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Abstract

To obtain a good image and accurate depth positioning of reflectors in the subsurface,
it is essential to account for heterogeneity and velocity anisotropy. Existing anisotropic
velocity-analysis algorithms often approximate the subsurface with homogeneous or verti-
cally heterogeneous anisotropic layers or blocks, which is suitable in time imaging. For depth
imaging purposes, however, lateral heterogeneity should also be accounted for. So the main
challenge is in describing lateral and vertical heterogeneity and anisotropy simultaneously.

The simplest realistic heterogeneous anisotropic model is the factorized VTI (trans-
versely isotropic with a vertical symmetry axis) medium with constant vertical and lateral
gradients in vertical velocity. I determine what parameters can be estimated uniquely in
such media from surface seismic data, and use this information to develop a robust param-
eter estimation algorithm. By approximating the subsurface with piecewise factorized VTI
blocks or layers I build a spatially varying anisotropic velocity field for depth imaging.

The parameter estimation algorithm is implemented in the post-migrated domain as a
two-step iterative procedure that includes prestack depth migration (imaging step) followed
by an update of the medium parameters (velocity-analysis step). The residual moveout of
the migrated events, which is minimized during the parameter updates, is described by a
nonhyperbolic equation whose coefficients are determined by 2-D semblance scanning.

For piecewise-factorized VTI media without significant dips in the overburden, the
residual moveout of P-wave events in image gathers is governed by four effective quantities
in each block: (1) the normal-moveout (NMO) velocity Vomo at a certain point within
the block, (2) the vertical velocity gradient k,, (3) the combination ky = k; v1+ 26 of
the lateral velocity gradient k; and the anisotropic parameter §, and (4) the anellipticity
parameter 7). I show that all four parameters can be estimated from the residual moveout for
at least two reflectors within a block sufficiently separated in depth. Although the vertical
velocity gradient is uniquely constrained by the moveout of events, the lateral gradient is
always coupled to the anisotropic parameter 6. To decouple the lateral gradient from the
anisotropy and build an accurate model in depth, apriori information (e.g., the vertical
velocity at a single point) is required.

Application of my algorithm to two field lines from West Africa confirms the presence
of anisotropy and lateral heterogeneity in the subsurface and results in much better images
than those previously obtained with time domain techniques. Most events in image gathers
after prestack depth migration are flat, and the estimated time-depth curve closely matches
the one obtained from borehole data. This implies that the piecewise factorized model is a
suitable choice for imaging and velocity analysis in heterogeneous anisotropic media.
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Chapter 1

Introduction

1.1 Heterogeneity and anisotropy

Since the early days of the seismic method geophysicists have recognized that the
subsurface is highly heterogeneous. Heterogeneity in rocks causes velocity of waves to
depend on the spatial position, and is so prevalent that even the same rock type can exhibit
a wide variation in velocity depending on the conditions under which the rock was formed, its
depth of burial, mineral composition, porosity, and age (Birch, 1942, 1961). A simple visual
inspection of well logs or core samples is sufficient to recognize the widespread presence of
heterogeneity in the subsurface. To image and characterize the subsurface correctly, it is
important to estimate the spatial velocity distribution, and techniques to do so have ranged
from simple analytic functions (e.g., Faust, 1951, 1953; Gardner et al., 1974) to sophisticated
tomographic schemes (e.g., Stork, 1988; Liu, 1997; Meng, 1999; Chauris and Noble, 2001).

Most of these techniques, however, assume that rocks are isotropic, that is, that the
velocity of waves in rocks does not depend on the direction of propagation. Since most rocks
are anisotropic, this assumption is more often than not untrue (e.g., Banik, 1984; Thomsen,
1986; Alkhalifah, 1996; Tsvankin, 2001). Alignment of mineral grains, clay platelets, layer-
ing, fractures, and in situ stress all contribute to the observed anisotropy in the subsurface.
Common problems caused by ignoring anisotropy in seismic imaging include mis-ties in
time-to-depth conversion, failure to preserve dipping energy during dip-moveout (DMO)
correction, and mispositioning of migrated dipping events (e.g., Banik, 1984; Alkhalifah
et al., 1996; Tsvankin, 2001). Jaramillo and Larner (1995) studied anisotropy-induced er-
rors in prestack depth migration and showed that isotropic migration algorithms fail to
flatten image gathers for a wide range of transversely isotropic (TI) models, which leads to
poorly focused images.

Depending on the dominant wavelength of the seismic wave, a medium may appear
heterogeneous or anisotropic (Backus, 1970; Helbig, 1984). Anisotropy is typically observed
when the scale of the heterogeneity is much smaller than the dominant wavelength. As
the dominant frequency increases and the wavelength becomes close to the scale of the
heterogeneity, the same medium that appeared anisotropic at lower frequencies behaves as
heterogeneous rather than anisotropic. For the purposes of this thesis it will be sufficient
to attribute the measured anisotropy to the heterogeneity whose scale is much smaller than
the seismic wavelength (e.g., that caused by the preferential orientation of mineral grains or
clay platelets, and fine layering). Similarly, the measured heterogeneity may be attributed
to heterogeneity whose scale is much larger than the seismic wavelength (e.g., that caused
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by lithology variation, compaction, unconformities, and coarse layering).

Most existing velocity-analysis methods for anisotropic media approximate the subsur-
face with homogeneous layers or blocks (e.g., Alkhalifah and Tsvankin, 1995; Le Stunff and
Jeannot, 1998; Tsvankin, 2001; Grechka et al., 2002). Anisotropic layers, however, are often
characterized by non-negligible velocity gradients that may distort the shape of underlying
reflectors and cause errors in the estimates of the anisotropic parameters. Since lateral ho-
mogeneity is an inherent assumption in time imaging, whether isotropic or anisotropic, it is
justified to ignore lateral gradients in the time-domain velocity analysis of P-waves in VTT
media (e.g., Alkhalifah, 1997; Han et al., 2000). In contrast, anisotropic depth imaging has
to account properly for both vertical and lateral variations of the velocity field. An analytic
correction of normal-moveout (NMO) ellipses for lateral velocity variation in anisotropic
media was developed by Grechka and Tsvankin (1999). Their method, however, is limited
to horizontal layers, small lateral velocity gradients, and the hyperbolic portion of reflection
moveout. Also, for purposes of depth imaging, we are not interested in just removing the
influence of lateral velocity variation on anisotropic inversion; rather, we need to estimate
the lateral velocity variation accurately. As illustrated by Figure 1.1, a good image of this
West Africa dataset can be obtained only if both heterogeneity and anisotropy are correctly
accounted for in the imaging process.

The main problem in reconstructing a spatially varying anisotropic velocity field is
caused by trade-offs between the velocity gradients, anisotropic parameters, and the shapes
of the reflecting interfaces, which introduce nonuniqueness in velocity analysis of surface
seismic data. Trade-offs between anisotropy and heterogeneity may cause heterogeneity to
masquerade as anisotropy, and vice versa, which makes it extremely difficult to distinguish
heterogeneity from anisotropy. For example, reflection traveltimes from a diffractor at
a fixed spatial location in a vertically heterogeneous isotropic medium can be completely
equivalent to the traveltimes from a diffractor placed in a homogeneous transversely isotropic
medium with a vertical axis of symmetry (VTI). To resolve such ambiguities, a priori
information may often be necessary. Trade-offs between the velocity field and reflector
shapes also sometimes cannot be resolved without a priori information, even for isotropic
media. A practical way to incorporate vertical and lateral velocity variations into anisotropic
velocity analysis without excessively compromising the uniqueness of the solution is to adopt
the so-called factorized anisotropic model in which the ratios of the stiffness coefficients (and,
therefore, the anisotropic parameters) are constant.

By representing the subsurface with piecewise factorized blocks, where each block is
bounded by plane or irregular interfaces, I attempt to estimate the anisotropy, heterogeneity
(vertical and lateral), and reflector shapes simultaneously from surface seismic data. In
doing so I outline a practical method to build anisotropic heterogeneous velocity models in
depth. The estimated velocity field makes it possible to obtain high-quality depth-migrated
images such as the one in Figure 1.1b.
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Figure 1.1. Stacked section of a West Africa dataset obtained after anisotropic (a) time
migration (after Alkhalifah, 1996) and (b) prestack depth migration. Lateral variation
in vertical velocity and anisotropic parameters were ignored in time migration, but were
estimated and accounted for in prestack depth migration using the algorithm proposed in
this thesis. The arrows mark few improvements that result after prestack depth migration.
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1.2 Factorized VTI medium

The simplest and likely most common anisotropic symmetry for sedimentary rocks is
transverse isotropy with a vertical symmetry axis (VTI). Transverse isotropy caused by
horizontal alignment of mineral grains and clay platelets is typical for shales (Sayers, 1994).
In clastic sequences, VTI may be caused by aligned horizontal microcracks and thin layering
when the thickness of the layers is much smaller than the predominant seismic wavelength
(Backus, 1970). Because of its widespread occurrence in sedimentary rocks, I shall study
only the VTI medium in this thesis. The methodology discussed here, however, is also
applicable to symmetry planes of media with lower symmetries.

A VTI medium is characterized by an isotropy plane and a symmetry azis, which
coincide with the bedding plane and depth (vertical) axis, respectively. In such media,
velocity of waves depends on just the angle with the symmetry axis. Here, I analyze P-wave
data for VTI media. In contrast to the single scalar velocity responsible for isotropic P-
wave traveltimes, the kinematic signatures of P-waves in VTI media are governed by three
parameters: the vertical velocity Vpg and Thomsen’s (1986) anisotropic coefficients € and §
(Tsvankin and Thomsen, 1994; Tsvankin, 2001) defined as

Cs3
Veo = 4/ =2, 1.1
PO , (1.1)

e=————= (1.2)

(Ci3 + Cs5)% — (C33 — Css)?
2C33 (C33 — Css) )

C;; are elements of the 6x6 stiffness matrix that relates the stress tensor 7;; to the strain
tensor e;;. €, which is also the fractional difference between the horizontal and vertical
velocities, governs wave propagation close to the isotropy plane, while §, which is also
the second derivative of the phase velocity evaluated at the symmetry axis, governs wave
propagation close to the symmetry axis.

A medium is called factorized if all ratios of the stiffness elements C;; are constant in
space, which implies that the anisotropic coefficients and the ratio of the vertical velocities
of P- and S-waves have to be constant as well (Cervenjl, 1989). Despite its limitations,
the factorized VTI model offers the simplest way to account for both heterogeneity and
anisotropy in subsurface formations. For P-waves, heterogeneity in factorized media is
described by the spatially varying vertical velocity Vpg, while anisotropy is controlled by
the constant values of € and §. Although Vpy, €, and § in the subsurface may actually vary
independently of each other, € and & are typically estimated with a relatively low spatial
resolution and are believed to have slower spatial variation than does velocity. Therefore,
a good approximation for realistic VTT velocity fields can often be achieved by dividing
the model into factorized VTI blocks, with piecewise linear functions of Vpo and piecewise
constant functions of € and 4. I use this subset of factorized VTI models to build velocity
fields in depth.

d= (1.3)
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In factorized media the ratio of the vertical P- and S-wave velocities (Vpo/Vso) is
constant, and spatial variations of Vgq are directly tied to those of Vpo. Since P- and S-
wave velocity gradients often differ in subsurface formations, the factorized model may seem
to be too simplistic for practical applications. This issue, however, does not arise in the
P-wave velocity analysis discussed here because P-wave kinematics is virtually independent
of Vo (Tsvankin and Thomsen, 1994; Alkhalifah, 2000; Tsvankin, 2001).

1.3 Image gathers and velocity analysis

Image gathers are offset-versus-depth gathers generated after prestack depth migration
of seismic data. The moveout of events in image gathers describes how the migrated depth
at a fixed midpoint location varies with the source-receiver offset. Migration with the
correct velocity model causes the migrated depth to become independent of offset and the
migrated events in image gathers are flat. If events are not flat, they are said to exhibit
residual moveout, which can be a good diagnostic of errors in the velocity field. In isotropic
media, if too high a velocity is used for migration, the events are undercorrected, while too
low a velocity causes overcorrection. Because of their high sensitivity to the velocity field,
the moveout of events in image gathers is often used to perform residual velocity analysis
in isotropic media.

Since my goal is to estimate the relevant VTI parameters and carry out depth imaging
for models with significant lateral and vertical velocity variation and considerable structural
complexity, velocity model building is conveniently implemented in the prestack depth-
migrated domain (e.g., Stork, 1992; Liu, 1997). Prestack depth-migrated data are also
preferred for velocity analysis because of their higher signal-to-noise ratio compared with
that of unmigrated data. To use the moveout of events in image gathers for parameter
estimation in anisotropic media, it is first important to understand how different model
parameters influence residual moveout in image gathers. A large part of this thesis is
devoted to understanding this issue.

For 2-D wave propagation in the [z, z] plane, the function z(h) that defines the migrated
depth of an event in an image gather is obtained by solving the following set of equations:

7s(Ts, T, 2) + 1o (T,2,2,) = t(y,h),
ors Ot ot
9715  OTr _ A 4
By + By 3y’ (1.4)

where y is the common midpoint, 75 is the traveltime from the source at z, to the diffraction
point (z,2), 7, is the traveltime from the receiver at z, to the point (z,z), and t(y, k) is the
observed total traveltime, which depends on the true positions of the diffractor, the source,
and the receiver for midpoint y and half-offset h. Generally, equation (1.4) does not lend
itself to closed-form expressions, even for isotropic media (Liu, 1997). Moreover, analytic
treatment of image gathers is much more involved in anisotropic media because of the
velocity variation with propagation angle and the increased number of medium parameters.

Hence, most analytic solutions in this thesis are based on the weak-anisotropy ap-
proximation linearized with respect to the parameters € and 4. The linearized equations,
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which reveal the influence of the VTI parameters on events in image gathers, are verified
by performing numerical tests for a representative set of VTI models.

1.4 Overview of each chapter

In Chapter 2, I analyze P-wave image gathers for transversely isotropic media with a
vertical symmetry axis (VTI media). I study the residual moveout of events in image gathers
in homogeneous and factorized v(z) media caused by errors in the medium parameters, and
establish the conditions needed to flatten and correctly position events in depth. Kinematic
signatures of P-waves in factorized v(z) media are defined by the vertical velocity Vpg at a
point in the medium [taken at the surface (2 = 0) here], the vertical-velocity gradient k,,
and the parameters € and é. A key result of this section is that the vertical gradient k, can
be uniquely estimated from surface seismic data alone.

In Chapter 3, I extend the study of the residual moveout of events in image gathers
to factorized v(r,z) media and establish the conditions needed to flatten and correctly
position events in depth. Kinematics of P-waves in factorized v(z,2) media are defined
by the vertical velocity Vpy at a point on the surface (eg., z = 0,2 = 0), ks, €, 6, and
the lateral-velocity gradient k;. As in the factorized v(z) medium, surface seismic data,
can be used to uniquely constrain the vertical gradient k,, even in the presence of lateral
heterogeneity. The lateral gradient k,, however, cannot be separated from the anisotropic
parameter § without a priori information.

I develop a migration velocity analysis (MVA) algorithm for factorized VTI media in
Chapter 4, and using synthetic tests for a single factorized layer, I assess the accuracy of
the algorithm and its robustness in the presence of random noise.

In Chapter 5, I apply the MVA algorithm to more complicated multilayered models. I
also study the influence of reflector structure and errors in vertical velocity on the estimated
parameters.

As a final test of the algorithm, in Chapter 6 I process two field lines from a 3-D
survey acquired in offshore West Africa. The lines were recorded in a region that was shaped
by major tectonic activity. The lithology in the shallow part of the section is represented
by regressive sequences, shaly clastics, high pressure shales and turbidites. The deeper part
of the section consists of transgressive sequences, marine clastics, and non-marine red beds.
The major source of anisotropy in the area is the abundant shales in the shallower part of
the section (Alkhalifah et al., 1996; Tsvankin, 2001). Both heterogeneity and anisotropy
have to be taken into account to image the progradational off-lap patterns, some of the
weak reflections, the large number of faults, and also position reflectors correctly in depth.
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Chapter 2

Analysis of image gathers in homogeneous and
factorized v(z) VTI media

2.1 Algorithms for modeling and prestack depth migration

The algorithms described below are used in all applications in this thesis. The first
step in the numerical analysis of image gathers is to generate 2-D synthetic seismograms
of P-wave reflections in homogeneous and factorized VTI media using the SU (Seismic
Unix) code susynlufti Alkhalifah (1995a). To build the 2-D traveltime tables for prestack
depth migration, I employ the anisotropic ray-tracing algorithm of Alkhalifah (1995b). The
traveltimes 7 computed along each ray are then extrapolated to adjacent grid points using
the paraxial approximation described by Gajewski and Psenéik (1987):

7(x) = 7(%) + Pe(R) (21 ~ Ta) + 5 Nt () (s — 32) ax — 2) (2.1)

where x corresponds to the point to which I seek to find the traveltime, x defines the
coordinate of the point on the central ray from which the traveltime is extrapolated, p is

the slowness vector py(x) = 5‘% | ,and Ny (x) = 3%:5?| . Following Gajewski and P3enéik
x Fix

(1987), the matrix of the second traveltime derivatives N;; can be written as

Op; Op; [ Oxp -1
— = — = 2.2
N Ozr  Ovj <3'yj ) ’ (2.2)

where i,k take values 1,2, y; is the takeoff angle at the source (usually denoted by %) and
Y2 = 7. The slownesses px(x) and the derivatives %%i and %%& can be computed while
tracing the central ray.

