the circles at -10%
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Figure 2.10. Left: an overlap of the incorrect stacking-velocity migration (solid) and the
correct convolutional model (dashed) along the white, dashed line of Figure 2.8. Note the
disparity in the amplitudes and phases of the two plots. Right: an overlap of the incorrect
stacking-velocity migration (solid) and the incorrect convolutional model (dashed) calcu-

lated by dampening and phase shifting the far-field P-waveform by the factors predicted in
Figure 2.7.

error in Figure 2.7 for the horizontal reflector. The damped and shifted version of the
convolutional model is plotted in the right panel of Figure 2.10 together with the migration
with erroneous stacking velocities. Indeed, by virtue of the excellent match of the two curves
in the bottom plot of Figure 2.10, incorrect stacking velocities have caused the amplitude
and phase response of the migrated waveform to be as predicted by the exact array-based
theory (not in the geometrical optics limit) applied at the dominant frequency of the wavelet.

We now turn to the influence of the stacking velocity errors on the fault-plane reflec-
tions instead of the horizontal ones. Shown in Figure 2.11 are dip-filtered versions of the
migrations both with and without the errors in stacking velocity. We dip filter the images in
order to isolate the reflection from the fault plane, as in Haney et al. (2004). The dip-filter
we use is applied in the frequency-wavenumber domain as described in Chapter 4. Note
that, because of the migration, the correct direction to slice the fault-plane reflections is
perpendicular to the fault, as shown in Figure 2.11 by the white arrows.

In Figure 2.12, we show the slices taken from the dip-filtered fault-plane reflections for
both cases of stacking velocity error and no error and compare them to the same wavelet.
Compared to the horizontal layer refiections examined previously, the fault-plane reflection
is relatively insensitive to a stacking velocity error of -10%, as predicted by considering
their stack responses in Figure 2.7. This phenomenon is discussed in a later section of this
chapter on DMO. It can be understood by the fact that the fault-plane reflection has a
larger zero-offset traveltime than does a horizontal reflector at the same depth. The larger
zero-offset traveltime means that an erroneous moveout curve for a fault-plane reflection
has a larger region of tangency with the stacking curve near its stationary point than for
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Figure 2.11. Dip-filtered versions of the images in Fig. 2.8; on the left is the image for the
correct stacking velocity after dip-filtering and on the right is the image for a -10% error in
stacking velocity after dip-filtering. The f-k dip-filtering highlights the reflections from the
fault plane. In order to study the reconstructed waveform, we take slices of the migrated
image perpendicular to the fault, as indicated by the white arrows.
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Figure 2.12. Slices perpendicular to the dip-filtered fault-plane reflections for the case of
no stacking velocity error (left) and -10% error (right). The slices are shown as solid lines
and the P-waveform by a dashed line. Though a small amount of amplitude degradation
or phase shift may be seen in the right panel, for the most part the fault-plane reflections
are relatively insensitive when compared to the severe amplitude and phase distortions
experienced by the horizontal reflections.

a horizontal reflector. Fault-plane reflections may be more difficult to process in non-ideal
acquisition geometries (for instance, when the more poorly sampled cross-line direction is
in the dip-direction of the fault), but once their reflection has been captured, their imaged
waveform is relatively robust in shape and amplitude. It can at least be said that fault-plane
reflections are no more sensitive to stacking velocity errors than are horizontal reflectors.

2.5 The migration response

We have already touched on the filtering action of migration in the discussion on
the stack response, specifically with equation (2.13). In the remainder of this section,
we generalize the above connection with migration for the case of a dipping reflector and
recover the obliquity factor, which was not present for a flat reflector. Moreover, I am able
to confirm the fact that the amplitudes and phases of post-stack time-migrated waveforms
from planar features are virtually insensitive to migration velocity errors. The same cannot
be said for diffractions, which can contain errors because of incorrect migration velocities
just as stacked waveforms contained errors due to mis-stacking.

Let us study the phase and amplitude distortion of a waveform at i, tin (in the
zero-offset section) after it is migrated to an output point oy, tous- Suppose a zero-offset
(stacked) section contains a single dipping event, in an otherwise homogeneous medium,
with a time dip

p =2 sinf /v, (2.14)
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Figure 2.13. Zero-offset section showing a sloping reflection (dashed) and the migration hy-
perbola (solid). The input and output points are also highlighted. The time-delay between
the sloping reflection and the migration hyperbola is shown by At(z), and the migration
aperture is denoted L.

where 6 is the (geologic) dip and v is the velocity of the medium. Figure 2.13 shows the
geometry of the sloping reflection. The equation describing the arrival time of the sloping
reflection as a function of midpoint, z, in the zero-offset section is

t"‘ef(x) = px + tin — PTin. (215)

Note that the dipping reflector is a line in the zero-offset section and that it contains the
input point (z;n,tin)-

The dipping event is migrated with a hyperbola whose apex is at the output point
(-Tout,tout)

4 _ 2
thyp(T) = \/tgut + M) (2.16)

with a migration velocity v, not necessarily equal to v, the velocity of the medium. Setting

the equations (2.15) and (2.16) and their z-derivatives equal to each other at the input point,
(Zin,tin,), gives the conditions relating the input and output points:

tout = tinV/1 — P2'U,2n/4, (217)
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Figure 2.14. Zero-offset section whose time axis has been transformed in such a way that
the hyperbola of Figure 2.13 is a horizontal line (solid) and the dipping refiector is concave
upward (dashed). Migration can be thought of as horizontal stacking after this time trans-
formation and extraction of the stacked value along the solid line. The time delay, At(z),
between the dipping reflector and the hyperbola governs the migration response.

Tout = Tin — PVLtin/4. (2.18)

These two equations explicitly show the spatial and temporal transformation of migration;
the use of them to migrate is sometimes called map migration. The migration hyperbola is
shown in Figure 2.13, along with the input and output points.

Migration by diffraction summation forms an image by summing along the hyperbolic
trajectory. This can be visualized as is shown in Figure 2.14, where the same zero-offset
section is shown in a coordinate system whose time axis has been transformed. The transfor-
mation makes the hyperbola of Figure 2.13 horizontal and, as a result, the dipping reflector
is concave upward. The exact form of this transformation is not important; what is impor-
tant is that the hyperbolic summation can now be visualized as a simple horizontal stack.
The response of this stacking depends on the time differences between the two curves, shown
as At(z) in Figure 2.14.

In real seismic data, the zero-offset section consists of discrete seismic traces, which
we depict in Figure 2.15 by having zero offset wavelets centered on the curve for the sloping
reflection. Suppose that the zero-offset wavelet is f(t) and that geometric spreading has
been corrected for in the zero-offset section (hence the wavelet has the same amplitude at
all midpoints). Then, the result of summing along the hyperbola, or the migration response
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Figure 2.15. As in Figure 2.14, a zero-offset section whose time axis has been transformed
in such a way that the hyperbola of Figure 2.13 is a horizontal line (solid) and the sloping
reflection is concave upward (dashed). Here, discrete spatial sampling is depicted with the
input traces labeled k-1, k, k+1, etc.
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g(t), is similar to the stack response of the previous section

ot) = T [f—Ab)+ -+ flt- At )+
f(t — Atg) + f(t = Atyr) +--- + f(t — Atw)], (2.19)

where N is the total number of traces within the migration aperture, L (see Figure 2.13),
and Aty represents the time delay at the k-th midpoint trace. The factor 1/N is included as
a normalization. Note that if N is the total number of traces within the migration aperture,
L, and the midpoints are equally spaced, then the midpoint spacing, h, is related by
L+h
N==21" (2.20)
h

or, if L > h, N = L/h. The time delays, At(z), are needed in equation (2.19). Since we
know the forms of the curves for the dipping reflector and the migration hyperbola in the
zero-offset section, t,.s and thy, in equations (2.15) and (2.16), the delays are simply

Aty = t,-ef(kh) — thyp(kh), (2.21)

where the midpoint location z has been discretized by kh (the trace number times the trace
spacing).

When we use the expression for the time delays at each midpoint, the migration re-
sponse, equation (2.19), can be most easily evaluated in the frequency domain, just as for
the case of stacking. Denoting the Fourier transforms of f(¢) and g(t) as F(w) and G(w),
the transform of equation (2.19) may be written

G(w) = Fw)K(w), (2.22)
where the transfer function, K, is
Kw) =~ i (it (2.23)
N k=1

Since the time delays, Atj, are not linear in the midpoint trace number k, this summation
cannot be done analytically. We proceed as in the previous section on stacking by transform-
ing the series into an integral and evaluating it by stationary phase (Born & Wolf, 1980).
We skip the details of this transformation since it mirrors closely the case for stacking.

Denoting I(w) = K(w)L as a scaled version of the transfer function gives
w .
I(w) = / (AL gy (2.24)
—0o0

where
At(z) = tref(2) — thyp(x)- (2.25)
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Note that, since L — oo and I(w) = K(w)L, there should be some issues with amplitude
density in this approximation (for instance, does I (w) — o07?). The type of integral in
equation (2.24) can be approximately evaluated by the method of stationary phase (Born
& Wolf, 1980). In this limit, /(w) is given by

. [8%17Y2
I(w) = V2re'™/* [Z—xg] eitleat), (2.26)

I=XIst

where x4 is the stationary point of the phase function ¢(z) of equation (2.24) given by
o(z) = wAt(z). (2.27)

In equation (2.26), the subscript * = st indicates the quantity is to be evaluated at the
stationary point. For the case of diffraction summation considered here, the stationary
point is the input point (zst = Zin) - Where the values and z-derivatives of the hyperbola
and the curve for the sloping reflection are the same (see Figure 2.14).

Using equation (2.25) and equations (2.15) and (2.16), iwe can write the phase function
of equation (2.27) as

Az — Tour)?
¢(z) =w (Pﬂﬂ +tin — PTin — \/;?)ut + -(——v—gﬂn—)—) . (2.28)

m

Since the second z-derivative of ¢(x) is to be evaluated at the stationary point, (Tinstin)s
it is best to use equations (2.17) and (2.18) to recast equation (2.28) in terms of the input
point only (i.e., substitute for the output points)

Az — Tin + P2,tin/4)?
¢(z) =w (Pa: + tin — PTin — \/tle —p*vl,/4) + (z T +2p'um in/4) ) . (229

Um

Before calculating the second z-derivative of equation (2.29), take note of the two important
properties of ¢(z). First, the value of ¢(z) is zero at the input point, that is ¢(zin) = 0.
Second, by taking the derivative of equation (2.29) with respect to = and evaluating it at
the input point, it can be verified that 0¢/dx = 0 at Tix. This is because the migration
hyperbola is tangent to the sloping reflection in the zero-offset section at the input point.
Taking the second z-derivative of equation (2.29) yields

0%¢ —4wunt? (1 - pv2 /4)

822 (42,12 (1 — pPv2,/4) + 4z — Tin + ptin/4)?)

7 (2.30)

Equation (2.26) states that the second z-derivative of $(z) is to be evaluated at z;,. Sub-
stituting ;, for z in equation (2.30) results in

8_2?| o —4wt? (1 — p?v2, /4)
g2 v2t3

. (2.31)
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Figure 2.16. Geometric argument used to relate the obliquity factor to the cosine of an
angle. Since the impulse response of zero-offset migration is a circle, the input time t;, can
be rotated to the output point, thereby defining a right triangle with a hypotenuse of length

tin.

Substituting this expression into equation (2.26) gives the scaled migration response in the
stationary phase approximation

I(w) = V2me'™/4 [—4wt12n(1 - szfn/‘l)] _1/2, (2.32)

2 43
Ut

where it is also noted again, with respect to equation (2.26), that ¢(z s = Tin) = 0.
In equation (2.32) is a term t2,(1 — p%v2,/4) appearing under the inverse square root.
From equation (2.17), this term is equal to t2,,, the square of the time of the output point.

Using this and the fact that 1/v/—1 = exp(—im/2), we can write equation (2.32) as

I(w) = \/227“1)(\;?/ 4 tt::t

This expression is the filter applied to the zero-offset waveform by simple diffraction sum-
mation. Usually, seismic data processors would like to undo this filter so that the waveform
resulting from diffraction summation is equal to the waveform in the zero-offset section.
From equation (2.33), the result of the diffraction stack must be multiplied (in the fre-
quency domain) by the half-derivative exp(im/4)\/w, or the wavelet shaping factor (Yilmaz,
1987), and divided by vv/Zi,, or the 2D geometric spreading factor (Yilmaz, 1987), to give

U VEim. (2.33)
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Figure 2.17. Diffraction of a plane wave by a tilted slit

the original waveform. In addition, for a dipping reflector, the factor of ¢ /tout appearing
in equation (2.33) must be removed by multiplying by tout/tin- This is the obliquity factor
(Yilmaz, 1987), whose effect is to dampen the amplitude of the diffraction stack for dipping
reflectors, such as fault-plane reflections. For horizontal reflectors, the obliquity factor is
unity.

In Figure 2.16 a common geometric argument is shown relating the obliquity factor
tout/tin to the cosine of an angle 6. As a final note, the obliquity factor physically means
that the amplitude of a wave diffracted from a slit depends on that angle of the barrier
defining the slit and the propagation direction of the plane wave being diffracted, as shown
in Figure 2.17.

Note that nowhere in equation (2.33) does the time dip, p, and therefore the true
migration velocity, v appear. This demonstrates the insensitivity of the amplitude and
phase of the migrated waveform to departures of the migration velocity vy, from the true
velocity v. Comparing the stacking response, equation (2.11), and the diffraction stack
response, equation (2.33), the diffraction stack for a reflection is essentially one side of the
stacking response. By “one-side”, we mean that, for stacking, the filter, equation (2.11),
has +45° phase-shifts, depending on whether or not the stacking velocity is higher or lower
than the true velocity. For migration, only a 45° phase shift is needed, irrespective of
migration velocity. However, in the case of a diffraction in the zero-offset section instead
of a reflection, the response of the diffraction stack to migration velocity errors is identical
to the case of mis-stacking. Since, as observed in the numerical modeling of fault-plane
reflections earlier, both diffractions and dipping reflections occur at a fault-plane, caution
should be taken in interpreting post-stack time-migrated amplitudes originating from a fault
plane if it is unclear whether they are diffractions or reflections. Access of the interpreter to
an unmigrated section, showing the fault-related diffractions, could help to diagnose areas
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of less certainty.

2.6 Fault-plane reflections and dip moveout

The formalism outlined above for evaluating the inverse filters for stacking and migra-
tion can be extended to another component in the typical seismic data-processing sequence
called dip-moveout or DMO (Hale, 1991). Whereas stacking operated in the common-
midpoint domain, dip-moveout operates in the common-offset domain. The purpose of a
traditional DMO is to alter NMO-corrected nonzero offset data in such a way that they
become zero-offset. Hence, DMO improves the stack for dipping reflectors that are incor-
rectly treated by NMO-correction (because of its horizontal-layer assumption). We derive
the inverse filter for a diffraction-summation style DMO and then comment on the stacking
errors for dipping reflectors after DMO.

In contrast to the previous sections on stacking and zero-offset migration, let’s not start
analyzing the DMO response from the point of having a discrete number of traces. Instead
begin from the stationary phase approximation of the resulting integral, equations (2.9)
and (2.10); that is, we do not go through the previous arguments about approximating the
summation with an integral. It turns out that DMO is similar to migration: the parts of
a common-offset section that fall along a curve (the DMO trajectory) are summed up and
placed at the apex of this curve. From equation (2.25), all that is needed to approximate
the response of the DMO integral are the time shifts

Az) = trefn(T) — tamo(x), (2.34)

where the DMO trajectory, tgmo(z), is put in place of thyp(z) in equation (2.25) and the
equation of an NMO-corrected dipping reflector in a nonzero-offset section, t,e fn(z), is
substituted for t,¢f(z) in equation (2.25). For the application of DMO, z is the midpoint
location. We refer to the reflector curve as t,. fn(x) since the input to DMO is not the true
reflector curve, but that curve after NMO-correction has been applied.

To begin studying the DMO response, we need tgmo(z) and t,e fn(z). The summation
trajectory for DMO, tymo(z), follows from the DMO ellipse (Hale, 1991)

T02 2
- = 2.35
2 +z=1 (2.35)

where T is the zero offset time (the output of DMO), Tpm, is the NMO corrected time (the
input to DMO), z is the midpoint location, and h is the half-offset. Using the idea that
the DMO trajectory is the locus of input points whose apex is the output point, tdmo(x)
becomes, from equation (2.35)

_ tout
tdmo(x) = \/1 — (:L‘ — xout)2/h2 (2.36)

with t,,; the output time and z,, the output midpoint. The DMO trajectory, equa-
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Figure 2.18. DMO by the diffraction-summation method in a common-offset gather

tion (2.36), is a thus curve extending over only a finite midpoint range of length 2h because
its edges become vertical asymptotes. The trajectory is shown in Figure 2.18 with the input
and output points labeled, in analogy with zero-offset migration. Because of the steepness of
the curve as it approaches its ends, the DMO operator is typically cut-off to avoid aliasing.
This is shown in Figure 2.18 by arrows marking a smaller aperture that avoids aliasing.

The equation for the traveltime of a generally dipping reflector embedded in a constant
velocity medium is (Dunkin & Levin, 1973)

4h? L2

thes(x) = T3 + w7 P (2.37)

where p is the time dip of the reflection from equation (2.14) and v is the medium velocity.
From equation (2.37), a dipping reflector has a moveout velocity vqpp that differs from that

for a horizontal reflector
v? v
= = . 2.38
Varp v 1-p%v2/4  cosd (2:38)

In equation (2.37), we parameterize the zero-offset time Ty as

To = pz + C, (2.39)

where C is a constant to be determined momentarily. Note that, for a horizontal reflector
(6 = 0° and p = 0), equations (2.37) and (2.39) indicate that the reflector in a common-
offset section is at a constant time. Also, because of the Tg term in equation (2.37), the
reflection from a planar dipping reflector has curvature in a common-offset section. Bear in
mind also, since the ouput of DMO is a zero-offset section, tout = To.
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Building on equation (2.37), we obtain the equation for the reflection from a generally
dipping reflector after NMO-correction, denoted ¢,.. ()

4h? 4h?
trefn(®) = \/ (pr+C)+ —5 —ph% — —. (2.40)

st

Now, the constant C can be determined via the relationship t,. fn(Tin) = tin. This equality
simply states that the input to the DMO process (the input points z;, and t;,) lie on the
NMO-corrected reflection curve. Substituting trefn(Zin) = tin into equation (2.40) and
solving for C results in

1 1
C= \/t?n + p2h? + 4h?2 (v_2 - F) — DTin. (2.41)

st

Inserting this expression for C' into equation (2.40), the NMO-corrected reflection time can
be written in terms of the input points

2
1 1 1 1
trefn(T) = (p(w — Tin) + \/tfn + p?h? + 4h? [17 - ﬁ]) — p?h? — 4h? [—2 - ——]-
st
(2.42)

With equations (2.36) and (2.42) in hand, the two map-DMO relations can be ob-
tained by setting trefn(Z) = tamo(x) and Otrefn(z)/0r = Btamo(x)/0z at the input point
T = ZTin. By map-DMO, we mean to make an analogy to equations (2.17) and (2.18),
which we referred to as the equations used for map-migration. In addition to these two
relations, the time shifts necessary for a stationary phase evaluation of DMO, appear-
ing in equation (2.34), are known. Actually, the two conditions trefn(T) = tgmo(r) and
Otrefn()/0x = Otymo(x)/Oz at T = z;y follow from the fact that the input point is a sta-
tionary point. The stationary phase approximation, equation (2.9), requires the evaluation
of the second derivatives, with respect to z, of ¢, fn(z) and tgme(x) at the stationary point,
T = Zip.

