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Abstract

The seismic method often has difficulties recovering the geometry of the base salt with
steep flanks and diapiric roots because of the complex shape of salt and high impedance
contrast across the salt boundary. This problem may lead to incorrect subsalt imaging
and inaccurate interpretation of subsalt geological structures. Also, both acquisition and
processing of 3D seismic data are expensive and time consuming. Gravity data can often
help to construct the base salt. Previous researchers have developed practical methods
for inverting gravity data to construct the base of salt. With the increased application of
such methods, it is important to understand the factors that influence the final inversion
result and its value for subsalt imaging. I address this issue from a practical viewpoint by
examining the influence of errors in a set of assumed parameters commonly used in gravity
inversions.

To achieve this goal, I first develop an algorithm for inverting gravity data to construct
the base of salt. The inversion algorithm is based on Tikhonov regularization, in which an
explicit model objective function is incorporated to ensure a final model consistent with all
available information. The model parameter in the inversion is the surface defining the base
of salt; I represent it by the logarithm of the salt thickness by assuming that the top salt is
known.

In most inversion algorithms, the top of the salt and parts of the base of salt are
assumed to be accurately imaged by seismic data. The density contrast of the salt body is
also assumed to be known. Furthermore, I assume that the gravity data have been reduced
so that any factors unrelated to the variation in base salt are removed. In practice, however,
these assumptions will invariably have errors that will influence the inversion result. The
errors so produced will in turn influence the seismic image of subsalt features.

I use a synthetic salt model to investigate the sensitivity of the inverted base salt to
errors in the assumptions used in the gravity inversion and the resulting influence on subsalt
imaging. I show that moderate perturbation in any of the prior information, e.g., top salt,
known base salt and density contrast, can lead to large errors in the recovered shape of the
base salt. Through tests on a 2D acoustic velocity model, the estimated error in subsalt
imaging due to the erroneously inverted base salt shows that large error in the inverted
base salt does not necessarily imply large error in subsalt imaging. Nevertheless, with
errors in the error in the various assumptions, use of gravity inversion can improve subsalt
imaging. Because the volume of gravity data generally is much smaller than that of 3D
seismic data, gravity inversion costs far less than does the 3D seismic imaging method. By
offering additional constraints on the base salt for seismic imaging, use of gravity inversion
may speed up and improve the imaging process.
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Chapter 1

Introduction

Subsalt exploration for oil and gas is attractive in regions such as the Gulf of Mex-
ico where 3D seismic prestack depth-migration can often image the base of salt well. At
times, however, it has difficulties in recovering the geometry of the salt base beneath steep
flanks, e.g., diapiric roots (e.g., Ratcliff et al., 1992; Ratcliff and Weber, 1997). The main
reasons are the complexity of the seismic raypaths and the lack of sufficient seismic energy
penetrating the salt because of the complex shape of salt and high impedance contrast with
surrounding sediments. This problem may lead to poor imaging and inaccurate interpreta-
tion of subsalt geological structures. As illustrated in Figure 1.1, for example, the shape of
the base salt may determine whether or not a potential trap exists beneath the salt. Also,
Albertin et al. (1998) point out that the misplacement of the salt boundary may lead to
false images of subsalt features. Another problem is that processing of 3D seismic data,
in particular, 3D seismic prestack depth migration, which must be carried out iteratively,
is costly. Perhaps complementary information to reduce the ambiguity in seismic images
and help speed up the iterative migration process and model building would be beneficial.
Gravity data often serve these purposes in the petroleum industry (e.g., Dejong et al., 2000).

Previous researchers have developed practical methods for inverting gravity data to
construct the base of salt (e.g., Jorgensen et al., 2001; Routh et al., 2001). With the in-
creased application of such methods, it is important to understand the factors that influence
the final inversion result, in addition to commonly considered issues such as data quality
and details of the inversion formulation. In general, we assume that those factors are known
in formulating the algorithm, but they inevitably contain errors in practice. When an er-
roneous inverted base salt is used to define the salt model in subsalt imaging (e.g., Talwani
and Kessinger, 1995), the accuracy and quality of the subsalt images is degraded. In this
thesis, my goal is to understand the sensitivity of inverted base salt to errors in known
factors and then how the subsalt imaging is influenced by the erroneously inverted base
salt.

To achieve the goal, I first develop a 3D inversion algorithm that uses the vertical
gravity anomaly, g,(z,y), as data and inverts for the base of salt by Tikhonov regularization
(Tikhonov and Arsenin, 1977). The model parameter to be estimated in the inversion is
the surface defining the base of salt. I introduce a logarithmic function to represent it. The
study in this thesis is problem-dependent and I adopt a synthetic 3D salt model to emulate
a salt body in deep water. Throughout the thesis, all the problems are tackled by working
with this model.
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Figure 1.1. Motivation of gravity inversion for base salt. The dashed line delineates the
boundary of the salt, and the solid lines represent the subsalt geological features. The region
denoted by the question mark is unknown.
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In most inversion algorithms, the top of the salt and a part of the base of salt are
assumed to be accurately imaged by the seismic method. Also, the density of the background
sediments, and thus the density contrast of the salt body, are assumed to be known (e.g.,
Routh et al., 2001). Furthermore, I assume that the gravity data have been reduced so
that any factors unrelated to variation in base salt are removed. In practice, however,
these assumptions invariably have errors that will influence the inversion result. Using the
algorithm I developed, I investigate the influence of the assumed factors on the inverted
base salt.

To date, little work has been done on the sensitivity of gravity inversion to these dif-
ferent assumptions. We can, however, exploit previous work in inverse theory to assess the
uncertainties in linear inversion with respect to random data error. Wiggins et al. (1976)
introduce an analytical approach to assess the posterior uncertainty of the model for linear
problems. For nonlinear problems, Tarantola (1987) derives the covariance matrix and the
resolution matrix for Bayesian inversion through a linearized approach. Meanwhile, Menke
(1984) derives the same matrices by a different method. Alumbaugh and Newman(1999)
apply this linearized approach to the appraisal of the image uncertainty in nonlinear elec-
tromagnetic inversion. In addition, Oldenburg and Li (1999) assess the sensitivity of the
model solution to data quality. They quantify the uncertainty using the depth of investiga-
tion indez (DOI), which is the difference between recovered models using different reference
models. Small values of DOI, for example, imply lower uncertainty. To my knowledge,
little work has been done on studying the sensitivity of base salt to prior information, and
no work has been done on the influence of errors in presumed known factors in gravity
inversion on subsalt imaging when erroneously inverted base salt is used in seismic imaging.
My approach is based on linearized approximations following the works of Tarantola (1987),
Menke (1984), and Alumbaugh and Newman (1999), and direct evaluation by simulations.

First, to estimate the sensitivity of estimated base-salt shape and position to the
presence of random noise in gravity data, I compute estimates of standard deviation and
bias in two ways: 1) I derive a linearized approximation for the covariance matrix and
bias based on a Bayesian formalism (Tarantola, 1987); 2) in a more practical approach to
evaluate the errors directly, I compute the sample standard deviation and bias through 100
realizations of inversion for the same noise level. In addition to the influence of random noise,
I study the influence of coherent noise associated with geological noise, specially, inaccurate
bathymetry correction. For the sensitivity to coherent data noise and prior information, I
simulate possible errors in these factors, conducting the inversion with incorrectly specified
bathymetry correction, presumed known positions of the base salt, top salt and density
contrast. The error in the shape and position of base salt is directly evaluated by comparison
with the best-estimated model in the absence of these four sources of error.

I then evaluate the sensitivity of subsalt seismic imaging to erroneously inverted base
salt using a 2D acoustic velocity model through the 3D salt model. Two flat reflectors are
added beneath the salt, and the distribution of velocity values with depth follows that of
the SEG/EAGE salt model. I directly evaluate the error in subsalt imaging when using
velocity models containing the shape of base salt recovered from the error-prone inversions,
comparing with the best images and the correct image.
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The thesis is organized as follows: Chapter 2 develops the algorithm for gravity inver-
sion. I first formulate the algorithm directly using the base of salt as the model parameter;
I then develop a modified algorithm that uses the logarithm of the scaled salt thickness
as the model parameter. Chapter 3 examines the sensitivity of the inverted base salt to
errors in the gravity data. Chapter 4 investigates the model sensitivity to errors in the prior
information, including the presumed known part of base salt, top salt, and density contrast.
Chapter 5 assesses the sensitivity of subsalt seismic imaging to error in the inverted base
salt. I conclude the thesis with discussion in Chapter 6.
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Chapter 2

Algorithm for gravity inversion

In this chapter, I develop an algorithm for inverting gravity data to estimate the shape
of the base salt. The algorithm is based on the Tikhonov regularization technique. First, I
formulate the inverse problem as an optimization and solve it by the Gauss-Newton method.
Second, I introduce a logarithmic parameterization to enforce the physical condition that
the base salt must lie below the top. I illustrate the algorithms using a synthetic example.

2.1 Formulation with linear parameterization

As shown in Figure 2.1, let d; = g,(z;,yi), %=1,---,N be the vertical gravity data,
hi(z,y) and h(z,y) be respectively the shape of the top and base of the salt body, and
Ap(z) be the density contrast between salt and the sedimentary host. I assume that hi(z,y)
and Ap(z) are known. I also assume that part of the base salt may be known and fixed
during the inversion, termed as High confidence zone (HCZ). The inverse problem is then
to construct the unknown part of h(z,y) using the gravity anomaly and above-mentioned
known information. The surface representing the base salt, h(z,y), is the unknown to be
recovered.

Traditionally, the goal of inversion is to find a model that best fits the data subject to
a set of conditions. In the least-square approach, the objective function that measures the
data misfit is given by

¢d = “Wd(‘i— Jobs)”%’ (2'1)

where d is the vector of predicted data, d,ps denotes the observations, | - || denotes the
squared Lo norm of a vector, and Wy is a diagonal data-weighting matrix, whose elements
are the reciprocal of estimated data standard derivations: Wy(%,7) = ;1;

Gravity data, however, inevitably contain noise, and we have only a finite number of
data measurements from which to recover the base-salt surface; therefore a model exactly fit-
ting the data will over-interpret the data. In addition, inversion itself is an under-determined
problem. Therefore, additional constraints need to be incorporated into the objective func-
tion. This is achieved here by Tikhonov regularization (Tikhonov and Arsenin, 1977), in

which a weighted sum of data misfit and a model objective function is minimized.

Following Li and Oldenburg (1996), I define a model objective function to penalize the




6 Chapter 2. Algorithm for gravity inversion

structural complexity of the model as
bn= s [ [b59) ~ hrey(a,) dady

tay /S {3 [h(z,y) ; hres (2, y)] }2 dedy

o [ { L) .0 }2 dod, 02)

where S is the horizontal area over which the unknown base salt is to be defined, and a;,
a; and o, are weighting factors that I fix as constants in the optimization process. «;
weights the difference between the objective model and the reference model, while «; and
ay control the smoothness of the model in the z- and y-directions. h,.; denotes a reference
model, which is usually formed by the base salt obtained from seismic images.

By Tikhonov regularization (Tikhonov and Arsenin, 1977), the objective function to
be minimized is defined as

¢ = ¢a + Bém, (2.3)

where ¢4 is the data misfit, ¢,, is the model objective function, and f is the regularization
parameter. The choice of 8 depends on the noise level in the data.

