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ABSTRACT

This work studies fluid substitution processes in anisotropic rocks and their in-
fluence on the elastic modeling and characterization of naturally fractured reservoirs.
The results indicate that the linear slip theory may incur errors when modeling the
anisotropic parameters of fluid-saturated rocks under conditions of equilibrated pore
pressures. The errors originate from the fact that the total storage capacity of the
pore system does not allow the decomposition of the rock’s compliance tensor as
formulated in the linear slip theory.

The concept of the total storage capacity links the theories of fluid substitution
to the theory of pressure-transient experiments performed by well-test engineers. In
elastically isotropic reservoirs, storage capacity estimates from pressure-transient data
can be used directly in Gassmann’s (1951) equations to predict the changes in the
rock’s bulk modulus with saturation. In fractured reservoirs, estimates of the ratio of
the fracture- to total-storage capacity can be used to constrain the normal compliance
of the fracture system estimated from seismic data.

When fluid substitution occurs in rocks with fractures of complex rheology the
velocity of vertically propagating shear-waves may be dependent on fluid saturation.
The shear-wave sensitivity to fluids originates from the effective symmetry of the
rock, which has to be monoclinic or lower for vertical fractures. Analysis of time-lapse,
multicomponent data acquired over a reservoir under CO, injection at Weyburn field,
Canada, suggests there is a time-lapse variation of the shear splitting in areas where
large amounts of CO, are injected. Furthermore, those areas coincide with zones in
the reservoir that have symmetry lower than orthorhombic.
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NOTATION

“If you must analyze more than two phenomena in a single manuscript, make sure
to add the hebrew alphabet to your notation”
Andrey A. Clondaro, 1994

¢ = compressibility

C;; = stiffness matrix

C = wellbore storage

D = fluid influence factor
Ay = normal weakness
Ar = tangential weakness
E = Young's Modulus

G = shear modulus

K = bulk medulus

% = permeability

p = viscosity

L = length

M = P-wave modulus

P = pressure

g = flow rate

r = radius

s = skin factor

S;; = compliance matrix
Sijre = compliance matrix

t = time
@ = crack dip
= volume

Vp = P-wave velocity

Vg, = fast S-wave velocity

ng = slow S-wave velocity
= fracture compliance

a. = crack aspect ratio

3 = NMO ellipse rotation

Eij = strain

¢ = porosity

@ = relative crack azimuth

) = well-test parameter

ne = crack/fracture density

Vil




v = Poisson’s ratio

p = fluid density

o = stress

w = storage capacity ratio

Subscripts

b bulk

¢ crack

d dry

J fluid

F fracture

t isotropic

s saturated
™ mineral

P pore
w wellbore

viii
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Chapter 1

INTRODUCTION

1.1 Motivation

Characterization of fractured reservoirs is an important area of research due
to its economical impact. A large portion of the oil and natural gas in the world
is trapped in tight reservoirs that require large permeabilities provided by natural
fractures to produce reservoir fluids economically (Nelson, 1985). If the fractures
have preferential orientation, the reservoir becomes anisotropic with respect to wave
propagation, and by characterizing the seismic anisotropy we can obtain information
about the properties of the fracture network.

The location of fluid migration paths through the fracture network is one of the
most important inferences geophycisists hope to draw from seismic data. This can be
achieved through the use of time-lapse seismic, in which several seismic experiments
are performed with the intention of monitoring changes in the seismic signatures that
are associated with fluid migration. Therefore, fractured reservoir characterization
requires accurate theoretical descriptions of how the seismic signatures should be
parameterized, and how the parameterization changes with variations in the reservoir
fluids.

This thesis deals with several theoretical and practical issues regarding the char-
acterization of fractured reservoirs in the “static” case, where no time-lapse data is
available, and in the “dynamic” case, where a time-lapse experiment has been ac-
quired. The topics addressed in each chapter have been motivated by the ongoing
Weyburn field characterization project, in which a fractured carbonate reservoir un-
der CO, injection is being monitored using multicomponent seismic data. Although
each topic is applicable to Weyburn field, the implications of the results are valid for
fractured reservoir characterization in general.

1.2 Thesis Layout

The thesis has been written to minimize cross-referencing between chapters.
Hence, the chapters are as self-contained as possible allowing the reader to understand
the results without having to read the whole manuscript. The first three chapters of
the thesis are aimed at clarifying and improving our theoretical understanding of the
fuid substitution process in elastically anisotropic rocks.




Chapter 2 develops from first principles two of the most common fluid substitu-
tion theories used in the rock physics community: the static-limit theory that results
in Gassmann’s (1951) and Brown and Korringa’s (1975) formulations, and the squirt-
limit theory that results in Mukerji and Mavko’s (1994) formulation . This chapter is
not just a review of facts already found in the literature, but rather an interpretation
of the fundamental link that exists between the two formulations. Chapter 2 also
clarifies some common misconceptions about the application and use of Gassmann's
equation.

In Chapter 3, I show that the linear-slip parameterization of fractured rocks does
not hold for all conditions of fiuid saturation. The use of the linear-slip parameteriza-
tion is suitable to calculate the compliances of saturated rocks in the high-frequency
“squirt” limit, but may be in error for low frequency measurements.

Chapter 4 addresses the possibility of having shear-wave moduli and velocities
that are sensitive to changes in the compressibility of the reservoir Auids. The im-
plications of the chapter is that time-lapse analysis of shear-waves may be used in
monitoring fluid movement in the reservoir and that the existence of time-lapse vari-
ation may help constrain the symmetry of the reservoir rocks.

Due to the complexities of naturally fractured rocks, the reservoir geophyeisist
is always in need of independent sources of information that can help him or her
constrain the estimates derived from seismic data. A largely overlooked source of
information lies in the results of pressure-transient analyses performed by reservoir
engineers. Chapter 5 develops a theory that relates the estimates from pressure-
transient tests to the normal compliance of the fracture network at the well location.

Chapters 6 and 7 are dedicated to a case study of fracture reservoir characteri-
zation at Weyburn field, Saskatchewan, Canada. Several of the concepts introduced
in previous chapters are applied to the seismic characterization of the fractured reser-
voir. The results show that, in the survey area, the reservoir is divided in two major
zones where the fractured rocks have different elastic properties. The “static” char-
acterization and the time-lapse results suggest that the fracture network has a lower
symmetry and is probably more complex in the southern part of the survey.

1.3 Weyburn Overview

Here a brief overview of Weyburn field and the enhanced recovery project will
be given. A detailed geological background of Weyburn field and the Williston Basin
can be found in Bunge (2000).

Weyburn field is located in the northern part of the Williston basin at Saskatche-
wan, Canada. The field produces from the fractured Midale beds of the Mississippian
Charles Formation (Madison Group) at a depth of 1300 to 1500 meters (see Fig-
ure 1.1). The Midale beds are divided into an upper Matrly zone and a lower Vuggy
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zone. The Marly zone has high porosity but low permeability, whereas the Vuggy
zone tends to have higher permeability and lower porosity. Hence, the Vuggy has
been swept more extensively and it is expected that the Marly zone contains signifi-
cait bypassed reserves.

The field produced under primary depletion until production peaked in 1964,
when water flooding was initiated. Horizontal drilling began in 1991. Out of the
estimated 1.1 billion barrels of oil in place, only 24% has been recovered after 46
years of production.

To increase production and improve the sweep of bypassed zones in the Marly
interval, a large CO, injection project started in the year 2000. In the same year
the Reservoir Characterization Project at the Colorado School of Mines started a
time-lapse, nine-component seismic project that consisted on the acquisition of com-
pressional, converted, and pure shear-waves from three surveys acquired on October
2000, October 2001 and October 2002, respectively. The case study presented in
Chapters 6 and 7 analyzes the 2000 and 2001 surveys.

The importance of monitoring the injection process at Weyburn field is that
there are at least two different fracture sets in the reservoir that may provide a
direct pathway between injectors and producers. Because the objective of the (O,
injection is to sweep zones of by-passed oil, if the C'O, encounters a direct pathway
to the producers the injection process will lose efficiency.



Chapter 2

THE LINK BETWEEN STATIC- AND SQUIRT-LIMIT FLUID
SUBSTITUTION

2.1 Introduction

Fluid substitution theories address the problem of how to calculate changes in
the compliance of a rock with changes in the compressibility of the fluid that fills its
pores. Two of the most common classes of theories used in the rock physics community
lie af opposite ends of practical application. The first class consists of theories that
assume that the stresses applied to the rock are of a frequency low enough to allow
pressure equilibrium throughout the pore space, and are called static limit theories.
The second class assumes that the stresses are applied at a frequency high enough
that fluids in pores of different shape are not allowed to equilibrate pressures among
each other, and are called squirt limit theories.

Even though the two classes of theories defined above lie at opposite ends of the
“frequency spectrum”, they have much more in common than what would be expected
from the extreme cases they treat. The detailed analysis presented below shows that
‘1 fact these are “sister” theories that avoid dealing with the problem of viscous flow
in exactly the same manner. The similarities in the derivation of each theory results
in final formulations that have similar forms, albeit yield different predictions. It is
important to emphasize that when I say that the squirt-limit avoids the viscous flow
problem I mean that in the high-frequency range the applied stresses cycle so fast
that the fluids in narrow pores are not allowed to move at all.

The rock physics enthusiast is well aware that one of the major hurdles to over-
come when comparing different fluid substitution formulations is literature with dif-
ferent notations and derivations. Hence, the objective of this chapter is to derive the
Auid substitution theories in the high- and low-frequency limits under a single nota-
tion and formalism that highlights the similarities and differences between them. The
derivations shown below borrow from the work and notations by Zimmerman (1991),
Brown and Korringa (1975) and Mukerji and Mavko (1994) for the case of monomin-
eralic rocks. Even though Brown and Korringa (1975) also developed a theory for
multimineralic rocks, that formulation will not be considered in this thesis.

The reader will notice that the detailed derivations presented below would nor-
mally be found in appendices. However, in this case the similarities and differences
between the theories are understood better when the whole formulation is laid out in




the main text. In all other chapters in this thesis, extensive derivations are relegated
to appendices,

2.2 The Preamble to the Static and Squirt-limits

Let us assume that a rock can be described by a bounding surface that defines the
bulk of the rock and by internal surfaces that define the pores in the rock. Let us also
assume that we have a rock in which a general confining stress (o¢,) and a pore stress
(of:) are applied to the outside and inside surface of the rock, respectively. Because
there are two volumes in the rock (bulk and pore), two average volume strains can be
defined as e?j and &7, where the superscripts “b” and “p” refer to the bulk and pore
volumes, respectively.

Because there are two different volume strains and two stresses applied to the
rock, one can define four different compliance tensors as:

Bet.
be, = — | =2 1
Szjkl = [aUEIJUP ’ (2 )
5‘5?-
S = [Borfj;J R (2.2)
st
pe &
igki — I:BGE[:IJp ’ (23)
det,
5= 5ct] R 2.0

In this notation, the first superscript refers to the volume strain {(bulk or pore} and
the second superscript refers to the stress (confining or pore). Note that the sign
convention in equations (2.1)-(2.4) is chosen such that a positive confining stress
results in a volume contraction and a negative strain; whereas a posifive pore stress
results in a volume expansion and a positive strain. Hence, the negative signs in
equations (2.1) and (2.3) assure that the volume compressibilities are positive.

Up to this point, and until further notice, the confining and pore stresses are con-
sidered as mathematically independent variables [this mathematical condition holds
for “drained” conditions in which the confining stress does not induce changes in the
pore stress (Zimmerman, 1991)]. Hence, an increment in the bulk and pore strains

can be written as: , ,
Oy, Oe?.

de® = | 2 ¢ — p 2.5

- o) i [5g] et =




et Al
def; = [ ”] dog, + [—U] do},. (2.6
agfil ob . 6G'£i oe K )
Then, using the definitions {2.1)-(2.4) we get:
deb, = — St dogy + SiFydof, (2.7)
def; = —SEdoy + SThadak (2.8)

Note that up to this point the differential pore stress is completely general and
it may exert normal as well as tangential tractions of the pore walls, If we assume
that the pore content is a fluid that exerts a hydrostatic pressure on the pore wall
then the pore stress is:

dO’}; = 5k;¢dpf (29)

where dpy is the fluid pressure increment. Substituting (2.9) into equations (2.7)
and (2.8) results in:

de%; = —Studoyy + SihudPs, (2.10)
def; = — ST dafy + SHhdpy- (2.11)

Expressions (2.10) and (2.11) can be called the drained equations of the porous
rock because the fluid pressure (dp;} is a variable independent of the applied confining
stress (dot,). If the rock is “undrained” and the fiuids are trapped within the rock
<uch that the fluid volume in the pore system is constant, we start dealing with the
problem of fluid-saturated rocks.

In the “undrained” or fluid-saturated case, we assume we know the applied con-
fining stress and that three unknowns remain: dpy, de}; and def;. Because we have
only equations (2.10) and (2.11) to work with, we need a third equation to solve for all
three unknowns. The introduction of this third equation marks the crossroads that
leads to the static theory of fluid substitution on one path and to the high frequency,
squirt theory on the other.

The reason for the crossroads is that, at this point, we need to find an equa-
tion that relates the fluid pressure increment (dpy) to the pore strain (dey; ), and we
would like to do this avoiding the complications of viscous fluid flow. Two different
approaches make the problem tractable. The first approach assumes that:

1) all the pore space is connected and 100% fluid-saturated

2) the experiment is static to ensure that there is a single fluid pressure throughout
the whole pore space and that viscous fluid flow is not an issue.

This set of assurptions leads to Gassmann’s (1951) and Brown and Korringa’s (1975)
static or “low frequency” results.

The second approach assumes that:
1) the experiment is done at frequencies high enough that the fluid in the narrowest




portions of the pore space will be trapped, unable to squirt out to more ample neigh-
boring pores

2) the fluid entrapment results in different induced fluid pressures in pores of different
“thinness”

3) all the pore space can be divided in subsets of pores with equal induced fluid pres-
sure and equal strains.

‘This set of assumptions leads to the isolated crack models, which include Mukerji
and Mavko’s as the most general, and also Hudson’s (1981) and Thomsen’s (1995)
high-frequency solutions, among others.

Notice that both approaches avoid the viscous flow problem by “pigeonholing”
fluids into sets of pores with equal induced pressure, where in the simpler static case
the whole pore space corresponds to a single set. It will be shown below that this
similarity in the strategy of both approaches results in static and high-frequency
formulations that are much more similar in the form of the resulting equations than
what would be expected from the extreme cases they treat.

2.3 The Static limit

Following the first set of assumptions described above for the static limit, the
pore volume (v;) is equal to the fluid volume (v;). Hence the pore volume strain can
be written as: p p

Up Uy
=2 = _erdpy, 2.12
v, v oy ( )
where ¢y is the fluid compressibility. Because by definition the volume strain is the
double index contraction of the pore strain (dey;), the third equation needed to solve

the fluid substitution problem is:
del,, = —c;dpy. (2.13)

Doing the double index contraction of the pore strain in equation (2.11) and sub-
stituting that strain into equation (2.13) one can solve for the fluid pressure increment

(dpy) as

Szkat c
dpf = [mﬂ} dﬂ'“. (214)
Note that Si7;; is a scalar that represents the compressibility of the pore volume
to a variation of the pore pressure. Hence the denominator of the term between
straight brackets is the total pore space compressibility that is related to the fluid
storage capacity of the rock, which is a parameter reservoir engineers use and estimate
routinely (see Chapter 5).

The bulk strain of the saturated rock can be calculated substituting equation (2.14)



in the equation (2.10) where one gets

b,sat Sgpi SPC il
dé‘i'-sa — _S?Fk.! 4 2329 | day,. (2]5)
7 e+
f aafB

Because in the fluid-saturated rock the only independent variable is the confining
stress, from equation (2.15) we get

b, sat b,sat pe
ghsat — _3€£j _ ey ghe Sﬁ‘lﬁsms (2.16)
ok ooy K VR e+ Siips

From the definition of the compliance tensors (2.1)-(2.4) we see that S ., is the

(a4
compliance that relates the application of a confining stress at. constant pore pressure
to the resulting bulk strain. Therefore Ste . is the compliance of the dry rock, and

ek

from expression {2.16) we can finally write the equation for the change in the bulk
compliance with saturation as:

?J!dry _ ?:sat — Sg-fxijngxkl (2 17)
ijkl izki cs _l__'Spp':ﬁﬁ.

Note that an important piece of information equation (2.17) provides is that the
change in the bulk compliance with saturation is inversely proportional to the total
pore space compressibility ¢+ Shuss- Therefore, substitution of a low compressibility
fluid will generate a larger change in the compliance than the substitution of a very
compressible fluid.

The final expression that results in Brown and Korringa’s and Gassmann’s equa-
tions requires that the compliances Soo;, Shey and Soegg be expressed as a function
of the compliances of the dry rock and the mineral material. This can be achieved
using the following three equations

gf)Si,;fjd = ;?ﬁy — Skt (2.18)
(,sz-ckf = S:;'k!’ (219)
¢St = Sﬁk: = @S (2.20)

where S7jj; is the compliance of the mineral material and ¢ is the porosity of the
rock. Equations (2.18)-(2.20) are derived from the application of the Betti-Rayleigh
reciprocity theorem (Walsh, 1965) in the same way Zimmerman (1991) did it to find
equivalent expressions for the volume compressibilities. From equations (2. 18)-(2.20)
is straightforward to prove the pore space compressibility (Shh45) in the denominator
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of equation (2.17) is

d
Spp -— Sza;i;‘ - S::!t,@ﬁ _

aad = p o (2.21)

Finally, substituting equations (2.18), (2.19) and (2.21) into equation (2.17) we
obtain Brown and Korringa’s (1975) monomineralic equation:

bdry m b, dry m
Sb,dry _ obset (Sijaa - Sijaa)(Sklaa - Sklacr)

ijkl ijhl = L obd ?
(Sonin — acgs) + (¢f — Shsp)d

(2.22)

Note that all the compliances in the denominator of equation (2.22) have double
contracted indices and, therefore, are scalars that represent the bulk compressibilities
of the mineral and the dry rock.

Gassmann’s equation is obtained directly from Brown and Korringa's through
the double contraction of the indices ij and &{. Because the bulk moduli of the rock
are the inverse of the compressibilities, Brown and Korringa’s equation transforms
into Gassmann’s equation as:

2
1 1
1 ]. _ (Kdry—m)
K, Kt (1 1 1 ’
oy Mo () (- A) e

At this point is important to rectify the common misconception that Gassmann’s
equation for the compressibility cannot be used for anisotropic rocks. Equation (2.22)
and (2.23) make it obvious that Gassmann’s equation for the bulk modulus is as valid
as Brown and Korringa's. The caveat is that if the rock is anisotropic, Gassmann’s
equation becomes less useful because knowing how the bulk modulus changes with
saturation is not enough to characterize the change of the whole compliance tensor.

The bulk compressibility of an anisotropic rock can always be defined as:

(2.23)

fat

1/ Kar = 8%, (2.24)

and its change with saturation will be determined by the Gassmann equation. How-
ever, the isotropic predictions for changes with saturation of the shear moduli of the
rock will not always hold for anisotropic rocks.

2.4 The squirt-limit

To calculate the saturated compliance in the squirt-limit we assume that the
high frequencies have effectively isolated some of the pores in the rock and the fluid
substitution is done in two steps. The first step consists in estimating the change in
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FIG. 2.1. Schematic representation of a rock subjected to two sets of tractions for
the application of the reciprocity theorem (Mukerji and Mavko, 1994).

the bulk compliance due to the fluid trapped in the “thin” pores. Then the more ample
pores that are not trapped can be substituted using Brown and Korringa's equation.
Therefore, the treatment assumes that to all practical purposes the trapped fluids
become part of the frame.

Figure 2.1 shows a schematic description of the problem. While the rock to the
right is dry the rock to the left has fluids in the narrowest isolated pores, and the fluid
exerts a pressure in those pores only. Application of the reciprocity theorem to both
rocks gives a relation between the compliance of the dry rock and the compliance
of the rock with the trapped fluids, which Mukerji and Mavko called “unrelaxed”
frame compliance. Both rocks on Figure 2.1 have loads (AT;} applied to the external
surface. Because the rock on the right is dry it will deforms according to the dry
compliance. However, the rock to the left also has internal pressures applied that are,
up to this point, unknown. The reciprocity theorem states that the tractions of the
rock on the left acting through the displacements of the rock on the right, will do
the same work than the tractions of the right acting through the displacements on
the left. Hence, using the dry compliance (Si.r,f,) and the unrelaxed frame compliance
(Siji) we can write,

n; Sitdog, — 3 dp”Shei dofl” = dafym; Siudagv, (2.25)
N’ " N LN A

ATy AU dry AT, AU ur
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where v is the bulk volume, dof; is the applied confining stress, and n; are the
normals to the surfaces. Note that the summations in the second term of the left
side of the equation come from separating the isolated pores into several sets that
have equal induced pore pressure. Hence, v§", p™ and S are the volume, fluid
pressure increment and compliance of the n-th set of the isolated pores (Mukerji and

Mavko, 1994). Rearranging the terms of equation {2.25) one can obtain

do'™

Sint ~ Sty = Zcb("’szz‘;?%g (2.26)

At this point, it is necessary to substitute the ratio of the induced fluid pressure
to the applied confining stress of the n-th pore in equation (2.26). Because it has
been assumed that the Auid pressure increment is constant in each of the sets, we
can use the ratio dp_(r”) /dof; that has already been calculate for the static case [see
equation (2.14)]. Therefore, we can substitute equation (2.14) into equation (2.26) to
obtain

pe,(n) Spc,’(c?)
Sl — Sty =y plm oo _oakl 2.27
ijkt ijkl ;(ﬁ cf""‘sgiﬁﬁ y ( )

which is the equation presented by Mukerji and Mavko (1994).

2.5 Discussion

Now it is possible to observe the similarity between the static- and squirt-limit
equations. If we copy the static limit equation {2.26) and make use of the fact that

¢S = S;th then the static limit equation takes the form:

b, b SPC e k!
N 11 oot ™ ance
S’ — Sgre = Gf’—“cf TS, (2.28)

Comparison of the right hand side of equations (2.27) and (2.28) shows they are
identical for a given set of pores. Furthermore, we see that if the rock is composed
by a single set of pores, the change between the dry and the “unrelaxed” compliance
or the dry and saturated compliance is identical. Thomsen (1995) came to the same
conclusion in his theory of fluid substitution in rocks with penny shaped cracks (see
Chapter 3). However, the observation from equations (2.27) and (2.28) is much
more general than Thomsen’s because in the derivation presented above there is no
restriction on the symmetry of the rock or the shape of the pores.

Finally, equations (2.27) and (2.28) show that in cases in which there are several
1solated pores with different shapes or orientations, the change in the compliances is
larger for the squirt-limit than the static limit. This is a well known effect that is
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predicted by all theories of isolated cracks including Hudson’s (1981} and Thomsen’s
(1995)

These results show that the fundamental link between the static- and squirt-
limit is that both theories make the flnid substitution problerm tractable by dividing
the pore space into subsets of equal induced fluid pressure. Hence, both theories
can be described under the same theoretical framework. These formulations will be
used in several of the following chapters as tools for the characterization of fractured
reservoirs and time-lapse monitoring.
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Chapter 3

FLUID SUBSTITUTION IN POROUS ROCKS WITH ALIGNED
CRACKS

3.1 Introduction

Knowledge of the correct theory for fluid substitution in anisotropic rocks is im-
portant for monitoring fluid migration in fractured reservoirs. The simplest model
of fractured rocks is one in which vertical, penny-shaped (rotationally invariant) par-
allel fractures are embedded in an elastically isotropic background resulting in a
transversely isotropic rock with a horizontal symmetry axis (HTT). This model will
be treated in this chapter to analyze and compare three different fluid substitution
theories .

Several different effective medium theories give equivalent descriptions of the elas-
ticity of dry HTT rocks (O'Connell and Budiansky, 1974; Hudson, 1981; Schoenberg
and Douma, 1988). For example, assuming non-interacting fractures, Hudson'’s ( 1981)
model of aligned penny-shaped cracks is equivalent to the linear slip model of infinite
parallel planes (Bakulin et al., 2000a). However, when the rock is fluid-saturated,
predictions from different theories vary depending on the assumptions made about
the pore space connectivity, fluid viscosity and the frequency of the applied stress.

Thomsen (1995) studied how the anisotropic parameters of a porous rock with
aligned penny-shaped cracks vary with changes in the bulk medulus of the satu-
rating fluid. He proved that the theory for saturated cracks developed by Hudson
(1981) is only valid when the cracks are isolated from fluid flow, as in the case of
erystalline rocks with negligible primary porosity. Under those conditions, a passing
wave induces a large fluid pressure increase in the hydraulically disconnected cracks
resulting in large changes in the anisotropic parameters with saturation. However,
Thomsen argues that a correct theory for fluid substitution in fractured sedimentary
rocks has to take into account the fluid pressure equilibration that takes place be-
tween hydraulically connected cracks and non-fracture pores. Hence, he proposes two
formulations for the changes of the anisotropic parameters with saturation. The first
is valid in the limit of slowly varying stresses {low frequency limit), in which pore
fluid pressures are allowed to equilibrate. The second is valid in the limit of rapidly
varying stresses (“moderately high-frequency” limit}, in which cracks are effectively
isolated from fluid flow.

