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ABSTRACT

I have developed a technique which uses multiply scattered waves to relate temporal
changes in the acoustic velocity to changes in the phase of the multiply scattered waves. This
study is an extension of a previous technique called coda wave interferometry where multiply
scattered waves are used to detect temporal changes in the scattering medium by measuring
the time lag between the unperturbed and perturbed wavefield due to a temporal change in
the medium. In this work, the propagation of multiply scattered sound is described using
the diffusion approximation, which allows us to relate time-lapse changes of the wavefield
to the temporal change of the velocity of the scattering medium. Previous formulations of
coda wave interferometry make it possible to assess the average change in the medium, but
they do not allow for the spatial localization of this change. I present a new formulation
that relates the change in the phase of the scattered wavefield to a localized perturbation in
a strongly scattering medium, and test it with synthetic seismograms calculated with finite-
differences. The technique is tested numerically for 2D acoustic waves. Using the diffusion
approximation for the energy transport in multiple-scattering media, I predict the change
in the phase of the scattered wavefield given a localized velocity or slowness perturbation.
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Chapter 1

INTRODUCTION

Many problems in geophysics require the estimation of subsurface parameters from
waves that have been scattered by heterogeneities in the earth. The desired result is,
in many cases, a map of properties that provides an image of the subsurface structure.
However, there are instances when creating a deterministic image in the medium is not
the main goal, but rather the main interest is to detect and localize temporal changes
in the medium. Examples of such cases include time-lapse monitoring of volcanoes and
hydrocarbon reservoir monitoring during enhanced recovery operations. Dynamic reservoir
characterization provides for optimal management of a reservoir, which leads to increased
production. Time-lapse (4D) seismic aims at inferring changes from the medium from
changes in the seismic amplitudes and/or traveltimes from seismic reflection data that has
been acquired at two different times. As an example, a 4D dataset on Weyburn Field,
Canada, has been used to infer time-lapse changes in the oil reservoir caused by a massive
miscible CO, flood to enhance oil recovery (Li, 2003; Davis et al., 2003). The main goal of
these 4D studies is to extract information about local changes in the reservoir using mainly
the amplitude information. However, these methods may be hindered by low signal to noise
ratio of the seismic data in certain areas.

This thesis concerns the use of coda waves to monitor temporal changes in scattering
media. The term coda refers to the recorded energy after the passage of the primary waves
(Herraiz, 1987; Aki & Chouet, 1975). Depending on how strong the scattering is in the
medium, these waves are either singly or multiply scattered waves. This gives rise to two
different regimes in wave propagation. If the scattering is weak, the waves that are recorded
are mostly singly scattered waves. In the single-scattering regime wave propagation can be
modeled using the Born approximation (Morse & Feshbach, 1953; Aki & Chouet, 1975). At
the other extreme, when scattering is strong, the description of the propagation of waves
is achieved using the diffusion approximation (Dainty & Toksoz, 1990). The solution of
the diffusion equation determines the redistribution of energy in strongly scattering media
(Page et al., 1995b).

There has been a considerable amount of work in the characterization of the medium
and the detection of changes in the medium using singly and multiply scattered waves (Aki
& Chouet, 1975; Lin & Ishimaru, 1974; Claerbout, 1985; Snieder, 2002; Weitz & Pine, 1993).
Imaging techniques, as used in seismic imaging (Claerbout, 1985), crustal imaging (Braile
et al., 1995), non-destructive testing (Langenberg et al., 2002) and medical imaging (Jensen,
2002), usually rely on the single-scattering approximation.

Multiply scattered waves have been used to determine the average structure or sta-
tistical distribution of scatterers in complex or random media. In this media the size of
the heterogeneity is generally smaller than or equal to the wavelength. In biophysics and
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medical imaging, diffusing photons are now used to view body function and structure after
it was found that photon transport within tissues is dominated by scattering rather than
absorption (Yodh & Chance, 1995). Diffuse transmission spectroscopy (Lemieux et al.,
1998) has been used to probe the structure of opaque maiterials such as colloids, foams and
sand, using multiply scatttered photons.

Multiply scattered waves have also been used to study the dynamics of complex media
and turbulent fluids. Diffuse light spectroscopy (Yodh & Chance, 1995) has been used
to measure the spatial variations in the absorption and scattering of large tissue volumes.
Weitz & Pine (1993) developed a technique called Diffusing wave spectroscopy (DWS) in
which multiply scattered light is used to study the dynamics of colloidal suspensions; this
technique was adapted later to acoustic waves by Cowan et al. (2002). This technique, called
diffusing acoustic wave spectroscopy, estimates the average motion of the scatterers from
the temporal fluctuations of multiply scattered sound. In this technique, the propagation of
multiply scattered sound is described using the diffusion equation, which made it possible to
relate the temporal field fluctuations with the dynamics of the multiple scattering medium.
Recently, coda waves have been used to study the temperature dependence of the seismic
velocity in granite (Snieder et al., 2002) using a technique called Coda Wave Interferometry
(CWI). In CWI, multiply scattered waves are used to detect temporal changes in a medium
by using the scattering medium as an interferometer. For small changes in the medium,
estimates of this perturbation can be derived from multiply scattered waves by a cross-
correlation in the time domain.

Little attention has been paid to the problem of spatially localizing temporal changes
with scattered waves. Instead, most of the studies have focused in the detection of temporal
changes in the medium (Weitz & Pine, 1993; Snieder et al., 2002; Cowan et al., 2002). In
most of the previous work on detection of temporal changes the assumption has been that
the change is homogeneous on the sample space. To spatially localize this temporal or
dynamic change, one wants to determine the position, size, shape and magnitude of the
perturbation. Jian et al. (2003) obtained information about individual scattering events
experienced by the diffusing field by computing correlation functions between electric fields
measured at different positions. These measurements permits us to obtain information
about the locations of individual scattering events experienced by portions of the diffusing
field.

I present an approach to quantitatively estimate temporal and spatially variable changes
in the medium by taking differential phase or traveltime measurements of the coda waves
before and after a small change in the slowness has been introduced in the medium. This
work is an extension of earlier work on coda wave interferometry (Snieder et al., 2002), by
modifying the theory to account for localized changes in the medium. I solve the forward
problem of estimating the phase or traveltime change for the strong scattering or multiple-
scattering regime, when the energy transport can be modeled as a diffusion process, and
arrive at an expression relating the evolution of the phase change of coda waves with trav-
eltime to spatially variable changes in the background velocity or slowness of the medium.
The technique is tested numerically for 2D acoustic waves using synthetic seismograms com-
puted with a finite difference technique in a 2D medium with random velocity fluctuations
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which produce strong scattering.

I simulate time-lapse changes by calculating the finite-difference seismograms in this
strongly scattering medium before and after the velocity field is perturbed. I then assess the
validity of our theory by measuring the traveltime change of the synthetic seismograms and
comparing it with the predicted traveltime change calculated using the theory developed
in this work. The estimation of the velocity perturbation from the measured traveltime
changes constitutes the inverse problem that can be solved to localize the change in the
medium. Complete information about the shape, size and location of the perturbation will
require a tomographic approach to inversion. This inversion scheme is not addressed in
this work; this study is concerned with the modeling of the phase changes given a spatially
variable velocity or slowness perturbation.

1.1 Coda Waves

The description of the propagation of acoustic waves through strongly scattering me-
dia is a problem of considerable importance to many areas of physics (Sheng, 1995). Coda
waves have been used extensively to study energy transport and scattering through the ran-
domly heterogeneous structure of the earth (Sato, 1993). Aki & Chouet (1975) proposed
that the coda observed in earthquake seismograms is caused by scattering of waves by the
small-scale heterogeneities in the lithosphere that are randomly distributed in space. The
characterization of the earth as a random medium is complementary to the classical strat-
ified media characterization. Coda waves have also been used to estimate the attenuation
due to multiple scattering (Aki & Chouet, 1975; Wu, 1982; Zeng & Aki, 1991; Scales &
Van Wijk, 1999). Different models have been formulated to explain the seismic coda. An
extensive review of the different models and applications of coda waves is given by Sato &
Fehler (1998).

Using a model with random heterogeneities, Frankel & Clayton (1984) simulated mul-
tiply scattered waves with finite-differences. In Chapter 2 I describe how to numerically
simulate coda waves using finite-differences. I use as a scattering medium a velocity field
with random velocity fluctuations in which the deviations from the mean value constitute
the random heterogeneities. Then, I calculate finite-difference seismograms for a medium
- characterized with homogeneous statistical properties, and analyze the scattering for a range
of values of the velocity fluctuations and characteristic length scales. By doing ensemble
measurements of the wavefield and the transmitted intensity we estimate the scattering
properties of the medium, that include the group velocity, scattering and transport mean
free path and the diffusion coefficient. By tuning the scattering properties of the medium
(e.g. by changing the magnitude of the standard deviation of the velocities) I change the
scattering regime and the way the energy propagates through the random medium.

1.2 Time-lapse Monitoring in the Multiple-scattering Regime

Prior to the work of Aki & Chouet (1975), Wesley (1965) proposed a diffusion-like
process to explain the late arriving energy after the primary arrivals in seismic waves. When
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the scattering is strong, and the Born approximation is not valid, the transfer of seismic
energy is described as a diffusion process (Weaver, 1982). Diffusion of multiply-scattered
energy has been used in global seismology (Aki & Chouet, 1975; Margerin et al., 1998),
ultrasonics (Page et al., 1995a) and medical imaging (Yodh et al., 1997). I take advantage
of the fact that wave transport acquires a diffusive character in a strongly scattering medium
to obtain an expression for the mean or average traveltime change of the diffusive wavefield
caused by a temporal and localized change in the velocity or slowness field. I find that
if the diffusion approximation for the energy transport is valid, I can accurately predict
the perturbation in the phase of the coda wavefield given a localized perturbation in the
velocities.

Chapter 3 presents the derivation of the theory that allows to account for the temporal
variation in the phase of the coda waves given a perturbation in the slowness. I test the
theory for 2D acoustic waves using finite-difference simulations of multiple-scattering in
a strongly scattering medium for different perturbations in the slowness field. I show two
examples of localized velocity perturbations in the scattering medium and compare the mean
traveltime change predicted using our technique with the traveltime change measured on
the synthetic seismograms using a time-windowed cross-correlation technique. The results
show good agreement between the theory and the numerical experiment.
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Chapter 2

NUMERICAL SIMULATIONS OF CODA WAVES : FROM SINGLE TO
MULTIPLE SCATTERING

2.1 Summary

I investigate wave propagation in two-dimensional random media using numerical sim-
ulations to better understand scattering of acoustic waves. Synthetic seismograms produced
by the finite difference method are used to study the scattering of acoustic waves in two
dimensional media with random spatial fluctuations in seismic velocity. The scatterers are
represented by velocity fluctuations. Realizations of random media with Gaussian autocor-
relation function are considered, with variations in seismic velocities over a range of length
scales smaller than the seismic wavelength. The scale length of the heterogeneities and
the magnitude of the velocity fluctuations determine the amount of scattering that a wave
undergoes as it travels through the scattering medium. For weak fluctuations in the ve-
locity we observe that most of the energy on the seismograms comes from single-scattering
whereas for stronger fluctuations multiple-scattering dominates the seismograms. I study
the transition from single to multiple scattering by adjusting the parameters that charac-
terize the velocity fluctuations and estimate the scattering properties of the medium from
ensemble measurements of the wavefield using synthetic seismograms calculated with finite
differences. Finally, I show that in the diffusion regime wave propagation can be modeled
as a random walk process.

2.2 Introduction

I study the transition from single to multiple scattering of acoustic waves in two di-
mensional random media using a finite difference algorithm. Wave propagation in two-
dimensional random media has been studied by numerous authors (Frankel & Clayton,
1984, 1986; Shapiro & Kneib, 1993; Sato, 1993). Frankel & Clayton (1984) and Shapiro &
Kneib (1993) performed finite-difference simulations of wave propagation in random media
to study the effects of scattering on apparent attenuation and the variation of waveforms
and amplitudes across seismic arrays. For a given magnitude of the random velocity fluc-
tuations the scattering regime falls somewhere between the single and multiple scattering
regime which are the two end member models which describe the transport of energy in
random media (Sato & Fehler, 1998).

In this study we consider a 2D random medium with velocity fluctuations with scale
lengths smaller than the seismic wavelength. Such fluctuations can be caused by lithology
changes, the grain structure of the rock and the presence of cracks and pore fluids (Herraiz,
1987). The amount of scattering that the waves experience through the medium depends

s
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on the characteristics of the velocity fluctuations of the medium (Lin & Ishimaru, 1974). In
general, the larger the magnitude of the velocity fluctuations with respect to the background
velocity, the more severe the scattering. Thus, by changing the magnitude of the velocity
fluctuations we go from the single-scattering regime (when the scattering is weak), to the
multiple-scattering regime (when the scattering is strong).

By changing the spatial distribution of the random velocity fluctuations, the calculated
synthetic seismograms are used to estimate the group and transport velocity vy (velocity
of the signal envelope), scattering mean free path ! and transport mean free path {* and
the diffusion coefficient D of the media. Using several realizations of wave propagation
in random media we estimate these properties of scattering media from average measures
of the wavefield and of the coherent and total intensities. I show that for weak velocity
fluctuations, wave propagation in the 2D random media can be modeled using the single-
scattering approximation. As I increase the magnitude of the velocity fluctuations, the
energy transport is better described by a diffusion process. In general, I find that the
wavefields behave diffusively after the waves have propagated through the scattering medium
for distances r on the order of several transport mean free paths (r > 4/*), which agrees
with results obtained by van Albada & van Tiggelen (1991), Kuga (1993), Lemieux et al.
(1998) and Page et al. (1995Db).

Finally, when wave transport can be described as a diffusion process we show that
waves propagating on a multiply scattering medium can be thought of as the superposition
of waves with trajectories that can be described as a random walk from source to receiver.
Each step length on this random walk is approximately equal to the transport mean free
path [*, and the latter can be obtained with knowledge of the diffusion coefficient and the
transport velocity of the medium.