The derivatives %ﬁ and %%h, however, are evaluated with respect to takeoff angle along
the wavefront [for a constant 7], which requires tracing at least one additional (auxiliary)
ray. If 9 4+ A7 is the takeoff angle of an auxiliary ray, then the derivatives with respect to
3 can be found by linear interpolation for a fixed traveltime 7:

opi _ pi(¥ + AY) — pi(¥)
oy Ay ’
Oz zi(¢ + AY) — zi(y)
o~ Ay ‘
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After using equations (2.3) to compute Ny [equation (2.2)], I calculate the extrapolated
traveltimes 7(x) from equation (2.1). The traveltime tables are used in a Kirchhoff prestack
depth-migration code sukdmig2d originally designed for isotropic models (Liu, 1997) to
generate image gathers in VTI media. Codes rayt2dan and sukdmig2d are used in all
traveltime computations and prestack depth-migration examples in this thesis.

2.2 Homogeneous VTI medium

To study the trajectory z(h) of a migrated event in an image gather [equation (1.4)],
I applied the weak-anisotropy approximation (Appendix A). For a horizontal reflector em-
bedded in a homogeneous VTT medium, linearization in the parameters € and J yields

1 1 2ht vz V2
2 2,2 2y/2 nmo,T” nmo,M
M T ' Vn2m0,T Vn2mo,M h? + Z?‘ M Vn2mo,M T I/;12m0,T

where the subscript T refers to the true model and M to the model used for migration, z,, (h)
is the migrated depth for the half-offset h, zp is the true depth of the zero-offset reflection
point, v = Vpgar/Vpor is the ratio of the migration to true vertical velocity, Vyme =
VpPov1+ 26 is the zero-dip normal-moveout (NMO) velocity, and n=(e—08)/(1+26) is
the anellipticity parameter of Alkhalifah and Tsvankin (1995), which is responsible for time
processing of P-wave data in VTI media with a laterally homogeneous overburden.

Equation (2.4) shows that the moveout of horizontal events on an image gather is fully
controlled by the parameters Vymo and 7, with Vime responsible for the near-offset moveout
and the influence of 7 becoming substantial only at large offsets. Only if the migration and
true values of these two parameters are identical (Vamo,m = Vamo,r and 7n,, = n,.), will the
migrated depth z,,(h) [equation (2.4)] be independent of the offset h, and the event in the
image gather is flat.

Although equation (2.4) was derived for a horizontal reflector, the correct values of
Vamo and 7 are sufficient for removing residual moveout on image gathers of dipping events
as well (see the numerical examples below). This conclusion follows from the general result
of Alkhalifah and Tsvankin (1995), who proved that P-wave reflection traveltime moveout
in VTI media with a laterally homogeneous overburden depends only on the zero-offset
traveltime, Vo and 7. Positioning an image gather at the true depth, however, requires
using the correct vertical velocity (Vro,m = Vpo,r, which makes y = 1).

Figure 2.1a displays an image gather for two horizontal reflectors embedded in a ho-
mogeneous VTI medium at depths of 1000 m and 2000 m. The gather was computed for a
model with the true parameters Vamo,M = Vamo,r and n,, = n,., but intentionally inaccurate
values of the vertical velocity Vpg and the coefficients ¢ and 6. Consistent with the conclu-
sions of Alkhalifah and Tsvankin (1995), setting Vymo and 7 to the correct values ensures
that both events in the image gather are flat. The same conditions (Vamo,m = Vamo,r and
My = Nr) are sufficient to flatten events from dipping reflectors in Figure 2.1b.

Since the migration was performed with the wrong value of Vpo, however, the migrated
depths are scaled by the factor v ~ 0.90. In agreement with equation (2.4), the depth of
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(a) {b)

Figure 2.1. Image gathers for (a) two horizontal reflectors and (b) two reflectors dipping at
30° embedded in a homogeneous VTI medium. The true model parameters in Figures 2.1-
2.3 are Vpor = 2000 m/s, €, = 0.1, and 6, = —0.1. Prestack depth migration was
performed for a model with different values of Vpy, d, and €, but with the correct Vamo,m =
Vamor = 1789 m/s and n,, = n, = 0.25 (¢,, = 0.25, 6, = 0). For this and subsequent
figures, the maximum offset-to-depth ratio Zmax /2 = 2hmax/# is equal to two for the shallow
reflector (in the true model) and one for the deep reflector.

the shallow event is close to 900 m instead of 1000 m, and the deep one is located at 1800 m
instead of 2000 m.

For horizontal events, the parameter 7 contributes only to the far-offset moveout term
[equation (2.4)], which is also true for the P-wave nonhyperbolic reflection moveout equation
(Alkhalifah and Tsvankin, 1995; Tsvankin, 2001). Therefore, the influence of 7 becomes
substantial for only relatively large offset-to-depth ratios, e.g., those exceeding unity (Fig-
ure 2.2a). If the reflector is dipping, 7 contributes to small-offset traveltimes as well because
it governs the dip dependence of NMO velocity (Alkhalifah and Tsvankin, 1995; Tsvankin,
2001). Figures 2.2b and 2.2c confirm that for dipping events (the dips are 30° and 45°)
the residual moveout caused by errors in 7 is not confined to long offsets. The depth error
at the largest offset increases from 30 m for the horizontal reflector (Figure 2.2a) to 50 m
for the reflector dipping at 30° (Figure 2.2b), but then decreases to 35 m for a dip of 45°
(Figure 2.2c); this behavior of residual moveout agrees with the prediction of Jaramillo and
Larner (1995). Although the contribution of 7 to the NMO velocity becomes more signif-
icant with dip, the magnitude of reflection moveout decreases for steeper reflectors, which
explains this dependence of residual moveout on errors in 7.

The NMO velocity in equation (2.4) not only controls the quadratic term h? that
dominates the moveout for offsets used in our examples, but also influences the far-offset
moveout term. Hence, an inaccurate value of Vomo leads to significant residual moveout for
the whole offset range.

For the example in Figure 2.3, the depth error at the largest offset reaches 80 m for

G G
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Figure 2.2. Image gathers for reflectors dipping at (a) 0°, (b) 30°, and (c) 45° computed for
an overstated value of 7 (n,, = 0.4, while 7, = 0.25). Migration was done with the correct

Vamo and distorted ¢ v =04andd,, =0.

Oftset (m) Ottset (m) Offset (m)
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9200 i 900
{ ' 1200
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£ $ som 2 = 1200, 45m
g g 65m 8
11004 1100 »‘})
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1200 - 1200
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Figure 2.3. Image gathers for reflectors dipping at (a) 0°, (b) 30° and (c) 45° computed
for an overstated value of Ve (Vamo,m = 2000 m/s, while Vamo,r = 1789 m/s). Migration

was done with the correct 7 and distorted €,, = 0.25 and 0,y = 0.
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the horizontal reflector and decreases to 65 m for the 30° reflector, and to 45 m for a dip of
45°. This steady decrease in residual moveout with dip for a fixed error in Vyp,, is caused
by the smaller magnitude of reflection moveout and its lower sensitivity to Vynyo for larger
dips. Liu (1997) noticed this phenomenon for isotropic media, and his analysis remains
qualitatively valid in the presence of anisotropy.

2.3 Factorized v(z) VTI medium

Factorized v(2) VTI media with linear velocity variation can be described by four
independent parameters: the vertical velocity Vpy = Vpy(0) defined at zero depth z = 0,
the velocity gradient k, responsible for the linear variation of Vpg in the z-direction, and
Thomsen parameters € and § (for P-waves). As follows from the results of Appendix B,
events in an image gather at zero-offset time ¢y can be flattened by using the correct values
for NMO velocity (vnmo) and the effective parameter # given by

V3, (1 +26)
2 _ Ypo kzto _
Vimolto) = PO = [0 —1] | (2:5)
oy L f(14+8n)(e*t — 1)k to
n(tO) - 8 { 2(ekzt0 _ 1)2 1 ’ (26)

where tg is the zero-offset traveltime. Note that both the NMO velocity and 7} are dependent
on the vertical gradient k,. The difference between 7 and 7, and between vymo(to) and
Unmo(to = 0) = Vpov/1 + 26 = Vymo increases with the absolute value of k,.

However, since the vertical velocity in a factorized v(z) medium changes with depth,
flattening an event for a certain depth z, does not ensure that the same velocity model will
flatten events for any other depth. To illustrate this point, consider two horizontal reflectors
at the depths 1000 m and 2000 m embedded in a factorized v(z) medium (Figure 2.4). To
migrate data acquired over such a model, I use a homogeneous VTI medium with the
parameters chosen such that Vi, and 5 for the homogeneous model are equal to their
effective values for the shallow reflector. As expected, the shallow event in the image gather
is flat, but the deeper event exhibits substantial residual moveout because the NMO velocity
and 7 used in migration are too low for a depth of 2000 m.

To ensure that events are flat for the whole depth range of the reflectors, the effective
NMO velocity and the parameter 7 for both the migration and true models should be equal
at all zero-offset times ¢y. Therefore, both the exponential term in equation (2.5) and the
coefficient in front of it should be preserved in the migration model, which means that
migration should be done with the correct values of both the NMO velocity at the surface
and the vertical gradient: Vimom = Vpo,m+/1 +28,, = Vpor/1+26;, = Vamer, and
kz,m = k,r. Taking into account that k; » has to be equal to k, r, the condition 7,, = 7,
can be satisfied at all tg only if n,, = 1, [see equation (2.6)].

I conclude that to flatten all horizontal events in image gathers for a factorized v(z)
medium, three conditions need to be satisfied: (1) Vamo,m = Vamor, (2) k:m = ki1,
and (3) n,, = n,. Although in principle all three conditions follow from the general result
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Figure 2.4. An image gather for two horizontal reflectors in a factorized v(z) VTI medium
obtained using a homogeneous migration model with the NMO velocity and 7 equal to
their effective values for the shallow reflector. In Figures 2.4-2.6 the true parameters are
Vpo,r = 2000 m/s, k, 7 = 0.6 571, ¢, = 0.1, and d; = —0.1; the parameters used here for
the migration are Vpo a = 2054 m/s, ¢,, = 0.26 and 0,y =0.

of Alkhalifah and Tsvankin (1995), the results given here for factorized VTI media have
not been obtained before. In particular, I have shown that flattening events for a range of
zero-offset times requires using the correct vertical velocity gradient k,. This implies that
velocity analysis on image gathers in VTT media may be used to constrain not just the
parameters Vimo and 7 (as expected), but also k,.

Figure 2.5a confirms that if the parameters Vymo, k;, and 7 are the same for the
migration and true models (although the Thomsen parameters of those models may widely
differ), horizontal events in image gathers are flat. Moreover, these three conditions are also
sufficient to flatten dipping events (Figure 2.5b).

The depths in an image gather for a horizontal reflector embedded in a factorized v(2)
VTI medium can be described by the following equation (Appendix B):

. 1 1
Zy(h) ~ z,(0) + h? Vﬁo»M{vgmo,T(zT) ol (0)]}
0)] vrzlmo,T(zT) i )”r2nmo,M [2ae (0)]}
2 T '

4
T o7 ) M2 (O)] = — iy (o) o M
h’2 + zg'{ MM vnmo,M Zum (0)] T vﬁmo,T(zT)

+ (2.7)
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Figure 2.5. Image gathers for (a) two horizontal reflectors and (b) two reflectors dipping at
30° embedded in a factorized v(z) VTI medium. Prestack depth migration was performed
for a model with distorted Thomsen parameters, but one that has the correct Vomo,nr =
Vamo,r = 1789 m/s, k, e = k.7 = 0.6 s71, and n,, = 7, = 0.25 (¢,, = 0.25, §,, = 0,
e, = 0.1, 6, = -0.1).
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Figure 2.6. Image gathers for two horizontal reflectors computed for inaccurate values of the
vertical velocity gradient. Migration was done with the correct Vamo and 7, but distorted
values of k; ar. (a) kzm — kr = 0.15 5715 (b) kopr — kop = —0.15 s L.
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Here, z,,(0) = v2,, v = Vpo, M/ VPO,T, and Vpy is the average vertical velocity above the
reflector. Equation (2.7), obtained for moderate offsets and under the assumption that
the migration model is close to the true model, has the same form as the corresponding
expression (2.4) for homogeneous media. Note that the reflector depth is scaled by the factor
7, which in heterogeneous media depends on the ratio of the average vertical velocities in
the migration and true models (v ~ 0.9 in Figure 2.5).

Because of the similarity between equations (2.4) and (2.7), the influence of errors in
Vimo OF 77 on image gathers in factorized v(z) media resembles that for homogeneous media.
Therefore, here I focus on the sensitivity of image gathers in the v(z) model to the gradient
k.. Figure 2.6 illustrates the distortions of image gathers of horizontal events resulting from
errors in k,. Too large a value of k, leads to an erroneously high NMO velocity, and an
event in the image gather is undercorrected (Figure 2.6a), while choosing k, p < k,r is
equivalent to understating the NMO velocity (Figure 2.6b). Since an erroneous k, causes
the corresponding error in the NMO velocity to increase with depth, the residual moveout
in Figure 2.6 is more substantial for the deep event.

The dip dependence of residual moveout for a fixed error in k, is similar to that
observed in a homogeneous medium for an error in Vamo. If for the model in Figure 2.6 &, is
overstated by 0.15 s1, the residual moveout decreases from 40 m for the shallow horizontal
reflector to 35 m for a dip of 30°, and to 30 m for a dip of 45°. Since the variation in the
residual moveout for a range of dips is small, it implies that the influence of an error in k,
on the moveout is almost independent of the dip.

2.4 Possible distortions of stacked images

If the value of Vo, k., or 7 is wrong, events in image gathers exhibit residual move-
out, and reflectors are poorly focused. Examples of poorly focused images are shown in
Figures 2.7-2.9. Because inaccuracies in n do not influence the vertical velocity variation,
reflectors in Figure 2.7, although poorly focused, are positioned at the correct depth. An
error in k,, however, results in an error in Vpo(z) and causes reflectors in Figure 2.8 to not
only be poorly focused, but also be imaged at the wrong depths. Figure 2.9b also shows
poorly focused reflectors at the wrong depth because the imaging was done with the wrong
values of both Vpg and Vyme.

If Vamo, k2, and 7 are correct, then both horizontal and dipping reflectors are well
focused (Figures 2.10 and 2.11). But, if Vpy is chosen too low, then reflectors are imaged
at too shallow a depth (Figure 2.10), and if Vpo is too high, then reflectors are imaged
too deep (Figure 2.11). Figures 2.10 and 2.11 also show that choosing too small a value
for Vpg cause dipping reflectors to be imaged with smaller than the correct dips, while too
large a value of Vpg increases the imaged dips. Figure 2.10, generated for implausibly large
anisotropic coefficients ¢ and §, demonstrates that the conditions that need to be satisfied
to flatten events in factorized v(z) media are independent of the strength of anisotropy.
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Figure 2.7. Comparison of stacked images of horizontal and dipping (45°) reflectors: (a) for
the correct medium parameters (Vpg = 2000 m/s, k, = 0.6/s, ¢ = 0.3 and § = 0.1) and (b)
for an incorrect value of 7 = 0.08 instead of n = 0.17 (Vpo = 2000 m/s, k, = 0.6/s, € = 0.2,
and 6 = 0.1).
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Figure 2.8. Same as Figure 2.7, but section (b) was obtained for an incorrect value of k,
(Vpo = 2000 m/s, k, = 0.0/s, € = 0.3, and 6§ = 0.1).
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Figure 2.9. Same as Figure 2.7, but section (b) was obtained for an incorrect value of Vamo
(Vpo = 1700 m/s, k, = 0.6/s, e = 0.3, and § = 0.1).
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Figure 2.10. Same as Figure 2.7, but section (b) was obtained for the correct Vymo, k. and
n, and Vpop = 2Vpor (Vpo = 1000 m/s, k, = 0.6/s, € = 2.7, and § = 1.9). Abnormally
high values of € and § were intentionally chosen to show that the conditions outlined in
the text are valid for any strengths of anisotropy. Because Vpmo, k, and n are correct,
and Vpo,m < Vpo,r, the reflectors in Figure 2.10b are well focused, but imaged at smaller
depths.
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Figure 2.11. Same as Figure 2.10, but section (b) was obtained for Vpg s > Veor. (Vpo =
2500 m/s, k, = 0.6/s, € = 0.01, and § = —0.12). Because Vymo, k. and 7 are correct, and
Vpo,m > Vpo,T, the reflectors in Figure 2.11b are well focused, but imaged at larger depths.
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Chapter 3

Analysis of image gathers in factorized v(x, 2)
media

3.1 Factorized v(z,2z) VTI medium

Factorized v(z,z) VTI media with linear velocity variation can be described by five
independent parameters: the vertical velocity Vpg = Vpg(0,0) defined at zero depth z = 0
and lateral location z = 0, the velocity gradients k, and k, responsible for the linear
variation of Vpg in the z— and z-directions, respectively, and Thomsen parameters € and §
(for P-waves).

To analyze the effect of k; on the residual moveout of events, consider image gathers
(Figure 3.1) from two horizontal reflectors embedded in factorized v(z) media (k.7 = 0.0).
Migration was done with the correct Vo for the selected midpoint location in the correct
background homogeneous medium and 7. Figures 3.1a-c show that the residual moveout
caused by ignoring k; is negligible for small values of k; (k; < 0.2 s71), which implies
that for weak lateral gradients the moveout of events is dependent only on the background
NMO velocity at that midpoint location and the parameter 5. The influence of k, tends to
increase with k;, and for a relatively large value (k; = 0.3) its influence can be significant
(Figure 3.1d). The effect of k, is visible only at far offsets, which suggests that &, influences
7 more than Vym, because of the more significant ray-bending that occurs at large offsets.

These conclusions can be readily extended to media with k, # 0, where the moveout
of events at a midpoint location is governed by the effective quantities v,mo and 7, instead
of Vamo and 7. To derive the conditions necessary to flatten all events in image gathers in
a factorized v(r, z) medium, I assume that the lateral heterogeneity is weak enough for the
influence of k; on the moveout to be negligible. Later in this chapter, however, I show that
these conditions are applicable to strongly heterogeneous anisotropic media as well.