One of the appealing features of Thomsen’s (1995) work is that the elastic com-
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pliance of the fractured rock has the same form for the dry and fluid-saturated cases,
and for both frequency limits. If his formulation is correct, the linear slip model that
can be used for dry rocks is also applicable to fluid-saturated rocks [Bakulin et al.
(2000a)]. However, the work presented in this chapter suggests that Thomsen’s (1995)
calculation of the saturated rock compliance does not take into account the full effect
of pressure equalization; and that the form of the dry rock compliance is different
from the saturated rock compliance. Hence, use of linear slip theory is not always
valid for fluid-saturated rocks, especially for those with large amounts of non-fracture
porosity.

To support the point made in the previous paragraph, I compare Thomsen’s
formulation for idealized penny-shaped crack models with two more general theories
of fluid substitution developed by Brown and Korringa (1975) and Mukerji and Mavko
(1994), respectively. In contrast with Thomsen’s (1995) work, these two theories
make no assumptions about the strength of the anisotropy or the symmetry of the
rock, nor they require information about the shape of the fractures. The result
of the comparison between theories is that in the “moderately high frequency” limit
‘Thomsen’s formulation is equivalent to the more general theory developed by Mukerji
and Mavko (1994). In the low frequency limit, however, the incomplete treatment of
the pressure equalization in Thomsen’s work results in predictions that differ from
those obtained from the Brown and Korringa’s formulation for rocks with high non-
fracture porosity.

Brown and Korringa's theory is applicable at the low-frequency limit mentioned
above. It assumes the rock is 100% fluid-saturated and that when the rock is stressed,
either by a static load or a passing wave, the fluid pressure is equilibrated throughout
the pore space. The latter condition can be satisfied in at least three cases:

1. There is a single pore of arbitrary shape in the rock.

2. The rock has a collection of disconnected pores with the same shape and orienta-
tion.

3. All pores, with arbitrary shape and orientation, are well connected and the fluid
viscosity and frequency of the applied stresses are low enough to allow equilibration
of any pressure differences.

In the first case, the pressure equilibration is trivial because there is only one
pore in the rock. In the second case, the fluid pressure increase is the same everywhere
because the pore strains are identical due to the equal shape and orientation of the
pores. Case 2 would correspond to a rock with aligned penny-shaped cracks and
no isotropic background porosity {e.g. cracked granite), and case 3 is the one most
applicable to fractured sedimentary rocks.

Mukerji and Mavka's theory (called “anisotropic squirt theory”), is applicable at

the “moderately high-frequency” limit stated by Thomsen (1995). This formulation
recognizes that when rapidly varying stresses are applied to a saturated fractured
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rock, fluids in the narrowest pores are isolated from flow from the rest of the pore
space. The fluid pressure will be larger in the isolated pores, and the pressure gradient
through the pore space results in a rock that is stiffer than the one obtained from
a fluid substitution under low-frequency conditions. The term “moderately high” is
meant to indicate that even though the frequency of a passing wave is high enough to
generate pressure gradients in the pore space, the fracture dimensions are still much
smaller than a wavelength.

In the following sections I start by describing Thomsen’s (1995) formulation using
the linear slip notation for both the low-frequency and “moderately high-frequency”
limits. Next, I obtain the analytical expressions for the saturated compliances pre-
dicted by the more general theories developed by Brown and Korringa (1975) and
Mukerji and Mavko (1994) and highlight the discrepancies with Thomsen's formula-
tion in the low-frequency limit. Finally, the predictions from the different theories will
be compared numerically for two models with different isotropic background prop-
erties; one modeled as a dilute collection of spherical pores and the other with the
elastic properties of Weyburn field reservoir rocks.

3.2 Review of Thomsen’s Model and the Linear Slip Model

The effective compliance of a fractured rock with non-interacting, rotationally
invariant fractures can be obtained from two equivalent models: the linear-slip model
and penny-shaped crack model. In linear slip theory fractures are treated, regardless
of their shape or microstructure, as planes of weakness with non-welded boundary
conditions (Schoenberg and Douma, 1988; Schoenberg and Sayers, 1995). When the
fractures are embedded in an otherwise isotropic background, the effective compliance
matrix (S) is given by

S =8z +Sr, (31)

where Sp is the compliance matrix of the isotropic background rock and Sg is the
excess compliance associated with the fractures. Since the background rock is un-
fractured and isotropic, Sp can be written in terms of the Young's modulus (F}, the
shear modulus (G) and the Poisson’s ratio () of the background as

%u _1% —%- 000
R R
Sg=| F £ E (3.2)
0o o0 0 % 00
0o 0 0 0 5O
o 0 0 00 &

When fractures are embedded in the isotropic background, the rock becomes

F?
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more compliant to stresses applied in certain directions. These direction are deter-
mined by the fracture type and orientation, and the excess compliance the fractures
contribute is described by the non-zero elements of the (Sr) matrix. If the fractures
have a rotationally invariant microstructure (like penny-shaped cracks) and their nor-
mals are parallel to the X; direction, the excess fracture compliance is given by:

Zy 00 0 0 0
0 000 0 o
0 000 0 o0

S =1 09 000 0 o (3.3)
0 000 2 0
0 000 0 Zr

Here Zy is the excess normal compliance that relates the fracture-norma) displace-
ments to the normal stresses applied to the fracture in the X 1 direction and Zr is the
excess tangential compliance that relates tangential displacements and stresses in the
Xy and X3 directions.

Notice that equation (3.3) from linear slip theory does not include details about
the microstructure of the fractures other than the fact that they are rotationally
mvariant. All information about fracture shape is implicit in the terms Zy and
Zr. In contrast, penny-shaped crack models give explicit expressions for the excess
compliance contributed by the fractures (Hudson, 1981; Schoenberg and Douma,
1988; Bakulin et al., 2000a).

“Penny-shaped” cracks are oblate spheroids characterized by their aspect ratios
(), defined as the ratio of the crack aperture (b) divided by the crack radius {a}.
The contribution of the cracks to the compliance of the rock depends on the crack
density defined as . = Na3/V, where N is the number of cracks and V is the total
sample volume. In Appendix A it is shown that in a dry rock with vertical cracks the
normal and tangential fracture compliances are, to first order in the crack density:

16 1
and 16 1 /1
d 2 (LT Y

where Ey4, G4 and vy are the Young's modulus, shear modulus and Poisson’s ratio of
the dry background isotropic rock, respectively. Thomsen {1995) obtained equivalent
expressions for the case of penny-shaped cracks with normals in the X3 direction |his
equations (A26a)-(A28) when the fluid bulk modulus is set to zero|. Later, Bakulin et
al. (2000a) derived equivalent expressions for the normal {An) and tangential (Ar)
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fracture weaknesses, which are parameters that can be obtained from Z§ and Zf as

_ ZnM
AN =TT 0 (36)
and
Ap = __Z_Tg_ (3.7)
1+ Z7G

where M is the P-wave modulus of the background rock.

Adding the dry background compliance and the excess fracture compliance, the
effective compliance of the dry rock (S7) is given by:

wt+Z -8 -5 O 0 0
A R
g | & & = 0 9 0 (3.8)
0 o0 o L o0 0
0 0 0 0 +2¢ 0
0 0o 0 0 0 Ft+4f

Thomsen (1995) derived the compliance matrix of a fluid-saturated rock (5°)
with the émplicit assumption that the values of the compliance terms S3,, S3; and
52, Siy, and S3; were identical to those on the Auid-saturated isotropic background
(it will be shown below that this assumption is not well justified in the presence of
equilibrated pore pressures in the rock). Hence, Thomsen’s effective compliance of
the saturated rock is given by:

=+ 2% —1,;—1 —g 0 0 0
3 1,

B R EL L

Y — Y =

S* = E, E, , 3.9

0 0 0 & O 0 (3.9)
0 0 0 0 g+2Z O

0 0 0 O 0 L+ 275

where E, and v, are the Young’s modulus and Poisson’s ratio of the fluid-saturated
background, and Z§ and Z% are the saturated normal and tangential fracture com-
pliances. No distinction is made between the dry and saturated shear modulus of the
isotropic background in equations (3.8) and (3.9} because it does not change with
flud saturation.
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The fluid-saturated fracture compliances in equation (3.9) can be written as:

Zy = Zj{, ( — ?) D;(hi,lo), (3.10)
and
Z3 = 7§, (3.11)

where Ky and K, are the bulk moduli of the saturating fluid and mineral material
respectively (see Appendix A). De;(Ai, lo) is the “Auid influence factor” that accounts
for the pressure equilibration between cracks and matrix pores, and (hé,lo) indicates
it has different values for the moderately high- and low-frequency limits, respectively.

In the low-frequency limit the fluid influence factor is given by

1
Dei(io) = , (3.12)
K[ K[
1- Kum + ditehe (K_ld - Klm +Z§!)

where ¢, and ¢; are the crack and isotropic matrix porosity, respectively, and the
subscript “ci” indicates that both isotropic matrix and crack poresity are included.
In the moderately high-frequency limit the fluid influence factor is

1

D i(hi) = S (3.13)

oA

Notice that the fluid influence factor for the moderately high-frequency limit
[Dei(hi)] does not depend on the isotropic porosity and is identical to D (lo) for a
rock with only crack porosity. By setting ¢; = 0 and Km = Ky in equation (3.12) one
obtains 1

e K !
_ 4y By od
V=g + 3525

Dei(lo) = Dy(hi) = D, = (3.14)
where the subscript “c” in D, indicates that only cracks are included. Physically,
this means that in the moderately-high frequency limit the fractures are effectively
isolated from flow from the rest of the pores (¢; is effectively zero). The rapidly
varying stresses do not allow the fluid pressures to equilibrate throughout the pore
space and, therefore, the isotropic porosity (¢;) does not contribute to the change in
the normal fracture compliance (Zx) with saturation.

When fluid pressure equilibrium exists, the induced pressure variation that stiff-
ens the cracks will depend on the total connected pore volume including the isotropic
porosity. Hence, in the low-frequency limit a rock with a porous background (¢; # 0)
has a normal fracture compliance that depends explicitly on the isotropic matrix
porosity through the fluid influence factor (3.12).
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Having summarized above Thomsen's formulation it is possible now to point out
where it differs from the more general theory of Brown and Korringa (1975) that will
be presented below. Even though Thomsen (1995) recognized that the condition of
fluid pressure equilibrium implies that the normal fracture compliance should depend
on the isotropic porosity, he did not recognize that by the same argument the isotropic
pore compliances should depend on the fracture porosity. This line of reasoning
suggests that the description of the fluid-saturated rock’s compliance matrix (3.9) is
incomplete, especially for the isotropic background terms S35, Sia; Stz 535, and 53;.

3.3 Low-Frequency Limit: Brown and Korringa’s Theory

Brown and Korringa {1975) generalized Gassmann’s (1951) work by relaxing the
assumptions of isotropy and monomineralic rock. In their formulation, Gassmann’s
scalar equations are replaced by equations that relate the compliance tensor of the dry
and saturated rock. In this chapter only Brown and Korringa’s (B&K’s) formulation
for the monomineralic case is considered, which can be written as

(ngaa - S‘E}‘aq (Sglac: - S;cr;aa)
(Ca— Cm) + (cf — Cadbr

s __ od
Siiwt = Sijm —

(3.15)

Here %, and Sj;y, are the compliances of the dry and saturated rock, Sijy 13 the
compliance of the mineral material, ¢, = ¢; + P is the total connected porosity, and
¢s, Cm and cg are the fluid, mineral and dry rock compressibilities, respectively.

In order to be consistent with the notation used to define the fracture compliances
above, B&K’s equations can be written in the 6x6 matrix notation. The terms with
contracted indices (Sijaq) in the numerator of equation (4.1} are the sums of elements
of the first three rows of the 6x6 compliance matrix. Therefore, by defining v as the
sum of the firse three elements of the k-th column of the compliance matrix, as shown

in Figure 4.1, equation (4.1) can be rewritten as:

(p$ — yPHYT —Y7T)
(cg — cm) + (g — Em) (s + bc) (3.16)

d s
S!J_'SIJ =

Better understanding of the fluid substitution process can be achieved by rewrit-
ing equations (4.2} as
dp
8= 8h - (W - V1) 5o (317)
where

Ipy Pd — Y7 (3.18)

B0 (ca—cm) t+ (s — em) (i + bc)
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6 SGGJ

Fic. 3.1. Compliance matrix of general symmetry indicating elements that
contribute to the sums v in equation (4.2).

Here Jp;/80 is the gradient of the fluid pressure (ps) induced by the variation of the
confining stress (Ac) (Brown and Korringa, 1975).

If the rock pores are empty (c; — 0o}, there will be no variation in the fuid
pressure when a differential confining stress (&0) is applied. Hence, the term Opy /0o
in equation {3.18) is zero and the saturated compliance (S7,,) is equal to the dry
compliance (S2,}. When the rock is fluid-saturated, the confining stress (Ac) strains
the pore volume inducing a fluid pressure change equal to dp;/d0Ac that reduces
the compliance of the rock [see equation (3.17)].

3.3.1 Total storage capacity and the fluid influence factor

The change in fluid pressure depends on the denominator of equation (3.18),
which is defined as the total storage capacity of the pore system. The total storage
capacity relates the variations in pore fluid volume to vartations in fluid pressure and
is defined as the product of the total porosity (¢} and the total pore system com-
pressibility (c,) (see Appendix B). The induced pressure is inversely proportional to
$ec; because a rock with a large storage capacity can accommodate the fluid displaced
by the pore volume change with only a small pressure variation.

In the case of the rock with isotropic background porosity (¢,} and crack porosity
(¢c), the total storage capacity is the sum of the storage capacities of the isotropic
pores and crack pores:

PrCr = Gici + e (3.19)
Using the compliance matrix of the dry fractured rock defined in equations (3.4)-(3.8),
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it can be shown that the storage capacity of the isotropic porosity and penny-shaped
cracks are given by:

1 1 1 1
pici = (E - R:,) + (}-{; - Fm') ®:» (3.20)
and ) .
— zd P
¢ccc - ZN + (Kf Km) ¢)c: (321)

respectively (Appendix B).

From equations (H.1)-(3.21) it is straightforward to prove that the inverse of the
total storage capacity is:

1 Xy

= iz (3.22)
K K ' '

D A ACR )

Comparison of the previous expression to equation (3.12), indicates that the inverse
of the total storage capacity is approximately proportional to low-frequency fluid
influence factor, i.e.

L & Dallo) (3.23)

e g '

The approximate proportionality results from the extra %‘: term multiplied with the
dry normal compliance (Z%) in equation (3.22) that is not present in the expression
of the fluid influence factor. For rocks with only crack porosity (¢; = 0), l%: =1 and
the approximate expression (3.24) becomes exact:

L _pk (3.24)

PeCe ¢ b '
Hence, equations (3.23) and (3.24) indicate that the fiuid influence factor can be

interpreted as the inverse of the normalized pore system compressibility (F:E) or as
being inversely proportional to the storage capacity of the pore system.

3.3.2 Saturated compliance for a rock with a non-porous background

For the case of a non-porous background matrix, substitution of the dry com-
pliance (3.8) into B&K’s equations indicates that only the S& component of the dry
rock compliance varies with saturation (see Appendix C). Since the background ma-
trix is non-porous, the change with saturation is due exclusively to the change in the
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fracture normal compliance. 57y is given by:

1
Sh o= £t (3.25)

where E, is the mineral Young's modulus, and

d K
Z3 = 7 (- &) =zi(1-K1Yp (3.26)
Y- K K T K.) " © '

Comparing the previous expression to equation (3.10) shows that Thomsen’s
(1995) saturated normal fracture compliance is identical to the one obtained from
B&K, for the case of a cracked rock with no isotropic porosity. No discrepancy
appears, so far, between the theories because the difference between them stems from
the treatment of the pressure equilibration between cracks and the isotropic pores
that have not been introduced yet.

3.3.3 Saturated compliance for a rock with a porous background

In a rock with isotropic background porosity,

the induced fluid pressure variation

will depend on the storage capacity of both the isotropic and crack pores. Therefore,

by virtue of equations (3.17) and (3.18),
that change with saturation will depend

ail the elements of the compliance matrix
explicitly on both the crack and isotropic

porosity. The expressions for the compliance elements that change with saturation

are given by: ,
. K K; ¢
Ss _ 1 é(E‘:) +(1_}?'£+3_K.¢%%)Zg' (327)
1 h% ‘;b;Ct %:t (Qﬁgct) ’ ’
2
1 ¢5i K ?Sf. o
s _qgs _ W 6(1(4,,‘.) _TK’&TZN (3.98)
PR B e Egey
~H
2
1 é (Ki ) 1
SS=S.S_________¢_1'._:3___, 329
22 33 Ed ¢3Cg Es ( )
1 (%i_)?
Vg 9 \ Ky, R
Soq = —— - 3.30
= Ey P10t E, ( }
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where 1/ Ky, is the compaction compressibility of the isotropic background pores (see
Appendix C).

Equations {3.27)-(3.30) indicate that in general it is not possible to express the
saturated compliance of a cracked rock exactly as the sum of the saturated isotropic
background and a saturated fracture compliance. At first one could expect that,
because tractions applied parallel to the cracks do not compress them, the terms Sj,,
S8, Siy, Siy, and S35 should not depend explicitly on the fracture parameters Z%
and ¢,. However, this expectation disregards the connectivity between cracks and
isotropic pores. For example, if a traction parallel to the cracks {o2) is applied to the
rock, the isotropic pores will compress expelling fluid towards the neighboring pores.
The magnitude of the induced pressure increase will depend on how much fiuid the
cracks can accommodate, which is a function of Z% and &..

A simplification of equations (3.27)-(3.30) can be used for rocks in which the
isotropic porosity is much larger than the fracture porosity. In this limit the stor-
age capacity of the cracks (¢cc.) is negligible with tespect to the storage capacity of
isotropic pores {¢:c;); and the terms with the symbols “~" in equations (3.27)-(3.30)
approach the background’s saturated values (see Appendix C). Under this approxi-
mation the compliance matrix is

S S S 0 0 0
St —El-; - 0 0 0
R N 0
3 py 12 E, E; 31
S o 0 o0 5 O 0 ’ (3.31)
0 0 0 0 L+zz 0
6 0 0 0 0 L+Z
where Z3 = Zg (no approximation). In the expression above 53, and S}, are:
1 K 1 Ka\ K
s 2pzi (1- B0 p+ 2 (1- 22 ) LDz, 3.32
11 Es + 4y ( Km) P+§ ( Km) K0 P .'\L ( )
X
and 1 K K
] Vs 4 f d
ORI S z¢, 33
2™ TE 73 (1- %) (33

e

X

where D, is the fluid influence factor without including the storage capacity contri-
bution of the cracks.

Equations (3.31)-(3.33) indicate that when ¢, << ¢; the saturated compliance
resulting from B&K's equations is similar, but not identical to the one obtained by
Thomsen {1995) [equations (3.9)-(3.12)]. The difference is that B&K'’s theory predicts
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an extra term, y, in the elements S, and 5§,. Only if the rock is dry (Ky =0)orin
the trivial case that it is not fractured (Z% = 0), both theories are identical.

3.4 Moderately-High Frequency Limit: Anisotropic Squirt Theory

Mukerji and Mavko (1994) developed a fluid substitution theory valid for ar-
bitrary anisotropy in the moderately-high frequency limit. The formulation, called
anisotropic squirt theory (AST), works under the assumption that the rock is 100%
fluid-saturated and monomineralic.

The AST recognizes that when rapidly varying stresses are applied to the rock,
the narrowest portions of the pore space (crack porosity) tend to have higher fluid
pressures and are effectively isolated from the rest of the pores (isotropic porosity).
Hence, AST does the fluid substitution in two parts. First, fluid is substituted only
into the cracks (“soft pores” in Mukerji and Mavko’s paper) to obtain the compliance
of the “unrelaxed” rock frame. Then the “unrelaxed” compliance tensor is substituted
in Brown and Korringa’s equation to substitute fluids in the rest of the pores.

In AST, the compliance of the unrelaxed frame for g rock with a single set of
identical cracks is given by

d hi— o hi—
(Sijacr - Sij&crcf) (Sk!aa - k;acf)
(Cd = chi—p) + (¢ ~ Chi—p)bsae

(3.34)

ur _ od
ikl = Sijkf -

where S2., is the compliance tensor of the dry fractured rock, S}, is the compliance
tensor of the “unrelaxed” frame, and ¢ s and ¢q are the fluid and dry fractured rock
compressibilities, respectively. Sy and Chi—p, represent the dry compliance tensox
and bulk compressibility that would be measured if & rock sample is subjected to very
large confining pressures. The porosity ¢ represents the amount of “soft” pores
that close under the application of the large confining pressure.

Mukerji and Mavko (1994) expressed equation (3.12) as a function of Spy—* be-
cause they were interested in applying it to laboratory data in which measurements of
the compliance tensor with pressure were available. For the purposes of the modeling
presented here, Sp-7 is just the compliance tensor of the dry rock without cracks,
i.e. the compliance tensor of the dry isotropic background; and the “soft” porosity
($sog:) s the crack porosity, ¢,. Taking this into consideration, equation (3.12) can
be re-written in 6x6 matrix notation as

ur _ od (,w? - }i,isc)(wg — j'iso)
SJJ B S[J (Cd - cd,iso) + (c_f - cm)@”c) (335)

where the y;’s are defined in the same way as in equation (4.2) and the superscripts
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and subscripts “d,iso” indicate the properties correspond to the dry isotropic back-
ground rock.

From the definition of the ¥’s and the fact that the compliance matrix 57, is
the sum of the isotropic background compliance and the excess fracture compliance
[equation (3.8)], it is easy to see that the only non-zero ¥f — ﬁ'm corresponds to
k = 1. Hence, the only compliance matrix element that changes from its dry value to
its “unrelaxed” value is Sj;. Substituting the fractured rock’s dry compliance (3.8)
and the dry isotropic background compliance (3.2) in equation (3.35), it is straight
forward to prove that

1 74*
R e R SRR (3.36)
d Zy + (K__f T{:) Pe

Rearranging the terms in the previous expression one obtains

1 K ,
= 74 (1- L) Dath) (3.37)

Finally, the compliance of the “unrelaxed” fractured rock is

sﬁ*‘uzﬁ' 7 % 0 0 0
A ED 0
T T 0
g = E Ba E , 3.38
0o° 0 0 & 0 0 (8:38)
0 0o 0 0 f+2z§ O
0 0o 0 0 0 5+7f

where Z¥ is the second term in equation (3.37).

Comparing equation (3.38) to equations (3.9)-(3.11) we notice that the “un-
relaxed” compliance matrix has the same form of the moderately high-frequency
compliance proposed by Thomsen (1995). The only difference is that Thomsen di-
rectly includes the saturated values of the background compliances (1/E, and v,/E,),
whereas in AST S* is now input in B&K’s equation to do the fluid substitution in
the background isotropic pores. Hence, Thomsen’s (1995) moderately high-frequency
formulation for penny shaped cracks is equivalent to anisotropic squirt theory.
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3.5 Numerical Results

In the previous two sections I have shown that Thomsen’s (1995) formulation is
equivalent to the anisotropic squirt theory in the moderately high-frequency limit, but
different from Brown and Korringa’s theory in the low-frequency limit, The practical
question, however, is whether the discrepancies in the low-frequency regime could
result in “substantial” differences in the prediction of the anisotropic parameters of
the fractured rock. Because Brown and Korringa's theory is a more general treatment
of fluid substitution than the one developed by Thomsen’s (1995), B&K will be used as
the “standard” against which Thomsen’s results are tested in the following numerical
examples.

Wave propagation in an HTT medium (a rock with aligned vertical penny-shaped
cracks) is most conveniently described by the vertical P- and S-wave velocities and
three anisotropic coefficients defined as:

(V) = 0112 ;3?'_33, (3.39)

) — (C13 + Cs5)* — (Ca3 — Css)? 3.40
o= 2C33(Caz — Clss) ’ (3.40)
~V) = Cos — Cua (3.41)

2Cu
where C; are the elements of the 6x6 stiffness matrix (C) Tsvankin (1997b).

The numerical comparison between the different fuid substitution theories is
done by calculating the e and §(*) parameters as a function of the bulk modulus of
the saturating fluid (K). Since the v¥) coefficient does not change with saturation
for HTT rocks (see Chapter 4), it is not included in this comparison.

The procedure to obtain ) vs. K; and 8*) vs. K; curves is as follows:

L. Model the dry isotropic background compliance (Sg) for a given mineral and an
isotropic porosity (¢;).

2. Add the excess fracture compliances of the dry penny-shaped cracks (Sr).

3. Apply a fluid substitution theory to obtain the saturated rock compliance (S°).
4. Invert the saturated compliance matrix to obtain the saturated stiffness matrix
(C*).

5. Caleulate € and ) from the stiffness of the fluid-saturated rock (C).

Figures 3.2-3.5 show ¢(") and ") as a function of K 4 for several combinations
of isotropic porosity (¢;), crack porosity (¢c) and crack aspect ratio (). For these
figures the background isotropic rock was modeled as a collection of non-interacting
sphetical pores, an assumption generally valid for low isotropic porosity (¢; < 0.1).

Numerical analysis indicates that the variation of ¢V) and §V) with K ¢ for both
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Fic. 3.2. Moderately high-frequency curves of ¢¥) and V) as a function of K for
o calcite matrix with ¢; = 0.05, ¢, = 1071, 5. = 0.05 and a. = 4x10~*. Note an
almost perfect overlap of the predictions from Thomsen’s (squares), Hudson's (1981)
(crosses) and AST’s (dotted line).
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the high- and low-frequency limit, depends weakly on the elastic properties of the
mineral materials that compose typical sedimentary rocks. Feldspars, limestones and
dolomites with Poisson’s ratio varying between 0.25 and 0.35 have almost identical
«¥) vs. K, and 8¢} vs. K; dependence. Hence, the results shown in Figures 3.2-
3.5 below assume a fixed isotropic limestone matrix with bulk and shear moduli of
K,, = 77 GPa and Gy, = 32 GPa, respectively.