The first condition, trefn(z) = tamo(z) at £ = xi,, gives the DMO ellipse, equa-
tion (2.35), in the form

tgut (Zin — xout)Q
7 =1, 2.43
ti2n + h2 ( )
From the second condition, Otrefn(z)/0z = Otgmo(x)/0z at at = z;,, we get a new
relation
V2 + 4p%h? — tyy, 2.4
Tin — Tout = = , 2.44
mn ou. 2p
where p is given by
- t
p=p2 (2.45)

tin ’
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The derivation of equations (2.44) and (2.45) is detailed in Appendix A. In addition, since
the input to DMO is already NMO-corrected,

11
tin = \/ 2, + 4h2 (5 ~ 7) — p?h?, (2.46)

st

where this relationship follows from equations (2.39) and (2.40) since To = tout (the output
of DMO is a zero-offset section) and trefn(Zin) = tin (the input to DMO has been NMO-
corrected). Equation (2.44) is a direct analogy to equation (2.18) for DMO instead of
zero-offset migration. Substituting the DMO ellipse, equation (2.35), into equation (2.44)
for Z;n — Tout gives the analogy to equation (2.17) for DMO

, t; / -
tout == tin Eﬁ-;nh_z [ t?‘n + 4p2h2 —_ tin:\ . (2.47)

The derivation of equation (2.47) is detailed in Appendix A. From equations (2.44) and
(2.47), given i, and tin, Tout and toy can be found. Hence, equations (2.44) and (2.47)
summarize the mapping performed by DMO.

The stationary phase approximation is now in order. This type of analysis, when
applied to DMO, yields the form of the inverse filter needed to reverse the wavelet-altering
and amplitude-changing aspects of summation along the DMO-trajectory. Repeating the
previous sections of this chapter, the DMO response I(w) can be approximately given by

2,1-1/2
I(w) = V2re™/* [%ﬂg] gi#(min), (2.48)

T=Tin

with z;, the stationary point of the phase function ¢(x), which for DMO is

¢($) = w[trefn(x) - tdmo(x)]- (249)

Note that, for this application (and the others in this chapter), é(zin) = 0, so that the last
exponential factor in equation (2.48) is unity.

From equations (2.48) and (2.49), the second derivatives of tgmo(z) and trefn(z) With
respect to r are needed at * = T;,. From the expression for tyefn(z), equation 2.42, I find
that, when the stacking velocity is equal to the true velocity (vst = v),

82trefn(a:)| _ _p4h2
o2 T T

(2.50)

The derivation of equation (2.50) is detailed in Appendix A. Equation (2.50) can be rewrit-
ten in terms of tin, h, and t,y instead of t;n, h, and p with some albegraic manipulation.
Using equation (2.45) to write the right-hand side of equation (2.47) in terms of tin, h, tout,
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and p, and then solving for p yields

p= t—\/(tm/twt) - (2.51)

The derivation of equation (2.51) is detailed in Appendix A. Putting this expression for p
into equation (2.50) gives

2
%t refn() tin | [ tin \2
661.2 le=zin = _ﬁ [( - ) -1] . (2.52)

tout

The derivation of equation (2.52) is detailed in Appendix A.

Turning now to the second derivative of ¢4, (), given in equation (2.36), we find that

2 o 27-5/2 o 2
e = +1). @)

The derivation of equation (2.53) is detailed in Appendix A. Using the DMO ellipse,
equation (2.43), to substitute for (Zi, — Toyt) in the above equation results in

62tdmo(m) tin ( tin 2 tin 2
—_— e, = — [ =2 — . 2.
s =35 (1) 3 (22) -2 (2.54)

The derivation of equation (2.54) is detailed in Appendix A.

Since both expressions for the second derivatives of ¢, fn(z) and tgmo(z) are now known
at & = Zsn, the second derivative of the phase function appearing in equation (2.48) can be
computed. From equation (2.49),

¢ d?trefn(z) d?t grmo(x
éﬁlzzzin =w [%'x:zm - %Iz:zin} . (2.55)

Using the results of equations (2.52) and (2.54),

¢ tin tin \? ’
o 2]_7;_1"' = —Wﬁ 2 t—t -1 . (256)

Substituting this expression into equation (2.48) gives the DMO response I (w)

I(w) = Vame/t | —lin [2 (t’—">2 - 1} : (2.57)

h2 out
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This expression can be put in a more compact and understandable form:

B h exp(—im/4) [2m
2(tin/tout)2 -1 \/‘; tin '

By multiplying the result of the DMO summation by the inverse of equation (2.58) in the
frequency domain, given by

I(w)

(2.58)

2
[ w) = 2inflo)” =1 5 o ina) /22, (2.59)
h 27

the artificial changes produced by DMO can be removed. This inverse filter contains three
correction terms that, in analogy with the correction terms discussed for zero-offset migra-
tion, can be called the DMO obliquity factor, the wavelet shaping factor, and the geometric
spreading factor, respectively. The DMO obliquity factor contains terms with tin, tout, and
h. The wavelet shaping factor contains the square-root of frequency and a /4 phase shift.
The geometric spreading factor shows up as the square-root of t;n. Black et al. (1993) have
previously derived this filter in their paper on DMO and true-amplitude imaging. The only
difference between their filter shown in their equation 44 and the one we have derived here
is that their geometric speading factor is /fou: instead of V/Tin - it is in terms of the output
point and not the input point. This is surprising since, recalling the geometric-spreading
correction discussed in the previous section, it is given in terms of the input point in the case
of zero-offset migration (Yilmaz, 1987). This discrepancy could arise because Black et al.
(1993) derived their inverse filter in the context of impulse-response superposition instead
of the diffraction-summation approach taken here (Yilmaz, 1987). Therefore, by analogy,
the geometric spreading factor discussed in the section on zero-offset migration should be
changed to the output point for migration by impulse-response superposition.

2.7 The stack response for a dipping reflector

With the results of the previous section on the DMO response, the stacking response
discussed at the beginning of this chapter can be generalized to the case of a dipping
reflector. Recall that the time delays, equation 9.34, were based on there being only an NMO
correction applied to the data. In this section, we find the time delays from the combined
application of NMO and DMO (see Figure 2.19). We then verify that the stacking response
for a dipping reflector has the exact same form as encountered earlier in equation (2.13).
The main difference, though, is that the zero-offset time To appearing in equation (2.13) is
larger by a factor of 1/cos @ for a reflector with a dip 6. Hence, the amplitude of the stacking
response scales with VTo ~ Vsec 6, which becomes larger as a reflector dip increases. This
scaling of stacked amplitude can be thought of as a geometric spreading factor, like that
encountered in the corrections applied to zero-offset migration and DMO, which is not
corrected for since the error in the stacking velocity is unknown.

To obtain the combined time shift caused by the application of both NMO and DMO,
only the DMO time shift is missing since the NMO time shift has already been given in
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Figure 2.19. The NMO and DMO time shifts in a common-midpoint gather for a
reflection from a horizontal interface and one from a dipping fault-plane reflection.

NMO+DMO ™ ™.
corrected —p- =, v,

output *,

%8 N~ NMO-corrected

<+—DMO

y trajectory
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Figure 2.20. The DMO time shift in a common-offset gather. Like migration, DMO steep-
ens dipping events, which causes an apparent time shift, Atgn,, at a particular midpoint
location, here labeled M. Compare this figure to Figure 2.19.
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the first section of this chapter, equation (2.2). The total time shift is given by the sum of
the NMO and DMO time shifts At(z) = Atpmo + Atdmo. It turns out that the NMO and
DMO time shifts are opposite in sign (see Figure 2.19). From equation (2.39), the curve for
a dipping reflector in a zero-offset section is a straight line. Suppose that this line, to(z),
contains the output points, Tyt and tout, of a DMO process

to(z) = p(T — Tout) + tout, (2.60)

where again p is the time dip of the reflector. From the map-DMO equations of the previous
section, equations (2.44) and (2.47), the output points can be expressed in terms of the input
points

to(z) = (T — Tout (in, tin)) + tout(tm). (2.61)

To find the reflection time after DMO at a particular midpoint location in a common-offset
gather, to(x) should be evaluated at z = Zin, with z;, shown as M in Figure 2.20:

to(zin) = P(Tin — Tout(Tin, tin)) + tout(tin)- (2.62)

Substituting the expressions for (zin — Tout) and toye given in equations (2.44) and (2.47)
yields

2% 2p2h2

\/12, + 4pPh? — tin tin T

To get the time shift performed by DMO at this midpoint location, the input time needs
to be subtracted from equation (2.63); this is the DMO time shift:

B2, + 4p2h? — tin ¢
Atdmo = tO(xi'n) —tin=0p + tin s [V t?n + 4]52’7'2 - tin:‘ — tin-

% 2p2h?
(2.64)

Note that the DMO time shift depends on stacking velocity through the parameters ¢ and
p. This is in contrast to the notion that DMO is a velocity-independent process. Though the
shape of the DMO ellipse and the DMO trajectory do not change with changing velocity,
the time shift that DMO applies at a particular midpoint location is dependent on how
much that sample has been NMO-corrected prior to application of DMO.

The total time shift is the sum of the NMO and DMO time shifts

At(x) = \/Tg + 4h? (l - %) —p?h?2 - To+

2
v Vgt

V tzzn + 4ﬁ2h2 —tin t;
p - + tin -2—"‘-— [, [t2, + 4p2h? — tm] — tin, (2.65)

2p 52 h?

T ——
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which can be simplified with the help of equation (2.46) to

A2, + 4p2h2 — ¢ .
At(z) = pL-" i tm\/ bin [\/t?n+4;52h2—tm] ~ To.  (2.66)

2% 2p2h2

This equation is the generalization of equation (2.2) for a dipping reflector. The stationary
phase approximation can be applied to the time-shift function in equation (2.66) as was
done in the earlier section of this chapter on stacking. The result for the stack response of
a dipping reflector I(w) looks superficially the same

v 27Ty exp(i sgn(vg — v)m/4)
e T A G| o0

except that the zero-offset time T appearing here is for a dipping reflector. If Tig is
the migration (vertical) time, then T7,;y = Tp/cosf where @ is the dip. The scaling of the
amplitude response with v/secf explains the numerical observation that the amplitude of
the fault-plane reflections is less sensitive to stacking velocity errors than for the horizontal
reflections within the stationary phase approximation. A similar amplitude factor exists for
prestack migration, reflecting the fact that the prestack diffraction curve becomes flatter
at longer offsets and hence that the summation collects more energy during its time spent
near the stationary point. The prestack migration response is discussed in Appendix B.

2.8 Discussion

The entire seismic processing sequence consisting of NMO, DMO, stack, and zero-
offset migration has been analyzed with the tool of stationary phase. The issues concerning
errors in imaging caused by errors in stacking and migration velocities should serve as a
guide for interpretation of post-stack seismic images, in order to assess what can realisti-
cally be gleened from these images. With a numerical example, we find that the reflected
waveform from the fault plane is less sensitive to stacking-velocity errors than that from
the horizontal interfaces. This certainly holds true for the model, but perhaps even more
generally, as indicated by the scaling of the amplitude response within the stationary phase
approximation. Additional processing steps not covered in this chapter, such as muting,
also influence the stack response. Since muting selects a larger offset range with increasing
time and fault-plane reflections have a larger two-way reflection time than reflections from
horizontal interfaces, a fault-plane reflection should have a larger pre-stack offset range than
does the reflection from a horizontal interface at the same depth. Muting did not affect the
numerical results in this chapter since the muting happened to be chosen in such a way that
no new offsets arose in the CMP-gathers from the time of the horizontal interface reflection
until that of the fault-plane reflection. Introducing more offsets into the stacked fault-plane
reflections should make them more sensitive to stacking errors while making them more
robust in the presence of random noise. At the least, it can be said that fault-plane reflec-
tions, when gathered in well-sampled dip lines, are not any more susceptible to stacking
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errors than are reflections from layer boundaries with gentle dip.
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Chapter 3

Finite-element modeling of slip-discontinuities in
layered media

3.1 Summary

Interfaces in elastic media need not be in welded contact. For instance, fractures allow
a small amount of slip to occur along their surfaces during the passage of a seismic wave. By
slip, we mean that the displacement across the interface can be discontinuous. Reflection
and transmission of plane waves at plane boundaries in this case are frequency dependent.

Previous numerical studies have chosen the finite-difference method to simulate slip
discontinuities. That approach suffers from difficulties in incorporating boundary conditions
into the strong form of the equations of motion. We show that a method based on the
weak-formulation, e.g., the finite-element method, can overcome these problems. Numerical
examples illustrate the method for a P-wave incident at a non-normal angle of incidence.?

3.2 Introduction

Full-waveform forward modeling in seismology has traditionally been dominated by
finite-difference methods. Perhaps the intuitive appeal of such methods has led to their
popularity. Kelly & Marfurt (1990), in reviewing the numerical literature from the explo-
ration geophysics community, cited at least four possible reasons for the relative neglect
of other methods, specifically finite-elements. We complement their list by stating that
finite-elements require additional numerical care for proper implementation. For instance,
explicit finite-difference algorithms do not require the inversion of a matrix. In contrast, all
finite-element methods eventually lead to a matrix equation that must be solved. Avoid-
ing the solution of a matrix equation in a finite-element scheme requires a numerical trick
called “mass-lumping” wherein the rows of the mass matrix are summed and placed on the
diagonal (Zienkiewicz & Taylor, 2000).

Finite-elements offer more flexibility than do finite-differences with respect to the shape
of the numerical mesh; however, it is less widely accepted that finite-elements are superior
to finite-differences in the way they account for boundary conditions. Such an advantage
can easily be seen in the formula for integration by parts: an integral is replaced by another
integral and a term representing the values of the function at the boundaries. This basic

'To be submitted after being generalized to poroelastic media
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fact shows up in the formulation of finite-elements since they approximate the integrated, or
weak, equations of motion and thereby utilize integration by parts, or its higher-dimensional
generalization, Green’s Theorem.

Finite-differences, as approximations to the strong, or differential, form of the equations
of motion, require ad hoc techniques to take into account, for instance, a welded boundary
between two different elastic media. David Boore, one of the pioneers of the finite-difference
method in seismology, summarized the problem by stating that in finite-difference schemes
“the interface displacements must satisfy the continuity of displacement and stress, but are
not explicitly required to satisfy the equation of motion” (Boore, 1970).

The motivation of this chapter is to explore the advantages of the finite-element method
for the modeling of slip discontinuities. The slip discontinuity has been proposed by Schoen-
berg (1980) as an interface condition applicable to cracks. The boundary condition can be
thought of as a generalized interface condition since it supplies a parameter, the compliance
7, that, over its range of physical values, takes an elastic interface from a welded contact
(n = 0) to a free surface (n = 00). Mathematically, the boundary condition for an S H-wave
incident on a slip discontinuity situated in the yz-plane is expressed as

uf —uy =noy., (3.1)

0, — 05, =0, (3.2)

where (-) refers to the side of the interface on which the wave is incident, (+) the other
side of the interface, u, refers to the displacement normal to the plane of propagation, and
0y, is the shear stress. In this paper, a slip discontinuity extends infinitely; we do not
consider crack-tips. Physically, boundary conditions (3.1) and (3.2) model the transmission
and reflection of a thin, low-shear zone (Schoenberg, 1980). Faults generally fall within this
category.

In this chapter, we demonstrate that:

1. Finite-element modeling can explicitly incorporate interface boundary conditions into
the equations of motion.

2. The equations of motion for the numerical scheme can be the familiar second-order
wave equation in u (displacement).

3. An explicit, conditionally stable time integration scheme can handle the zero-length
elements needed to accurately model a slip discontinuity.

We conclude this discussion of the finite-element method with numerical examples of the
reflection and transmission of plane P-waves at an elastic interface and a slip discontinuity.

3.3 A Finite-Element Scheme for the 1D Scalar Wave Equation

The beginning of any numerical study must be an analysis of the two limitations
imposed on finite systems: numerical dispersion and stability. An understanding of these
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Zyg 1 Zy 41

Figure 3.1. The basis functions we use for finite-elements

concepts should steer the subsequent implementation of a particular numerical scheme.
Ideally, any numerical simulation should satisfy a stability criterion with the least amount
of dispersion possible.

In this section, we present the most simple case: a finite-element implementation of
the scalar wave equation in 1D. We choose this problem since, in 1D, the essence of the
finite-element scheme is not complicated by mesh generation or subsequent assembly of the
mass or stiffness matrix. Assembly of these matrices is directly related to the notion of
wrapping up, or ordering, a higher-dimensional set of points into a 1D vector. In 1D, this
is unnecessary.

Consider the 1D scalar wave equation with source term in a homogeneous medium

,0%u 0%

o e =0 (33)

where ¢ is the wave speed (assumed constant), s is the source term, z is depth, and ¢ is
time. For this example, we assume Dirichlet (essential) boundary conditions at z = 0 and
z = L. The displacement, u, is approximated by a finite series of spatial basis functions
with coefficients that depend on time

N
u(z,t) = Y ax(t)dK(2)- (3.4)

K=1

In this paper, the nodal basis will always be used. For a spatial discretization step h and
a uniform partition of the interval [0,L] into N + 1 subintervals, these basis functions are
mathematically defined as

(z — 2zi-1)/h if zg_1 < 2 < 2k,

oK (z) =4 (241 —2)/h if 2k < 2 < zK41, (3.5)
0 otherwise.