To perform numerical computation, I discretize both the top and base salt into piece-
wise constant surfaces defined over a common set of contiguous rectangular cells within S.
Such a discretization divides the salt body into a set of contiguous vertical prisms (Figure
2.2). The unknown model is represented as a vector of depth values within cells, h =
(hi,...,has)T, where M defines the length of the model vector. Applying the discretization,
the model objective function becomes

b = sk = Rrep) TWWi(h = Rreg) +
+az(ﬁ ~ Breg)TWEWe(h = hres) + 0y (B — hres) Wy Wy (R — hres)
o) (s WIW, + aaWIW, + oy WIW,) (R — hrey)
— Firep) T (WTW)(R = Brep), (2.4)
where the weighting matrices, W,, W, and W,, describe the discrete form of the three

operations in equation (2.2); each component of these three matrices is defined explicitly as
follows. The simplest term is

WIW, = AzAyl,

where, I is the identity matrix, and Az and Ay define the dimensions of model cells in the
z- and y-directions.
The matrices W, and W, are dependent upon the geometric shape of the model area

and are thus problem-dependent. The following example matrices assume a model rect-
angular mesh with uniform discretization, and the unknowns are ordered by rows in the
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Figure 2.1. Problem definition. g, denotes the gravity data; V represents the initial salt
volume and 6V represents the volume perturbation; k¢ is the depth of top salt; h and oh
are the initial depth and depth perturbation of base salt, respectively.
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Figure 2.2. Two-dimensional illustration of the model discretization. The salt body is
divided into a set of contiguous vertical prisms.
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(2.6)

The matrix W' W, and WJIW, are finite-difference approximations to the second-order

derivative. Written in compact form, the model objective function becomes

bm = [IW (R = hres)|I3,

where WTW = q, Wf Ws +a, WmT Wi + oy Wf W,. Since the weighting coefficients, a;, ay

(2.7)
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and ay are user-specified, if the smoothnesses of model in both the z- and y- directions are
expected to be equal, a rule of thumb to define these three factors is as follows (UBC-GIF,
2002)

o %f>A:1;2,
a 2
o > Ay

where Az and Ay denote the cell size of the model. The discrete objective function in
equation (2.3) can then be expressed as

b = |IWa(d = dons)|[3 + BIW (h — hrep)I13, (2.8)

where the predicted or modeled data vector d is a function of the depth vector, i.e., d= f (I_i)
Since the gravity observations on the surface constitute a nonlinear function of the
depth of base salt, I-i, the minimization of equation (2.8) is a nonlinear process. I apply the
Gauss-Newton method to obtain the solution.
Let A(%) be the depth of the base salt estimated in the kth iteration and

& = ()

be the predicted data. In the (k + 1)th iteration, the predicted data can be expressed as a
Taylor series expansion:

FE® 4 555y = F(R®) + GSREHD 1 O(shEHY), (2.9)

where O(éﬁ(k"‘l)) denotes the higher-order terms with respect to Sh*+D) and G is the

sensitivity matrix given by
od;

oh;’
which will be discussed later in this chapter. Substituting (2.9) into (2.8) and omitting
higher order terms yields

Gij = (2.10)

S(R® 4 SRV 5 [ Wa(d® + GORED — dpy) |13 + BIIW (RS + 6RETD —Ro)ll3 . (2.11)

Differentiating (2.11) with respect to shtk+1) and setting to zero to search for the solution
that minimizes (2.11), I obtain

(GTWTIW,G + PWTW)SREH) = WTGTWa(dops — d*)) + BWTW (hg — R¥)).  (2.12)

Solving equation (2.12) for §h(+1)_ one obtains the model perturbation in the (k+ 1)th
iteration
SRR — (GTWTIW,G + pWTW) ™! [WdTGTWd(d-;bs — d®)y 4+ pWTW (o — ﬁ<k>)] .
(2.13)
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To solve equation (2.13), T apply the method of conjugate gradients (CG) (Golub
and Van Loan, 1989). The conjugate gradient method is an effective method for solving
linear symmetric positive-definite systems. The method iteratively proceeds by generating
an approximation of the solution, data residuals, and search directions until it converges.
Only a small number of vectors need to be kept in memory and the number of iterations
required to converge is generally far smaller than the number of unknowns, the CG method
is appropriate for large-scale problems. In the following, I present an unpreconditioned
approach of CG method used here.

For convenience, let us first rewrite equation (2.12) in compact form,

AZ = b, (2.14)
where
o T =§Rk+1),
o A= G’TWIWdG + BWTW, and
o b=WIGTWy(dos — d®) + BWTW (o — h(K)).
The matrix A € RM*M is symmetric positive definite for B > 0, which can be approved as
follows:
Given any ¥ € RM and 7 # 0,
JTA7 = §T(GTWIW,G + BWTW)§
= GTWIW,GF + i BWT Wy
= IWaGll; + BIIW I3 > 0. (2.15)

Therefore, the CG method is ideal for this problem. To solve equation (2.13), I adopt the
sequence of steps shown in the pseudo-code below.

e compute #9) = b — AF with the initial guess #©) (e.g, 9 =0).

e for i=1,2,...
6,1 = F-1)T Hi-1)
e ifi=1
) = 70
® else
_ i
Hi-1 = 7

PO = 7D g0

e endif
A = 0;-1
i m

20 = -1 4 3,50
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D) = 71 4 )
with §® = Ap®

e check convergence

e end

Because A € RM*M and M is large, if A7) is carried out directly, one needs large memory
to store the matrix A. To avoid this, I expand AZj into the form

Azy = (GTWIW4G + BWTW)zp
= GTWI WG + BWTW .

WTW can be easily calculated since WTW is sparse. Moreover, since GTWér WqGzp can
be calculated in three steps as GT (W] Wy)(Gxp), we need store only matrix G € RV*M
rather than A, saving the computer memory since N is generally much smaller than M.

The convergence is governed by the ratio between the Lz norm of the data residual
vector 79 and that of the input data vector 5; that is,

v=-—5— <1, (2.16)

where 7 is some chosen small number.

Since the Gauss-Newton method uses a linear approximation to solve the nonlinear
problem, although the search direction of the solution may be correct the solved step length
could be wrong. In particular, it usually overestimates the model perturbation. I therefore
update the base salt in the (k + 1)th iteration with a limited step length (Murray, W. and

Overton, 1979)
R — k) 4 R+, (2.17)

where 0 < a < 1 limits the step length. « is determined by a line search to ensure that the
objective function is monotonically decreasing.

This base salt solved in equation (2.13) is then used to calculate the predicted data for
the (k+1)th iteration, and the inversion proceeds to the next iteration. The optimal solution
is the model that minimizes equation (2.8). The process continues until convergence, with
the condition of convergence defined as

(k+1) _ 4(k)
A0 — g®]
$F)

€,

where ¢ is a user-specified small number, and ¢(+1) and ¢(*) denote the objective function
in (k + 1)th and kth iterations.

The above steps outline the minimization process for a fixed regularization parameter,
. Because results depend on the choice of B, we construct the model using a number of B
values, so as to choose the solution that is most consistent with data-error estimate. I will
discuss this in a later section.
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v

(X, ¥, h)

y ov

v, (X, ,ym,h)

Figure 2.3. 3D view of the perturbation of a rectangular prism of the model.

2.2 Sensitivity matrix

One important quantity in the inversion is the sensitivity matrix G, the partial deriva-
tive of the data with respect to the model parameters. In this section, I derive an explicit
expression for the sensitivity matrix shown in equation (2.10). To proceed, I adopt a right-
handed Cartesian coordinate system, with the z-axis pointing downward. For a salt body
with volume V in the subsurface (Figure 2.1), the vertical gravity anomaly at point ¢ on
the surface is defined as

. o1
(@) _ - 2.1
gz —'r/Vp(w,y,Z)az”dzdydz, (2.18)

where r = \/(z; — )2 + (y; — ¥)? + (2 — 2)2, and v = 6.67 - 10~ 1 m3 [(kg - s?). If we
perturb only the depth of base salt h(z,y) by dh(x,y), then the data perturbation at the
observation point 7 can be expressed as

A Q) //d J /h’(z,y) ( ) 15} 1d
= z z,Y,2)——dz
9" =7 Y he(og) p\Z, Y 9z T
h(z.y) 3 1
- dzd / o(z,y,2)=—=dz
7/ / Y h,(z,y) 37«“”

dod K (z,y) o1 p 519
—’7// T y/h p(m,y,z)a—zj; 2, (2.19)

(z,y)
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where & (z,y) = h(z,y) + dh(z,y). In the discretized model, the salt body is a set of con-
tiguous vertical prisms. For simplicity, let us focus on the jth rectangular prism perturbed
by volume §V; (Figure 2.3). Suppose the depth perturbation ék; is small, and assume the
density contrast is constant within §V;. Also suppose that the depth of the base salt in this
prism is h;. Then, the data perturbation introduced at the ith point by model perturbation
8h; is the jth cell is given by

133 h"
éggu) = 'yp/ dz dy A ! a%%dz
3 (]

Since 3—%% = —%%, we have

y 1
898 = —vp / / -

For convenience, let p = % Performing Taylor series expansion, we have

g
dzdy.
hj

5
3¢ =~ —yp / / (p(hj) + %I::nj - 6h; —p(hj)) dzdy
0
= o [ [ Pt - ohy docty

_ [7,, / / (;z_i;lﬂz:hj) dxdy] . 6h . (2:20)

According to the definition, the vertical gravity gradient T, at the ith observation
point on the surface produced by a rectangular prism k having constant density contrast p
can be expressed as

, (ik)
o = 9%

(')zi
_ / / o1
=T Oz r

where h; and hy denote the depth of the top and the base, respectively.

)
- dzdy, (2.21)

h{k)

Letting hgk) — oo and hgk) — hj in (2.21) yields

- 61
M ='rp/ e

. 2.22
oz T dzdy ( )

2=h;

Comparing equation (2.22) with equation (2.20), we note that the term inside the square
brackets in equation (2.20) is identical to T, in (2.22). Therefore, interestingly, the sensi-
tivity of the gravity anomaly with respect to the base salt is given by the vertical gravity
gradient produced by a rectangular prism whose top is the base salt and whose depth extent
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~— base

Figure 2.4. The equivalence of the sensitivity to the gravity gradient.

is infinite (Figure 2.4). That is
ag(i) )
99z _ plik), (2.23)

2.3 Logarithmic parameterization

The algorithm using linear parameterization without constraint can lead to the un-
acceptable result that the inverted base of salt lies above the top salt. For small 3, this
problem can be severe. As illustrated in Figure 2.5, we could obtain a rapidly oscillating
perturbation with large amplitude when 8 is small. When added to a current model to
update it, the updated model could have the base salt shallower than the top salt. Several
approaches are available to deal with this problem.

1) Truncate the portion of model that lies above the top salt. This is equivalent to
changing the search direction at each iteration of inversion, but could lead to poor
convergence.

2) Adopt a new parameterization using a transformed model that naturally ensures a
physically plausible method. This is achieved by using a logarithmic parameterization.

3) Apply an inequality constraint on the model. This method has been used widely, but
usually incurs a large increase in computational complexity.
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I adopt the second option here by using the logarithm of scaled depth difference between
the top salt and the base salt as the model parameter to be recovered,

h(.’D, y) - ht(l‘,y) )
ho

m(z,y) = In( (2.24)

k]

where, again, h and h; are the depth of base salt and top salt, respectively. ho is an arbitrary
constant. The base of salt is thus given by

h,(:z;,y) = }Zoem(z’y) + ht(:l),y). (225)

Working with this transformed model ensures the natural condition that the recovered base
of salt unequivocally lies below the top salt. No additional bound constraint is needed.
Accordingly, the objective function becomes

& = ||Wald — dops)||3 + BIIW (11t — ires) |13, (2.26)

where 7i,¢s denotes the reference model, given by Mref(Z,y) = log(h&%(x—’yl). Cor-

respondingly, the iterative solution for model perturbation in the (k + 1)th iteration has a
form similar to that of equation (2.13); i.e.,

St = (FTWTWaT + BWTW) ™ [TTWE (dopy — ) + WTW (iirey = )]
(2.27)
where J denotes the sensitivity matrix. Each element of the sensitivity matrix Ji; can be
expressed as

0d; 8h,- ad;
o Odi _ Ohj Odi 2.
Jz] 8mj a’mj ah,- ( 28)
From (2.25), we can derive that
oh(z,y) i m(z,y)
S = Y = - . 2.
om(@.) hoe h(z,y) — hu(,9) (2.29)
Equation (2.28) thus becomes
ad;
Jij = 5773 = (hj — hij) Gy, (2.30)
or
J = GH, (2.31)

where H = dia.g{l-ij — Etj}. The logarithmic parameterization is used widely in electrical
and magnetic geophysics, commonly to ensure the positivity of recovered conductivity (e.g.,
Oldenburg and Li, 1994). Kim et al. (1999) suggest a method for model parameterization,
which imposes more general bound constraints using prior knowledge about the upper and
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2.