In the moderately high-frequency limit, Figure 3.2 shows that there is an al-
most perfect match between the predictions by Thomsen’s (squares), Hudson’s (1981)
(crosses) and the anisotropic squirt theory (dotted line). This was expected from the
analytical equivalence of the anisotropic squirt theory and Thomsen’s moderately
high-frequency formulation. As pointed out by Mukerji and Mavko (1994}, the result
shown in Figure 3.2 indicates that Hudson’s (1981) theory is suitable for modeling
fluid substitution in the high-frequency limit.

Figure 3.3 shows the change with saturation of the V) and 6Y) parameters
for the low-frequency limit, normalized by the crack density . These results are
for a cracked limestone with an isotropic porosity of ¢ = 0.05, a crack porosity of
#. = 1071, and a crack density and aspect ratio of ne = 0.05 and @, = 4x1074,
respectively. Hudson’s (1981) prediction is also provided for comparison.

As expected from the condition of equilibrated pore pressure, both Thomsen’s
and B&K theory predict smaller changes with saturation in the anisotropies than
Hudson’s (1981) theory. Thomsen’s low-frecuency formulation overstates the changes
of the V) and §) parameters with saturation. However, Figure 3.3 indicates that
the discrepancy for an isotropic porosity of ¢; = 0.05 is small for €¥) and almost null
for the 6! parameter.

Thomsen {1995) noted that under conditions of equilibrated pore pressures the
fluid variation of the anisotropies is not sensitive to changes in the aspect ratio of the
cracks. This is consistent with the B&K’s results shown in Figure 3.4 where there 1s
almost no variation in the ¢V) vs. K or 8) ve. K curves when the aspect ratio
varies three orders of magnitude.

Figure 3.5 indicates that the numerical differences between Thomsen's low-fre-
quency formulation and Brown and Korringa's theory are small for an isotropic back-
ground of dilute spherical pores (¢; < 0.1). The small discrepancy in this example
results from the low value of the isotropic porosity and the low compaction compress-
ibility (1/Kj,) of the spherical inclusions. As mentioned in section 3.3.3, Thomsen’s
low-frequency formulation disregards that the isotropic pores expel fluids towards the
neighboring cracks when tractions parallel to the cracks are applied, which results in
“isotropic background” compliances that depend on the fracture parameters. If the
isobropic pores are very stiff (small 1/ Kj,), the fluid transfer towards the cracks due to
the applied traction will be small and the discrepancy between the two formulations
will be small as well.
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In order to have a better idea of the discrepancies that can be expected in real
rocks that do not have spherical pores, linear fits of 1/K; vs. ¢; and 1 Jia vs. o;
derived for Weyburn field reservoir were used to model the isot ropic background rock.
Figure 3.6 shows plots of 1/K; and 1/114 as a function of isotropic porosity calculated
from dipole sonic log measurements in the Midale reservoir interval (Reasnor, 2001).
Even though four different facies of limestone and dolomite have been identified from
the well, a single linear fit was applied to all the data points to obtain “average”
estimates of 1/K,, and 1/K,,. If the rock is approximately homogeneous the dry
compressibility is given by:

1 1 &

Hence, from the linear fit in Figure 3.6, the “average” rock can be modeled
has having a mineral compressibility 1/K,, =~ 0.018 and a compaction COMPress-
ibility 1/Ky, ~ 0.22. Notice that for figures 3.3-3.5 the compaction compressibility
is 1/K4, = 0.03, which indicates that the spherical pores are almost 10 times less
compressible than the “average” pore in the Midale interval.

Figure 3.7 shows the ¢ and ) parameters as a function of the isotrapic
porosity for a background isotropic rock modeled with the fits obtained for Weyburn
rocks. The curves are calculated assuming the fracture density 7. = 0.05, crack
aspect ratio o, = 4.7 x 1074, crack porosity ¢, = 10~ and bulk modulus of the fuid
K = 1074,

Thomsen’s low-frequency prediction overestimates the change with saturation
for both the €) and 6() parameters. At large porosity, the difference between the
values of ) for dry and saturated rocks is almost twice as large as the one predicted
by B&K’s theory. For the §) parameter, Thomsen’s formulation can overestimate
the change with saturation for about one third of the B&K prediction. This indicates
that discrepancies between the theories may not be negligible in rocks with large
isotropic porosity (¢, > 0.1).

3.6 Discussion and Conclusions

This work compares the fluid substitution theories formulated by Thomsen (1995},
Brown and Korringa (1975) and Mukerji and Mavko (1994). In the moderately high-
frequency limit Thomsen’s (1995) formulation is equivalent to the anisotropic squirt
theory developed by Mukerji and Mavko. Hence, for high-frequency experiments the
elastic compliance of a fractured rock can be modeled as the sum of the Aunid-saturated
compliance of the isotropic background and the fluid-saturated excess fracture com-
pliance as described by Thomsen (1995).

In the low-frequency limit, Thomsen’s (1995) formulation does not account for
the full pressure equalization that occurs between the isotropic pores and the cracks.
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This results in an overestimation of the change of the ¢ and §(*) parameters with
saturation for rocks with large isotropic porosity. The main implication from these
results is that the decomposition of the compliance matrix that has been used tra-
ditionally in linear slip theory [equation (3.9)], is not always valid in the presence of
fluid pressure equilibrium.

The results presented in this chapter prove that the fluid influence factor that de-
termines the magnitude of the change of the normal fracture compliance with satura-
tion, can be re-interpreted as being inversely proportion al to the total storage capacity
of the rock. Since the total storage capacity is a parameter estimated regularly by
well test engineers from pressure-transient experiments, it can provide information on
how sensitive the normal fracture compliance is to changes in fluid saturation. When
the isotropic porosity is small, the reduced storage capacity resukts in a large fluid
influence factor and large changes in the normal fracture compliance with saturation.

Even through there are cases in which Brown and Korringa's and Thomsen’s low-
frequency formulations are numerically close, B&K has the advantage of being a more
general theory. Brown and Korringa’s equations are valid for arbitrary symmetry and
arbitrary strength of anisotropy. No assumptions about the detailed structure of the
fractures are required and it could apply to rocks with an arbitrary number of fracture
sets as long as the fluid pressure is equilibrated throughout the pore space. Therefore,
a more general approach to modeling the elasticity of fractured rocks is to model the
dry rock with any appropriate theory (e.g. the linear slip theory) and then caleulate
the fluid-saturated values from Brown and Korringa’s equations.

The linear slip theory is convenient for modeling dry rocks because it does not
require detailed information about the microstructure of the fractures and is valid
for several non-interacting fracture sets. The condition of non-interacting fractures
can be met assuming the fracture volume density is small. When the rock is fluid-
saturated, all interactions between pores due to the condition of equilibrated pore
pressures is taken into account through Brown and Korringa’'s equations.

For naturally fractured rocks it may be argued that the non-interacting fracture
condition is in conflict with the condition of equilibrated pore pressures since pressure
equilibrium requires hydraulic connectivity between all pores. This argument can be
countered assuming that the non-interacting fractures are connected through the
background pores or assuming that every reel dry rock has a linear slip equivalent
that can be used to model it. Ultimately it will be the application of the theory to
real data that will determine its validity.

=
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Chapter 4

SHEAR-WAVE VELOCITY DEPENDENCE ON FLUID SATURATION

4.1 Introduction

Characterization of fractured reservoirs is an important area of research. If the
fractures have preferential orientations, the reservoir may become anisotropic with
respect to wave propagation and fluid fow. By characterizing this anisotropy we
can obtain information about the properties of the fracture network. The migration
of fluids through the fractured reservoir is information that can be obtained from
time-lapse seismic measurements.

Traditionally, the reservoir geophysics community has favored the use of time-
lapse, compressional waves for monitoring fluid movement in the reservoir. Even
though it has long been recognized that the shear-wave moduli are sensitive to the
changes of pressure that accompany fluid movement, the idea that shear-wave moduli
may vary due to the fluid content is still not well accepted.

Gassmann (1951) provided a theory of fluid substitution that allows us to obtain
the bulk and shear moduli of the fluid-saturated rock from the dry rock compli-
ance, rock porosity, mineral and fluid compressibility. This can be done under the
assumptions that the rock is (1) isotropic, (2) monomineralic, and (3) that the pres-
sure is equilibrated throughout the pore space. This theory predicts that the rock’s
bulk modulus (K) changes with saturation but the shear modulus (G} remains fixed.
Hence, arises the commonly accepted notion that P-waves are sensitive to pore fluids
while, except for density effects, S-waves are not.

However, the interpretation of recent multicomponent data has suggested that
the slow shear-wave modulus of vertically propagating shear-waves, may decrease in
the presence of high compressibility fluids (Guest et al., 1908; Duranti et al., 2000).
The apparent contradiction of these results with the generally accepted view that
shear waves are insensitive to fluids relies in that the assumption of elastic isotropy
is violated when aligned sets of fractures make the rock anisotropic. Chapters 6 and
7 will also show that the time-lapse analysis performed at Weyburn field, Canada
suggests that the vertically propagating shear-waves are sensitive to changes in the
fluid compressibility.

Fluid substitution theories for rocks with penny shaped cracks, suggest that the
S-wave modulus will only be sensitive to fluid saturation when waves propagate at
oblique angles with respect to the crack plane, because in those cases the shear stresses
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will have a component normal to the crack face. However, S-waves travelling parallel
to the crack plane will not be fluid-sensitive in models with rotationally invariant
fractures.

Through a heuristic explanation, Bakulin et al. (2000c} suggested that changes
with saturation in the shear modulus of vertically propagating shear waves are pos-
sible in a rock with monoclinic symmetry, generated by one set of micro-corrugated
fractures in an isotropic background. This model has a vertical symmetry plane per-
pendicular to the fractures. In such fracture system, the normal displacements, which
are sensitive to the fluid content, are coupled to the tangential tractions along the
fracture faces which determine shear-wave splitting.

Using Brown and Korringa (1975) theory, I show that under conditions of equili-
brated pore pressures, rocks with symmetry lower or equal to monoclinic have “shear
tmoduli” that are sensitive to pore fluids. Therefore, the model of micro-corrugated
fractures proposed by Bakulin et al. (2000c) belongs to a larger group of rocks for
which Brown and Korringa’s theory predicts changes of shear-wave velocities with
saturation.

The shear-wave sensitivity to fluids originates from the effective symmetry of the
fractured rock but it is influenced by the “isotropic” porosity, the mineralogy of the
rock and the bulk modulus of the saturating fluid. Under conditions of equilibrated
pore pressures, transversely isotropic ('T1) and orthorhombic symmetry rocks will only
show changes with saturation of vertical shear-waves when the symmetry planes of
the rock are tilted with respect to the vertical direction.

This chapter concentrates on monoclinic symmetry rocks. The changes in the
rock compliances with saturation are quantified for the cases of: (i) one set of ver-
tical, micro-corrugated fractures in an isotropic background (ii) one set of dipping,
rotationally invariant fractures in a transversely isotropic background with a vertical
symmetry axis, and (iii) two vertical sets of non-orthogonal penny-shaped cracks in
an isotropic background.

The results for the cases of micro-corrugated fractures and dipping, rotationally
invariant fractures indicate that the shear-wave splitting parameter increases with
the compressibility of the saturating fluid. In the case of the model with two sets of
vertical, non-orthogonal, penny-shaped cracks in an isotropic background, vertically
propagating shear waves do not change with saturation, However, the azimuthal
variation of the normal-moveout (NMO) velocities of the P, $; and S; modes is
sensitive to pore fluids with the .5)-wave being the most sensitive.

4.2 Fluid Substitution Theory

Brown and Kerringa (B&K) generalized Gassmann’s work by relaxing the con-
ditions of isotropy and monomineralic rock. In this way, Gassmann’s scalar equations
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that relate the bulk and shear moduli of the dry and fluid-saturated cases, are re-
placed by a tensor equation that relates the compliances of the dry and saturated
rock. Since the complications related to multimineralic rocks are beyond the scope of
the work presented in this chapter, only the B&K formulation for the monomineralic
case will be used.

Brown and Korringa’s equation can be written as:

gd g8 = (ngaa - Sgaa)(sglaa - Sﬁaa)
ok ik (Sgcxﬁﬁ - S:rnaﬁﬁ) +(¢5 — S;naﬂﬁ)(bt ’

(4.1)

where Sfjm and S, are the compliances of the dry and fluid-saturated rock, S7; is
the compliance of the mineral material, ¢y is the compressibility of the fluid, and ¢
is the total connected porosity. The quantities S5, 55 and Sy g in the denominator
are the compressibilities of the dry rock and mineral material, respectively. Due to
the double index contraction both quantities are scalars and they can be defined as
Saass = ¢a and Stz = Cm.

Equation (4.1) assumes the rock is subjected to slowly varying stresses such that
the pressure is equilibrated throughout the pore space. This condition can be satisfied
when the fluid substitution occurs in a well connected pore space. However, the effect
of fuids in disconnected cavities could be included in equation (4.1) as part of the
“solid” through effective mineral (¢,,) and dry (cq) compressibilities.

Greater intuition into the meaning of Brown and Korringa's equation can be
achieved by rewriting equation (4.1) in the conventional (2-subscript) 6x6 matrix
notation. By doing this, it is clear that the terms with contracted indices {Sijea)
in the numerator of equation (4.1) represent the sums of elements of the first three
rows of the 6x6 compliance matrix. Therefore, by defining ¥ as the sum of the first
three elements of the K-th column of the compliance matrix, as shown in Figure 4.1a,
B&K’s equation can be rewritten as:

(4 — ) S~ 49) W)

d N .
S1s = 510 = (" am) + e/ — cm)é

Although equations (4.1) and (4.2) are equivalent, now it is easier to see when
changes in vertical shear-wave velocities may be expected with saturation based on the
symmetry of the rock. Figure 4.1a shows a compliance matrix of general symmetry
subdivided into four blocks, two diagonal and two off-diagonal. For symmetries in
which the off-diagonal blocks of the compliance matrix are zero, vertical shear-wave
velocities will depend only on the Sy and Ss; compliances. Since in these cases the
sums 1, and 15 are zero (see Figure 4.1b), from equation (4.2) we see that S, = Six
for k = 4,5. This means that for these symmetries the vertically propagating shear
waves do not depend on fluid saturation.
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FiG. 4.1. Tllustration of how the symmetry of the rock determines changes in the
shear compliances with saturation. (a) Compliance matrix of general symmetry in-
dicating elements that contribute to the sums ¥ in equation (4.2). (b) The change
with saturation of the components Sy, Sss and S depends on the sum of the ele-
ments in columns 1)y, 95 and 1), which vanish for isotropic, VTI, HTI and non-tilted
orthorhombic media. In monoclinic rocks the sums 14, s and s may be non-zero
resulting in fluid dependent shear compliances.

For isotropic rocks, the off-diagonal blocks of the compliance matrix are zero
and 1/G = Sy = Sss, where & is the shear modulus. Therefore, from the above
explanation, Gassmann’s result that states that the shear modulus does not depend
on fluid saturation is obtained immediately. In the case of transverse isotropy and
orthorhombic symmetry rocks whose symmetry planes are not tilted with respect to
the vertical axis, the off-diagonal compliance blocks are also zero and the vertical
shear waves are not sensitive to saturation (see Figure 4.1b).

If an anisotropic rock has a symmetry lower than orthorhombic (e.g. monoclinic)
in which the sums 4, and/or 45 are non-zero, the vertically propagating shear waves
may be sensitive to the pore fluids. This will occur because either Sy, or Se; will be
fluid sensitive and also because the S-wave velocities will depend on other compliances
besides 34.1 and 855.

The arguments above have been stated under the assumption that the symmetry
planes of the anisotropic rock are not tilted with respect to the vertical propagation
axis. [f tilt is allowed, even a transversely isotropic rock may present fluid sensitive,
vertical shear waves. This can be understood considering the compliance matrix of a
horizontal transversely isotropic rock {HTI), with symmetry axis in the X, direction,
that has been rotated by an angle 6 around the X, axis according to the so called
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Bond transformation, The rotated compliance is calculated as S, = N (8)SX NT(9),
where $*" is the HTI compliance and N(6) is the rotation matrix [N(6) can be found
explicitly in Mavko et al. (1999)].

After rotation, the tilted HTI compliance has the following non-zero terms,

Sy Si2 Sz 0 S5 0
Sz Sy Saz O 0 0
Siz Sa3 Sz 0 S O
0 0 0 Sy 0 S
S 0 Sz 0 S O
0 0 0 S 0 Se

Srof, == (43)

By the arguments stated previously it is clear that the Sss component and one of
the vertically propagating shear-wave velocities will change with saturation. This
observation indicates that vertical shear waves that are sensitive to pore fluids may
be a common phenomenon. The fact that it has seldom been reported from surface
seismic experiments is probably due to the small number of multicomponent, time-
lapse experiments that have been acquired.

The next sections will treat the case of fractured rocks with monoclinic symme-
try which will show changes in shear-wave velocities with saturation even when the
symmetry planes are not tilted with respect to the vertical propagation divection.

4.3 Methodology

The results presented in the following sections compare the rock compliances and
vertical shear-wave velocities of the dry and fluid-saturated rock. First the compliance
and compressibility of the mineral material and the dry rock are modeled. Then
equation (4.2) is used to calculate the compliance of the 100% brine saturated rock
and compare the results for both saturations. It is assumed that for all the models
the compliance matrix of the dry, fractured rock can be calculated using Schoenberg’s
linear slip theory (Schoenberg and Muir, 1989; Schoenberg and Sayers, 1995), as the
sum of a background compliance and an excess fracture system compliance matrix:

Sd = S;Jiack + S}lrac

If the background is isotropic, Sg is calculated from empirical relations of VE{:),
V&(¢:) and density p®(¢:), all functions of the isotropic porosity ¢;. The total porosity
of the rock is ¢, = ¢; +d., where . is the crack (fracture) porosity that only influences
the fracture system compliance S% ..

In all the models considered in this chapter the mineral material of the back-
ground rock is isotropic. The calculations are done for quartz, calcite, and dolomite.

L
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| Mineral material | K (GPa) | G (GPa)
Quartz 36.5 45.6
Calcite 70.2 29.0
Dolomite 94.9 45.0

Table 4.1. Moduli of background mineral material [from Mavko et al. (1999)].

The values of the bulk (K') and shear modulus (Q) are taken from Mavko et al. (1999)
(see Table 4.1).

The calculations have been done for a fluid substitution that oceurs throughout
the entire pore space including all the isotropic ane fracture porosity. Since the
permeability of the isotropic background is typically smaller than the permeability
of the fractures, it is assumed that sufficient time is allowed to have a complete fluid
substitution in the background matrix.

4.4 One Set of Micro-corrugated Fractures in an Isotropic Background

Using Schoenberg’s linear slip theory, Bakulin et al. (2000c) have studied the
anisotropy produced by one system of micro-corrugated fractures embedded in an
isotropic background, with the normals in the X, direction. By micro-corrugated
it is meant that the fracture surfaces are irregular at a scale much smaller than a
seismic wavelength. The irregularity can be idealized as saw-tooth profiles that are
offset from one fracture surface to the other as shown in Figure 4.2. In this idealization
the “roughness” of the fracture surface in the X direction causes a coupling between
normal tractions and tangential displacements when the fracture is stressed.

The symmetry of this effective medium is monoclinic with a vertical symmetry
plane, and its compliance matrix can be written as the sum of the isotropic compliance
of the background plus the fracture-system compliance,

Zy 000 Zyy 0
6 600 0 0
0 000 0 0

Sok =St | 0 900 o0 ¢ (4.4)
Zwv 000 Zy 0
0 000 0 2Z

Here Zy is the normal compliance of the fractures that relates the normal displace-
ments to the normal stresses applied to the fracture in the X, direction. The Zy and
Zy elements are the tangential compliances that relate tangential displacements and
stresses in the X3 and X directions, respectively. The Zxy compliance is responsible
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F1G. 4.2. Vertical fracture with rough structure that causes coupling between the
normal and tangential displacements.

for the coupling of normal displacements to tangential applied stresses, or conversely,
the coupling of tangential displacements to applied normal stresses (see Figure 4.2).

From equation (4.2) and (4.4) it is clear that the Sis and Sk shear compliances
of the fractured rock will not change with saturation because the sums Y, and ¥g of
S.ock in equation (4.2) are zero. However, Sss will change with saturation because
¥s = Zny and the right side of equation (4.2) will be non-zero. From this analysis
we see that, under the assumption that the background rock is isotropic, Brown and
Korringa’s equation requires that the term Zyy of the dry rock be non-zero to have
changes in the Sss shear compliance. This result stands in contrast with the heuristic
proposal by Bakulin et al. (2000c) in which they suggest that the reason why shear-
wave velocities change with saturation is that the term Znv is zero for dry rocks and
non-zero for saturated rocks.

To obtain more information on how the compliance terms Zyy and Zy change
with saturation, I have explicitly derived relations between the compliances of the
dry and saturated rocks using equations (4.2) and (4.4) (See Appendix D). The dif-
ference between the dry and saturated values of the compliances is a function of

T
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the mineral and fluid compressibility, the total rock porosity and the values of the
dry-rock normal and coupling compliances (Zg and Zg,). Even though there is no
micro-structural theory that predicts the values of the fracture compliances for this
model, reasonable bounds can be obtained from the stability condition of the com-
pliance matrix. Because the compliance matrix must be positive definite, physically
realizable compliances, Zy, Zy and Zyy must satisfy the inequality, Zy Zy > Zy.

The changes in the compliances with fluid saturation have a weak dependence
on the compressibility of the mineral material. This can be understood in light of
equations (D.6) and (D.7), where the contribution of the mineral compressibility is
small if the compressibility of the fluid is much larger than that of the mineral.

Figure 4.3 shows the difference between the dry and saturated values of Zyy
and Zy for a porous, fractured limestone (calcite matrix) that is 100% saturated with
brine (¢f ~ 0.44 GPa™'). These curves are calculated using the equations derived in
Appendix I assuming that the background is an isotropic, porous limestone matrix
that can be modeled as dilute collection of spherical pores with a porosity ¢; < 0.1.

From Figure 4.3 it is clear that the change with saturation of the compliances
Zyy and Zy is strongly dependent on the value of Z¢,. As mentioned before, if
Z% = 0 the symmetry of the rock is no longer monoclinic, and Zyy and Zy are not
sensitive to the change of saturation.

An important observation is that if the coupling term is weakly dependent on
the isotropic porosity (¢;), larger changes in Zyy and Zy should be expected with
saturation for smaller values of ¢;. As it will be shown below, the previcus observation
implies that changes in the shear-wave splitting with saturation are larger for rocks
with small isotropic porosity.

The shear-wave splitting parameter for this monoclinic rock can be written in
terms of the vertical velocities Vs, and Vs, of split shear-waves as:

Ve —v2
VE eyl (4.5)
21/’522
where Vs, and Vs, are given by
G
==, (4.6)
and o O .
—
5?2 33L55 — C35 (4.7)

- :5033 + Cos + \/(033 — 055)2 + 44:‘%51

and G is the shear modulus of the background isotropic rock. Bakulin et al. (2000¢)
have shown that equation (4.5) can be written to second order in the fracture com-



47

0 0.01 0.02 0.03

0 0.01 0.02 0.03

FIG. 4.3. Difference between the dry and saturated values of (a) the fracture coupling
compliance, Zyy, and (b) the fracture tangential compliance, Zy, as a function of
Z%.. The curves are calculated using the equations derived in Appendix D for a
fractured, porous limestone with values Z% = 0.02 GPa"! and ¢; = 0.44 G Pa7l.
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pliances as: \
G G?M3g(3 — 4q)
o Fy— — 72 ,

where M is the P-wave modulus. From equations (4.6) and (4.7) it is clear that the
velocity of the S)-wave will not change with fluid content since it depends only on the
shear modulus of the isotropic background rock, whereas the velocity of the S;-wave
will change due to its dependence on the Css, Css and Cas. The shear-wave splitting,
¥, will vary with saturation due to its dependence on Zyy and Zy, which vary with
Auid content as shown in Figure 4.3.

To model the variation of the shear splitting with saturation, the compliance
matrix of the brine saturated rock is calculated using equation (4.2). Then, the
stiffness matrix is obtained from the inverse of the compliance, and equations (4.5)-
(4.7) are used to compare the shear-wave splitting parameter of the dry and brine-
saturated rock.

Figure 4.4 shows the dry-rock splitting parameter and the change after saturation
as a function of the compliance Z%,, for a rock with an isotropic porosity ¢; = 0.15.
The calculations show that the velocity of the S,-wave is larger for the brine-saturated
rock than for the dry rock. Therefore, because the .9 velocity is the same for the
dry and saturated case, the shear-wave splitting parameter is smaller for the brine-
saturated rock and larger for the dry rock (Figure 4.4b).

Even though all the combinations of parameters shown in Figure 4.4b satisfy the
condition of positive definite compliance matrix, numerical calculations done by Nak-
agawa et al. (1999) suggest that the conditions, Zy ~ Z{ and Z§ > Z§, are the ones
that hold for micro-corrugated fractures. Furthermore, they show that if the jagged
sections of the micro-corrugated fracture are less than 30 degrees from the vertical,
Z% and Z¢ are approximately equal to the normal and tangential compliances of a
penny-shaped crack.