Figure 3.1 shows these piecewise linear functions graphically.
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The Galerkin formulation of the finite-element method seeks to minimize the weighted
average of the error in satisfying equation (3.3) induced by the incompleteness of the finite
set of basis functions in equation (3.5). The essence of the Galerkin method is that it weights

the errors with the same basis functions used in the approximation of the displacement, u
(Marfurt, 1984)

L 52 N
[
0 K=1

N

Z ak(t)pk(z) — s] ¢s(2)dz=0
for J—1,2,...,N. (3.6)

Rearranging the order of the sums and integrals in this equation yields

N L
K
— 2
0=-— Z [637¢ /_a,’zT¢sz +
L

N L
lag
oxdjdz| + | spydz. (3.7
2 o | oo+ ]

0

Since the basis functions are piecewise linear over their range, the first integral on the
r.h.s. of equation (3.7), containing a second derivative of the basis function, must be altered
(Haltiner & Williams, 1980). In altering this term by integrating by parts, boundary terms
appear explicitly in the equation of motion

L
ok
822

_ 3¢K

bydz = L_ 3¢K3¢J

0z 0Oz

2, &

P 4. (3.8)

To implement Dirichlet boundary conditions at z = 0 and z = L, the weighting function, ¢ j,
is set to zero at the boundaries (Wang, 2000b). Hence, the boundary term in equation (3.8)
disappears and the elements ¢ are fixed to be zero on the boundaries. More complicated
boundary conditions, such as absorbing boundary conditions, are discussed later.

Without the boundary term, inserting equation (3.8) into equation (3.7) yields the
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weak form of the scalar wave equation

N L
0=C2Za}( /—Wéﬁ]—dz +
K=1 0
L

L
/¢K¢sz +/S¢sz. (3.9)
0 0

N 52 K
ot?

K=1

The bracketed terms in equation (3.9) can be represented as matrices multiplying the vectors
@ and 0%6/0t?. The matrix multiplying the second time derivative, 023 /8t2, is called the
mass matriz, M, and the matrix acting on & is referred to as the stiffness matriz, S. From
equation (3.5), the entries of these matrices can be calculated exactly. For the mass matrix,
MK s, the nonzero entries are

L
/ bxdsdz=2h/3  for K=J (3.10)
0
L
/¢K¢sz _h/6  forK=J+1,J-1. (3.11)
0

Thus, M is symmetric and tridiagonal. Similarly, the stiffness matrix, Sk,J, is also sym-
metric tridiagonal, with nonzero entries

L
Opx Ody , _
0
LBqS O
k05, _ _
/azgz—z— 1/h foor K=J+1,J—-1. (3.13)
4 A

The finite-element scheme can now be written in matrix form
8%a
0=c*SG+M——. 3.14
c“Sa + 52 ( )

Note that the source term has been omitted in equation (3.14). To include a source term,
s has to be approximated in the nodal basis

N
s(z,t) = Y sk(t)oK(2). (3.15)

K=1

Substituting this into equation (3.9), it can be verified that the mass matrix multiplies the
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source vector sg.

3.4 Stability analysis of an explicit finite-element scheme

The finite-element approach integrates the above matrix equation in space, but a
suitable time integration scheme has yet to be determined. As a first example, we use
an explicit time integration known as central differences (Zienkiewicz & Taylor, 2000) to
approximate the time behavior of &

(3.16)

Fnt1 — 28 + Gn_
0=C2S&n+M<an+l an+an 1) 3

At?

where the subscripts refer to the time step n + 1, to be calculated, and the previous time
steps n and n — 1. The time discretization interval is At. Notice that equation (3.16) is
symmetric in the n+1 and n — 1 terms. This ensures that the resulting dispersion relation
on the numerical grid is real-valued. Such a property is desirable since a complex dispersion
relation would yield solutions to the wave equation that grow or decay exponentially with
distance. In contrast, real-valued solutions do not grow exponentially, so long as they satisfy
a stability criterion.

To calculate the stability criterion for this explicit time integration scheme, first use
equations (3.10), (3.11), (3.12), and (3.13) to carry out the matrix multiplications in equa-
tion (3.16). What results is the so-called finite-element stencil

h 2h
0 = BAEZAm-1n+1 + A2 Omnt] +

h h c?
6AZOm+lntl — | 3372 + 7, ) @m-tn =

4h 2¢2 h c?
Ak )Omn T \gag T g ) omen

h
mam—l,n—l + mam—l,n-l +

h

—GAt2am—1,n—l, (3.17)

where the first subscripts refer to gridpoints in space and the second subscripts are still the
time steps. To investigate the stability of the central difference scheme, insert a harmonic
function for a (Alterman & Loewenthal, 1970):

Omp = gtkmhn ¢ = et 2 = mh, and t = nAt, (3.18)

where the integers m and n multiply the spatial and temporal interval lengths h and At, k
is the wavenumber, and b is related to the frequency.
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Inserting equation (3.18) into equation (3.17), and organizing terms yields

h . .
0 = AP (e——zkh +4+ezkh)c2

c? ikh ikh
——E(e" —2+e"")¢

h —1 i
TG kh | 4 4 etkh)¢
h

+ B6AL2

(e—ikh +4+eikh)] eikmhcn—l. (3.19)
In order to have non-trivial solutions, the terms inside the brackets in equation (3.19) must
equal zero. The resulting equation contains all the information about the dispersion and
stability properties of the numerical scheme. Note that in higher dimensions, equation (3.19)
is a matrix equation, and the condition for non-trivial solutions is that the determinant of
the matrix equals zero.

Dividing equation (3.19) by the coefficient of the ¢ 2 term and setting the terms inside
the brackets to zero gives

0=¢?

6c2At2 [e~ikh _ 9 4 etkh
-5 (e~ikh i eikh) ¢—20+1. (3.20)
Using the Euler formula and the relation cos(kh) — 1 = -2 sin2(kh/2), we can simplify
equation (3.20),
2 .
2y — (4 + 5ty ) sin?(kh/2)

h—

0=¢*- :
Af 3—2&7 sin?(kh/2)

¢+ 1. (3.21)

For the numerical scheme to be stable, the roots of equation (3.21) should have magni-
tudes less than or equal to 1. This means that the solutions are not exponentially growing
in time. For a quadratic of the form

0=2?—22+1, (3.22)
the magnitude of the two roots, 1 and x2, are both less than or equal to 1 if

—1<Z<1. (3.23)

NI

Inserting equation (3.21) into this expression yields

2 .
A%’y — (4—,“;— + %2‘) sin(kh/2)

-1<
T 2y — SRysin®(kh/2)) T

(3.24)

Scanning over all possible values of sin?(kh/2), the strongest condition on the spatial and
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temporal discretizations h and At occurs when sin?(kkh/2) = 1 (Alterman & Loewenthal,
1970). In this case, equation (3.24) becomes

2h _ 4c?

1< 388k < (3.25)
3a0

From equation (3.25), the right-hand inequality,

2
2h 4c < 2h

— < — 3.26
3At2  h T 3At?’ (3:26)
is trivially true. The left-hand inequality provides a more meaningful relation:
B 2h 2h 4c?
3At2 —  3At? h’
4c? 4h
= <
o h — 3A?’
or cAtV3 < h. (3.27)

This is the Courant-Friedrichs-Levy (CFL) stability condition for this implementation of
explicit finite elements (Marfurt, 1984).

Above, we stated that equation (3.19) contains all the information about the dispersion
and stability properties of the numerical scheme. We have the stability condition - what
about the dispersion relation? To obtain this, set b in equation (3.18) to iw so that { =
et Substituting this into equation (3.19), setting the terms in the brackets to zero, and
simplifying a bit yields the dispersion relation

3At2c? [cos(kh) —1
h? cos(kh) +2/ "

cos(wAt) =1+ (3.28)
For wavelengths much larger than the grid-spacing, wAt and kh are small parameters.
Keeping the lowest order terms in a series expansion of equation (3.28) gives the familiar

dispersion relation
w2 = c2k2_ (329)

In other words, the finite-element scheme should do an excellent job propagating waves well-
sampled by the numerical grid. In practice, ten grid samples per wavelength is adequate
for avoiding numerical dispersion.

A finite-element method can be fitted with absorbing boundaries at the edges of the
numerical grid. For the 1D case of layered media, Clayton-Enquist boundary conditions (or
radiation boundary conditions) can be constructed that absorb any outward-going waves
(Clayton & Enquist, 1977). In higher dimensions, this approach fails and other techniques,
most notably the perfectly matched layer (PML) method, must be employed (Chew & Liu,
1996). If we take the numerical domain to extend from z = 0 to z = L, a discrete one-way
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wave equation at the boundary z =0 is

u(0,t) — u(0,t — At) cu(h,t — At) — u(0,t — At)

At h ’

(3.30)

We require that the velocity is constant, c(z) = ¢, for the boundary point and the nearest
interior grid-point. Equation (3.30) can be rearranged to solve for u(0, t), the displacement
on the boundary, as a function of the displacement at the boundary at the previous time step,
u(0,t—At), and the displacement at the nearest interior grid-point at the previous time step,
u(h,t — At). Hence, the absorbing boundary condition is explicit in time. Slight boundary
reflections occur because of interpolation errors in the derivatives in equation (3.30). We
can dampen these interpolation errors further by using second-order approximations to the
derivatives in equation (3.30) instead of the first-order derivatives shown.

3.5 The P-SV system in layered media

Of more interest to seismic surveys is the reflection and transmission of P — SV waves
at a slip discontinuity. Two compliances, the normal and tangential compliances (nn and
nr), characterize a crack in this case. Analogous to equations (3.1) and (3.2), the interface
boundary conditions are

ub —ugy =N7r0s2, (3.31)
03— 0z =0, (3.32)
ulf —u; =nNOs, (3.33)
ot, —a,,=0. (3.34)

The equations of motion for P — SV waves in heterogeneous media couple the two compo-
nents of displacement, u, and u,

%y u,  O%u, u, O%u,
% _(a Otz | TUz TUs _
Pz = A+ [8x2 + 6:1:82:] # [ 522 Bzaz] ’ (3:35)
0%u, u, O%u, 2y, 0%u,
Pz — A2 [57 * Ex_a_] u ['a—xf - axaz] : (3.36)

where p is the density, u is the shear modulus, and A + % p is the bulk modulus. To obtain
the equations of motion for a layered medium, we use the fact that, in a medium that only
varies with depth z, the horizontal component of the slowness

_ sinf, sin 0

3.37
T (337)

is constant. In equation (3.37), v, = /(A + 2u)/p is the P-wave velocity, v, = / wn/p is
the S-wave velocity, and 6, and 6, are the angles that the P- and S-waves make with the

vertical (z) axis. That p is constant means plane-wave solutions for any of the displacements
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or stresses in a vertically varying medium would have the form S(t — px — p,z). With this
information, z-derivatives can be exchanged for ¢-derivatives

8%y, 9 u,

9z2 P (3.38)
8%u, 8%u,
920z Potox (3.39)

With these substitutions (and the analogous ones for u,), the system of equations (3.35)
and (3.36) can be made into a system purely in terms of depth z and time ¢

8%u %u 8%y

2.2 z _ 2 T 2 2 2
(1 vpp ) at2 'Us 3Z2 p(vp 'Us azat’ (340)

8%y, 8%u, 8%u,
(1—v%p?) 57 = v2 o p(v2 — 2 5B (3.41)

Note that for normal incidence (p = 0), the system of two PDEs decouples into two inde-
pendent PDEs.
Applying the Galerkin method to equations (3.40) and (3.41), we use the expansions

N
uz(z,t) = > ak(t)px(2), (3.42)
K=1
N
us(zt) = Y Br(t)ok(2), (3.43)
K=1

and proceed as with the 1D wave equation shown earlier in this chapter. The technique for
putting in a split node is outlined in Appendix D.

3.6 Numerical example

We first show an example where a P-wave is incident on a welded boundary for six
incident angles between 0° and 30°. The model is shown in Table 3.1. For each angle, the
ratio of the reflected P-wave to the incident wave gives reflection coeflicient. In Figures 3.2
and 3.3, we compare the reflection coefficient calculated from the finite-element scheme with
that obtained from the exact solution (Aki & Richards, 1980) using the Zoeppritz equations.
Good agreement is seen over the range of incident angles, validating the numerical scheme
for an elastic interface.

In addition, we used the finite-element code to model P-wave scattering from a slip
discontinuity, as shown in Figure 3.4. The parameters used for this simulation are given
in Table 3.2. Since the P-wave is incident on the slip discontinuity at an angle of 50.5°,
it excites up- and down-going converted waves, labeled PS in Figure 3.4. Both horizontal
and vertical displacements are shown in Figure 3.4; the polarizations for the various wave
types, evident from comparing the horizontal and vertical displacements, agree with those
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| elastic property value ||
density of incident medium 2000 kg/m”
P-velocity of incident medium 1732 m/s
S-velocity of incident medium 961 m/s
density of transmitting medium 2000 kg/m*
P-velocity of transmitting medium 1932 m/s
S-velocity of transmitting medium 1061 m/s

Table 3.1. The model used to compare the reflection coefficients calculated from the
numerical scheme and the exact solution.

PP reflection coefficient magnitude
0.06

OML-----~~_~--.
0.04

0.03
0.02|
0.01

5 10 15 20 25 30
incidence angle (degrees)

Figure 3.2. Analytically calculated PP reflection coefficients for the model shown in
Table 3.1 for incidence angles between 0° and 30°. Compare with Figure 3.3
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PP reflection coefficient magnitude
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incidence angle (degrees)
Figure 3.3. PP reflection coefficients calculated from the numerical scheme for the model
shown in Table 3.1 for six incidence angles between 0° and 30°. Each of the six incidence
angles is shown by a black dot. Compare with Figure 3.2

| elastic property value ||
density of the host medium 2260 kg/m?
P-velocity of the host medium 2675 m/s
S-velocity of the host medium 1175 m/s
frequency of the incident P-wave 20 Hz
angle of incidence 50.5°
normal compliance 5x10710 m Pa~1
tangential compliance 1x107° m Pa~1

Table 3.2. The model used to plot the snapshots of the scattered elastic wavefield from a
linear slip interface.
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expected (see Figure 3.5). The agreement of the polarizations for the various wave types
validates our approach to coupling the P- and S-waves in a layered medium at non-normal
angles of incidence.

3.7 Conclusions

The exercise of realizing slip discontinuities in a simple 1D finite-element algorithm
assists in the understanding of the implementation of slip interfaces in 2D numerical codes,
which are further complicated by meshing and assembly issues. We find that proper model-
ing of fractures can accommodate an explicit, conditionally stable time integration scheme.
In 2D or 3D, the repeated use of integration by parts in this chapter would be replaced
by Green’s Theorem. Simulations in a higher dimension would allow the modeling of crack
tips.

In the numerical examples, the background medium is homogeneous except for the
slip discontinuities. The finite-element scheme has also been worked out for the case of
smoothly varying changes in the material properties. An example of this would be a zone
of linearly increasing velocity bounded by two slip discontinuities.

We limited this study to the reflection and transmission of a pure slip (displacement)
discontinuity. Schoenberg (1980) has also suggested the possibility of a viscous slip condi-
tion. Other, more exotic interface conditions exist, such as the Maxwell and Kelvin versions
of the combined displacement and velocity discontinuity (Pyrak-Nolte, 1996). That inter-
face condition models the reflection and transmission from a thin, low shear zone with
attenuation and has been validated in laboratory experiments (Pyrak-Nolte et al., 1990).
The same finite-element methods described here are needed to numerically model these
other types of interfaces. A numerical code has been produced from the methods outlined
in this chapter and will be made available in the Matlab codes released with Seismic Un*x
(Stockwell, 1997).
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Figure 3.4. Snapshot of the horizontal displacement (top) and vertical displacement (bot-
tom) of the scattered wavefield for a P-wave incident on a slip discontinuity located at a
depth of 1000 m. The P-wave is incident from the left, or from smaller values of depth,
and at an angle of 50.5°. The reflected PP, transmitted PP, and up- and down-going P.S
waves are displayed. Their polarizations agree with the expected polarizations shown in
Figure 3.5. The model parameters are shown in Table 3.2.
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Figure 3.5. A P-wave is incident on a horizontal slip discontinuity. Four waves radiate from
the imperfect interface, the reflected P, transmitted P, and up- and down-going converted
waves. The polarizations of the waves are shown as arrows.
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Chapter 4

Spectral element modeling of fault-plane
reflections

4.1 Summary

Simulating the 2D elastic wave equation via the spectral element method (SEM) has
advantages over other modeling techniques for studying seismic reflectivity associated with
faults. For instance, irregular geometries can be easily accommodated and slip boundary
conditions are implemented naturally, as are other methods based on the weak form, like
finite-elements. In this chapter, we utilize an existing SEM code that models slip at an
interface, such as a fault or fracture, by the split-node approach outlined in appendices C
and D. The method of including a slip interface retains the desirable qualities of SEM in that
it is explicit in time and does not require the inversion of a large matrix. We also exploit the
freedom of meshing inherent in SEM by using an open-source meshing program. We then
run through a complete numerical exercise incorporating both SEM forward modeling of
shot gathers over a realistically-sized Earth model containing a normal fault and processing
of the simulated data to reconstruct post-stack time-migrated images of the kind that are
routinely interpreted in the seismic industry. Finally, we dip filter the seismic images to
highlight the fault-plane reflections before making amplitude maps on the fault plane. We
examine several different fault models to diagnose which of the various influences most
contributes to fault reflectivity. To lend physical meaning to the compliance of a slipping
fault, we propose an equivalent-layer model under the assumption of weak scattering. The
empirical relationships between density, velocity, and effective stress derived in Chapter 1
can then be invoked to relate a slipping interface to a level of pore pressure in the fault

zone. 1

4.2 Introduction

Seismic data acquisition and processing have evolved to the point that fault-plane
reflections are often imaged under favorable conditions, such as above salt in the Gulf of
Mexico (Liner, 1999). Reflections originating from fault zones hold important information
about fluid movement along faults, as shown in Chapter 6 of this thesis, or the capacity
of a fault to act as a seal (Haney et al., 2004). Faults have long stumped interpreters by

'To be submitted to Geophys. Journ. Int.
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virtue of their split personality as both hydrocarbon traps and pathways for hydrocarbons
to move from deep kitchens into shallower, economically producible reservoirs. Any light
that seismic data can shed on the situation would be useful.

To gain a stronger grasp on the factors at play in causing fault-plane reflectivity and
errors that can deteriorate their imaging, we have pursued a complete numerical study
of seismic wave interaction with fault models. By complete, we do not simply model the
entire measured (elastic) wavefield with high fidelity, but additionally process the data back
into its time-migrated image, which is the point at which many geoscientists in the oil
industry gain access to and begin examining seismic data. We model the wavefield with
an implementation of the spectral element method (SEM) written by Dimitri Komatitsch
and Jean-Pierre Vilotte at the Institut de Physique du Globe in Paris, France. Further
improvements have been made to the original code by Jean-Paul Ampuero in the course of
his graduate work (Ampuero, 2002). Jean-Paul has also taken an active role in educating
other geoscientists on the subject of SEM and the code, known as SEM2DPACK. He is
a main collaborator in the research presented in this chapter. Processing of the elastic
wavefield output by the SEM code has been accomplished using Seismic Un*x (Stockwell,
1997).