Perturbation of base salt (m)
I 1 I
e &M o

b

-t

o
€Y

05 -2000
y(m) -1 ~4000 X (m)

Figure 2.5. The recovered perturbation of base salt using a small value of 8 10~12,

lower limits of a model. For the depth of the salt, we can define the model parameter as

h(z,y) — hi(z,y)
ha(, y) — h(z, y)) ’ (2.52)

m(z,y) = log (
where,

hl(iB,y) < h’(way) < h2($,y)-

Here h(z,y) represents the base salt, and hi(z,y) and hy(z,y) represents the lower and
upper limits of base salt respectively. The depth of base salt h(z,y) is given by

ha(z,)e™Y) + by (z,y)

e (2.33)

h(z,y) =
For this parameterizing, I derive the sensitivity matrix following the method used to obtain
equation (2.28). First, taking the derivative of h(x,y) with respect to m(z,y) in equation
(2.33) yields

om(z,y) ha(z,y) — hi(z,y)
Let J be the sensitivity matrix; then

_ 0di _ Ohj 0di _ (hj— hij)(haj — hy)
“ ij 3777._7' ahj hgj - hlj

Gij. (2.35)
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The problem can again be solved by equation (2.27).

Although equation (2.32) gives a more general parameterization, it is difficult to specify
geophysically reasonable upper and lower limits for this synthetic model with synthetic data.
Therefore, I use the logarithmic parameterization in equation (2.24) hereafter.

2.4 Regularization parameters

As in any inversion, the criterion for choosing an optimal regularization parameter is
crucial. T have used two approaches: (1) discrepancy principle and (2) L-curve criterion. In
the following, I discuss these two methods separately.

2.4.1 Discrepancy principle

Matrix Wy in (2.1) is specified to be a diagonal matrix whose ith element is the recipro-
cal of the standard deviation of the ith datum. Therefore, assuming that the contaminating
noise is independent and Gaussian with zero mean, makes ¢4 a x? variable with N degrees
of freedom, and its expected value is E(x?) = N. This provides a target misfit for the
inversion, i.e., a model satisfying E(¢4) = N is the objective solution. The x? criterion is
difficult to apply for this problem, however, because

(1) In practice, we seldom have knowledge of the standard deviation of the data.

(2) Residual geological noise, such as bathymetry error, is often present in the data. Such
noise leads to correlated errors in the data and their full covariance matrix cannot be
estimated easily.

Therefore, it would be inappropriate to adopt the discrepancy principle for this inverse
problem.

2.4.2 L-curve criterion

The L-curve approach (Hansen, 1992) is a robust criterion based on the trade-off
between the data misfit and the model objective function. According to Lawson and Hanson
(1974), when plotted on a log-log scale the curve of the model objective function as a function
of the data misfit can have an obvious corner:

e For regularization parameter values § larger than that of this corner point, the model
objective function does not change dramatically, while the data misfit does.

e On the other hand, if the regularization parameter decreases beyond this point, the
model objective function increases rapidly, but the data misfit decreases little.

The regularization parameter responsible for the corner point is judged to be the best
regularization parameter, and the corresponding model is selected as the optimal solution.
Searching for the best regularization parameter can be accomplished automatically because
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Figure 2.6. Tikhonov curve and its curvature as a function of 8. The optimal solution is

the model corresponding to the B value for which the curvature is maximum.

the curvature of the Tikhonov curve reaches the maximum at the corner. The curvature of
the Tikhonov curve is defined as (e.g., Li and Oldenburg, 1999)

w(B) = 0P — (p;'n(ng , (2.36)
()2 + (¢},)2] 2

where ¢y = log(dq), ¢m = log(¢m), and symbols 7 and # denote the first and second
derivatives with respect to 3. Therefore, to carry out the inversion, one need only seek the
maximum curvature of the Tikhonov curve. Figure 2.6 shows an example of a Tikhonov
curve and its curvature as a function of 8. The point of maximum curvature representing
the optimal solution clearly seen in this example.

Since the data error in most practical applications is unknown, the L-curve is a better
choice than is use of the discrepancy principle. I therefore have chosen to use this criterion
in the remainder of the thesis.

Although the L-curve criterion was originally developed for linear problems, it can be
applied to non-linear problems in two ways.

L-curve applied to the complete solution for a set of A’s This is a direct
approach for regularized inverse problems. Starting with a reasonably large value of B,
the iterative algorithm with logarithmic parameterization derived in Section 2.1 is carried
out for a set of § values. Correspondingly, a set of ¢ and ¢m values are computed at the
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solution for each 8. The optimal model is then obtained by the L-curve criterion. Specifying
a set of 8 values, the following steps define the flow of implementation:

1 Let k = 0 define an initial regularization parameter, fp, an initial model Mg, and a
reference model 7.

2 Compute the value of the right-hand side of equation (2.12) in the kth iteration.
3 Solve equation (2.12) with the conjugate gradient method.

4 Linearly search for a step length o that satisfies ¢ < ¢r—1. The predicted data
for each model and value of o are computed nonlinearly to obtain the value of the
objective function.

5 If the convergence condition in (2.18) is not met, proceed to the (k + 1)th iteration by
continuing the iteration from step (2). Otherwise, stop the iteration. Set mo = g;
decrease the value of 3, and start over from step (1). Stop when the process has been
followed for all B values in the specified step.

6 Find the optimal model using the L-curve criterion.
Dynamically choose § at each iteration Li and Oldenburg (1999) present an
I-curve-based algorithm different from the one above. Instead of solving the problem com-
pletely for 3, this method dynamically picks the best B value from the L-curve at each

iteration of linearized minimization. Given the series of ’s, this algorithm can be carried
out in the following steps:

1 For k = 0, define an initial model 773 and a reference model Mref. Specify a set of 3
values, i.e., B1, - * *, Bn-

2 Compute the value of right hand side of equation (2.12) in the kth iteration.
3 Solve equation (2.12) with the conjugate gradient method for each S value.

4 Compute the values of linearized data misfit and model objective functions in the kth
iteration for all B values. The linearized data misfit and model objective functions
are given by

STV = (Wa(adsV — AdE)|E, (2.37)
where,
AJS,IZ:I) = J:Jbs - d_(k)a
Ad’(k+1) — GA'r'r'L(k+1).

FEFD = (m®) 4 ARED — i ) TWTW (®) + AREYY — i) (2.38)
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5 Find the optimal model using the L-curve criterion and solve the linear equation.

6 Compute the predicted data for the optimal model by full forward modeling and
check the convergence condition defined in (2.18). If the criterion is met, stop the
computation. Otherwise, return to step (2).

Of these two approaches, the second method is more efficient. Through the complete-f
method, one needs to perform full forward modeling in each iteration for every f3 to obtain
the objective functions, and a full inverse solution must be obtained for each B. In the
dynamic-f method, the regularization parameter is searched linearly. One need carry out
full forward modeling only once in each iteration after the best 8 has been obtained. Because
this latter method costs much less than the first one, I choose the dynamic-$ method to
search for the regularization parameter.

2.5 Numerical example

To illustrate the performance of the algorithm, I use the synthetic salt model shown in
Figure 2.7. The density contrast (Figure 2.8) varies in the vertical direction only, and the
model is assumed to lie below the nil-zone, where the density contrast between the salt and
the sediments is close to zero. Therefore the salt body has a negative density contrast that
increases in magnitude with depth. To simulate observed data, I generate 400 observations
and contaminate them with Gaussian random noise having a standard deviation of 0.1
mGal. These data are shown in gray-scale contours in Figure 2.9. To emulate field data, I
assume that the part of the base of salt shown by the gray contours in Figure 2.10 is known
as the high confidence zone (HCZ). The unknown model to be recovered is defined over
the central region in Figure 2.10. The base of the salt in the reference model (also initial
model) has a 4000-m constant depth so the maximum difference between the true and the
reference model is 1500 m. The top and the base of salt are discretized into 250-m square
cells, and I choose a; = 1074, o, = ay = 50, according to the rules described in Section 2.1.
In addition, to evaluate the difference between the two algorithms deriving 8 by different
methods, I carry out two inversions applying the L-curve criterion in the two different ways.

Figure 2.11 shows the recovered model, using the complete-3 method. The horizontal
plane through the model shows the depth of the base salt in the initial model. The recovered
model has the base salt extended downward and closer to the true position of the base. A
clearer view about the recovered model can be seen in Figure 2.12, in which a contour map
shows the difference between the true model and the recovered model.

Also, I apply the dynamic-3 method on the same model and the same data under same
conditions. The best obtained 8 in each iteration turns out to be the same: 1.28 x 1071,
which shares the same values of the best 3 obtained using the complete 8 method. As shown
Figure 2.12, the difference between the inverted solutions using two different methods has
a maximum error of only 7 m. making the outcome from these two algorithms comparable.
The latter method, however, is more efficient, requiring about only half the computation
time.
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To illustrate further the efficiency of the method using the dynamic-3 approach, I carry
out another experiment by not fixing a HCZ in the inversion. Now a larger region of base
salt needs to be recovered, requiring that number of cells increases from 507 to 1010. Again,
I perform inversions using the two different algorithms. Figure 2.14 shows the difference
between the recovered depths using two different algorithms. The maximum error here is
only 0.8 m, and the CPU time is reduced from 50 minutes to 8 minutes when the dynamic-8
approach is used. In general, the larger the problem, the more the saving produced by the
dynamic-8 method.

2.6 Summary

In this chapter, I have developed an algorithm to perform inversion of gravity data for
base salt. The numerical example shows that this algorithm could improve the definition of
shape of the base salt. Also, as shown in Figure 5.13 in Chapter 5, using the recovered base
salt in Figure 2.11 produces 2D comparable quality of subsalt seismic image to that using
the true salt model, based on a 2D synthetic velocity model through the 3D salt model.
Inversion with this algorithm, thus, could give models that aid in seismic imaging.

The algorithm that uses the logarithmic parameterization and chooses dynamically
based on the L-curve criterion turns out to be a good combination that is numerically stable
and computationally efficient.

The result from the first numerical example can be considered as the best model from
the inversion since all the assumptions made are correct, with modest random error included
in the data. This model is used as the basis for comparisons in the sensitivity studies treated
in Chapter 4.
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Figure 2.7. 3D view of the true salt model. The staircase appearance reflects the model
discretization used in the inversion.
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Figure 2.8. Curve of the density contrast between the salt and the sedimentary host. The
density contrast here varies only in the vertical direction.
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Figure 2.9. Synthetic gravity data contaminated with Gaussian noise whose standard
deviation is 0.1 mQGal, i.e., about 1% of the maximum size of the gravity anomaly.
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Figure 2.10. Plan view of base salt in which the contoured region shows the known portion
of the base of salt while the blank region in the center is the area of unknown base of salt
to be recovered from the inversion. The region of known base of salt is the HCZ.
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Figure 2.11. 3D view of the recovered model. Compared with the structure of the true
model in Figure 2.7, the base salt is extended downward toward the correct base salt from
the reference base salt, which is represented by the horizontal plane through the salt body.
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Figure 2.12. Contour map showing the difference between the depth of the true and recov-
ered base salt. The maximum error is 450 m, while the RMS error is approximately 170

m.
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Figure 2.13. Contour map showing the difference between the recovered base salt using the
complete-8 and dynamic-8 methods with fixed HCZ. The maximum difference is 7.2 m.
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Figure 2.14. Contour map showing the difference between the recovered base salt recon-

structed using the complete-8 and dynamic-8 respectively without fixing an HCZ. The
maximum difference is 0.8 m.



Dongjie Cheng / Inversion of Gravity Data for Base Salt 27

Chapter 3

Error analysis: data error

In this chapter, I examine the sensitivity of the model to data errors, which include un-
correlated random noise and correlated noise related to geology. In particular, I concentrate
on additive Gaussian random noise and correlated noise simulating inaccurate bathymetry
correction. For random noise, I derive two Bayesian-style linearized formulas for standard
deviation and bias of model and apply them to the salt inversion. Second, I quantify both
the sample standard deviation and bias of the model by carrying out a sequence of inversions
for each noise level. For correlated noise, I introduce spatially correlated perturbations to
the bathymetry to simulate geological noise and quantify the inversion error as a function
of perturbation. I use the same synthetic salt model that used in Chapter 2.