2.3 Two Models of Coda waves

Depending on the random distribution of the velocity fluctuations, we can consider two
different extreme models for the origin of coda waves. When the particle density is tenuous
and/or the scattering is weak, we can use the single-scattering approximation (Herraiz,
1987) to describe the transport of wave energy through the medium. In this model, the
coda can be considered as a superposition of wavelets scattered from different heterogeneities
which act as secondary sources. Each wavelet is due to a single scatterer in the absence
of other scatterers (Aki & Chouet, 1975). In the single-scattering regime the scattering is
a weak process, and we can use the Born approximation to describe the wave propagation
process. We find the second model at the other extreme for a dense distribution of stronger
scatterers, when the diffusion model has been used to describe the energy transport (Wesley,
1965; Aki & Chouet, 1975; Page et al., 1995b; Schriemer et al., 1997).

The transition from the ballistic to diffusive propagation is not fully understood and
various approaches have been used to study the energy transfer in this crossover (Paasschens,
1997; Lemieux et al., 1998; Zhang & Sheng, 1999). More accurate expressions for the
probability density of intensity as a function of position have been proposed based on the
Boltzman equation, also known as the Radiative transfer equation (Paasschens, 1997).
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2.3.1 Single-Scattering Model

Aki (1969) first showed that the coda waves of local earthquakes can be treated as
singly scattered waves. This model assumes that the scattering is weak and therefore
multiple-scattering can be neglected. Single scattering invokes the Born approximation,
which assumes that the energy lost from the direct wave during the scattering process is
small for propagation distances smaller or approximately equal to the transport mean free
path(Aki & Chouet, 1975). If intrinsic attenuation is neglected, the dominant energy loss
mechanism in this model is geometrical spreading.

The application of the single scattering formulation for the study of coda waves is based
on assumptions that the medium is not strongly heterogeneous and that the transport mean
free path is greater than or equal to the travel distance between the source and the receiver
(Gao, 1983). Because of these oversimplifications the law of energy conservation is violated.
According to this model, the waves have traveled outward from the source, been scattered
once, and then propagated back to the receiver.

In the single-scattering approximation, both the energy loss and the dispersion asso-
ciated with the interaction of waves with the scatterers is small (Gao, 1985). As a result,
the primary waves show little, if any, distortion as they travel through the medium. In this
model the ballistic or direct pulse carries most of the energy as it propagates through the
medium with no scattering (Cowan et al., 1998).

In the single scattering model, scattering is a linear process and therefore we can
calculate the scattered wavefield from the incident wavefield using the Green’s function
method. Following Bleistein ef al. (2001) we can represent the true wave speed as being
the sum of a background wave speed profile plus a perturbation, also called the scatterer.
Following this logic, we may consider the true wavefield v as being of the background field
plus a perturbation, also called the scattered field. It is proper then, to think of u as being
made up of an incident field 4y which would be present in the absence of the scatterer or
velocity fluctuation «, plus ug, which represents the departure from u; due to the presence
of the perturbation a. For a harmonic wave of angular frequency w propagating in one-
dimensional medium the total wavefield u(z,zs,w) at receiver z due to a source at z; is

’U,(.'E, $3,w) = uI(:l:,a:,,w) + uS(xv $3,OJ), (21)

which is known as the wavefield perturbation expression (Bleistein ef al., 2001). An advan-
tage of this decomposition is that the Helmholtz equation, which is the forward wave mod-
eling operator in the frequency domain, may be written as the sum of two Helmholtz equa-
tions. If we solve the Helmholtz equation using Green’s function method we obtain the inte-
gral expression relating the observations of the scattering field at receiver zg, us(zg, zs,w)
to the interior values of that unknown field and the perturbation a(z) which represent the
scatterers:

afz)

us(zg, 5, w) = w? / m [ur(z, s, w) + us(z, x4, w)] 9(z, T4, w)de, (2.2)

where c(z) is the background wave speed and g(z, z4,w) is the Green’s function for the 1D
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Helmholtz operator. Eq. 2.2 is nonlinear because the expression for the scattered field ug
contains a term that depends on the product of the unknown scattered ugs and the velocity
perturbation a(z). For acoustic wave propagation (constant mass density) o(z) becomes
the scattering coefficient. In the Born approximation we assume that a(z) (scattering is
weak) and therefore the product of us and a(z) is much smaller than the product of the
incident wave u; and a(z). Here, ”linearization” means removing the product us % a(z)
from the right hand side of Eq. 2.2. The scattered field in this approximation becomes
accurate to linear order in a(z), yielding

us(ay,20) = * [ j;‘(“;’) w1(2, B0, 0)g(2, g, w)d. (2.3)

The linearization performed here is often called the Born approrimation. The same
derivation is valid for higher dimensions with the only difference being on the Green’s
function which describes the propagation of the incident pulse in the constant wave speed
profile.

2.3.2 Multiple-Scattering Model

When the scattering is strong, i.e. the product us x a(z) is of comparable size to the
incident wavefield u;, the Born approximation is no longer valid and therefore the scattered
wavefield can not be calculated using Eq. 2.3. The medium is characterized as a constant
background wave speed profile with added perturbations that represent the scatterers, but
in this case the fluctuations o are large when compared to the background wave speed c. In
this regime, the scattered wavefield does not depend linearly on the scattering coefficient a
as the wave emanated from the source interacts with multiple scatterers on its trajectory
from source to receiver and its energy becomes redistributed in multiple directions. This
process gives rise to the multiply scattered waves that make up the coda. In this regime,
the multiple wave pulses measured at the receiver at different times are the result of the
superposition of waves with different trajectories on the multiple scattering medium.

Given an energy impulse detected at time ¢ at the receiver, it is extremely difficult
to determine which specific trajectory from the source to the receiver gave rise to such
event. The problem is, however, simplified if instead of considering one specific trajectory
we consider the average wavefield obtained after summing the contributions from different
trajectories. Therefore, when scattering is strong and waves follow infinitely many trajecto-
ries, wave propagation can be considered as a random walk process. It is when we make such
a connection that the problem becomes simplified because, as we will see later, a random
walk process can be described as a diffusion process.

In the multiple scattering regime the seismic energy transfer is thus considered to be a
diffusion process and the total energy in the system is conserved (Page et al., 1995b). As the
number of scatterings become large, the direction of the emerging waves become random-
ized and the multiple-scattering process tends to redistribute the energy in all directions
(Margerin & Campillo, 2000). Many investigators have determined the propagation dis-
tance at which the diffusion approximation becomes valid (Page et al., 1995b; Paasschens,
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1997; Cowan et al., 2002). For example, diffusing wave spectroscopy experiments (Cowan
et al., 2002) have indicated that the energy transport becomes diffusive for propagation
distances longer than a few mean free paths (r > 4). Therefore, for scattered waves to be
in the diffusion regime the transport mean free path {* must be small when compared to
the propagation distance.

Compared to the single scattering regime, the incident pulse in multiple scattering is
greatly attenuated due to scattering. Besides attenuation, the wavefield propagated in the
strongly scattering media is also strongly affected by dispersion. This dispersion is related
to the scattering attenuation by the Kramers-Kronig relation. The dispersion is caused
by the high heterogeneity of the medium, where waves of different frequencies travel at
different speeds (Elmore & Heald, 1969; Stein & Wysession, 2003). Dispersion strongly
affects the frequency content and velocity of the incident wave (which is commonly referred
in the literature as the ballistic wave) and this will be demonstrated in later sections with
synthetic seismograms calculated with the finite differences method.

2.3.3 Multiple Scattering as a Random Walk Process

To better understand the dynamics of wave transport in a multiple scattering medium,
the propagation of sound through the material can be modeled using the diffusion approx-
imation. In this section we show how diffusive motion comes out of a simple model of a
random walk. This provides us with the advantage of a simple physical picture where the
diffusively scattered wavefield is represented as the sum of partial waves traveling along var-
ious diffuse paths (Skipetrov & Maynard, 2003). Each one of these diffuse paths is usually
thought of as a random walk from source to receiver with a characteristic step length equal
to the transport mean free path I*.

Let us assume that the seismic energy transport can be described with random walks.
This is a good approximation for a strongly heterogeneous medium where multiply scattered
waves are produced. Let’s consider first a random walk in one dimension and that the
particle takes discrete steps of length h for every increment of time 7. We define the
random variable X; as the position of a random walk particle at a given time . We can
define the probability P;; that a particle with an initial position at 7 will end up at j. One
way of defining the transition probability is as follows:

P(Xsr — Xo = ) = P(Xisr — Xo = —h) = 7. (2.4)
which simply means that the variable X (the subscript stands for the time) has an equal
probability of increasing or decreasing by h at each time step. This process is both homoge-
neous (since the transition probability is only dependent on the distance between the initial
and final points) and isotropic (the transition probability is independent of the direction of
movement). To get to position z the walker must be at position z — h or position z + h at
the previous step. In either case, the probability that it moves to position z is 0.5. Hence,
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the following difference equation holds
1
P(Xiyr =2) = 3 [P(X; =z + h) + P(X; =z — h)]. (2.5)

If we subtract P(X; = z) to Eq. 2.5 and divide the result by 7, and consider P to be
a function of both position z and time ¢, the above equation becomes

P(xat""r) _P(wat) _ h_2P($+h,t) —2P($’t)+P($_h1t)

T 27 h? (26)

where P(z,t) is the probability of the particle being at x at time ¢ (it is important to
note that these are still discrete variables). In the limit A — 0,7 — 0, M be-

comes a—}}”—tl (now, of course, z and ¢ are continuous) and ZE+th:t)— 2P("’ £)+P(z—h) becomes

Q%é”—tz Hence, in this limit, we get the following equation for the one—dlmensmnal random
walk

OP(z,t) D62P(:1:,t)

ot oz2 '’

where D = h2/27. Eq. 2.7 is, of course, the diffusion equation which should not come as

too much of a surprise as diffusion is the result of the random movement of molecules. For

an unbounded 1D homogeneous medium, the solution of the diffusion equation with the
initial condition Py(z,0) = §(z) is given by the Gaussian

(2.7)

Po(z,t) = (2.8)

1 2
o ex t>0.
ov/aDt P ( 4Dt>

In terms of random walk, this initial condition means that the particle starts at the
origin. If we generalize this to m—dimensions, Eq. 2.6 is replaced by

P(x,t+ 7) — P(x,t) i h? P(z; — h,t) — 2P(z;,t) + P(z; + h, t) (2.9)
T ~ 2trm h?2 - )
(the subscripts refer to the components of x) whose continuum limit is
% = DAP(z,t), (2.10)

where D is now h?/2rm and A is the m-dimensional Laplacian. The solution to this
equation for = 2 and assuming isotropic scattering with the initial condition P(x,0) =

d(x) is given by \
1 T
2.1
Pox,t) = (4nDt) & p( 4Dt) (2.11)

where 7 = |x| is the distance to the source. Py(x,t) then stands for the probability of a
particle on a random walk of visiting location x at time ¢. This describes the distribution
of a Brownian particle, given the information that it started at the origin at time ¢ = 0.
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Figure 2.1. The trail of a Brownian particle in the plane, from a computer simulation.
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The distribution varies with time and its main characteristic is that the width broadens
according to a /% law. More precisely, the mean square displacement

(ﬁ):/}%unﬂfr=4pu (2.12)

is proportional to ¢. In other words, the distribution varies with time according to a /%
law. Figure 2.3.3 shows a single realization of random walk in the plane.

The scattering of waves is responsible for the attenuation in the medium. The simplest
model of wave transport in a disordered medium is a random walk. A wave with energy
velocity v, travels for a typical distance, the transport mean free path I*, before being
scattered by a heterogeneity from its straight line path. In the wave transport picture,
Py(x,t) represents the fraction of energy at location x and time ¢ given a wave energy
impulse at time ¢t = 0 at the origin. The definition of the diffusion coefficient D in 2D is
D = vel* /2 (Weaver, 1982; A. & Weaver, 1995) where v, is the energy velocity and I* is the
transport mean free path. It is important to remember that P,(r) describes the space and
time evolution of diffusive intensity in the media. In multiple scattering this diffusive energy
corresponds to the ensemble averaged or mean intensity (I). In Section 2.6.3 we show how
to estimate the diffusion coefficient D from the mean intensity of multiple realizations of
wave propagation in 2-dimensional media.

2.4 Scattering Model for Acoustic Waves in 2D

Chernov (1960) and Karal & Keller (1964) used random velocity models to analyze
the Earth’s small scale heterogeneities. These models are examples of the use of stochastic
theory in seismology. There are numerous possible parameterizations for two-dimensional
homogeneous random media. In this work we restrict ourselves to media with a Gaus-
sian probability distribution of the velocity fluctuations. Velocity fluctuations about the
mean velocity are exactly the same as the velocity perturbation a(z) added to the constant
background wave speed profile in the previous section. This model is one with continu-
ous random fluctuations with a Gaussian autocorrelation function, and is useful to model
multiple-scattering in the diffusion regime (Frankel & Clayton, 1984) when the magnitude
of the velocity fluctuations is large. Single scattering can be achieved, however, by making
the magnitude of the velocity fluctuations small. Following Frankel & Clayton (1984), I
model the 2D velocity field as a constant velocity background with added random velocity
fluctuations. The total velocity field is decomposed as

v(r) = vo + v (r), (2.13)

where g is the constant background velocity and v, describes the random velocity fluc-
tuations. We characterize our medium statistically with the following assumptions: the
random process is statistically homogeneous, and the extent of the medium is much greater
than the correlation distance a (Lin & Ishimaru, 1974). The spatial correlation function
N(r), which expresses the correlation of the fluctuations between two points within the
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Figure 2.2. Realization of a 2D random velocity model with a Gaussian autocorrelation
function. The correlation distance a is 100 m.
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heterogeneous region, is assumed to be Gaussian, i.e.