We first sketch the theory behind SEM and demonstrate the complete numerical ap-
proach on a simple fault model that has been used in a previous study (Townsend et al.,
1998) of fault reflectivity. After discussing the along-fault dip-filtering step that we employ
to highlight the fault-plane reflections in a migrated image, we present results for several dif-
ferent fault models. These models represent examples and combinations of three canonical
types of heterogeneity expected at faults. These canonical types are:

1. juxtaposition (sand/shale or shale/sand) contacts
2. pressure contrast AP across the fault
3. a slipping fault

We expect from the outset that these various types of heterogeneity show up differently
in dip-filtered seismic images. For instance, since the juxtaposition contacts exist over
the length scale of a typical bed thickness and have positive (sand/shale) or negative
(shale/sand) reflection coefficients, the smoothing of the dip-filter (Oppenheim & Schafer,
1975) should act to suppress their contribution to the fault-plane reflectivity. For instance,
the specular contribution to the average reflected intensity of a fault-plane between two ver-
tically shifted layered media with a random reflection coefficient series is zero (R. Snieder,
2002; personal communication). In practice then, away from this idealized model, this type
of reflectivity should be relatively suppressed compared to the other two models. This is
desirable since the juxtaposition contacts do not carry information on the sealing or con-
ducting properties of the fault. The other two types of heterogeneity, pressure contrasts
and slip at the fault plane, which do relate to pore pressure distributions at the fault, are
not attacked by the dip filter in the same way as are the juxtaposition contacts. The results
of numerical modeling presented in a later section support this claim. The model of a slip-
ping fault has been discussed in the last chapter. It represents a fault that is locally weak
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compared to the surrounding rock. In the last part of this chapter, we derive a formula that
gives physical relevance to the parameter describing the degree of slip on a fault, known as
the compliance.

4.3 The spectral element method

Numerical modeling of wave propagation in the earth can be based on the weak
(Zienkiewicz & Taylor, 2000) or strong forms (Boore, 1970) of the elastodynamic equa-
tions of motion. By weak and strong, we mean the integrated or differential forms of the
equations of motion. The spectral element method (SEM), though based on the weak form,
combines favorable aspects of both strong and weak formulations. For instance, SEM nat-
urally handles general geometries and exotic boundary conditions. In the finite-difference
method (based on the strong form), it is notoriously difficult to implement a linear-slip
boundary condition (Coates & Schoenberg, 1995) or any general boundary condition for
that matter (Boore, 1970; Kelly et al., 1976). On the other hand, SEM does not require
the inversion of a large matrix, a property usually identified with finite-difference methods.
Formally, this last property of SEM means that its mass matrix is diagonal and its compu-
tational cost is relatively small. Note that SEM does this in a way similar to mass-lumping
(Karniadakis & Sherwin, 1999), which has been used to diagonalize finite-element schemes.
SEM has the additional property of spectral convergence, meaning that, as the polyno-
mial order of the basis functions is increased, the numerical error goes down exponentially
(Karniadakis & Sherwin, 1999).

The term “spectral element” indicates that SEM is a mixture of finite-element and
spectral methods (Komatitsch & Vilotte, 1998). As a result, there are two parameters
relevant to the mesh in SEM: the size of the elements and polynomial degree (n—1, wheren is
the number of zero crossings of the basis functions used within each element). Komatitsch
& Tromp (2003) refer to these parameters when they speak of the global mesh and the
local mesh. Concerning the local mesh, there is a known trade-off between accuracy and
numerical cost (Seriani & Priolo, 1994), which suggests that polynomial degrees no higher
than 10 should be used within the elements. For the numerical examples in this paper, we
use a polynomial degree of eight. We made this choice based on an optimal criterion for
polynomial degree and the fact that SEM typically works with Lagrange polynomials. The
zero crossings of Lagrange polynomials are irregularly spaced over the interval [-1,1], which
is mapped onto the sides of the elemental mesh. The exception to the irregular spacing
occurs for Lagrange polynomials of even degree, for which a zero-crossing always occurs at
0 on the interval [-1,1}.

4.4 Modeling of a fault

As an example of the ability of SEM to model seismic scale structures, we present a
complete modeling and processing sequence for a simple fault model. The SEM forward
modeling has been run in serial (one node for each shot) on a 32-processor pentium IV
Xeon (3.0-GHz) cluster. All of the processing has been performed on a workstation using
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Figure 4.1. The entire numerical model with a zoom-in of the normal fault. The zoom area
is shown on the entire numerical model with a dashed rectangle. The lengths of the source
and receiver arrays are shown by extended arrows. Eleven sources evenly spaced over 2000
m (200-m shot interval) and 241 receivers over 3000 m (12.5-m receiver interval). In the
zoom, the layers are labeled with numbers 1-12 corresponding to the material properties
for models listed in subsequent tables. For models with a slipping fault, the portion of the
fault plane that slips is shown by a thicker line in the zoom.
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Layer Thickness (m) Vp (m/s) p (kg/m°)

1 900 2000 2000
2 50 2350 2080
3 30 2400 2150
4 50 2500 2130
5 30 2600 2200
6 90 2750 2180
7 850 2800 2250

Table 4.1. A model from Townsend et al. (1998) for the first SEM example in this chapter.
Each layer is a Poisson medium, vy = vp/ V3.

the Seismic Un*x package (Stockwell, 1997). Figure 4.1 depicts the geometry of the model,
and Table 4.1 shows the material properties of the various layers. The normal fault we
model has a vertical throw of 20 m, a value characteristic of a small fault. The model
shown in Table 4.1 has been previously studied by Townsend et al. (1998) to assess changes
in seismic attributes caused by faults disrupting the lateral continuity of events.

We mesh the interior of the computational grid shown in Figure 4.1 using a freely avail-
able mesh program developed by INRIA, called EMC2. The program can be downloaded at:

http://www-rocq.inria.fr/gamma/cdrom/www /emc2/eng.htm.

For this example and others in this paper, we use a semi-structured mesh since the fault
geometries modeled are not overly complex. A semi-structured mesh is desirable when
possible since the accuracy of SEM depends on the J acobian of the transformation between
a generally shaped element and a standard rectangular element over which the integration
is performed. Though the mesh has structure, it honors the slanted boundaries of the fault.
After initial construction of the mesh, the quadrangle elements are regularized so that their
shapes mimic rectangles as closely as possible.

The upper left panel of Figure 4.2 displays a typical shot record. Since the SEM
code is elastic, both primary and converted waves show up on the vertical component of
the displacement seismograms. It should be noted that, if the model in Table 4.1 had a
physically realistic vertical velocity gradient, ray bending would have served to separate
the P- and S-waves more effectively into the vertical and horizontal components. Without
a velocity gradient, model-specific muting of the converted waves is necessary in order to
proceed with conventional P-wave time-processing. We first subtract off the direct waves
by running a homogeneous subsurface simulation with the elastic properties of layer 1; see
Figure 4.1 and Table 4.1. After this step, we perform a geometrical-spreading correction,
NMO, DMO, and stack to simulate zero-offset data. The stacked section is shown in the
upper right panel of Figure 4.2. Note the significant diffracted energy coming from the sharp
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Figure 4.2. Three stages of data processing. On the left is a shot record from the SEM code
after subtracting off the direct waves, leaving the purely up-going wavefield. The middle
panel depicts the data in the midpoint-time domain after correction for geometric spreading,
NMO, DMO, and stack. Note the diffractions from the bed terminations at the fault plane.
Finally, the migrated image is shown on the right, with the fault plane clearly illuminated.
The migration result, though based on constant velocity, was depth converted.

corners at the fault. With the simulated zero-offset section, we proceed with a constant-
velocity migration using the velocity of the overburden (layer 1). Hence, a source of error in
this simulation originates from the slight undermigration of the deepest reflectors and the
fault-plane reflection. We chose to migrate with constant velocity since we have interpreted
time-migrated seismic sections in the Gulf of Mexico (Haney et al., 2004) and wanted the
SEM modeling to mimmick the data as closely as possible. With this full suite of forward
modeling and processing capabilities, we apply SEM to study various normal fault models.
Before going into the details of the modeling, though, we present the type of dip-filter I use
to isolate the migrated fault-plane reflections.

4.5 Dip filtering

In this section, using an array-based approach similar to the analysis of seismic data
processing in Chapter 2, we derive the form of the dip filter that we apply to the migrated
images to accentuate the fault-plane reflections. In the data examples from the Gulf of
Mexico that make up the final chapters of this thesis, a similar dip filter acts on a 3D
seismic data volume in successive 2D dip lines. The only difference is that the dip filter
constructed here is spatially-invariant; the dip filter used on the 3D seismic data volume
locally searches for the maximum coherency direction within an angular range before dip-
filtering.

In Figure 4.3, a dipping event is shown in a post-stack seismic image. The function of
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Figure 4.3. Dipping event with true dip direction given by the slanted solid line. The
event is summed along a direction given by the dashed line, and the result is placed at the
intersection of the two lines at the center trace. When there is a difference in the two dips,
the true dip p and the stacking dip pst, a time shift At is induced that varies linearly with
midpoint z. In this example, the seismic data exist at equally-spaced, discrete midpoint
locations.

the dip filter is to stack along the dashed line and place the stack result at the intersection
of the solid and dashed lines; where the coordinate system is chosen such that the midpoint
is equal to 0. Note that, in Figure 4.3, the dip filter emphasizes a direction different from
the dip of the event. This difference induces a time shift at the m-th input trace (shown as
a vertical arrow). Suppose that the true dip, the dip of the event, is p (dimension s m~!)
and the dip of the stacking curve is ps;. The time shift at the m-th input trace is thus

Atm = (p— pet) mh, (4.1)

where h is the midpoint spacing and m is the discrete variable running over midpoint
location. Assuming that the dipping event has a constant waveform f (t), the result of the
summation, g(t), over the stacking curve can be written as

o) = g (= Atoa) bk Sl At

f(t)+f(t_Atl)+"'+f(t_Atn)]7 (42)

where 2n + 1 is the length of the dip filter in terms of the number of traces. In the example
shown in Figure 4.3, n = 2. Equation (4.2) has exactly the same form as equation (2.1)
encountered earlier during the discussion of stacking errors. When we again take the Fourier
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transform over time and move to the w-z domain, equation (4.2) becomes

G(w) = F(w)K(w), (4.3)
with the Fourier transforms of f(t) and g(t) shown as F(w) and G(w) and the transfer
function, K, given by

1 . iw(p—
K@) =3— D elppamh, (4.4)

m=—n

This series is exactly the same as the one approximated by stationary phase in Chapter 2.
The difference here is that the time shifts, multiplying w in the argument of the exponential
term, are linear in m. Hence, the series in equation (4.4) can be evaluated exactly.

Using the geometric series, equation (4.4) can be written as

K(w) (4.5)

1 1 — ew(n+1)(p—pst)h | _ g—iw(n+1)(p—pst)h
T 2n+1 [ o pdh T 1 e wlppadh
Putting the first two terms in the brackets of equation (4.5) under a common denominator
and simplifying further yields a filter similar to that obtained for convolution with a boxcar,
or rectangular window (Oppenheim & Schafer, 1975)

_ 1 sinfw(n + 1)(p — pst)h/2]
K(w) = 2n+1 [2 sinfw(p — pst)h/2]

This filter is real because of the symmetric summation about its output point and can be
better understood by making the substitution At = (p — ps)h in equation (4.6)

cosfwn(p — pst)h/2] — 1] . (4.6)

K(w)

1 [ sinfw(n + 1)At/2]

T 2n+1 sinjwAt/2] cosfwnAt/2] - 1] : (4.7)

The amplitude spectrum of the dip filter is shown in Figure 4.4 for certain values of n and
At.

A dip filter in terms of w and k is needed to enhance fault-plane reflections on a
migrated time section. The filter in equation (4.6) is only in terms of w. To get the k
dependence, we exploit the fact that p = —k/w (Hatton et al., 1986). This means that
linear features with a dip p in the t-x domain get mapped into linear features with the
negative dip in the w-k domain. Substituting p = —k/w into equation (4.6) gives

1

K(w,k) = [28111[(” +1)(wpst + k)h/2

sin[(wpst + k)h/2]

= o7 1 cos[n(wpst + k)h/2] — 1] . (4.8)

This is the form of a dip filter that corresponds to stacking 2n + 1 traces centered about
the output point along a dip pg.
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Figure 4.4. Representative amplitude spectrum for the dip filter. The parameters used for
this plot were n = 4 and At = 0.1. Note that the first aliased frequency for this choice of
At is at f = 10 Hz.

4.6 SEM modeling of reflected waves

The dip filter operation discussed in the previous section has been applied to simulated
seismic images in the w-k domain. An alternative procedure would be a combination of
interpolation and slant stacking in the ¢-r domain; however, the w-k dip filter is sufficiently
accurate, as we show here. Figure 4.5 shows a plot of the simulated reflection images for the
two of the models presented in this chapter next to their dip-filtered versions that highlight
the fault-plane reflection. The dip filter applied to these plots has a length of 21 traces and
the adata and filter have a trace-to-trace spacing of 6.25 m (the midpoint spacing); this
sampling avoids any aliasing problems and attacks all events not having the dip (slope) of
the fault-plane reflection. In particular, it attacks the horizontal reflections.

The upper panels of Figure 4.5 are for a model of a pressure difference across the
fault, which acts like a traditional seismic interface. The lower panels of Figure 4.5 are
for a model of a linear-slip interface, which, in contrast to the pressure difference model,
reflects the derivative of the incident wave (see Appendix E for details). A slice cut out
of the dip-filtered images in the direction perpendicular to the fault-plane (shown as a
white arrow in the right-hand panels of Figure 4.5) helps in assessing the accuracy of the
numerically simulated fault-plane reflections. In Figure 4.6, we plot the reflected waveforms
together with either the incident wave or the derivative of the incident wave, depending on
whether the model contains the pressure difference or slip at the fault. The agreement seen
between the waveforms in Figure 4.6 demonstrates that the SEM modeling, processing, and
dip-filtering together produce an accurate reflected waveform from the fault plane.

In the following three sections, we examine reflectivity from the fault plane for a
juxtaposition-contrast model, three pore-pressure contrast models, and four slipping-fault
models embedded in one of the pore-pressure-contrast models. The purpose of this modeling
exercise is to get a feeling for which type of reflectivity should dominate at a general fault.
We also perform the processing of the SEM modeled data contaminated with certain errors
to see how maps of the amplitude along the fault are affected. I focus on maps of the
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Figure 4.5. Migrated seismic images from Model 2 (top panels) and Slip-Model A embedded
in Model 1 (bottom panels). Their dip-filtered versions, used to highlight the fault-plane
reflections, are shown in the right-hand panels. Slip-Model A is for a slipping fault (see
Table 4.6), which is embedded in Model 1 (see Table 4.2). Model 2 is for a pore-pressure
contrast across the fault (see Table 4.3). The traces in Figure 4.6 are sliced from these
images in a direction normal to the fault-plane, as shown by an arrow in the dip-filtered
images. The horizontal events in the upper panels appear to be not as well suppressed as
the lower panels simply because the fault-plane reflection is stronger in the bottom panel
and, as a result, the amplitude clip for the display is higher.
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Figure 4.6. The reflected waves from Model 2 (top), a pore pressure contrast, and Slip-
Model A embedded in Model 1 (bottom), a slipping fault, are shown in dashed lines. The
reflected waveforms for these two models are different in shape. The reflected waveform
for Model 2 should be the wavelet, which is plotted in the top panel as a solid line for
comparison with the numerical result. The waveform for Slip-Model A embedded in Model
1 should be the the derivative of the wavelet, which is plotted in the bottom panel as a
solid line for comparison. The agreement between the numerical results for the fault-plane
reflections and the expected waveforms validates the sequence of modeling, processing, and
dip-filtering used here.
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Layer Thickness (m) p (kg/m®) v, (m/s) v, (m/s)

1 900 2240 2600 1100
2 50 2280 2750 1250
3 30 2240 2600 1100
4 50 2280 2750 1250
5 30 2240 2600 1100
6 90 2280 2750 1250
7 50 2280 2750 1250
8 30 2240 2600 1100
9 50 2280 2750 1250
10 30 2240 2600 1100
11 90 2280 2750 1250
12 850 2240 2600 1100

Table 4.2. Model 1 for the SEM modeling. The throw between the upthrown (layers 2
through 6) and downthrown (layers 7 through 11) sediments is 20 m. The sediments on
both sides of the fault are at hydrostatic pore pressure. The geometry of the model is given
in Figure 4.1. The values are taken from the JD-sand and its lower bounding shale at a
depth of 2 km. The pore pressure is ~ 2800 psi at that location.

amplitude along the fault since this is the approach taken on seismic data from South
Eugene Island in Chapters 5 and 6.

4.7 Amplitude of waves reflected from a juxtaposition contact

Table 4.2 shows the parameters of a juxtaposition model for the subsurface geometry
shown in Figure 4.1. There are two rock types in this example, an acoustically hard shale
(p = 2280 kg/m®, v, = 2750 m/s, and v, = 1250 m/s) and an acoustically soft sand (p
= 2240 kg/m?®, v, = 2600 m/s, and v; = 1100 m/s). The values for the sand are taken
from a well log that intersected a sand layer at the South Eugene Island field known as the
JD-sand. The shale values come from the lower bounding shale beneath the JD-sand. In
Figure 4.7, we plot these well logs at the depth of this lithologic contact. These two layers
are at hydrostatic conditions, which at this depth is nominally 2800 psi.