3.1 TUncorrelated random noise

Uncorrelated random data noise can come from several different sources, including
(Clarke, 1969) random measurement errors, shallow distributed masses, and errors in cor-
rections for terrain and elevation. Such noises can propagate into the inverted results and
increase the uncertainty of inverted models. In practical applications, field gravity data
are contaminated by many contributing error factors. It is therefore reasonable to assume
that the noise is Gaussian, independently and identically distributed based on the central
limiting theory. Moreover, the assumption of Gaussian random noise is widely used as the
major type of data error in gravity inversion studies (e.g., Reamer and Ferguson, 1989; Li
and Oldenburg, 1998). Therefore I adopt the same assumption in the following. I evaluate
the standard deviation and bias of the recovered base salt as a function of the amplitude of
additive Gaussian random noise in the gravity data.

I approach this topic in two different ways. First, I derive linearized formulas for
standard deviation and bias of inverted models. Second, for each noise level I carry out
100 inversions each with 100 different realizations of the additive noise. The six levels of
noise have standard deviation of 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 mGal, as compared with
a maximum gravity anomaly of about 10 mGal. Based on the test results, I estimate the
behavior of errors in the model and the accuracy of the linearized approximation.

3.1.1 Linearized analysis

In this section, I derive an analytical solution for the standard deviation and bias of an
inverted model based on the Bayesian approach and linearization around the final inverted
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model. By definition in equation (2.3), a model is governed not only by the input data,
but also by the incorporated reference model. According to Scales and Snieder (1997) this
kind of problem is Bayesian since the reference model serves as the prior information of
the model. Alambaugh and Newman (1999) present a posterior covariance matrix for the
model and model resolution matrix (MRM) for a regularized inverse problem incorporating
no reference model. Similarly, I derive the covariance matrix and the resolution matrix by
linearized approximation for the base-salt inversion, but incorporating a reference model.
Then, I compute estimates of the standard deviation and bias of models.

Following Tarantola (1987), if we assume that the observation is independent of priori
information of model parameters and that the distributions of data and prior information
of model parameters both are Gaussian, the posterior probability density of the model can
be expressed as

org() = C -} [(FeR)-d)" c5* (F(17)—d) +(i—17i0)T C! (ko) , (3.1)
where C is a constant, d denotes the observations, F'(1) denotes the predicted data, Cy and
Cm are the data covariance and a priori model covariance matrices, and 773y represents a
reference model. To find the maximum a posterior probability (MAP) model, one performs
a Bayesian inversion to maximize the a posterior probability density of model parameters,
om(m). This is equivalent to minimizing

®(R) = [(F(ﬁi) - J)T c;! (F(m) - J) + (7 - o) O (i — o). (3.2)

The Bayesian inversion in equation (3.2) is the same as the regularized inversion problem
defined in Chapter 2 if Wy = C ! and BWTW = C,'. Bayesian error analysis thus is
applicable to uncertainty study for the regularized inverse problem under the assumptions
above.

According to Tarantola (1987), if the forward operator is not too nonlinear, i.e., F(7)
is linearizable in the vicinity of the MAP model, i.e., M arap, then the a posterior probability
density in the model space is approximately Gaussian:

om() o« C - e(m—"ﬁMAP)TCA_/ll(ﬁ"_mMAP), (3.3)

and
1

Cm = (GlyapCp'Guapr + CRY) 7, (3.4)

where miprap is a maximum a posterior probability model, and Gprap is the sensitivity
matrix evaluated at Maap, C;' = WFW, and C;! = BWTW.

Appendix A gives the derivation of the covariance matrix. Since the absolute value
of variance is given by the scaled diagonal elements in the covariance matrix, we have the
variance as

o2 (i) =ACpm(3,3), i=1,2,.., M, (3.5)
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where ) is a scalar, dependent on the data error, reference model, and regularization pa-
rameter, and M is the length of the model vector. Further, the depth of the base salt h(i)
is given by [equation (2.25)]

h(i) = hoe™d 4 hy(i),  i=1,2,.., M. (3.6)

Therefore, the first-order approximation of the standard deviation of the solution for the
base salt is given by

on(i) = hoe™dan(3), i=1,2,.., M. (3.7)

Because m(i) = log(—(—)—-—h&l) equation (3.7) becomes

iR

In Appendix B, I obtain the linearized approximation for the bias of the recovered
model. When we reach the MAP model, the model bias can be expressed approximately as

7 — e = [(G{JAPC;lc:MAP+C;) GL apCy \Grap — I] (itrue — T0),  (3.9)

where G ap is the sensitivity matrix evaluated at miarap. from equation (2.24), we derive

muap(T,y) —Mirue(z,y) = log %—ﬁﬁ%ﬁ%. Therefore, the estimated bias of the depth
of the base salt can then be computed

h(x, y) - htrue(fvv y) = (htrue(may) - ht(xay))emMAP(z’y)‘mtmc(z’y) - (htrue(xay) - ht(w, y))
(3.10)

To illustrate the results in equation (3.7) and (3.10), I carry out a sequence of inversions
for the model defined in the numerical example in the preceding chapter. The input data
are the synthetic anomaly produced by the salt model contaminated with six different levels
of random noise. The standard deviations are respectively 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5
mGal. Again, I assume independent identically-distributed Gaussian random noise and use
the anomaly observed on the surface at the same 400 points shown in Figure 2.9. The noisy
data are defined as follows

Jobs = CZ:‘,rue + O'dN(Oa 1), (3'11)

where N(0,1) denotes Gaussian random noise with unit standard deviation, o4 denotes the
standard deviation, and dtme represents the true anomaly by salt. Through inversion, I
obtain a set of recovered depths of base salt (Figure 3.1) corresponding to different noise
levels and assume that they are the maximum a posterior probability models.

Using equation (3.7) and (3.10), I compute the linearized estimates of standard devi-
ation and bias of model while setting A = 1 arbitrarily. The contoured results are shown in
Figure 3.2 and Figure 3.3, respectively.

The predicted standard deviation in Figure 3.2 is quite correlated with the thickness
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Figure 3.1. Recovered depths (m) of base salt for different levels of random noise. The
numbers shown on the top of each panel represent the standard deviation of the noise (m).
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Figure 3.2. Linearized approximation of the standard deviation (m) for recovered base of
salt for different levels of random noise. The numbers shown on the top of each panel
represent the standard deviation of the noise (m).



Dongjie Cheng / Inversion of Gravity Data for Base Salt 31

Figure 3.3. Linearized approximation of the bias (m) for recovered base of salt for different
levels of random noise. The numbers shown on the top of each panel represents the standard
deviation of the noise (m).

of the salt: the thicker the salt, the larger the standard deviation. Given the noise level,
the standard deviation of the base salt defined in equation (3.8) depends on both the
thickness of the salt and the covariance matrix, which is evaluated at the MAP solution of
the logarithm of the salt thickness (model parameter) [equation (3.4)]. Therefore, the salt
thickness primarily determines the distribution of the standard deviation of the recovered
base salt. Further, in order to ascertain the relationship between the standard deviation of
the solution and noise levels, Figure 3.4 shows the computed RMS values for the standard
deviation of the model for each noise level. Not surprising, the error increases with the
noise level.

The contoured maps of the estimated bias exhibit a uniform pattern for different noise
levels in Figure 3.3. The positive values along the edge of the model indicate that the
base salt in the recovered model deeper than the true one in those regions. In contrast,
negative values of bias concentrate in two areas in the center of the model. Clearly, then,
the recovered base salt should be flatter than the true model. The RMS values for the
bias in Figure 3.5 increase with the noise level. The increment, however, decreases with
the increase of noise, and the difference between the maximum and minimum bias is only
about 45 m. It appears that the bias of the model does not vary significantly when the
random noise level changes. 155-m RMS bias, however, is large when the data standard
deviation is 0.05 mGal. This is because the recovered depth of base salt is not only governed
by the input gravity data but also the incorporated reference model. Specified in equation

T

I
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Figure 3.4. RMS error estimated from the linearized approximation of standard deviation
for the recovered base of salt versus the standard deviation of the added random noise in
the data.

(2.2), the expected model has minimum difference from the reference model, which has large
difference from the true model here. Therefore, the recovered base salt largely biased from
the true position although the noise level is not too high.

The standard deviation and bias may not reflect the true values since the linearized
analysis is based on a number of assumptions. These estimates, however, provide a quali-
tative measure of the reliability and indicate the relative reliability in different parts of the
model.

3.1.2 Direct evaluation

The above analysis illustrates the behavior of uncertainty of base salt by linearized
approximation. A more accurate method is to evaluate the standard deviation and bias
directly by carrying out a sequence of inversions using datasets contaminated by different
realizations of noise with the same standard deviation. When the number of realizations
is sufficiently large, one can expect an accurate estimate of the standard deviation and
bias. Corresponding to the linearized-approximation study above, I use data with six dif-
ferent levels of noise. The standard deviations are 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 mGal. I
generate 100 realizations of the noise for each level of standard deviation and invert data
contaminated by each realization.

Once all 100 inversions are done, for each noise level I compute the sample standard
deviation and bias of the model relative to the true model.



Dongjie Cheng / Inversion of Gravity Data for Base Salt 33

190p

185F

-

©

(=3
T

175

170p

RMS model bias (m)

165

160p

N 2 N 2 N 2 2 N )
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Data standard deviation (mGal)

Figure 3.5. RMS error estimated from the linearized approximation of bias for the recovered
base of salt with respect to the random noise versus the standard deviation of the added
random noise in the data.

1. Sample standard deviation:

N
1 .
Ohi = A| N1 ;(hﬁ — Pavej)? j=1,., M (3.12)

where h;; denotes the depth for the jth cell in the recovered base salt for ith realization,
havej Tepresents the average depth of the base salt at jth cell, and N = 100 is the
number of realizations.

2. Bias .
o' = h'a.ve - htruea (3'13)

where ﬁtme denotes the true depth of the base salt.

The computed sample standard deviations as a function of the data error are shown in
Figure 3.6. These contour maps show that the standard deviation increases with increasing
noise level, as expected. They, however, show a pattern that differs in detail from that in
the linearized approximation shown in Figure 3.1.

Figure 3.7 summarizes the estimated standard deviation by both the linearized ap-
proximation and the direct evaluation, showing RMS values for the standard deviation for
different noise levels. The RMS value for the sample standard deviation corresponding to
the maps in Figure 3.5 not surprisingly increases with the noise level. Moreover, the result

|
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by linearized approximation is generally consistent with the computed values in terms of
the trend (Figure 3.7). The values differ approximately by a constant scaling factor %,
which is not surprising since the covariance matrix provides only a relative estimate of the
standard deviation [recall that we used an arbitrary choice for A (i.e., A =1) in equation
(3.5)]. Therefore, linearized approximation can be helpful for estimating the trend of the
errors of models with different levels of random noise in data.

The bias in the depth of the recovered base salt is summarized in Figure 3.8. The
contour maps indicate that the evaluated bias is close to that of the linearized approximation
shown in Figure 3.3. Figure 3.9 further illustrates this conclusion. This indicates that the
linearized approximation can be used (with a scale factor) to quantify the bias in the
inversion.

Note again that the standard deviation and the bias do not change significantly when
the noise level changes. Because we have added uncorrelated Gaussian noise and no geo-
logically reasonable base-salt structure at a depth of several kilometer can produce highly
variable noise on the surface, random noise is not a serious factor in inversion. This can
be further illustrated by the Tikhonov curves for different levels of noise in Figure 3.10.
For large B values the curves flatten out because the recovered models fit more noise with
increasing the level of data noise. The locations of the quite distinctive knees of all curves,
however, are almost same; changing the level of the random noise does not change the model
solutions significantly, i.e., the models solutions are not sensitive to the change of the level
of noise. Therefore, the standard deviation and the bias may not vary rapidly with the
increasing of the level of noise. Purely uncorrelated noise, of course, is not common in the
practice. I will address the issue of correlated noise in a later section.

In summary, in the presence of random noise both the bias and standard deviation of
recovered models increase with increasing data noise level, since the model attempts to fit
the increased noise. Increasing the level of random noise, however, does not significantly
increases the uncertainty of the recovered depth of the base salt.

3.2 Geological noise

In addition to uncorrelated random noise, correlated noise often is present in gravity
data. Sources of the correlated noise include error in density contrast, in bathymetry
correction, and in residual regional correction. Unlike uncorrelated random noise, correlated
noise can lead to large-scale spurious structures in gravity inversion. It is, however, difficult
to investigate this kind of error in general without problem-dependent information. Instead,
I focus on one type of correlated noise that can often happen in practical applications: the
data error caused by inaccurate bathymetry correction.