If we consider the factorized v(z, z) model as being composed of narrow vertical strips
of v(z) factorized media, then image gathers in v(z, z) media will be flat if vamo,ar(Z,t0) =
Unmo,T (%, %0) and 7, (z,%0) = 7, (z,%) not only for all vertical times ¢y, but also for all
coordinates x. The influence of weak lateral velocity variation on the NMO velocity in
horizontally layered anisotropic media was discussed by Grechka and Tsvankin (1999). They
showed that in the presence of lateral heterogeneity the NMO ellipse for homogeneous media
has to be corrected for lateral velocity variation by including a term dependent on the second
derivatives of the vertical velocity with respect to the horizontal coordinates. For the 2-D

e
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Figure 3.1. Image gathers at the same midpoint location for four different factorized v(z)
models: (a) kg7 =0, (b) ks 7 = 0.1 571, () kg = 0.2 571, and (d) kp 7 = 0.3 s~L. For all
models Vpo r at the surface for this location is equal to 2000 m/s, k.t =0, €, = 0.2, and
dr = 0.1. Migration was done with the correct background values of Vymo = 2190 m/s and
n = 0.083, but incorrect kz 3 = 0.0 and §,, = 0.0. The maximum offset-to-depth ratio is
about two for the shallow event and about one for the deeper event. The residual moveout
is significant only for k; = 0.3 s=! (Figure 3.1d).
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model considered here, the equation of Grechka and Tsvankin (1999) takes the form

T()(il?, z) 6270(37’ z)
3 oz? '’

where vymo hom is the NMO velocity in the background laterally homogeneous medium at
the coordinate z, z is the reflector depth and To(, 2) is the one-way zero-offset reflection
traveltime. Since in our model Vpo(, z) and, for weak lateral velocity variation, (z, z) are
linear functions of , vamo(z, z) from equation (3.1) is simply equal to the NMO velocity in
the background factorized v(z) medium at the lateral location z. Using equation (B.5), the
background NMO velocity can be represented as

Vio(@)(1+26) | o, (z,2)
LVN SN zlhom\Z%,2) __ .2
2thom(z,2) k, € oK (3-2)

v;rgo_(x’ Z) = v_nz](),hom(xi Z) +

(3.1)

2
¥Unmo,hom (IL‘, Z) =

where the vertical P-wave velocity at the surface Vpg () = Vpo + kzz, thom(z,2) =
2/Vpo(z, ), and Ve (z, z) is the average vertical velocity above the reflector.

As follows from our results for the v(z) model, vpm, of horizontal events is equal to the
true NMO velocity for all vertical times t, if the migration is based on the correct values of
the vertical velocity gradient k, and NMO velocity at the surface [Vpo(z) v/1 + 26]. Hence,
k.,m should be equal to k, 7, and

(Vpo,m + kzpm 2)\/1 + 26,, = (Vpor + ko7 2)A/1 + 26, , (3.3)

which implies that Vamo,nr = Veo,m+/1+26,, = Vpo,r+/1 + 26, = Vamo,T, and
kz,mA/1+26,, = kyr+/1+25,. Also, because kzm = ki1, setting 7, (z,t0) = 7, (z,t0)
[equation (2.6)] for all zero-offset times and lateral positions implies that n,, = 7,.

I conclude that flattening all image gathers of horizontal events in a factorized v(z, 2)
medium requires satisfying four conditions:

1. Vnmo,M = Vnmo,T7

2. kym =k, 1,
3 Ny =0y,

4 koot = ko /1428, = ko /T+ 28, = kor .

The first three conditions coincide with those obtained for v(2) media, and (4) is an ad-
ditional constraint on a combination of the horizontal velocity gradient and the parameter
d. Observe that even in the presence of lateral heterogeneity, moveout on image gathers
constrains the vertical gradient k,. While estimation of k, is feasible, the individual values
of the horizontal gradient k; and the parameters Vpy, €, and J remain unconstrained and
cannot be found using P-wave reflection moveout alone.

As illustrated in Figure 3.2a, the conditions listed above indeed ensure that the hor-
izontal events are flat, even if the migration is done with erroneous model parameters.

e ———




22 Chapter 3. Image gathers in factorized v(z, 2) media

Offset (m) Offset (m)
1000 0 1000

]

o

1000 1000+

Depth (m)
Depth (m)

1500+

I ﬁﬂﬁhﬁ I AT

(a) (b)

1500+

Figure 3.2. Image gathers for (a) two horizontal reflectors and (b) two reflectors dipping
at 30° embedded in a factorized v(z,z) VTI medium. In Figures 3.2-3.7 the true model
parameters are Vpor=2000 m/s, k, 7=0.6 s71, ke71=02 s~ L €,=0.1, and 6,=-0.1, and
the gathers are centered at lateral coordinate z = 6000 m. Prestack depth migration was
performed for a model with distorted parameters, but one that has the correct Voymonr =
Vamo,r = 1789 m/s, k, pr = k7 = 0.6 571 kzM— mT—OlSs L and ,, = 9, = 0.25
(€ =0.25, 6, =0, kg pr = 0.18 s71).

Because an incorrect vertical velocity was used, however, the depths are stretched by the
factor equal to the ratio of the migration [Vpg a(¢0)] to the true [Vpo,r(to)] average vertical
velocities evaluated at the lateral coordinate = of the zero-offset reflection point. Although
equation (3.2) was derived for horizontal reflectors, the same four conditions proved to be
sufficient for flattening dipping events in image gathers (Figure 3.2b).

As was with v(z) media, it is impossible to constrain the vertical velocity gradient using
a single event because of the trade-off between k, and the NMO velocity at the surface.
Removing the residual moveout of one event in an image gather does not guarantee that
events at other depths or lateral coordiates will be flat unless independent information about
the vertical and horizontal gradients is available.

Inaccurate values of Vi, k, or l;z cause an error in v¥pme, and thus introduce residual
moveout on image gathers for the whole offset range. Figures 3.3-3.5 illustrate the influence
of errors in Vymo and kg, while errors in k, were analyzed above for v(z) media, (Figure 2.6).
As in homogeneous media, the residual moveout for a fixed error in Vamo, k2, or k, decreases
with reflector dip (e.g., see Figures 3.4a and 3.5).

It is noteworthy that the magnitude of residual moveout caused by a fixed error in
Vamo 1s smaller in factorized media than in homogeneous media for the same Veo,Mm, Vpo,T,
€py €7y Oy, and d,.. For example, if the value of Vi, is overstated by 200 m, the residual
moveout for the shallow horizontal reflector in a factorized v(z, z) VTI medium reaches 65 m
(Figure 3.3b). If the same reflector is embedded in the reference homogeneous VTI medium,
the residual moveout increases to 80 m. Likewise, the residual moveout for a fixed error
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Figure 3.3. Image gathers for two horizontal reflectors computed for inaccurate values of
Vamo, but correct k, 0, and kz. (a) Vamom — Vamo,r = 200 m/s (Vpoy = 2000 m/s,
6pe = 0); (b) Vamomr — Vamo,r = —200 m/s (Vpo,p = 1600 m/s, 4,, = 0).
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Figure 3.4. Image gathers for two horizontal reflectors computed for inaccurate values of ks,

but correct Vymo, k2, and n,, (d,, = 0). (a) I;:z,M — l;:x,T =0.02s57%; (b) I::z,M - I::,,,T = —-0.02
-1
st
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Figure 3.5. Image gathers for reflectors dipping at (a) 30° and (b) 45° computed for a value

of kg,m overstated by 0.02, but correct Vamo, k., and n (8,, = 0). Note the more detailed
view shown in this figure and in Figure 3.7.
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Figure 3.6. Image gathers for two horizontal reflectors computed for inaccurate values of
7, but correct Voo, k., and kg (6,,=0). (a) 7,, — Ny = 0.15; (b) n,, — n, = —0.15.
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Figure 3.7. Image gathers for reflectors dipping at (a) 30° and (b) 45° computed for a
value of n overstated by 0.15, but correct Vymo, k., and k; (4,, = 0).

in k;, is smaller in a v(z, z) medium than in the corresponding laterally homogeneous v(z)
model. In contrast, the residual moveout associated with errors in 7 is larger for factorized
v(z, z) media than for the reference homogeneous medium because of the increase in ray
bending that occurs in the presence of lateral gradients (compare Figures 2.2a and 3.6a).

The dip dependence of the residual moveout in factorized media for a fixed error in
n has the same character as in homogeneous media. For a 0.15 error in 7, the residual
increases from 40 m for a horizontal reflector (Figure 3.6a) to 60 m for a reflector dipping
at 30° (Figure 3.7a), and then decreases to 50 m for a 45° dip (Figure 3.7b).

3.2 Possible distortions of stacked images

Errors in Vyme, k., I;x, or 7 cause reflectors to be poorly focused in factorized v(z, 2)
media. The influence of errors in Vo, k,, and 7 is similar to that shown in Figures 2.7-2.9
in Chapter 2, but for v(z, z) media, an error in the velocity model may result in imaging
reflectors with erroneous dips, even for horizontal reflectors. As Figure 3.8b shows, an
error in kg, not only causes misfocussing and depth shifts, but now the horizontal reflector
appears dipping. This happens because an error in IAcz causes a midpoint-dependent error
in Vpg, which in turn causes a laterally variable depth stretch. In the example shown in
Figure 3.8b, this depth stretch increases with the midpoint coordinates, giving rise to the
apparent dip in the migrated section.

If the correct values of Vamo, k2, kz, and 7 are used for migration, the imaged reflectors
are well focused, but the depth of the reflectors depend on the value of Vpg. Too high a
value of Vpg causes reflectors to be imaged at greater depths and with greater dips, while
too low a value of Vpg causes reflectors to be imaged at smaller depths and with smaller
dips. Note, however, that as long as the values of Vo, k;, and k are correct, there are no
laterally variable depth shifts in the reflectors, even though the value of k; may be wrong.
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Figure 3.8. Comparison of stacked images of horizontal and dipping (45°) reflectors: (a)
for the correct medium parameters (Vpy = 2000 m/s, k, = 0.6/s, k; = 0.2/s, € = 0.3 and
6 =0.1) and (b) for an incorrect value of k; = 0.1 s~! instead of kz = 0.2 s71 (Vpy = 2000
m/s, k, = 0.6s71, k; = 0.1s!, ¢ = 0.0, and & = 0.1).
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Figure 3.9. Same as Figure 3.8, but section (b) was obtained for the correct Vomo, k2, k,
and 7, but Vpo pr = $Vpo,r (Vee = 1000 m/s, k, = 0.6/s, kg = 0.1/s, € = 2.7, and & = 1.9).
Because Vo, k-, Ez and 7 are correct, but Vpg ar < Vpor, the reflectors in Figure 2.10b
are well focused, but imaged at smaller depths. Abnormally large values of € and § were
chosen intentionally to show that the conditions outlined in the text are independent of the
strength of anisotropy.
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Figure 3.10. Same as Figure 3.9, but section (b) was obtained for Veom > Veor. (Vpo =
2500 m/s, k, = 0.6/s, k; = 0.25/s, € = 0.01, and § = —0.12). Because Vamo, ks, kz and 7
are correct, but Vg p > Vpo,r, the reflectors in Figure 3.10b are well focused, but imaged
at larger depths.
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Figure 3.11. Comparison of stacked images of horizontal and dipping (45°) reflectors for
large heterogeneity: (a) for the correct medium parameters (Vpg = 2000 m/s, k, = 1.0/s,
ks =1.0/s, ¢ = 0.3 and § = 0.1) and (b) for correct Vamo, k2, kz and 7, but Vpg pr = sVpor
(Vpo,ir = 1000 m/s, k, pr = 1.0/s, kzmr = 0.5/s, €,, = 2.7, and §,, = 1.9). Abnormally
large values of ¢, §, and k; were chosen intentionally to show that the conditions are valid
even for large anisotropy and heterogeneity.
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This happens for two reasons: (1) the value of &, does not govern the horizontal velocity
[Vpoo(z,t0)], which is unaffected by an error in Vpy when Vamo(Z,%0) and n are correct
[VPoo(z,t0) = Vamo(z, to)v/T + 2], and (2) the error in Vpg(z = 0,2 = 0) is compensated
by the error in &, in a way such that the ratio V—sz;_fﬂz is not influenced by the value of
Vpo. Therefore, the error in Vpy(z, z = 0) becomes independent of the midpoint coordinates,
z, and no laterally variable depth shifts are visible. Figures 3.9b and 3.11 also demonstrate
that the conditions that need to be satisfied to flatten events in factorized v(z, 2) media are
independent of the strength of anisotropy and heterogeneity.

3.3 Parameter estimation in a factorized VTI layer

Here, I use the results discussed above to evaluate the feasibility of estimating the
parameters of a factorized VTI layer from P-wave reflection data. By replacing the actual
factorized v(z, 2) model with narrow vertical strips of factorized v(z) media, I demonstrated
that the moveout of a single horizontal event in an image gather is governed by the effective
values of the NMO velocity and the parameter 7:

eksto — 1
'Ur21mo($1t0) = V2(:E)(l + 26) A (3-4)
k.t
L[kt ).
7](3", tO) = 8 { 2(ekzto _ 1)2 1 3 (35)

Vpo(z) = Vo + kz z is the vertical P-wave velocity at the surface, and ¢y = tp(z, z) is the
zero-offset time at location z from a horizontal reflector at depth z.

If long-offset data needed to constrain 7 (Grechka and Tsvankir, 1998) have been
acquired, moveout analysis of a single event can yield estimates of both vpme(z,%o) and
7i(,t0). Next, suppose that P-wave traveltimes from two horizontal reflectors sufficiently
separated in depth are available. Then the ratio of the NMO velocities for these two events
(vamo,1 and vamo,2) can be used to find [equation (3.4)]

vrzlmo,l(xa tO,l) _ t0,2 (ekz to1 _ 1)

B (3.6)
vgmo,z(xvtO,Z) to,1 (ekz toz — 1) )

where g1 and ¢ are the zero-offset times for the two events. According to equation (3.6),
conventional hyperbolic moveout analysis of two horizontal events located in the same fac-
torized block can provide an estimate of the vertical gradient k,. Knowledge of &k, and
the zero-offset time ¢y is sufficient for obtaining the anellipticity parameter  from equa-
tion (3.5) applied to one or both reflection events. The remaining two key quantities,
Vamo = Vpov/1 + 26 and ky = kzv/1+ 24, can then be computed from equation (3.4), if the
effective NMO velocities are determined at two or more locations z.

I conclude that the moveout of horizontal events at two different depths and two
image locations can provide enough information to estimate the parameters Vimo, k2, Kz,
and 7. For the special case of a factorized v(z) medium with a constant vertical gradient
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k2, the moveouts of two horizontal events at a single image location can be inverted for the
parameters Vymo, k£, and 7.

Reflection moveout of dipping events in factorized v(z,2) VTI media is controlled by
the same parameters (Vymo, &, Ez, and 7)) as that of horizontal events. Most importantly,
NMO velocity of events dipping at 25-30° or more is highly sensitive to the parameter
7n (Alkhalifah and Tsvankin, 1995; Tsvankin, 2001), whereas the inversion of nonhyper-
bolic moveout from horizontal reflectors for 7 is less stable (Grechka and Tsvankin, 1998b).
Therefore, the inclusion of dipping events in velocity analysis is helpful in obtaining accu-
rate estimates of 7; also, dip-dependent reflection moveout provides additional information
about the parameters Vimo, k,, and Ihcz

Still, even if both horizontal and dipping events are available, the parameters Vpy,
kz, €, and ¢ remain unconstrained by P-wave reflection traveltimes. In particular, the i
vertical velocity Vpg is needed to define the depth scale of the VTI model in the migration
of P-wave data. Hence, to build an anisotropic model for depth imaging, at least one
medium parameter must be specified a priori. Unless specified otherwise the velocity Vpg
in the synthetic data examples discussed in subsequent chapters is assumed known at some
location at the top of each factorized layer. Given this information about Vpg, we can use
velocity analysis of P-wave data to estimate the parameters k,, k;, €, and 4.

3.4 3-D data

3-D traveltime signatures for P-waves in homogeneous VTI media, (Grechka and Tsvankin,
1998a) are also controlled by Vime and 7. Therefore, the analysis described earlier in this
chapter can be readily extended to 3-D.

As before, if we assume that the factorized v(z,y, 2z) medium, which is the 3-D equiv-
alent of the factorized v(z,z) medium, is composed of narrow vertical columns of factor-
ized v(z) media, then image gathers in v(z,y,z) media will be flat if Vamo,M (T, Y, Tp) =
Unmo,7'(Z, Y, to) and 7, (z,y,%0) = H,(x,y,t) not only for all vertical times to, but also
for all coordinates z and y. These conditions are satisfied only if k, pr = k, 1, 1y = 17,
and Vpo,m(x, y)v/1 +28m = Veor(z, y)v/1+ 207, where Vpy(z,y) = Vpg + ket + kyy and
ky is the lateral velocity gradient along the y-direction. Setting Vpoam(z,y)v1 + 26) =
Veor(z,y)v/1 + 207 for all values of z and y implies Vamo, it = Vamo,» kz,mv/1 + 2801 =
km,Tm, and ky,M\/m = ky, V1 + 207.