—r2
N(r) =< v.(r") v, (r' + 1) >= 0,2 exp [—a-z—], (2.14)

where o, is the standard deviation of the velocity, and a is the correlation distance. Note
that the autocorrelation function N(r) is isotropic as it only depends on the distance r.
The correlation distance a is essentially proportional to the average size of the scatterers
(Frankel & Clayton, 1986). It is useful to define a dimensionless parameter that describes
the variation of the velocity in the random medium, as the relative variation of the velocity
with respect to the mean value determines the imprints of the velocity fluctuations on the
scattering strength. Hence, we define the normalized standard deviation of the velocity as

o = 0y /. (2.15)

In general, the amount of scattering depends in a nonlinear way on the following
factors: the magnitude of the relative velocity fluctuations o, the correlation distance a,
and the frequency spectrum of the source wavelet. In general, the scattering increases with
the magnitude of the velocity fluctuations, i.e., the bigger o the stronger the scattering.
The correlation distance a also affects the strength of the scattering in a nonlinear way. In
the next section we show variations of scattering parameters for different values of o and a.

The two-dimensional random velocity fluctuation field v, was constructed by specifying
a random velocity value for each point in the grid with a random number generator. The
random velocity field is Fourier transformed to the wave-number space and then filtered to
achieve the desired spectrum (Frankel & Clayton, 1986). Finally, we transform back to the
space domain and after normalizing to obtain the desired standard deviation, the velocity
fluctuations v, are added to the homogeneous velocity field vo. The random component v,
has a Gaussian probability distribution. Figure 2.1 shows a realization of such a velocity
model with a Gaussian autocorrelation function for a=100m.

The amplitude and phase of wavefields fluctuate in random media (Shapiro & Kneib,
1993). However, as we mentioned on previous sections, we concentrate on this study on the
behavior of average quantities such as the wavefield and the intensities. Averaged wavefields
are characterized by scattering attenuation, dispersion and anisotropy (Ishimaru, 1978). In
this model, there are no preferential orientations in the shape of the velocity fluctuations
and therefore scattering is approximately isotropic. The values of the correlation distance
a and the standard deviation of the velocity o can be set to produce the desired scattering
strength. Usually, a is made to be smaller than the seismic wavelength and o is made
big enough to produce multiple scattering. For a given variance in the velocity, random
media with different correlation distances (i.e., scatterer sizes) produce different amounts
of scattering attenuation at different frequencies (Herraiz, 1987). For scatterers with a size
comparable to the wavelength, the effects of dispersion and resonant scattering are stronger
(Page & Sheng, n.d.). When ka (k being the wavenumber) is comparable to unity or greater,
the effect of the scatterer shape is important, and the waveform becomes highly distorted
after a few scattering events.
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Figure 2.3. Source wavelet (top) and amplitude spectrum of the source (bottom). The
dashed line indicates the dominant frequency of 25 Hz.

2.5 Finite-Difference Modeling of Coda Waves

The finite-difference method used in this work solves the acoustic wave equation for
a heterogeneous medium on a two-dimensional grid. The reader is referred to Alford &
Kelly (1974) and Kelly et al. (1976) for a more detailed description of the method. The
finite-difference technique retains all singly and multiply scattered waves, and also accounts
for transmission losses due to scattering (Frankel & Clayton, 1984).

In this study, we assume that the mass density is constant and that the velocity
fluctuations are the only cause for the scattering of waves. The two-dimensional acoustic
wave equation describing the pressure (P) where the velocity v is a function of z and z and
the mass density is constant is given by

o%p 2P 62P]

e == 2 —_— R
5z =V (z,2) [31:2 + 572 (2.16)
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Figure 2.4. Typical configuration for the study of scattering of waves in random media.
The star is the source and the triangles are the receivers around the source.

The solution for this equation contains all the multiple reflections and diffractions.
These equations are solved numerically by replacing the partial derivatives by their finite-
difference approximations for a discrete time step dt and grid spacing dz. The MATLAB
finite-difference algorithm used in this study utilizes fourth-order approximations to the spa-
tial derivatives, which are superior in accuracy to the second-order schemes more commonly
used in finite difference modeling of seismic waves (Alford & Kelly, 1974).

The synthetic seismograms were created by transmitting a band-limited pulse through
the two-dimensional grid. The grid size is 1000 by 1000 points, with a grid spacing dz of
20m. I generated velocity fields with a mean velocity vy=6000 m/s and added random
velocity fluctuations with Gaussian probability distribution. I used a source time function
that was the second derivative of a Gaussian (Ricker wavelet). In general, the pulse width
can be varied to represent different source durations and frequency spectrum (Kelly et al.,
1976). For simplicity, I kept the source wavelet constant for all of our experiments. The
employed source pulse has a duration of about 0.040 s and its dominant frequency is around
25 Hz. Figure 2.3 shows both the source wavelet (top) and the frequency spectrum of the
source wavelet (bottom). The choice of the grid spacing dz was based to ensure both that
our dominant wavelength is much bigger than the grid size (Agom, >> d), and to ensure
stability and minimize grid dispersion artifacts in the finite-difference calculations (Alford
& Kelly, 1974). We calculated the seismograms up to 3.5 s, which is the time at which the
reflections from the boundaries of our model appear.

Several velocity models were created with different statistical properties in order to
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study the effect on the scattering and to monitor the transition from the single-scattering
to the multiple-scattering regime. The statistical properties to adjust on the continuous
random velocity model are the correlation length a and the normalized standard deviation
of the velocity 0. Our specific interest is in velocity fluctuations on a scale length smaller
than the wavelength. For a mean velocity of 6000m/s and a dominant frequency of 25H z,
the dominant wavelength is approximately 240 m.

We calculate the synthetic seismograms for a range of values of a and o. First,
to study the effect of the magnitude of the velocity fluctuations on the scattering, we
kept the correlation distance fixed, a=40m, and calculate the synthetic seismograms for
a=[0.01,0.02,0.03,0.05,0.07,0.10,0.15,0.20,0.25]. Second, for a high value of the magnitude
of the velocity fluctuations (0=0.25) we calculated the seismograms for a=[40,100,140,200]
m.

Figure 2.4 depicts the typical receiver configuration used for the ensemble measure-
ments of scattering properties in later sections. The source is centered in the middle of
several concentric arrays of receivers located at different distances from the source.

Figure 2.5 show examples of the wavefields recorded at 4000 m for a medium with
a constant background velocity and for velocity models with different velocity fluctuation
spectra. The correlation length for all models with velocity fluctuations is a=40 m. The
standard deviation values for the calculated seismograms are 0=[0.02,0.05,0.10,0.15,0.25].
Note that the ballistic arrival for the models with small velocity fluctuations (0=0.02,0.05)
is coherent in all the detectors and arrives approximately at the same time as the ballis-
tic arrival for the homogeneous velocity field. Also, the transmitted wavelet shows little
dispersion (i.e., no broadening of the coherent pulse) when compared to the wavefield in
the homogeneous velocity field. For weak fluctuations of the velocity, we expect that the
ballistic wave isn’t broadened by dispersion and its amplitude to be much larger than the
scattered waves. This seems to be case for fluctuations of the velocity smaller of equal than
five percent of the mean velocity(o < .05vp).

As we increase the magnitude of the velocity fluctuations, the energy loss from the
ballistic pulse increases and the contribution of the multiply scattered waves to the total
energy of the system increases consequently. Indeed, for larger values of the magnitude of
the velocity fluctuations (seismograms with 0=0.10, 0.15 and 0.25 on Figure 2.5) increasing
amounts of energy are transferred from the ballistic pulse to the multiply scattered waves. In
this case the ballistic arrival is delayed with respect to the ballistic pulse in the homogeneous
velocity model and the traveltime of this arrival starts to show random delays. These
random delays are associated with phase changes of the wavefield caused by the ballistic
waves following paths of different length for different receivers. This slower ballistic arrival
shows dispersion (the ballistic wave is the result of the interference of waves traveling at
different in the forward direction) because of the increasing attenuation due to scattering.
The dispersion is the greatest when 0=0.25. The ballistic arrival has been attenuated
severely and shows a smaller amplitude and lower frequency content than the later arriving
multiple-scattering events.

Figure 2.5 shows a closer view at some of the seismograms shown in Figure 2.5. Here,
five of the seismograms recorded at a 4000 m distance to the source for the random medium
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Figure 2.5. Seismograms recorded at 4000 m from the source for: a homogeneous velocity
model (top-left) and for random media with continuous random velocity fluctuations with
autocorrelation length a=40 m and different standard deviations o.
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Figure 2.6. (a) Transmitted wavefield for a weak scattering medium (¢ = 0.05). (b)

Transmitted wavefield for a strong scattering media (o = 0.25). In each case we plot five of
the 100 seismograms recorded at a distance to the source of 4000 m.
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with 0=0.02 (top); five seismograms for the same receiver locations but for the medium
with 6=0.25 are shown at the bottom of Figure 2.5. Note that for the medium with =0.02
the scattering is weak and the ballistic pulse is much stronger than the coda. This is not the
case for a medium with =0.25 where the multiply scattered waves are more energetic than
the ballistic wave which has lost most of his energy due to scattering losses. As the waves
travel through the random medium, energy is lost from the ballistic wave and is transfered
to the multiply-scattered waves via a diffusion-like process. Thus, by increasing the value of
o the scattering regime changes from the single to the multiple-scattering regime. Note that
this is a qualitative analysis of the scattering strength in the medium; in the next section
we provide more quantitative arguments to measure to which degree the velocity medium
acts as a single or as multiple scattering medium.

2.6 Ensemble Measurements of Wave Propagation

When a seismic wave travels through a heterogeneous medium, its amplitude and phase
are modified as the wavefront encounters random small-scale velocity deviations from the
mean value. If we place a receiver array outside the medium, phase fluctuations are recorded
as variations in traveltime of the first arrival from the value expected for a homogeneous
velocity structure (Muller et al., 1992). In the same way, amplitudes show large variations
across the receiver array. If a mathematical relation between these observed fluctuations
and the distribution and magnitude of the medium fluctuations can be established, wave
fluctuations can be used to deduce the scattering properties of the medium (Shapiro &
Hubral, 1999), such as the scattering mean free path ! and the diffusion coefficient D.

If we have access to one seismogram only, it is difficult to estimate the scattering prop-
erties due to the fluctuations in the wavefield that propagates though a strongly scattering
medium. If, on the other hand, we have an ensemble of seismograms, average measures can
be used to estimate the statistical properties of the medium. For a medium with random
velocity fluctuations and homogeneous statistical properties, the scattering properties can
be obtained from the average wavefield and average intensity.

Coda waves are waves that have longer effective paths than the ballistic wave, and
they make up the later portions of the seismograms (Herraiz, 1987). The further the waves
travel, the greater the variety of heterogeneities they encounter (Aki & Chouet, 1975).
As a consequence of this, for longer paths, the coda waves sample a larger region of the
medium and the net effect on the transmitted energy will be an average over the many
fluctuations that the wave encountered along its path. Also, the stronger the scattering the
more complicated are the paths that the waves follow.

Usually, a straightforward deterministic interpretation of the scattered wavefield prop-
agated through random media is difficult because of the high sensitivity of these waves to
the wave paths (Foldy, 1945). This high sensitivity to the wave paths and to small pertur-
bations in the average properties of the medium is what makes coda waves useful to detect
small changes in the medium (Weitz & Pine, 1993). To avoid the complexity of the multiple
paths, it is useful to resort to a statistical treatment of the heterogeneities in the medium
(Chernov, 1960). In this study the problem of the multiple scattering of scalar waves by
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a random distribution of scatterers is considered on the basis of ensemble averages of the
wavefield and intensity over the randomness of the medium.

Ensemble averaging strictly implies that a set (i.e., an ensemble) of different media
is supposed to exist (Shapiro & Hubral, 1999). Each element in the ensemble is called a
realization of the random medium. In order to obtain an ensemble average of any wavefield
attribute (as e.g. the traveltime fluctuation) this attribute has to be computed for each
realization and then averaged over realizations of the random medium (Tourin et al., 2000).
The introduction of the concept of “randomness” requires averages to be taken over a
statistical ensemble of scatterer configurations.

In this study, ensemble averaging is used as a tool to simplify and to obtain estimates
of wave transport parameters as are the energy velocity ve, the scattering mean free path [
and the diffusion coefficient D. Usually, we only have one realization of the random medium.
This realization is assumed to be a “typical” one belonging to a random ergodic medium.
Ergodic means that ensemble averaging can be replaced by spatial averaging in a single
realization. In our study we perform the averaging over different receiver locations around
the source for our random media.

2.6.1 Average wavefield: Group and Energy Velocities

When scattering is strong, it is difficult to define a unique energy transport velocity ve
since the energy flux is distributed in all directions due to multiple scattering. As the waves
propagate through the medium, they are scattered by the random heterogeneities and the
ballistic pulse is attenuated and broadened with distance. The ballistic pulse corresponds
to the coherent energy transmitted in the forward direction as the pulse propagates through
the random medium. This is the velocity which characterizes the transport of energy in a
multiple scattering medium.

The coherent pulse can be obtained after averaging the wavefield over many realizations
of the random media. With our finite-difference seismograms, we average over different
receiver locations in the circular array for a single realization of the random medium. Since
the medium is statistically homogeneous, by averaging over different source receiver pair
we are indeed averaging over different realizations of randomness. We analyze the coherent
wavefield for models with different random velocity fluctuations. This ensemble averaged
wavefield describes the ballistic contribution, since the scattered field cancels out in the
limit as a result of configurational averaging (Zhang & Sheng, 1999).

The attenuation due to scattering introduces dispersion and as a result waves of dif-
ferent frequencies travel at different speeds. This type of dispersion arises because waves
of different frequencies see the medium in different ways. For our medium with a small
correlation length a, waves of higher frequencies are scattered more severely than lower fre-
quency waves, and as a result the higher frequencies waves are slowed down in comparison
to the lower frequency waves. This type of dispersion is called normal (Stein & Wysession,
2003), because waves of higher frequencies travel slower than waves of lower frequencies.
Thus, when the medium is dispersive (as is our case) waves of different frequencies have
different phase velocities.

T
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For a medium with strong scattering, the group velocity differs from the phase velocities
at which individual harmonic waves travel (Page & Schriemer, 1997; Cowan et al., 1998).
The group velocity v, for a given frequency band around a central frequency follows from
the dispersion relation (Elmore & Heald, 1969; Stein & Wysession, 2003)

vg(w) = Z—:, (2.17)

where w is the angular frequency and k is the wavenumber. The group velocity is generally
the velocity with which the coherent or ballistic pulse travels through the medium. The
ballistic or coherent pulse corresponds to the coherent energy first arriving at the detectors.
In a pulsed experiment, this ballistic signal carries important information about the medium,
including the behavior of the phase and group velocities, as well as the scattering mean free
path [. When scattering is not too strong, the waves behave diffusively and the energy
velocity v, which corresponds to the average local velocity of energy transport in the
diffusion process (Schriemer et al., 1997), is approximately equal to the group velocity Vg.