The combination of dry fracture compliances that seems more reasonable accord-
ing to the range of values reported by Nakagawa et al. (1999), is the one represented
by the diamonds in Figure 4.4 (Z¢, < Z¢, Z% =~ Z{¢). Taking this as a representative
example of what can be expected from experimental data, the changes in ~ can be as
large as 0.01 for a shear splitting v* = 0.1. Although this represents a 10% change in
the shear splitting it might not be a large enough change to be measured from seismic
data. However, Figures 4.4 were calculated for a relatively high value of the isotropic
porosity ¢; = 0.15, and as seen from Figures 4.3 the variation in shear splitting with
saturation is expected to be larger for small isotropic porosities. Figure 4.5 shows that
for an isotropic porosity ¢; = 0.01 the decrease in the shear-splitting from the dry- to
brine-saturated state can be as large 0.08 for a shear-splitting v* ~ 0.12, which would
be easier to measure from seismic data. The fact that the change in shear-splitting is
larger for decreasing ¢; may seem counter-intuitive. However, this can be understood

(4.8)
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FiG. 4.4. Difference between dry and saturated splitting parameter as a function
of Z&, for several values of the normal compliance Zy of the dry rock. (a) Shear-
wave splitting for the dry rock. (b) Change in shear-wave splitting between the dry
and brine-saturated rock. Calculations are done for a porous calcite matrix with a
modeled isotropic porosity of 0.15 and a fixed value of Z§ = 0.02 GPa™l.
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!
Zyqy (GPa)

F1G. 4.5. Change in shear splitting for three values of the background isotropic poros-
ity. Calculations are done for a calcite matrix with a fixed crack porosity ¢, = 10~
and with fracture compliances that match Nakagawa’s et al. condition in Figure 4.4
(diamonds).

by recalling the role of the storage capacity in the fluid substitution process that was
presented in Chapter 3. When a stress is applied to the crack and the rock has a
large isotropic porosity, its fluid storage capacity is large enough to accommodate flu-
ids displaced from the cracks with only a small fluid pressure increase. If the porosity
is small, the reduced storage capacity results in a larger Auid pressure increase that

“stiffens” the crack more, reducing further the shear splitting of the brine-saturated
rock.

Figure 4.6 shows the change in shear-splitting between the diy rock and a rock
saturated with brine, oil and COj,, calculated for ¢; = 0.01. Due to the similar
values of the compressibility of oil and brine compared to CO; it would be easier to
distinguish a change from brine to C'O, than from brine te oil.

From this modeling we may conclude that, for a rock with micro-corrugated
fractures in an isotropic background, the vertical shear-wave splitting should increase
if a low-compressibility fluid is replaced with a high-compressibility fluid (e.g. gas
at low differential pressures that displaces oil or water). This result is qualitatively
consistent with the findings of Guest et al. {1998) in which the splitting parameter
increased due to a decrease in the Sy-wave velocity in areas believed to be saturated
with highly compressible gas. This observation was done from interpretation of a
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FIG. 4.6. Change in shear splitting between dry rock and rock saturated with COx,
oil and brine for the same model considered in Figure 4.5.

single multicomponent survey in which the increase in y was very well correlated
with the known gas cap of the reservoir.

From time-lapse multicomponent data, Duranti et al. (1999) have also reported
changes in 7 that have been attributed to varying pore fluid compressibility during a
CO, injection process. However, they observe changes on both S- and S;-waves that
result in a decrease of shear-wave splitting in COy-saturated regions instead of the
increase shown in Figure 4.4b. The fact that they measure changes with saturation
in the S;-wave may indicate a more complex fluid substitution process than the one
resulting from a single set of micro-corrugated fractures. In Chapter 7 it will be seen
that the analysis of the S-wave data in Weyburn field, Canada, also suggests changes
in the shear-wave splitting occurs after a CO; injection process.

4.5 One Set of Dipping, Rotationally Invariant Cracks in a VTI Back-
ground

Grechka and Tsvankin (2001) proved that a single set of dipping, rotationally
invariant fractures embedded in a VTT background results in a monoclinic rock with
vertical symmetry plane. Figure 4.7 illustrates the model in which the rotationally
invariant cracks, originally with their normals in the X, direction, are rotated by the
angle 8 about the X, axis. After the rotation, the crack planes no longer contain the

T
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X; ( VTI axis )

FIc. 4.7. Representation of a dipping, rotationally invariant crack in a VTI

background.

symmetry axis of the background and the effective medium becomes monoclinic.

Schoenberg and Sayers (1995) have shown that the excess fracture compliance
for a set of rotationally invariant fractures with their normals in the X direction can

be written as

Xy _
Sf —

Gocooé\]
coocooo
o e Y o Y e B s

0

oo o oo

0

0 0

0 0

0 0

0 0 ¥ (4'9)
Zr 0

0 Zr

where Zy and Zp are the normal and tangential fracture compliances, respectively.
To obtain the expression for dipping fractures, matrix (4.9) is rotated by the angle
¢ around the X, axis according to the Bond transformation represented by SJ‘? =
N (9)3}(’ NT(6). After the rotation of the fractures, the effective compliance of the
monoclinic rock can be written as S,ocx = Sy + S§, where S¢ has the following

nen-zero terms:
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S 0 S5 0 S5 0
0O 0 0 Q 0 0
s | Sz 0 S 0 53 0
5= 0 0 0 Su 0 S (4.10)
Sis 0 S35 0O Sss 0
0 0 O Si 0 Ses

Equation (4.10), shows that the effective compliance of the monoclinic rock has
non-zero elements in the off-diagonal blocks defined in Figure 4.1a. Therefore, ac-
cording to the arguments given above, the shear compliances will be sensitive to
fluid saturation. Since this model is also monoclinic with a vertical symmetry plane,
equations (4.5)-(4.7) are used to calculate the shear-wave splitting for the dry and
brine-saturated cases.

To model the dry rock, VTI parameters measured on 18% porosity Berea sand-
stone are used for the background (Sarkar and Kranz, personal communication) and
values of Zy and Zr that are consistent with Hudson’s theory of penny-shaped cracks
are considered. The parameters of the background rock are: € = 0.07, § = 0.04,
v = 0.09, Vpp = 2.3 Km/s and Vso = 1.62 Km/s. For the crack compliances, it is
assumed Zy =~ Zr with 0 < Zn < 0.02.

Figure 4.8 shows that the changes in y with saturation are larger with increasing
dip angle of the cracks. If the dip is zero, the effective symmetry of the rock becomes
orthorhombic and, since the off-diagonal block elernents are zero, there is no change in
~ with saturation. Also, when Zy and Zz — 0 (limit of no cracks) the medium has the
VTI symmetry of the background, and y = 0. Note that the changes are larger when
the normal compliance of the cracks increases, which indicates that larger S-wave
sensitivity to fluids should be expected with increasing crack density.

For this model the same conclusion obtained for the micro-corrugated fractures
holds: the splitting parameter increases with the compressibility of the saturating
fluid. However, Figure 4.8 suggest that it would be hard to measure the changes
in shear-splitting in the Berea sample. Similar to the case of the micro-corrugated
fractures, a rock with large porosity (¢; = 0.18) will present meager changes in shear-
splitting with saturation due to the influence of the large storage capacity.

Sayers (2002) has argued that a rock with two conjugate sets of dipping cracks
in an isotropic background can present fluid dependent shear-wave splitting even if
the rock is of orthorhombic symmetry. In the model proposed by Sayers, the rock is
forced to be orthorhombic assuming that the cracks have identical fracture densities
and that they are dipping exactly in opposite directions. However, Sayers’ model
implicitly disregards the pressure equilibrium between fracture sets, which violates
the condition set by Brown and Korringa’s theory. Two cracks that dip in opposite
directions experience pore strains that are opposite in sign (Kachanov, 1992). This
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F1G. 4.8. Change of the splitting parameter with saturation as a function of the dip
of the fractures for different values of the normal compliance of the dry fractures.
(a) v for dry (thin lines) and brine-saturated (thick lines) cases, Note that for all
values of the normal compliance y* > 4°. (b) Percent change in ¥ with saturation as
a function of dip angle of cracks. Zy is expressed in GPa™1.
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means that when a traction is applied to the rock, a crack dipping an angle § from the
vertical expands, while a crack dipping an angle —8 contracts by the same amount.
If the cracks are connected, there is no effective change in the pore velume and,
if the experiment is quasi-static, the fluids will move from one crack to the other
without an increase in the pore pressure. Hence, no fluid effect will be observed in
the shear-splitting for Sayers' (2002) orthorhombic rock under conditions of pressure
equilibrium.

4.6 Two Vertical Sets of Non-Orthogonal Penny-Shaped Cracks in an
Isotropic Background

The compliance matrix of a fractured rock composed of two sets of non-orthogonal,
vertical fractures can be obtained in the same way as before by summing the compli-
ances of the background and the fracture systemns. Bakulin et al. (2000c) show that
the effective symmetry of the medium is monoclinic with a horizontal symmetry plane
and depends on eight parameters. These parameters are: the background velocities
Vp and Vs, the compliances Zy and Zr of each fracture set, the angle y between the
sets and the azimuth of one of the sets (Figure 4.9).

Grechka et al. (2000) showed that the most convenient coordinate system to
study this type of media is the one defined by the polarization directions of vertically
traveling Si- and Sy-waves. In this coordinate system, a generally monoclinic rock
is characterized by nine anisotropic parameters defined in the same way as those for
orthorhombic media plus three parameters that control the rotation of the P-, - and
Sx-wave NMO ellipses with respect to the coordinate axes. Therefore, a “diagnostic”
feature of this type of fractured rocks is that the direction of polarization of the fast
shear wave does not coincide with either axis of the NMO ellipses of P-, 5- and
Ss-waves.,

For symmetries in which the off-diagonal block of the stiffness (and compliance)
matrix is zero (HTI, VTI and orthorhombic) one of the axes of the NMO ellipses
coincides with the polarization direction of the fast shear waves at vertical incidence.
Non-zero elements in the off-diagonal block are responsible for the three extra pa-
rameters that are related to the three rotation angles 8p, s, and fs, of the axes of
the NMO ellipses with respect to the fast shear-wave polarization vector. From the
discussion above it is clear that these rotation angles, which depend on terms in the
off-diagonal stiffness (and compliance) blocks, should be sensitive to pore fluids.

The model is constructed by embedding two sets of penny-shaped cracks in the
isotropic background. Then the rotation angles of the ellipses are calculated as a
function of the angle between the sets, crack-density ratio and isotropic porosity.
The calculations are performed for porous quartz, calcite and dolomite backgrounds.

Figure 4.10 shows the rotation angles of the NMO ellipses as a function of the
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F1G. 4.9. Two sets of vertical fractures with the normals making the angles ®; and
@3 with the X, direction. The angle between fracture sets is x =®— P,

angle between the fracture sets (x) for different lithologies, and its change when the
rock is saturated with brine. In this case the isotropic porosity (¢;) is fixed at 15%
and the crack density ratio of the two sets is 7.0/7. = 1/3 with the dominating set’s
crack density na = 0.09. In Figure 4.10a, when the angle between fracture sets is
zero, the model becomes HTT and the angles 3; between the $) polarization direction
and the axes of the NMO ellipses vanish. If the angle between sets is 90°, the model
is orthorhombic and the 3;’s again go to zero.

From Figure 4.10a it is clear that the largest change with saturation occurs for
the orientation of the Sj-wave ellipse, while 3p and B3s, remain almost unchanged.
Therefore, Figure 4.10b shows the change in the $; mode alone; note that for the
“softer”, more compressible quartz matrix, the changes are larger than those for the
stiffer dolomite.

Figure 4.11 shows the results for fixed isotropic porosity {¢; = 0.15), fixed angle
between crack sets (x = 55°) and varying crack ratio 5./74. In one extreme case,
Nea/Mer — 0, the crack density 7., is dominant and the medium becomes HTI with
all 3;’s equal to zero. In the other extreme case, 74/ — 1, both fracture sets have
the same crack density and the medium becomes orthorhombic with all 3;’s equal to
zero (Figure 4.11a).

The maximum value of the rotation angles and their largest change with satu-
ration seems to occur when the dominant fracture set has approximately twice the
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crack density of the weaker set. Again, the largest change with saturation occurs
for the Si-wave NMO ellipse (Figure 4.11a) and for the more compressible mineral
material (Figure 4.11b).

In Figure 4.12, the change of the 3;’s with saturation is computed as a function
of the isotropic porosity (¢;} of the background. The computation is done for a fixed
angle between fracture sets (x = 55°) and a fixed crack-density ratio /7 = 1/2
with 7, = 0.09.

Figure 4.12b shows that when ¢; decreases, the change of {3s, with saturation
decreases slightly and then increases as ¢; — 0.01. The increase at low values of
¢: seems counter-intuitive since one would expect to see smaller changes as the pore
space available for fluid substitution decreases. However, this effect is due to the
transition from a fluid substitution process dominated by the isotropic porosity to a
process dominated by the crack porosity.

Bakulin et al. (2000c) have shown that 8p, 35, and #s, depend on the normal
compliances (Zy’s) of both sets of penny-shaped cracks. Therefore, large changes in
the normal compliances should produce large changes in the 3;s.

In Appendix E equation (4.2} is used to obtain an expression for the change
of Zy with saturation. This expression proves that as ¢; goes to zero (leaving only
the crack porosity, ¢.), the combination of parameters governing the change in Zy
is ﬁ‘,{:’ where K is the bulk modulus of the fluid. If this ratio is small compared

to unity the changes in Zy are large. For reasonable values of the crack porosity,
normal compliance and fluid bulk modulus this combination of parameters may be
considerably smaller than one. For example, if K; = 2.25 GPa, ¢. = 1072 and
Z% = 0.02, then E%RT = 0.022. However, an important caveat is that this calculation

applies to the changes one would expect from a dry rock to a 100% brine-saturated
rock. More realistic fluid substitution processes will not occur between such extremes
and the changes could be smaller.

4.7 Discussion and Conclusions

Under conditions of equilibrated pore pressures, I have shown that VTI, HTI, and
non-tilted orthorhombic symmetry rocks have shear compliances (Sy, Sss and Seg)
that are not dependent on fluid saturation. However, fractured rocks with monoclinic
or lower symmetry have fluid-sensitive shear compliances. This conclusion is obvious
when Brown and Korringa's equation is rewritten in two-index notation. Changes in
the shear components only occur if off-diagonal elements of the compliance matrix in
rows 4, 5 and 6 are non-zero.

‘Three different models of fractured rocks with monoclinic symmetry have been
studied. Two of the monoclinic models have a vertical symmetry plane and they
present vertical shear-wave splitting that is dependent on fluid saturation. The mon-
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oclinic model with a horizontal symmetry plane does not exhibit fluid dependent
splitting but the orientation of the S-wave NMO ellipses changes with saturation.

The two models with vertical symmetry planes contained a single set of paraliel
micro-corrugated fractures and a set of dipping cracks in a VTI background, respec-
tively. Both models support the conclusion that the splitting of vertically traveling
S.waves increases with the compressibility of the saturating fluid. These variations
may be observed after gas injection into water- or oil-saturated sections of the reser-
voir, or after water encroachment due to production in a zone originally saturated
with gas.

The monoclinic rock with a horizontal symmetry plane contained two sets of non-
orthogonal penny-shaped cracks in an isotropic background. For this model, except
for density effects, vertically traveling shear waves are not sensitive to saturation
changes. However, the NMO ellipses of the three pure modes (P, 51 and Sy), in
particular S, are sensitive to the pore-fluid content. Analysis for different lithologies
indicates that larger changes in the orientation of the S5;-wave NMO ellipse with
saturation should be expected for fractured rocks with a softer background matrix
(e.g., quartz instead of dolomite).

An important point is whether it is possible to measure from seismic data the
changes with saturation in splitting parameter that have been modeled in this chap-
ter. The results presented here indicate that the changes should be larger in rocks
with small isotropic porosity. An important caveat, however, is that in the models
presented above the isotropic porosity refers to the pores that are actually connected
in the rock. In real rocks it is possible to have sections of the pore space that are
effectively disconnected from the portion of the pores where the fluid substitution
occurs. In these cases the total porosity measured from a wireline tool maybe much
larger than the actual connected porosity that accounts for the pressure equilibrium.
Hence, if the connected isotropic porosity is small, most of the fluid substitution will
occur in the fractures and the variations in splitting parameter will be larger (i.e.
#; — 0 in equation (4.2)).

Equations (D.8), (D.9) and (E.3) indicate that if ¢; = 0 the magnitude of the

changes in the fracture compliances is determined by ﬁ-. If this combination of

parameters is small compared to unity larger changes with saturation can be expected
in the fracture compliances and in the shear-splitting parameter . Using reasotiable
values of the crack porosity, normal compliance and the bulk modulus of water (i.e.
$e = 1073, Z§ = 0.02, and K; = 2.25 GPa) ﬁ — 0.022, which is considerable
smaller than unity.

Except for density effects, few cases of shear-wave velocity dependence on satu-
ration have been reported in the literature. This is probably due to the small number
of multicomponent, time-lapse experiments that have been acquired over fractured
reservoirs. Since, not all the theories and assumptions presented in this chapter have
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been tested it is important to design experiments on fractured rocks where the fluid
dependence of shear-waves with saturation can be studied.

Due to the uncertainties in the fracture parameters of natural rocks it is con-
venient to conduct experiments on synthetic rocks for which all the parameters are
well known. Rathore et al. (1994} manufactured a synthetic sandstone with epoxXy-
cemented sand in which netallic discs of known shape were embedded in successive
layers. The discs were then leached out chemically leaving cracks of known geometry
that generated a rock with transversely isotropic symmetry.

The same technique could be applied to build a monoclinic rock with two sets
of non-orthogonal penny-shaped cracks. In this case the metal discs could be placed
at a fixed angle in thin slabs of synthetic sandstone. Then the rock could be built by
compressing several slabs together.

Another alternative is to follow the model of tilted rotatienally invariant cracks in
a TI background proposed by Grechka and Tsvankin (2001). First, the rock could be
built following Rathore’s method to obtain one set of cracks. Then, the rock would be
stressed with the maximum compressive direction at an angle from the crack normals.
This will generate a second set of stress-induced cracks and make the symmetry of
the rock monoclinic. However, the disadvantage of this method is that the shape and
distribution of the cracks will not be known.

Once the sample is built, velocity measurements can be done for propagation
parallel to the symmetry plane and out of the symmetry plane. Qut-of-plane velocity
measurements should give NMO ellipses whose orientation depend on saturation.
Velocity measurements of shear-waves propagating in the plane of symmetry should
be fluid dependent.
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Chapter 5

INTEGRATING PRESSURE-TRANSIENT DATA
INTO SEISMIC RESERVOIR CHARACTERIZATION

5.1 Introduction

Pressure-transient experiments performed by engineers perturb the pore pressure
of the reservoir and test the compliance of the rock’s pores. Seismic experiments
performed by geophysicist perturb the confining pressure and test the compliance of
the bulk rock volume. Because elasticity theory provides relations between the pore
and bulk compressibilities, well test and seismic data analysis can be used jointly to
characterize the elasticity of the reservoir rocks.

Well test analysis is the generic name given to the study of pressure and flow-
rate data measured at the well location. If Darcy’s law is valid and the rock behaves
elastically, the diffusion equation describes fluid flow through the reservoir, providing
estimates of storage capacity, average permeability and average pressure, Da Prat
(1990). The condition of elasticity inherent in the diffusion equation links well test
measurements to the pore space compressibility of the rock. Since the compressibility
of the pore space is a function of the mineral modulus and dry bulk modulus of the
rock Zimmerman (1991), well test measurements can be related to some of the elastic
parameters that are estimated from seismic data. Therefore, well test analysis can
provide a quantitative link between geophysical and engineering measurements that
is useful for reservoir characterization.

Both well test and seismic propagation analysis suffer from non-uniqueness of
the solutions that model a given reservoir. By estimating some of the elastic param-
eters of the rock from both a flow experiment and seismic data, one can reduce the
non-uniqueness of the solutions by correlating the outcome of the two independent
analyses.

In this chapter, Zimmerman’s {(1991) rock compressibility relations are used to
show how the rock’s storage capacity is a function of the mineral and dry rock com-
pressibility. If the rock is isotropic, storage capacity estimates from pressure-transient
tests can be used in Gassmann’s (1951) equations to predict changes in the bulk mod-
wlus of the rock with saturation, without knowing the fluid compressibility and the rock
porosity. If the rock is fractured and anisotropic, the application of Schoenberg’s lin-
ear slip theory (Schoenberg and Douma, 1988; Schoenberg and Sayers, 1995) yields
a relation between the normal compliance of the fracture system and the ratio of
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isotropic isotropic
mineral phase pores

F1G. 5.1. Schematic representation of an isotropic, single porosity rock. The ISP
rock may be modeled assuming the pores are all spherical or of arbitrary shape with
random orientations.

the fracture storage capacity to total rock storage capacity (storage capacity ratio).
Since the normal compliance of the fracture system may be estimated from seismic
data Bakulin et al. (2000a), and the storage capacity ratio can be measured from well
test data, the derived relation allows a quantitative comparison between independent
experiments.

The theory developed for the fractured anisotropic rock is applied to the analysis
of pressure-transient data from Weyburn field with the objective of constraining the
value of the normal fracture compliance in the area around the well where the test
was performed. Assuming an ideal shape of the fractures in the reservoir, the fracture
density and porosity are estimated from the storage capacity ratio.

Even though there exists a variety of methods and experiments from which for-
mation storage capacity can be estimated (Lee, 1982; Da Pratt, 1990}, this chapter
will concentrate on single well, pressure-transient analysis in which the well is pro-
duced at a constant rate. However, the link between the well test parameters and the
rock’s elastic parameters will be valid for any other type of well test experiment.

5.2 Part I: Isotropic Single Porosity Rock

The first model to be considered is defined as the isotropic, single porosity (ISP)
rock, which is composed of a mineral phase and a single porous phase. The mineral
phase is assumed to be elastically isotropic and homogeneous, and the pores are
assumed to be randomly oriented. This condition implies that the porous rock will
be elastically isoiropic and that it can be modeled as a collection of spherical pores
or randomly oriented pores in an isotropic background material (see Figure 5.1).
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The flow properties of the isotropic, single porosity rock, require that all the
pores that account for the flow account for the storage capacity of the rock. This
means that the storage capacity measured from a flow experiment corresponds to the
connected pores of the rock. The storage capacity contains information about the
pore and fluid compressibility, providing the link between the well test experiment
and the elasticity of the rock.

5.2.1 Measuring the storage capacity

In the ISP rock, the pressure variation (Ap) with time (f) is described by the
diffusion equation assuming the flow is single phase, that Darcy’s law holds, and
the fluid is slightly compressible. In radial coordinates the diffusion equation can be
written as

k10 (00p\ . dbp
o ( or ) = diciTgy 6.1)

where 4 is the fluid viscosity, & is the rock’s permeability and ¢; is the porosity, with
the subscript ¢ indicating these properties are measured on an elastically isotropic
rock. ¢; is the total compressibility of the isotropic pore/fluid system which can be
expanded as

_ 1 5.2)

C; = -.(f(_f + Cop,is ( .

where K is the fluid bulk modulus, and ¢;,; is the pore space compressibility of the
isotropic pores.

The first term in equation (5.2) is the fluid’s contribution to the total compress-
ibility of the pore/fluid system. The second term (cp,;) reflects the excess pore fluid
that can be stored in the pore space (V,} due to an increase in the pore pressure (Pp)
at a constant confining pressure (p),

1 (8V,
Cpp,i Vp (app)pc (5 )

The product of the porosity and the total pore/fluid system compressibility (¢;c:)
is defined as the storage capacity of the reservoir rock, which can be estimated from
the well test data analysis based on the solution of equation (5.1) {see Appendix F).
Since the storage capacity has information about porosity (¢;), fluid compressibility
(1/K;) and pore space compressibility(cpp:), I show below that it can be used to
analyze the changes in seismic wave velocity through the rock with different fluid
saturations.
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5.2.2 Storage capacity and the fluid substitution problem

One of the objectives of rock physics, is to predict the changes in the veloeity of a
seismic wave due to changes in the fluid saturation of the rock. This fAuid substitution
problem can be addressed by finding equations that predict the velocities of the wave
propagating through a saturated rock (saturated rock velocities) from the velocities
of the wave propagating through the dry rock (dry rock velocities).

Gassman’s (1951) equations predict the saturated rock velocities from the dry
rock velocities under the assumption that the rock is isotropic, monomineralic and
that the pore pressure is equilibrated throughout the pore space. Therefore, Gassman’s
equations are applicable to the ISP rock model defined above, for which the storage
capacity of the rock {¢.c;} can be measured from pressure-transient analysis. For an
isotropic rock, the wave velocities are determined by the bulk (K) and shear (&)
moduli and the bulk rock density (p). Gassman’s (1951} equations for the change in

K and G are
1 _ 1 _ (Tin B "_{1’:)2 , (5'4)
KoK (f-g)o+ (- 2)
Gs = Gy, (5:5)

where K, is the bulk modulus of the mineral material, the “d," subscripts stand
for measurement done on the dry, isotropic rock and the “s” subscript stands for a
measurement done on a rock saturated with a fluid with bulk modulus K.

One of the problems in applying equations (5.4) and (5.5) to seismic data is
that the prediction of K, depends on the parameters K 7s @i, Kai and K,,, which
are usually estimated from well logs and cores at a much smaller scale than seismic
scale. However, the scale of measurement of the storage capacity estimated from
pressure-transient tests is determined by the drainage radius which can be of the
order of tens to hundreds of meters. Therefore, the introduction of storage capacity
into Gassmann’s equation could provide estimates of K, that are more consistent
with the seismic scale of measurement.