Therefore, I expect that the conditions that flatten all image gathers in 3-D factorized |
v(z,y, 2z) media are FJ

1. Vnmo,M = Vnmo,T 3 !

2. kz,M = kz,Ta
3. My =0y,
4. kz,M\/l -+ 2(5M = kz,T\/l + 25T ,

ot

- kyn/1+ 28, = ky7\/T+ 20, ,
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and, as in the 2-D case, parameters ¢, 6, kz, and ky, may be estimated uniquely if the vertical
velocity Vpg is known at a single point.
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Chapter 4

Migration velocity analysis: The algorithm and
tests for a single layer

4.1 Algorithm for migration velocity analysis

Inversion of seismic data is a nonlinear problem that can be solved through an iterative
application of migration and velocity updating. Migration creates an image of the subsurface
for trial values of the medium parameters, and then velocity analysis is used to update the
model for the next run of the migration code. This iterative procedure, conventionally
called migration velocity analysis (MVA), is continued until a certain criterion (e.g., small
residual moveout of events in image gathers) is satisfied.

Here, I apply anisotropic prestack depth migration (the migration algorithm is de-
scribed in detail in chapter 1) and tomographic velocity update to P-wave data acquired
over the subsurface composed of factorized v(z,2) VTI blocks. The iterations are stopped
when the residual moveout for at least two reflectors in each factorized block is close to zero
(i.e., the migrated depth stays the same to within a specified fraction of the wavelength for
different offsets). The overall organization of my MVA algorithm is similar to that devel-
oped by Liu (1997) for isotropic media, but the VTI model is characterized, for P-waves,
by two additional parameters — € and 4.

The tomographic update of the medium parameters is based entirely on the residual
moveout of events in image gathers. In chapter 2 I showed that for horizontal reflectors
embedded in a weakly anisotropic homogeneous VTI medium the migrated depth z,, in
image gathers can be written as [equation (2.4)]: '

1 1
Zil(h) ~ 212\/,(0) +h’2VIgO,M(V2 . - V2 M>+
nmo, nmo,

2 s\ 12 ~Nr3i2
h +z’1‘ Vmo,M Vnmo,T

n

where the subscripts 7" and M denote the true and migration medium parameters, respec-
tively, h is the half-offset, and z,, is the true zero-offset depth of the reflector. Equation (4.1)
is nonhyperbolic and governed by two independent parameters — Vamo and 7. The NMO
velocity Vamo controls the hyperbolic (described by the h2?-term) part of the moveout curve
and also contributes to the nonhyperbolic (h*) term, while 7 influences nonhyperbolic move-
out only. A similar closed-form expression is not available for dipping reflectors, but both
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the hyperbolic and nonhyperbolic portions of the residual moveout curve for dipping events
also depend on Vo and 7.

As discussed in the previous two chapters, the residual moveout of P-waves in factorized
v(z, z) VTI media is a function of the parameters Vamo, &, kg, and 7. Although it is difficult
to express the migrated depth z,, in laterally heterogeneous media analytically in terms of
these parameters, the residual moveout equation can be cast in a form similar to that in
equation (4.1):

2ht

h? + 22 (0)

A and B are dimensionless constants that describe the hyperbolic and nonhyperbolic por-
tions of the moveout curve, respectively. Numerical tests (see below) confirm that the
functional form in equation (4.2) with fitted coefficients A and B provides a good approxi-
mation for P-wave moveout in long-spread image gathers.

To apply equation (4.2) in velocity analysis, I first pick an approximate value of the
zero-offset reflector depth z,,(0) on the migrated stacked section. The parameters A and
B are obtained by a 2-D semblance scan on image gathers at each migrated zero-offset
depth point. The best-fit combination of A and B that maximizes the semblance value is
substituted into equation (4.2) to describe the residual moveout. It should be emphasized
that the coefficients A and B in my algorithm are not directly inverted for the parameters
Vamos kz, kz, and n. Rather, the only role of A and B is in providing an adequate functional
approximation for the residual moveout.

After estimating the residual moveout in image gathers, I update the N-element pa-
rameter vector A using the algorithm described in Appendix C. The update A\ of the
parameter vector is obtained by solving the system of linear equations,

22 (h) zzz(O)+Ah2+B

M

(4.2)

ATAAN= ATb. (4.3)

Here A is a matrix with M - P rows (M is the number of offsets and P is the total number
of image gathers used in the velocity analysis) and N columns that includes the derivatives
of the migrated depth with respect to the medium parameters. The superscript T' denotes
the transpose, and b contains the migrated depths that define the residual moveout. The
full definitions of the matrix A and vector b are given in Appendix C.

For all examples described below, each iteration of the MVA consists of the following
four steps:
(1) prestack depth migration with a given estimate of the medium parameters;
(2) picking along two reflectors in each VTI block to delineate the reflector shapes;
(3) semblance scanning using equation (4.2) to estimate A and B for image points along
each reflector;
(4) application of equation (4.3) to update the medium parameters in such a way that the
variance of the migrated depths as a function of offset is minimized (see Appendix C for
more details about the minimization procedure).

Steps 1-4 are repeated until the magnitude of residual moveout of events in image
gathers becomes sufficiently small.
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4.2 Example with a single factorized layer

First, I consider two irregular reflectors embedded in a factorized v(z,z) VTI medium
with k,; > k; > 0 and a positive value of 7 typical for shale formations (Figure 4.1). For the
first application of prestack depth migration, I choose a homogeneous, isotropic medium
(VPo = 2600 m/s, k, = ky = € = 6§ = 0) as the initial velocity model. The migrated
stacked image in Figure 4.2a is clearly inferior to the true image in Figure 4.1. I start the
velocity-updating process by manually picking along both imaged reflectors to outline their
shapes. Then equation (4.2) is used to compute two-parameter semblance scans for each
reflector and evaluate the residual moveout in the image gathers.

One such semblance scan computed for the shallow reflector at the surface coordinate
3 km is displayed in Figure 4.2b. The values of A and B that correspond to the maximum
semblance coefficient in Figure 4.2b provide an accurate description of residual moveout
at this location. Although a certain degree of trade-off exists between A and B, any pair
of values inside the innermost semblance contour gives almost the same variance of the
migrated depths. Note that the interplay between A and B is similar to that between the
NMO velocity and parameter 7 in the inversion of P-wave nonhyperbolic reflection moveout
(Grechka and Tsvankin, 1998b; Tsvankin, 2001).

For purposes of velocity analysis, I use the image gathers at 12 equally spaced surface
locations between 3 km and 4.2 km. The maximum offset-to-depth ratio for the selected
image gathers at the shallow reflector is close to two, which is marginally suitable for
estimating the parameter 5. Tighter constraints on 7 are provided by the NMO velocities
of reflections from the dipping segments of the shallow reflector (the dips exceed 30° in the
middle of the section).

After the residual moveout has been evaluated, I fix the vertical velocity Veol(z =
3000 m, z = 0) = 2600 m/s at the correct value and update the parameters k,, k., €, and §
using equation (4.3). The stacked images after four (Figure 4.3a) and eight (Figure 4.3b)
iterations illustrate the improvements in the focusing and positioning of both reflectors
during the velocity update. The magnitude of the residual moveout for both reflectors
decreases as the model parameters converge toward their actual values (Figure 4.4). The
velocity-updating procedure is stopped after eight iterations because events in all analyzed
image gathers are practically flat.

The inverted model parameters are close to the correct values: k, = 0.61 +0.02 s~1,
kz =02+£0.0s7!, e =0.11+0.01, and § = —0.11 +0.01. The error bars were computed by
assuming a standard deviation of +5 m in picking migrated depths on the selected image
gathers and substituting this picking error into equation (4.3) to find the corresponding
deviations of the model parameters near the actual solution.

The accurate results of the above test were obtained with the correct value of the
vertical velocity at a given point on the surface of the factorized layer. Next, I apply the
MVA method with an erroneous value of Vpy(z = 3km, z = 0) = 2000m/s, which is 23%
smaller than the true velocity (2600 m/s). The stacked images of both reflectors obtained
after the velocity analysis (Figure 4.5a) are well focused, which indicates that the image
gathers have been flattened. Indeed, although the estimated medium parameters listed in

T —
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surface coordinate (m)

Figure 4.1. True image of two reflectors embedded in a factorized v(z, z) VTI medium with
the parameters Vpo(z = 3km,z = 0) = 2600 m/s, k, = 0.6 s™1, k; = 0.2 5”1, ¢ = 0.1, and
6 = —0.1. The corresponding effective parameters are Vymo(z = 3km, z = 0) = 2326 m/s,
k; =0.6s"1, k; = 0.18 s71, and n = 0.25.
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Figure 4.2. (a) Image of the model from Figure 4.1 obtained using a homogeneous isotropic
velocity field with Vpg = 2600 m/s. (b) Semblance contour plot computed from equa-
tion (4.2) for the shallow reflector at the surface location 3 km.
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Figure 4.3. Stacked image after (a) four iterations; (b) eight iterations.
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depth (km)

Figure 4.4. Residual moveout in image gathers for both reflectors at the surface location
3 km: (a) for the initial model; (b) after two, (c) four, (d) six, and (e) eight iterations. The
residual moveout is minimized during the velocity-updating process.
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surface coordinate (m) surface coordinate (m)

depth (m)
depth (m)

Figure 4.5. (a) Stacked image obtained after velocity analysis with the wrong value of the
vertical velocity Vpo(z = 3km,z = 0) = 2000 m/s. The estimated medium parameters
are k, = 0.58 ~!, k, = 0.15 571, ¢ = 0.51, § = 0.17. (b) Stacked image for the correct
medium parameters (Figure 4.1). Since Vpy in section (a) is smaller than the true value,
both reflectors are shifted up with respect to their correct positions in section (b).

the caption of Figure 4.5 are distorted, the effective parameters responsible for the residual
moveout are close to their actual values: Vomo(z = 3km, z = 0) = 2315 m/s, k, = 0.58 s~ 1,
k; =0.17s71, and 5 = 0.25.

This result corroborates the analysis of residual moveout in chapters 2 and 3 and
confirms that my algorithm converges toward the correct parameters Vimo, Kz, l;z, and
7, even if the vertical velocity Vpg on the surface of the layer is poorly known. Since
Vpo assumed in the velocity analysis is too low, however, both reflectors in Figure 4.5a
are imaged at depths that are about 23% smaller than the actual ones in Figure 4.5b.
The depth distortion also leads to the rotation of the dipping segments of the reflecting
interfaces, which is discussed in more detail below.

4.3 MVA in the presence of noise

To evaluate the influence of noise on the estimation of the medium parameters and
the quality of imaging, I added Gaussian noise to the data set from Figure 4.1. The signal-
to-noise ratio, measured as the ratio of the peak amplitude of the signal to the root-mean-
square (rms) amplitude of the background noise, is about 1.5, and the frequency bands of
the noise and signal are identical (Figure 4.6a). The estimates of the medium parameters
obtained after the migration velocity analysis with the correct value of Vpg at the surface
location 3 km are as follows: k, = 0.56 £+ 0.04 s~ 1, k, =0.2%+0.0s"! e=0.12 £+ 0.02, and
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Figure 4.6. Influence of noise on the velocity analysis and migration. (a) A shot gather
from the dataset in Figure 4.1 after the addition of Gaussian noise; the signal-to-noise ratio
is 1.5. (b) The image obtained for the noisy dataset.

0 = —0.09£0.02. The error bars were computed in the same way as those for the noise-free
synthetic example above (Figure 4.3), but the depth-picking error for all offsets and image
locations was assumed to be 15 m instead of 5 m. Clearly, the noise contamination did not
cause measurable errors in the medium parameters or noticeable distortions in the stacked
image (Figure 4.6b).

Even for the much more severely contaminated data set in Figure 4.7, the inverted
medium parameters are close to the actual values: k, = 0.52 +0.07 s71, k, = 0.2 +0.01
sl e=0.13+ 0.03, and § = —0.07 + 0.03, Here the error bars were computed under the
assumption that the noise increased the depth-picking error to 20 m. (Since the dominant
wavelength in this example was about 80 m, picking errors are unlikely to exceed 20 m, even
for a substantial level of noise.) Also, despite the low signal-to-noise ratio, the migrated
stacked section in Figure 4.7b has a sufficiently high quality, comparable to that of the true
image in Figure 4.1.

I conclude that the migration velocity analysis employed here gives reliable estimates
of the anisotropic parameters and velocity gradients in the presence of random noise. One
aiding factor is that the MVA operates on migrated data, which have a higher signal-to-
noise ratio than the original records because of partial stacking applied to the data during
the migration step. The semblance (coherency) operator used to evaluate the residual
moveout on image gathers also contributes to the robustness of the parameter estimation
by suppressing remaining random noise in the migrated data.
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Figure 4.7. Influence of noise on the velocity analysis and migration. (a) The same shot
gather as in Figure 4.6, but with a more severe noise contamination (signal-to-noise ratio
is 1). (b) The image obtained for the noisy dataset.

4.4 Sensitivity Study

The above results demonstrate that, in principle, the residual moveout from two reflec-
tors in a factorized layer is sufficient to estimate the four key parameters Vo, k2, kz, and
7. This section is devoted to an important practical issue related to the implementation of
my algorithm. By performing a series of numerical tests, I establish the minimum depth
separation between the two reflectors needed for stable parameter estimation.

Consider two horizontal reflectors embedded in the factorized v(z,z) medium with
the parameters listed in the caption of Figure 4.8. The depth of the shallow reflector is
fixed at 1000 m, while the depth of the second reflector varies from 1050 m to 2000 m.
Figures 4.8-4.9 illustrate the dependence of the error in the estimated parameters k,, kz, €,
and 4 on the distance between the reflectors. The errors in the parameters were computed
from equation (4.3) assuming that the error in picking the migrated depths is £5m. The
velocity analysis operated with the residual moveout on 12 image gathers (with 20 offsets
each) whose horizontal coordinates span a distance of 1200 m. For all tests, the vertical
velocity at one location on the surface was held at the correct value.

For the parameters k,, € and §, the dependence of the estimated error on the distance
d between the reflectors has a similar character (Figures 4.8, 4.10, and 4.11). The error
initially decreases rapidly with increasing d and then becomes almost constant as d ap-
proaches 500 m. For a maximum offset-to-depth ratio (at the shallow reflector) of two, the
error curves flatten out for d ~ 250 m, which is equal to 1/5 of the depth of the bottom
reflector. If the maximum offset-to-depth ratio is 1.5, the curve flattens out for a larger
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Figure 4.8. Influence of the vertical distance d between the two horizontal reflectors used
in the velocity analysis on the absolute error in the vertical gradient k,. The depth of the
shallow reflector is 1 km; the maximum offset is 2 km for the upper curve and 1.5 km for
the lower curve. The model parameters are Vpo(z = 3km, z = 0) = 2600 m/s, k, = 0.6 s71,
kz =025 €=0.2 and § = 0.1.

depth d ~ 350 m (~1/4 of the depth of the bottom reflector).

This behavior of the error curves is in good agreement with the analysis of the effective
NMO velocity and parameter 7 in chapters 2 and 3. Accurate estimation of the vertical
gradient k,, and then the NMO velocity at the surface of the factorized layer, requires
a sufficiently large difference between the NMO velocities of the two events used in the
velocity analysis [see equation (3.6)]. In other words, the reflectors should be sufficiently
separated in depth to resolve the interval NMO velocity, which carries information about
the gradient k.. An accurate estimate of k, makes it possible to obtain Vamo at the surface
and then, using the nonhyperbolic portion of the moveout curve, the parameter 77. The
minimum suitable vertical distance d found here is close to the minimum layer thickness
conventionally assumed in interval velocity estimation based on the Dix equation.

In contrast, the error in the horizontal gradient k, is practically insensitive to variations
in the distance between the two reflectors (Figure 4.9) because the lateral spread of the
coordinates of the image gathers is kept constant at 1.2 km. The influence of the maximum
horizontal distance between the image gathers on the error in k; is shown in Figure 4.12.
As expected, the gradient k; becomes better constrained with increasing lateral spread of
the image gathers, with the error curve flattening out for spreads exceeding 300-400 m.

Note that the errors in all parameters reduce with increasing number of offsets in the
image gathers, which can influence the sensitivity estimates. Although the results of the
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Figure 4.9. Influence of the distance between the two horizontal reflectors on the absolute
error in the horizontal gradient k;. The parameters are the same as in Figure 4.8.
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Figure 4.10. Influence of the distance between the two horizontal reflectors on the
absolute error in the parameter €. The parameters are the same as in Figure 4.8.
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Figure 4.11. Influence of the distance between the two horizontal reflectors on the
absolute error in the parameter §. The parameters are the same as in Figure 4.8.
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Figure 4.12. Influence of the lateral spread of the image gathers on the absolute error in
kz. The reflector depths are 1 km and 1.2 km; the other parameters are the same as in
Figure 4.10. The velocity analysis is performed on 12 image gathers, each with 20 offsets.
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Figure 4.13. A comparison of the true (solid line) and estimated (dashed line) variation of
Vpo after approximating the true velocity function as piecewice factorized v(z) media. The
true medium has a velocity variation Vpo(z) = 2000 4 0.000122 m/s, € = 0.3, and § = 0.1.
In the true medium, reflectors are spaced every 500 m and the maximum offset is equal
to 4000 m. The parameters estimated using the moveout associated with all reflectors are
shown in Figure 4.13a with subscripts M, and 15 image gathers obtained after prestack
depth migration with the estimated parameters are shown in Figure 4.13a.

error analysis also depend on the anisotropic coefficients ¢ and § and the velocity gradi-
ents, this dependence is not significant if the velocity update is performed with reasonable
constraints on the model parameters.