Dispersion causes the ballistic or coherent pulse to travel with the group velocity.
In Figures 2.7 and 2.8 we show the ballistic pulses extracted from the calculated average
seismograms for media with different magnitude of the velocity fluctuations o. The auto-
correlation distance is a= 40 m. We also show the frequency spectra for each ballistic wave
so that we can appreciate the effects of attenuation and dispersion. The ballistic wave for
different propagation distances is superposed in the same plot, the smaller the amplitude
the larger the propagation distance. Note that in the homogeneous velocity case (top-left
panel on Figure 2.7) the ballistic pulse does not show any change with distance except at-
tenuation caused by geometrical spreading. The corresponding frequency spectra (top-right
panel) shows that the frequency content is the same for all propagation distances. The same
holds for the medium with 6=0.05 (bottom of Figure 2.7) where the scattering is weak and
only a small amount of dispersion occurs at large propagation distances where the peak of
the frequency spectra is slightly shifted to the lower frequencies.

In Figure 2.8 we show the ballistic pulses and frequency spectra for random media with
0=0.15 (top) and 0=0.25 (bottom) respectively. In this case the dispersion is strong and the
ballistic pulse is broadened significantly as it propagates through the random media. The
frequency spectra are also strongly modified, the ballistic pulse showing a much smaller
frequency content than in the homogeneous case. Note that the peak of the frequency
distribution is shifted to the lower frequencies when compared to the dominant frequency
in the homogeneous case (indicated by the vertical lines in the frequency spectrum plots).

In this study we assume that the scattering is not very strong; in this case, the energy
transport velocity and the group velocity are approximately the same. We will concentrate
in the group velocity vy which is the velocity with which the coherent energy pulse travels
through the scattering media. This velocity can be obtained by measuring the traveltime
of the ballistic pulse as we change the source-receiver separation. When scattering is very
strong, there is no ballistic pulse and the group velocity loses its meaning. When this
happens, the scattered energy is strong, and the peak of the envelope of the total intensity
is shifted in time, giving the slower energy velocity v,. Thus, the energy and group velocity
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Figure 2.7. Ballistic wave (left) and frequency spectrum (right) for a medium with constant
velocity (top) and for a medium with random velocity fluctuations with 0=0.05 (bottom).
Different curves correspond to different source-receiver distances.
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Figure 2.8. Ballistic wave (left) and frequency spectrum (right) for a medium with random
velocity fluctuations with 0=0.15 (top) and 0=025 (bottom). Different curves correspond
to different source-receiver distances.
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Figure 2.9. Arrival times of the maximum of the coherent energy as a function of offset r for
a model with Gaussian probability distribution velocity fluctuations; the measured value of
the group velocity is vgroup=(5280 % 25) m/s when a=40 m and ¢,=1500 m/s. The error
bars are also shown but the error in the estimation is very small.

are approximately the same except when scattering is strong and the propagation distance
is much larger than the transport mean free path (r >> *).

We estimate the group velocity by measuring the speed with which the coherent or
ballistic pulse propagates through the scattering medium. The coherent energy is calculated
for each source-receiver distance by squaring the coherent or ballistic wavefield, and the
coherent envelopes are calculated using the Hilbert transform. The peaks of these envelopes
are automatically picked and the times taken to be the arrival times of the ballistic pulse.
This gives an arrival time for each pulse, the set of which is fitted with a straight line as a
function of source-receiver distance to arrive at the group velocity.

Figure 2.9 shows the arrival times of the maximum coherent energy for each source-
receiver separation and the regression through the arrival times. For a model with corre-
lation distance =40 m and standard deviation of the velocity fluctuations 0=0.25 m/s,
the measured group velocity is v,=5280 % 25 m/s. We repeat the same procedure for the
synthetics calculated for different random velocity fluctuation models and the results are
given in Table 2.1.

In a medium with large random velocity fluctuations the group velocity decreases due
to two main reasons: first, the mean or average slowness 3 is larger than the inverse of the
mean velocity, creating an effective velocity 1/sp which is smaller than the mean velocity vg;
second, waves propagating on a multiple scattering medium have longer effective paths due
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Table 2.1. Group (v,) and effective velocities (1/sg) for a medium with random fluctuations
with Gaussian probability distribution. vg = 6000m /s is the background or mean velocity;
a is the correlation length and o=0, /vy is standard deviation of the velocity fluctuations.

a(m)| o vg (m/s) | 1/so (m/s)

40 | 0.01 | 5995 + 3 5999
40 10.02 | 5992 + 3 5997
40 | 0.03 | 5988 + 3 5994
40 | 0.05 | 5973 + 3 5985
40 {007 | 5945 + 3 5970
40 | 0.10 | 5900 + 4 5940
40 |[0.15 | 5763 £ 7 5867

40 | 0.20 | 5551 + 16 5769
40 | 0.25 | 5280 + 25 5647
100 | 0.156 | 5750 + 29 5867
100 | 0.25 | 4050 + 500 5647
140 | 0.25 | 4203 + 300 5647
200 | 0.25 | 4454 + 400 5647

to the multiple bounces of the wave with the scatterers. In addition, the ballistic wave is the
result of the contribution of waves from different paths scattered in the forward direction
and interfering constructively to create the broadened ballistic pulse. As a result, in the
multiple scattering medium characterized with continuous random velocity fluctuations, the
coherent or ballistic pulse is broadened and propagates with a velocity that is slower than
the mean velocity vg.

Let us consider first the effective velocity obtained by taking the inverse of the mean
slowness. The traveltime of the ballistic wave can be calculated by integrating the slowness
multiplied by distance along the trajectory from the source to the receiver. A larger value of
the mean slowness sy implies a larger traveltime. Therefore, in a medium with continuous
random fluctuations in the velocity, waves propagate in the average with an effective velocity
which is equal to the inverse of the mean slowness sp. To see why the effective velocity 1/sy is
smaller than the mean velocity vy, let us consider again our velocity field with fluctuations
with Gaussian autocorrelation function defined on Eq. 2.14. The slowness field s(r) is
obtained after taking the inverse of the velocity field v(r). Thus,

11
W@ " o [1+ 2]

s(r) = (2.18)

where vg is the mean velocity and v,(r) is the random component of the velocities. This
random component has zero mean and standard deviation o,. Since v,(r)/vp is smaller
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than one, we can expand the right hand of Eq. 2.18 in a geometric series about v,(r)/vo,
ie.

2
s(r) = 1—m+3’”(2—r)+... , (2.19)
) Vo 'Uo

where we have truncated the series after the third term. If we calculate the ensemble average
over all possible values of s(r) we obtain the ensemble averaged or mean slowness sg

1 1 2
<s(r) >=80=< — > —— < vp(r) > +§”L(3r)—> + ... (2.20)

Since v, (r) has zero mean and recognizing that < v?(r) > is the variance of the random
velocity fluctuations we obtain:

1 S | 2 1
soz——+a—1;—=—[1+alz] = —(1+d%). (2.21)
vo U (2 Ug Vo

Since o2 is positive we have thus that the mean slowness is greater than the inverse
of the mean velocity vg. Consequently, the "effective” velocity obtained after taking the
inverse of the mean slowness is smaller than the mean velocity vg. In the left panel of
Figure 2.10 we plot (as the solid line) the value of this effective velocity 1/vp as a function
of the relative fluctuations of the velocity fluctuations . We can see that as o increases
this effective velocity decreases.

We also measure the velocity of the ballistic pulse on the synthetic seismograms for
different values of o and a. The group velocity obtained by this procedure is significantly
smaller than both the mean velocity vg and the effective velocity 1/sg. In Figure 2.10 we
plot the measured the value of the group velocity as a function of o (left-panel) and a
(right-panel). For small values of the correlation length a and the standard deviation o,
the energy velocity does not differ much from the mean or background velocity vo. For a
medium with small correlation length a and small magnitude of the velocity fluctuations o,
the coherent or ballistic arrival does not undergo much attenuation and dispersion due to
scattering. As we increase the magnitude of the velocity fluctuations, the scattering grows
stronger and the coherent pulse is strongly attenuated and slowed down.

For larger values of the correlation distance a, the scatterer size becomes comparable
to the wavelength, and the shape of the heterogeneity affects the scattering properties of
the medium. In general, for the range of models in this study, the larger the correlation
length @ and standard deviation o, the larger the dispersion and the more difficult it is to
measure the velocity of the ballistic pulse, and the larger also the uncertainty of the measure.
For very strong scattering the ballistic pulse is extremely attenuated and distorted at large
source-receiver separations and thus the velocity of the ballistic pulse becomes an unreliable
measure of the energy or transport velocity in the medium (Page & Sheng, n.d.).

The scattering dispersion and attenuation of the ballistic pulse is a good indicator of
the scattering regime. When scattering is weak (single scattering regime) the group and
transport velocity are equal to the mean velocity of the medium and the ballistic pulse
propagates through the medium without much distortion. As we move into the multiple
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Figure 2.10. Group velocity vy (measured on the synthetic seismograms) and effective
velocity 1/sp (calculated using Eq. 2.21 as a function of o (left). The correlation distance
is a= 40 m. The right panel shows the values of the group velocity for 0=0.25 for different
correlation lengths a.

scattering regime, the characteristic velocity of energy transport decreases and the ballistic
wave is severely attenuated and broadened.

2.6.2 Coherent Wavefield: Attenuation

The coherent wavefield is mathematically defined as the average field amplitude and
denoted by (u(r,t)). By the “average” is meant a statistical average over all possible
realizations of the scatterers. Physically, the coherent wave corresponds to the remnant of
the incident wave. In fact, the many multiple scattering events in the medium add up to
the ”coherent” wave, which does not seem to be ”scattered” at all. It only decays in space
and time, and its velocity is changed. The previous section dealt with the change in the
velocity. Here we focus on the decay resulting from the scattering process. The decay in
space and time, mathematically due to the averaging, can be associated physically with the
randomization of the phase.

The scattering mean free path [ is associated with the decay of the coherent pulse. It
also provides the propagation distance that separates the single and the multiple-scattering
regime. In general, for propagation distances much smaller than the scattering mean free
path (ct << 1), the wavefield can be approximated as the result of a single scattering process.
On the other hand, for propagation distances much longer than the scattering mean free
path (ct >> 1) the energy transport can be taken as a diffusion process (Paasschens, 1997),
where multiple-scattering dominates the signal.

The scattering mean free path [ is the parameter that controls the energy transferred
from the primary (ballistic) to the scattered waves. This scattering attenuation is not a
true loss resulting from dissipation but rather a loss that is the result of the energy that
conservatively scatters into other directions (Turner, 1998). Thus, the energy in a beam
propagating in a particular direction decays, but the total energy in the system is conserved.
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Figure 2.11. Measured intensity ratios I/Iy versus propagation distance r for different
values of the standard deviation of the random fluctuations . The numbers under each
curve indicate the value of o. The correlation distance a is 40 m.

The scatterers reduce the mean energy flux of an incident plane wave by e~ /', r being the
distance along the propagation direction. When there is neither intrinsic nor scattering
attenuation, the transmitted intensity in a 2D homogeneous medium at a distance r from
the source is 1

Iy(r) = C;, (2.22)
where C is an arbitrary constant that denotes the intensity at the source. For a point
source in a homogeneous random medium, the decrease of the coherent intensity with
distance is an exponential decay modified by geometrical spreading. For two-dimensional
wave propagation, the transmitted coherent intensity is given by

e—r/l

I(ry=C (2.23)

The ratio between the transmitted coherent intensity in a homogeneous random medium
with background vy and the transmitted intensity in an homogeneous medium with velocity
vp gives the scattering attenuation of the transmitted intensity. This ratio is obtained after

dividing Eq. 2.23 with Eq. 2.22
I

Io

Thus, in general, scattering causes an exponential decay of the coherent intensity I

(r)=e"/" (2.24)
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Table 2.2. Scattering mean free path ! for a medium with random fluctuations with Gaus-
sian probability distribution. vy = 6000m/s is the background or mean velocity; a is the
correlation length and o=0, /vy is the normalized standard deviation of the velocity fluctu-
ations.

a(m)| o I (m)

40 0.01 | 61200 + 7000
40 0.02 | 21050 £ 792
40 | 0.03 [ 16034 + 456
40 0.05 | 7189 + 119
40 0.07 3886 + 86
40 0.10 2609 + 87
40 0.15 1657 £ 95
40 0.20 1224 + 97
40 0.25 867 + 90
100 | 0.15 1198 £ 70
100 | 0.25 799 + 52
140 | 0.25 948 + 75
200 | 0.25 | 1217 + 209

with propagation distance r. Let us now consider the limit when ! >> r, which represents
the single scattering regime (Herraiz, 1987). In this case, the argument of the exponential
is much smaller than 1 and we can approximate the exponential by the first two terms of
its power series

e=1-T (2.25)

l

According to Eq. 2.25, when the scattering is weak (single-scattering approximation),
the decay of the transmitted intensity is approximately linear. This equation provides a test
for single-scattering. We performed this test for our finite-difference synthetic seismograms
in order to estimate whether or not the energy transfer can be modeled by means of the
single scattering approximation. In Figure 2.11 we plot the measured intensity ratios from
the finite-difference simulations for different values of the standard deviation of the velocity
fluctuations 0. We can see that when the scattering is weak (o less than 0.05), a straight
line seems to be a good fit for the decaying transmitted intensity.

Now, we measure the scattering mean free path to obtain a measure of the scale lengths
by which we can separate the single and the multiple scattering regime. To measure the
scattering mean free path we have to correct the transmitted coherent wavefield for geomet-
rical spreading and fit the transmitted coherent intensity with an exponential decay. We
followed that procedure with our finite-difference synthetics and obtained a measure of the
scattering mean free path [ for the same velocity models employed in the previous section.
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Figure 2.12. Plot of the natural logarithm of the maximum coherent intensity as a function
of distance r. The data and the best fit is shown for two continuous random velocity
models with different values of the standard deviation of the velocity, 0=0.05 (left) and
0=0.25 (right). The correlation distance is a= 40 m. The asterisks denote the measured
maximum amplitudes of the coherent transmitted pulse. The lines indicate the best fitting
exponential.