In monomineralic, porous rocks, the existence of two different volumes (bulk and
pote volumes) and two different pressures (pore and confining pressures) results in
four rock compressibilities Zimmerman (1991). Each of these compressibilities relates
changes in either the bulk volume (V;) or pore volume (V}) to changes in the confining
pressure (p.) or pore pressure {p,), and are defined as:

. _:_1(6%
“= 7, \ op.

) = dry bulk compressibility,
Pp
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1
ap = | 5— | = subsidence compressibility,
Ve pe

-']. (3Vp) . NS
= — = compaction compressibility,
Cp ‘V; apc - p y

| (av,,) L
= (=2) = pore compressibility. (5.6)
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The pore compressibility ¢,, is the second term in the expression of the total pore /fluid
system compressibility in equation (5.2) and c;. is the inverse of the dry rock bulk
modulus {Ky;). As shown in Chapter 2, ¢ can be expressed as a function of Ky,

¢; and K, as
(1 1+ 1
w = (Kd,i Ko ) & (5.7)

Substituting equation (B.5) into the definition of ¢; in equation (5.2), the storage
capacity of the reservoir is

1 1 1 1
¢i&=(?f—}(;) i+(E:_K_m:)' {5.8)

Comparison of equations (5.8) and (5.4) shows that the denominator on the
right side of equation (5.4} is the storage capacity of the rock. Therefore, the storage
capacity measured from the well test experiment can be used to rewrite Gassman’s

equation (5.4) as
2
1 1
11 (m,_,. - K—m)

K, Kai $ici ' (5.9)
This equation highlights the benefit of adding the information provided by the pressure-
transient analysis. The advantage of expression (5.9) over the Gassmann’s equation
is that no assumplions are needed about the values of the fluid bulk modulus or for-
mation porosity to calculate K, because they are included in the storage capacity,
¢ic;. However, it is still necessary to have estimates of the mineral and dry rock bulk
moduli.

From an estimate of the bulk modulus of the rock saturated with a fluid hav-
ing bulk modulus K (e.g. from estimates of P-, S-wave velocities and density),
equation (5.9)can be used to predict the change in the bulk modulus caused by sub-
stitution of a second fluid (K ;). This requires a time-lapse well test experiment with
one pressure-transient test done with the original fluid and a second after the fluid
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substitution (e.g. after production or a fluid injection process). In this scenario, the
storage capacity estimated from the first test {(¢;c;};] would be used with the estimate
of saturated bulk modulus (/) to calculate (K;;) according to

1 _ 1 (), 1_\/1_&%.*_@ 5.10
Ky _Km+ 2 (0:€:), . (>10)

Then, the estimated Ky; can be substituted in equation (5.9), with the storage ca-
pacity estimated from the second pressure-transient test [(¢;c;),), to predict the new
saturated rock bulk modulus (K,3).

An important observation is that equation (5.9) predicts that the change in the
saturated rock compressibility (1/K,) is proportional to the change in the inverse of
the storage capacity i.e.

1 1 1\? 1
A (EL - (Kd.s - z;) & (aa)m’ G0
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where

1 1 1
4 (‘f’i&')m - (Gf’i(-’z')z - (‘i’t’ci)l.

It seismic and pressure-transient experiments are performed and then repeated after
& fluid substitution process, the proportionality shown in equation (5.11) will hold if
the fluid substitution process does not change (- — --). In Chapter 2 it was shown

that
1 1

Ky K,

where cpc; is the compaction compressibility defined in equation (5.6). Therefore,
the proportionality will hold if pressure changes in the reservoir during the well test
experiment are not high enough to alter the porosity or compaction compressibility
of the reservoir. This should hold true for most well compacted reservoir rocks.

Cpc,,‘tjbg o= (5 12)

5.3 Part II: Anisotropic Double Porosity Rock

The second model is the anisotropic, double porosity (ADP) rock, which is com-
posed of an isotropic, homogeneous mineral phase and two porous phases. The two
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fracture isotropic
pores blocks

FIG. 5.2. Schematic representation of the anisotropic, double porosity rock. The
rock is composed of elastically isotropic blocks separated by fractures.

different pore types will be referred to as the isotropic pores and the fracture pores,
respectively. The first type of pores are deemed “isotropic” because their inclusion in
the mineral phase does not render the rock anisotropic. These may be thought of as
pores of arbitrary shape that are randomly oriented as in the case of the ISP model
discussed before. On the other hand, the fractures are assumed to be low aspect ratio
pores that have preferential orientations and make the rock elastically anisotropic. It
will also be assumed that the internal structure of the ADP rock can be described as
a group of isotropic blocks, where the isotropic pores reside, that are separated by
the network of through-going fractures as shown in Figure 5.2.

With regard to flow properties, the isotropic pores have most of the storage ca-
pacity of the rock but have small permeability. Flow can occur between isotropic
pores and fractures but flow into the wellbore occurs only through the fracture net-
work. In well test analysis this is called the double porosity model (Barrenblatt et
al., 1960; Warren and Root, 1963).

As in the single porosity rock, the link between pressure-transient analysis and
the rock’s elasticity is in the storage capacity. However, in this model the parameter
that can be measured is the ratio of the fracture system storage capacity to the total
storage capacity of the rock (storage capacity ratio} which is defined as

Precp
S e e S 5.13
v drer + dici’ ( )

where $pep is the storage capacity of the fracture pores and ¢rer + @ic; is the total
storage capacity of the rock.
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5.3.1 Measuring the storage capacity ratio, w

In the ADP rock, the pressure variation (Ap) with time (t) is also described by
the diffusion equation. However, the presence of two pore types with different storage
and flow capacities requires the definition of two differential equations Da Prat {1990).
‘The first differential equation describes the flow through the fracture network into
the wellbore, which can be written in radial coordinates as

kel 8 (ré‘APF OApp OAp;

) = ¢rep—— + dc;

(5.14)
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where gt is the fluid viscosity, £ and ¢ are the permeability and porosity, respectively,
with the subscript “F” indicating fracture pores and the subscript “s” indicating
1sotropic pores. ¢r and ¢; are the compressibilities of the fracture and isotropic pore
systems, respectively,

Two pressure variations are indicated in equation (5.14), one in the fractured
pore system (Apr) and one in the isotropic pore system (Ap;). Since flow into the
wellbore occurs only through the fracture network, the second term on the right side
of equation (5.14) represents the volume of fluid flowing from the isotropic pores
into the fracture system. The rate of How into the fracture system is determined by
the pressure differential between isotropic and fracture pores (Apr — Ap;) and the
permeability of the isotropic pores («;). Therefore, the second differential equation is

048p; _ & (Apr — Api)

(fbici at 4 LQ H (515)

where L is the characteristic length of the isotropic rock block.

From well test data analysis based on the solution of differential equations (5.14)
and (5.15), it is possible to estimate the storage capacity ratio (see Appendix G). The
w parameter includes information about the fracture porosity and fracture pore space
compressibility that links well test experiments with elastic parameters that can be
estimated from seismic data.

9.3.2 w parameter and normal fracture compliances

When fractures are introduced into an isotropic porous rock, the overall com-
pressibility of the rock increases due to the excess compliance associated with the
fracture system (Schoenberg and Sayers, 1989). Therefore, the compressibility of a
dry fractured rock is

= Znr + = {5.16)
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where Znp is the normal compliance of the dry fracture system, Kg4; is the dry bulk
modulus of the isotropic part of the rock, and K. is the dry bulk modulus of the
whole rock, which includes both isotropic and fracture pores.

If the storage capacity ratio can be expressed in terms of the dry rock compress-
ibility (5.16), it will also be a function of the normal compliance of the fracture system,
Znr. Because estimates of Zyp can be obtained from seismic data for some types of
fractured rocks Bakulin et al. (2000a), having w as a function of the Zyr implies it
may be possible to obtain estimates of the normal fracture compliance (Zyr) from
pressure-transient analysis or estimates of storage capacity ratio (w) from seismic
data analysis.

The derivations presented in Appendix H show that the w parameter can be
written as

I S U 1 1
_ (Kf Km) ¢F + (Kd‘(i+.f] Kd‘.‘) (517)
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where ¢, = ¢; + ¢p. Inserting equations (5.12) and (5.16) into equation (5.17), w is
expressed as a function of the normal fracture compliance Zyr as

(1 - %) ¢r + KfZnr
(1 - %) &+ KiZnp + Kfcpc‘iqbi‘

W= (5.18)

The disadvantage of expression (5.18) is that it has too many parameters, few of
which are known in practice. However, it is possible to find approximations that
will simplify the expression for w in the limiting cases of very incompressible fluids
(K¢ — 3 GPa) or in the case of very compressible fluids (K; — 0 GPa). The
first approximation, which is reasonable for most fluids and mineral components is to
consider that 1 — K /K, ~ 1, e.g. even for a “stiff” fluid (K, =3 GPa) and a “soft”
mineral (K, = 40 GPa), 1 — K;/K;,, = 0.94.

Under the previous approximation equation (5.18) can be written as

¢r+ KiZnp

P ) 5.19
W TR (Znr + Gyt (5.19)

The previous expression can be simplified further if the reservoir fluid is a gas at low
effective pressures (K; — 0 GPa), in which case equation (5.19) yields

oF
Lo 5.20
W 5 (5.20)
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This simple expression indicates that storage capacity ratios measured from pressure-
transient tests on gas-producing wells could give estimates of the ratio of fracture
porosity to total porosity in the reservoir.

For wells producing stiff fluids, K; — 3 G Pa, stronger assumptions are required
to simplily further equation (5.19). If the fracture porosity is small compared to the
KyZnp and the fracture compliance is large compared to the compressibility of the
isotropic pores, equation {5.19) can be written as

KiZyr

e — 5.21
¥ ¢+ KfZnp (5.21)

The validity of this approximation will depend on the type of fractures and the type
of isotropic pores. For stiff spherical pores the compaction compressibility cpe; is
small enough to justify the approximaticn.

The advantage of expressions (5.20) and (5.21) is that they can be used to predict
the values of ¢r or Zyp from estimates of w, provided that ¢¢ and Ky are known.
Alternatively, equation (5.21) can be used to estimate w from seismically derived
values of Zyp. Since w is one of at least three parameters that must be estimated
from pressure-transient analysis (Appendix G), seismically derived values of «w can be
helpful to constrain the parameter inversions done by the well test engineer.

Information about the fracture density of the rock (ng) can be extracted from
equation (5.21) assuming a specific micro-structural description of the fractures. If
the fracture pores behave elastically as penny-shaped cracks, Zyp is Bakulin et al.
(2000a)

Anng

M; (1 - Annr)’ (5.22)

ZNp =

where
4

AN=3%(1_%),

(5.23)

M; is the P-wave modulus of the isotropic background rock, and Vp; and Vi; are the
P- and S-wave velocities of the isotropic background rock. Furthermore, the fracture
density (nr) is a function of the fracture porosity and the fracture aspect ratio (ap):

3¢p

4‘?1'6!;.1-

F (5.24)

Note that equations (5.21)-(5.24), make it possible to estimate the fracture density
and fracture porosity from w. However, this requires strong assumptions about the
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FIG. 5.3. w plots for different values of K; and ¢, = 0.05. Solid lines are the exact
result from equation (5.18) and dots show the approximation (5.21). (a) w vs. ZnF
(b) w vs. ng, with the fracture compliance calculated from equations (5.22) and (5.23)
assuming a calcite mineral matrix. (c) w vs. ¢r, assuming a crack aspect ratio of
0.01. Also indicated is the continuous line showing how the approximation w = ¢r/¢:
is good for low fluid bulk modulus values.
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geometry of the fractures.

Figures 5.3a-5.3c show the exact (solid lines) and approximate (dots) results of
w versus fracture compliance, fracture density and fracture porosity for a rock with a
total porosity ¢ = 0.05. The exact curves in Figure 5.3b are calculated for a calcite
mineral and spherical isotropic pores, and a fracture aspect ratio ap = 0.01 is used
in Figure 5.3c.

The approximate equation (5.21) becomes more accurate for larger values of the
fluid bulk modulus in all three plots. Figutre 5.3¢ shows that the approximation (5.20)
is better for fluids with bulk modulus less than 0.05 G Pa, indicating that well test
analysis in gas-producing fractured formations could give estimates of the ratio of
fracture porosity to total porosity.

In practice, estimating the fracture to total porosity ratio from a gas well using
equation (5.20) is the procedure with least number of assumptions. In water produc-
ing wells, estimating the fracture compliance (Zyy) involves the fewest assumptions;
w is provided by the well-test analysis, K # can be measured on flnid samples, and ¢,
can be estimated from well log porosity measurements. Calculating fracture density
requires estimates of M;, Vp; and Vy; of the background isotropic rock. Finally, esti-
mates of the fracture porosity from the water producing well requires knowledge of
all of the above parameters plus the fracture aspect ratio.

3.4  Analysis of Weyburn Field Data

As described in Chapter 1, Weyburn field is a carbonate reservoir consisting of
a 30 m interval of dolomite and limestone. There is extensive proof from production,
core, and borehole data that the reservoir is fractured. Figure 5.4 shows pressure data
acquired at one of the wells during a pressure build-up test. Since the well is mainly
a water producer (oil/water ratio = 2 %), it is ideal for applying equation {(6.21) to
calculate the normal fracture compliance from the w estimate.

Data preparation, quality control, and analysis was done using the commercial
software Saphire. The PVT data were taken from the model provided by the field
operator, and all the fluids’ information was taken from data acquired in a well 200
m away from the test well.

The inversion aigorithm gives estimates of wellbore storage (C}, skin parameter
(:5), initial pressure {p;,;), flow capacity (xrh), and w and A parameters (See Appen-
dices A and C for definitions). Figure 5.5 shows four model curves from four inversion
trials with widely different starting set of parameters. Table 1 summarizes the in-
version results for four trials and shows that the wellbore storage (C') and storage
capacity ratio (w) are the most stable estimates.

Based on the average of the storage ratios presented in Table 1 (w = 0.042), the
compressibility of a fluid mixture based on the well's water cut ( 98 % water, 2 %
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FIG. 5.4. Pressure data and derivative vs, time for the Weyburn field well. Since the
well is not producing a single fluid phase { 98% water, 2% oil) the axis is expressed in
terms of pseudo pressure [m(p)] in units of psi/cp and derivative of pseudo pressure

[m’(p)].
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Fitl | Fit2 | Fit3 | Fit4 |
C (m"/Kpa) ] 0.040 | 0.039 | 0.043 | 0.037
S -8.636 | -8.944 | -8.719 | -12.109
Pini (Pa) 23603 | 24800 [ 24000 | 29000
krh (md— ft) | 274 | 177 | 244 11
W 0.044 | 0.041 | 0.043 | 0.037
Azl 3 0.1 9 0.005

Table 5.1. Well test parameter inversion results for four trial examples,

oil at 15 GPa differential pressure) and an average formation porosity ¢, = 0.2, the
normal fracture compliance estimated from equation (5.21) is Zyp & 0.003GPa 1.
Under the assumption of penny shaped fractures and limestone isotropic background,
the estimated fracture compliance corresponds to a fracture density of ngp = 0.03.
For an average aspect ratio ap = 3z107% of fractures observed in Weyburn core
Bunge (2000}, the predicted fracture porosity is ¢p = 421075, However, the fracture
porosity estimated from Weyburn core averages ¢ ore 22 321074, which is an order
of magnitude larger than the well test estimate.

Larger values of fracture porosity are expected from the core measurements due
to the reduction in the confining stress that occurs when the core is extracted from the
subsurface. Therefore, the porosity derived from well test analysis can be considered
an in sity estimate that gives a lower bound to the possible values of fracture porosity.

The estimate of the fracture compressibility, Zyp =~ 0.003GPa"!, is likely more
reliable than the porosity estimate because of the smaller number of assumptions
required for its calculation. In this data set, the stability of the inverted w parameter
facilitates obtaining an estimate of the fracture compressibility, Znp. Alternatively,
where the storage capacity ratio is hard to obtain, Zyp estimates from seismic data
could be used to constrain the inversion of the w parameter.

5.5 Discussion and Conclusions

In elastically isotropic reservoirs the storage capacity estimated from pressure-
transient data, includes information of fluid compressibility and rock porosity aver-
aged over the radius of investigation of the well test. This information can be used
directly in Gassmann’s equation to predict the changes in the rock’s bulk compress-
ibility with saturation,

In fractured anisotropic rocks, the storage capacity ratio (w) provides infor-
mation of the fracture compliance, fracture density and fracture porosity. In gas-
producing wells in which the gas at reservoir conditions has a bulk modulus smailer
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F1G. 5.5. Best fit models for the four parameter inversions shown in Table 1. Since the
well is not producing a single fluid phase { 98% water, 2% oil) the axis is expressed in
terms of pseudo pressure (m(p)] in units of psi/cp and derivative of pseudo pressure
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than 0.05G Pa, the w parameter can be used as an approximate measure of the fracture
porosity to total porosity ratio {w =~ %-:1). If the unfractured porosity (¢;) is measured
from well log tools, the fracture porosity can be approximated from estimates of w.

If the well test experiment is done on a water saturated section of the fractured
reservoir (high fluid bulk modulus), the storage capacity ratio can be approximated by
a simple equation that is a function of the normal compliance of the fracture system
(Zwr). In this case w can be estimated from seismically derived values of the normal
fracture compliances and vice versa. If a specific model of fractures is assumed, such
as an ellipsoidal crack model, the analysis can be taken further to predict the fracture
density from the storage capacity ratio.

Even in cases where there is no idealized model that can quantitatively describe
the fracture compliances as a function of the fracture density, these two will always be
related qualitatively. In other words, a large value of the normal fracture compliance
has to be associated to a large value of the fracture density. Since the exact equation
for w indicates that large values of fracture compliance correspond to large values
of fracture density, we must conclude that the same qualitative relation will exist
between w and the fracture density. Therefore, if seismic and pressure-transient data
are analyzed simultaneously in a reservoir that behaves as an anisotropic, double
porosity rock, it should be possible to quantitatively correlate the variation in storage
capacity ratio with variation of the normal fracture compliance.
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Chapter 6

WEYBURN FIELD MULTICOMPONENT CASE
STUDY

6.1 Introduction

As described in the introduction, Weyburn field produces oil from the fractured
Mississippian carbonate rocks of the Midale beds. In 2000 the field operator, Encana,
started a recovery project in which simultaneous, but separate, water and COs injec-
tion was implemented to sweep the reservoir more efficiently and increase production.

Due to the existence of at least two fracture trends in the reservoir (Bunge, 2000},
it is necessary to quantify the variation of the fracture density and the changes in
fracture orientation because fractures are potential conduits of COz that can induce
early breaktrough at the producers. Therefore, the utility of time-lapse multicom-
ponent data is two-fold: the “baseline” survey (before CO, injection) can be used
for a static characterization of the reservoir area, whereas the “repeat” or “monitor”
survey (after a period of C'O; injection) can be used for a dynamic characterization
by monitoring changes in the elastic parameters of the rock as the fluids migrate
through the fracture network.

The data acquired by the Reservoir Characterization Project includes compres-
sional-wave (P-wave) and shear-wave (S-wave) data for both the baseline and repeat
surveys. Analysis of the P-wave data was performed by Brown (2002) and Herawati
(2001) in the post-stack domain for the baseline and repeat survey, and by Jenner
(2001) in the pre-stack domain for the baseline survey.

Brown (2002) concludes that amplitude differences between the P-wave baseline
and monitor surveys correspond to changes in the fluid saturation in the reservoir due
to the injection process. Furthermore, some of the amplitude variations seem to be
related to fluid migration through fractures that connect horizontal injectors and pro-
ducers. Jenner (2001) concluded that the azimuthal variation of the normal moveout
(NMO) velocities of P-waves was related to the azimuthal anisotropy generated by
the fractures in the reservoir interval. However, a more complete interpretation of the
elastic anisotropy of the reservoir rocks requires simultaneous analysis/interpretation
of both P- and S-waves.

When a shear-wave propagates through an elastically anisotropic medium the
phenomenon of birefringence oceurs, in which the initial wave splits into two waves
with different polarizations and different propagation velocities. The fractional dif-
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ference in travel time between the fast and slow split shear-waves is defined as the
shear-wave splitting. Assuming that a stacked S-wave section generates an acceptable
approximation of vertically propagating S-wave data, the analysis of the shear-wave
splitting and polarization can be interpreted in conjunction with the P-wave azimuthal
anisotropy to extract information about the fractured network.

Analysis of the shear-waves in the stacked domain was done before without prop-
erly accounting for the vertical and lateral variability of the shear-wave polarization
(Reasnor, 2001). The work presented in this chapter shows how the “layer stripping”
method proposed by Thomsen et al. (1999} was applied to the shear-wave data to
remove the shear-wave splitting in the overburden before analyzing the reservoir in-
terval. The analysis of shear-waves is done for both the baseline and repeat seismic
surveys in order to assess the existence of any changes in the shear-splitting with the
injection process.

After removing the influence of the overburden, areas of high shear-wave splitting
in the reservoir interval can be consistently identified both from amplitude and travel
time analyses. For both the baseline and repeat surveys, most of the time-based
shear-splitting values are greater than zero by more than one standard deviation. The
amplitude-based estimates of the shear-splitting are noisier and are usually within one
standard deviation of zero, but the distribution of large splitting zones coincides with
the travel-time derived splitting maps.

In the following sections I will start by describing the available data and the
parameters that were used to acquire and process them. Next an overview of the
layer stripping method and the polarization analysis will be presented.

8.2 Datasets and Acquisition

The seismic data were acquired over an area that includes four horizontal C'G,
injectors and several horizontal and vertical producers. Figure 6.1 indicates the well
positions and the location of the three-component VSP and a full-waveform, dipole
souic log.

The baseline and monitor surveys were acquired in October 2000 and October
2001, respectively. In order to achieve the best repeatability between data sets, the
surveys were designed with the same parameters (see Table 6.1), the only difference
being the use of surrogate vibroseis trucks in case of break-downs. The acquisition
Parameters were designed to achieve high fold and wide azimuthal distribution in the
center area that includes the four injectors.

The survey coordinate system was chosen with the inline direction approximately
parallel to the horizontal injectors at an azimuth of N46E. The three-component
geophones were oriented with the first horizontal component, H1, at N46F and the
second horizontal component, H2, at N316E. The sources vibrated in the directions
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FIG. 6.1. Survey map with location of VSP and dipole senic log.

S1 and S2 parallel to the H1 and H2 geophones respectively.

Under the assumption that the subsurface is horizontally layered and that waves
approach the surface at near-vertical angles, most of the shear-wave energy is con-
centrated in the horizontal components of the geophones. If these assumptions hold,
shear-wave analysis is reduced to the processing of four data subsets: S1H1, S1H2,
S9H1 and S9H2. Each of these subsets correspond to a source-receiver combination
e.g. the data subset SIH2 refers to the data recorded in the geophone component H2
emitted from the source component S1 (in what follows S1H1 and S2H2 are referred
to as the diagonal trace elements, whereas SIH2 and S2H1 are referred to as the
off-diagonal trace elements).

Before beginning the processing of the shear data, all sources and receivers were
mathematically rotated to a coordinate system in which the source and receiver com-
ponents S1 and H1 were oriented to N53E and the source and receiver components 52
and H2 were oriented to N323E (in what follows this will be referred to as the N53E
coordinate system). This new coordinate system was obtained from a polarization
analysis performed on the near offset VSP (Terrell, 2001).

To improve repeatability, the baseline data were reprocessed after the acquisi-
tion of the repeat survey. An important caveat, however, is that different ground
moisture conditions between acquisitions resulted in poorer coupling of the sources
and receivers in the monitor survey, which resulted in nosier estimates of the shear
splitting from the second acquisition.
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| Parameter Baseline Repeat
Source IVI TRIAX, Mertz 18, 13 | IVI TRIAX, [/O Sidewinder
Sweep (P-wave) 8-180 Hz 8-180 Hz
Sweep (S-wave) 6-80 Hz 6-80 Hz
Source Spacing 40 m or 80 m 40 m or 80 m
Source Lines 28 28
Source Line Spacing 80 m 80 m
Source Points 1386 1386
Recording System I/O System II I/O System I1
Sampling Interval 2 ms 2 ms
Receivers OYO 10 Hz, 3-component | OYO 10 Hz, 3-component
Group Spacing 40 m 40 m
Groups per Line 60 60
Receiver Lines 20 20
Receiver Line Spacing 40 m 40 m
Maximum Fold 400 (P), 140 (S) 400 (P), 140 (S)

Table 6.1. Acquisition parameters for baseline and repeat surveys,

The following basic processing steps were applied to both the baseline and repeat
data sets before the post-stack analysis:

1) Build geometry

2) Rotate all trace components to N53E

3) Surface consistent amplitude scaling

4} Spherical divergence correction (TV)?)

5) Mapping of P-S statics to S-S geometries and application

6) Velocity picking

7) Application of surface consistent statics and velocities

8) Shot domain application of Radon Filter

9) Mute

10) 2000ms AGC

11} Stack

12) Bandpass filter 5-35 Hz

6.3 Vertically Varying Shear-Splitting and Layer Stripping
of Overburden

Although the desired parameter is the shear-splitting at the reservoir level,
anisotropic intervals above the reservoir may generate splitting in the overburden



83

anisotropic
overbuiden
—--- } splitting
---J at target
target S
interval )

FIG. 6.2. Schematic representation of the detrimental effect of vertically varying
shear-splitting on the recorded traces.

that mask the birefringence that occurs in the zone of interest. The existence of
“anisotropic layers” in the overburden may result in a vertically varying shear-splitting
that has a detrimental effect on the interpretation of S-waves at the target interval.