4.5 Nonlinear velocity variation

If the true vertical-velocity variation is not linear, it may be well approximated by many
piecewise factorized v(z, z) layers or blocks. Consider a factorized medium with a nonlinear
variation in vertical velocity [Vpo(z) = Vpg + 0.000122], and the anisotropic parameters
€ = 0.3 and 6 = 0.1, and suppose that eight horizontal reflectors exist at depth intervals of
500 m. Using the moveout associated with two reflectors for each estimated factorized v(2)
section, I reconstruct a piecewise continuous factorized v(z) medium that is close to the true
nonlinear velocity distribution (Figure 4.13). The accuracy of the estimated parameters is
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Figure 4.14. Same as Figure 4.13, but now the parameters were estimated using the moveout
associated with only two reflectors at depths 1500 and 2500 m (the reflectors used for the
inversion are indicated in the figures with arrows).
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confirmed by the flat image gathers in Figure 4.13b. The parameters were estimated in a
layer stripping mode. The vertical velocity at the top of the shallowest section was fixed at
the correct value assumed to be known a priori, while the values at the top of the other two
deeper sections were chosen so as to ensure that the vertical velocity field is continuous.

The accuracy of the approximation however, depends on whether the reflectors allow
us to sample the velocity function in sufficient detail. Consider the same true medium as in
Figure 4.13, but now with only two reflectors at 1500 m and 2500 m depths. In this case,
only a single factorized v(z) medium can be estimated (Figure 4.14a). The image gathers
obtained after migration with the estimated parameters are shown in Figure 4.14b. The
events associated with the reflectors at true depths 1500 and 2500 m are flat, but the events
both above and below are overcorrected because the corresponding NMO velocity is too
low. Therefore, although piecewise factorized v(z,2) media may be used to approximate
nonlinear velocity fields, a sufficient number of reflectors that are well separated in depth
is required for the inversion to be accurate.
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Chapter 5

Migration velocity analysis: Two synthetic
examples

5.1 Test for a simple three-layer synthetic model

After having performed a series of tests for a single factorized layer, I now apply the
algorithm to a three-layer model shown in Figure 5.1. Each layer contains two reflecting
interfaces, as required in the method, with every second reflector serving as the boundary
between layers. The first and third layers are vertically heterogeneous [v(z)] and isotropic,
while the second layer is a factorized, laterally heterogeneous [v(z,z)] VTI medium. All
interfaces are quasi-horizontal, with the largest dips (at the flanks of the syncline) 10° or
less. The model is designed to represent a typical depositional environment in the Gulf of
Mexico, where anisotropic shale layers (the middle layer in Figure 5.1) are often embedded
between isotropic sands.

For the velocity analysis I use image gathers located along the left flank of the syncline
with surface coordinates ranging from 4400 m to 5600 m; the maximum offset-to-depth
ratio for the image gathers is close to two. The medium parameters are estimated in the
layer-stripping mode starting at the surface. For the first (top) layer, the vertical velocity
is assumed to be known at a single surface location [Vpo(z = 4000,z = 0) = 1500 m/s].
The chosen value of Vpy corresponds to that for water-bottom sediments; on land, Vpq
at the top of the model may be estimated from near-surface velocity measurements. The
iterative velocity update starts with a homogeneous isotropic model (Vpg = 1500 m/s).
The parameters k;, kg, €, and § in the first layer, obtained from the migration velocity
analysis with the correct vertical velocity Vpo(z = 4000, z = 0), are close to the true values
(Figure 5.2).

To estimate the medium parameters in the second and third layers, I need to fix the
vertical velocity at a certain spatial location in each layer. Three different scenarios for
choosing Vpy in the second and third layers are examined below.

5.1.1 Vpg at the top of each layer is known

Suppose a vertical borehole was drilled at the surface location 4000 m, and the vertical
velocity at the top of the second and third layers was measured from sonic logs or check
shots. Prestack depth migration with the estimated parameters of the first layer yields
the depth of the top of the second layer at the surface location 4000 m. Using the correct
value of the vertical velocity at this point Vpg(z = 4000,z = 800) = 2300 m/s, I carry
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surface coordinate (km)
5 10

depth (m)

Figure 5.1. True image of a three-layer factorized medium. Every second reflector (indicated
here with arrows) represents the bottom of a layer. The parameters of the first subsurface
layer are Vpo(z = 4000,z = 0) = 1500 m/s, k, = 1.0s ), and ky; = € = 6§ = 0; for the
second layer, Vpo(z = 4000,z = 800) = 2300 m/s, k, = 0.6 s~!, k, = 0.1 s~ e = 0.1,
and ¢ = —0.1; for the third layer, Vpo(z = 4000,z = 1162) = 2718 m/s, k, = 0.3 5!, and
kr=€e=0=0.
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Figure 5.2. Estimated (o) and true (x) parameters of the first layer obtained using the
correct Vpo(z = 4000,z = 0) = 1500 m/s on the surface.
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Figure 5.3. Estimated (o) and true (x) parameters of the second layer obtained using the
correct Vpo(z = 4000, z = 800) = 2300 m/s at the layer’s top.
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Figure 5.4. Estimated (o) and true () parameters of the third layer obtained using the
correct Vpo(x = 4000, z = 1162) = 2718 m/s at the layer’s top.
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Figure 5.5. Stacked image obtained after prestack depth migration using the estimated
parameters from Figures 5.2-5.4. The vertical velocity Vpg at the top of each layer was
taken as known at the correct value.

out the velocity analysis for the second layer, which results in good estimates of all four
parameters (Figure 5.3). Repeating the same procedure for the third layer with the velocity
Vpo(z = 4000,z = 1162) = 2718 m/s, I obtain interval parameters close to the true values
(Figure 5.4).

The shapes and depths of the reflectors imaged for the reconstructed velocity model
(Figure 5.5) closely resemble those on the true image (Figure 5.1). This test confirms that
migration velocity analysis in layered factorized VTI v(z, 2) media can be used to invert
for the velocity gradients k, and k, and the anisotropic coefficients € and § if the vertical
velocity is known at a single point in each layer.

5.1.2 Vpg in the second layer is incorrect

Now suppose that the vertical velocity Vpo(z = 4000,z = 800) used for the top of
the second layer has error (2600 m/s instead of 2300 m/s). Although this error in Vpy
causes distortions in the inverted values of the other parameters (Figure 5.6), the effective
quantities Vamo(z = 4000, z = 800) = 2080 m/s, k, = 0.56s7L, k; = 0.09s~!, and 7 =0.23
do not significantly differ from the true values, which corroborates the results for a single
layer (Figure 4.5). Since the assumed value of Vpy (z = 4000,z = 800) is higher than the
correct velocity, the second layer is stretched in depth by about 13%, and the bottom of
the syncline is imaged at a depth that is 80 m too large (Figure 5.8). This depth stretch in
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Figure 5.6. Estimated (o) and true (x) parameters of the second layer obtained with an
inaccurate value of the vertical velocity at the top of the second layer [Vpo(z = 4000,z =
800) = 2600 m/s].
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Figure 5.7. Estimated (o) and the true () parameters of the third layer obtained with an
inaccurate value of the vertical velocity at the top of the second layer [Vpo(z = 4000,z =
800) = 2600 m/s] but the correct Vpo(z = 4000,z = 1208) = 2732 m/s at the top of the

third layer.
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Figure 5.8. Stacked image obtained after prestack depth migration using the estimated
parameters from Figures 5.2, 5.6, and 5.7. The vertical velocity Vpg at the top of the
second layer was inaccurate.
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Figure 5.9. Estimated (o) and the true (x) parameters of the third layer obtained for a large
error in vertical velocity at the top of the second layer [Vpy(x = 4000, z = 800) = 3500 m/s]
but the correct Vpo(z = 4000, z = 1358) = 2778 m/s at the top of the third layer. Because
of the large distortions in the shape of the second layer, the estimated parameters Vymo(z =
4000m,z = 1345m) = 2453 m/s, k, = 0.45 s, and n = 0.14 do not correspond to the
correct Vomo(z = 4000m, z = 1345m) = 2778 m/s, k, = 0.3, and 5 = 0.0.
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Figure 5.10. Stacked image after prestack depth migration with the estimated parameters
shown in Figure 5.2 for the first layer, after introducing a large error in Vpo [Vpolz =
4000,z = 800) = 3500 m/s] but keeping the correct values of Vhmo, 7, k,, and k, in the
second layer, and using the estimated parameters shown in Figure 5.9 for the third layer.

the second layer also causes a tilt of the syncline’s flanks whose dips in Figure 5.8 exceed
the true values.

To continue the velocity analysis, I fix the vertical velocity at the imaged top of the
third layer at the correct value. Despite the depth shift of the top of the third layer, the
algorithm yields accurate values of all four interval parameters (Figure 5.7). Because of
the depth and dip distortions in the second layer, however, the two bottom reflectors are
imaged at somewhat greater depths and are slightly deformed (Figure 5.8). In particular,
on the left side of the section the fifth and sixth reflectors are no longer horizontal; they
have acquired mild dips to conform to the stretched synclinal structure above.

For small errors in Vpg, the depth shifts in the second layer are small and do not
influence the parameter estimates in the third layer (Figure 5.7). If, however, the error in
Vpo in the second layer is large [Vpo(z = 4000, z = 800) = 3500 m/s, an error of over 52%),
the resulting error in the dips of the second layer may cause a large enough differential
lateral depth stretch to cause erroneous estimates of the parameters in the third layer.
Then, as illustrated by Figure 5.9, Vamo, kz, and 7 will no longer be estimated with good
accuracy in the third layer, and the resulting distortions in the imaged dips and depths of
the reflectors are clearly seen in the stacked image (Figure 5.10). kg will also be estimated
with an error, but here, the error is negligible (Alz:m = 0.002) and is ignored.

In general, the accuracy of all parameters Vamo, Kz, k,, and 1) below a dipping anisotropic
layer depends on the dip and the error in Vpg in the overburden. The error in the parameters

Cpo
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increases with increasing error in Vpy and with increasing dip, and is of concern especially in
the presence of large dips (Le Stunff et al., 2001; Grechka et al., 2002). Therefore, although
in the above example an error of 52% in Vpy may seem unrealistically large to be of any
serious concern in parameter estimation, it should be noted that for much larger dips a
smaller error is Vpg may be sufficient to cause similar errors.

5.1.3 Vpg is continuous across the boundaries

If no borehole information is available, one assumption that might be made is that the
velocity Vpo is a continuous function of depth. Continuous velocity fields are acceptable
approximations to the true velocity field because (1) the seismic wavelet has a finite fre-
quency, which averages the true velocity field over the dominant seismic wavelength, and (2)
parameter estimation methods, like the one I have developed, depend on traveltimes, which,
being integral functions of the true velocity field, tend to smooth out velocity variations.
Indeed, only the smooth low wavenumber components of the velocity field can be recov-
ered robustly from reflection traveltimes (Santosa and Symes, 1989), and such estimates are
almost always continuous.

When lateral velocity variation is insignificant, the velocity field may be assumed to
be continuous at all points along the interface of the two layers or blocks, and, for the
velocity analysis, Vpg may be fixed at any point along the interface. In the presence of
significant lateral variation, however, my choice of a linear factorized v(z, z) model does not
always allow all points along the interface to be continuous. To determine a desirable point
of continuity, I first migrate the data in the target layer with an isotropic homogeneous
velocity field and then note the residual moveout of events at midpoints close to where I
perform the velocity analysis. The migration velocity was chosen to equal the estimated Vpy
at the bottom of the known adjacent layer. I choose the lateral location with the minimal
residual moveout as the point of continuity. An isotropic homogeneous velocity field was
used for migration because information about k, and k; were not available. If, however,
such information were available, then they may also be used to compute the migration
velocity field. At the point of continuity, I calculate Vpy with the estimated parameters of
the known adjacent layer, and keep it fixed while performing velocity analysis in the target
layer.

Note that estimating Vpy, or for that matter, a point of continuity, requires searching
the null-space of the inverse problem. Hence, an error in the estimate is likely, and, among
other things, the magnitude of the error depends on the values of the medium parameters
and where the velocity analysis is performed. Because the moveout of events depends on
the effective NMO velocity, the point of continuity estimated using my method is influenced
by the true values of § and k, (Chapter 2). The influence of k, can be reduced by studying
events close to the boundary of the two layers or blocks. However, the influence of § cannot
be ignored. In general, my method tends to favour a lateral location where Vro,m = Vamo,Ts
which results in minimizing the absolute value of §5; — 0. Since subsurface values of & are
usually small I expect that the errors introduced by implementing this procedure will be
small and a reasonable velocity model can be constructed with minimal a priori information,
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Figure 5.11. Tmage gathers for the second, third, and fourth reflectors obtained after using a
homogeneous isotropic velocity field for the second layer that is continuous across the second
reflector. The minimum residual moveout of events along the third and fourth reflectors is
at midpoint locations near 3900 m.

such as knowing the vertical velocity at the top of the subsurface.

To illustrate this procedure I apply this technique on the synthetic example shown
in Figure 5.1, and in Chapter 6 I show the validity of this approach on field data. To
identify the point of continuity at the boundary between the first and second layers, I
examine the moveout along the third and fourth reflectors (only for offsets smaller than
1000 m) after migration with an isotropic homogeneous velocity field in the second layer.
The migration velocity was chosen to be equal to the true velocity at the bottom of the
first layer (i.e., at the second reflector); image gathers obtained after migration are shown
in Figure 5.11. To select the point of continuity, I pick the surface coordinate with the
smallest residual moveout on the image gathers at the third and fourth reflectors. This
criterion yielded z = 3900 m, which is sufficiently close to the true point of continuity for
the second reflector (z = 4000 m). Using the estimated vertical velocity at z = 3900 m
[Vpo(z = 3900,z = 800) = 2316 m/s], I estimate the parameters of the second layer with
high accuracy (Figure 5.12).

To find the point of continuity between the second and third layers, I again perform
prestack depth migrations assuming that the third layer is homogeneous and isotropic.
Since the second layer is laterally heterogeneous, the migration velocities range from 2400
m/s to 3400 m/s. Applying the criterion of minimum residual moveout for the fifth and
the sixth reflectors, the point of continuity was found at (z = 5937,z = 1483), where the
vertical velocity is Vpo = 2900 m/s. Although the location (z = 5937,z = 1483) is shifted
by almost 1000 m from the true continuity point between the second and third layers, it is
close enough that the results of the velocity analysis (Figure 5.13) and imaging (Figure 5.14)
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Figure 5.12. Estimated (o) and true (x) parameters of the second layer obtained assuming
that Vpy is continuous between the first and second layers at the point (z = 3900, z = 1208).
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Figure 5.13. Estimated (o) and true (x) parameters of the third layer obtained assuming
that Vpy is continuous between the first and second layers at the point (z = 3900, z = 1208)
and between the second and third layers at the point (z = 5937, z = 1483).
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Figure 5.14. Stacked image obtained after prestack depth migration using the estimated
parameters from Figures 5.2, 5.12, and 5.13. The vertical velocity was assumed to be
continuous between the first and second layers at the point (z = 3900,z = 1208) and
between the second and third layers at the point (z = 5937,z = 1483); these points are
marked by (o). The true continuity points are marked by (e).
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are quite satisfactory.

In the absence of borehole data, the assumption of continuous vertical velocity pro-
vides a practical way to build an anisotropic heterogeneous model for prestack migration.
Depending on the complexity of the model, however, the point of continuity may be es-
timated with a substantial lateral shift or may not exist at all. Still, my tests show that
for models without steep dips or strong lateral heterogeneity, an error in identifying the
point of continuity does not distort the effective parameters Vamo, Kz, I?:z, and 7. That is,
precision in that location is not essential. Therefore, the migrated section would still be
well focused, although the imaged reflectors would be subject to a depth stretch if Vpy is
erroneously estimated.

5.2 Test for a more complicated synthetic model

Now consider a more complicated model (Figure 5.15) consisting of five layers or blocks.
The first block represents water, the second and fourth blocks are factorized v(z) VTI, the
third block is factorized v(z,z) VTI, and the fifth block is isotropic v(z,z). Dips reach
maximum values of about 60 °. For such large dips I expect even small errors in Vpg in the
overburden to cause imaging errors at the target.

The layer-stripping technique discussed above is used to perform the velocity analysis.
As before, in the absence of any in situ velocity information, I assume Vpo to be continuous
at a certain point on block boundaries. Keeping the value of Vpy fixed at the point of
continuity, I use the moveout of events associated with two reflectors to estimate the rest
of the parameters in each block.

Migrating the data in the first block with water velocity delineates the bottom of this
block. To obtain the parameters of the second block, I first fix the value of Vpy at the
top of the second block at its true velocity (Vpg = 1500 m/s). This represents the top of
a near surface block with velocity close that of water. Then using the residual moveout
information of two events in the second block, I estimate its parameters with good accuracy
(compare Figures 5.15 and 5.16).

To estimate the point of continuity between the second and third blocks, I migrate
the data with a homogeneous isotropic velocity field. The migration velocity was chosen
equal to the vertical velocity at the bottom of the second block. The location on the third
reflector closest to the point on the fourth reflector with the smallest residual moveout
was chosen as the point of continuity. Keeping Vpg = 2470 m/s at the point of continuity
(z = 3000m,z = 1590m) fixed, I estimate the parameters of the third block. Although
my estimated point of continuity differs from the true one (z = 3250m,z = 1600m), it
is readily close enough such that, as Figure 5.16 shows, the estimated parameters and the
imaged reflectors are obtained with good accuracy.

To estimate the point of continuity and Vpg at the top of the fourth block, migration
for the sixth and seventh reflectors is carried out with a range of isotropic homogeneous
velocity fields (between 2470 m/s to 3010 m/s). The minimum residual moveout of events
on the sixth and seventh reflectors is observed for a velocity of 3010 m /s, which corresponds
to the estimated velocity in the third block at a point (z = 5000m,z = 2293 m) on the
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boundary between the third and fourth blocks. I choose this point as the point of continuity
between the two blocks. In the true model, however, a point of continuity between third and
fourth blocks does not exist. Therefore, by introducing a point of continuity I make a 4%
error in Vpy, setting Vpo(z = 5000 m, z = 2293 m) = 3010 m/s instead of of the true value of
3117 m/s. Because of the error in Vpg, the other estimated parameters are estimated with
an error, the thickness of the block is reduced, and the reflectors in this block are imaged
with smaller than the correct dips (Figure 5.16). Note that if the discontinuity between the
two blocks were larger, then the error in estimating Vpg by introducing a point of continuity
would also be larger.