The results are summarized in Table 2.2. In general, the exponential decay describes well
the attenuation of the coherent pulse. For a fixed value of a (see left panel of Figure 2.13)
the scattering mean free path decreases with increasing o, which is an indication that the
scattering is stronger for bigger values of the velocity fluctuation. Also, the accuracy of the
estimation decreases for increasing values of the velocity fluctuations, and for values of o
greater than 0.15 the error in the measurement becomes larger than 6% of the scattering
mean free path.

When scattering is strong, the exponential decay no longer describes accurately the
attenuation of the ballistic pulse. This is to be expected, because scattering attenuation
and dispersion affect severely the transmitted coherent pulse, broadening the wavelet signal
and affecting the frequency content of the signal. As the frequency content of the pulse
changes due to dispersion, so does the scattering mean free path. Thus, in the presence of
dispersion the scattering mean free path becomes frequency dependent. Figure 2.12 shows
the peak amplitude of the ballistic pulse and the best fitting exponential for examples of
velocity models with weak and strong scattering respectively. Note that for the case of weak
scattering we can fit the exponential decay due to scattering. However, when the scattering
is strong and multiple scattering is dominant, the exponential decay is no longer a good fit.
The reason for this is again the dispersion and resonant scattering that introduce frequency
dependence in the scattering mean free path I. We see that the scattering mean free path
obtained from the decay of the coherent pulse is no longer a good estimate for propagation
distances longer than the scattering mean free path.
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Figure 2.13. Dependence of the mean free path [ on o and a. On the left panel the mean
free path is plotted as function of o for a= 40 m. The right panel shows the values of the
mean free path for 0=0.25 for different correlation lengths a

2.6.3 Average intensity: Diffusion constant

In Section 2.2.3 we showed that the evolution of the diffuse intensities can be described
by means of the diffusion equation. Therefore, measures of the average intensity which
describe the time-dependence of the diffusive intensity can be used to estimate either the
transport mean free path [* or the diffusion constant of the medium D (Page & Sheng,
n.d.; Schriemer et al., 1997), using either the radiative transfer equation or the diffusion
equation. The transport mean free path is usually larger than the scattering mean free
path [ and it represents the average distance at which the direction of propagation becomes
randomized. The diffusion constant D and the transport mean free path are related by the
energy transport velocity in two-dimensional media in the following way:

A

D=7 (2.26)

The diffusion coefficient can be obtained from the incoherent (or diffuse) intensities.
The incoherent wavefield consists of waves that have been scattered by the random hetero-
geneities of the medium. It is usually assumed that the phase of this incoherent wavefield
is randomized after the waves have traveled through the medium for a few scattering mean
free paths ! (Margerin et al., 1998). This incoherent wavefield corresponds to diffuse waves
generated by multiple scattering . Each wave in the coda follows a different diffuse path
which can be characterized as a random walk as we saw in Section 2.3.3 . Tourin et al.
(2000) shows that on the average the energy transfer of the incoherent field obeys the dif-
fusion equation. The spatial and temporal evolution of the average intensities (I(r,t)) can
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Figure 2.14. Averaged transmitted intensities for receivers at 500, 1500, 2500 and 3500 m
from the source for a weakly scattering medium (o = 0.02). Almost all energy is contained
in the incident pulse.

be described with the solution of the diffusion equation

o(I(r, 1))

_ 2
5 = DVI(r,1), (2.27)

with solution given by
1 —r?

where 7 is the distance to the source and D is the diffusion constant. Eq. 2.28 is valid
for media with strong scattering and small intrinsic attenuation. Thus, we see that the
average intensity satisfies the same equation as the probability a Brownian particle in an
statistically homogeneous medium.

In Figure 2.5 we showed the transmitted wavefield for two different velocity models, one
characterized by weak scattering (top) and the other characterized with strong scattering
(bottom). In the weak scattering model the ballistic arrival dominates the seismograms,
with weaker scattered arrivals coming after the direct wave. In this case we can model the
wave propagation as a single-scattering process where the loss of energy of the incoming
pulse is minimal. For the strong scattering model, the ballistic arrival is highly attenuated
by scattering and the multiple scattering events dominate the signal. In the latter case, it
is possible to model this incoherent energy with the diffusion equation. In this section we
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obtain an estimate of the diffusion constant D from the averaged transmitted intensities in
a medium characterized by multiple scattering.

The time evolution of the averaged intensity of the synthetic seismograms is determined
by squaring the envelope of the calculated waveforms for each distance. As we have an
ensemble of 100 detectors for each distance, we perform averaging over the 100 receivers
located around the source at distance r. Again, we assume that each source-receiver pair
samples a different region of the random medium with homogeneous statistical properties.
This gives the time evolution of the average intensity for each source-receiver offset. Then,
we fit for each source-receiver distance the averaged intensities with the solution of the
diffusion equation. As the diffusion coefficient is a constant of the medium we expect the
diffusion coefficient to be the same for each source-receiver offset. The estimated diffusion
constant is obtained after averaging the values of the diffusion constant estimated for each
source-receiver offset.

Figure 2.14 shows the calculated average intensity for a medium with weak scattering
(o = 0.02). The intensity is shown as a function of time for four different distances: 500,
1500, 2500, and 3500 m respectively. The main contribution to the total intensity comes
from the ballistic arrival which shows almost no energy loss except for geometrical spreading.
From the last section we learned that the scattering mean free path of this medium is much
larger than the propagation distances we use in this experiment. From Section 2.3.1 we know
that when this is the case, single-scattering dominates the signal as the energy transfer from
the ballistic arrival to the scattered waves is negligible.

In Figure 2.15 we show the total intensity for two models with stronger scattering.
Both models share the same correlation length =40 m, but the standard deviation of the
fluctuation differs, o being 0.15 and 0.25 respectively. For 6=0.25 we are in the diffusion
regime (r > ct) where the energy transport is described by the diffusion equation and the
signal is dominated by multiple scattering. Notice that we obtain a good fit of the intensities
with the diffusion curve. The diffusion coefficient estimated is D=(5.80+£0.51)x10% m?/s.
We show an example of the intermediate regime between the single-scattering and the
diffusion regime at the top of Figure 2.15, when 0=0.15. In this case, a crossover between
the ballistic and the diffuse transport occurs. The ballistic energy is still strong, but the
behavior at long lapse times is well described by the diffusion equation. This departure from
the diffusive behavior is usually accounted for with the radiative transfer equation which has
in general two terms: one that describes the ballistic propagation, and, other that describes
the diffusion behavior at later times (Paasschens, 1997; Margerin et al., 1998). However, for
this model we can still fit the later-time portion of the time-intensity profile which shows
perfectly diffusive behavior, with an estimated diffusion constant of (3.02+1.80)x10% m?/s.
In both cases, the error was determined by measuring the relative deviations from the best
fitted curve and calculating the mean square error of these deviations.

2.7 Discussion

The transition of ballistic to diffusive energy transport in random media is studied for
2D random media characterized by the spectrum of its velocity fluctuations. Understanding
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Figure 2.15. Averaged transmitted intensities (solid line) versus the diffusion fit (dashed
line) for receivers at 500, 1500, 2500 and 3500 m from the source. Two velocity models
with Gaussian probability distribution fluctuations were employed: one with a=40 m and
0=0.15 (top); other with a=40 m and 0=0.25 (bottom). The diffusion values obtained from

the least-squares fit are (3.02+1.80)10% m?/s and (5.80+.51)10% m2/s respectively.
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the transition between the single-scattering and the multiple-scattering behavior is essen-
tial for many applications such as medical imaging, ultrasonics and non-destructive testing
of highly heterogeneous media. In this study we adopted a phenomenological approach to
understand the transition between the ballistic to the diffusive behavior of the energy trans-
port, using synthetic seismograms calculated by finite-differences over media with random
variations in its velocity that characterize the scattering.

We studied wave propagation in 2D random media using a model with continuous
velocity fluctuations with Gaussian probability distribution. This medium is statistically
homogeneous so that the ergodic property of random media can be applied. For large values
of the standard deviation of the velocities, the scattering becomes strong and the energy
transport can be described as a diffusion process. For larger values of the magnitude of the
velocity fluctuations o multiple scattering dominates over single scattering.
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Chapter 3

TIME-LAPSE MONITORING WITH CODA WAVES:
MULTIPLE-SCATTERING APPROXIMATION

3.1 Summary

We have developed a technique which uses multiply scattered waves that relates tem-
poral changes in the acoustic velocity to changes in the phase of the multiply scattered
waves. This study is an extension of a previous technique called coda wave interferome-
try where multiply scattered waves are used to detect temporal changes in the scattering
medium. In this work the propagation of multiply scattered sound is described using the
diffusion approximation, which allows us to relate the temporal fluctuations of the wavefield
to the temporal change of the velocity of the scattering medium. Previous formulations of
coda wave interferometry make it possible to assess the average change in the medium, but
they do not allow for the spatial localization of this change. We present a new formulation
that relates the change in the phase of the scattered wavefield to a localized velocity pertur-
bation in a strongly scattering medium, and test it with synthetic seismograms calculated
with finite-differences for 2D acoustic waves. Using the diffusion approximation for the
energy transport in multiple-scattering media, we can accurately predict the change in the
phase of the scattered wavefield given a localized velocity or slowness perturbation.

3.2 Introduction

Most imaging techniques using scattered waves rely on the single scattering approxi-
mation. Seismic imaging (Claerbout, 1985) mostly uses primary reflected waves to obtain
an image of the subsurface. However, in many physical problems, waves are strongly scat-
tered and the single scattering approximation is not a valid model for the propagation of
waves through the medium. In such cases we have to use a model that accounts for the
multiple scattering of waves and the associated attenuation. The diffusion model has been
used with success to characterize a wide range of wave phenomena in strongly scattering
media (Wesley, 1965; Kopnichev, 1977; Shapiro & Kneib, 1993; Page et al., 1995b; Schriemer
et al., 1997). In this model, wave energy transport acquires a diffusive character, e.g., wave
energy is transported in a process similar to heat diffusion. In medical imaging, for exam-
ple, diffusing near-infrared light has been used to image localized heterogeneities of tissue
(Yodh & Chance, 1995).

In many practical applications the medium changes over time and therefore the image
of the medium will change. We then would like to obtain time-lapse measurements in order
to monitor temporal changes in the medium. Examples of applications where detecting tem-
poral changes may be useful include the monitoring of volcanoes, oil reservoirs, radioactive

——
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waste disposal sites and fluidized suspensions. In reflection seismology, dynamic reservoir
characterization provides optimal management of a reservoir, which leads to increased pro-
duction. Time-lapse (4D) reflection seismic aims at inferring changes from the medium from
changes in the seismic amplitudes and/or traveltimes from seismic reflection data that has
been acquired at two different times. As an example, a 4D dataset recorded at Weyburn
Field, Canada, has been used to infer time-lapse changes in the oil reservoir caused by a
massive miscible CO; flood to enhance oil recovery (Li, 2003; Davis et al., 2003). The main
goal of these 4D studies is to extract information about local changes in the reservoir using
mainly the amplitude information.

When a strongly scattering medium changes, the speckle pattern of multiply scattered
waves changes, which reflects the changes that occur in the interference of waves traveling
different scattering paths through the sample. Multiply scattered waves are useful in such
situations, because they are increasingly sensitive with time to the perturbations in scatterer
locations and perturbations in the velocity of the medium. This increased sensitivity is due
to the fact that waves bounced more often among scatterers as time increases and as a
result, small changes in the medium are amplified through multiple scattering.

More recently, multiply scattered or diffuse waves have been used to study the structure
and dynamics of random media with applications to medical imaging and tomography
(Weitz & Pine, 1993; Boas et al., 1995; Jensen, 2002; Cowan et al., 2002). Speckle pattern
interferometry (Spagnolo et al., 1996) uses the change in the spatial speckle pattern of
interfering multiply scattered waves to retrieve the average change in the scatterer locations
as a result of changes in the medium. This technique has been used to monitor Brownian
motion in colloidal suspensions (Maret & Wolf, 1987), and the passage of ultrasound through
a colloidal suspension (Cowan et al., 2002).

In diffusing acoustic wave spectroscopy, the motion of the scatterers in fluidized sus-
pensions is determined from the temporal fluctuations of multiply scattered sound (Cowan
et al., 2002) . In this technique the propagation of multiply scattered sound is described
using the diffusion approximation. Using this approximation it is possible to relate the
autocorrelation function of the temporal field fluctuations to the average motion of the
scatterers in the fluidized suspension. In this case, the change in the multiply scattered
waves generated by a transient incident wave is used as a diagnostic of the change in the
scatterer locations. The same idea is used in coda wave interferometry (Snieder et al.,
2002; Snieder, 2002) where change in multiply scattered waves are used to detect minute
changes in the medium. With this technique Snieder et al. (2002) determined the nonlinear
dependence of the seismic velocity in granite on temperature.

However, in none of those approaches has an attempt been made to spatially localize
the change in the medium. The inferred change in the scattering medium by both Cowan
et al. (2002) and Snieder et al. (2002) is the average change of the medium. In this study
we propose a new technique to spatially localize temporal changes in the medium using the
phase of multiply scattered waves. As in diffuse wave spectroscopy this technique relies
on the diffusion approximation of the intensity in strongly scattering media. With this
formulation we can relate the temporal changes in the traveltime of multiply scattered
waves to localized changes in the velocity of the medium. Therefore we can model the mean
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traveltime change of waves with traveltime ¢ for a given localized slowness perturbation that
has been introduced in the medium at a later time T' (T denotes the time scale on which
the changes in the medium occur). It is assumed that T >> ¢, i.e., there are no changes in
the medium during the propagation of waves (the medium is static during the experiment).

This work is an extension of coda wave interferometry in the sense that it accounts
for spatially variable changes in the velocity of the scattering medium. Thus we are able to
model the time-lapse fluctuation in the phase of the multiply scattered wavefield for a given
localized time-lapse velocity perturbation of the multiple scattering medium. We assess the
validity of our theory using finite-difference simulations of multiple scattering of acoustic
waves in 2D media.