In Figure 4.8, we plot the reflected amplitude from the juxtaposition model within
a small window (100 ms) of the fault-plane for four different processing scenarios. These
different scenarios are motivated by the data examples in Chapters 5 and 6. The first
scenario, shown in the upper-left panel of Figure 4.8, compares the extracted amplitude
on the fault plane of the noise-free dip-filtered image with the amplitude extracted after
20% Gaussian noise was added to the original image before dip filtering. As can be seen,
the dip-filtering step is robust in the presence of random noise, giving roughly the 1 //n



Matthew M. Haney / Sealing and episodic pulsing of fluids at a fault 79

[~]
[=1
(=]
(=]

2500

2000

velocity (m/s)

1940 1960 1980 2000 2020 2040

2400

2200L

density (kg/ms)

2000~4540 1960 1980 2000 2020 2040

SSTVD (m)
Figure 4.7. Velocity and density logs in the A20ST well at the South Eugene Island field
showing the interface between the JD-sand and its lower bounding shale at 1975 m sub-sea
true vertical depth (SSTVD). The log information at this contact is used to construct the

sand/shale model in Table 4.2. These logs also cut through a growth fault zone known as
the B-fault at around 2020 m SSTVD.

attenuation of noise exploited in stacking. The processing is such that the amplitude of
the reflected waves is an indication of the reflection coefficient at the boundary giving rise
to the reflected wave, at least within any changes induced by amplitude variations with
offset (AVO) in the stack. The pattern of the amplitude map reflects the spatially varying
presence of juxtaposition contacts for this model, as the amplitude wildly oscillates up
and down. The second scenario, shown in the lower-left panel of Figure 4.8, compares the
extracted amplitude on the fault-plane of the noise-free dip-filtered image with automatic
gain control (AGC) applied to the amplitude extracted after 20% Gaussian noise was added
to the original image before dip filtering and AGC. The AGC operates in a time window of
200 ms. In this panel, the true-amplitude degrading nature of the AGC is clear (the absolute
value of the amplitude is completely different from the result without AGC); however, along
the fault some of the same qualitative patterns are present. The same can be said for the
third scenario in the upper-right panel of Figure 4.8. In this panel, everything is the same
as in the upper-left panel, except that DMO has been omitted in the processing sequence.
The omission of DMO serves to dampen the fault-plane reflections caused by mis-stacking,
similar to what was discussed and shown in Chapter 2. The lower-right panel of Figure 4.8
is the same as in the lower-left panel, except that DMO has again been omitted in the
processing sequence. This is the most extreme and problematic of the processing sequences,
with AGC and without DMO; the patterns on the fault-plane seen in the upper-left panel
are barely recognizable.
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Figure 4.8. Amplitude along fault-plane for Model 1 shown in Table 4.2, the juxtaposition
contact model, with four different processing scenarios. The amplitude is plotted as a func-
tion of depth on the fault-plane, and the extent of the fault-plane is shown by a horizontal
line in the bottom portion of each plot. The processing scenarios are: 1) upper-left panel:
amplitude extracted from the noise-free image (dashed) and from the image with 20% ad-
ditive Gaussian noise (solid), 2) lower-left panel: amplitude extracted from the noise-free
image with AGC applied (dashed) and from the image with 20% Gaussian noise added in
before applying AGC (solid), 3) upper-right panel: amplitude extracted from the noise-free
image without DMO included in the processing sequence (dashed) and from the image with
20% additive Gaussian noise, but no DMO (solid), and 4) lower-right panel: amplitude
extracted from the noise-free image with AGC applied but no DMO (dashed) and from the

image with 20% Gaussian noise added before applying AGC but no DMO (solid). There is
no slip at the fault.
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Layer Thickness (m) p (kg/m3) Vp (m/s) Vs (m/s)

1 900 2240 2600 1100
2 50 2240 2570 1070
3 30 2210 2380 880

4 50 2240 2570 1070
5 30 2210 2380 880

6 90 2240 2570 1070
7 50 2280 2750 1250
8 30 2240 2600 1100
9 50 2280 2750 1250
10 30 2240 2600 1100
11 90 2280 2750 1250
12 850 2240 2600 1100

Table 4.3. Model 2 for the SEM modeling. The geometry of the model is given in Figure 4.1.
There is 20 m of throw between the upthrown (layers 2 through 6) and downthrown (layers
7 through 11) sediments, in addition to 600 psi of pore pressure difference. The difference in
pore pressures is the result of the upthrown sediments being overpressured. The densities
and velocities of layers 2 through 6 are relatively lower than the normally compacted,
hydrostatically pressured layers 7-11 on the downthrown side. To relate the velocities and
densities to pressure, the mechanism of overpressure is taken to be purely compaction
disequilibrium.

4.8 Amplitude of waves reflected from a pore-pressure contrast across a fault

In Tables 4.3, 4.4, and 4.5 are three different models that incorporate pore pressure
contrasts of 600 psi, 300 psi, and 150 psi, respectively, across the fault. The aim of using
these models is to see how small a pore pressure contrast can be and still be detectable in the
fault-plane reflectivity. These figures are relevant to studying the fault-plane reflectivity at
South Eugene Island since pressure measurements taken near the large, minibasin-bounding
growth fault, known as the A-fault, show a 780 psi increase in pore pressure over 18 m
in going from the hydrostatically pressured downthrown sediments to the overpressured
upthrown sediments (Losh et al, 1999). With the pore-pressure contrasts in the three
models being 600 psi, 300 psi, and 150 psi, the effective stress values can be computed
using a hydrostatic pressure of 2800 psi (the same as for the juxtaposition model covered
in the previous section). The juxtaposition model can be thought of as having a 0 psi
pore-pressure difference across the fault. The values of the densities and velocities used in
the three models are consistent with the effective stress relationships derived in Chapter 1
assuming that the mechanism of overpressure is pure undercompaction.

In Figure 4.9 are plotted the maximum reflected amplitude from Model 2 (AP = 600
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Layer Thickness (m) p (kg/m®) Vp (m/s) Vs (m/s)

1 900 2240 2600 1100
2 50 2260 2660 1160
3 30 2225 2490 990
4 50 2260 2660 1160
5 30 2225 2490 990
6 90 2260 2660 1160
7 50 2280 2750 1250
8 30 2240 2600 1100
9 50 2280 2750 1250
10 30 2240 2600 1100
11 90 2280 2750 1250
12 850 2240 2600 1100

Table 4.4. Model 3 for the SEM modeling. The geometry of the model is given in
Figure 4.1. Same as Table 4.3 except that the pore pressure difference is 300 psi.

Layer Thickness (m) p (kg/m®) Vp (m/s) Vg (m/s)

1 900 2240 2600 1100
2 50 2270 2705 1205
3 30 2232 2545 1045
4 50 2270 2705 1205
5 30 2232 2545 1045
6 90 2270 - 2705 1205
7 50 2280 2750 1250
8 30 2240 2600 1100
9 50 2280 2750 1250
10 30 2240 2600 1100
11 90 2280 2750 1250
12 850 2240 2600 1100

Table 4.5. Model 4 for the SEM modeling. The geometry of the model is given in
Figure 4.1. Same as Table 4.3 except that the pore-pressure difference is 150 psi.
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psi) within a small window (100 ms) of the fault-plane for four different processing scenarios.
These different processing scenarios are motivated by the data examples in Chapters 1 and
6 of this thesis and are the same as in the previous section on juxtaposition contrasts. The
scenarios include the presence and absence of 20% additive Gaussian noise with the full
processing sequence (upper-left panel of Figure 4.9), the application of AGC (lower-left
panel of Figure 4.9), the omission of DMO in the processing sequence (upper-right panel
of Figure 4.9), and the combined application of AGC and the omission of DMO in the
processing sequence (lower-right panel of Figure 4.9).

In these plots, the effect of the juxtaposition contacts shows up in this model as a high
frequency wobble on top of the low frequency trend due to the presence of a AP across the
fault. This means that a pore-pressure difference of 600 psi is sufficient enough to dominate
the reflectivity attributable to juxtapositions. This occurs for two reasons: the AP is large
enough across the fault and the dip filter preferentially attacks the juxtapositions since
they change in polarity along the fault plane. From the plots in Figure 4.9, the most severe
processing artifact, in the sense of destroying the relative amplitude pattern, is the AGC.

In Figure 4.10 are plotted four different models of AP across the fault: 600 psi in the
upper-left panel (Model 2), 300 psi in the upper-right panel (Model 3), 150 psi in the lower-
left panel (Model 4), and O psi (the juxtaposition model, Model 1) in the lower-right panel.
All of these amplitude maps are plotted both with (solid line) and without (dashed line)
20% Gaussian additive noise. Comparison of the plots shows essentially linear reduction of
reflection amplitudes with reduction in pore-pressure contrast. For a pore-pressure contrast
as small as 150 psi, it is difficult to tell if a contrast exists. Specifically, note the similarity
of the lower-left (150 psi) and lower-right (0 psi) panels, especially in the degree with which
the wobbles due to the juxtapositions contribute to the fault reflectivity. To support this
estimate of the minimum A P detectable, we show in Chapter 5 that, at a fault known as the
F-fault (AP = 100 psi) at South Eugene Island, there is almost no indication of reflectivity
compared to the large minibasin-bounding A-fault (AP = 780 psi).

4.9 Amplitude of waves reflected from a linear-slip fault

We use the abilities of the SEM code to accommodate slip at an interface to model
four different slipping interfaces, as described in Table 4.6, in terms of their normal and
tangential (shear) compliances. We label these models in order from the most to the least
slipping as Slip-Model A, B, C, and D. The examples here have the linear-slip interface
embedded in layered Model 2, described previously (AP = 600psi). The entire fault-plane
does not slip, only a portion of it as shown in Figure 4.1. In the next section, we present
a weak scattering model to relate the value of the compliances to pore pressures in a thin
fault zone. For now, these values are simply parameters describing the degree of bonding
between the surfaces on either side of the linear-slip interface.

The amplitude of the fault-plane reflection from Slip-Model A embedded in Model 2
is displayed in Figure 4:11 for the four processing scenarios outlined earlier in the sections
on juxtaposition contacts and pore pressure difference across the fault: 20% noise (upper-
left panel), AGC (lower-left panel), no DMO (upper-right panel), and AGC and no DMO
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Figure 4.9. Amplitude along fault-plane for Model 2 shown in Table 4.3, a model with a pore
pressure contrast of 600 psi across the fault, with four different processing scenarios (the

same ones as in Figure 4.8). See the caption for Figure 4.8 for details about the amplitudes
plotted and about the four scenarios.

Slip-Model normal compliance, ny (m Pa~!) tangential compliance, nr (m Pa~')

A 5.0x 10719 1.0x 1079
B 3.5x 10~10 7.0x 10710
C 2.5x 10710 5.0x 10710
D 1.0x 10710 2.0x 10710

Table 4.6. Four different slip interfaces described in terms of their normal and tangential
compliances. These have been used in the SEM modeling.
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Figure 4.10. Amplitude along fault-plane for Models (clockwise from the upper left) 2
(upper-left), 3 (upper-right), 4 (lower-left), and 1 (lower-right). The amplitude is plotted
as a function of depth on the fault-plane and the extent of the fault-plane is shown with a
horizontal line in the bottom portion of each plot. These models represent the situations of:
600-psi pore-pressure difference across the fault (Model 2, upper-left), 300-psi pore-pressure
difference across the fault (Model 3, upper-right), 150-psi pore-pressure difference across
the fault (Model 4, lower-left), and 0 psi pore pressure difference across the fault; in other
words, the juxtaposition contact model (Model 1, lower-right), There is no slip at the fault.
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(lower-right panel). The fault-plane extends over the long horizontal line at the bottom of
the plots in Figure 4.11. The shorter horizontal line signifies the part of the fault plane
that slips. Note that the location of the maximum reflectivity occurs in the part of the
fault that is slipping. Also, since the reflection from Slip-Model A, embedded in Model 2,
is relatively large compared to the fault-plane reflection for Model 2 alone (as shown in the
upper-left plot of Figure 4.9 - an amplitude of 0.14 versus 0.04), the sources of noise and
error in the processing do not degrade the amplitude map severely in any of the scenarios.
This highlights the efficiency of Slip-Model A in reflecting energy compared to the purely
AP contrast of Model 2.

The amplitude maps for Slip-Models A, B, C, and D are shown in Figure 4.12. As the
normal and shear compliances are decreased in going from Slip-Model A to Slip-Model D,
the amplitude of the fault-plane reflection attributable to a slipping interface redcues in the
about the same proportion. This occurs because the reflection coefficient is proportional to
the compliance for a relatively weakly slipping interface (see Appendix E, equation (E.6)).
For the the smallest compliance, Slip-Model D, the magnitude of the reflection is on the
same order as that of the reflection caused by the AP present in Model 2 (shown in the
upper-left plot of Figure 4.9). Hence, this would seem to be a lower limit for compliance
for slipping behavior to dominate any AP across the fault.

4.10 Relating linear-slip to a pressurized fault

The values for the compliances used in the numerical modeling and shown in Table 4.6
do not, up to this point, have any physical meaning in terms of the pressure locally at
the fault. In this section, we relate a slipping interface to an effective-layer model that
demonstrates much of the same wave-scattering behavior. With an effective layer described
in terms of its thickness, density, and velocity, the empirical relationships between effective
stress and density, and effective stress and velocity, derived in Chapter 1 can give the
compliance values a physical meaning. The derivation here is for normally incident P-
waves, but can be extended to P-waves incident at an angle. We focus on normally incident
P-waves since the seismic imaging discussed in previous sections utilized PP-scattered waves
at small incidence angles.

The effective-layer model begins from a weak scattering assumption. For a thin layer,
if the interface reflection coefficients at the upper and lower boundary are small, then the
entire series of reverberations (Aki & Richards, 1980) within the layer can be neglected.
The total reflection coefficient from the thin layer can thus be approximated simply as the
sum of the reflections off the upper and lower interface. For the case when the thin layer is
sandwiched between two identical media,

2iwh
Riot ~ Rpp — Rpp eXp( - ) ; (4.9)

where Rpp is the P-wave to P-wave (PP) reflection coefficient at the upper interface (the
reflection at the lower interface is —Rpp), w is the frequency, h is the thickness of the thin
layer, and o is the P-wave velocity in the thin layer. In equation (4.9), we have assumed
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Figure 4.11. Amplitude along fault-plane for Slip-Model A (see Table 4.6) at a fault em-
bedded in Model 2 (see Table 4.3) for four different processing scenarios. The amplitude is
plotted as a function of depth on the fault-plane and the extent of the fault-plane is shown
with a long horizontal line in the bottom portion of each plot. The sub-portion of the fault
that slips is shown beneath this line with a shorter horizontal line. The processing scenarios
are the same as those described in the caption for Figure 4.8. The Slip-Model uses slip at
the fault to represent weakness caused by elevated pore pressure.
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Figure 4.12. Amplitude along fault-plane for Slip-Models A (upper-left), B (upper-right),
C (lower-left), and D (lower-right) shown in Table 4.11 at a fault embedded in Model 2
having a pore pressure contrast of 600 psi across the fault. The amplitude is plotted as a
function of depth on the fault-plane and the extent of the fault-plane is shown with a long
horizontal line in the bottom portion of each plot. The sub-portion of the fault that slips
is shown beneath this line with a shorter horizontal line. The maximum amplitude occurs
near the center of the slipping portion of the fault in each slip-model. The amplitude map
also resembles a triangle since it is in essence the convolution of two boxcar functions: the
slipping portion of the fault-plane and the dip filter. In moving from Slip-Model A to D, the
compliance of the fault slip becomes smaller and, as a result, the reflection magnitude scales
in the same proportion, as predicted by equation (E.6) in Appendix E for a weakly slipping
interface. The Slip-Models use slip at the fault to represent weakness due to elevated pore
pressure.
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that the impedance difference between the thin layer and the host medium is small enough
that the transmission coefficients in moving from the host medium into the thin layer and
vice versa are close to 1. This is consistent with the weak-scattering assumption made
above.

The next approximation relies on the layer being sufficiently thin. If, for the argument
of the exponential term in equation (4.9),

2wh
=2« (4.10)
ar

then the exponential can be expanded to first order in a Taylor series

o .
exp< “"h) ~14 2k (4.11)
aj, ar,

Note that the condition in equation (4.10) states that 1 >> 47h/Ar, where Af, is the wave-

length of the wave in the thin layer. Hence, the condition means that only a fraction of a

wavelength fits in the layer. Inserting the Taylor series approximation into equation (4.9)

gives

2iwh
ar

Riot =~ —Rpp (4.12)

This expression shows that the total reflection from a thin weak layer is proportional to
the derivative of the incident wave. Widess has discussed this fact in a famous paper on
vertical seismic resolution (Widess, 1973).

From equation (E.6) in Appendix E, the PP reflection coeflicient for a weakly-slipping
interface between two identical media (the host medium) is

N —_— 4.13
PP 5 (4.13)

where w is the frequency, ny is the normal compliance, p is the density of the host medium,
a is the P-wave velocity of the host medium, and the superscript s indicates that this is the
reflection coefficient for a slipping interface. This equation comes with its own assumption,
namely that the dimensionless normal compliance is much smaller than 1, wpypa <€ 1.
Equating this expression to equation (4.12) gives

iwnNpa 2iwh

—R . 4.14
5 PP o (4.14)

By canceling common factors and solving this for ny, the normal compliance, we get

4h
paay,

N = — Rpp. (4.15)

In the weak scattering approximation, we can substitute a weak-scattering approximation
for the interface reflection coefficient Rpp. This can be obtained from equation (E.6) in

P
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Appendix E

Rpp = = (5\__;) + ﬁ) ; (4.16)
2\ p a

where Ap = pp — p, p = (pL + p)/2, Ao = af — , and & = (af + @)/2. Rewriting
equation (4.16) in terms of the properties of the layer and host medium,
_pL=p ar-a

pL+p ap+a

Rpp (4.17)

Substituting into equation (4.15) for Rpp yields

4h (p—pL  a-of
= + . 4.18
w paar, (P +pL. a+op (4.18)

Since 7y is always greater than zero, the effective thin layer can have relatively lower density
p > pr, and lower velocity a > o than the host medium. This holds for a locally pressurized
fault, since velocity and density decrease with increase in pore pressure.

It is interesting to compare equation (4.18) with the expression by Schoenberg (1980)
for the compliance of a thin weak layer. Schoenberg (1980) relates the compliance to the
properties of the layer by stating that, in the limit of h — 0 and p La% — 0, the effective
compliance of the thin layer is

h

1IN prol (4.19)
Equation (4.19) is somewhat different than equation (4.18), most notably in that equa-
tion (4.19) contains material properties of the layer only and not those of the host medium.
The source of the difference between these two expressions is that the result of Schoenberg
(1980) holds as h — 0 and p La% — 0; that is, it is a strong-scattering approximation. The
approximation that we have made in equation (4.18) is a weak-scattering one. A weak-
scattering approximation should be more appropriate for an overpressurized fault since,
according to the pore pressure relationships described in Chapter 1, p La% — 0 cannot hap-
pen for any value of the pore pressure. Schoenberg’s analogous conditions for shear waves
may be more realistic, since the shear velocity goes to nearly zero at zero effective stress
(Zimmer et al., 2002).

Using the finite-element code described in Chapter 3, we now test the above approxi-
mation by comparing the reflection from a weakly slipping fracture with the reflection from
its effective weak thin layer. We use a 10-m thick layer with oy = 2077 m/s and pj, = 2124
kg/m?® in a background medium of o = 2675 m/s and p = 2260 kg/m3. The layer thickness,
ar, and py are taken from the results in Table 4.10 described below. The background
medium parameters are the average values of the sand/shale sequence in Table 4.2. The
normal compliance ny predicted by our weak-scattering model, equation (4.18), for these
parameters is 5 x 1071® m Pa~!. For the Schoenberg model, equation (4.19), the normal
compliance comes out to be 1.1 x 107 m Pa~!. The source frequency in the simulation is
peaked at 20 Hz, just as it was in the SEM modeling shown earlier in this chapter. The
result of the finite-element simulation is shown by the traces in Figure 4.13. We find that
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our weak-scattering effective-layer model is in much better agreement than Schoenberg’s
model (Schoenberg, 1980). Our model is in error by 15% while the Schoenberg model is
in error by 136%. This supports the weak-scattering model for equivalent thin layers and
weakly slipping interfaces.