Although it is expected that the anisotropic layers have some correlation with
geological layers, the correspondence is not necessarily one to one. The interpreter
interactively judges from the data when there is an observable change in the polar-
ization and/or splitting of the shear-waves Thomsen et al. (1999).

Figure 6.2 gives a simple example of the vertically varying shear-splitting in
which two anisotropic layers are stacked on top of each other with the lower one as
the target interval. The anisotropy in the layers is represented by sets of fractures
aligned in different directions. When the vertically propagating shear-wave enters
the top layer it splits into two waves, one polarized parallel to the fractures in that
layer and the other polarized perpendicular to the fractures. After traveling through
the top layer there is an accumulated time-lag between the split-waves due to the
different velocities in each polarization direction. When the waves enter the target
interval further splitting occurs and the same process is repeated as the waves are
reflected back towards the surface. The end result is that the multiple splittings
deteriorate the arrivals making it difficult to interpret the data.

Thomsen et al. (1099} proposed a layer stripping method to remove the influence
of the azimuthal anisotropy in the overburden from the estimates taken at the target
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interval. In this technique, each anisotropic layer is stripped from top to bottom
through the application of four steps:

1} estimate the fast shear polarization direction in the layer and mathematically
rotate the sources and receivers into the coordinate system defined by that direction

2) estimate the time lag (At#) between the slow (52H2) and fast (S1H1) trace
elements at the bottom of the layer

3) remove the azimuthal anisotropy of the layer by subtracting the time lag (At)
from the slow trace ($2H2), and by subtracting a time lag (A#/2) from the off-diagonal
traces (S1H2, S2H1)

4) equalize the amplitudes of the diagonal trace elements (S1H1, S2H2) to correct
for any differential attenuation of the two shear-modes.

This procedure is repeated for all the layers until the target interval is reached.

The estimation of the fast polarization direction in a given layer is done by
applying the Alford rotation method (Alford, 1986; Thomsen, 1988). The logic behind
this technique is that in the hypothetical case that the SI and H1 components of the
sources and receivers were aligned with the fast sheay polarization direction, all the
energy of the fast shear-mode will be concentrated in the S1H1 trace and all the energy
of the slow shear-mode will be in the S2H2 trace. Hence, finding the coordinate system
defined by the fast shear-wave polarization consists in finding the angle by which the
sources and receivers have be rotated to maximize the energy in the diagonal trace
elements, S1H1 and S2H2.

Figure 6.3 shows the effect of the Alford rotation on noise-free synthetic traces
in which the direction of the fast shear-wave polarization coincides with a rotation
angle © = 0°. When the rotation angle is © = (° (51 and H1 components aligned
with the fast-polarization direction), the energy is maximized in the diagonal traces
(S1H1 and S2H2) and minimized in the off-diagonal elements {only S1H2 is shown).
The time-lag between the fast and slow traces is indicated by the dotted lines. As
the rotation angle departs from zero, energy appears in the off-diagonal elements
indicating that the source and receiver are not aligned with the coordinate system
defined by the fast polarization direction. When the rotation angle is set to © = 90°
the energy is minimized in the ofi-diagonals again, however, because the S1 and H1
components are aligned with the slow-polarization direction the time lag between the
diagonal components is reversed with respect to the case when © = (°,

For the Weyburn field data, the polarization and layer stripping analyses were
done separately for the baseline and repeat surveys. Figures 6.4-6.7 illustrate how
the layer stripping procedure was applied showing the results for the baseline survey,
the corresponding figures for the monitor survey are not shown but the approach
was the same. The final products at the end of the post-stack shear-wave analysis
are estimates shear-splitting from travel times and amplitudes, and fast shear-wave
polarizations from travel times for both baseline and monitor surveys. Standard de-
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viations are also calculated for each of the parameters to be used in the interpretation
in the next chapter.

Figure 6.4 shows the four trace elements S1H1, S1H2, S2H1 and S2H2 for one
line of the Weyburn shear data rotated to the N53E coordinate system. The target
zone is marked by the Mississippian unconformity horizon at approximately 3050 ms,
and the reservoir is comprised by the Mississippian peak and the trough below it.

Two anisotropic layers were identified in the overburden from the time-varying
rotation analysis performed on the data. The first layer is the interval that goes
from the surface to the Viking horizon (Surface-to-Viking layer), whereas the second
anisotropic layer is the interval between the Viking and the Lower Vanguard horizon
(Viking-to-Vanguard layer) (Figure 6.4). The interval between the Lower Vanguard
and the Mississippian horizons did not present any variation in the shear-splitting or
shear-wave polarization.

The high energy visible in the cross-diagonal traces above the Viking and Lower
Vanguard horizons indicates that the N53E coordinate system is not the “natural”
coordinate system for these two layers. Note also that the change in cross-diagonal
energy below the Viking horizon is indicative of the different polarization directions
in the anisotropic layers.

Applying the layer stripping steps described above, the contribution of the ani-
sotropic intervals in the overburden was removed. Figure 6.5 shows the reduction in
the cross-diagonal energy that results after the complete layer stripping procedure is
applied to both overburden layers.

In order to realize the effect of layer stripping on the data, Figures 6.6 and 6.7
show the variation of polarization directions between the Viking and Lower Vanguard
horizons and compare the traces before and after the layer stripping procedure at each
interval. Due to the orientation of the survey grid (see Figure 6.1}, in all the maps
shown below the data are presented in the survey coordinate system, in which North
points at 46° from the x-axis.

The color map in Figure 6.6 shows the time difference between the fast and slow
shear-wave (calculated as ¢ fast — tstow) and the fast shear-wave polarization direction
(black lines), at the Viking horizon after Alford rotation. The size of the line segments
that represent the fast polarization direction are scaled by the difference ¢ fast — tstow-
Note that most of the polarization directions after Alford rotation are different from
the N53E direction, which is roughly parallel to the x-line axis in the survey coordinate
system.

The panels in the hottom of Figure 6.6 show the effect of layer stripping on
in-line 68 of the Viking Horizon. Each panel presents the four traces: SI1H1, S1H2,
S2H1 and S2H2, for every x-line shown. Before layer stripping is applied, the time
lag between the S1IH1 and S2H2 traces and energy in the cross-diagonals are clearly
visible. After layer stripping the time lag is removed, the cross-diagonal energy is
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reduced and the amplitudes of the S1H1 and S2H2 traces are balanced. If the Surface-
to-Viking layer were the only anisotropic interval in the overburden no further time
differences or energy in the cross-diagonals would occur below the Viking after layer
stripping. However, rotation analysis at the Lower Vanguard horizon revealed the
need to consider the Viking-to-Vanguard interval as an independent anisotropic layer.

Figure 6.7 shows the map of fast and slow shear-wave time differences with
polarization directions, calculated in the same way as Figure 6.6. Most of the splitting
in this interval occurs below in-line 40 and between in-lines 60 and 80. Note that at the
Lower Vanguard most of the fast shear polarization directions are perpendicular to the
x-line axis, which indicates that they are almost perpendicular to the original rotation
angle, N46E, applied to the data. The panels at the bottom of Figure 6.6 show how
the layer stripping procedure applied to the Viking-Vanguard interval minimizes the
cross-diagonal energy and balances the amplitudes between the S1H1 and S2H2 traces.
Because the interval between the Lower Vanguard and the Mississippian horizons did
not present vertical variations in the shear-splitting or shear-wave polarization, no
further layer stripping analysis was done.

6.4 Travel-Time and Amplitude Analysis at the Target Interval

After the removing the influence of the overburden, the analysis of the shear-
wave travel times and amplitudes was performed on the reservoir interval. Because of
the thinness of the reservoir, which is included in the Missippian peak and the trough
below it, travel times and amplitudes analysis provide information at different scales.
In order to observe the build-up of the time lag between the fast and slow shear-waves
it is necessary to analyze a coarse interval below the target horizon. Therefore, the
shear splitting measured from travel times most probably will include contributions
from the reservoir and the beds immediately below it. However, a more localized
estimate of the shear splitting can be obtained from the difference in amplitudes
between the different polarized shear-modes measured from reflections at the top of
the reservoir (Thomsen, 1988).

The travel time analysis to estimate the shear-wave splitting and polarizations
around the reservoir was performed in the time interval between the horizon imme-
diately above the Mississippian unconformity, a peak at approximately 3000 ms, and
the Bakken horizon, a trough located at approximately 3390ms (see Figure 6.7). This
interval was chosen for two main reasons. First, the Bakken horizon is the most con-
tinuous and easiest to pick marker below the Mississippian unconformity. Second, the
thickness of the time interval is approximately equal to the vertical resolution of the
pre-stack analysis done on the azimuthal variation of P-wave NMO (Jenner, 2001}).
Since one of the objectives of the work presented here is to integrate the post-stack
shear analysis with the pre-stack P-wave results, it is convenient to have estimates
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from both data sets that were obtained at comparable time scales.

Figures 6.8 and 6.9 show the mean estimates of the shear splitting and fast shear
polarization directions caleulated from travel times in the interval described above, for
the baseline and the monitor surveys respectively. The qualifier mean indicates that
each value shown in the maps is an average calculated from the “raw” shear-splitting
values in overlapping bins of 9 x-lines by 9 in-lines or 180 by 180 meters (maps of the
raw shear-splitting and fast shear polarization can be found in the Appendix A).

The logic behind averaging the ‘“raw” values in a bin, is that the 20 meter spacing
between Common Depth Points (CDP’s) in the data is much smaller than the size of
a Fresnel zone for the shear-waves at the target interval. If we assume that CDP’s
within a Fresnel zone sample roughly the same portion of the subsurface, we can
use the mean of the values at the CDP’s as an estimate of the shear-splitting and
the standard deviation as an estimate of the uncertainty in the measurement. This
method of calculating the estimate and its variance assumes that the uncertainty is
constant within the selected bins (van Wijk et al., 1899).

Because the survey over Weyburn field was specifically designed to have closely
spaced in-lines and x-lines, each mean and variance estimate can be calculated from
81 “raw” values. An important caveat is that the condition of locally constant un-
certainty may be violated in areas of the data in which the parameter (e.g. shear-
splitting) varies rapidly in a given direction within a bin size. Hence, it is possible
that the standard deviation may be overestimated in the perimeter of high-anisotropy
“anomalies”.

The panels at the bottom of Figures 6.8 and 6.9 show pairs of fast and slow
shear-wave traces along selected in-lines at the Bakken horizon, where the fast trace
is the one to the left of the pair. The shear splitting () can be calculated from the
difference in travel times between the fast and slow trace. Assuming weak anisotropy
%y can be written approximately as

o2 t_fm (6.1)

tsﬂow

Because the distance traveled by the both shear-modes is the same and the vertical
traveltime of each mode is the distance divided by the corresponding vertical velocity,

equation 6.1 is equivalent to

~ 1/31011.- - Vfast (6 2)

“/rfa st

where Vg, and Viest are the vertical velocities of the slow and fast shear-waves
respectively. Hence, -y is always negative and it coincides with the linearized version
of the Thomsen style parameter 4 for the case of a HTT symmetry rock (Tsvankin,
1997).

In order to give an idea of the uncertainty in the shear splitting estimates from
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travel-times, Figure 6.10 shows the shear splitting for the baseline and monitor surveys
setting to zero all values that are within one standard deviation of zero. Figure 6.11
shows a more conservative approach in which all values within two standard deviations
from zero are set to zero. From both figures one can tell that the estimates in the
baseline survey have a smaller variance, which is consistent with the observation that
the baseline data appears less noisy to the eye than the monitor survey.

Figures 6.8-6.10 suggest three different approaches for interpretation of the travel-
time results. In the most liberal interpretation (qualitative) all the features found in
the shear-splitting maps would be taken into consideration. In the two more conser-
vative interpretations only values “above” one or two standard deviations from zero
would be considered statistically significant. In the next chapter the one standard
deviation approach will be used to interpret simultaneously the travel-time derived
shear-splitting and the P-wave NMO results.

As mentioned previously, the reflectivity differences between the different polar-
ized shear modes can provide estimates of the change in shear splitting across the
reflecting interface. If Ry, and Ry represent the normal-incidence reflectivity of the
fast and slow shear-wave respectively, then

1
Ry — Ry == 3 (2 —m), (6.3)

where 1 and 73 are the shear-splitting above and below the reflecting interface respec-
tively. If the layer above the reservoir does not present split 3-waves (e.g. an isctropic
cap layer), then the difference in reflectivity can be interpreted as the shear-splitting
in the reservoir layer.

As mentioned above, the layer directly above the Mississippian unconformity did
not have significant shear-splitting in the layer-stripping analysis. This observation is
consistent with the shear-splitting calculated from the dipole-sonic log located north
of the survey area (see location in Figure 6.1). Figure 6.12 shows that with the excep-
tion of some noisy spikes there is no significant shear-splitting in the layers directly
above the Mississippian unconformity, whereas the splitting increases coherently in
the reservoir interval. Therefore, it is reasonable to assume that the shear-splitting pa-
rameter -y, above the Mississippian interface is zero. The previous assumption allows
interpreting the difference between the fast and slow reflectivity at the Mississippian
as the shear-splitting parameter in the reservoir interval.

The reflectivities Ry; and Rsp are calculated by normalizing the amplitudes
picked at the Mississippian in the S1H1 and S2H2 traces by the amplitudes picked at
the Lower Vanguard after layer stripping. This can be done because after the layer
stripping procedure is applied, the effects of propagation through the overburden are
removed and the shear amplitudes at the Lower Vanguard represent the strength of
an effective source that propagates the signal into the layers below.
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F1G. 6.10. Values of shear splitting parameter from travel times above one standard
deviation for the monitor survey (top) and repeat survey (bottom). All values of
shear splitting that are within one standard deviation of zero are set to zero.
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F1c. 6.11. Values of shear splitting parameter from travel times above two standard
deviation for the monitor survey (top) and repeat survey (bottom). All values of
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that are within two standard deviation of zero are set to zero.
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Figures 6.13 and 6.14 show the mean estimates of the shear-splitting below the
Mississippian unconformity derived from RMS amplitudes for the baseline and mon-
itor survey, respectively. The fast shear polarizations direction derived from the
travel-time analysis are also shown for references. The panels at the bottom of the
figures give examples of the difference in amplitudes between the two shear polariza-
tion directions at in-lines 45 and 80.

The mean estimates are obtained from the “raw” amplitude values using the
same procedure described for the time-based shear-splitting. Maps of the raw values
and the standard deviation calculated from them can be found in Appendix A. Note
that the values of shear-splitting derived from amplitudes are much larger than those
obtained from the travel-time analysis. However, as it can be seen from the standard
deviations shown in Appendix A, most of the amplitude-derived splitting values fall
within one standard deviation of zero and all the values are within two standard
deviations of zero for both the baseline and monitor surveys. This indicates that
even though the amplitude estimates have a better vertical resolution than their
travel-time counterparts, they are noisier and have to be interpreted within a lower
confidence threshold.

By comparing the shear-splitting estimates from travel-times and amplitudes
in the baseline survey (Figures 6.8 and 6.13), it can be seen that there is a good
correlation between the high splitting trends in both maps. Two main matching
trends can be identified between in-lines 70 and 90 in the top section of the map
and between x-lines 30 and 45 in the lower right corner of the maps. Because the
travel-time estimates are obtained at a coarser scale than the amplitude estimates,
the correlation between high splitting trends suggests that in those areas the shear-
splitting measured from travel-times results from splitting occuring in the reservoir
beds.

The correlation between high splitting values between the amplitude and travel-
time based maps is less evident for the monitor survey. In this case a rough correlation
can be observed between the high-splitting trends between in-lines 70 and 90. The
most notable change compared to the baseline survey is that the high-splitting zone
that was located in the lower right corner between x-lines 30 and 45, no longer appears
in the monitor survey amplitude map. Interpretation of the time-lapse variations of
the shear-splitting maps will be done in the next chapter.
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Chapter 7

INTERPRETATION OF WEYBURN FIELD DATA

7.1 Introduction

As described in the introduction, Weyburn field is a fractured Mississippian
carbonate reservoir that has undergone an enhanced recovery process in which water
and CO, are injected to improve oil production. There is extensive proof that the
reservoir is fractured and that there are at least two different fracture trends that can
influence fluid migration in the reservoir (Bunge, 2000). It is imp ortant to characterize
the fracture trends because the objective of the C O, injection is to sweep zones of by-
passed oil in the reservoir. If the €O, encounters fractured zones that provide a direct
pathway to the producers the injection process will lose efficiency because instead of
sweeping the oil the CO; will just be recycled between injectors and producers.

In this Chapter several of the concepts that were introduced in Chapters 3 and
4 will be applied to the characterization from seismic data of the fractured network
of Weyburn Field. The first part of the interpretation consists of the analysis of the
baseline seismic survey (before CO2 injection) whereas the second part integrates the
time-lapse information from differences observed between the baseline and monitor
seismic surveys, and from changes in the production rates.

7.2 Baseline Analysis

The characterization of the baseline survey is centered on the analyses of the
polarizations and splitting of shear-waves estimated from travel times, and the az-
imuthal variation of the normal moveout (N MO) velocities of P-waves for the baseline
survey. The processing of the S-waves and the method to obtain polarizations and
shear splitting is described in Chapter 7, whereas the processing of the P-waves and
the method to obtain the azimuthal variation of the P-wave NMO velocities can be
found in Jenner (2001).

The estimates of shear splitting and NMO velocities from the P- and S-wave data
are caleulated over a vertical section that includes the reservoir, spanning from the
reflection immediately above the Mississippian unconformity to the Bakken horizon.
Due to the thinness of the reservoir interval, the estimates are also influenced by the
carbonate and clastic sections below the reservoir. Hence, the interpretation is done
assuming that the anisotropy in the reservoir makes a measurable contribution to the
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average anisotropy measured over the whole interval.

Although in general the azimuthal variation NMO velocities may result from
dipping reflectors, Jenner (2000) has established that the azimuthal variation around
the reservoir interval at Weyburn field is due to the azimuthal anisotropy of the rocks.
Hence, Jenner’s results will be interpreted solely in the context of anisotropic rock
models, and the presence of P-wave NMO or S-wave splitting will be considered a
proxy for elastic anisotropy.

The baseline analysis presented below is based on a model-driven classification
of the anisotropic parameters estimated from the seismic data. The procedure is to
calculate the range of physically plausible anisotropic parameters for several fracture
models that are consistent with the fracture orientations found on oriented core and
borehole imager data. Then, different regions of the survey area are identified with g
fracture model depending on whether the anisotropic parameters estimated from the
seismic data are consistent with the ranges predicted by each model.

Bakulin et al. (2000a,b,c) have developed procedures to predict the ranges of
possible anisotropic parameters for several fractured rock models including: a single
set of aligned vertical fractures, two orthogonal sets fractures and two sets of non-
orthogonal fractures . These models are of relevance to the Weyburn study because
core and borehole imager data reveal that the fractures are near vertical and may
have several different azimuths throughout the reservoir.

The complexity of a fracture model increases with the number of fracture sets
and as the rheology of the fractures requires more parameters to describe their elastic
behavior. The simplest fracture type is that of a rotationally invariant crack which
is described by only two parameters, the normal compliance (Zn) and tangential
compliance (Zr)(see Chapter 3). If we assume that the fractures at Weyburn field are
rotationally invariant, it is possible to generate several models of increasing complexity
that are consistent with the fracture orientations found on core and borehole imager
data.

Figure 7.1 shows the fracture counts and orientations from borehole imagers
on two horizontal wells (EM1-1 and EMIL-2), and from one core extracted from a
vertical well. The red lines on the EM1-1 and EMI-2 plots indicate the azimuth of
the horizontal well along which the measurements were done. The fracture count is
low in the direction of the wellbore azimuth because it is difficult to intersect fractures
that trend parallel to the horizontal well.

Figure 7.1 suggests there may be up to three fracture sets present in the reservoir
interval. However, because the vertical core measurements only show two fracture
trends and the borehole imager counts are taken over the total length of the horizontal
well, the question remains of whether the three fracture sets are co-located everywhere
or if there are fewer sets that change orientation through the reservoir. To maintain
all possibilities open, models with one, two and three vertical fracture sets will be
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Fic. 7.1. Rose plots indicating fracture orientations in the reservoir interval from
horizontal borehole imager data (EMI-1 and EMI-2) and oriented core data. The red
lines one the EMI-1 and EMI-2 plots indicate the azimuths of the horizontal boreholes

considered below.

Figure 7.2 shows the basemap of the survey area indicating the location of the
injectors (black) and producers (red), and illustrates the importance of identifying
the number of co-located fracture sets and their orientation. The sets defined as the
“off-trend” in Figure 7.2 are aligned in the direction that “connects”’ the injectors
with the producers. If the injected CO, front encounters “off-trend” fracture sets,
early breakthrough of COp may occur resulting in a less efficient sweep of the zone
between injectors and producers.

721 Estimates from P- and S-wave data

Figures 7.3 and 7.4 show estimates of the shear-wave splitting and the fractional
difference between the fast and slow P-wave NMO velocities. The maps are rotated
into the survey coordinate system with north pointing 45 degrees from the x-line axis,
and the location of the injector and producer wells is indicated in black and red colors
respectively.

The bottom plot in each figure indicates with black arrows the orientation of
the fast shear-wave polarization and the fast P-NMO azimuth. From the shear-wave
estimates is obvious that most of the fast shear-wave polarizations point in the off-
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FIG. 7.2. Map of the survey area indicating location of injectors {black) and producers
(ted). The arrows in the rose plot indicate the fracture orientations from oriented
core and borehole imager data.

trend direction defined in Figure 7.2, and the same applies to the fast NMO azimuth
in the zones above in-line 70 and below x-line 40. However, in the lower section of
the survey between inlines 30 and 90, the fast shear polarization and the fast NMO
azimuth may differ by as much as 45°.

Figure 7.5 shows a map of the differences between the fast P-NMO azimuth {(Bp)
and the fast shear polarization (IT). The fast P-NMO and fast shear polarization
directions are considered identical in the areas that have been set to zero (dark blue),
which correspond to values of |Bp — | that are smaller than the estimated standard
deviation in the difference. In the areas in which the difference |3p — | is significant,
the orientation of the P-NMO fast azimuth is indicated by line segments and the fas
S-wave polarization orientation is indicated by arrows. The red areas, in which the
orientation difference is close to 90°, are not significant because they correspond to
low anisotropy zones in both the P-wave NMO and S-wave splitting maps.

The differences in the alignment of the S-wave polarizations and fast P-NMO
ellipse suggest that the fracture network in the lower section may be different from
the rest of the survey area. As it was shown in Chapter 4, rocks with monoclinic
or lower symmetry may have NMO ellipses that are rotated with respect to the
directions of the fast shear-wave polarization. Because zocks with higher symmetry
(non-tilted ortherhombic and HTI) will have NMO ellipses that will match the fast-
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Fic. 7.3. Top: Shear splitting and fast polarization direction estimates at every
CDP. Bottom: splitting values above one standard deviation from zero with average
polarization directions indicated by large black arrows.
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FIc. 7.5. Differences above one standard deviation between the fast P-NMO azimuth
(Bp) and the fast shear polarization (1) in degrees. Areas in dark blue have been
zeroed because they are within one standard deviation of zero. In areas where |Gp—1I]
is significant the orientation of the P-NMO fast azimuth and fast S-wave polarization
are indicated by line segments and arrows respectively.
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shear polarization direction, we can infer that a more complex fracture model is
required to explain the data in the lower portion of the survey. The next three
subsections will introduce models of increasing complexity to explain the different
features observed in the P- and S-wave data.

7.2.2 Interpretation under the HTI synimetry assumption

The model of a single set of rotationally invariant fractures it an isotropic back-
ground results in a rock with HTI (transversely isotropic with a horizontal symmetry
axis) symmetry (see Chapter 3). Using the linear-slip theory, the elastic compliance
matrix (8) of the HTI fractured rock can be written as shown in equation (3.8).
Inverting the compliance matrix, the stiffness matrix can be obtained as:

M(1—-4yx) Ml-Ap) All—Ay) 0 0 0
AMl=-Ax) M(1-2AN) M- Axy) 0 0 0
C= AMl—-Ax) AM1-IAn) M1 ~2AN) © 0 0
0 0 0 G 0 0 ’
0 0 0 0 G(1-A4A7) 0
0 0 0 0 0 G(1 - Ar)

where M = A+2G, 1 = A/M, and ) and G are the Lamé parameter and shear modulus
of the isotropic background rock, respectively (Schoenberg and Sayers, 1995). The
parameters Ay and Ag are defined as

ZnM

d 4G
T

< =—— <1 7.2

0<Aar 1+ Z7G ’ ( )

where Zy and Zr are the normal and tangential compliances defined in Chapter 3.

The parameters Ay and Ag are the normal and tangential weakness of the
fracture system (respectively), and represent a reduction in the stiffness of the rock
due to the presence of the fractures. If there are no fractures in the rock (Zy =
Zr = 0} the weaknesses (7.1) and (3.7) are zero. If the rock is infinitely fractured
(Zn, Zr — 00), the weaknesses tend towards unity.

Using the linear slip parameterization of the stiffness matrix, Bakulin et al.
(2000a) obtained the exact expressions for the anisotropic parameters of the HTI
rock as a function of the fracture weaknesses (7.1) and (3.7). In the limit of weak
anisotropy, the expressions for the anisotropic parameters take the linearized forms:

V) = —25(1 - g)Ay, (7.3)
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§V) = —2g[(1 - 29)An + A7, (7.4)
and A
) = —7’*", (7.5)

where g = V2/VZ is the ratio of the squared S- and P-wave velocities in the isotropic
background (the “anellipticity” parameter 7"’ has also been defined for HTI rocks
by Tsvankin (1997b}, however, it will not be used in this Chapter).