3.3 Multiple-Scattering Energy Transport

The transport of energy through a strongly scattering medium has attracted consid-
erable attention in numerous fields of physics, such as astrophysics, optics, acoustics, solid
state physics and heat conduction. In any of these fields, one can generate a pulse of energy
that propagates through the medium with a certain intensity P(r,t). In a two-dimensional
medium of infinite extent, and in the long time limit (Paasschens, 1997), the average inten-
sity can be approximated by the solution of the diffusion equation,

—r? ct]
)

1
= 4xDt 7P [m "l (3-1)

P(r,1)
where 7 is the distance to the source and D is the diffusion constant, ¢ is the energy
velocity and [, is the absorption length (attributable to intrinsic attenuation). For the
purposes of this work, /;1=0 because we ignore intrinsic attenuation. Eq. (3.1) represents
the temporal evolution of the mean intensities after the waves have scattered multiple times
from small-scale heterogeneities. Tourin and Fink (2000) have shown that the diffusion
equation describes the propagation of the average intensity in a multiple scattering medium.
In their approach, the average intensity is treated as the probability of traveling a distance
r, varying with time, of a particle undergoing a random walk.

Large deviations from the diffusion approximation can be expected at any distance r,
for times less than or close to the arrival time of the coherent or ballistic wave (t < r/c).
Therefore, in order to use the diffusion approximation, we must be in the long-time regime
where multiple scattering is assured (Paasschens, 1997). When the diffusion approximation
is accurate, we can characterize the scattering with two parameters : the diffusion constant
D, and the transport or energy velocity c. These two parameters are related to the transport
mean free path [* by .
D= %, (3.2)
where d is the dimension of the problem (d=2 in 2D media).
When waves behave diffusively, waves propagate through the medium along various
random scattering (or diffuse) paths which can be described as single random walks. The
diffusion approximation provides a means to calculate the path distribution for a medium
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with a given scattering coefficient. Also, the solution to the diffusion equation in homoge-
neous media given in Eq. 3.1 allows us to calculate the time and spatial evolution of the
diffuse intensities in the material.

3.4 Coda Wave Interferometry

In order to localize changes in the scattering medium, we need to derive an expression
relating the traveltime change with the localized velocity perturbations in the medium.
Snieder(2002) introduced coda wave interferometry whereby multiply scattered waves are
used to detect temporal changes in the medium by using the scattering medium as an
interferometer.

For a small perturbation in the velocity, estimates of this perturbation can be obtained
from multiply scattered waves by a time-windowed cross-correlation of the coda waves
recorded before and after the perturbation. The unperturbed wavefield uynp(t) can be
written as a summation of waves over all possible paths P (Snieder, 1999)

Uunp(t) = ZAP(t)a (3'3)
P

where a path P is defined by the sequence of scatterers that a particular multiple scattering
wave encounters, and Ap(t) is the corresponding waveform. For diffusive wave propagation
the paths P can be described as random walks with a step length equal to the transport
mean free path [*. When we introduce a small perturbation of the velocity, the effect of
this perturbation on the geometrical spreading and the scattering strength can be ignored,
and the dominant effect on the multiple scattering waveform arises from the change in the
traveltime 7p of the wave that travels along each path

Uper(t) = D Ap(t —7p). (3.4)
P

The perturbation in the velocity was introduced after a time T' which is much greater
than the traveltime ¢ of multiply scattered waves. Therefore, we assume there is no change
of the scattering during the propagation of waves. The mean of the traveltime change
< 7 > can be extracted from the time windowed cross-correlation of the unperturbed and
perturbed wavefield. This average traveltime change < 7 > is defined later in Eq. 3.6. For
a small change in the velocity , the velocity change follows from the time of the maximum
of the time-shifted cross-correlation function (Snieder et al., 2002),

de _ 7(¢,T)
c t

(3.5)

where 7 is the time shift of the time-windowed cross-correlation centered at time ¢ with
window size T', and c is the propagation velocity in multiple scattering media.

Eq. 3.5 relates the mean traveltime change of scattered waves with traveltime ¢ with the
velocity perturbation dc/c. This equation was used to estimate the change of seismic velocity
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Figure 3.1. Multiple paths from source 8 to receiver r in a medium with multiple
scatterers.

with temperature of a granite (Snieder et al., 2002). However, the velocity perturbation was
assumed to be constant throughout the scattering medium and therefore this expression is
not valid for spatially localized changes in the velocity.

3.5 Traveltime Perturbations in the Diffusion Regime

In the strong scattering regime it has been shown that the transport of energy by the
scattered waves is well described using the diffusion approximation. In this approximation
the total wavefield u can be thought of as the summation over a multitude of possible
paths. In the diffusion regime each of these diffuse paths can be characterized as a random
walk process with a step length equal to the transport mean free path I* which is related
to the energy velocity v, and the diffusion coefficient D by Eq. 3.2. Figure 3.5 shows a
representation of medium with many scatterers and some of the diffuse paths that waves
can follow from the source to the receiver.

Each path from source to receiver has an associated probability which depends on the
diffusion of the intensities in a multiple scattering medium. In general the mean traveltime
change < 7 > is given by a weighted average of the traveltime change over different paths
P, ie. 5

_ plpTp
() = SEE, (3.6)
where Ip is the probability associated with the path P and it can be calculated using the
diffusion representation of multiply scattered intensities. A proof of this statement is given
by Snieder(2002).

Eo g e
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dv

r

Figure 3.2. A random walk particle going from source S at the origin to volume element
dV at r’, and then to receiver at r.

3.5.1 Random Walk Probability and Time of Flight Distribution

In this section we summarize the derivation of the traveltime change of diffuse waves
caused by a spatially localized slowness perturbations. Let’s assume that the seismic energy
transport can be described as a random walk. This is a good approximation for a strongly
heterogeneous media where multiply scattered waves are produced. Under this assumption,
the averaged intensities in a multiple-scattering medium can be modeled as a diffusion
process. Thus, the space and time evolution of diffusive intensity in the media due to an
intensity impulse at the origin at time ¢ = 0 is given by P(r,t), as defined in Eq. (3.1). In
multiple scattering of waves this diffusive energy corresponds to the ensemble averaged or
mean intensity (I).

We can interpret P(r,t) in different way, viewing the diffusion as a random walk
process. In random walk theory,the product P x dV also represents the joint probability
of time and position of a particle on a random walk of visiting a volume element dV at
location r at a given time ¢ Roepstorff (1994). If, at time ¢ = 0, a normalized intensity
impulse is generated at the source, the total energy within some region V at some later
time is given by the integral

W(V,t) = / P(r, t)dV (r). (3.7)
|4

Integration over all space gives the total energy of the system, which by the normal-
ization is W(t) = 1. The quantity W(V,t) is equal to the probability of a particle on a
random walk of visiting the volume region V' at a time ¢.

We now consider the probability that a random walk particle leaves a source at s at
time t = 0, visits a volume element dV at r’ at time ¢/ and arrives at r at time ¢ as is
depicted in Figure 3.2. This probability is equal to the product of two probabilities: the
probability of the particle of going from s to r’ in a time ¢/, and the probability of going
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from r’ to r in a time £t — ¢/, i.e.,
PP(rla r,s, tlat) = P([r',s, t'] n [r’ I",t - t’]) = P(rI, 8, t’)P(I‘, rIa t— tl)1 (38)

where the symbol N means intersection and Pp stands for the probability of the paths P
visiting the volume element at location r’. Thus, the probability of going from s to r’ and
from r' to r is equal of the product of the two probabilities. This is another way of saying
that the two events (going from s to r’ and from r’ to r) are independent. This probability
represents the probability of paths going through a volume element located at r'.

The probability of a particle to travel from the source to the receiver is given by the
solution to the diffusion equation given on Eq. 3.1. This solution also gives the time-
dependent intensity P(r,s,t) at the receiver location. Now, if we sum the contribution
to the probabilities of waves traveling with all possible diffuse paths going from source at
location s to receiver at location r we obtain

P(r,s,t) = Y _ Pp(r',r,s,1). (3.9)
P

If we now replace the sum over paths in Eq. 3.9 with integration over volume we have:

/ Pp(t',r,8,8)dV (r') = / P(,8,¢)P(x, 't — )V (') = / P(,r,8,4,¢)dV (x'),

Y v Y (3.10)
where P(r',r,s,t,t') = P(r',s,t')P(r,r',t — t') is the probability of a particle going from
source to the receiver while visiting a volume element dV at r' at time t. Note that we
have replaced a summation over all possible paths P with the integral over volume. The
integrand P(r’,r,s,t,t') contains the contributions to the intensity of all paths which are
initiated at the source location s go through r’ and end at the receiver located at r. By
integrating over all the volume where scattering occurs we are summing the contributions
over all possible paths from the source to the receiver. Eq. 3.10 is a restatement of the
Chapman-Kolmogorov equation (Roepstorff, 1994)

/P(r, r',t)P(r',s,t')dV = P(r,s,t + 1), (3.11)
v
which states that a process starting at ¢ = 0 at location s reaches r at ¢ via one of the
possible values r’ at a intermediate time #'.

From the left side of Eq. 3.11 the probability of going from s to r in a time ¢ depends
only in the distance between s and r and the time ¢. If we integrate the right side of Eq. (3.8)
over all space, and apply the Chapman-Kolmogorov property, the intensity at the receiver
r at time ¢ due to an impulse source at s at time ¢ = 0 is equal to

P(r,s,t) = / P(,8,)P(r, 't — £)dV (r'), (3.12)
1’4
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which is exactly the same as Eq. 3.10, where we considered the sum over paths. Now, we
realize that P(r,s, 1) is also the diffuse intensity at receiver r due to a unit intensity impulse
at the source s at time . This intensity P(r',s,t') is the diffuse intensity at a time ¢’ at r/
due to a source at s activated at time ¢=0, and P(r,r’,t — t') is the intensity at r at time
t due to an impulse source at r' on a time ¢ — #'. Thus, we can identify P(r,r',t —¢') with
the Green’s function G(r,r',t — t') which describes the intensity at the receiver r at a time
t — ' due to a normalized impulse source located at r' at time ¢. We can write Eq. (3.12)
therefore as follows :

P(r,s,t) = / P(r,s,¢)G(x,r',t — £)dV(F). (3.13)
\'4

This equation holds for all times 0 < t' < ¢t Roepstorff (1994). If we integrate both
sides of Eq. (3.13) over time ' over the values 0 < t' < ¢t we obtain :

t
tP(r,s, ) = / / P(t',s,t)G(x,r', ¢ — £)dtdV (r'), (3.14)
0
|4

where we can identify P x G = fot P(r',s,t')G(r,r',t — t')dt' as the time convolution of the
intensities at r’ with the Green’s function G(r,r'). If we divide both sides of Eq. (3.14) by
P(r,s,t) we arrive at the following integral representation for the traveltime of the diffuse

wavefield, ,
t= W,ls,a / /0 P(r',s,t)G(r,r',t — t')dt'dV (). (3.15)
14
We have obtained in Eq. (3.15) an integral representation for the time ¢ at r of the
diffuse intensity due to an impulse source at s. In the multiple scattering model P(r, t)
represents the mean or average intensity < I(r,t) > of the wavefield. Thus the time ¢ corre-
sponds to the traveltime of the diffuse intensity. The traveltime ¢ is the traveltime of waves
coming from many different diffuse paths (as predicted by the diffusion approximation) and
arriving at the receiver at a time ¢. The sum of the contributions from the diffuse paths of
traveltime t generates in the average the diffuse intensity P(r,t) as we saw in Eq. 3.10.

If we define the kernel K(r/,r,s,t) as
K(r',r,s,t) = ——I——/tP(r' s,t)G(r,r',t — t')dt’ (3.16)
L gt ] P(r, S, t) 0 b Ras | ¥ ? ) M

we can express the traveltime ¢ as the following volume integral:

t= | K(',t)dV(r'), (3.17)
/

where K(r',r,s,t) represents the time of flight distribution or path length dependence
of multiply scattered waves with a source at location s and receiver at location s. The
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Figure 3.3. Model with multiple scatterers after a small time-lapse perturbation has been
introduced. The paths remain the same after the perturbation.

integration kernel K (r/,r,s,t) represents the normalized probability distribution function
of wave intensity visiting a volume element dV located at position r’ for a given source and
receiver configuration.

3.5.2 Integral Representation for the Mean Traveltime Change of the Dif-
fuse Wavefield

When the scatterers in a multiple scattering material move, or when the background
velocity of the medium changes, the diffuse wavefield changes, reflecting the changes that
occur in the waves traveling different scattering paths through the medium. In Diffusing
Acoustic Wave Spectroscopy (Cowan et al., 2002), these fluctuations of the multiply scat-
tered wavefield are measured and analyzed to provide a sensitive technique for probing the
dynamics of the scatterers. Here, we use a similar approach, considering only changes in
the diffuse wavefield which arise due to a spatially localized change change in background
velocity or slowness.

Let us assume that a spatially localized change in the velocity as shown in Figure 3.3,
has been introduced on a time scale T which is much larger than the time scale ¢ at which
wave propagation occurs. With the time of flight distribution we can now calculate the
mean traveltime change of diffuse waves. We introduce a localized perturbation on a time
T after we propagated waves through the medium as in Figure 3.3. Notice that some of
the multiple scattering paths traverse the perturbation while others do not. Therefore the
mean traveltime change of waves with diffuse paths of traveltime ¢ at the receiver will be
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an average over the traveltime change over all diffuse paths of traveltime ¢.