Using the effective-stress relationships from Chapter 1 for p;, and ¢ in the case of
unloading, p%(o4) and a}(0q), and fixing the depth (or, equivalently the lithostatic stress
0,) so that the effective stress varies only with pore pressure (04 = 0y — p), the compliance
of a fracture can be put in terms of the thickness of the layer and the pore pressure

_ 4k p—pi(P)  a—oi(P)
)= paci (P) (p +oE(P) o+ a}j(P)) ' (4.20)

nn(h, P

Note that we use the unloading relationships for py, and ar. This is because a locally
pressurized fault likely results from fluid migrating up the fault, as shown in Chapter 6.
Hence, the correct curve to use is the unloading curve (Revil & Cathles, 2002). This curve
requires another parameter, the maximum past effective stress omqe that the fault rock
experienced before being unloaded to its current state. With this information, the slip
models used in the previous modeling section can be related to an effective layer described
by four parameters: fault zone of thickness h, fixed depth z, excess fluid pressure P — Pp,
and maximum past effective stress omas. Figure 4.14 shows how, given a maximum past
effective stress 0mqr and fault zone thickness h, one can construct equivalent compliances
for the velocity and density values traced out along the unloading curve as a function of
effective stress. To convert from effective stress to pore pressure, knowledge of the depth z
or lithostatic level oy in necessary.

The upshot of all this is that the pore-pressure value corresponding to a linear-slip
interface is not unique - it depends on three other parameters besides the pressure. In
Tables 4.7 through 4.10, we fix two of these parameters - the depth of the fault zone (1850
m) and the thickness of the fault zone (10 m). The tables show the values of the effective
thin layer for each Slip-Model, A through D, while varying 0maz between the different tables:
Omaz = 2800 psi in Table 4.7, 0ymqaz = 2400 psi in Table 4.8, 0maz = 2000 psi in Table 4.9,
and Opmaz = 1600 psi in Table 4.10. They also show the effective stress corresponding
to those values of velocity and density along the unloading path, and use the depth to
convert to pore pressure. I do not show results for the variation with thickness h since it is
mundane, as seen in equation (4.18). The variation with depth z is also fairly unimportant
since it changes only the value of the pore pressure for a given effective stress. As seen in
Tables 4.7 through 4.10, certain values of the compliance cannot even exist for some values
of O max Since the compliance does not fall in the range of possible compliances based on the
values of density and velocity. This is shown in Figure 4.14, where in the bottom panel the
possible compliance values corresponding to the unloading path in the upper figures does
not extend all the way to zero. Hence, some small compliance values cannot be modeled
for those choices of k, z, and .mez. In order to get smaller compliance values, the thickness
of the fault would need to be made smaller because the compliance, from equation (4.18),
scales with h. From the Tables 4.7 through 4.10, we find that the earlier that the rock in
the fault zone began to be unloaded, i.e., the smaller the omaz, the larger the compliance

T T P ——ry
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Figure 4.13. A test of the effective layer for a linear-slip fracture for a normally-incident
P-wave. These traces are the result of the finite-element code described in Chapter 4. The
upper-left panel shows a transmitted plane wave (traveling to the right) and a reflected
plane wave (traveling to the left) from a horizontal thin bed of 10-m thickness with density
and velocity values from Table 4.10. The background medium has alpha = 2675 m/s and p
= 2260 kg/m? (the average values of the hydrostatic sand/shale layers shown in Table 4.2).
The upper-right plot shows the same picture for the equivalent linear-slip interface with
compliance calculated from equation (4.18). In the lower-left panel, a zoom in of the
reflected waves for the thin bed (solid) and the equivalent linear-slip interface (dashed) are
shown. The reflection from the equivalent linear-slip interface, equation (4.18), is in error
by 15%. The lower-right panel shows the comparison between the reflection from the thin
bed (solid) and the equivalent linear-slip interface (dashed) from Schoenberg (1980). The
reflection from Schoenberg’s equivalent linear-slip interface, equation (4.19), is in error by
135% likely because it is a strong scattering approximation.
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Slip-Model p (kg/m®) v, (m/s) o (psi) p (psi)

A 2204 2019 11 5490
B 2207 2175 88 5412
C 2216 2293 322 5178
D 2269 2472 1655 3845

Table 4.7. Four different slip-interfaces described in terms of their effective layer parameters
assuming a thickness of 10 m. The estimates are made under the assumption that the fault
rock began its unloading path after reaching a maximum vertical effective stress of 2800 psi.
For Tables 4.7-4.10 relationships between velocity and pore pressure derived in Chapter 1
are used to relate these compliances to vertical effective stress o, and pore pressure p at
South Eugene Island. Also, for the four tables, the pore-pressure estimate assumes a depth
of 1850 m, where the overburden stress is 5500 psi and the hydrostatic pressure is 2800 psi.

Slip-Model p (kg/m®) v, (m/s) 0. (psi) p (psi)

A 2178 2037 31 5469
B 2186 2192 238 5262
C 2208 2301 775 4725

Table 4.8. Four different slip-interfaces described in terms of their effective layer parameters
assuming a thickness of 10 m. The estimates are made under the assumption that the fault
rock began its unloading path after reaching a maximum vertical effective stress of 2400
psi. There is no effective-layer model for Slip-Model D along this unloading path.

can be for smaller amounts of pore pressure. Hence, the more efficient the pressurized fault
zone can be in scattering seismic waves for a small amount of pore pressure increase.

In the A10ST well at South Eugene Island, the effective stress in the B-fault zone was
measured at as low as 166 psi (Losh et al., 1999). In fact, Losh et al. (1999) state that
« . the fault itself ... is at significantly lower vertical effective stress than the downthrown
sediments.” In other words, the fault itself is overpressured. Hence, some of the low values
for effective stress shown in Tables 4.7 through 4.10, while unusual, are entirely possible
for the growth faults at South Eugene Island. Anomalously low effective stresses of 575 psi
and 807 psi were also measured in the nearby A20ST well as it crossed the A-fault system
(Losh et al., 1999).

4.11 Conclusion

We have presented a complete numerical modeling experiment by utilizing an SEM
implementation of the 2D elastic wave equation and processing the resulting waveforms into
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Figure 4.14. The unloading paths for density and velocity used for the values in Table 4.7.
Also shown is the compliance for the effective layer model along the unloading path for a
10-m thick fault using equation (4.18). Note that the compliance values end at 2800 psi -
the maximum past effective stress o,,q, for this model.
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Slip-Model p (kg/m®) v, (m/s) oe (psi) p (psi)

A 2149 2058 109 5391
B 2172 2203 700 4800
C 2218 2292 1829 3671

Table 4.9. Four different slip-interfaces described in terms of their effective layer parameters
assuming a thickness of 10 m. The estimates are made under the assumption that the fault
rock began its unloading path after reaching a maximum vertical effective stress of 2000
psi. There is no effective-layer model for Slip-Model D along this unloading path.

Slip-Model p (kg/m®) v, (m/s) oe (psi) p (psi)
A 2124 2077 453 5047

Table 4.10. Four different slip-interfaces described in terms of their effective layer param-
eters assuming a thickness of 10 m. The estimates are made under the assumption that
the fault rock began its unloading path after reaching a maximum vertical effective stress
of 1600 psi. There are no effective layer models for Slip-Models B, C, and D along this
unloading path.

their time-migrated images. We derived a simple dip filter and used it to isolate fault-plane
reflections. We then exploited the relationships between the elastic parameters, density and
velocity, to create physically meaningful models of sealing faults that maintain a AP of up
to 600 psi. For these AP models, we assumed that the overpressure mechanism is purely
due to undercompaction. In the course of this modeling, we found that the minimum AP
necessary to give rise to substantial fault-plane reflections is on the order of 150 psi. Taking
advantage of the SEM modeling code’s ability to accommodate linear-slip interfaces, we
selected four different values of the normal and shear compliances for the fault interface.
We find that the slipping interfaces are more efficient at scattering seismic energy than are
the pore pressure differences across the fault for compliance values above ~ 10710 m Pa~1.
Unsatisfied with the lack of physical insight into the meaning of a compliance, we derived,
from a weak-scattering model, an equivalent thin, weak layer that gives virtually the same
reflection as a linear-slip interface under certain conditions. We used this equivalent layer
model to relate the values of the compliance to realistic values of pore pressure at South
Eugene Island. To do so required extensive use of the effective-stress relationships for the
unloading paths derived in Chapter 1. We finally concluded that the smaller the past
maximum effective stress is for the fault zone rock, the more efficient the fault can be at
scattering seismic waves. This makes sense physically in that the overpressured fault rock is
being poroelastically perturbed (by, for instance, fluid migrating up the fault) from a more
extreme initial state.
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Chapter 5

Fault-plane reflections as a diagnostic of pressure
differences in reservoirs: a case study

5.1 Summary

Seismic data taken at Blocks 314, 315, 330, and 331 of the South Eugene Island field
contain reflections from a major growth fault. Out of a number of possible causes, we
find that differences in pore pressure across the fault give rise to the fault-plane reflections.
The pressure differences are detectable because pore pressures that exceed the hydrostatic
pressure, or overpressures, lower the seismic velocity. Thus, the presence of the reflections
point to the fault providing a significant seal. We develop a processing scheme to highlight
the fault-plane reflections while simultaneously suppressing the reflections from the layered
structure. Using this processed data set, we extract the amplitude of the reflections from the
fault-plane itself. The areas of strong reflection amplitude correlate well with the geology
and known areas of overpressure. This work was done in collaboration with Jon Sheiman
(Shell), Roel Snieder (CSM), Jay Busch (Shell), Steven Naruk (Shell), and Scott Wilkins
(Shell).!

5.2 Introduction

The importance of faults as delimiters of compartments in hydrocarbon reservoirs
cannot be stressed enough. The role of faults, however, is complicated by their dual nature
as both fluid seals and conduits. Classifying a fault as one or the other typically demands
extensive knowledge of a basin’s geologic history, core samples, and well logs. Only recently
have geophysicists begun to incorporate conventional seismic data into the evaluation of
fluid pressure near faults (Dutta, 1997; Huffman, 2002). The method relies on seismic waves
detecting the presence of pressure changes in the subsurface (Pennebaker, 1968), and, when
successful, manages to predict regions of overpressure that affect drilling operations.

Evidence of faults can often be seen on migrated seismic data. Automated fault identifi-
cation algorithms avoid the tedious picking of faults in 3D volumes of seismic data Townsend
et al. (1998). According to Sheriff (1984), the imprints of faults on seismic data are: “(a)
abrupt termination of events, (b) diffractions, (c) changes in dip, (d) distortions of dips seen

'Published in an EAGE proceedings on “Fault and Top Seals: What do we know and where do we go
from here?” (Haney et al., 2004); in addition, to be submitted to the AAPG Journal.
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through the fault, (e) deterioration of data beneath the fault producing a shadow zone, (f)
changes in the pattern of events across the fault, and (g) occasionally a reflection from the
fault plane.” Items (a), (c), and (f) provide indirect evidence of faults and form the basis
of automated fault identification. Problems with how time migration treats lateral velocity
variations lead to items (d) and (e). Here, we address the last point; namely, what are the
occasional fault-plane reflections telling us about the nature of the fault itself?

Several fault-zone models describe different aspects of the seismic properties of a fault.
One possibility is that the fault is a linear-slip interface (Worthington & Hudson, 2000;
Schoenberg, 1980). Physically, this means that the fault is a zone of low shear modulus.
Another model takes into account that the fault may be a barrier to lateral fluid flow.
A high shale content in the fault gouge causes fluid pressures to build up on one side of
the fault. As a result, the adjacent sediments are undercompacted, and subsequently have
lower velocities (Dutta, 1997). Because of throw across the fault, lithological (sand/shale)
contacts across a fault can also contribute to reflections from the fault-plane (Sheriff, 1984;
Yielding et al., 1991). A main difference in these models is that reflection from a low-shear
zone acts as a high-pass filter; in essence, the fault zone is a thin bed. The magnitude of
the reflection in this case depends on the seismic properties and thickness of the zone. Pore
pressure and lithologic differences (away from diffractions) across a fault act as traditional
seismic interfaces that preserve frequency in the reflection process. A true fault zone could
be a combination of two or more of these models.

Here, we show that, at the South Eugene Island field, fault-plane reflections from a
major growth fault, known as the A-fault, arise from pore pressure differences across the
fault. We focus on this fault since previous studies (Losh et al., 1999) suggest that it serves
as a significant barrier to lateral fluid movement. The strength of the fault-plane reflections
varies along strike and dip of the A-fault. We make the correlation between areas of fault-
plane reflections and areas of strong pressure gradients based on existing well information
and known zones of overpressure. No evidence yet suggests that the fault-plane reflections
significantly originate from low-shear zones or lithologic contacts.

5.3 Overpressure at South Eugene Island

Growth faults, or syndepositional normal faults, divide the Pliocene-Pleistocene sed-
iments at South Eugene Island into several compartments. Depending on whether or not
the faults are significant barriers to fluid flow, the individual compartments can be over-
pressured. For instance, Losh et al. (1999) report an increase of more than 780 psi in pore
pressure over a distance of 18 m while drilling through the A-fault in Block 330 of the South
Eugene Island field.

A contour plot of the two-way reflection time from the A-fault is shown in map view
in Figure 5.1. The arrow in Figure 5.1 points in the down-dip direction that makes an angle
of approximately 50° with the horizontal. The A10ST well, where Losh et al. observed a
large pore pressure jump, intersects the fault on the lower right.

Several mechanisms effectively cause anomalously high pore pressures in the subsurface
(Bowers, 1995; Dutta, 1997; Huffman, 2002). In the Gulf of Mexico, overpressure commonly



Matthew M. Haney / Sealing and episodic pulsing of fluids at a fault 99

1000 800 600 ‘400 200

B 600m 1 c ‘

: — N : |
§ . : downdip |
g.

o S e B S e o e Sy ot

Figure 5.1. Map view of the two-way reflection time from the A-fault. The arrow points in
the downdip direction. Two wells are shown by an X where they intersect the fault-plane.
The locations of three seismic lines used in other figures are also shown as dashed lines.

results from disequilibrium compaction and dipping sands being bounded above and below
by shales. Following the onset of disequilibrium compaction, the relatively high permeabil-
ity of the sands allows additional fluid pressures from depth to move into high points of
subsurface structure. Termed unloading, this mechanism results in an additional decrease
in seismic velocity due to poroelastic expansion of the pores. More specifically, the high
pore pressure causes a decrease in the vertical effective stress and, as a result, a decrease in
the area of grain-to-grain contacts.

We have identified anomalous decreases in velocity from a constrained Dix-type inver-
sion Toldi (1985) on the South Eugene Island data. Line C-C’ (see Figure 5.1) from this
velocity cube is displayed in Figure 5.2. The velocity at marker ‘1’ monotonically increases
with depth. This represents the velocity variation resulting from the normal compaction
trend. On the left side of this plot, between markers ‘2’ and ‘3’, a noticeable decrease in
velocity occurs with increasing depth. Experience has shown that, in the Gulf of Mexico,
such a decrease in velocity with depth is due to high pore pressures rather than lithology
(Dutta, 1997). The spatial pattern of the relatively higher velocity pocket at ‘2’ corresponds
to the trend of the A-fault, providing evidence from the seismic data that the overpressures
are related to the A-fault.

Zones of overpressure can be monitored while drilling from the rate of penetration
of the drill bit into the formation (Jordan & Shirley, 1966). Such a method suffices for
detecting the gradual build up of overpressure above a moderately sealing shale. By mod-
erately sealing, we mean that the pressure front has, over geologic time, diffused somewhat
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Figure 5.2. Interval velocities along the C-C’ line at the South Eugene Island field obtained
via a smoothed Dix-type inversion (Toldi, 1985). The velocity increases monotonically with
depth at marker ‘1’, but experiences a decrease between markers ‘2’ and ‘3’. The decrease
in velocity with depth indicates that overpressures are present. The velocity also decreases
laterally in moving from the left to right across the A-fault. This is an indicator that the
A-fault seals an overpressured compartment on the right. That the normal compaction
trend re-establishes itself on the far right, at marker ‘1’, indicates that another fault, to the
right of the A-fault, is the other boundary of the overpressured compartment.
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through the shale. Any sort of overpressure prediction while drilling should fail when a
highly overpressured zone is quickly and unexpectedly encountered. This has motivated
the development of pre-drill pore pressure prediction from seismic data.

For a smooth increase in fluid pressure across a moderate seal, the velocity decreases
gradually, and a transmitted wave passes through the overpressured region with almost
no reflection. However, the most dangerous instances of overpressure occur over distances
less than a typical seismic wavelength (~ 200 m), and therefore, quick onsets of high fluid
pressure across a sealing fault give rise to strongly reflected waves. By mapping out the
amplitude of fault-plane reflections on the fault-plane itself, areas of sharp increase in pore
pressure across the fault, as described in Losh et al. (1999), should stand out.

5.4 Isolating Fault-Plane Reflections

The fault-plane reflections at South Eugene Island are typically less prominent than
the layer reflections (exceptions to this are discussed in Chapter 6). This may be due
to either small reflectivity at the fault or the deterioration of the processing and imaging
procedure (Kirchhoff) for steep dips. As a result, the fault image contains “noise” from the
horizontal layers terminating at the fault. We employ a simple dip-filtering technique, as
described in Chapter 4, along the fault to effectively remove the layers while at the same
time accentuating the reflection from the fault plane.

Displayed in Figure 5.3 is a post-stack time migrated section along the A-A’ line (see
Figure 5.1). Several growth faults stand out in this image. A particularly strong fault-plane
reflection cuts through the center of Figure 5.3 - this is the A-fault. To the right, another
fault (the C-fault) can be made out from the mismatch of adjacent layers; however, the
C-fault does not give rise to a reflection. This is likely because the throw on the A-fault
is greater than that on the C-fault. We have highlighted the H-sand as an indicator of the
throw on these two faults. The greater the throw on a fault, the more developed its gouge,
and, therefore, the more likely it is to be a barrier for lateral fluid flow.

To bring the fault-plane reflections out, we designed an adaptive local dip-filtering
routine. Along each trace, we scan over a small angular window for the maximum coherence
direction. The range of angles is selected to correspond to the dip of the fault. We then
construct the dip-filtered data by summing over the 25 adjacent traces. If the angular
window we wish to dip-filter over is too steep, aliasing can occur (see Figure 5.4 for an
example of aliasing). When aliasing does occur, the strong reflections from the layers get
added back into the dip-filtered data. The result of dip-filtering without aliasing is shown
as a wiggle-plot in Figure 5.5 with the migrated image of Figure 5.3 in the background. The
horizontal layers effectively cancel in the dip-filtered data, leaving the fault-plane reflections
to stand out. Both the amplitude and phase of the fault-plane reflection from the A-fault
vary along the fault. The phase seems to change at points where sandstones encounter the
fault. For instance, moving up the fault-plane from the bottom, the wavelet changes shape
and grows stronger as it moves past the JD-sand. It then vanishes between the downthrown
and upthrown segments of the H-sand, only to continue again above the upthrown H-sand.