Assuming that the fifth block is known to be isotropic, no a prior: information about
Vpo is necessary to estimate the parameters in this block (Liu, 1995). Using only the
residual moveout information at midpoint locations at the left end of the model, where
the overburden is close to being horizontally layered, I estimate Vpo, kz, and k, with good
accuracy (Figure 5.16).

Figure 5.17 shows image gathers after depth migration with the estimated velocity
field. Except for the encircled area events everywhere in the section are flat. The residual
moveout visible in the fifth block around midpoint 4.5 km is caused by the distortions in
the fourth block, which is related to the error in Vpqy discussed above. As illustrated by
Figure 5.18, a negative error in Vpy in the fourth block causes a pull up of the bottom of the
block, and subsequently, portions of reflectors in the fifth block directly below the squeezed
fourth block are also pulled up. This results in a false kink to appear in the eighth and
ninth reflectors. Around this kink image gathers are not flat even if the correct values of the
parameters are used to migrate the fifth block. If this residual moveout can be identified,
then the vertical velocity in the overburden may be adjusted manually or automatically to
flatten the gathers. In this example, I manually adjusted the vertical velocity in the fourth
block, while keeping Vo, l%,;, k., and 7 at the correct values, until the residual moveout
in the fifth block around midpoint 4.5 km was minimized. The resulting flat image gathers
obtained with the correct Vpg are shown in Figure 5.19 and the corresponding stacked image
is displayed in Figure 5.20.

Note that the need to correct Vpg in block IV was evident only because I had cor-
rectly assumed that block V was isotropic and the parameters in the block were correctly
estimated. More often than not, however, such a priori information is not available. Then,
the presence of residual moveout may indicate errors in the estimated parameters for the
target layer that can be corrected by accounting for more anisotropy or heterogeneity. For
example, one may attempt to incorrectly flatten the residual moveout in block V by making
it a factorized v(z,z) medium, or by subdividing the block laterally or vertically into two
smaller isotropic heterogeneous blocks such that the excess heterogeneity and anisotropy
compensates for the error in Vpg in block IV. Indeed, the parameter estimation from reflec-
tion seismic data is a nonunique problem, and the ambiguities increase with the complexity
of the medium. For a complicated medium there are many models, all wrong, that may
flatten events in image gathers (Stork, 1992), but the key in implementing MVA is to use
a technique that requires minimal a priori information to resolve the existing ambiguities.
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Figure 5.15. True image of a multilayered factorized medium. The blocks are numbered with
Roman numerals. Except for the nearsurface water layer, each block includes two reflectors,
where every second reflector (here indicated by the arrows) represents the bottom of a block.
Block I is homogeneous and isotropic with a velocity of 1500 m/s. Parameters for block II
are Vpo(z = 600m) = 1500m/s, k, = 1.0 s~ !, k, = 0.0 s™!, ¢ = 0.36, and § = 0.1; for block
I, Vpo(z = 3250m,z = 1600m) = 2500 m/s, k, = 0.3 s7!, k, = 0.2 s}, ¢ = 0.1, and
d = 0.0; for block IV, Vpo(z = 5000 m, z = 2300 m) = 3120 m/s, k, = 0.5 s71, k; = 0.0 s71,
€ = 0.3, and § = 0.15; for block V, which is isotropic, Vpo(z = 7750m, z = 3800m) = 3865
m/s, k, =1.0s7!, k; =0.1s57!, e = 0.0 and § = 0.0.
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Figure 5.16. Image obtained after prestack depth migration with the estimated parameters.
The velocity in block I was assumed to be known. Estimated parameters for block II are
Vpo(z = 600m) = 1500m/s, k, = 0.98 s, k, = 0.0 s7%, ¢ = 0.38, and § = 0.12. for block
III, Vpo(z = 3000m, z = 1590 m) = 2470 m/s, k, = 0.19 s71, k; = 0.22 571, ¢ = 0.09, and
& = 0.0; for block IV, Vpo(z = 5000 m, z = 2293m) = 3010 m/s, k, = 0.51 571, k; = 0.0s7 1,
€ = 0.36, and § = 0.21; for block V, Vpo(z = 7750 m,z = 3800m) = 3764 m/s, k, = 0.85
s7! ky = 01571, ¢ =0.0, and § = 0.0. The imaged positions of the reflectors are shown
with the solid lines; the dashed lines mark the true position of reflectors in the fourth and

fifth blocks.
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Figure 5.17. Image gathers obtained after depth migration with the estimated parameters

shown in Figure 5.16. Except for the encircled region (marked by the arrow), reflection
events are flat throughout the section.
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Figure 5.18. Cartoon showing that a negative error in Vpo in the fourth block causes a pull
up of reflectors in that block. This in turn, results in imaging the reflectors in the fifth block
with a false kink. The solid lines show the imaged positions of the reflectors; the dashed
lines show their true positions. Events in image gathers close to the kink are not flat, even
though the parameters in the fifth block were estimated with good accuracy.
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Figure 5.19. Same as Figure 5.17, but now the correct value of Vpy was used in the fourth
block [Vpo(z = 5000m,z = 2293m) = 3117 m/s, € = 0.30, § = 0.16, and &, = 0.51 s71].
Note that all events, including those inside the encircled area, are flat.



Debashish Sarkar / Migration velocity analysis in anisotropic media 67

0 4 midpoint (km) 8 12
0 1 ). 1 1 l
E
< = e
£ 2 —
Q e —
@ — . e
T — ~—
e S T
4 - =

Figure 5.20. Same as Figure 5.16, but now the correct value of Vpy was used in the fourth
block [Vpo(z = 5000 m, z = 2293 m) = 3117 m/s, € = 0.30, § = 0.16, and k, = 0.51 s~1].
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Chapter 5. Migration velocity analysis: Two synthetic examples
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Chapter 6

Field data examples

6.1 Geological history of the area

Here I apply the migration velocity analysis technique developed above to two offshore
seismic lines from West Africa. The geology of the area is governed by tectonic rifting that
occurred around the early Cretaceous. The major tectono-stratigraphic units in the order
they were formed are (Brice et al., 1982): (1) Prerift with gentle tectonism; (2) synrift
I with strong tectonism; (3) synrift II with moderate tectonism; (4) postrift with gentle
tectonism, and (5) regional subsidence with major tilting. The available seismic sections
record only the subsidence and postrift phases in geologic history, a schematic diagram of
which is shown in Figure 6.1.

The regional subsidence phase dates to the Oligocene and Miocene times. It is char-
acterized by a rapidly deposited regressive sequence, turbidites, shaly clastics, and high-
pressure shale. The reflectors within this unit are weak and discontinuous, often chaotic,
and show extensive cut-and-fill patterns. The ubiquitous presence of shales makes this sec-
tion strongly anisotropic. The thickness of this unit increases away from the shore, and at
places can reach six kilometers.

The postrift deposition dates to the early Tertiary. This unit is thicker near the shore,
where it can be up to two kilometers thick. Marine clastics and carbonates, nonmarine red
beds, and transgressive sequences make up most of its lithologic character. Seismic velocity
within the postrift unit varies significantly and is proportional to the carbonate content in
the sediments. The structural style is defined by gentle conformable folds towards the top
while faulting and complex halokinesis characterizes its base.

6.2 First line

The lateral extent of this section is about 9 km; it primarily consists of subhorizontal
reflectors with negligible lateral velocity variation. The water is about 150 m deep, and the
subsidence and the postrift units are both approximately 2 km thick. A time variant gain
was applied to boost the amplitudes at late times; a dip filter and a mute were applied on
CMP gathers to remove groundroll and some near-surface low-velocity dipping events.

As the first step in building the velocity model and imaging the subsurface, I identified
the water bottom by migrating and stacking the data with a moveout velocity of 1500 m/s.
Next, I estimated the velocity field of the near-surface sediments. Because this block is too
thin (= 400 m) to allow picking of two separate events for a stable inversion, I did not use

Nl i
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regional subsidence

postrift

depth

synrift

Figure 6.1. Cartoon of the geological history of the area showing the subsidence, postrift,
and the synrift units.

migration velocity analysis to estimate its velocity field. Instead, I assumed that the top of
this block had the water velocity (1500 m/s) and computed the vertical gradient k, = 0.8
s~1 by solving equation (3.6) using NMO velocities obtained from standard stacking velocity
analysis. Figure 6.2 shows common image gathers after migration with the estimated near-
surface velocity field. The deepest events with no residual moveout define the bottom of
this block.

Next, I proceed to estimate the velocity of the third block using migration velocity
analysis. To estimate the vertical velocity at the top of the block, which is required to
get unique estimates of the medium parameters, I assume that Vpo at a certain point on
the boundary between the second and the third blocks is continuous. Because the residual
moveout of events in the third block shows negligible lateral variation (Figure 6.2), I expect
that the lateral gradient k; in this block can be neglected. In the absence of any lateral
velocity variation and dipping reflectors, any point on the boundary between the two blocks
can suffice as the point of continuity. I assumed that the velocity is continuous at the point
(r = 3000m,z = 452m), which is close to the midpoints where I picked residual moveout
and performed MVA, and computed Vpy = 1740 m/s at this point using the estimated
parameters of the near-surface block. Using this Vpy and the residual moveout of two
events between midpoints 0 and 3 km (Figure 6.3), I estimated k;, ks, ¢, and 4. Starting
with a homogeneous isotropic velocity model, the algorithm converged to k, = 0.6 & 0.03
s71, ky = 0.040.01 57!, € =0.3+0.03, and § = 0.06 £0.02. These parameters correspond to
a value of 7 = 0.21 £+ 0.03, which indicates that the block is strongly anisotropic. Although
these estimated parameters flatten events at midpoints less than four kilometers, events at
midpoints greater than four kilometers are overcorrected (Figure 6.3). Therefore, the third
block has a limited lateral extent, as marked in Figure 6.3.

To compute the optimal parameters for the fourth block, I do migration velocity analy-
sis in the same depth interval as that for the third block, but at the right segment of the line,
where residual moveout is still present. As before, I select the point of continuity between the
second (near-surface) and the fourth block close to the midpoints where I performed MVA
(z = 7000m, z = 310 m) and compute the vertical velocity at this point (Vpy = 1625 m/s)
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midpoint (km)

Figure 6.2. Common-image gathers, computed with an increment of one kilometer, after
prestack depth migration using Vpo = 1500 m/s for the water layer, and Vpg = 1500 m/s
and k, = 0.8 s~! for the sediments. The locations of the blocks I, II, and III are marked.
The dashed line marks the maximum depths at which events are flat; it was used as the
bottom of the second (near surface) block and the top of the third block. The overcorrected
events below the dashed line indicate that these parameters are not appropriate for the
deeper reflectors.
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Figure 6.3. Common-image gathers after migration velocity analysis using the residual
moveout between midpoints one and three km along the two events marked by the arrows.
The dashed line marks the bottom of the third block. Most events below the dashed line

exhibit residual moveout.
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Figure 6.4. Common-image gathers, computed with an increment of 500 m, after migration
velocity analysis using the residual moveout between midpoints 6.5 km and 8 km along the
two events marked by the arrows. The flat events above the dashed line indicate that the
estimated parameters are good for this part of the section. The dashed line separates the
third and fourth blocks from the deeper, fifth, block.
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Figure 6.5. (a) First two km of the stacked depth section after prestack depth migration
with the estimated parameters. (b) Same section, with the block boundaries marked. The
arrow points to the fault that separates the third and the fourth blocks.
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using the parameters of the second block. Keeping Vpo(z = 7000m,z = 310m) = 1625
m/s fixed, I carried out migration velocity analysis using the residual moveout of two events
(Figure 6.4) between midpoints 6 and 8 km. The algorithm converged to the following val-
ues k, = 0.65+0.03 571, k; = 0.0£0.01 571, € = 0.35+0.03, and § = 0.1£0.02. The image
gathers after migration with the parameters of the fourth block estimated from migration
velocity analysis are shown in Figure 6.4, and the shallow portion of the stacked section
is shown in Figure 6.5. The arrow in Figure 6.5 points to the fault plane that serves as
the boundary between the third and fourth blocks, and the bottom of these two blocks is
marked by the dashed line in Figure 6.4. Observe that, although the parameters of the
fourth block flatten events in this block, deeper events remain undercorrected.

The optimal parameters required to flatten the undercorrected events in the fifth block
were again estimated by migration velocity analysis. To estimate the value of Vpo at the
top of the block, I did an isotropic homogeneous prestack depth migration using the vertical
velocity at the bottom of the fourth block evaluated close to the midpoints where I perform
velocity analysis [Vpg = 2230 m/s]. The decrease in the residual moveout with increasing
lateral coordinate (Figure 6.6) clearly indicates the presence of a significant lateral velocity
variation in the fifth block. Since the minimum residual moveout was observed at midpoint
7 km, I assumed (z = 7000m,z = 1235m) to be the point of continuity between blocks
four and five, and fixed Vpg = 2230 m/s at this point for the migration velocity analysis.
Using the residual moveout between midpoints 4 and 6 km along the two reflectors marked
in Figure 6.7 yields k, = 0.83 £ 0.04 s, k; = 0.04 £0.01 s~ e = 0.19 + 0.03, and
5 — 0.06 +0.03. The stacked image obtained after migration with the estimated parameters
is shown in Figure 6.7, and the corresponding common-image gathers (most of them are
flat) are shown in Figure 6.8.

The estimated vertical velocity field is shown in Figure 6.9, and the parameter 7 is
shown in Figure 6.10. As expected, the ubiquitous presence of shales in the subsidence unit
at depths less than two kilometers makes this section strongly anisotropic (n =~ 0.21). The
deeper postrift unit is also anisotropic, although to a lesser extent than the shallow subsi-
dence unit, and is characterized by moderate lateral velocity variation. In the subsidence
unit, the large maximum offset-to-depth ratios (= 2) for the two reflectors available for
velocity analysis provides sufficiently tight constraints on the value of 77 in the entire unit.
In the postrift section, however, only the shallow reflector has the maximum offset-to-depth
ratio close to two; the maximum offsets for the deeper reflector is smaller than the depth.
Thus, the value of 7 in this unit is well-constrained only above the first reflector. Absence of
prominent reflectors at greater depths and decreasing offset-to-depth ratios make estimates
of 7 for the deeper part of the section unstable.

For this line, my estimate for the maximum value of 7 (Nmax ~ 0.21) is much larger
than that obtained by Alkhalifah (1996) (7max ~ 0.1). Although it is difficult to compare
these two values, it is likely that my method gives more reliable estimates, because migration
velocity analysis is more robust in the presence of noise than time-domain techniques; also
by considering the factorized model, I was able to decouple heterogeneity and anisotropy,
which was not possible to do using time-domain techniques. In addition, the time-depth
curve computed from my estimated vertical velocity field at midpoint 5 km closely matches
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midpoint (km)

Figure 6.6. Common-image gathers after migration using the estimated parameters in
blocks 1-4, and an isotropic homogeneous velocity field with Vpy = 2230 m/s for the deeper
section. Observe that, the residual moveout of events below the bottom of the third and
fourth blocks (marked with the dashed line) decreases from left to right.

the curve computed from in situ measurements at a borehole close to this line (Figure 6.11).

6.3 Second line

Although migration velocity analysis improves parameter estimation because of its
robustness in the presence of noise, it is valuable primarily because of its ability to provide
estimates of medium parameters and to do imaging in the presence of significant lateral
velocity variation. In this section, I apply my algorithm to another line from offshore West
Africa, where the anisotropy coefficients and the vertical velocity varies significantly. This
line is further offshore and has a slightly deeper water column than does the first line.
Again, shales are expected to be the main cause of anisotropy. A time-variant gain was
applied to boost the amplitudes at large times; a dip filter and a mute were applied on
CMP gathers to remove the groundroll and some near surface low-velocity dipping events;
the data were also bandpass-filtered between 5 and 35 ha.
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Figure 6.7. Stacked section after prestack depth migration with the estimated parameters
for all five blocks. The arrows mark the reflectors used to estimate the parameters of the
fifth block. The first reflector is the bottom of the subsidence unit and the second reflector
is the bottom of the postrift unit. Note that the block boundaries of the velocity field do
not follow these geological markers.
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Figure 6.8. Common-image gathers after prestack depth migration with the estimated

parameters. Most of the undercorrected events stack at extremely low velocity, and possibly
are interbed multiples.
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Figure 6.9. Depth section showing the estimated vertical velocity field. The dashed lines
mark the block boundaries. The values in the legend are in m/s.
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Figure 6.10. Depth section showing the estimated anellipticity parameter 7.
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Figure 6.11. Comparison of the estimated time-depth curve at midpoint 5 km (dashed) with

one derived from sonic logs and check shot data (courtesy of ChevronTexaco) in a borehole
close to the line (solid).
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Figure 6.12a shows the final prestack depth-migrated section with the estimated pa-
rameters, and Figure 6.12b shows the factorized VTT blocks that comprised the model. The
estimated Vpy, €, §, and the anellipticity parameter 7 are shown in Figures 6.13-6.16. The
parameters were estimated using the same procedure as that described for the first line. For
blocks II, III, IV, and V, the migration velocity analysis was done after fixing the vertical
velocity at the top of each block. I assumed that the vertical velocity was continuous be-
tween blocks I and II, I and V, II and II1, and IT and IV. Since blocks I, II, II1, and V have
negligible lateral variation, the choice of this point of continuity was not important. For the
fourth block, however, significant lateral velocity variation exists. Therefore, I first did a
homogeneous isotropic migration with the velocity equal to that of the bottom of the second
block and examined the residual moveout on the resulting depth-migrated gathers shown
in Figure 6.17. As the lateral position increases from 0 to 5 km, the moveout changes
from being overcorrected to being undercorrected. Since the minimum residual moveout
was observed at approximately 2.5 km, T chose this lateral position at the bottom of the
second block as the point of continuity between the second and the fourth blocks. Fixing
the value of the vertical velocity at this point I did migration velocity analysis to estimate
the parameters. A large part of the fourth block has maximum offset-to-depth ratio less
than two. Since this is less than optimal for the estimation of 7, from horizontal events, I
also used reflections from the prominent fault plane (dip~ 35°) at the bottom of this block
for the analysis. Reflections from this dipping fault plane were also used for the parameter
estimation in the third block.