We perturb the slowness in the medium to obtain an expression for the previously
defined mean traveltime change. We work under the assumption that the perturbation is
weak so that the scattering coefficient doesn’t change, and the waveform for each scattering
path stays approximately the same. Also, the scattering paths remain unchanged so that
the only difference between the unperturbed and the perturbed field is the traveltime. If
the mean slowness of the medium is denoted by s we can calculate the mean length (L(t))
of the multiple scattering paths at time ¢ by dividing Eq. 3.17 by s,

(L(2)) = / %K(r’,t)dV(r’), (3.18)
14

where we have put s inside the integral since it is independent of location. If we now
multiply the length of the multiple scattering paths by the slowness perturbation ds(r’) we
obtain the mean traveltime change of the diffuse waves with traveltime ¢. If we introduce
the factor és(r') into the integral on the right side of Eq. 3.18 the result of the new integral
is the average or mean traveltime change for the multiple scattering paths with path length
L.

ro) = [ K HZ v ) (3.19)
|4

where (7(t)) is the mean traveltime change of the multiply scattering waves with path length
(L(t)) due to the relative slowness perturbation §s/s. Note that this average is weighted by
the intensity, since the integration kernel K represents the normalized intensity of diffuse
paths of traveltime ¢, and this is what it is needed in Eq. 3.6.

In summary, to calculate the traveltime change for a particular source and receiver
configuration we need to integrate the kernel K weighted by the slowness perturbation ds/s
over all the integration volume. The kernel K is obtained by convolving the intensities at
the receiver P with the Green’s function G and dividing the result by the intensities at the
receiver r at time ¢ due to a source at s. For a source and receiver at different locations,
the time convolution P * G does not have an analytical solution so it must be evaluated
numerically. For the special case of coincident source and receiver, an analytical solution for
this convolution can be obtained. In Appendix A we calculate the kernel K for coincident
source and receiver for two- and three-dimensional media. In 3D the kernel K is given by

1 —r?
K3p(r,t) = 27 Dr exp [ Dt ] (3.20)

From Eq. 3.20 we see that the main contributions to the traveltime change comes from
paths located close to the coincident source and receiver location. Also, we can see that for
a fixed distance 7 the integration kernel K increases with time ¢. In multiple scattering, the
effective distance traveled by diffuse waves is proportional to the square root of distance
(r ~ v/Dt). For smaller value of the diffusion coefficient, the stronger the scattering is
and the smaller the effective distance traveled by diffuse waves (wave paths become more
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Figure 3.4. Left: A 2D model with random scatterer distribution with a localized slowness
perturbation (shaded area). A particular diffuse path from source to receiver is shown.
Right: mean traveltime change as a function of time due to the localized slowness pertur-
bation.

localized around the source and receiver location). Thus with increased time, diffuse waves
sample the same region multiple times and consequently the traveltime change will increase
with time.

For the special case of 2D wave propagation the integration kernel K is (see Appendix

A for derivation)
Kop(r,t) = ! ex —r K, r (3.21)
2D\Y = 57D P | 2Dt |0 [2D¢) ‘

where Kj is the modified Bessel function of the second kind and D is the diffusion constant.
We see that the behavior of K as a function of distance r and time ¢ is similar to that of 3D
wave propagation. If we insert Eq. (3.21) into Eq. (3.19) and integrate over area instead of
volume we obtain:

2 r? ]
() = 2—:5 A/ o5t Ko [2_D_t] 5—8-(r)dA(r), (3.22)

where 7 is the distance of the scatterer (or slowness perturbation ds/s(r)) to the coincident
source and receiver. In Eq. (3.22), we have obtained an expression relating the traveltime
change (1) of the diffuse wavefield to the slowness perturbations (ds/s) in a multiple scat-
tering medium for coincident source and receiver. In general, for a given perturbation in
slowness, we can predict the mean traveltime change 7 for any source and receiver con-
figuration by calculating the integral in Eq. (3.19). To calculate this integral we need to
know the slowness perturbation as a function of position an a good estimate of the diffusion
coefficient D. We can estimate the diffusion coefficient using an independent method as
shown in the next section.
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Figure 3.5. Representation of a 2D random velocity model with a Gaussian autocorrelation
function. A source (star) is placed in the center. 20 receivers (asterisk) are located around
the source.

Figure 3.4 shows an example of the traveltime change for a localized slowness per-
turbation. Given a velocity model with a random distribution of scatterers (right panel
of Figure 3.4) we calculate the mean traveltime change 7 of the diffuse paths propagating
through the medium due to a localized slowness perturbation as a function of time ¢ and
plot the result on the right panel of Figure 3.4. In the last section, we test this theory with
synthetic seismograms calculated with finite-differences.

3.6 Finite-Difference Simulations of Multiple Scattering

Having derived the relation between the mean traveltime change of diffuse waves and
the slowness perturbations in a 2D medium, we validate the theory with finite-difference
simulations of multiply scattered waves in a multiple scattering medium. In this section
we summarize the parameters we used to generate the synthetic seismograms useful for our
study of multiple scattering.

To generate synthetic seismograms for our study of multiple scattering we use a fourth-
order 2D acoustic finite-difference code that propagates a finite-duration pulse through a
specified velocity field. Following Frankel and Clayton (1986) we model the 2D velocity field
as a constant-background model with added random velocity fluctuations that constitute
the scatterers. The total velocity field can be decomposed as

v(r) = vo + vr(r), (3.23)

where v is the background velocity and v, are the random velocity fluctuations with a
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Figure 3.6. Seismograms recorded at 250 m(left) and 3000 m(right) from the source.

Gaussian autocorrelation function.

The velocity fluctuations are characterized by a Gaussian autocorrelation function with
correlation distance a, with zero mean and standard deviation o (see Figure 3.5 for a repre-
sentation of the velocity model). The autocorrelation function of the velocity fluctuations
v, has the form :

(0 (r), v (r +1')) = 0% exp [;—’:] . (3.24)

The synthetic seismograms were created by transmitting a band-limited pulse with a
dominant wavelength of 240 m. The autocorrelation a length was set to 40 m, which is much
smaller than the wavelength. The mean or background velocity v is equal to 6000 m/s. To
ensure strong scattering, we created a velocity field with a standard deviation of 25 percent
about the mean velocity value. To test the validity of the diffusion approximation for our
numerical model we setup a numerical experiment where we placed a source in the middle
of the model and recorded the seismograms on an array of receivers around the source as
depicted on Figure 3.5. Since the medium is statistically homogeneous we expect that the
average intensity for receivers located at equal distance from the source should obey the
diffusion equation. Figure 3.6 shows 100 synthetic seismograms computed at a distance of
250 m (left) and 3000 m (right) from the source. Note the strength of the multiple scattered
arrivals after the highly attenuated ballistic arrival, especially for a distance of 3000 m from
the source.

The average intensity of the synthetic seismograms is obtained by averaging the square
of all calculated waveforms at a given distance to the source. We assume that because our 2D
medium has homogeneous statistical properties, averaging over different receiver locations
is equivalent to averaging over different realizations of the random velocity model. This
gives us the time evolution of the intensities for each source-receiver offset. After fitting the
calculated intensities with the solution of the diffusion equation, we obtain the estimated
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Figure 3.7. Actual averaged intensities (solid line) versus the diffusion curve (dashed line)
for 500, 1500, 2500 and 3500 m. The diffusion value used for all the diffusion curves is the

estimated mean value of 5.78x10% m?/s.
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Figure 3.8. Regression of the move-out of the peak of the coherent pulse as a function
of source-receiver distance. The slope of the regression fit gives us the energy velocity
ve = 5280 + 25m/s. The asterisks show the traveltime measurements and the solid line
represents the best linear fit.

value for the diffusion coefficient of D = (5.78 £ 0.41) x 105m?/s.

3.7 Perturbations of the Energy Velocity from Perturbations of the Mean
Velocity

When scattering is strong energy propagates with the energy velocity ve which can be
related to the diffusion coefficient D and transport mean free path I* using Eq. 3.2. This
velocity is different to the mean velocity vy of our 2D random velocity model on Eq. 3.23.
When scattering is not too strong, this velocity is approximately the same as the velocity
of coherent pulse or ballistic wave which propagates coherently through the medium. The
energy velocity can be substantially smaller than the mean velocity because of the slowing
down of the ballistic pulse caused by multiple scattering.

The energy or transport velocity characterizes the dynamics of the diffusion process.
Despite the rather straightforward argument that leads to this conclusion, the exact expres-
sion for the transport velocity of classical waves in random media is difficult to calculate.
In general, for a source wavelet of a given frequency, the energy velocity becomes a compli-
cated function of the mean velocity and of the distribution of the random velocity fluctua-
tions. Explicit formulas for the energy velocity for media with discrete scatterer distribution
with constant n (average number density of scatterers) have been obtained (Tatarski, 1963;
Frisch, 1968; van Tiggelen & Lagendijk, 1998). However, for a medium with continuous
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random fluctuations there are no explicit formulas for the energy velocity of the medium.

We can estimate the energy or group velocity from our finite-difference synthetic mea-
surements by measuring the velocity of the coherent or ballistic wave as it propagates
through the medium. The coherent wave is computed by averaging the wavefield from dif-
ferent receivers. If we calculate the coherent wavefield for several source-receiver distances
we can measure the traveltime of the peak of the coherent pulse for each distance and per-
form a linear regression of the traveltimes to obtain the transport or energy velocity. Figure
3.8 shows the traveltime picks for different several source-receiver separations and the best
linear fit. The estimated energy velocity from the linear regression is v, = 5280 + 25m/s.
Notice that the energy velocity is much smaller than the mean velocity vy of our velocity
mode] with random velocity fluctuations.

We are interested in the relation between a perturbation in energy slowness s with a
perturbation in the mean slowness s3. More specifically we are concerned in estimating the
relative energy slowness perturbation ds/s with which we can model the mean traveltime
change of multiply scattered waves. Let the slowness field obtained by taking the inverse
of the random velocity field be our unperturbed slowness field s,np. Let us introduce after
a given age T (the temporal scale on which changes in the scattering medium occur) a
perturbation in the background slowness dsg so that the perturbed slowness field sper¢ can
be written as

Spert = Sunp T dso. (3.25)

A constant change in the mean slowness s gives rise to a constant change in the energy

slowness s. Thus,
) é
9% _ o2 (3.26)
S 80
where C' is a constant of proportionality which relates the relative change in the energy
slowness with the relative change in the mean slowness. For small changes in the slowness,
like the ones we use to perturb the medium, we have also
4 1)
9 _ % (3.27)
s Ve
where dv, is the perturbation on the effective velocity v.. This dve has nothing to do with
the random velocity fluctuations that characterize our random velocity. It represents the
change of the energy velocity of the random velocity model.

Eq. 3.27 tells us that we can obtain the relative change in the energy slowness from
the relative change in the energy velocity. In theory, we could estimate this change by
measuring the energy velocity from the velocity of the coherent pulse before and after a
constant perturbation in the mean slowness has been introduced. Since multiple scattering
amplifies small changes in the medium, we use instead the scattered wavefield to estimate
the relative effective slowness perturbation ds/s. By measuring the changes in the mean
traveltime of the diffuse waves before and after the perturbation we obtain dve /v, using Eq.
3.5:

dve 0t (7(2))

e S _O), (3.28)
€
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Figure 3.9. Estimation of the time lag by cross-correlation of unperturbed and perturbed
wavefield (top). Energy slowness perturbation (ds/s x 103) estimates from coda wave in-
terferometry using Eq. (3.5) for a constant relative perturbation in the mean slowness
ds0/s0 = 0.01 (bottom). The time axis ¢ refers to the center of the time window on which
the cross-correlation of the unperturbed and perturbed fields was calculated.
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where (7(t)) is the traveltime change of multiply scattered waves arriving at different times ¢
caused by a energy velocity perturbation. We calculated the multiply scattered seismograms
before and after introducing a homogeneous change on the mean slowness dsg/s = .01. Next,
we use a time-windowed cross-correlation to compute the time lag between the perturbed
and the unperturbed seismograms for different time windows. Using Eq. 3.28 we estimate
the change of the energy or transport velocity in the multiple scattering medium for each
time window. This process is exemplified in Figure 3.9. The left panels show both the
perturbed and unperturbed waveforms (top) and their calculated cross-correlation (bottom)
for a specific time window.

The location of the maximum of the cross-correlation corresponds to the time lag
between the unperturbed and perturbed seismograms. By repeating this analysis over
different time windows we obtain an estimation of the mean traveltime change (7(t)) of the
multiply scattered waves as a function of time. Once we have (7(t)) we can calculate ds/s
using Eq. 3.28 for each time window and the result is shown on the right panel of Figure
3.9 as a function of the center of the time window ¢. As a result we obtain that for a 0.01
(one percent) constant perturbation in the mean slowness dsg/s the resultant perturbation
in the energy slowness ds/s is 0.0080 % .0005, therefore, C' =~ 0.8.

3.8 Traveltime Change for a Localized Time-Lapse Perturbation in the Slow-
ness: Synthetic Examples

We test our theory with finite-difference simulations of acoustic waves in the multiple
scattering regime before and after a time-lapse localized slowness perturbation has been
introduced in the model. We perturb the random velocity model which represents the un-
perturbed medium by adding a localized slowness perturbation to it. We show two examples
of localized slowness perturbations where we calculate the mean traveltime change of mul-
tiply scattered waves with Eq. 3.19 for several source-receiver configurations, and compare
this predicted traveltime changes with the estimated traveltime changes obtained from the
time-windowed cross-correlation of the unperturbed and perturbed synthetic seismograms.

3.8.1 Example 1

When the perturbation of the slowness is homogeneous in space the mean traveltime
change can be calculated using Eq. 3.28. In the case of a localized slowness perturbation
we obtain the mean traveltime change (7(t)) by calculating the integral specified in Eq.
3.19. We use as a first example a localized perturbation of the mean slowness in the shape
of a square with sides of length equal to 3000 m as shown in Figure 3.10. The magnitude
of the slowness perturbation is dsg/sp = 0.0050.

We first analyze the unperturbed and perturbed synthetic seismograms for the receiver
R1 located inside the perturbed region of our model 2000 m away from the source. Figure
3.11 shows both the unperturbed and perturbed seismograms for receiver R1. The seis-
mograph consists of diffuse or multiply scattered waves that have followed a multitude of
paths from the source to the receiver. Notice the strength of the coda waves for late times.
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Figure 3.10. Perturbation of the slowness added to the medium. The side length of the
square is 3000 m and the relative magnitude of the perturbation is dsg/sg = 0.0050. Source
is shown as a star and three receivers are shown as triangles.
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Figure 3.11. Unperturbed (solid) and perturbed (dashed) synthetic seismograms recorded

at the receiver R1 located 2000 m away from the source.
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Figure 3.13. Time windowed cross-correlation of the unperturbed and perturbed seismo-
grams for receiver R1 for a time window around ¢ = 2.4s. The horizontal axis indicates the
time sample number.