We do not make quantitative use of the phase since the absolute phase of the reflections
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Figure 5.3. A typical fault-plane reflection from the A-fault along the A-A’ line. Shown is

the post-stack time-migrated image. The H-sand is marked to show the amount of throw
across the fault.
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Figure 5.5. Overlay of the time-migrated seismic section from Figure 5.1 with the
wiggle-trace slant stack. The fault-plane reflection becomes clearer in the slant stack.
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may be contaminated with stacking errors, as discussed in Chapter 2. If the prestack data
could be analyzed, the phase would be an excellent indicator of high fluid pressures inside
a fault-zone. High fluid pressure in the A-fault has been reported by Losh et al. (1999)
and leads to vanishingly small shear velocities in the fault. Since scattering from such a
linear slip interface is frequency dependent, the phase of the reflected wavelet should change.
Though we cannot trust the absolute phase in this post-stack data, we interpret the relative
phase changes along the fault to be related to presence of the sands.

We extended the above procedure to 3D to gain a more extensive picture of the varia-
tions in fault-plane reflections. By breaking up the 3D seismic data volume into successive
2D planes in the dip direction, we could perform the slant stacking on each plane individ-
ually. The slant-stacked lines were then reassembled into a 3D data volume.

5.5 Correlation of Fault-Plane Reflections with Regions of Overpressure

The attributes of the slant-stacked 3D seismic data on the A-fault contain information
about the fault seal. We extracted the maximum amplitude along the picked fault-plane
(Figure 5.1) within a small time gate. The reflection amplitudes are displayed in map view
on the fault plane in Figure 5.6. Higher amplitudes, shown as lighter colors in Figure 5.6,
come and go on the fault plane. We discuss the details of the reflections between the dashed
lines in Figure 5.6.

The area on the A-fault plane between the two dashed lines contains most of the
strong fault-plane reflections and has geologic meaning. The time-migrated image and
the dip-filtering along the B-B’ line (see Figure 5.6) are shown in the bottom panel of
Figure 5.7. Actually, the bottom panel of Figure 5.7 is the sum of two dip-filtered images
taken in opposite directions. We look in these two directions since faults form antithetic
pairs in a vertical section in extensional regimes such as the Gulf of Mexico. In the two
upper panels of Figure 5.7, we plot the two individual dip-filtered images prior to summing
them together. On the downthrown side of the A-fault, shown on the left in Figure 5.7,
the intersection of the seal with the A-fault corresponds to the lower white dashed line in
see Figure 5.6. This seal is the shale immediately above a layer known as the JD-sand.
The fact that this is the main seal between hydrostatic and overpressured sediments in the
sedimentary column on the downthrown side has been mentioned by other authors before
(Stump et al., 1998; Revil & Cathles, 2002) based on fluid pressure measurements and well
logs. It is also discussed in Chapter 1 of this thesis. The lack of strong amplitudes south
of the lower white dashed line in Figure 5.6 means that the A-fault does not reflect below
the JD horizon, since both its upthrown and downthrown sides are overpressured at that
depth. The upper white dashed line in Figure 5.6 marks the intersection of the A-fault with
the seal on the upthrown side shown in Figure 5.7 on the right. Revil & Cathles (2002)
have implicated this shale layer, directly above the H-sand, as the seal on the upthrown
side. The lack of strong amplitudes north of the upper white dashed line in Figure 5.6
means that the A-fault does not reflect above the top of its intersection with the upthrown
seal. This suggests that the seal transfers from the downthrown seal to the A-fault and
from the A-fault to the upthrown seal in moving from left to right in Figure 5.7. Hence, a




106 Chapter 5. Fault-plane reflections as a diagnostic of pressure differences in reservoirs

relative
amplitude = voo | s e0 a0 200

8]
|
8 1 i
] 1
| :
| £
8 ;
g 1
| ]
B ’
1000F" 2

Figure 5.6. Reflection amplitude from the A-fault as a function of position on the fault-
plane. Stronger amplitudes show up as hotter colors (red and yellow). The lower white
dashed line is the intersection of the shale beneath the JD-sand with the A-fault from
the south (the hangingwall side). The upper white dashed line is the intersection of the
shale above the H-sand with the A-fault from the north (the footwall side). The fault
plane between these two sealing layers separates hydrostatic from overpressured sediments,
thereby creating a pressure contrast.
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portion of the A-fault acts as the seal, and it is this interval (between the two dashed lines
in Figure 5.6) that contains most of the fault-plane reflectivity. The interval is labelled in
Figure 5.7 as “reflecting”. This interpretation is further supported by Losh et al. (1999),
wherein the author state that “the fluid pressure differential (across the A-fault) is most
pronounced between 1650 and 1950 m depth; above that depth, the extent of overpressuring
in less on both sides of the fault, whereas at greater depths, the sediments on both sides of
the fault are highly overpressured.

There is other evidence for fault-plane reflections resulting from pore pressure con-
trasts. Figure 5.8 shows a pair of fault-plane reflections: one that originates from a fault
separating hydrostatic from overpressured sediments (the A-fault) and the other from a fault
separating overpressured from hydrostatic sediments (the D-fault). In the upper left panel
of Figure 5.8, the dip-filtered data is plotted on top of the migrated image, showing the two
reflections coming from the A-fault and the D-fault. The upper right panel of Figure 5.8
shows the same dip-filtered data, but now with an inverted velocity field in the background.
The velocities represent a smoothed Dix-type stacking velocity inversion (Toldi, 1985). The
area between the faults has relatively low velocity, an indicator of overpressure. From the
velocity inversion only, we do not know over which length scale the pore pressure contrast
occurs; however, the presence of the fault-plane reflections that correlate with the shape of
the variable velocity field strongly suggests the pressure contrast is sharp and less than a
seismic wavelength. In the middle panels of Figure 5.8, we show the fault-plane reflected
waveforms within the dashed boxes of the upper left panel. In the lower panel, we show the
amplitude and phase spectrum for the reflected waveforms. At the peak frequency, they are
almost 150° different in phase. A 180° difference would be expected from two interfaces that
are the opposite of each other (hydrostatic/overpressured vs. overpressured/hydrostatic);
however, due to the stacking errors that were discussed in Chapter 2, phase shifts of £45°
can occur for each waveform from mis-stacking. Hence, the two waveforms are sufficiently
different from each other in phase since the errors of :45° cannot explain the 150° difference.
Their true phase difference could be 150°+90° depending on the degree of mis-stacking.

Finally, we plot the reflection amplitude from the F-fault in Figure 5.9. The F-fault is
known to be a leaky fault (Losh et al., 2002) with only a minimal amount of pore pressure
contrast across it (~ 100 psi). As a result, the amplitude extracted from its dip-filtered
version is relatively quiet, especially when compared to the reflection amplitude from the
A-fault, which holds back a pore pressure contrast of up to 800 psi. This supports one of
the conclusions of Chapter 4, that, below 150 psi of pressure contrast, the presence of the
contrast is drowned out by the juxtaposition contacts.

5.6 Conclusions

At the South Eugene Island field, observed fault-plane reflections from the A-fault arise
due to pressure differences across the fault. By applying a technique to accentuate the fault-
plane refiections, we are able to map out the reflection amplitudes on the fault plane. The
spatial distribution of the reflections has a geologic meaning and shows which part of the
fault-plane is acting as a seal. Two other examples showed how fault-plane reflections can
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Figure 5.7. In the upper two panels, I show overlays of the time-migrated seismic section
along the along line B-B’ with the section for two directions of the dip-filter in wiggle trace. I
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lower panel with the summed dip-filtered section. An antithetic fault exists at this location
and gives rise to some fault reflectivity. The reflecting part of the A-fault corresponds to
the part of it above the downthrown seal (on the left side) and beneath the upthrown seal
(on the right side).
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Figure 5.9. Reflection amplitude from the F-fault as a function of position on the fault
plane. The F-fault is known to be leaky and holds only up to 100 psi of pore pressure
difference. As a result, its reflected amplitude is much smaller than that of the A-fault,
which holds up to 800 psi of pore pressure difference. Compare this plot to Figure 5.6, the
reflection map for the A-fault.
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have different polarities due to different pressure contrasts and how the reflected amplitude
vanishes for the leaky F-fault, where hardly any pore pressure contrast exists. Future work
will focus on other faults in the South Eugene Island field and attempt to estimate fault-zone
properties, particularly fluid properties, from the fault-plane reflections.
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Chapter 6

Seismic detection of a spatially-limited fluid pulse
ascending a growth fault

6.1 Summary

We report on what is, to our knowledge, the first image of a fiuid pulse inside a fault-
zone that, based on geochemical evidence, is ascending the fault with time. The fluid pulse
is confined to a growth fault (the B-fault) at the South Eugene Island 330 field, offshore
Louisiana. Though the thickness of the fault-zone may only be tens of meters, or a fraction
of a seismic wavelength, at the location of the fluid pulse, it is detectable because the fluid
pulse is of high fluid pressure and, hence, low P-wave velocity. We extract the amplitude of
the fault-plane reflection from the B-fault by applying a dip-filter to migrated 3D seismic
data gathered by Shell in 1992. The reflectivity at the location of the fluid pulse is roughly
three times greater than at an unremarkable part of the B-fault where sonic, shear, and
density logs passed through the fault in 1993. We modify the logs by placing a slipping
interface at the fault-plane, representing a model of the fluid pulse. As discussed earlier in
this thesis in Chapter 4, a slipping interface can be thought of as an effective low velocity
zone. After generating synthetic seismograms from both the original logs and the modified
logs, we find that the slipping interface produces high reflectivity similar to that observed
at the fluid pulse. The ability to detect such a spatially-limited, high fluid pressure anomaly
has implications for the understanding of hydrocarbon migration mechanisms and the time
scale of reservoir-recharge in the Gulf of Mexico.

In addition, we discuss the first observation derived from seismic reflection images
of a fluid pulse inside a fault-zone that, based on previous evidence, is suspected to be
ascending the fault with time. We find that areas of high fault-plane reflectivity from a
growth fault known as the B-fault at the South Eugene Island Block 330 field, offshore
Louisiana, systematically move up the fault 1 km between 1985 and 1992. The up dip
movement can be explained by the presence of a high pressure fluid pulse ascending a
vertically permeable fault-zone. These “fault burps” play a central role in hydrocarbon
migration. This work has been done in collaboration with Steven Losh (Cornell), Roel
Snieder (CSM), and Jon Sheiman (Shell). !

'submitted and accepted for review as a brief correspondence to Nature

a T




114 Chapter 6. Seismic detection of a spatially-limited fluid pulse

6.2 Introduction

Faults act as zones of highly focused deformation and fluid flow in the subsurface; the
exact mechanism of fluid flow and rate of flow along faults are, however, not well understood.
For instance, Revil and Cathles (2002) claim that fluids may propagate as solitary waves
along faults at the rate of kilometers per year. Since faults deform, or slip, in an episodic
manner, it has been postulated that flow along faults should also be episodic and linked to
the slip events (Sibson, 1990). Episodic flow along faults may be common in sedimentary
basins worldwide. In the Gulf of Mexico, growth faults cutting through young, poorly
consolidated sediments provide a means for hydrocarbons generated in deep source rocks
to migrate into shallower, economically producible reservoirs.

We have previously established from 3D seismic data collected at the South Eugene
Island field, offshore Louisiana, that fault-plane reflections from the main basin-bounding
growth fault (the A-fault) indicate the portions over which the fault acts as a lateral seal
(Haney et al., 2004). In this brief paper, we extend our interpretation of the seismic data to
examine the possibility that the faults at South Eugene Island also act as vertical conduits
for fluid migration. Such behavior has been observed during the Global Basins Research
Network (GBRN) drilling project at South Eugene Island (Anderson et al., 1995) and
highlights the dual nature of faults as both effective lateral seals and vertical fluid migration
pathways.

We find that at one location, the intersection of the A10ST well with a fault synthetic
to the A-fault, known as the B-fault, high fault-plane reflectivity occurs where a fluid pulse
has been documented from drilling records (Losh et al., 1999). Using a logs that passed
through part of the B-fault, we perform some simple numerical modeling to estimate the
dimensions and properties of a fluid pulse confined to the fault-zone. We conclude that a
fracture model, or an effective thin, low velocity zone and low density zone (as shown in
Chapter 4) is consistent with the presence of a fluid pulse and could be responsible for the
high reflectivity observed at the B-fault. A trade-off exists between the elastic properties
of the pulse, its thickness, and the magnitude of its reflection. As a result, more than one
fracture model gives an identical reflection.

6.3 Vertical fluid migration at South Eugene Island

The South Eugene Island field displays strong evidence of vertical fluid migration from
deep source rocks into its shallow Plio-Pleistocene reservoirs (Revil and Cathles, 2002). This
phenomenon has been given the name dynamic fluid injection. Evidence of recent and fast
fluid migration up the growth faults comes from the present day oil seeps at the fault scarps
on the sea floor (Anderson et al., 1995), the variation in the chemistry of petroleum fluids
over the time scale of years (Whelan et al., 2001), and geochemical anomalies observed near
the A-fault in the A6ST well (Losh et al., 1999).

Extensive drilling and geologic studies have taken place at South Eugene Island. The
best known is the multifaceted GBRN DOE-funded drilling project that took place in the
mid-1990’s. During late 1993, GBRN intentionally drilled into and successfully cored several
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Figure 6.1. Map view of the two-way reflection time from the B-fault. The fault dips toward
the southwest, as indicated by the arrow in the upper left portion of the plot. The line A-A’
is shown in the N-S direction and the paths of two wells, the A10ST and the A20ST, are
shown projected onto the horizontal plane.

of the growth faults at South Eugene Island. The wells GBRN drilled into the A-fault and
B-fault began in the downthrown, hydrostatically pressured sediments and passed through
the faults into overpressured (upthrown) sediments. At most of the wells, the B-fault was
found to be overpressured relative to the downthrown sediments, but not more overpressured
than the upthrown block; the one exception was at the A10ST well. As participants in the
GBRN drilling project, Losh et al. (1999) concluded that “except for the A10ST well, the
fault itself does not generally represent a zone of low effective stress (high fluid pressure)
relative to the upthrown sediments, but it is at significantly lower vertical effective stress
than downthrown sediments.” Furthermore, Losh et al. (1999) claimed that “the isolated
pocket of anomalously high fluid pressure in the A10ST well may represent a spatially
limited pulse of anomalously pressured fluid.” Recently, Losh and Cathles (2004) identified
the pulse at A10ST as an ascending fluid pulse initiated by episodic slip on the fault. With
this information, we decided to apply our dip-filtering technique for studying fault-plane
reflections (Haney et al., 2004) to the B-fault, especially near the A10ST well.

6.4 Locally high reflectivity at the A10ST well

Our processing sequence for interpreting fault-plane reflections begins by manually
picking the fault-plane of interest in a time-migrated 3D seismic data volume. In Figure 6.1,
we show a time-map of the B-fault from our picks. We then dip-filter the seismic data in
the direction of fault dip to accentuate the fault-plane reflections while simultaneously
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Figure 6.2. Overlay of the time-migrated seismic data (variable density) with a dip-filtered
version (wiggle trace) of the same data along line A-A’. The dip-filtering is in the direction
of fault dip to accentuate fault-plane reflections. The H-sand is highlighted to indicate the
total throw across the A-fault and B-fault. The path of the A10ST well is projected into the
A-A' plane. The vertical axis is two-way-time in milliseconds and, taking the approximation
that 1 ms two-way-time = 1 m depth, the vertical exaggeration of the plot is about 2x.

attenuating the reflections from the flat layers. The final step is to extract the maximum
amplitude of the fault-plane reflection, which lies close to our picked fault-plane. We select
the maximum amplitude within a time gate of 100 ms around our picked fault-plane.

In Figure 6.2, we show an overlay of the seismic data along the A-A’ line (see Figure 6. 1)
with its dip-filtered version. From this image, one can see the fault-plane reflections that
occur over portions of the A-fault and the B-fault. These fault-plane reflections, as discussed
in Haney et al. (2004), are due in part to a sharp increase in pore pressure across parts of the
A-fault. The sharp increase in pore pressure results in an equally sharp decrease in seismic
velocity, as shown in Chapter 1 by the velocity/pore-pressure relationship we constructed
from wells at South Eugene Island. As the pore pressure increases, the differential stress
(the difference between the lithostatic stress and the pore pressure) decreases. Since most
of the overpressure at South Eugene Island is caused by undercompaction, the decrease in
the differential stress is correlated with a decrease in seismic velocity. Losh et al. (1999)
have documented a decrease of differential pressure by 800 psi over a distance of 18 m while
drilling into the A-fault.

After extracting the maximum amplitude of the fault-plane reflection from the B-
fault, we obtain the reflectivity map shown in Figure 6.3. Strong reflectivity, shown as
brighter colors, come and go on the fault-plane due to the sharp lateral sealing of the B-
fault. However, the strongest reflection amplitude occurs at the intersection of the A10ST
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Figure 6.3. Reflection amplitude from the B-fault as a function of position on the fault-
plane. The view is the same as in Fig. 1. Note the smearing of the reflection amplitudes
in the up-down direction due to the dip-filter processing we employed to isolate the fault-
plane reflection from the B-fault. The A20ST well, which intersected the B-fault in a
“dead-zone”, does not encounter an unusually high-amplitude anomaly on the fault-plane.
In contrast, the A10ST well, which encountered a fluid pulse at the B-fault, terminates
into the strongest reflecting portion of the fault. The reflectivity at the intersection of the
A10ST well is approximately three times greater than at the A20ST well.
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well with the B-fault - where a fluid pulse has been reported by Losh et al. (1999). At
this location, we hypothesize that the fault-plane reflection arises due to a spatially-limited
fluid pulse in the fault zone. We test this hypothesis in the next section by constructing
synthetic seismograms with well logs from the A20ST well that cross the B-fault. Finally,
we make note that, from the reflectivity map in Figure 6.3, the magnitude of the fault-plane
reflection at the A10ST well is, roughly speaking, three times larger than the reflection at
the A20ST well, where we have well log information.

6.5 Numerical modeling from A20ST sonic log

To better understand the variation of elastic properties that could give rise to the
high reflectivity observed at the A10ST well, we generated full waveform elastic synthetic
seismograms from a sonic, shear, and density log. Unfortunately, no such logs existed for
the A10ST well; however, these logs were acquired through the B-fault at the nearby A20ST
well. Smoothed versions of these logs are shown in Figure 6.4. Since the B-fault zone at the
A10ST well was overpressured relative to the upthrown sediments and at the A20ST well it
was not, we expect that, if the logs had been acquired at the A10ST well, they would have
shown an anomaly on the B-fault plane. Types of anomalies at the fault-plane have been
discussed already in Chapter 4 of this thesis.