I simulate the error in bathymetry correction by using correlated random noise to
perturb the bathymetry, and then add the computed gravity anomaly produced by the
perturbation of bathymetry to the gravity data of the salt body.

For simplicity, I assume that the correct bathymetry plane is located at the depth of
1200 m, with constant density contrast, and the erroneous bathymetry departs from this
plane by correlated Gaussian random noise having four different standard deviations: 5, 10,
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Figure 3.6. Computed standard deviation (m) of recovered salt models for different levels
of random noise. The numbers shown on the top of each panel represent the standard
deviation of the noise (m).
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Figure 3.7. RMS value of the measured standard deviation of depth of recovered base salt
versus standard deviation of added random data noise.




36 Chapter 3. Error analysis: data error
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Figure 3.8. Measured bias of depths of base salt (m) for different levels of added random
data noise. The numbers shown on the top of each panel represent the standard deviation
of the noise (m).
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Figure 3.9. RMS value of measured bias in recovered depth of base salt (m) versus the
standard deviation of additive random noise in the data.
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Figure 3.10. Log-log plot of the data misfit, ¢4, as a function of the model objective
function, ¢, for different levels of nose.

15 and 20 m, with a correlation radius of 400 m.

The perturbation is simulated by a geostatistical approach, the FF'T method described
by Easley et al. (1990). The autocovariance function of this perturbation model is given
by,

_10z2 92
a(z,y) = Ve izt (3.14)

where ) is the standard deviation of the perturbation data, and L, and L, denote the
correlation lengths in z- and y-directions. Fourier transform of a(z,y) gives the power
spectrum

P(wwawy) = fzy(a(may))a

where Fy, denotes the 2D Fourier transform. In the Fourier domain the spectrum of the
perturbation is given by

b(wg,wy) = P(wg, wy)e”, (3.15)
where 6 is the phase. Each random number is produced by one realization of random phase
6, which is uniformly distributed between 0 and 27. To obtain the numerical results of the
bathymetry perturbation, I create a model by unit standard deviation, and then scale this
model with four different levels of standard deviations, 5, 10, 15 and 20 m. Therefore, all
perturbations have the same statistical properties except for amplitude.

Figure 3.12 shows the bathymetry perturbation introduced into the model for a stan-
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dard deviation of 5 m. I add the gravity anomaly (see Figure 3.13) produced by bathymetry
perturbations having different levels of standard deviation to the noise-free gravity data and
invert the contaminated data to obtain an estimate of the base salt. To assess the error
for various perturbed models, I evaluate the difference between the best model and the
recovered models.

The best model here refers to the model reconstructed by inverting the noise-free data.
Ideally, it is the model that best fits the data. Equation (2.3) becomes

¢ = da = ||(d — dovs)|[3- (3.16)

Since an inversion algorithm can be carried out only discretely, numerical error inevitably
occurs. Models that exactly fit data that contain numerical error cannot be the best model.
Therefore, it is reasonable to use a regularized model. Here, I assume that the best model
is the one recovered from the noise-free data incorporating a reference model as in equation
(2.26). I carry out the inversion with an L-curve criterion, with Wy being an identity matrix.
The inverted model is shown in Figure 3.14.

I conduct one realization of gravity inversion for each of the four different levels of noise.
Figure 3.15 shows the contour maps of the difference between the depth of base salt for the
best estimated model and the recovered models. As expected, the error of the base salt
increases monotonically with the bathymetry perturbation. This kind of error is problem-
dependent, e.g., the large positive anomaly on the upper side of the contour map in Figure
3.13 leads to a large pull-up in the base salt shown toward the top left-side of the contour
map in Figure 3.15. The error has the same pattern for different amplitudes of bathymetry
perturbation because the statistical pattern for all the bathymetry perturbations is same
in this study. The curve of RMS difference (see Figure 3.16) also demonstrates that the
error of the recovered base salt increases monotonically with the perturbation. With 10-m
perturbation, for example, the RMS difference exceeds 200 m. In this sense, the correlated
geological noise can demonstrably cause large error in base salt.

3.3 Summary

I have investigated the influence of uncorrelated random data error and correlated
data error on gravity inversion. Change in the levels of the uncorrelated random data noise
has only small influence on the standard deviation and bias of the recovered base salt.
In contrast, the recovered base salt is more sensitive to the amplitude of the bathymetry
perturbation. Therefore, one should pay more attention to the correlated data noise in-
troduced by geological features. Moreover, the linearized approximation of the uncertainty
shows that the linearized covariance matrix can provide a qualitative understanding of the
error in the model. The biases computed by both linearized approximation and numerical
testing are consistent with one another.
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Figure 3.11. 3D view of salt model in the presence of horizontal bathymetry. The
bathymetry is assumed be constant at depth of 1200 m.
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Figure 3.12. Bathymetry perturbation: correlated Gaussian random noise having the
standard deviation of 5 m.
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Figure 3.13. Data noise introduced by a variable bathymetry simulated using a correlated
random perturbation with standard deviation of 5 m.
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Figure 3.14. Best estimated model of the base salt inverted from noise-free data.
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Figure 3.15. Contour maps of the difference between the depth of the best-estimated base
salt and the recovered base salt for different levels of bathymetry perturbation.
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Chapter 4

Error analysis: prior information

The inversion algorithm assumes that top salt, density contrast, and a portion of the
base salt, the high confidence zone (HCZ), are known. In practical applications, these model
parameters are obtained through different geophysical methods and thus inevitably contain
errors. Inaccurate assumptions for these presumed-known quantities degrade the quality of
the inverted base salt. It is of practical importance to assess the sensitivity of the model
to errors in prior information about the model. I examine the influence by inverting the
gravity anomalies and quantifying the errors in the inverted models produced by each of
these three types of errors.

To understand the influence of errors in the model globally, I used the root-mean-
square error of the recovered base of salt relative the best-estimated model as a numerical
measure. The RMS error is defined as

1 M

Crms = M Z(hbest(i) - hrec(i))2, (4-1)

=1

where, et denotes the best-estimated model depth and hrec(i) the recovered model depth.
The best-estimated model refers to the model recovered from the same data without any
error in the above assumptions. The input data, however, are still contaminated by Gaussian
noise.

The synthetic gravity data are the same as those used in Chapter 2, and the contami-
nating Gaussian random noise has a standard deviation of 0.1 mGal.

4.1 High confidence zone (HCZ)

In practice, one often fixes a portion of the base of salt (e.g., Figure 2.10) that is
believed to be accurately known; this portion of the salt might, for instance, be obtained
from seismic imaging. This part of the base of salt is the so-called high confidence zone
(HCZ). In gravity inversion, this part of the model is fixed and excluded from the unknown
model to be recovered. Correct specification of the HCZ can reduce the uncertainty of the
model since it provides an additional constraint, as illustrated in Figure 4.1. The HCZ is the
same as that defined in Figure 2.10 in Chapter 2. Figure 4.1a shows the difference between
the base-salt depth in the true model and that the recovered model with an HCZ constraint;
Figure 4.1b shows the difference between the true model and the recovered model without
the HCZ constraint. Clearly, the HCZ has helped reduce the model error.
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{m)

(a) (b)

Figure 4.1. Comparison between the base-salt depth in the true model and in the recovered
model (a) with HCZ, and (b) without fixing an HCZ. The maximum error in (a) is about
400 m, whereas it is larger than 600 m in (b). Within the white curve in (b) is the unknown
model area in (a).

If the HCZ is incorrectly specified, however, results can be greatly degraded. Error in
the HCZ is transmitted to the recovered base salt in the unknown area and can produce
large errors. For instance, Figure 4.2 shows the recovered model when the HCZ is shifted
to shallower depth by 2.5%. The maximum difference in depth between this and the best
model is as large as 600 m. It is therefore important to understand the magnitude of error
that can be caused by such input errors.

I assess the sensitivity of the recovered model to HCZ errors by perturbing the HCZ by
+2.5%, £5% and £10% from the true depth. Figure 4.3 shows a cross-section through the
center of the 3D salt model in the z-direction (the location of the cross-section is shown as
the dashed line in Figure 5.1). I pretend that the perturbed HCZ is correct and carry out the
inversion based on different incorrect HCZs. For each level of perturbation, one realization
of inversion is applied. Figure 4.4 shows plan-view contour maps of the recovered base salt
for different perturbations to the HCZ. I again define the best-estimated model as the model
recovered from the data without errors in HCZ, and use it as the reference to compute the
error in the recovered model. Figure 4.5 shows the difference between the best-estimated
model and the recovered models for the six levels of perturbations.

As one might expect, the recovered models move in the opposite direction as the HCZ
is perturbed up or down.The influence of error in HCZ is dramatic: perturbing upward by
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Figure 4.2. Influence of incorrect HCZ on the inversion for the depth of base salt. (a)
The recovered model for the HCZ is shifted up by 2.5%. (b) The difference between the
recovered base-salt depth when the HCZ is shifted up by 2.5% and the recovered base salt
wihout error in HCZ. The maximum error can be larger than 600 m.

5% produces a maximum difference of more than 1000 m from the best-estimated model.
Although this error is problem-dependent, this large number does give an indication of the
magnitude that can be expected in general.

To summarize the error dependence on HCZ errors, Figure 4.6 shows the RMS differ-
ence between the best-estimated model and the models recovered with incorrect HCZ. The
curve is asymmetric, indicating that shifting HCZ upward leads to larger error compared
to shifting downward by the same perturbation. This is because gravity data are more
sensitive to shallow geology, since gravity anomalies decay with distance squared.

Erroneous HCZ does not necessarily lead to larger error in the inverted model than
does inversion without fixing an HCZ. Figure 4.7 shows the contoured difference between the
true base salt and the recovered base salt with HCZ that is 5% deeper than the true value.
The maximum error in Figure 4.7 is about 600 m, close to the maximum error without
fixing an HCZ (Figure 4.1b). However, the RMS value of the error caused by the erroneous
HCZ is 262 m whereas it is 312 m for the case without HCZ specified. The RMS value of
the error, however, exceeds 360 m when the HCZ is 5% shallower than the true value. This
indicates that when the error in the HCZ is within certain range, e.g., less than 3% or 4%,
its use still can improve the base salt salt. Both underestimating and overestimating the
HCZ depth by more than that amount can lead to large errors in inverted depth of base
salt, the effect being more severe for the former.
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Depth (m)

Figure 4.3. 2D cross-section through the 3D salt model showing the definition of HCZ
perturbations. The dash-dotted lines represent the true top salt and base salt and the solid
lines represent the perturbed HCZ. As the HCZ is shifted from its true location, the initial
model changes accordingly. The three dashed lines represent the true initial model (bold
line), and upper and lower limits of the perturbed initial models.
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Figure 4.4. Base-salt depth (m) recovered using different incorrect HCZs. The numbers
shown on the top of each panel represent the perturbation of the HCZ in percent.
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Figure 4.5. Base-salt depth difference (m) between the best model and models recovered

using incorrect HCZ. The numbers shown on the top of each panel represent the perturbation
of the HCZ in percent.
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Figure 4.6. RMS depth differences between the best recovered model for base salt and
those using incorrect HCZ. Here, “+” means pushed downward.
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Figure 4.7. Base-salt depth difference between the true base salt and the base salt
recovered while the HCZ is shifted down by 5%. The RMS error is 262 m.
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4.2 Error in top of salt

In seismic prestack depth migration, the seismic reflection data are migrated to con-
struct an image of subsurface geological features based on models for migration velocity.
The error in overburden velocity in the migration-velocity model can cause depth errors
and quality degradation in the image of the top of salt. One dominant result can be a DC
shift in depth of the entire salt image. In the 3D synthetic salt example, this implies that
the top salt is erroneously defined, so that both the top salt and HCZ used are incorrect.