At first sight there seems to be no substantial difference between the wavefield before and
after the perturbation. However, zooming at around 2.10 s (see Figure 3.12) we see that
the unperturbed seismogram lags in time with respect to the perturbed seismogram. More
careful inspection indicates that the behavior of the time lags with traveltime is systematic,
i.e., the lag is increasing with traveltime ¢. Also, even though there are small changes in the
traveltimes, the unperturbed and perturbed seismograms are well correlated. Figure 3.13
shows the unperturbed and perturbed wavefields (top) on a time window around 2.5 s and
the calculated time-windowed cross-correlation (bottom). The unperturbed and perturbed
seismograms are well correlated, judging by the correlation coefficient.

We calculate the theoretical mean traveltime change for multiply scattered waves
that would be recorded at the receiver R1 and compare the result with the mean trav-
eltime change estimated from the synthetic seismograms using the time-windowed cross-
correlation. Figure 3.14 shows good agreement between the theoretical and the measured
mean traveltime change (7(t)).

We also calculated the mean traveltime changes for the receivers R2 and R3 located
9500 m away from the source. Even though the distance to the source is the same for
both receivers, their locations with respect to the perturbation is different and therefore the
mean traveltime change is different for the two receivers. The theoretical traveltime change
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Figure 3.14. Theoretical versus measured mean traveltime change for receiver R1 located
2000 m away from the source. ]
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Figure 3.15. Theoretical versus measured mean traveltime change for receivers R2 and R3
located 5500 m away from the source.
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for receiver R2 is almost twice the traveltime change for receiver R3. This sensitivity of
the mean traveltime change with the relative source and receiver locations with respect to
the perturbations can be exploited in an inversion scheme to estimate the slowness change
from measurements of the mean traveltime change at different receiver locations. Notice
also that for all receiver there are fluctuations on the measured traveltime change about the
theoretical value. We explore the origin of these fluctuations and how to minimize them in
the next section.

3.8.2 Example 2

In this example we consider a localized slowness perturbation in the shape of a square
with half the side length used in Example 1 (see Figure 3.16). I consider three receivers po-
sitioned at different locations with respect to the slowness perturbation, and then calculate
the theoretical mean traveltime change for the three receiver locations.

Figures 3.17 and 3.18 show the mean traveltime change for receiver R1 and R2 re-
spectively. We can see that in both cases the traveltime change increases with traveltime
and both show a similar behavior (i.e., the slope of the traveltime change decreases with
traveltime). The receiver R2 is located farther from the source and from the slowness per-
turbation. Consequently, the number of paths which scan the perturbation with respect to
the number off all possible paths is smaller in comparison with receiver R1 which is located
closer to the source and to the perturbation. As a result the mean traveltime change for
receiver R2 is smaller than the mean traveltime change for receiver R1. This conclusion
follows from the random walk probabilities and from the time of fight distribution K (r,t).

Figure 3.19 shows the mean traveltime change for receiver R3. This receiver is located
even farther away from the localized slowness perturbation and as a result the predicted
mean traveltime change is the smallest amongst the three receivers. The measured mean
traveltime change is close in magnitude to the time sampling interval (dt = 0.250ms), as
evidenced by the "jumps” in the measured mean traveltime change. The moveout of the
mean traveltime change curve is different, with the slope increasing with traveltime. Again,
this is good example of the sensitivity of the mean traveltime change to the relative source
and receiver locations.

3.9 Fluctuations of the Mean Traveltime Change

In the synthetic examples of the previous section I observed fluctuations of the mea-
sured mean traveltime change of the diffuse waves around the theoretical value calculated
using Eq.  3.19. These fluctuations are due to the random nature of the diffuse or scat-
tered wavefield. The main assumption behind our theory is that the spatial and temporal
evolution of the average intensities can be described as a diffusion process. Based on this
assumption, we approximated the diffuse wavefield at time ¢ as the superposition of random
walks from source to receiver with traveltime ¢. Finally, we assumed that (based on the
diffusion approximation) the scattered wavefield produced as a result of wave propagation
through the random medium approximates a diffuse field in the average.
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Figure 3.16. Perturbation of the slowness added to the medium. The side length of the

square is 1500 m and the relative magnitude of the perturbation is dsp/so = 0.0075. Source
is shown as a star and three receivers are shown as triangles.
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Figure 3.17. Theoretical versus measured mean traveltime change for receiver R1 located
3000 m away from the source.

— theory
28 e synthetics o
26}

T (ms)

2.4

T

22

18

T

1.6

14

1.2

R2 |

L ' 2 25 3
t(s)

Figure 3.18. Theoretical versus measured mean traveltime change for receiver R2 located
5000 m away from the source.
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Figure 3.19. Theoretical versus measured mean traveltime change for receiver R3 located
5500 m away from the source. The mean traveltime change is in ms.

The wavefield recorded at a receiver R due to a source impulse at S can be thought of
as the superposition of a multitude of waves on random walks. Each of those waves samples
a different region of the random medium. The total wavefield is built upon the interference
of all those waves following different trajectories. In other words, the diffuse wavefield is
the superposition of a multitude of waves with diffuse paths from the source to the receiver.

The diffusion approximation states that in the average the wavefield can be regarded as
a diffuse wavefield. In that sense we can see the wavefield for a given source and receiver pair
as the single realization of a random experiment. The fluctuations of the measured mean
traveltime change are due to the fact the we only have a single realization of the experiment.
In other words, the fluctuations are due to departures from the diffusive behavior of the
scattered wavefield.

In the examples shown in Section 3.8 we measured the mean traveltime change from the
synthetic seismograms using a time-windowed cross-correlation technique. The measured
mean traveltime change measured in this way is approximately an average of the time lags
for the many scattering events on that time window. The window length that we use in the
time-windowed cross-correlation can help us to minimize the fluctuations of the measured
mean traveltime change. Consider an event that arrives at the receiver at time t. This wave
at time ¢ has a certain length which is approximately equal to the dominant period Tyom
of the wavefield. On a window of length A we will have at most n different events, where
n=A / Tdom-
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Figure 3.20. Mean traveltime change (7(t)) estimated from the synthetic seismograms for
receiver R1 using different window lengths on the cross-correlation. The mean traveltime
change is in ms. Note the reduction in the fluctuations of the measured mean traveltime
change (circles) around the theoretical value (solid line) for larger window lengths. The
dominant period is 40 ms.
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Each scattering event at time ¢ within the specified time window [t — AJ2,t+ A)2]
is considered to be a distinct realization of the diffuse wavefield (since for each arrival
time ¢ the waves sample different regions in the random medium). We can identify the
traveltime change of this scattering event as a random variable with a distribution that can
be characterized with a mean (7(t)) and a standard deviation o-(¢). The fluctuations on
the measured traveltime change are related to o (t).

Assuming that the mean traveltime change (7(t)) has approximately the same distri-
bution for the n scattering events on the time window, then the traveltime change on the
time window can be defined as a sample mean (Tenorio, 2003):

m+.+m
n b

(r(t)) = (3.29)
where n is the number of scattering events in the time window. Then, by averaging the
traveltime change of the many scattering events the standard deviation of the sample mean
o(ry(t) (after averaging over different traveltime changes on the time window) is related to
the standard deviation of the mean traveltime change o (t) for a given scattering event in
the following way

o
o(ry(t) = constant X = constant X \/—%, (3.30)

Or
\/—E_

Tdgom
where n is the number of scattering events on the time window [t —A/2,t+A/ 2]. Eq. 3.30
implies that we can reduce the fluctuations of the estimated mean traveltime change (7(t))
by choosing a larger time window length A on the time-windowed cross-correlation. Snieder
(2003) obtained a similar result for the decrease of the magnitude of the cross terms on the
average intensity (I). Larger contributions from the cross terms to the average intensity
implies larger departures from the diffusive behavior.

The decrease of the fluctuations with the increase of the time window length A can be
appreciated on Figure 3.20 where we plot the measured mean traveltime change (circles)
versus the theoretical mean traveltime change (solid line) using different window lenghts on
the time-windowed cross-correlation for the receiver R1 on the Example 1 of the previous
section. We see that the fluctuations of the measured traveltime change decrease with a
incresing window length A. For this synthetic example the dominant period Tyor, is 40 ms.
The length of the time window L on Figure 3.20 varies from 70 ms to 420 ms.

3.10 Tomography with Diffuse Waves

Eq. (3.17) relates the mean traveltime change at time ¢ < 7(t) > with a localized
slowness perturbation ds/s(r). Note that Eq. (3.17) is in the form of a standard linear
inverse problem as there is a linearized relation between the data (mean traveltime change
for different times t) and the unknown parameters of the medium (localized slowness per-
turbation) which we want to retrieve by mean of an inversion procedure. In Section 3.8 we
showed that the mean traveltime change as function of time changes for different receiver
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Figure 3.21. Schematic view of the tomographic problem in matrix form. The sensitivity
kernel K relates linearly the unknown parameter ds /s with the measured traveltime change
< 7(t) >. Each row in the matrix operator corresponds to a different receiver location.
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locations. This sensitivity of the mean traveltime change to the relative source and receiver
location with respect to the localized slowness perturbation can be exploited in the inversion
scheme.

The goal of the inversion is to obtain the shape and magnitude of the slowness per-
turbation from the measured traveltime changes at different receiver locations. This is
similar to the transmission tomography problem with the added complication that we are
not only taking singly scattered waves but all multiply scattered waves. For a given time
¢ and for a fixed source location we can setup the inverse problem in matrix form using
different receivers as is shown in Figure 3.21. The matrix operator (calculated using the
time of flight distribution K) which multiplies the unknown parameter vector (slowness
perturbation 6s/s(r) as a function of position) generates the data (mean traveltime change
for different receiver locations). Each row in the matrix corresponds to an observation of
mean traveltime change for a specific receiver.

3.11 Discussion and Conclusions

For a homogeneous change in the mean slowness so, the size of the effective slowness
perturbation is proportional to the size the mean slowness perturbation. We estimated the
constant of proportionality C between the relative change of the mean slowness dsp/s and
the relative change of the energy or transport slowness ds/s.

We have developed a theory that relates the mean traveltime changes of the diffuse
wavefield to localized perturbations of the effective velocity for 2D acoustic waves. This
theory was developed by means of the representation theory for the diffuse wavefield in
a multiple-scattering medium. One of the main results from our theory is that the mean
traveltime changes can be obtained by integrating the slowness perturbations weighted by
the kernel K(r',r,s,t) over the whole area where multiple scattering occurs. The kernel
K(r,t) describes the relation of the mean traveltime changes of the diffuse wavefield with
the diffusion constant, time, and the distance to the perturbation. The estimated mean
traveltime changes from the finite-difference simulations indicate that the theory accurately
predicts the time evolution of the mean traveltime perturbations.

The mean traveltime change is sensitive to the source and receiver locations relative
to the localized perturbation. This sensitivity can be exploited in a future inversion scheme
to infer the energy velocity or slowness from the measurements of mean traveltime change
for an ensemble of source receiver pairs. There is a linearized relation between the mean
traveltime change of multiply scattered waves and the localized slowness perturbation.

The key assumption made in our approach is that the transport of acoustic waves
can be described within the diffusion approximation. This assumption greatly simplifies
the calculation of the time of flight distribution K(r/,r,s,t). However, this is only an
approximation for describing waves in strongly scattering media, and in some instances it
may break down.
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APPENDIX A

SENSITIVITY KERNEL K

We start from the expression:

tP(x' —s,t')( ) r—r,t—
P(r,t)
P(r,t) is the intensity at the receiver loca.ted at r due to a normalized impulse source at the

origin at time ¢=0, and is given by Paasschens (1997). It is equal to the Green’s function
G(r,t) in 2D

K(r',t) )dt’ (A.1)

1 —r?
P(I‘, t) = mexp 4_D—t . (A2)

The time convolution P * G is given by
t
P(',s) * G(r,r') = / P(',¢)P(x — 't — )d. (A.3)
0
Substituting Eq. (A.2) into Eq. (A.3) gives for coincident source and receiver(r = s = 0)

[W [4D(t 4D(t—¢t) ]

!
. 4
o 4nDt 4xD(t -t )dt (A-4)

P (r',r,8,t) = (P(r';8) x G(r,r))(t) =

As there is symmetry around ¢/2 we can write after renaming r’ as r:

) t/2 e[;_g{_'_'_t (tt—t )]dt’
7,

! = A5
P’I‘(r’r)s7t) (47rD 2 t,(t_t,) ( )
Next, we set € = F(tl—_t'j we obtain
2 e Ty
, €
_ A6
P.(t',1,s,1) (@nD)? /;I = (A.6)
Now setting v = r2t(e — )
2 [-_'2] © e Vdu
! _ t - AT
P’I'(rir7s)t) (47TD)26 /0 ( )

‘/2 vr?
ve+ oy

This integral can be calculated identifying it as a integral of the type

k
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00 —pzx
T ergy(%D), (A38)

o Vz(z+a)
for a > 0 and p > 0. The solution to the irzltegral in Eq. A.8 can be found in Gradshteyn
& Ryzhik (1973). Making p =1 and a = ;; Eq. A.8 becomes

(P G)(r,t) = (47;)27 exp [2:;-;] X, [-2%] , (A.9)

where K is the modified Bessel function of the second kind. Substituting Egs. (A.4) and
(A.2) into Eq. (A.1), we arrive at the expression for the kernel K(r,t) in two dimensions
for coincident source and receiver :

Kop(r,4) = — 1, [ (A.10)
2p\08) = 50D P (3Dt |0 | 2De | '

To obtain the sensitivity kernel K in three-dimensional media we substitute Eq. A.2
with the Green'’s function for the diffusion equation in 3D

L exp|22 (A.11)
(4xDt)o2 P |aDt | '

After solving the integral defined in Eq. A.1 we obtain the expression for the kernel
K(r,t) in three dimensions for coincident source and receiver

P(r,t) =

2

1 -
Ksp(r,t) = 57 D &P [ Dt] (A.12)
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