We use the logs from A20ST as the physical basis for our numerical modeling. We
utilize a finite-element implementation of the elastic wave equation (as discussed in Chapter
3) with a range of incident P-wave angles from 0° to 30° and a source of 20 Hz dominant
frequency. We then correct the moveout for the different angles of incidence and stack
the waveforms. Since the code is elastic, we are able to model conversions to S-waves.
To model the anamoly at the A10ST well, we place a fracture into the B-fault zone in
the logs taken from the A20ST well, where the fault was characterized as a “dead-zone”
(S. Losh, 2004; personal communication). As discussed in Chapter 4, this fracture model
(nv =5 x 10719 m Pa~! and nr = 1072 m Pa™1) can effectively be thought of as a 10 m
zone with a density of 2124 kg/m? and a P-velocity of 2077 m/s at an effective stress of 453
psi. This model is consistent with the dimensions of the fault zone described by Losh et
al. (1999) and the degree of additional overpressure in the fluid pulse (Losh, 2004; personal
communication). Note that, at the near-normal angles of incidence used in this modelling,
the reflected P-waves are hardly sensitive to the tangential compliance nr.

The synthetic seismograms are plotted in Figure 6.5. The main waveforms are the
reflections from the sedimentary layers, and the reflection from the B-fault. For both
models, the seismograms are identical until the reflection from the B-fault arrives. The
maximum amplitude of the fault-plane reflection from the A10ST model, which includes a
fracture in the B-fault zone, is approximately three times larger than the associated fault-
plane reflection from the A20ST sonic log. The model qualitatively agrees with the relative
strengths of fault-plane reflections at A10ST and A20ST observed on the reflectivity map of
Figure 6.3. Though the above model of a fracture in the B-fault zone qualitatively matches
our observations, note that the value of the compliance scales with the thickness of the
effective layer (which we assumed to be 10 m). The thickness of the layer can be thought
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Figure 6.4. The three well logs from the A20ST well that are used for the modeling of
fault reflectivity. The depth of interesection with the B-fault is displayed on each log. The
shear log did not exist over the same depth range (below 2000m) as the sonic and density
logs. As a result, the shear velocity is taken to be in a ratio of V,/Vs = 2.5 above 2000
m and is calculated from the sonic log. These raw well logs are altered for the purpose of
modeling the nearby A10ST well by placing a fracture in the B-fault zone. The fracture
has a normal compliance of 5 x 1071% m Pa~! and a tangential (shear) compliance of 107
m Pa~!. This fracture model can be viewed physically as a thin layer of low velocity and
density, as discussed in Chapter 4.
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Figure 6.5. The synthetic seismograms for the A20ST (solid) and A10ST (dashed) models.
On the left is a plot of the entire synthetic seismogram and on the right is a zoom of the time
range shown as a vertical line on the left plot. Since the only difference in the two models
is the fracture at the B-fault zone in the A10ST model, the seismograms are identical until
~ 1.74 s. At that point, the fracture in the A10ST model produces a reflection roughly
three times stronger than the reflection due to only the decrease in velocity at the B-fault
in the A20ST model. This factor qualitatively agrees with the relative difference in the
reflectivity observed between the intersections of the A20ST and A10ST wells in Figure 6.3.
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of as the fractured damage zone surrounding the main cataclastic zone, since it is this zone
that effectively conducts fluids.

6.6 Conclusion on the detection of a fault burp

We have observed anomalously high reflectivity associated with a portion of a growth
fault in the Gulf of Mexico where others have speculated, based on drilling records and
geochemical evidence, that a fluid pulse is ascending the fault. By generating synthetic
seismograms based on well logs that passed through the fault, we have demonstrated that a
fracture, or effective low velocity and low density zone, at the fault-plane qualitatively agrees
with the relative strength of reflected amplitudes in seismic data. The ability of reflected
seismic waves to detect a fluid pulse could lead to a better understanding of hydrocarbon
migration or new drilling concept that targets hydrocarbons in a fault zone. Future work
will attempt to observe the fluid pulse move in different vintages of seismic data taken over
a period of ten years.

6.7 Introduction to a moving pulse

In a review article, Hickman et al. (1995) presented nine outstanding questions in the
field of “Mechanical involvement of fluids in faulting”. Among these key issues, the eighth
question was

What roles do faults play in distributing fluids in the crust and in altering
pressure domains? In other words, when and by what mechanisms do faults aid
in or inhibit fluid migration? What are the typical fluid/rock ratios, flow rates,
and discharges for fault zones acting as fluid conduits?

Despite the fact that fault-hosted fluid flow is still a poorly understood subject, several
studies, both theoretical and observational, have put our understanding of the interaction
of fluids and faults on firmer footing. One popular model, introduced by Rice (1992) and
discussed by Revil & Cathles (2002), maintains that fluids may intermittently propagate as
shock waves along faults at geologically fast rates (from m/yr to km/yr). The shock waves
are excited in the subsurface when the rock permeability is a strongly nonlinear function
of fluid pressure - a characteristic of highly fractured zones, such as fault zones. Nur &
Walder (1992) refer to intermittent times of intense fault-hosted fluid flow as “fault burps”,
an endearing term that I adopt in this thesis. Such behavior is fully in line with the fault-
valve model of Sibson (1990), in which fluid flow along faults is episodic and initiated by an
increase in fault zone permeability in response to fault slip. Recently, Miller et al. (2004)
show how a combination of Rice’s shock wave model and Sibson’s fault-valve model explains
the upward movement of aftershock epicenters along a fault in the deep crust beneath Italy.

In the Gulf of Mexico, growth faults cutting through young, poorly consolidated sedi-
ments provide a means for hydrocarbons generated in deep, highly pressurized source rocks
to migrate into shallow, economically producible reservoirs. This “pressure-driven” mi-
gration moves fluids at much higher rates than the conventional picture of hydrocarbon
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stringers slowly rising into structural high points via buoyancy. Several lines of evidence
taken at the South Eugene Island Block 330 field, offshore Louisiana, point to faults allow-
ing significant volumes of fluid to pass vertically over the last million years, even continuing
to the present day. The evidence includes (a) oil seeps from the fault scarps along the ocean
floor (Anderson et al., 1995), (b) thermal anomalies associated with the spatial patterns of
the fault scarps (Anderson et al., 1991), (c) reports from drilling of anomalously high pore
pressure confined to one of the fault planes (Losh et al., 1999), (d) a year-to-year variation
in the fluid chemistry of hydrocarbons produced from the same reservoir (Whelan et al.,
2001), and (e) geochemical anomalies seen in core samples taken from fault zones (Losh
et al., 1999). Here, I examine an additional set of data - seismic reflection images - for any
indications of fast fluid movement along growth faults.

6.8 A fluid pulse caught in the act of ascending a growth fault

The South Eugene Island field is an ideal location to examine fault-plane reflections
since there exists a wealth of previous studies at the field and a considerable number of wells.
Most of the available information is due to a multifaceted drilling project conducted by the
Global Basins Research Network (GBRN) in the 1990s (Anderson et al., 1995). During late
1993, GBRN intentionally drilled into and successfully cored several of the growth faults
at South Eugene Island. Included among these growth faults was a down to the southwest
dipping-fault known as the B-fault. The wells GBRN drilled into the B-fault began in the
downthrown, hydrostatically pressured sediments and passed through the fault into deeper,
overpressured (upthrown) sediments. At most of the wells, the B-fault was found to be
overpressured relative to the downthrown sediments, but not more overpressured than the
upthrown block; the one exception was at the A10ST well. As participants in the GBRN
drilling project, Losh et al. (1999) speculated that “the isolated pocket of anomalously high
fiuid pressure in the A10ST well may represent a spatially limited pulse of anomalously
pressured fluid.”

To test the hypothesis of a moving fluid pulse, we isolate the fault-plane reflections
from the B-fault in surveys from 1985 and 1992 and look for indications of movement. First,
we pick the fault plane in the 3D seismic reflection images (Figure 6.6A). We then proceed
by dip-filtering the seismic reflection images in the direction of the B-fault (Figure 6.6B).
This dip-filtering step serves to accentuate the fault-plane reflections while simultaneously
attenuating the reflections from the sedimentary layers. The final step is to extract the
maximum amplitude of the fault-plane reflection along the B-fault in a small time-window
around the picked fault-plane. The result of this processing scheme is shown in Figure 6.6C
for the 1985 data and Figure 6.6D for the 1992 data. Note the “streaking” of the reflectivities
in the N-S direction due to the dip-filter operating in vertical N-S planes.

The most striking pattern in the fault reflectivity maps (Figure 6.6, C and D) is
the northeast movement of the highest reflectivity areas between 1985 and 1992. This
movement, in the up-dip direction, is to be expected for a fluid pulse ascending the B-fault.
From the reflectivity maps, we estimate the movement of the fluid pulse to be on the order
of 1 km between 1985 and 1992, for an average velocity of ~ 140 m/yr. Such fast fluid
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Figure 6.6. (A) Map of the two-way reflection time (TWT) to the B-fault plane. Using the
approximation 100 m depth ~ 0.1 s TWT (Losh et al., 1999), this map shows the structure
of the B-fault, most notably the down-to-the-SW dip. (B) Overlay of the dip-filtered seismic
reflection image (black & white) on top of the original image (red & blue) along the dashed
line in (A). The dip-filtering highlights the fault-plane reflections from the B-fault and a
nearby fault known as the A-fault. The H-sand is shown to indicate throw. (C) Map of
the B-fault, as in (A), but with reflectivity from the fault-plane in 1985 plotted instead of
TWT. The area of highest reflectivity is circled in gold. (D) Map of the B-fault reflectivity,
as in (C), but from 1992. Note that the data extends over a slightly larger area than in (C);
however, the spatial perspective is identical. The area of highest reflectivity is circled in
gold; it is shifted roughly 1 km NE in the up dip direction relative to the 1985 data in (C).
This movement is depicted by the arrow in (A). Also shown is the location of the A10ST
well intersection, where high fluid pressures were encountered while drilling into the B-fault
zone in 1993 (Losh et al., 1999).
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Figure 6.7. Spatial cross correlation of the 1985 and 1992 B-fault amplitude maps shown
in Figure 6.6. There is a maximum in the cross correlation when the spatial lag is 1 km to
the NE (the up-dip direction of the A-fault). At the maximum, the correlation coefficient
is 0.78, which is close to the value 0.80 for a horizontal reflector known as the O-sand at
zero spatial lag. The correlation can be seen visually in subplots (C) and (D) of Figure 6.6.

flow up a vertically permeable fault is in line with a nonlinear permeability model first
discussed by Rice (1992) and has relavence for the understanding of hydrocarbon migration
mechanisms.

In Figure 6.7, I plot the spatial cross correlation of the amplitude maps from the B-
fault. There is a local maximum at 1 km spatial lag in the NE direction. This corresponds
to what is seen visually in Figure 6.6 C and D. The value of the correlation at the maximum
is 0.78, which is close to the value 0.80 computed for a horizontal reflector known as the
O-sand at zero-lag (see Figure 6.6). The zero-lag correlation for the B-fault amplitude maps
is 0.45. The fact that the correlation is as high as 0.80 for the O-sand in its zero-lag position
supports the similarity of the two surveys and their processing schemes. In Chapter 4, I
included noise, no DMO, and AGC as some possible problematic processing scenarios to see
which of these most degraded the amplitudes. The AGC was the worst by far in changing
the relative amplitudes. Though an AGC appears to have been applied to the 1985 data, it
obviously did not damage the amplitudes from the O-sand enough to bring its correlation
below 0.8. I have also checked the K-sand and found good amplitude agreement in its
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Figure 6.8. A comparison of the O-sand amplitude in the 1985 and 1992 surveys. The
consistency of the amplitudes in these two images supports the interpretation of the fault-
plane reflections. The correlation coefficent of the two images is 0.80

zero-lag poisiton. Both the O- and K-sands are in the same depth interval as the B-fault
plane.

In the final figure, I plot the amplitude along the Z-fault in a data set from 1988 and
the Shell data set from 1992. The Z-fault is antithetic to both the B- and A-faults; it is the
opposite minibasin-bounding fault from the A-fault (see Figure 1.2). The 1988 data was
shot by Texaco over the southern portion of South Eugene Island Block 330. Unfortunately,
the 1988 survey did not cover the B-fault or I would have plotted the B-fault amplitude as
well. The reflectivity from the Z-fault shown in Figure 6.9 does not appear to move during
the time between 1988 and 1992. Hence, the fault-plane reflection could be due to a pore
pressure contrast across the fault that is stationary, as the ones I described in Chapter 5.
The fact that there is not a lot of change between the 1988 and 1992 data sets at the Z-fault
disputes the argument that, due to different processing in 1988 and 1992, the fault-plane
reflections should be completely different. The amplitude image in Figure 6.9 for the 19838
data is considerably more noisy, but still similar to the amplitude along the Z-fault in the
1992 data.
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Figure 6.9. A comparison of the Z-fault reflectivity in the 1988 and 1992 surveys. Compared
to the changes seen at the B-fault between the 1985 and 1992 surveys, this reflectivity
pattern does not appear to change. This may be due to the fault-plane reflections from the
Z-fault arising due to a pressure contrast across the fault that is stationary with time.
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Chapter 7

Conclusions

The faults at South Eugene Island, Block 330 truly cannot make up their mind. In
some areas, they provide a significant seal and hold back tens of meters of hydrocarbon
columns. And yet, large volumes of fluid, both hydrocarbon and brine, have seemingly
managed to pass upwards through shale-dominated sedimentary layers by moving along the
fault plane. I find evidence in seismic data acquired at South Eugene Island to support
the existence of both types of fault behavior. Over large parts of the A-fault, elevated
reflectivity occurs along the depth range of the fault known to have the highest pressure
difference across it (Losh et al., 1999). At a location on the nearby B-fault, where anoma-
lously high pore pressures have been reported in the fault zone (Anderson et al., 1995),
areas of high reflectivity appear to move up the fault-plane, as would be expected for an
ascending, pressure-driven fluid pulse. The seismic waves are able to sense these different
pressure domains due to the effective stress controlling the elastic properties of the soft
Plio-Pleistocene sediments. I have performed extensive numerical modeling while utilizing
effective stress relationships for velocity and density in an effort to substantiate the dip-
filtering technique for interpreting fault-plane reflections. A main outcome of this thesis is
the demonstration that fault-plane reflections constitute another source of useful informa-
tion for geologists and basin modellers to take into account when forming their picture of
the petroleum system. Another primary outcome is the first observation based on seismic
reflection images of a fluid pulse ascending a growth fault. This observation gives additional
credence to the “dynamic fluid injection” (Whelan et al., 2001) hypothesis and points to
natural processes in sedimentary basins that occur on production time scales.

One question is whether the speed of the fluid pulse I obtain from the seismic images,
~140 m/yr makes any sense from the point of view of fluid dynamics. It turns out that,
when the permeability of the fault zone rock is highly dependent on pore pressure, solitary
wave solutions exist to the fluid flow equations that propagate along faults (Rice, 1992;
Revil & Cathles, 2002). Moreover, flow tests conducted in fault zones have shown that, due
to intense fracturing, the permeability of the fault rock can vary by orders of magnitudes
in going from hydrostatic to nearly lithostatic pore pressures (Fisher et al., 1996; Anderson
et al., 1995). The physical picture for this phenomenon is that the fluid flow is mostly in
an interconnected fracture network (Domenico & Schwartz, 1990). As the pore pressure
rises, the fractures open up, thereby allowing more flow (higher permeability). Hence, the
permeability depends on the fluid pressure. As the originator of this model, Rice (1992)
quoted a nominal pulse speed of 60 m/yr, within an order of magnitude of the estimate
I get from the movement of the fault-plane reflections. Losh & Cathles (2004) modelled
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the fault-hosted fluid flow at South Eugene Island and obtained a flow rate of 43 m/yr. In
perhaps an attempt to grab attention, Revil & Cathles (2002) claimed that the fluid pulses
could move at up to 160 km/yr! In any case, though the speed observed in the time-lapse
seismic images is geologically fast, it is conducive with previous estimates of flow along
faults.

The nonlinear permeability model may make it possible to have solitary fluid waves
propagating up a fault, but how does a fault actually initiate one of these “fault burps”?
If slip along a fault increases the along-fault permeability, then the breaching of an over-
pressured compartment, such as those known to exist in the deeper sediments (beneath the
O-sand) of South Eugene Island, can result in “fault-valve” behavior (Sibson, 1990). Dur-
ing this time, the fault acts as a pipe connecting shallow, hydrostatic sediments to deeper
overpressured ones. It is unclear how the issue of seismic versus aseismic slip impacts the
ability of a fault to exhibit valving.

The fact that the fluid pulse I observe at South Eugene Island appears to be limited
in its spatial extent begs another question - why and how does the fault reseal in the wake
of the fluid pulse? Does the reservoir it is tapping drain all of its fluids, or does the fault
reseal due to porosity reduction? To my knowledge, the research done on fluid pulses racing
up faults focuses almost entirely on the initiation of the fluid pulse (Miller et al., 2004).

Could the vertical permeability at the B-fault be forming in response to the interaction
of the B-fault and the large, minibasin-bounding A-fault instead of repeated shear along the
fault-plane? Close proximity of faults can create relay zones between them (Rowan et al.,
1998). These relay zones, as a result of their local stress field, are typically highly fractured.
The B-fault and A-fault, being within tens to hundreds of meters from each other, are most
likely interacting with each other’s stress fields and deforming the rock mass between them.

An additional goal of my research into the properties of faults is to identify advanta-
geous, but rare, methodologies for investigating fault zones. One such technique I would
like to highlight for future investigation is the measurement of seismic waves within a fault
zone. If the fault is a relatively weak layer compared to the host rock, as is the case for
a pressurized fault, “fault-zone guided waves” should be observed. These dispersive waves
have proven to be a useful tool for characterizing the interior structure of tectonic faults
in earthquake seismology (Li et al., 1990; Li & Leary, 1990; Igel et al., 1997). Since most
of the energy of these guided waves resides at the fault plane, these waves are extremely
sensitive to the elastic properties of the fault. Perhaps, if observed in time-lapse mode, the
guided waves could give an indication of any fluid movement along the fault.

Two wells drilled by the Global Basins Research Network, the A20ST and A6ST,
intersect the A-fault hundreds of meters from each other. As an example of a possible guided
wave experiment at South Eugene Island, a crosswell seismic survey, between the A20ST
and A6ST wells, could generate dispersive waves along the fault if the source is located in
or near the fault zone itself. Whether the dispersive waves turn out to be guided or leaky
would depend on the elastic properties of the A-fault zone relative to the upthrown and
downthrown sediments. Since the upthrown (overpressured) sediments have a lower velocity
than the downthrown (hydrostatic) sediments, it may well be that the dispersive waves along
the A-fault leak into the upthrown sediments but are guided by the downthrown sediments.
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