Anisotropy was not accounted for in block VI because the average maximum offset-to-
depth ratio (=~ 1) in this block is not sufficient to constrain the parameter 7. Therefore, I
only estimated the isotropic parameters Vpo, defined at a point in the block, and the lateral
and vertical gradients, k, and k,. In general, the moveout of a single event is sufficient to
estimate these parameters, but here, in the absence of nonhyperbolic moveout, I used the
hyperbolic portion of the moveout curve for two reflectors separated in depth.

The image gathers in Figure 6.18 show that the estimated parameters flatten the
majority of the events in the entire section and confirm that the piecewise factorized VTI
medium is a good approximation for the true velocity field in the area. The remaining
residual moveout present for a few events is likely caused by multiples and high-wavenumber
velocity variations, possibly at a scale much smaller than the spread of a typical CMP.

Block I is water, while blocks II, I, IV, V, and the portion of block VI above the
first prominent reflector make up the subsidence unit. Sediments below this reflector are
part of the postrift unit. Blocks IV and VI exhibit significant lateral velocity variation (in
Block IV, k; = —~0.07 s~! and in Block VI, k; = 0.16 s7!), which results in a decrease in
Vpo towards the middle of the section. A low-velocity zone is close to the major fault plane
that runs right through the middle of the section, and may point to a zone of weakness that
often accompanies major faulting.

Also note that for this line the estimated anisotropy is less than that estimated for
the first line (here 9maye = 0.12 + 0.04, in comparison to fmax ~ 0.21 + 0.03 for the first
line). One possible reason for the smaller values of n is that the shales in this area are
less consolidated. When shales are not consolidated, the clay platelets, which are the main
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source of anisotropy are not well aligned. This usually results in smaller estimates for 7.
Another possible reason could be attributed to the presence of overpressure, which is well
documented in this area (Brice et al., 1982; Alkhalifah, 1996). Decreasing the deviatoric
stress reduces the value of the anellipticity parameter 7 (Sarkar et al., 2003). Overpressure,
which may cause a reduction in the deviatoric stress, could, therefore, also be one of the
plausible causes for the lower anisotropy values recorded here. The depth section of 7
suggests that the shales are confined to only the third, fourth and fifth blocks, where 7 is
significant. However, geological information in this area indicates that shales extend all the
way to the bottom of the subsidence unit. To detect its presence precisely at greater depths
from seismic measurements, however, it is necessary to have larger offsets or dipping events.

Figures 6.19a and b were used by Alkhalifah (1996) to illustrate the improvements in
imaging after taking anisotropy into account. By including anisotropy, Alkhalifah (1996)
was able to image the fault plane at midpoint 7.5 km and depth 3 km (Figure 6.19)b,
which is absent on the isotropic image (Figure 6.19)a. The major fault plane that runs
right through the section between midpoints 2 and 8 km and subhorizontal reflectors at
midpoint 3 km and depth 2.7 km also show improved continuity on the anisotropic section.
A comparison of the prestack depth-migrated image computed in Figure 6.20b and the
time-migrated image in Figure 6.20a illustrates further improvements achieved by the MVA
and prestack depth migration. Improvements are observed for the subhorizontal reflectors
at midpoint 4.5 km and depth 1.4 km, the fault plane reflection at midpoint 7.5 km and
depth 3 km, the subhorizontal reflectors in the subsidence unit just above this fault plane,
the major fault-plane reflection extending between midpoints 2 and 8 km, and the reflectors
just above and below this fault plane. Perhaps the most dramatic difference between the two
images is in the shape and position of the two prominent reflectors that define the top and
bottom of the postrift unit and span the entire lateral extent of the section between depths
2.5 and 5 kms. Because time migration does not account for the lateral variation in the
vertical velocity, these two reflectors appear dipping on the time-migrated image. This dip
was largely removed in Figure 6.20b by taking into account the significant lateral velocity
variation in block VI. Also, since time migration ignores the lateral velocity variation in
block IV, the antithetic faults, which are so clearly visible at midpoint 4 km and depth 2
km on the depth-migrated section, appear fuzzy in Figure 6.20a.

For this line my estimates of the maximum value of 7 (n =~ 0.12) is smaller than what
was reported by Alkhalifah (1996) (n ~ 0.2). One likely reason for this difference is the
presence of significant lateral heterogeneity, which was not taken into account in the DMO
based methods followed in Alkhalifah (1996). Since I used MVA to estimate the parameters,
I was able to describe the velocity variation with greater resolution and accuracy. The
improved estimates give a clearer picture of the line, as is evident in Figure 6.20D.
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Figure 6.12. (a) Stacked section after prestack depth migration using the estimated pa-
rameters. (b) Same section with the blocks used in the velocity analysis marked by dashed
lines. The arrows mark the reflectors used in the MVA. Block I is water with Vpy = 1500
m/s; the parameters estimated for block II are Vpo(z = 4km,z = 240m) = 1500 m/s,
k= 0.66 +0.03 s71, k, = 0.02 +0.01 s7!,€=0.0240.02, and § = —0.02 + 0.02; for block
IIT, Vpo(z = 6.0km, z = 650m) = 1890 m/s, k, = 0.4 + 0.04 s~ k; = 0.01 £+ 0.01 s71,
€ = 0.12+0.03, and § = 0.0340.03; for block IV, Vpo(z = 2.5km, z = 1400 m) = 2200 m/s,
k:=0.4%0.04 s, k, = —0.07 +0.02 57!, €=0.19+£0.03, and § = 0.07 + 0.03; for block
V, Veo(z = 8.5km, 2z = 250m) = 1500 m/s, k; = 0.65 +0.03 s71, k; = 0.03 +0.02 s ¢,
€ = 0.15+0.02, and § = 0.06 + 0.02; and for block VL, Vpo(z = 6.5km, z = 1950 m) = 2500
m/s, k, = 0.65 + 0.03 s, ky = 0.16 £ 0.02 s7!, €=0.0, and § = 0.0.
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Figure 6.13. Depth section of the estimated vertical-velocity field.
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Figure 6.14. Depth section of the estimated parameter e.
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Figure 6.15. Depth section of the estimated parameter J.
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Figure 6.16. Depth section of the estimated parameter 7).

midpoint (km)
1.0 3.0 4.0

Figure 6.17. Common-image gathers after migration using a homogeneous isotropic model
with the velocity equal to that at the bottom of the second block, shown here between
depths 1300 m and 1700 m. The residual moveout of most events is overcorrected on the
left and undercorrected on the right. The minimum residual moveout is observed between
2 and 3 km. The dashed line marks the bottom of the second block.
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Figure 6.18. Common-image gathers at 1 km spacing, after migration with the estimated
parameters.
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Figure 6.19. Second line after (a) isotropic and (b) anisotropic phase-shift time migration
(after Alkhalifah, 1996). Figures (a) and (b) have been filtered to match the frequency
spectrum of the depth-migrated section shown in Figure 6.12 and also stretched to depth
using the vertical-velocity function (Figure 6.13) evaluated at midpoint 6 km. Arrows point
to few improvements that result after accounting for anisotropy.
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Figure 6.20. Second line after (a) anisotropic phase-shift time migration (after Alkhalifah,
1996) and (b) prestack depth migration. Arrows point to few improvements that result
after migration velocity analysis and prestack depth migration.
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Chapter 7

Conclusions and future work

7.1 Discussion

Approximating heterogeneous VTI models by factorized blocks or layers with linear
velocity variation provides a convenient way to reconstruct vertically and laterally hetero-
geneous anisotropic velocity fields for P-wave prestack imaging. The migration velocity
analysis (MVA) algorithm introduced here estimates the anisotropic parameters and ve-
locity gradients in each subsurface block by minimizing the residual moveout of P-wave
reflection events in image gathers. Tests on a specific field data set show that the piecewise
factorized model can adequately describe velocity variations in the subsurface. The depth-
domain MVA methodology reconstructed the velocity field with much greater resolution
and accuracy than was previously possible using time-domain techniques.

In conventional seismic processing for isotropic media, image gathers have proved to
be a convenient tool for refining velocity models as well as for a quick qualitative assessment
of the accuracy of velocity analysis. If the medium is anisotropic, however, reflection move-
out is governed by several anisotropic parameters, and the interpretation of image gathers
becomes much more complicated. I presented an analytic and numerical study of P-wave
common-image gathers in homogeneous and factorized v(z) and v(z,z) VTI media. Using
the weak-anisotropy approximation, I obtained a simple representation of image gathers for
horizontal events in homogeneous VTI media in terms of the vertical velocity Vpg, the NMO
velocity Vimo and the Alkhalifah-Tsvankin parameter 7. Although this equation describes
imaged depths, its structure is similar to that of the nonhyperbolic equation for P-wave
reflection traveltimes (Alkhalifah and Tsvankin, 1995). The moveout on image gathers de-
pends on the parameters Vymo and 5, with the NMO velocity responsible for the small-offset
term and 7 governing the term quartic in offset. Therefore, although in principle the cor-
rect values of both Vime and 7 are needed to flatten an event, the influence of 5 becomes
substantial only for offset-to-depth ratios exceeding unity.

In agreement with the general result of Alkhalifah and Tsvankin (1995), the same
conditions (correct values of Vomo and 7) are needed to flatten dipping events in image
gathers, but, in the presence of dip, 7 makes a substantial contribution to the near-offset
moveout as well. The magnitude of residual moveout for a fixed error in Vym, decreases with
dip, while the residuals caused by an error in 7 reach their maximum value for intermediate
dips (25°-35° in my examples). Even if migration is performed with the correct parameters
Vamo and 7, and the events are flat and well-focused, the imaged depth differs from the true
depth by a factor equal to the ratio of the migration and true vertical velocities; that is, by
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a factor dependent on the unknown Thomsen parameter §.

For factorized v(z) models with a constant vertical velocity gradient &,, the equation for
moveout of horizontal events in image gathers has the same form as that in homogeneous
media, but the effective vertical and NMO velocities are now ofcourse influenced by the
vertical velocity gradient. Flattening events with any dip in v(z) media requires the correct
values of the NMO velocity at the surface, the coefficient 7, and the gradient k,. The
influence of errors in k, on the residual moveout decreases with dip (as is the case for errors
in Vimo) but increases with reflector depth.

Extension of these results to laterally heterogeneous v(z,z) models is based on the
NMO equation of Grechka and Tsvankin (1999), which includes a correction term depen-
dent on the lateral variation of the vertical velocity (or vertical traveltime). For a weak
linear velocity dependence on z, the correction term vanishes, and the NMO velocity is
equal to the corresponding value in the laterally homogeneous background. To equalize the
background NMO velocities for all z, migration should be done with the correct value of
the parameter combination k;v/1 + 28 (ks is the horizontal velocity gradient). Therefore,
moveout on image gathers in v(z, z) media is controlled by four parameter combinations:
Vamo(T = 2 = 0) = Vpov/1+ 26, 0, k,, and k,/1+ 26. A positive error in any of these
quantities causes undercorrection (i.e., the imaged depth increases with offset) and a neg-
ative error causes overcorrection. Although these parameters were derived assuming weak
lateral heterogeneity, they are valid for any strength of anisotropy and heterogeneity.

Hence, the vertical velocity gradient k, is constrained by P-wave image gathers not
only in the v(z) model, but also in laterally heterogeneous media. As a result, although
the inversion of P-wave data for the vertical velocity and Thomsen coefficients will suffer
from inherent ambiguities, minimal a priori assumptions may be sufficient to remove the
trade-offs among the VTI parameters. For example, if the vertical velocity Vpg is known at
any single surface location, then the estimated gradient k, can be used to reconstruct the
function Vpy(z) and find the depth scale of the model. Also, in this case, the anisotropic
parameter § can be estimated from the NMO velocity at the surface (Vpoyv/1 + 26), and, in
turn, used to estimate the horizontal gradient k; and the parameter e.

If the medium is isotropic and sufficiently large offsets are available, the parameters
Vpo, k;, and k, can be estimated using the residual moveout from a single reflector (Liu,
1997). In the presence of anisotropy, however, the residual moveout from a single reflector
constrains only the effective quantities vnmo and 7, even if large offsets are available. To
estimate Vomo, k2, kz, and 7, two reflectors separated in depth are required. Note that
in the absence of nonhyperbolic moveout, two reflectors are also required to estimate k,
in isotropic media. Since conventional isotropic processing focuses on only the hyperbolic
portion of the moveout curve and ignores nonhyperbolic moveout, the requirement of using
two reflectors in anisotropic media is not much different from the requirements of isotropic
velocity analysis.

Application of this MVA method confirms the conclusion that stable recovery of the
parameters Vy o, k., l%z, and 7 requires reflection moveout from at least two interfaces within
each block sufficiently separated in depth. Numerical tests indicate that the velocity-analysis
algorithm yields robust estimates of the four parameters if the vertical distance between the
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two interfaces exceeds 1/4 of the depth of the bottom reflector. The precision in the estimate
of k; increases with the lateral spread of midpoint locations used in MVA. Another essential
condition, for the stable estimation of the parameter 7, is either the presence of dipping
interfaces (dips should exceed 25°) or acquisition of long-spread data from subhorizontal
reflectors providing maximum offset-to-depth ratios of at least two.

The residual moveout on image gathers for large offset-to-depth ratios was described by
a nonhyperbolic function that depends on two independent moveout parameters. Although
these parameters are not directly used in the velocity analysis, their best-fit values found
from semblance search give an accurate approximation for the residual moveout. When
the standard semblance operator fails, as may happen in the presence of polarity reversals
occurring in Class II sands, modified semblance routines suggested by Sarkar et al. (2001,
2002) may be used instead.

The MVA is implemented in an iterative fashion, with the variance in the residual
moveout minimized at each iteration step. At each step I solve a set of linear equations to
estimate the updates in the medium parameters. With the updated parameters I perform
prestack depth migration and obtain an image that is better focused than what was obtained
in the previous iteration. I stop the algorithm when image gathers are flat. Since the
parameter estimation is done in the post-migrated domain, the algorithm is robust in the
presence of random noise and does not lose accuracy for models with significant lateral
heterogeneity and dipping structures. Because Vpg is unconstrained by reflection P-wave
data, I have to assume that the vertical velocity is known in each factorized block before
estimating k;, k,, €, and 8. If the factorized layer is too thin, the inversion can become
unstable. The inversion may be stabilized by estimating k, from NMO velocities using
equation (3.6) and keeping this value fixed while estimating ¢, d, and k; from MVA.

Vertical velocity information, which is required to constrain the inversion, can often
be obtained from borehole data using either check shots or sonic logs. If no borehole
information is available, a suitable model for depth imaging can sometimes be constructed
by assuming that Vpg is continuous across block boundaries. Then, the entire velocity
model in depth can be estimated from the residual moveout of P-wave reflection events.
The examples presented in the thesis demonstrate that the assumption of continuity of Vpg
offers a practical way to build reasonably accurate anisotropic velocity models. As the level
of structural complexity increases, however, the true velocity field may have large velocity
jumps across different blocks, and the adopted continuous velocity field will result in errors
in the final image.

For relatively simple models with subhorizontal interfaces, the distortions related to an
error in the vertical velocity are limited to a depth stretch that can vary from one layer to
another. The moveout of events in image gathers is not influenced by an incorrect choice of
Vpo, and the migrated image remains well focused as long as the algorithm yields accurate
values of Vamo, k2, kg, and 7. In the presence of dipping interfaces, an overstated value
of Vpg causes the imaged dips to be larger than the true ones; if Vpo is understated, the
imaged dips are too small. In multilayered media, a depth stretch for dipping interfaces in
the overburden can distort the shape of the underlying reflectors, even if the parameters
immediately above these reflectors are estimated correctly.
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In the presence of significant dip or curvature, P-wave reflection moveout and, there-
fore, residual moveout on image gathers become dependent on the vertical velocity and the
parameters € and § (Le Stunff et al., 2001; Grechka et al., 2002). Then errors in Vpg in
the overburden will not only cause errors in parameter estimation at the target, but will
also result in poor imaging of target reflectors. For models of this type, the layer-stripping
approach adopted in my MVA algorithm is not always adequate. Instead a simultaneous
multilayer parameter estimation technique is necessary to constrain the parameters accu-
rately.

Application of the MVA analysis approach to two field lines from West Africa confirms
previous results that the subsurface is strongly anisotropic (Jmax = 0.2). The estimated
velocity field also indicates the presence of significant lateral heterogeneity, which was pre-
viously unaccounted for by time-domain techniques (Alkhalifah, 1996). After MVA and
prestack depth migration, the faults showed greater continuity, antithetic faults that were
fuzzy in the time-migrated images were well focused and distinctly visible, geological fea-
tures close to the major faults were well focused, subhorizontal reflectors in the anisotropic
regions were better delineated, and many of the deeper reflectors were better positioned in
depth. In particular, false dips seen on the time-migrated image were removed after MVA
and prestack depth migration.

By approximating the subsurface with piecewise factorized v(z, z) media, I was able
to account for the vertical and lateral variation in the anisotropic parameters with much
greater resolution than that achieved by time-domain methods. Flat image gathers after
migration suggest that the factorized v(z, z) medium is a good model for approximating
realistic subsurface velocity variation. The successful implementation of my method on field
data shows that the assumption of a continuous vertical velocity field can offer a reasonable
way to build heterogeneous anisotropic velocity fields in depth that is suitable for prestack
depth migration with minimal a priori information. The time-depth curve obtained from
the MVA algorithm matches closely the curve computed from borehole data.