I simulate this kind of error by perturbing the top salt by a constant, moving the
known top salt, together with the HCZ, up or down in depth while preserving its shape.
Specifically, I perturb the depth of salt by £50, £100, and +200 m. Figure 4.8 shows
the same 2D vertical-section as in Figure 4.3 through the 3D salt model illustrating the
definition of such perturbation. The “+” means shifted downward. I pretend that these
perturbed top salt and HCZ positions are correct and fix them in the inversion. Moreover,
as shown in Figure 4.8, the initial model for the base salt also changes with the perturbation.
Following inversion for each of these perturbed models, the recovered models for base salt
corresponding to different top-salt perturbations are shown in Figure 4.9, and the differences
between the best-estimated and the recovered depth of base salt in Figure 4.10. Because
shifting the top salt upward adds more salt above the true top salt, the recovered base salt
loses the keel-shaped feature to fit the introduced anomaly. On the other hand, shifting the
top salt downward leads to a deeper keel. The constant error in top salt also introduces
complex structures into the recovered base salt (Figure 4.10), which can lead to erroneous
interpretation, and as we shall see, degraded seismic imaging of the section beneath the
salt. The RMS differences for all perturbations between the best-estimated model and
the recovered models are summarized in Figure 4.11. Note the asymmetry of the curve,
i.e., shifting the top salt upward leads to larger error in the base salt than does shifting
downward by the same amount. This is again because gravity data are more sensitive to
shallower features. Because the imaging error in top salt is less than 100 m for good quality
of data, a 200-m perturbation to the top salt is a large amount in practice. The evaluated
errors shown here suggest that a possible large error in base salt may occur caused by the
DC-shift error in top salt. Meanwhile, the maximum error in Figure 4.11 caused by the
reasonable top-salt error (< 100 m) is smaller than 170 m, which is small, comparing with
the errors caused by HCZ error (< 5% in general) shown in Figure 4.6.

4.3 Error in density contrast

In practice, the background density in the sedimentary host is typically obtained from
density logs in sparsely located wells in the general vicinity of the salt body. A single den-
sity profile is often used throughout an entire 3D model region even though the background
density may well be laterally variable. The single well measurement may not be an accu-
rate enough representation of the density for the area. Incorporating inaccurate density
information in gravity inversion will cause error in the recovered model. In this section, I
introduce a simple error in the background density by perturbing the density contrast to
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Figure 4.8. 2D cross-section through the 3D salt model showing the top salt and perturba-
tions. The dotted lines represent the limits of the perturbed top salt and the dash-dotted
lines represent the corresponding changed HCZ and base salt in the initial model.
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Figure 4.9. Recovered depth of base salt (m) for different incorrect depths of top salt. The
numbers shown on the top of each panel represent the perturbation of the top salt.
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Figure 4.11. RMS base-salt depth difference between the best estimated model and
models with incorrect top salt position.

evaluate the influence of this kind of error on the recovered base salt.

I carry out a sequence of simulations by perturbing the density contrast as a function
of depth in Figure 2.8 by £10% and +20% (Figure 4.12), while keeping the HCZ and top
salt at their correct position. Figures 4.13 and 4.14 show the plan-view contour plots of
recovered depth of base salt and the difference between the depth for the best model and
the models recovered with incorrect density contrast. The influence of error in the density
contrast is relatively simple — the depth of the base of salt increases as the density contrast
decreases — but no complex structure is introduced (Figure 4.14). The explanation for
these trends is that when the density contrast is underestimated, more salt is required to fit
the gravity anomaly. Figure 4.15 shows an asymmetric curve of RMS difference as a function
of the density contrast. Because the gravity anomaly corresponding to the underestimated
density contrast is negative, the base salt is extended deeper to fit the data. Since the
amplitude of gravity anomaly is inversely proportional to the square of the depth of the
masses, more salt is needed than when the density contrast is overestimated. Further, a
10% error in density contrast, which is reasonable small error to expect in practice (Starich
et al., 1994), leads to an RMS error of about 300 m. A small error in density can thus
introduce large error in the base salt. Compared to the RMS errors in recovered base-salt
depth caused by incorrect HCZ and top salt, the errors in recovered base-salt depth due to
incorrect density may be the most severe problem in practice.

In summary, an accurately estimated sedimentary density is key to successful gravity
inversion. In practice, therefore, one must collect as much information as possible to define
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Figure 4.12. Perturbation of density contrast by £10% and +20%. Apo denotes the
correct density contrast.

the density contrast acceptably prior to applying gravity inversion. Furthermore, it might
be better to err on the side of overestimating the magnitude of density contrast since it
leads smaller error in the inverted model.

4.4 Summary

Using this newly developed algorithm, T have quantitatively assessed the errors in the
inverted depth of base salt produced by three different types of prior information for gravity
inversion. Seemingly small errors in these input parameters can lead to significant errors in
the recovered base salt. The results also demonstrate that underestimating any one of the
three input factors produces larger error in base-salt depth than does overestimating them.
This is attributed to the larger sensitivity of gravity data to the shallow features than to
deep ones. One must provide these input parameters that are as accurate as possible, and
especially avoid underestimating them, in order to enhance the reliability of inverted depths
for base salt. The error curves here provide an indication of errors to be expected in the
inverted base-salt depth in practical applications, and serve as a guide to data preparation
so that the inverted base salt can aid in seismic imaging of base salt and, thereby, of subsalt
structure.
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Figure 4.13. Recovered depth of base salt using incorrect density contrast. The numbers

shown on the top of each panel represent the perturbation of the density contrast in per-
centage of the true density contrast.
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Figure 4.14. Base-salt depth difference between the best estimated model and models using
incorrect density contrast. The numbers shown on the top of each panel represent the
perturbation of the density contrast in percentage of the true density contrast.
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Figure 4.15. RMS depth difference between the best model and models with incorrect
density contrast.
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Chapter 5

Sensitivity of subsalt seismic imaging to erroneous
base salt

In this chapter, through a seismic synthetic example, I evaluate an aspect of the
feasibility of applying gravity inversion to aid in subsalt seismic imaging. To do this, I
choose a vertical 2D cross section through the 3D salt model (Figure 5.1) studied above and
fabricate a 2D acoustic velocity model that passes through the center of the keel-shaped
structure. The cross-section for this model, shown in Figure 5.2, has a velocity distribution
similar to that of the SEG/EAGE salt model (e.g., Aminzadeh et al., 1994). The irregular
salt body, located in the central area of the velocity model, has a constant velocity of 4500
m/s. In addition to the salt body are three flat reflectors. The horizontal water bottom lies
above the salt body at a constant depth of 1200 m, and the water velocity is set at 1500
m/s. Below the salt are two reflectors: S, is at a depth of 6000 m, and S is a dipping plane
reflector whose depth varies from 6500 m to 7000 m. The velocities in the layers above
and below S are 4000 m/s and 4500 m/s. The velocity of the sediments enclosing the salt
between the water bottom and S is given by

v(z) = 2000 + 0.3125(z — 1200) m/s, (5.1)

where 1200 < z < 6000 m. Based on this model, I first assess how well gravity inversion
can help subsalt imaging if the gravity data are contaminated by additive random noise.
To address this problem, I assess the depth error of prestack migrated images of subsalt
features when the base salt recovered in the first numerical example in Chapter 2 (Figure
2.11) is adopted to construct the migration-velocity model. Second, to examine the influence
of errors in the assumed-known prior information in gravity inversion on subsalt imaging,
I conduct a sequence of seismic migration experiments in which a number of erroneously
inverted estimates of base salt are set in the sedimentary velocity models, and then assess
the quality of 2D depth-migrated images of the subsalt features.

5.1 Synthetic seismogram and migration

In this section, I discuss the approach used to create synthetic seismic data and seismic
migrations.
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Figure 5.1. Plan view showing the location of the 2D cross-section (dashed line) through
the model used for the tests of seismic imaging. Contoured here is the depth of the base of
the salt model.
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Figure 5.2. Acoustic velocity model, which extends 9000 m laterally and 7500 m vertically.

5.1.1 Seismic forward modeling

First, to obtain observations over the acoustic velocity model, I generate a set of syn-
thetic seismic data using 2D finite-difference (FD) modeling with flux-corrected transport
(FCT) (Fei, 1994). As compared with the conventional FD approach, this method requires
fewer points per wavelength of the upper half-power frequency (e.g., Scales, 1995) for the
same order of operator. Alford et al. (1974) and Kelly et al. (1976) state that to elimi-
nate the numerical dispersion in conventional FD methods requires at least 11 points per
wavelength of the upper half-power frequency for the second-order and 5.5 points for the
fourth-order operator. In contrast, Fei (1994) points out that the FCT method can produce
comparably accurate results with only 5 points per wavelength of the upper half-power
frequency for second order and 3.7 points for fourth order. Therefore, the FCT method
improves the efficiency of computation.

Here, I adopt the fourth-order FCT method, and specify a Ricker source wavelet having
peak frequency of 27 Hz. Considering the computation cost, I use 2.7 points per wavelength
of upper half-power frequency rather than 3.7 points. Fei (1994) has shown that 2.7 points
per wavelength of upper half-power frequency can give an acceptable result. Accordingly, I
discretize the model into a grid of contiguous squares, with cell size of 15 m x15 m. The
snapshots of the wavefield in Figure 5.3 indicate no strong numerical dispersion with this
setup. Also, Figure 5.4 shows three shot records, whose sources are located at 300 m, 4500
m and 8700 m in the z-direction, with no obvious dispersion present. Apparently, then,
this parameterization of the forward modeling is acceptable. To emulate field-scale data, I
used the acquisition parameters for the synthetic data shown in Table 5.1. The zero-offset
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Parameter Value
no. of shots 300
shot spacing 30 m
group interval 15 m

maximum offset | 3000 m
sampling interval | 4 ms
record length 9s

Table 5.1. Acquisition parameters for modeled data.

x (m)

(a) 500 ms {(b) 1000 ms (c) 2000 ms

Figure 5.3. Depth-section showing snapshots of the wavefield at different times computed
by the FCT-corrected FD method. The source is located at the surface and 4500 m in the
z-direction.

section obtained with these parameters, in Figure 5.5, displays clear reflections without
severe numerical error. The features diagonally crossing over the section are artifacts from
incompletely absorbing boundaries at the vertical sides of the model.

5.1.2 Seismic migration

I did tests with both finite-difference and Kirchhoff approaches to prestack depth
migration. Based on comparison tests, my choice for subsequent portions of the study
was to use Kirchhoff prestack depth migration (coded in SUKDMIG2D in SU, Liu, 1993).
Kirchhoff migration is a ray-based or high-frequency method. Its advantage is that it is
computationally much faster than the finite-difference method, while retaining generally
good quality of imaging. The Kirchhoff method, however, has shortcomings for models
with strong velocity contrast; the velocity model must be smoothed to minimize artifacts
from the ray tracing. Even then, it has difficulties in the presence of multi-pathing. To
smooth the velocity model illustrated in Figure 5.2, I apply the damped least-square method
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(a) (b) (©)

Figure 5.4. Shot records obtained at different source locations using FCT-corrected FD.
The sources are located at z-coordinate (a) 400 m, (b) 4500 m, and (c) 8700 m.

Figure 5.5. Zero-offset seismic data.
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Figure 5.6. (a) Velocity model smoothed with a two-dimensional operator having the
length of nine points in both the z-and 2-directions, and (b) the unsmoothed velocity
model.

of Liu (1993), which is similar in action to a two-dimensional Gaussian spatial smoothing
filter.

The traveltimes for the Kirchhoff method are obtained via paraxial ray-tracing. A
model smoothed with nine points, i.e., 120 m, in both z- and z-directions, yields good
imaging quality without excessively changing the velocity model for the models studied.
Figure 5.6 shows both the smoothed and unsmoothed velocity models. I fix the length of
smoothing window hereafter at 120 m in both z- and z-directions.

Considering the computation cost, a main concern is whether or not the imaging
of zero-offset (or, any single common-offset) data can provide acceptable images of subsalt
features because prestack migration, which involves many offsets, costs much more than does
poststack migration. Figure 5.7 shows common-offset depth-migration profiles for a range
of offsets. The images of the subsalt features for all the offsets show large discontinuities,
with distortions that vary with offset. Since the imaging of zero-offset data is based on the
exploding-reflector model, one possible source of the discontinuities is the multi-pathing
problem, such as may happen in zero-offset data at the edges of salt as in Figure 5.8. This
might be the reason why the quality of the subsalt imaging of zero-offset data is poorer
than that for much of the nonzero-offset data, as seen in Figure 5.7. Migrated zero-offset
data by finite-difference migration (Fei, 1994) in Figure 5.9b, however, shows that both
the finite-difference and Kirchhoff methods yield a similar pattern of discontinuities. These
shortcomings in imaging for each offset are thus likely caused by shadow zones beneath the
edges of the salt (Muerdter et al, 1996), and cannot be attributed to the choice of migration
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approach used.