The linearized " parameter can be estimated from the difference of the fast
and slow velocities of vertically propagating S-waves as

Vs!ow fast

V)8 "S5

whereas the linearized parameter 8 can be obtained from the difference of the fast
and slow NMO velocity directions as

stmv fast

V) . | Pnme Prmo
§V) = T : (7.7)

Pnmo

The advantage of expressions (7.3)-(7.5) (and the equivalent for arbitrary strength
anisotropy) is that they provide a way of calculating the range of possible values of
the anisotropic parameters based on the physically realizable ranges of Ay, A7 and
Vp/Vs. Furthermore, from equations (7.3)-(7.5) it is straightforward to prove that in
the weak anisotropy limit the anisotropic parameters are related by the constraint:

1 1—2g
v L svi_ v 78
! 4g (6 ‘ 1—9) 8

The previous constraint indicates that if this fracture model is adequate for the Wey-
burn reservoir rocks and an estimate of Vp/Vs is available, the V) parameter can
be calculated from the v¥) parameter, estimated from the split shear-waves, and the
&) parameter, estimated from the P-wave NMO ellipse.

Figure 7.6 shows the range of physically possible HTI anisotropic parameters
(black dots) overlain by the corresponding parameters estimated from the P-wave
NMO and vertical S-wave velocities of Weyburn data (colored circles). The red circles
in the 1) — 8 plane are values of +{) and 5™ taken directly from the maps in
Figures 7.3 and 7.4, respectively (all selected values are above one standard deviation
from zero). The colored circles in the e? — §("’ plane are obtained by calculating
V) from the 4(*) and &) estimates using equation (7.8). The cyan circles are the
values of V) calculated assuming Vp/Vis = 2.58, and the blue and green circles result
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FIG. 7.6. Possible ranges of HTI models (black dots) overlain by the parameters
estimated from the P-wave NMO and S-wave velocities of Weyburn data. Red circles
in the ») — §V) plane are taken directly from the maps of shear splitting and
fractional difference between fast and slow P-NMO velocity. The cyan, blue and green
circles in the ¢") — §) correspond to values of ¢/V) calculated from equation (7.8)
assuming Vp/Vg = 2.58, Vp/Vs = 2.00 and Vp/Vs = 1.69, respectively.

from calculating €") assuming Vp/Vs = 2.00 and Vp/Vs = 1.69, respectively.

The black dots in Figure 7.8 are 200,000 realizations of V), 8V and V) result-
ing from uncorrelated, random draws of A N, &r and Vp/Vs. Each combination of the
fracture weaknesses and the Vp ~ Vs ratio is drawn from the ranges: 0 < Ay < 0.1,
0 <Ay <1land 15 < Vp/Vs < 2.9, and then substituted into the expressions for
arbitrary anisotropy strength to caleulate the anisotropic parameters. It is important
to note that although Chapter 3 proves that the use of the linear slip parameterization
some times results in errors when predicting the changes of the anisotropic parame-
ters with saturation, it can still be used to predict the coarse bounds of possible HTI
models.

The significance of Figure 7.6 is that it shows there are a large number of points
in the data that do not fall within the bounds of possible HTI models. This should be
expected because the non-HTI consistent zones in the survey area, in which the fast
S-wave polarization the fast P-NMQ azimuth do not coincide, have been included
in the plots. Figure 7.7 shows that if all the points from zones with different fast
P-NMO azimuth and S-wave polarization are removed, the points outside the HTI
range decreases.

To estimate the spatial distribution of HTI-consistent zones, the survey area
location of those points that fall within the bounds of feasible HTI models s plotted
in red in the map shown in Figure 7.8. Hence, within the HTI context it can be
interpreted that the zones marked in red there is a single set of fractures oriented in
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Fic. 7.7. /%) — §¥) and ") — 6t planes calculated under the same conditions as
Figure 7.6, but removing points in which the fast 5-wave polarization the fast P-NMO
azimuth do not coincide.

the off-trend direction. Figure 7.9 shows how two of the fracture trends observed in
the borehole imager and core data trend nearly parallel to the fast-shear polarization
direction in the HTI-consistent zones indicated in Figure 7.8. The red trend is the
one that best matches the fast-polarization direction and would be the best candidate
to model the data using the HTT assumption.

7.2.3 Interpretation under the orthorhombic symmetry assumption

After considering the case of a single set of aligned fractures, this section inves-
tigates which zones in the reservoir area are consistent with orthorhombic symmetry
models that contain more than one of fracture set. The procedure to characterize the
orthorhombic zones will be the same as the one applied for the HTI case. However,
a larger number of anisotropic parameters have to be calculated to estimate all the
feasible fracture models.

In the orthorhombic models considered here, the rock is composed of two or-
thogonal sets of rotationally invariant fractures embedded in an elastically isotropic
background. Because the fractures are vertical the model is assumed to be non-tilted
orthorhombic.

Tsvankin (1997a) introduced a parameterization for orthorhombic media that
includes seven anisotropic parameters. For the specific case of a rock composed of
two orthogonal fracture sets, Bakulin et al. {2000b) obtained the exact expressions
for the Tsvankin parameters as a function of the fracture weaknesses of set “1(
Ant, Ar) and set “2” (Ayz, Are). In the limit of weak anisotropy, the anisotropic
parameters that control wave propagation in the vertical plane orthogonal to set “2”
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F1G. 7.8. Top: Weyburn data-derived values of "), §(V) and v(¥) that fall within the
range of possible HTT models. ¢{V? is estimated from Vp/Vs values measured from
vertical P- and S-wave travel times. Bottom: Survey map indicating HTI-consistent
zones in red.
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Fia. 7.9. Orientations of hypothetical single sets of fractures (arrows) that are con-
sistent with the some of the fracture orientations observed on cores and borehole
imagers. The bottom rose plots compare the orientation of the blue and red fracture
sets with the fast-shear polarization direction in the HTI-consistent zones.
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are
V) = —2¢(1 — g)Aps, (7.9)
80 = —2g[(1 — 29)Ans + Ars), (7.10)
and
y0 = —%T—?, (7.11)

where g = V&/VZ is the ratio of the squared S- and P-wave velocities in the isotropic
background. In the vertical plane orthogonal to set “1” the anisotropic parameters
are:

€? = —29(1 — g) A, (7.12)
8 = —29[(1 - 29)Ap; + A, (7.13)

and
1@ = 50 (7.14)

The seventh parameter () is defined in the horizontal plane and will not be used
in the analysis presented below.

For weak anisotropy, the difference between the v and 41) parameter is equal
to the shear-wave splitting parameter at vertical incidence (Tsvankin, 2001), and can
be estimated from the S-wave velocities as

yslow _ fast

TN PR i/ (7.15)
Vs

The difference 6 — 51 can be obtained from the difference of the fast and slow

NMO velocity directions as

slow __ yrfast
5(2) _ 5(1) " VP,nmo P,nmo' (7.16)
Virio + Vimo

From equations (7.9)-(7.14} it is straightforward to prove that in the weak
anisotropy limit the six anisotropic parameters presented above are related by the
constraint (Bakulin et al., 2000a):

1

@) _ 0 _
¥ ¥ 1g

[(5{2} ) (@ — () 11;_25] . (7.17)

Hence, the difference ¢ —€(!) can be calculated from the values of v — 4 estimated
from the split shear-waves, and from the values of §® — §(1) estimated from the P-
wave NMO ellipse. With equations (7.9)-(7.14) it is possible to calculate the range of
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FIG. 7.10. Possible ranges of orthorhombic models (black dots) overlain by the param-
eters estimated from the P-wave NMO and S-wave velocities of Weyburn data. Red
circles in the “y — §” plane are taken directly from the shear splitting and fractional
difference between fast and slow P-NMO velocity. The cyan, blue and green circles
in the “e— 6" plane correspond to values of € — ! calculated from equation (7.17)
assuming Vp/Vs = 2.58, Vp/Vs = 2.00 and Vp/Vs = 1.69, respectively.

feasible orthorhombic parameters and compare them with the predictions obtained
from the seismic data in the same way that was done for the HTT model above.
Figure 7.10 shows the range of physically possible orthorhombic anisotropic pa-
rameters {black dots) overlain by the corresponding parameters estimated from the
P-wave NMO and vertical S-wave velocities (colored circles). The cyan, blue and
green circles in the “c — §” plane correspond to values of € — ¢ calculated with
equation (7.8) assuming Vp/Vs = 2.58, Vp/Vs = 2.00 and Vp/Vs = 1.69, respectively.

Note that Figure 7.10 has a larger model space than the HTI case due to the larger
number of degrees of freedom in the orthorhombic model. The lower left quadrant
in the “y — 8" and “e — &” planes represents the region in which the fracture set “1”
(with weaknesses Ay and Ary) dominates over fracture set “2”. In the Weyburn
data set the dominant fracture set is the one oriented in the off-trend direction that
connects the injectors and producers.

The top part of Figure 7.11 shows plots calculated with the Vp /Vs values mea-
sured from vertical P- and S-wave travel times, and after removing all points in which
the fast P-NMO and S-wave polarization direction do not coincide. The map in the
bottom part of Figure 7.11 shows in red color the regions in the survey area that are
consistent with the orthorhombic assumption. Note that the “orthorhombic map”
contains all the HTI zones presented in Figure 7.8. This should be expected since
the HTI model is a special orthorhombic case in which the weaknesses of one of the
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FI1G. 7.12. Orientations of fracture sets (arrows) that are consistent with observations
on cores and borehole imagers and that could result in an orthorhombic symmetry
rock. The sets with red arrows are assumed to have identical fracture densities and
compliances.

fracture sets are set to zero.

Figure 7.12 shows how the fracture orientations observed from core and borehole
imager data can be consistent with the orthorhombic symmetry assumption. If the
fractures shown in red are rotationally invariant and have the same fracture density
and compliances, they will behave as an average fracture set in the off-trend direction
and the rock will have orthorhombic symmetry with a vertical symmetry plane that
bisects the two red fracture sets. Adding a perpendicular fracture set (black) will not
change the symmetry of the rock further. Hence, the model shown in figure 7.12 is
indistinguishable from two orthogonal fracture sets. The direction of the fast S-wave
polarization and fast P-NMO velocity will be determined by the dominant fracture
set shown in red.

7.2.4 Considerations about symmetries lower than orthorhombic

As it was shown in Chapter 4 two or more sets of rotationally invariant fractures
that are not perpendicular to each other and have different fracture compliances, will
result in a rock with a symmetry lower than orthorhombic. If all the fractures are
rotationally invariant and vertical, a horizontal symmetry plane will always exist for
any number of fracture sets, and the model will have monoclinic symmetry. However,
a complete characterization of the rock’s elastic parameters from seismic data is not
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possible for more than two vertical fracture sets (Grechka and Tsvankin, 2002).

Despite the complexity of models with two or more fracture sets, they can explain
the different orientations of the fast S-wave polarization and fast P-NMO azimuth ob-
served in the lower section of the survey. Grechka et al. (2000) have introduced a
parameterization for monoclinic media with a horizontal symmetry plane that ex-
tends Tsvankin's orthorhombic parameterization. The monoclinic parameterization
is convenient because it preserves the parameters defined in equations (7.9)-(7.14)
and adds three more anisotropic parameters: (¢, ¢® and ¢*®, which are responsible
for the rotation of the Si-, S5- and P-wave NMO ellipses with respect to the fast
shear polarization direction.

In the weak anisotropy approximation, the angle of the semi-axes of the P-NMO
ellipse with respect to the S-wave polarization directions is given by:

2¢ 3

where 6 and 6 are defined in the same way as in the orthorhombic parameteri-
zation. Hence, for orthorhombic and HTI symmetries, in which ¢® = 0, the NMO
ellipse coincides with the S-wave polarization directions as stated previously.

The Figures 4.10-4.12 presented in Chapter 4 showed the rotation angle of the
NMO ellipses for the S)-, S3- and P-wave modes, for a rock model with two sets
of non-orthogonal, vertical penny-shaped cracks. The modeling was done for a fluid
saturated rock under conditions of equilibrated pore pressures, for several lithologies,
different values of isotropic porosity, different angles of separation between fracture
sets, and different ratios of the crack densities of the two sets. Since in all cases the
value of 3p was less than two degrees, the modeling suggests that the large differences
between fast P-NMO and S-wave polarization directions observed on Weyburn data
(Figure 7.5), cannot be explained with two sets of rotationally invariant fractures
under conditions of equilibrated pore pressures.

Larger differences between the fast P-NMO and S-wave polarization directions
can be obtained considering all the possible combinations of the normal and tangential
weaknesses, as it was done previously for the HT1 and orthorhombic cases. Figure 7.13
shows the results of using the linearized expressions of ¥, §) and 6 as a function of
the fracture weaknesses (Bakulin et al., 2000c), to model the fast S-wave polarization
and P-NMO directions for a rock model with two fracture sets with 60° of separation.
The plot shows the polarizations (red line) and fast P-NMO azimuths (black dots)
measured with respect to the dominant fracture set (set 1) as a function of the ratio
of the tangential compliances, Zry/Zrs.

The fast shear polarization tends rapidly towards the more compliant fracture
set (set 1) as Zp)/Zry increases. Most of the models with Zy, /Zxn2 > 1, lie above the
white dotted line and have fast P-NMO directions that tend towards the dominant
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Fig. 7.13. Plot of modeled fast S-wave polarization (red line) and fast P-NMO
azimuths (black dots) measured with respect to the dominant fracture set (set 1}, as
a function of Zry/Zre.

fracture direction as Z7y/Zr2 increases. The large number of models below the dotted
line correspond to cases in which Zy;/Zne < 1. These models, however, may not be
physically realizable when the tangential fracture compliance of the first set is much
larger than the second set (Zr1/Z72 >> 1).

Note that when the two fracture sets have equal tangential compliances (Zr1/412 =
1) the fast S-wave polarization bisects the angle between the two fractures. If the nor-
mal compliances are also equal, the rock becomes orthorhombic and the fast P-NMO
azimuth is no longer rotated with respect to the shear polarization directions. Hence,
as mentioned above in the “orthorhombic section”, the two non-orthogonal fracture
sets can be reconciled with observations in the upper part of the survey assuming
equal normal and tangential comphiances of the fracture sets.

The relevance of Figure 7.13 for interpreting Weyburn data is that it shows that
most of the models with Zp;/Zr2 > 1 and Zn1/Zn2 > 1 (above the dotted line} have
S-wave polarization directions and fast P-NMO azimuths that lie between the strikes
of the two fracture sets where the angle between them is less than 90°. Only models
with Zy1/Zn2 < 1, which are probably the less realizable, allow the fast P-NMO and
fast shear polarization to fall on opposite sides of the dominant fracture set.

Based on the results from Figure 7.13, Figure 7.14 compares, by pairs, the ori-
entations of the fracture sets observed in core and borhole imager data (arrows) with
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FIG. 7.14. Rose plots of S-wave polarization (red) and P-NMO azimuth (blue).

the fast S-wave polarization (red) and P-NMO azimuth (blue) in the zones where they
are not parallel. In none of the three combinations do the fast S-wave polarization
and P-NMO azimuth fall within the fracture strikes where the angle between them
18 less than 90°. Combination (C) is consistent with the data if one assumes one of
the models in which the fast polarization and the P-NMO azimuth fall on opposite
sides of a dominant fracture set (dashed arrow). However, the question remains if
such models are realizable.

The results for two non-orthogonal fracture sets presented so far suggest that,
with the exception of model (C) in Figure 7.14, it is necessary to include a third
rotationally invariant set or consider a more complex fracture rheology to explain the
zones in which the fast S-wave polarization does not match the fast P-NMO azimuth.
Instead of attempting to parameterize a more complicated model we can interpret,
by exclusion of the simpler models, that the zones in the lower section of the survey
area correspond to three rotationally invariant fracture sets or a smaller number of
sets that have a more complex rheology.

Grechka et al. (2001) have shown that a single set of fractures with the most
general rheology according to linear slip theory, in general may induce differences in
the fast P-NMO azimuth and the fast shear polarization. These fractures are more
complicated than the “monoclinic” micro-corrugated fractures described in Chapter 4,
because their micro-structure couples vertical stresses to both normal and horizontal
displacements,

The theory developed in Chapter 4 proved that fractures with microstructure
that couples normal and vertical displacements will induce changes with saturation
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in the splitting of vertically propagating S-waves. Therefore, the shear-wave time
lapse analysis presented below can be used to constrain the fracture types found in
the reservoir.

7.3 Shear-wave Time-lapse Analysis

The C'O, injection processes performed at Weyburn field provides an excellent
opportunity to apply the concepts developed in Chapter 4 regarding the variations
of shear splitting with fluid saturation. Furthermore, because the fluid sensitivity
of the shear-waves depends on the symmetry of the fractured rock, knowing which
areas present fluid-sensitive shear-waves can help constrain the fracture types in the
Teservoir.

As shown in Chapter 7, estimates of the shear-wave splitting were performed from
both travel-times and amplitudes. Because the travel-time estimates were obtained
from a coarse vertical interval that is at least 10 times the thickness of the reservoir
it is not possible to analyze the influence of the changes in saturation in the reservoir
on the travel-time derived shear splitting. However, the amplitude estimates may be
used because they sample changes in the shear splitting at the interface between the
reservoir and the overburden.

As can be seen from Figures I.1-1.4, the monitor survey is noisier than the base-
line. In order to assess the significance of any variations observed in the time-lapse
experiment two measures of uncertainty were used. First, time-lapse variations in the
amplitude of the reflectors in the overburden (where no changes should occur) were
taken as a lower bound on the “background” noise level above which any changes
must be interpreted. Second, the standard deviation of the shear-splitting estimated
on each survey was used to calculate the standard deviation of the difference in the
shear splitting, Ymonitor — Ybasetine- L he latter estimate was almost always the largest
of the two uncertainty measures, and was the one used to guide the interpretation of
the time-lapse variations.

When the chosen standard deviation was compared to the magnitude of the
“anomalies”, it was found that all time-lapse variations in the shear splitting were
smaller than one standard deviation in the difference. Had no other information about
the injection process been available, it would have not macde much sense to interpret
the time-lapse data below the uncertainty level. However, data from production rates
suggested that the lower section of the survey, which was interpreted earlier as the
zone with lowest symmetry, was subject to an extensive fluid substitution process.
This motivated the analysis of the largest anomalies in the shear splitting difference
map to corroborate any correlation with zones in which large volumes of CO; were
injected.

The top plot in Figure 7.15 shows the water (blue) and oil (green) production

T




124

rates at four horizontal producers in a three year period including the CO, injection
interval that started on October 2000. The bold lines in each graph indicate the times
of the baseline and monitor surveys. Note that the two producers in the lower part
of the survey show a sharp increase in the oil production at mid year 2001, which
indicates that the CO, is sweeping oil into the wells. In contrast, the horizontal wells
in the upper part of the survey show no response at all.

The bottom map in Figure 7.15 shows the change in shear splitting calculated
as {monitor-baseline). All values smaller than half a standard deviation are set to
zero and not interpreted (cyan colored). Notice that the largest and more continuous
anomalies are located in the lower part of the survey and correlate with the zones in
which the S-wave polarization and fast P-NMQ azimuth do not match. Furthermore,
Figure 7.16 indicates that the largest volume of C'O; has been injected into the lower
portion of the survey.

If the zones with shear splitting time-lapse variation are interpreted as resulting
from a fluid substitution processes, then Figure 7.15 suggests that the increase in oil
production in the two horizontal wells is due to the migration of the CO, along the
off-trend fracture direction. This interpretation is consistent with the observations
done by Brown (2002) and Herawati (2001) on the P-wave volumes, in which time-
lapse amplitude anomalies suggest a connection between the lower horizontal injectors
and producers that show increased production (Figure 7.17).

‘The theory developed in Chapter 4 predicted that a single set of “monoclinic”
fractures would be enough to induce an increase in the shear splitting when the com-
pressibility of the saturating fluid increases. Because we know from the production
data that the zones in the lower part of the survey have been saturated with C Oy, we
can assume that the fluid substitution process has reduced the compressibility of the
effective fluid mixture in the zone where the large splitting anomalies are observed in
Figure 7.15. Because the splitting parameter was defined as negative, and the time-
lapse map was calculated as monitor - baseline, the mechanism described in Chapter
4 predicts that negative anomalies should occur in the map shown in figure 7.15.
Two of the largest anomalies in the map, located near x-line 100 and x-line 75 have
a negative sign, whereas the anomaly located near x-line 40 has a positive sign.

‘The anomalies with negative sign are consistent with the mechanism of the “mon-
oclinic” fracture described in Chapter 4, since the reflectivity of the $; mode remains
largely unchanged while the S, amplitude decreases. However, the time-lapse change
in the zone near x-line 40 cannot be explained by the “monoclinic” model.

Duranti (2001) also reported shear splitting values that decreased after an injec-
tion process due to an increase of the Sy velocity. Duranti speculated that a pressure
decrease in that zone would result in fracture closure and reduction of the anisotropy.
However, the anomaly near x-line 40 at Weyburn field is too close to the injector to
assume that a pressure decrease may be responsible for the sign of the anomaly.
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Fi1G. 7.15. Top: Water (blue) and oil (green) production at four horizontal wells in
a three year period. The bold lines in each plot indicate the times of the baseline
and repeat. Bottom: time-lapse change in the amplitude-derived shear splitting,
calculated as Repeat-Baseline. Zones in cyan correspond to changes that are below
half a standard deviation on the difference. Arrows and line segments indicate the fast
S-wave polarization and fast P-NMO azimuth, respectively.
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F1G. 7.17. P-wave amplitude time-lapse anomalies from Herawati (2001).
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Due to the three possible fracture sets present at Weyburn, adding more struc-
ture to the model by complicating at will the rheology of the fractures allows enough
free parameters to match the sign of any anomaly, following the modeling process
described in Chapter 4. In order to avoid over-interpreting the data, the most con-
servative interpretation is to recognize that the zones with largest anomalies in the
S.wave time-lapse analysis coincide with the areas that in the baseline analysis could
not be explained using HTT or orthorhombic symmetry models. This observation is
consistent with the predictions of Brown and Korringa's theory that the symmetry of
the rock has to be lower than orthorhombic or should at least have tilted symmetry
planes to have fluid-sensitive shear-waves.

It is important to note that the monoclinic model resulting from two, three or
more vertical non-orthogonal, rotationally invariant fractures, does not allow fluid-
sensitive shear-waves (see Chapter 4). This results from the fact that such a model
has a horizontal symmetry plane that does not allow the fracture-normal to vertical
coupling necessary to have fluid-dependent shear compliances. On the other hand,
a single set of “monoclinie” fractures will explain the S-wave splitting changes with
saturation, but it cannot explain the difference between the fast P-NMO and the
S-wave polarization direction because the model has a vertical symmetry plane that
coincides with both orientations. Therefore, when all the evidence from the baseline
and time-lapse analysis is merged, I conclude that the simplest models that is con-
sistent with the data in the lower section of the survey is two sets of “monoclinic”
fractures or one set of the “general” fractures introduced by Grechka et al. (2001).

7.4 Discussion and Conclusions

The work presented in this chapter has provided a semi-quantitative interpreta-
tion of the post-stack S-waves and pre-stack P-waves acquired over Weyburn field.
The interpretation is based on a model-driven classification of the estimates obtained
from the seismic data aided by information from borehole imagers, cores and produc-
tion data.

The analysis shows that the HTI model of a single set of fractures is consistent
with only a portion of the data mostly located in the upper section of the survey
above in-line 70. The zones consistent with orthorhombic fracture models are also
constrained mostly to the upper section of the survey and include all the HTT areas
as special cases of orthorhombic symmetry. Based on the evidence of three possi-
ble fracture sets, the preferred model for the orthorhombic areas is one with three
rotationally invariant fractures in which the two off-trend fracture sets have equal
compliances (see Figure 7.12). This model would be indistinguishable from the sim-
pler case of two orthogonal fracture sets with the off-trend set being the dominant
one.
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F1a. 7.18. Survey area classification indicating the location of the salt dissolution
edge interpreted by Reasnor (2001) at the Prairie Evaporite.

Most of the zones in the lower portion of the survey show evidence that the rocks
are elastically more complex than in the upper survey area. The existence of time-
lapse variations in the shear splitting suggests the rheology of the fractures is more
complicated than that of rotationally invariant fractures. Furthermore, the correlation
of the time-lapse anomalies with areas that are not orthorhombic-consistent gives
support. to the theoretical prediction that the shear-wave sensitivity to fluids is tied
to lower-than-orthorhombic symmetry models.

Based on the available data, a classification of the reservoir in the survey area
can be done as shown in Figure 7.18. Reasnor (2001) has provided evidence that salt
dissolution has occured below the reservoir, at the Devonian age Prairie Evaporite.
The edge of the salt dissolution zone interpreted by Reasnor on the P-wave data is
overlain in the classification map shown in Figure 7.18, where the salt-withdrawal
area is located south of the salt-dissolution edge.

Notice that the “low”-symmetry areas coincide with the zones of salt withdrawal,
whereas the orthorhombic area coincides with areas where salt remains in the Prairie
Evaporite. This correlation suggests that the salt withdrawal modified the stress
state in reservoir, resulting in different fracturing regimes south and north of the salt
dissolution edge.
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Chapter 8

SUMMARY AND RECOMMENDATIONS

8.1 Summary

This thesis has addressed several theoretical and applied topics on the character-
ization of fractured reservoirs, On the theoretical side I have presented work on fluid
substitution theories and on the integration of pressure-transient experiments into
seismic reservoir characterization. The lessons from the fluid substitution theories
have been applied to the characterization from seismic of the fractured reservoir at
Weyburn Field, Canada.