As in any other MVA technique, the main cost of my method is in the migration step,
which makes this algorithm substantially more expensive than time-domain parameter esti-
mation methods proposed in Alkhalifah (1996) and Grechka et al. (2002). Also, anisotropic
migration is more expensive than isotropic migration because of the extra cost involved
in computing reflection traveltimes. This extra cost is, however, negligible in comparison
to the cost incurred in the actual migration step, which is the same for both isotropic
and anisotropic media. In general, because of the larger number of parameters required to
characterize anisotropic media, anisotropic parameter estimation requires a longer iteration
process for convergence. This results in a greater number of migration and velocity analysis
steps, which makes the anisotropic MVA more expensive than isotropic migration velocity
analysis.

7.2 Conclusions

(1) I have developed a method suitable for velocity model building and imaging of
P-wave data in heterogeneous VTT media.
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(2) To develop such a process with minimal trade-offs between the estimated param-
eters the subsurface was approximated with piecewise factorized VTI blocks or layers. In
each factorized block, the anisotropic parameters are independent of the spatial position,
while the vertical velocity varies linearly with depth and lateral position. This model is
simple enough to allow analytic insight into the trade-offs in parameter estimation, and, at
the same time, it adequately describes realistic subsurface velocity variations.

(3) Even in the presence of lateral velocity variation, the vertical gradient in the
vertical velocity Vpo can be uniquely estimated from surface seismic data without a priori
information. The lateral gradient is, however, coupled to the anisotropy and cannot be
resolved without knowledge of the Thomsen parameter d.

(4) The velocity-analysis algorithm is implemented in the post-migrated domain. Thus,
it is robust in the presence of uncorrelated random noise and is suitable for media that have
significant lateral velocity variation.

(5) In general, knowledge of the vertical velocity is required at a point in each factorized
layer or block to obtain the lateral gradient and anisotropic parameters. However, an
anisotropic velocity field for imaging purposes may be constructed by assuming the vertical
velocity to be continuous across layer boundaries. Then, minimal a priori information,
such as knowledge of the vertical velocity at the surface, may be sufficient to constrain the
velocity field.

(6) Application of this technique to field data from offshore West Africa suggests that
the method may be suitable for velocity analysis and imaging when the subsurface is both
heterogeneous and anisotropic.

7.3 Future work

7.3.1 3-D data

In this thesis I limited my study to 2-D data and introduced a method suitable for
model building and imaging in the presence of heterogeneity (vertical and lateral) and
vertical transverse isotropy. The ideas developed here can be readily extended to 3-D as
well. In 3-D, the moveout of events will be governed by five parameters: Vimo, k;, kg,
I;y = kyV1+26 (ky is the lateral gradient along the y—axis and I::y is the effective lateral
gradient in the same direction), and 7, which can be estimated from the residual moveout of
two events separated in depth and measured at three different midpoint locations containing
two different azimuths. As in 2-D, knowledge of the vertical velocity at a single point in
the medium will be required to estimate the medium parameters k, kg, ky, €, and 4.

7.3.2 Multicomponent data

With the advent of ocean bottom cable (OBC), it is now possible to acquire converted
(PS) modes offshore. Because one of the raypaths in PS reflection data is pure shear, PS
data can improve imaging in areas where P-waves fail (e.g., beneath gas clouds). Moreover,
since PS data are more sensitive to anisotropic parameters, they can be combined with P
data to help improve anisotropic parameter estimation.
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One of the main difficulties in extending the factorized model suggested in this thesis
to PS data, however, is in accounting for the spatial variation in the vertical shear-wave
velocity Vso. The vertical gradient in Vgg was neglected in my study because Vg¢ does not
substantially influence P-wave kinematics (Tsvankin, 2001). Strictly following the factorized
model for PS data would imply that the gradients in Vg are the same as the gradients in
Vpo, which for all practical purposes is unrealistic because in the subsurface their gradients
differ. Therefore, when working with PS data, a straightforward extension of my algorithm
may not be possible. Certain modifications will need to be made in the model to account
for the different spatial variations in Vpy and Vso.

7.3.3 Tilted symmetry axis and media with lower symmetries

In some regions, such as the Canadian foothills, strong evidence suggests that the
subsurface is transversely isotropic with a tilted symmetry axis. For such conditions, it is
important to estimate not only the anisotropic parameters € and d, but also the tilt of the
symmetry axis (v). Indeed, the tilt can have a significant impact on the NMO velocity
(Tsvankin, 2001). By dividing the subsurface into factorized T1I blocks, where each block is
characterized by constant values of ¢, 6, v, and a linearly varying Vpy, it may be possible to
build velocity models for prestack depth imaging in heterogeneous TI media with a tilted
symmetry axis.

The algorithm can also be extended to media with lower symmetries. For example,
heterogeneous orthorhombic media are commonly encountered in fractured and stressed
subsurface formations. Such media can be approximated with piecewise factorized v(z, z)
orthorhombic blocks, where in each factorized block the anisotropic parameters are constant
while the vertical velocity Vpg varies linearly in the vertical and lateral directions. Since
kinematics within each symmetry plane are the same as those in VTI media, my algorithm
can be readily applied, and anisotropic parameters defined in the symmetry planes readily
estimated. Away from the symmetry planes, however, the feasibility of the application of
my algorithm will depend on how velocity gradients couple with the various anisotropic
parameters, and requires further study.

7.3.4 Multilayer parameter estimation

In the presence of significant dips, an error in Vpg in the overburden may cause errors
in the estimation of V0, fcz, kz, and 7 of the target layer, and image gathers at target
reflectors will not be flat. To correct for these errors, my method, which is based on layer
stripping, requires the user to manually adjust the vertical velocity in the overburden to
improve the image at the target. This may result in a cumbersome iterative procedure
of correcting Vpg in the overburden and imaging at the target until the target is properly
imaged. To avoid a manual iterative procedure such as this, simultaneous parameter esti-
mation is required for multiple layers. Although I expect the multilayer update to be less
well posed in comparison to the single-layer updates used here, it may provide a way to
estimate the correct vertical velocity in the overburden with even less a priori information.
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Appendix A

Image gather for a horizontal reflector in a
homogeneous VTI medium

Consider a horizontal reflector located at the depth 2, in a VTI medium with the
vertical velocity Vpor and Thomsen parameters €, and é, (Figure A.1). Suppose P-wave
data acquired over such a model are migrated with the parameters Vpo,M, €, and d,,.
Clearly, for a horizontal reflector the image point does not move laterally. Therefore, the
reflection traveltimes in the true (¢,) and migration (¢,,) models for the half-offset h can

be written as
2,/h%+ 22
- v 7 (A.1)

R Ay
and
2 h2 + 2
by = (82)
Vo,m(4')

where V, 7 is the group velocity at the group angle ¢ in the true model, and Vs is the
group velocity at the group angle ¢’ in the model used for migration.

Under the assumption of weak anisotropy, quadratic and higher-order terms in the
anisotropic coefficients can be neglected, and the group velocity can be replaced with the
corresponding phase velocity (Thomsen, 1986; Tsvankin, 2001):

Vor(8) = Vo [1 + 6, sin’¢ + (e, — 6,) sin*g]. (A.3)
Likewise, for the migration model
Vo (¢') = Voo [L + 8, sin’¢’ + (€, — 6,,) sin*4]. (A.4)

Substituting equations (A.3) and (A.4) into equations (A.1) and (A.2), equating the
true and migration traveltimes (¢, = t,,), and linearizing the resulting expression in the
anisotropic coefficients yields

v? (h? 4 22) [1 — 26, sin®¢ — 2(e; — 6,) sin’¢)]
= (h® + 22 )[1 — 20, sin®¢ — 2(¢,, — 6,,)sin’], (A.5)
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Figure A.1. True and migrated positions of a horizontal reflector.

where v= VPO,M/VPO,T-

Expressing
in¢ = h and  sin?¢’ = h—2 (A.6)
. S R2+22 C h2+ 22 '
in equation (A.5) and solving for z,,, I obtain
2h*y% (e, — 6,)  2h%(e,, —,,)
2 2,2 32 2 2
Zu NV a2, — 14" = 2697 - T +ng = 72(h¥+z¥“3 . (A7)
The coefficient of % can be represented as
1 1
(2(5M -1+ 72 _ 25,1,72) ~ V]gO’M (V2 — 72 ), (A.8)
nmo,T nmo,M

where Vimo = Vpov/1 + 26 &~ Vpg (1 + 6). Similarly, the coefficient of [2h%/(h2 + z2)] takes
the form

2 2
2 (GM - JM) Vnmo,M Vnmo,T
Vier —b7) - ot 1 , (A.9)
T T '72 ’ Vnzmo,T M Vn2mo,M

where 77 = (e — §)/(1 + 26) & ¢ — §. Therefore, equation (A.7) can be rewritten in terms of
Vamo and 7 as

1 1 2h* V2o V2 o
2 2,2 21,2 nmo, nmo,
M T ’ Vnzmo,T Vn2mo,M h? + z?‘ M [n2mo,M ’ ‘/;12mo,T
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Appendix B

Image gather in a factorized v(z) medium

Here, I extend the results of Appendix A to factorized v(z) VTI media defined by
the vertical velocity Vpo,r at zero depth, the vertical velocity gradient k. 1, and Thomsen
parameters €. and 6,.. The one-way zero-offset time 7 for a horizontal reflector can be found
as the following function of depth z:

# d§
/0 Veor + k. 7€
1 Veor + k1 2 ]
= ln 2 2 . B.l
k.r [ Veo,r (B.1)
Expressing 2z as a function of 7 yields
Veor ( k, v
= 1 Z, — 1 . B2
T r (e ) (B.2)

Substituting z into the equation Vpor(2) = Vpo,r + k,1 2 allows one to represent the
vertical velocity as a function of the zero-offset time:

Veo(7) = Veor k=TT, (B.3)

Then the interval NMO velocity is given by
Vamo (T) = VPO,T Vv 1+ 257. ekz’TT . (B4)

Applying the Dix formula and substituting equation (B.4), I obtain the effective NMO
velocity for a reflector at the depth z,.:

2 1 [T
vnmo,T(To) = % 0 Vnmo(T)dTa
_ V}%O,T (1 + 26T) ( 2%, 7T, )
= e »T’0 —1), or
2 TO kz,T

Vlgo,T (1 + 26’1‘) (ek"T to 1)

2
Unmo,T (tO) to ko1
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where ¢y = 27, is the two-way zero-offset time.
As shown in Alkhalifah (1997) and Appendix 4B of Tsvankin (2001), the zero-offset
time ¢y, the NMO velocity vymo, and the parameter 7, which is defined as

) 1] (1+8n,) U 4 ]
= ATl | [Ty ar| -1
"I 8 {’uﬁmo’T(To) 70 LJo o(7)
2k, Tto _
1 {(1+snT)(e T l)kz,Tto_l}, (B.6)

8 2(ek=rto —1)2

fully determine reflection moveout from horizontal interfaces in v(z) VTI media. Hence, for
the purpose of migrating horizontal events, the true factorized v(2) medium can be replaced
by a homogeneous VTI model with the vertical velocity equal to the average vertical velocity
(VPo,T) above the reflector, the NMO velocity equal to Unmo,T, and the parameter 7 equal
to 7. Note that 7, depends on the zero-offset time to, and hence, on the depth z,..

For a migrated image point at half-offset h, the same substitutions can be used to
replace the factorized v(z) migration model above the image point with an equivalent ho-
mogeneous model. Therefore, the linearized equation of an image gather for a factorized
v(z) medium can be adapted from equation (A.10) for homogeneous media:

N 1 1
B0 W ol O s - ]
[ norlr) gl ()
e b O g e 2t O

where v = Vpy, M2y (R)]/ Vo z (2, (B)], Vi is the average vertical velocity of the overburden,
and the effective NMO velocities and 7 values are computed from equations (B.5) and (B.6).

When the migration model is close to the true model, the migrated depth is weakly
dependent on offset (for a moderate offset range), and the effective quantities for the actual
depth z,,(h) can be replaced with those for 2,,(0). Then equation (B.7) can be rewritten
as

N 1 1
22 (h ~ 7222 +h2v2 { _ }
) PNV ) T W e (O
2h4 { vlzlmOT(zT) R vrzlmo M[zM(O)]
s g2y ()] LT (o TamoptlE O g
g b Ol o e T

Note, however, that equation (B.8) does not involve the approximation for the effective
quantities if the image gather is obtained after migration using a homogeneous VTI medium
with the vertical velocity equal to Vpo[z(0)], NMO velocity equal to vYnmo,a[2(0)], and 7
equal to 7[z(0)].
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Appendix C

Algorithm for velocity update

Following the approach suggested by Liu (1997), we design the velocity-updating al-
gorithm to minimize the variance in the migrated depths of events in image gathers. To
simplify a generally nonlinear inverse (minimization) problem, we perform the velocity anal-
ysis iteratively, with a set of linear equations being solved at each iteration. Below we discuss
the velocity update performed at a single (I*h) step of the iterative process.

Suppose that prestack migration after the (I — 1)t iteration of the velocity analysis
resulted in the migrated depths zq(z;, hx) (z; is the surface coordinate of the j** image
gather, and hy, is the half-offset). Then the migrated depths z(zj, hi) after the I*h iteration
can be represented as a linear perturbation of zo(z;, h):

O0zo(zj, h
z(:l:j,hk) = z()(:L'j,hk) +2iN___1——0—(8/<.—k)A)\i, (C.1)
2
where 9zo(z;, hi)/0); are the derivatives of the migrated depths with respect to the medium
parameters \; (i = 1,2,3, ... N), and A); = X — ); are the desired parameter updates. The
goal of the updating procedure is to estimate A); and, therefore, find the parameters X to
be used for the migration after the [*! iteration.

The variance V of the migrated depths for a single reflection event at all offsets and
image gathers is
V=5, 5t [2(zg, he) - 2(2)), (C.2)
where 3(z;) = (1/M) M, z(z;, hy) is the average migrated depth of the event at surface
coordinate z;, P is the number of image gathers used in the velocity update, and M is the
number of offsets in each image gather. The minimization at each iteration step is accom-
plished by searching for the parameter updates that satisfy the condition oV/o(AN) =0
(r =1,2,3, ... N). Subsituting equation (C.1) in equation (C.2), differentiating the variance
with respect to the parameter updates, and setting 8V/3(A);) = 0 yields

- E;'J=lzllcu=1211’\_l—:1(gjk,i - gj,i)(gjk,r - gj,r)AAi
= Elezﬂil[z()(xj,hk) - zo(xj)](gjk,r - gj,r) ’ (0'3)

where gjxr = 020(zj,hi)/0Ar, giki = Oz0(zj, hi)/ONi, and gjz = (1/M)Z}L gjk s all
derivatives are evaluated for the medium parameters A;.
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Equation (C.3) can be rewritten in matrix form as
ATAAN = ATp, (C.4)

where A is a matrix with M - P rows and N columns whose elements are 9iks — G, and
b is a vector with M - P elements defined as zo(x;, hy) — 20(z;). AT A is a square N x N
matrix, and the vector AT b has N elements, so the problem has been reduced to a system
of N linear equations with N unknowns AX. We solve the system (C.4) using a linear
conjugate gradient scheme to obtain A and the updated parameters A’ = A\ + .

The derivatives of the depths z(z;, hy) with respect to the medium parameters \; (and,
therefore, the matrix A) can be determined from the imaging equations (e.g., Liu, 1997):

Ts (y) h’ a:) z’ X) + T‘r (y’ h, z, z) X) = t(y’ h) b (C'5)

3T3(y, ha Tz, )‘) + aTT(y) h, Ty z, A) — at(y1 h) . (06)
Oy Ay dy

Here y is the common-midpoint location at the surface, h is the half-offset, 7, is the trav-
eltime from the source location z; (z; = y 4+ h) to the diffractor location (z,z) that was
obtained after prestack depth migration with the medium parameters A;, 7, is the traveltime
from the receiver location x, (z, = y — h) to the point (z,z), and t(y, h) is the observed
reflection traveltime. Note that y, z, and z depend on the medium parameters );, while
h is an independent variable. Because z is fixed at the surface location where a particular
image gather is analyzed, however, the derivative of z with respect to A; is set to zero.

Differentiating equation (C.5) with respect to \; gives

Ors Ol dy | [Ors Om)dz [0, Om] _o0tdy (C.7)
9z | dn;

dy Oy ld\ |0z O\ 0N Oydh’

Taking equation (C.6) into account simplifies equation (C.7) to

ors Ot dz Oty O
ERsc R €9
or d 13 o 1
e _ [0 on .
v [aAi + aAi] “wra’ (C9)

where g; = 07,/0z and g, = O7,/0z are the vertical slownesses evaluated at the diffractor
for the specular rays connecting the diffractor with the source and the receiver, respectively.

To find the derivatives dz/d)\;, we perform ray tracing using the prestack-migrated
image after the (I—1)'" iteration. First, the dip of the reflector needed to define the specular
reflected rays is estimated by manual picking on the image. Then, for a given diffraction
point on the reflector and a fixed source-receiver offset, the specular ray is traced through
two models, one of which is defined by the parameters ); and the other by parameters
slightly deviating from ); (i.e., \; are slightly perturbed). The corresponding perturbation
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of the traveltime between the source and the diffractor is divided by the perturbation in
Ai to obtain 97, /0);, while the same quantity for the traveltime leg between the diffractor
and the receiver gives 07,./3);. The slownesses ¢, and ¢, at the diffraction point are part
of the output of the ray-tracing algorithm (Cerveny, 1972).
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