In contrast, prestack migration using a wide range of offsets produces much better
quality of subsalt imaging. Figure 5.10 shows a prestack Kirchhoff depth-migration profile
obtained using 100 offsets from 0 to 3000 m. The image of the subsalt features has much
better quality than that in any single common-offset result in Figure 5.5 although it too
exhibits artifacts in these features. A reason is illustrated by the common-image gather in
Figure 5.11. The coherence for both S; and S, which varies with offset, is somewhat higher
at far offsets than at near ones. The regions of weak amplitude can be attributed to the
problem of shadow zones. Concentrating attention on raypaths near the left flank of the salt
in Figure 5.12 shows that the rays from the three sources poorly cover the area (marked by
the circle) where the subsalt reflectors are also poorly imaged. Being out of the scope of this
study, I will leave this illumination problem open for future study. The averaging of results
for a range of offsets in prestack migration improves the subsalt imaging quality because
the locations of the imaging shortcomings associated with shadow zones varies with offset.
Although the imaging quality of deep reflectors still is imperfect, it is now good enough to
study the influence of choice of model for the salt body on subsalt imaging. Subsequently,
all the experiments of subsalt imaging are based on results of full-offset prestack depth-
migration by the Kirchhoff method.

5.2 Dependence of subsalt seismic imaging on the shape of the salt body esti-
mated from inversion of gravity data

The numerical examples in Chapter 2 illustrate that gravity inversion can improve the
definition of the base of salt as compared to that of the initial model, which might have
been assumed based on none-to-good prior knowledge of the base salt. Then the question
arises as to whether the subsalt imaging can be improved by applying a model recovered by
gravity inversion. To answer this question I compare prestack migration results using the
initial base salt and the base salt recovered by gravity inversion. Because additive random
noise generally is present in the gravity observations, the base salt I choose for the recovered
model is from the first numerical example (Figure 2.11) in Chapter 2, in which the base salt
is inverted from data contaminated by uncorrelated white random noise having a standard
deviation of 0.1 mGal. Since the best image of all features is that obtained when the true
salt model is used in the migration-velocity model, I use the depth image of the subsalt
reflectors in Figure 5.10 as the standard for comparison of the imaging results for other
models tested.

In the tests, as shown in Figure 5.13, I first work with two velocity models, one
containing the initial base salt and the other the one recovered from 3D gravity inversion.
Then I smooth the velocities in these two models using the smoothing parameters described
above and apply prestack Kirchhoff depth migration. The resulting depth-migration profiles
are shown in Figure 5.14. In both profiles, the salt body and the subsalt features are clearly
imaged. For the initial model, the deep portion of salt is absent and replaced by the low-
velocity background medium; as a result, the computed traveltimes are much larger than
the true values. Therefore, the subsalt image in Figure 5.14a exhibits a large subsalt pull-up
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Figure 5.7. Seismic sections by common-offset Kirchhoff migration with the true velocity
model.
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Depth (km)

Figure 5.8. Depth-section with reflection raypaths superimposed on a velocity model. The
rays from the source located at 1.5 km (denoted by the asterisk) illustrate the multi-pathing
problem at the edges of the salt; i.e., the high-velocity region toward the right.
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Figure 5.9. Zero-offset migration by (a) the Kirchhoff method, and (b) the finite-difference
method
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Figure 5.10. Prestack migration profile using the true velocity model.
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feature, directly beneath the salt, without loss of continuity. In contrast, the imaging using
the recovered model gives a more nearly accurate shape for the subsalt reflectors (Figure
5.14b), although the base salt in the recovered velocity model differs from the true position.
Because use of the initial model leads to much larger error for the subsalt images than does
that of the recovered model, the gravity inversion has helped improve subsalt imaging in
this test, with the data contaminated by uncorrelated additive random noise.

Also, let us recognize a possible discrepancy here. Basically, we have assumed that
the initial base salt was obtained from unclear seismic imaging. The seismic image of the
base salt, however, is quite clear in Figure 5.14 even when the highly erroneous initial base
salt is used in the model for migration velocities. This is contradictory to the assumption
that initial seismic imaging failed to give a clear reflection from the base of salt. Since the
causes of poor imaging of base salt are complicated and out of the research scope of this
study, I shall assume that base salt was not clearly imaged in the original seismic processing
and focus only on the improvement of subsalt imaging when a better-defined base salt is
applied.

5.3 Imaging error due to error in bathymetry

I concentrate next on distortions in subsalt imaging that can be introduced by various
errors in our models of the overburden. First, let us suppose that the bathymetry infor-
mation is inaccurate, thereby contaminating the inversion of the gravity data for the shape
of the base salt. I created two velocity models containing the base salt recovered from 3D
inversion of the gravity data contaminated by the minimum (opet = 5 m) and maximum
(0pat = 20 m) bathymetry errors treated in Chapter 3. Because the best-estimated model
and migrated image of deep reflectors are those obtained from the noise-free data in Figure
3.14, T use for comparison the best velocity model and corresponding migration profile in
Figure 5.15.

The velocity models with the base salt inverted from gravity data contaminated by
inaccurate bathymetry correction are shown in Figure 5.16. Following smoothing of the
inverted models and prestack Kirchhoff depth migration, Figure 5.17 shows the correspond-
ing migrated results. Because the HCZ is correctly defined here, errors in subsalt imaging
are caused mainly by the error in the central unknown portion of the base salt. Because
the base salt is distorted more when the standard deviation of bathymetry error is 20 m
than when it is 5 m, the image of subsalt features in Figure 5.17b has larger distortion
than in Figure 5.17a (compare both with the image in Figure 5.15b). Also, because the
9D cross-section passes through an area of the model with relatively small errors for base
salt (Figure 3.15), the error in the subsalt images is not pronounced, though the standard
deviation of 20 m is sizable. One could expect larger errors in subsalt imaging in portions of
the inverted 3D salt model with large errors for base salt caused by erroneous bathymetry.
Nevertheless, the images of subsalt features in Figure 5.17 show more error from the correct
image in Figure 5.10 than does the best-estimated image in Figure 5.15b. Therefore, the
bathymetry error can be considered an important source of error subsalt imaging.
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Figure 5.12. Prestack migration profile with rays from three sources marked by “*” super-

imposed. The rays have poorly covered the area marked by the white colored circle, where
the imaging quality is poor.
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Figure 5.13. Velocity sections containing: (a) the initial base salt, and (b) the recovered
base salt (see Figure 2.11) based on inversion of gravity data contaminated by random noise.
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Figure 5.14. Migration results obtained by using smooth versions of the velocity model
containing (a) the initial base-salt model, and (b) the recovered base-salt model.
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Figure 5.15. (a) Velocity-depth section for the salt model inverted from error-free data,
and (b) the prestack migration result based on this model.
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Figure 5.16. Inverted velocity models obtained from data with bathymetry errors of (a)
5-m and (b) 20-m standard deviation.
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Figure 5.17. Prestack migration results for bathymetry errors having (a) 5-m and (b)
20-m standard deviation.
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5.4 Imaging error due to errors in prior information

In this section, I assess the sensitivity of subsalt imaging to errors in presumed prior
information, in particular in the HCZ, top salt, and density. Since the input data in Chapter
4 are contaminated by uncorrelated Gaussian random noise having standard deviation of 0.1
mGal, I use the migration result in Figure 5.14b hereafter as the reference best achievable
image for subsequent comparison.

5.4.1 HCZ error

Recall that in inversion for the base salt, one might sometimes presume and fix the
position of a portion of the flank of the salt feature. Such a portion, the HCZ, may never-
theless have error. To measure the influence of error in the HCZ, I use migration-velocity
models (Figure 5.18) containing two different inverted results for the base salt, correspond-
ing to the models in Figure 4.4 with largest HCZ error, ie., £10% of the depth of the
HCZ. The maximum error of the HCZ is 400 m. As above, after prestack depth migration
using a smoothed version of the inverted velocity model, I obtain the migration results
shown in Figure 5.19. In Figure 5.19a, the events of the subsalt features in the inverted
portion are pulled up because of the missing salt, whereas the portion directly under the
HCZ is pushed down because of the extra salt. The results in Figure 5.19b, however, show
opposite behavior because the HCZ is shallower than the correct position. Again, since
the 2D cross-section does not pass through the areas in the salt model where the error in
base salt is large, the images of subsalt features do not show significant difference relative
to the correct subsalt images in Figure 5.10 and the best-estimated image in Figure 5.14b.
However, the error in the subsalt images in Figure 5.19 shows that use of incorrect HCZ
can harm subsalt imaging. Furthermore, pushing down the HCZ may lead to larger error
in subsalt imaging than does perturbing the HCZ upward. The choice of the location of the
2D section here prevents us from determining the largest subsalt imaging error. Therefore,
to further understand the influence of the erroneous HCZ, 3D or more 2D seismic imaging
is desired.

5.4.2 Error in top salt

Similarly, I used for the migration the two inverted models in Figure 4.9, corresponding
to the two largest top-salt perturbations tested, i.e., a constant +200 m in the depth of the
top salt. Because this type of error arises from errors in the overburden velocity, both the
top and the HCZ are shifted in the velocity model. Figure 5.20 shows the velocity models,
and Figure 5.21 the migration results obtained from these models. Because the top of salt
in the erroneous model is deeper than that in the correct velocity model, the top salt is
imaged with erroneous velocity (the velocity of the sediments rather than that of salt). The
top-salt image in Figure 5.21a is in the correct position, but it shows somewhat squeezed
relief because the top salt is imaged with the background velocity. In Figure 5.21b, on
the other hand, because the modeled top salt is shallower than the position in the correct
velocity model, the top salt is imaged inside the modeled salt body. The image of top salt
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Figure 5.18. Velocity models inverted using gravity data, but with (a) +10% and (b)
—10% error in the HCZ, where the maximum error of HCZ is about 400 m.
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Figure 5.19. Prestack results for models having (a) +10%, and (b) —10% error in the HCZ.
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is pushed down and shows smiling artifacts. Therefore, the error in the velocity model for
top salt not only degrades the imaging of the base salt and beneath, but also that of the
top salt itself.

Since the position of the HCZ is also erroneous, the depth of the base salt is over-
estimated in Figure 5.20a and under-estimated in Figure 5.20b. In Figure 5.20a, the top
salt is shifted down from the true position. This perturbation somewhat cancels out the
influence on the computed traveltimes from the extra salt gained from gravity inversion.
As a result, the images of the subsalt features in Figure 5.21a and 5.21b do not show
significant distortion from the best-estimated image in Figure 5.14b, just a small pull-up
structure in the subsalt image. Compared to the results imaged using the true velocity
model, the images of subsalt features in Figure 5.21 have larger errors than in the best-
estimated image in Figure 5.14b. Of importance, the 2D cross-section passes through the
area in the model where errors are large in Figure 4.10. Therefore, the quality of the subsalt
images in Figure 5.21 is likely poorer than we might expect elsewhere in the model. Because
the 200 m is a quite large error for the top of salt in practice, the errors in subsalt imaging
here are likely more severe than one may encounter in practice.

5.5 Error in density for the sedimentary section

The recovered base salt with density errors in Chapter 3 refer to those when the density
contrast deviates from the true value. Because the perturbation of density is simple, i.e.,
constant in percentage (£10% and £20%), the error in the recovered base salt is also simple.
The cross-section chosen here passes through the area in the salt model that contains large
errors attributable to error in density (see Figure 4.14). T select the migration-velocity
models (see Figure 5.22) corresponding the base salt recovered when the density contrast
has an error of £10% of the true value (Figure 4.13). For large errors in density, the inverted
base salt has huge errors, so large that the base salt almost penetrates reflector S when
the density contrast is 10% lower than the true value.