The analysis done on the fluid substitution theories has two major implications.
The first one is that the shear-wave modulus of vertically propagating S-waves may be
sensitive to changes in fluid saturation for certain models of fractured rock. Although
it is well known that S-waves traveling at oblique angles from the fracture plane may
have fluid-dependent moduli, this research indicates that fractures that couple ver-
tical, tangential tractions to normal displacements will induce fluid-dependent shear
moduli even for propagation parellel to the fractures. Because this fluid sensitivity
will not occur for vertical rotationally invariant fractures or vertical fractures that
induce orthorhombic symmetry, monitoring the changes of shear-wave velocities with
saturation may help constrain the rheology of the fractures.

The second result obtained from the fluid substitution analysis indicates that
the elastic parameterization of fractured rocks using linear slip theory (Schoenberg
and Douma, 1988; Schoenberg and Muir, 1989; Schoenberg and Sayers, 1995), is not
valid for rocks with large non-fracture porosity under conditions of equilibrated pore
pressures. This result suggests that the best way of modeling the elastic properties of
fractured rocks under conditions of equilibrated pore pressures is to calculate the dry
compliances from the linear-slip theory and then use Brown and Korringa's (1975)
theory to calculate the fiuid-saturated values.

The fluid substitution analysis highlighted the influence the rock’s storage capac-
ity has on the magnitude of the changes with saturation of the rock’s compliances.
When stresses are applied to a fractured rock with a large storage capacity it can
accommodate fluids displaced from the fractures with a small fluid pressure increase.
Since, the fluid pressure increase is what stiffens the fractures, rocks with large storage
capacities will be more compliant to applied stresses than rocks with small storage
capacities.
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The storage capacity is also a parameter that well test engineers estimate rou-
tinely from pressure-transient analysis. This link between the “geophysical” fluid
substitution problem and the engineering data motivated the work presented on the
integration of pressure-transient data into seismic reservoir characterization. The re-
sults suggest that the engineering estimates of the ratio of fracture storage to total
rock storage, are related to the normal compliance of the fracture system, which is
a parameter geophycisists try to estimate from seismic data. This quantitative link
between the engineering and geophysical measurements provides a method to cross-
validate the results obtained independently by the engineer and the geophycisist.

The Weyburn field case study provided the opportunity of applying some of the
knowledge acquired from the fluid substitution study. The analysis of the azimuthal
variation of the P-wave NMO and the analysis of the S-wave polarizations from the
baseline survey, suggests that the reservoir in the survey area is divided into two
main sections with different fracture properties. One section of the survey area has
seismic signatures consistent with orthorhombic or HTI symmetry while the other
section is consistent with a symmetry lower than orthorhombic. When this zonation
is compared to the areas with the largest time-lapse anomalies on the shear-wave
splitting, one observes that the time-lapse anomalies occur mostly in the areas where
the symmetry is interpreted as lower than orthorhombic. This observation coincides
with the expectations of the theory of fluid sensitive shear-waves developed in Chapter
4, in which the variation in shear splitting with saturation occurs for symmetries lower
than orthorhombic when the fractures are vertical,

8.2 Recommendations

Avenues for further research can be derived from both the theoretical and applied
aspects of the work presented in this thesis. In the paragraphs below suggestions are
made for future work on testing the validity of the linear-slip parameterization, mea-
suring the fluid sensitivity of shear-waves and improving the seismic characterization
of Weyburn field.

8.2.1 Synthetic rock experiments

The magnitude of the errors the linear-slip parameterization incurs when pre-
dicting the compliance tensor of a fluid-saturated rock, has yet to be tested experi-
mentally. One suggestion is to measure the static bulk compressibility of a fractured
rock and compare it against the predictions of the linear-stip/Thomsen (1995) for-
mulation and Brown and Korringa’s (1975) theory. Because the bulk compressibility
Csar Of a fluid-saturated fractured rock is detived from the compliance tensor as

Csat = S;f:ﬁ’@} (8‘1)
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different predictions of the compliance tensor will result in different predictions of the
bulk compressibility.

Since it is difficult to determine the fracture parameters of natural rocks, the
measurements suggested above are more convenient to conduct on synthetic rocks
for which all the parameters are well known. Rathore et al. (1994) manufactured a
synthetic sandstone with epoxy-cemented sand in which metallic discs of known shape
were embedded in successive layers. The discs were then leached out chemically
leaving cracks of known geometry and volume density that generated a rock with
transversely isotropic symmetry. This type of synthetic rock is ideal to compare the
predictions of the linear-slip/Thomsen (1995) formulation and Brown and Korringa's
(1975) theory, because the dry rock parameters needed as input values for the fluid
substitution calculations are better constrained than in naturally fractured rocks.

In order to test the shear-wave sensitivity to fluids the same technique used by
Rathore et al. (1994) could be applied to build a monoclinic rock with two sets of
non-orthogonal penny-shaped cracks. In this case the metal discs could be placed at
a fixed angle in thin slabs of synthetic sandstone. Then the rock could be built by
compressing several slabs together. Ultrasonic velocity measurements can be done
for propagation parallel to the symmetry plane and out of the symmetry plane. Out-
of-plane velocity measurements should give NMO ellipses whose orientation depend
on saturation, whereas the velocity of the shear-waves propagating in the plane of
symmetry should be fluid dependent.

8.2.2 Weyburn field seismic characterization

The analysis of the azimuthal variation of the S-wave normal moveout would
be beneficial for the characterization of the elastic symmetry of the reservoir rocks
and fracture network geometry at Weyburn field. The work presented in Chapter
7 indicated that the P-wave azimuthal NMO and the post-stack S-wave data were
not enough to constrain the number of fracture sets in the southern section of the
survey. Information about the fast azimuth of the S-wave NMO could help constrain
the number of fracture sets and the rheology of the fractures.

The polarization analysis presented in Chapter 6 was done on S-wave data
stacked with a single NMO velocity for all azimuths at each CDP. Jenner {(2001)
has shown that, in the presence of azimuthal anisotropy, stacking with a single “aver-
age” NMO velocity acts as a low-pass filter that degrades the character of the stacked
volumes. Hence, the question arises if the polarization results will vary if azimuthal
NMO corrections are applied to the data before stacking.

A possible way of assessing the influence of the azimuthal NMO analysis on the
post-stack polarization angles is to proceed according to the following steps:

1. Obtain S-wave stacked volumes with an “average” NMO velocity for all azimuths.
2. Estimate polarization angles from the stacked volumes.
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3. Apply polarization angles to the pre-stack gathers (now the gathers are oriented
into local coordinate axes).

4. Perform azimuthal NMO analysis and stack data again.

9. Repeat estimation of polarization angles and compare with original estimates.

In the previous procedure, polarizations are estimated from post-stack volumes under
the assumption that the estimates would be more stable after stack due to the larger
signal to noise ratio.

With regards to the time-lapse analysis, the work presented on the time-lapse
variations of the zero incidence reflectivity of the shear-waves, should be extended
to a study of the AVO signatures at the top of the reservoir. Furthermore, the
analysis presented in Chapter 7 has not included the potential attenuation effects
that the fluid substitution process may have on the waves propagating through the
reservoir. Duranti {2001} observed time-lapse variations in the frequency content
of the multicomponent data acquired at Vacuum field, New Mexico, that could be
related to changes in the attenuation due to the CO, injection process. Attenuation
analyses performed below the reservoir zone at Weyburn field could aid in monitoring
the movement of fluids in the reservoir.
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APPENDIX A

FLUID SUBSTITUTION IN THOMSEN’S MODEL

Appendix A of Thomsen’s (1995) paper gives expressions for the elements of the
compliance matrix of the fluid-saturated cracked rock for the case of aligned cracks
with normals in the X3 direction. If the cracks are vertical with normals in the X,
direction, the crack-normal compliance element corresponds to Sf; and the crack-
tangential compliance element corresponds to 5 = Sgs. Therefore, 571, S35, and Sgg
are given by

1 Kp\ Acne
Sh = —E: + (1 - ?(—':i) —}(—d'Dcp, (A1)
d
- Ss _S&_l+Bcc (A.Q)
55 66 1 i ) .

where K;, K3 and Ko are the the bulk moduli of the fluid, dry isotropic background
rock and mineral, respectively. E, and p are the Young’s modulus and shear modulus
of the saturated isotropic background rock, respectively, and 1. is the crack density.
The constants A. and B, are

16 (1 v
A= (1 = 2ud) ’ (A3)
and 16 /1

Bc - 3 (2 _ yd) ] (A.4)

where vy is the Poisson’s ratio of the dry isotropic background rock.

Since the second term in equations (A.1) and (A.2) are crack-dependent terms
added to the background compliances 3 and 1, by definition they are the normal
and tangential excess fracture compliances. Therefore, expressing K4 as a function
of E4 and vy, and substituting it in equation (A.1) we obtain:

K
R’ = Z?V ( - ?i) Dcp: (A5)

and

161 (1
Zy = -—( V")nc= 4, (A.6)
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where Zj is the fracture compliance when X 7 = 0 defined as:

16 1
A T E (1-v3) 7.
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APPENDIX B

THE ROLE OF STORAGE CAPACITY

The storage capacity can be defined from the equation of continuity for fluid flow
in a porous medium. Due to mass conservation, the change in mass per unit time
between the in-going flow and out-going flow has to be equal to the amount of fluid

stored per unit time in the pores. This condition can be written as:
N pé:)

V(p?) = ~a (B.1)

where p is the fluid density, 7 is the fluid flow velocity, and ¢; is the total porosity.
Because fluid pressure variations are easier to monitor than fluid mass variations, the
right side of equation (B.1) can be written as

o) [18(pd)] s
ot ""[To dpy ] a’ (2

where the term in the brackets is defined as the storage capacity of the rock. Evalu-
ating the term in the brackets, it can be shown that

10(p¢e) _ 4 0.
o Op; Pelef + Cop)s (B.3)

£y

where ¢; is the fluid compressibility, ¢; is the total pore system compressibility and
¢pp 15 the pore space compressibility at a constant confining pressure defined as:

1 BV,,)
_ 1 (9% (B.4)
r Ve (6Pf
Zimmerman (1991) proved that
1 1+ ¢;) 1
== -=—) - B.5
C-pp (Kd KO ';bt ( )

where -hrf; is the bulk compressibility of the dry rock (this applies to any monomineralic

rock in which the mineral material is isotrapic). In the case of the HTI symmetry
rock it can be proven, using the dry compliance matrix {3.8) and the definition of
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the bulk compressibility (K_IJ = Sgaﬁﬁ), that the bulk compressibility of the fractured
rock is given by:
1 1
- = Zd + > B.6
Kd N Kd ( )
where #- is the compressibility of the dry isotropic background. Substitution of

equation (B.5) into equation (B.3) proves that the total storage capacity of the rock
can be written as:

1 1 1 1
=|l=——-—}4+— - = , B.7
et (Kd KO) (Kf Kﬂ) # (B7)
which is equal to the denominator on the right side of Brown and Korringa’s equa-

tion (4.2).
Substituting equation (B.6) into equation (B.7) results in:

1 1 1 1
9”*‘*‘“(%‘%)*(@‘%)%*

N —

Tt
=dpep

1 1
d 4y — _ B.8
Zn (Kf Ko) qﬁi’ ( )

L

=dece

where the first term is the storage capacity of the isotropic background pores (g,c,)
and the second term is the storage capacity of the crack pores (¢.c,).
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APPENDIX C

COMPLIANCE CHANGE WITH SATURATION

The change with saturation of the compliance matrix can be calculated from the
B&K equation in two-index notation:

(¢ — ) (g —¥5)
(Cs—Co) + (C; = Co)ér

Sty =St = (C.1)
Using the dry compliance matrix (3.8) of the fractured rock and the compliance
matrix of the isotropic mineral material, the terms in the numerator of the right side
of equation (C.1) are given by

d_ 0 = i 1
w-W-zh+3 (5 7). ©2)
o 11 1
wi-w-wi-w=3 (5 %) ©3)
and
(9 — 40) = (¥ - ¥ = (Vg —¥p) =0, (C.4)

where the elements 1’s are defined in the main text. From equations (C.2)-(C.4) it
is clear that the only compliance elements that will change with saturation are St
Sia = S, Sle = S5, and S3s.

From equations (C.2)-(C.4) and noting that the denominator on the right side of
equation (C.1) is the total storage capacity of the rock (Appendix B), the saturated
compliances can be written as

2
1{ ¢ K Ky ¢ d
1 §(R‘.ﬁ) +(1—?§+ﬁ<‘.§;$'f)ZN

s _ T _ , C.5
WUE 4G K () (€
2
1 %
1 3 \K
S35, =Sk=— __(_;‘i (C.6)

Es  $C J’

\




N S—

142

Sy = Sjg = ——= — AN , C.7
112 13 ) Ed ¢’LCt %:f. (¢£Ct) ( )
2

1{ ¢
g8 _ ﬁ _ 9 (K‘*p) ) (CS)

Here }# is the compaction compressibility of the isotropic background pores that
o]
relates the dry isotropic compressibility and the mineral compressibility according to

1 1 1 1
%l &) (©9)

From equations (C.5)-(C.8) it can be seen that if the rock has no isotropic poros-
ity (¢p = 0), then S5, 53, 8%,, S2,, S35 will take the value of the isotropic background
mineral and only 55, will change with saturation. In this case B&K’s equations are
identical to Thomsen’s (1995) formulation, as explained in the main text,

When the storage capacity of the cracks is negligible, the total storage capac-
ity is approximately equal to the storage capacity of the isotropic background pores,
Le. (i = ¢,C,. Under this approximation, the terms marked underneath in equa-
tions (C.5) and (C.6) are approximately equal to 3%1 and the terms in equations {C.7)
and (C.8) are approximately equal to — ¢ This results from the application of B&K’s
theory to a dry isotropic rock in which £; and —§+ vary with saturation as

2
1{ ¢
L _ 1 _3\%K) () (C.10)
E, E, ¢pCp
and .
s (#)
s _ M 3\Ke) (C.11)

E, Es .G,

Therefore, in the approximation of negligible crack storage capacity, the compliance
of the saturated fractured rock can be written as the sum of a background isotropic
compliance and an excess fracture compliance. However, due to the extra fracture
term in the S}, and S, elements, the saturated comipliance predicted by B&K’s
theory is not analytically identical to Thomsen'’s (1995) formulation
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APPENDIX D

FLUID SENSITIVITY OF Zyv AND Zyv

The compliance of the rock with one system of dry micro-corrugated fractures
can be written as the sum of the background isotropic rock compliance and the excess
fracture system compliance matrix:

Zn+ 1 —15 —£ 0 Znv 0
- “E TE E
Iy 0 0 0 Zy+g O
0 o0 0 0 0 Zutg

where E, G and v are the Young’s modulus, shear modulus and Poisson’s ratio of
the background rock, respectively. Zy is the normal fracture compliance, Zy and Zx
are tangential compliances, and Znv i the compliance element responsible for the
normal-to-vertical coupling.

In Chapter 3 it was proven that the linear slip decomposition of the compliance
matrix (D.1) was not always applicable to Auid saturated rocks under conditions of
equilibrated pore pressures. However, for low values of the isotropic porosity the
form (D.1) is approximately equivalent to the formal prediction by Brown and Kor-
ringa. Therefore, assuming that the fluid-saturated rock has a compliance matrix of
the same form as (D.1) it is easy to see that the difference between the values of Sis
for the dry and saturated rock is:

PP ) ek 1. S ¥
U N N (D-2)

where 91 and 5 are defined in equation (4.2).

From the compliance matrix (D.1) it is clear that 5 = Z&y and Y§ — ¢ =
74 + (3 — Z&), where K, and K, are the background dry-rock and mineral bulk
moduli. Since the mineral material is assumed to be isotropic, ¥& = 0. Finally,
since the fracture compliances are added to the background isotropic compliance, the
difference between the dry and mineral compressibility is ¢4 — Cm = Z&+(E - )

where K is the fluid bulk modulus. From these relations and equation (D.2) we find
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the difference between the dry and saturated values of the compliance term Zyy:

(28 + 33 - &) 2w
Zi+ (6 — ) + (G — ) (6 + 6)

iy = Ziy = (D.3)

where the total porosity (¢x) of the rock is written as the sum of the “crack” and
“isotropic” porosities ¢, = ¢, + ?;.

The difference between the dry compressibility (-K‘—d) of the background rock and
the compressibility of the mineral (#=) can be written as Mavko et al. (1999):

11 _ 4 (D.4)

Ky K, Ky

where 1/Ky, is the isotropic pore space compressibility. If the isotropic pore space
can be modeled as a dilute collection of spherical pores (¢; < 0.1),

11 3(1-v) F,

kL . D.
Ky Kn.2(1-2) K, (D-5)

Substituting equations (D.4) and (D.5) into equation (D.3), we obtain the change
with saturation of the compliance Zyy for a fractured rock with an isotropic back-
ground composed of a dilute collection of spherical pores:

1 £y 1 &
1+§,—(§§{7§

L) + (- {52y

Zyy ~ Ziy = Zihy (D.6)

In a similar way change in the compliance Zy with saturation is calculated by
solving for the S5 component in Brown and Korringa’s equation (4.2). For a back-
ground rock composed of spherical pores,

d 2
ZNV

d 5 o ] :
v T+ e{F (- o)

fam—

Zy -z = (D.7)

Note that in the limit in which ¢; — 0, equations {(D.6) and (D.7) become:
1

(R~ g’
14 BT

N

Ziy — Zhy = Zihy (D)
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and L2
VA 1
-5 - ®9
N 1+__.%Z~"‘_.

Since the Auid compressibility is much larger than the mineral compressibility, in this
limit the change with saturation 1s largely dependent on the value of 'E;%,{I If this

combination of parameters is small, changes in Zy are large.
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APPENDIX E

Zy FOR NEGLIGIBLE POROSITY

For two sets of non-orthogonal fractures in an isotropic, porous background, the
rotation angles of the NMO ellipses are a function of the normal fracture compliance
(Zn) of each fracture set. If the changes in Zy with saturation are large then the
NMO ellipses’ rotation angles are strongly dependent on saturation as well. Here,
we prove that in the limit of vanishing background “isotropic” porosity (¢:), the
parameter 7(.—% determines how significantly Zy changes with saturation {¢. is the

crack porosity and K is the fluid’s bulk modulus).
According to equation (4.2), the difference between the values of the component
Sy, for the dry and saturated rocks is:

(g — )’ E)

S‘ljl - fl = )
(ca— Cm) + (cf — Cm)dn

Gince the fracture compliances are added to the isotropic background compliance,
Yt — 97 = Z§ + (&, — =), where Kg and K,, are the background dry rock and
mineral moduli. Similarly, the difference between the dry and mineral compressibility
is ¢4 — tm = 28 + (?1; - 7{1:) Using these relations and noting that Sy =2y +
sk» where K is the bulk modulus of the background rock, equation (E.1} can be
represented as:

{25+ 5 — 7Y’ 11 1
A A== E.2
74+ (& - ) + (& — 7 )(ge + 1) oy ED

AR

where the total porosity is expressed as the sum of background “isotropic” porosity
(¢:) and fracture porosity (@e).

When the “isotropic” porosity of the background rock ¢; approaches zero, the
compressibility of the dry background rock approaches the compressibility of the
mineral ({K%i — 7=} — 0). Also, since ¢ — 0, there is no difference between the dry
and saturated background compressibility ({ &= — %} — 0)- Therefore, in the limit

é; — 0, equation (E.2) becomes

7% - 2y _ 1
Zg (1?1__]?%")¢c )

1+ L5

N

(E.3)
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Since for most fAuids KL, > T(l;’ in this limit the magnitude of change in Zy is

determined by # If this combination of parameters is small, changes in Zy are
N
large.
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APPENDIX F

STORAGE CAPACITY IN THE ISP ROCK

The solution to equation {5.1) will depend on the inner and outer boundary
conditions of the system. If the pressure disturbance does not reach the reservoir
boundaries during the time used for data analysis, the outer boundary condition
corresponds to an infinite reservoir (transient flow solution). The inner boundary
condition depends on the borehole damage or skin effect, and borehole storage. The
skin effect reflects a small region around the wellbore with altered permeability values
due to damage done during drilling and completion. The borehole storage effect
results from fAuids that are stored in the wellbore volume and are produced before
the formation fluids at the beginning of the well test Raghavan (1993).

The late-time response of the infinite reservoir solution to equation (5.1} is

eY

poitn) = %zn (i“—") +8, (F.1)

where S is the skin factor, v is Euler’s number and pp and tp are dimensionless
pressure and time, defined as

2rkrh
Pp= L Ap)

gL

Kj
tn = —— Q¢ F.2
D= grerpr?” (F-2)

where 7, is the wellbore radius, h is the formation thickness and Ap and Af are the
measured pressure change and time.

From equation (F.1), the combination of parameters $scih and Kk can be in-
verted from the data through a type curve-matching procedure Lec (1982). If the
thickness of the producing interval is known, the reservoir storage capacity (¢:c;) and
reservoir permeability (x;) are obtained.




150




151

APPENDIX G

PRESSURE ANALYSIS IN THE ADP ROCK

The differential equations (5.14) and (5.15) are solved in Laplace space after
defining dimensionless pressures and times as in equations (F.2) (Da Prat, 1990).
The pressure response of the double-porosity rock presents three regimes: early, tran-
sitional and late, which are shown in Figure G.1. In the early period the pressure

solution is
1/2
qit ,’ ¢
Ptea,ri = ) G.1
(EDeart hrwn}ﬁfr"’f? $rcy (G-1)

where g is the flow rate, p is the fluid viscosity, h is the formation thickens and 7y, is
the wellbore radius. Note that at early times the pressure response is dominated by
the fracture storage capacity which means that the fracture system does not “sense”
the presence of the isotropic porosity. In the late period the pressure solution is

i 4K._ft
P e T h '
(e = goetn (M e m)) y (G.2)

where « is Euler’s number. In the late-time period the response is identical to that
of a single-porosity rock with a storage capacity equal to (¢sc + ¢ici), which means
that the fracture system “senses” the presence of the isotropic porosity.

The transition between the fracture and total rock system regimes is determined
by the parameter X defined as

A= 42 (G.3)

where I is the characteristic length of an isotropic rock block. If the permeability of
the isotropic pores is small, the transition will occur later because it will take longer
to transfer fluids from the low-permeability isotropic rock into the fracture system.
The value of the w parameter is always between zero and one. If the rock has
no isotropic porosity (e.g. anisotropic, fractured granite), w = 1 and the pressure
response will be identical to that of a single porosity rock at all times. Ifw is small but
non-zero, the A parameter determines at which time the pressure response converges
to the single porosity limit (see Figure G.1). If the rock has no fracture porosity
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10° 10° 10"
D

F1G. G.1. Double porosity pressure response indicating the three regimes and the
influence of A in determining the transition between the early and late periods.

(e.g. unfractured, tight carbonate) w = 0. In this limit, the rock model becomes
impermeable because of the lack of fractures, and no pressure drop oceurs.
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APPENDIX H

w AND THE ROCK COMPRESSIBILITY

To find an equation that relates w to the normal fracture compressibility (Zxf)
it is necessary to expand the numerator and denominator of equation (5.13). The
denominator is the total rock-storage capacity, which can be written as

(¢rer + dics) = o1 (—Rl,; + cpp‘(i-i‘f]) ) (H.1)

where ¢ = ¢; + ¢5 and ¢y i4p) is the total pore space compressibility defined in
equation (5.6), which includes fracture pores and isotropic pores. Note that the only
difference between the compressibility defined for the single porosity rock (cpp,i) and
Cop (i+7) 16 that the latter must take into account the fracture pores.

From the relations between compressibilities presented in chapter 2, ¢pp i+7) €80
be expressed as a function of the dry rock compressibility, mineral compressibility,
and total porosity as

1 1+g¢ry 1
. = — — H.
“erlith) (Kd.(em K ) o7’ (H2)

which is similar to equation (B.5) except that Kags) is the dry bulk modulus of a
fractured, anisotropic rock.

Substituting (H.2) into (H.1), the denominator of the w parameter is

(éyer + dici) =

1 1 1 1
) r+ - 1. H.3
(KF Km) ¢r (Kd,mn Km) (H.3)

Since the isotropic pores of the ADP model are identical to the pores in the ISP
rock, equation (5.8) can be substituted into equation (H.3) to solve for ¢scy as

1 1 1 1
U - . HA4
bres (KF Km) ort (Kd,(i+f) Kd,i) (H.4)
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Finally, from equations (H.3) and (H.4) we can write the w parameter as

i S 1 -1
(KF Km) Zi (Kd-(i+.f} o
1

! 1 1)
(KP N 7‘:) ér + (Kd.(='+n - 7":)

w:
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RAW SHEAR SPLITTING MAPS
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F1G. 1.2. Top: “raw” shear-splitting map from travel-times for the repeat survey.
Bottom: standard deviation calculated from overlaping bins of 9 x-lines by 9 in-lines.
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Fic. L.3. Top: “raw” shear-splitting map from amplitudes for the baseline survey.
Bottom: standard deviation calculated from overlaping bins of 9 x-lines by 9 in-lines.
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Fic. 1.4, Top: “raw” shear-splitting map from amplitudes for the repeat survey.
Bottom: standard deviation calculated from overlaping bins of 9 x-lines by 9 in-lines.
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