Since the top salt and HCZ are correctly defined, the source of error in subsalt imaging
is only the inverted area of the base salt, ie., the central part of the base salt. In Figure
5.23, note that the error concentrates in the area directly beneath the inverted area of
base salt. When the density contrast is 10% lower than the true value, the extra salt
gained in the base salt from gravity inversion pushes the distorted image of subsalt features
deeper than the true position (Figure 5.23a). On the other hand, when the density contrast
is 10% high (Figure 5.23b), a pull-up structure in the subsalt image is attributed to the
missing salt. Compared with the error in base salt from gravity inversion, however, the
error in subsalt imaging is again relatively much smaller. Further, although 10% error of
the density contrast can well be encountered in practice, the corresponding subsalt imaging
error is far larger than for results when the depth of the top salt is erroneous. Therefore,
in practice, prior to the gravity inversion one should mind more the error in density than
that in top salt. Because the subsalt imaging error caused by the error in the bathymetry
correction or HCZ does not represent the largest error to be expected for this salt model,
it is difficult to determine which is the most severe source of the subsalt imaging error in
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Figure 5.20. Inverted velocity models for erroneous depth of the top salt of (a) +200 m,
and (b) -200 m.
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Figure 5.21. Prestack migration results based on smoothed version of the inverted models
in Figure 5.20.
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the three factors : bathymetry correction, HCZ, or density contrast; a 3D seismic-imaging
study is desirable.

5.6 Summary

The error in subsalt imaging not surprisingly increases with the magnitude of error of
the erroneously inverted base salt. Because, the error of the inverted base salt is proportional
to the magnitude of the errors in the three key input factors in gravity inversion, i.e., HCZ,
top salt and density, the subsalt imaging error increases with increasing error in these key
factors. Large errors in the depth of base salt, however, do not necessarily imply large errors
in subsalt imaging. Distortions in the images of the subsalt features are usually smaller than
those in images of the base salt.

Also, one may note that the images of the subsalt features obtained with the error in
bathymetry correction, HCZ, top salt, and density contain less error than that in Figure
9.14a when little information about the depth of the base salt is available from seismic
data. This suggests that even with error in assumptions, gravity inversion could help the
subsalt imaging; i.e., gravity inversion is robust. Since the imaging here was based on
a particular 2D cross-section through the 3D salt model, the results here cannot provide
general understanding about the influence of in gravity inversion. 3D imaging tests thus
would be helpful.
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Figure 5.22. Inverted velocity models for density errors (a) +10%, and (b) —10% relative
to the true density-contrast profile.
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Figure 5.23. Prestack migration results corresponding to smoothed versions of the velocity
models in Figure 5.22 a and 5.22 b.
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Chapter 6

Discussion and conclusions

6.1 Conclusions

I have developed an algorithm for inverting gravity data to reconstruct the depth of
base salt and applied the algorithm to a synthetic 3D salt model. The robustness of the
algorithm derives from the use of a logarithmic parameterization and the L-curve criterion
for estimating the optimal degree of regularization. The numerical experiments show that
this algorithm of gravity inversion can improve the definition of the base-salt shape with
use of the correct inversion parameters.

For additive uncorrelated random noise in gravity data, the standard deviation and
bias of model obtained by both linearized approximation and direct evaluation increase
with the noise level. The relative difference between errors in the inverted base-salt depth
for different levels of data noise, however, is not so large that the uncorrelated data noise
influences the inverted base salt significantly. The simulations show that small amount of
correlated noise can lead to large change in the recovered base salt; thus, the recovered base
salt is more sensitive to the presence of correlated noise than to that of uncorrelated noise.

I simulate the errors in prior information including the HCZ, top of salt, and density
contrast. Not surprisingly, the errors in the recovered base salt increase with errors in these
factors. Of more concern, small errors in these input parameters could lead to large errors
in the recovered depth of base salt. Underestimating any of the three input quantities
always leads to larger error in the inverted depth of base salt than does overestimating
them. Thus one should avoid underestimating these model characteristics. Further, the
results show that the error in the density contrast may be the most severe factor degrading
the recovered depth of base salt.

I use a 2D acoustic velocity cross-section through the 3D salt model to study the
influence of the inversion errors on subsalt seismic imaging. Similar to the gravity inversion,
distortions in subsalt imaging increase with error in the depth of the inverted base salt. I
found, however, that error in subsalt imaging is usually smaller than that of the depth of
base salt. This implies that subsalt imaging may not be too sensitive to base-salt errors.
Gravity inversion may help subsalt imaging as long as large-scale structures in base salt are
recovered.

Moreover, it is important to understand how good gravity data need to be to aid in
subsalt imaging. For this specific salt model with the reference model at fixed depth of
base salt of 4000 m, the subsalt imaging error is small relative to the best image, when the
standard deviation of the uncorrelated random noise in the data is 0.1 mGal. Because the
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0.1-mGal standard deviation is reasonably large in practice, I conclude that uncorrelated
random noise basically has no significant influence on the subsalt imaging. Second, the 200-
m error in the depth of the top salt, which leads to artifacts in top-salt imaging, does not
introduce severe degradation to the subsalt imaging. Since 200-m error in top salt is large
in general, we can infer also that a constant shift in top salt is not a significant contributor
to subsalt imaging error. For a 10% error in density contrast, the imaged subsalt features,
though identifiable, have sizeable distortion. Therefore, the error in density contrast should
be less than 10%. Because the cross-section does not pass through the area where the
large errors in base salt are located, to determine the acceptable error in the bathymetry
correction or the HCZ is difficult, and more study is desired. One also should be reminded
that the choice of reference model is crucial. Different reference models lead to different
quality of inversion results; e.g., if the reference model is closer to the true base salt, the
error in the recovered base salt will be smaller than the results obtained here. Although
the results here represent gravity inversion for just one chosen salt model, they nevertheless
provide an indication of errors to be expected and serve as a guide for cases with similar
salt features.

6.2 Future work

The seismic imaging in Chapter 5 is done in 2D. The results thus reflect only the
influence of the erroneous inverted base salt through a 2D section. The information obtained
from the tests is therefore incomplete; e.g., the influence of shadow zones may be less severe
in 3D than in 2D. Study based on 3D seismic imaging could overcome this weakness and
be more informative.

As shown above, the error in the inverted base-salt depth may not significantly degrade
the images of subsalt features. Another factor not considered above that can influence the
quality of subsalt imaging is the shape of the top of salt. In Figure 6.1a, while preserving the
shape of the base, I perturb the shape of the top salt with a correlated Gaussian distribution.
The standard deviation and the correlation radius of the perturbation are both 200 m.
Applying this model in Kirchhoff migration, I obtain the image in Figure 6.1b. Because
of the rugged error in top salt, both the base salt and the subsalt reflectors are poorly
imaged, more so than in any of the previous tests in this thesis. One can hardly interpret
the base salt and the subsalt features directly beneath the salt body. Clearly, even with the
correct shape of the base salt, errors in top salt can lead to severe degradation in migrated
images of the base salt and subsalt. One therefore needs to recover both the top salt and
the base salt with some accuracy. A possible approach is to use gravity data and gravity
gradiometry data to invert the top and base of salt iteratively. Compared with gravity
data, gravity gradiometry data have higher resolution, and faster decay in dependence on
the depth; therefore they are less sensitive to a deep base salt as to a shallower top salt.
Given an initial guess for the base salt, one can first invert for the top salt using gravity
gradiometry data using the algorithm derived above, but with an appropriately changed
sensitivity matrix. Then, using the recovered top salt, a second inversion can invert for
the base salt using gravity data. The two steps can be repeated using the results from the
previous inversion until the model converges.
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Figure 6.1. (a) Velocity model with spatially correlated perturbation to the shape of the
top salt by Gaussian random noise having standard deviation of 200 m, and (b) prestack
migration result. The shape of top salt in (a) is more rugose than that in Figure 5.2.
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Appendix A

Linearized approximation of standard deviation

Tarantola (1987) gives the covariance matrix of a nonlinear system, which could be
linearly solved in the vicinity of a model. He, however, did not present the derivation. In
the following, I show how to derive the covariance matrix for such a system.

For the general nonlinear inversion problem shown in equation (3.1), if the model could
be resolved linearly in the maximum e posterior probability (MAP) model as maap, i-€.,
in another words when 77 is linearly close to M ap, we have

F(m) & F(imap) + Guap(m — maap), (A.1)

where Gaap is the sensitivity matrix, evaluated at 7maap. Substituting equation (A.1)
into (3.2) yields

. T .
¢(m) = (F(mMAP) —d+ Gpap(m — T'ﬁMAP)) c;t (F(fﬁMAP) —d+ Gpmap(m — fﬁMAP))

+ (= )T CL (M — 7o)
= ((GMAPﬁ'LMAP — F(nap) +d) — GMAPfﬁ)

c;! ((GMAPmMAP — F(ifarap) +d) — GMApﬁ‘z) + (7 — 1ii0)T O (7 — 7o) .
(A.2)

-

For convenience, let d = Guapmmap — F(pap) + d, (A.2) becomes
$() = (@ — Grrap)TCTH(d — Grrapiit) + (1 — o) Cpp! (7 — 17io) - (A.3)

Equation (A.3) is a linear system, and according to Tarantola (1987), the a posterior prob-

¥
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ability density of the model is a Gaussian centered at

=i+ (GuarCy ' Grar + Crt) ™ GlrapCy (& = Ghrapiiio)
o+ (GumarCy'Grap + C) 7 Gl apCyt

—~

Gumapiiseap — F(ipap) +d — GMAPﬁ'lo)

Il
2

N

= 10 + (GaapCy Grap + Cl) ' G% 4pCy !
((J— F(mismap)) + Guap(Miarap — 77%0)) ,
(A.4)
and the covariance matrix is given by
- —1-1
Cum = (GirapCp'Grmap +C) (A.5)
such that,
$(m) = C - (M — marap)T Crft (M — Marap) , (A.6)

where C is a constant. Meanwhile, equation (2.27) in Chapter 2 gives the model pertur-
bation in the (k + 1)th iteration and we can rewrite the recovered model in the (k + 1)th
iteration as

i) = i®) 4 (G 0y G+ O [GF O (d - i) + Gl (i — m®)], - (A7)

where C,;! = SWTW and Cy 1= WZIW,. Manipulating equation (A.7), we obtain (Taran-
tola, 1987)

T—ﬁ(k+1) = 1Mo + (Gz’cd—le + C;zl)_lGZCd—l (((i— F('r?],k) + GIT/IIAP(ﬁLO - Tﬁ(k))) . (A.S)

Suppose, for certain k, we have reached the MAP model in the (k + 1)th iteration, i.e.,

mE+D) = 740 4p; then we have
1) o 7 k), (A.9)

In another word,
Gy = Gk41 = Gumar. (A.10)

Substituting equation (A.10) into equation (A.8), one notes that m(¥+1) is exactly the same
as ' in (A.4). Hence, the model is centered at the 7 4p solution and the covariance
maftrix is

Cwm = (G%apC;'Grar +CH) . (A.11)
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Appendix B

Linearized approximation of bias

Suppose in the (k + 1)th iteration, we reach the best model for equation (3.2), such

that
skl = 0. (B.1)

According to Tarantola (1987), the recovered perturbation in the (k+1)th iteration satisfies
(GTC7IG + CRlysm* D) = GTo M d - F(a®)) + Cp! (g — mP)). (B.2)
Substituting equation (B.1) in equation (B.2) yields
GTe M (d - Fm®)) = Ct (k) — ). (B.3)
Adding GTC; Lg(m) — 7ty) to both sides of equation (B.3), we have
GTorHd - F(m®)) + GTC GR® — iig) = Cpt(®) — 7o) + GTC ' G(m™*) — o)
= 670t (0= F(A®) + Ga® —iig)) = (6707 "G +C!) () — o).
Assuming d= F(Mrye) = F(m®) + G(rye — m(k)), we have

= GTC’d—l (F(fﬁ(k)) + G(rye — MK — F(a®) + GEm® — o))
= (GTC;'G + CLY) (m) — mig)
= GTC; " (G(urue — 10)) = (GTCL'G + C}) (k) — 1to)
= (Mg — M) = (G’TCd—la + 07;1)—1 GTCd—lG(mtrue — o).

Subtracting (¢rue — o) on both sides yields
A®) — e = [(GTcd—lG +c;) 7 aterte - I] (Thrue — Ti0), (B.4)

where G is the sensitivity matrix. Assuming m*) is close enough to the MAP model,
equation (B.4) gives the estimation of bias, and [(GTCd_ el -}-C’;ll)_1 GTCy IG] is the

resolution matrix.
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