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ABSTRACT

Resolution in velocity spectra depends primarily on cable length, reflector depth, stack-
ing velocity, and dominant frequency of the data. Velocity spectra often fail to separate
interfering events, particularly those at late times and with high velocities. The need for
increased resolution in velocity spectra is clear when one wishes to distinguish two neigh-
boring primary events from reflectors with conflicting dips, or to identify weak primaries in
the presence of nearby multiples.

Velocity spectrum methods transform data from the offset and two-way traveltime
domain to the stacking velocity and zero-offset, two-way traveltime domain. This trans-
formation can be achieved using any of several coherence measures based on the zero-lag
crosscorrelation of the traces; the more commonly used ones are semblance coefficient,
unnormalized crosscorrelation sum, and statistically normalized crosscorrelation sum. All
these measures involve crosscorrelations between traces in a collection such as a common-
midpoint (CMP) gather or common-image gather (CIG). One might think that, for a given
number of data traces, the sum of all possible crosscorrelations should be a more reliable
measure than the sum of only a subset of the crosscorrelations. I show, however, that use
of selected subsets of crosscorrelations can preserve the reliability while improving the res-
olution of velocity analysis. Such subsets are formed by including in the summation only
those crosscorrelations for whose pair of traces the relative differential moveout of reflec-
tions exceeds some threshold established a priori, and discarding those crosscorrelations
for which the associated differential moveout is relatively small. I have called this process
selective-correlation velocity analysis.

Here, for a variety of synthetic CMP gathers, I compare the performances in veloc-
ity analyses of selective-correlation sum and conventional crosscorrelation-sum measures.
These comparisons show that the use of selective-correlation sum considerably enhances
the resolving power of velocity spectra over that of conventional crosscorrelation sum in the
presence of statics distortions and random noise, at no sacrifice in the quality of results. For
closely interfering reflections under these perturbing conditions, selective-correlation veloc-
ity analysis retains its greater resolving power. Moreover, this improvement in performance
is achieved at a computational cost that is comparable to that for conventional velocity
analysis.

Beyond the implementation of the selective-correlation method itself, I also discuss
issues related to velocity analysis. I give estimates of the uncertainties in the velocity as a
function of the errors in the reflection traveltimes. These traveltime errors can be caused,
for instance, by static distortions and random noise. I derive approximate expressions for
the standard deviation in velocity estimates, and the bias (difference between the velocity
estimate using the data with errors and the zero-error velocity) of those estimates. These
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expressions allow us to estimate the relative contribution of each trace pair to the uncer-
tainty in the velocity estimate. They also support the use of selective-correlation sum in
velocity analysis since these estimates of standard deviation and bias for velocity decrease
with increasing differential moveout.

A cross-section of the velocity spectra for a fixed normal-incidence time, equal to that
of a reflection of interest, is what I have called a coherence curve. These curves reach local
maxima, or peaks, for velocity values in which the coherence along a hyperbola is relatively
large. The coherence curves also allow us to compare the behavior of the different coherence
measures in the presence of random noise, static distortions, and interfering events. Here,
for interfering events, I study the bias in the positions of peaks of the coherence curves as
a function of the breadth of the peaks of the curves as it relates to the difference between
primary and multiple velocities.

Finally, through applications to field marine and land CMP gathers, I demonstrate
that selective-correlation sum, which I have implemented in the Seismic Un*x (SU) data
processing system in both normalized and unnormalized forms, not only increases stacking-
velocity resolution, but it also can reduce uncertainty in the velocity picking by uncovering
primary peaks in the presence of strong multiples.
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Chapter 1

INTRODUCTION

1.1 Background

Estimation of seismic velocities in the subsurface is one of the important tasks in
exploration seismology. Velocity is the connection between the time domain, where recorded
seismic data reside, and depth domain, where the ultimate goals of explorationists are
pursued. Much of the information about the velocity distribution in the subsurface is derived
from stacking velocities obtained from common-midpoint (CMP) gathers of traces recorded
in surface reflection seismology. These stacking velocities are often used for estimating
root-mean-square (rms) velocities, which may be used to estimate interval velocities. Each
type of velocity has its importance in differents steps of processing; for instance, stacking
velocities are used to perform CMP stacking, rms velocities can be used for time migration,
and interval velocities for depth migration and depth conversion. For example, the more
accurate the estimate of stacking velocity, the more effective will be processing that aligns
primary reflections and stacks them, while at the same time attenuating undesirable events
such as multiples.

Velocity estimation requires that reflection data be recorded at nonzero offsets between
sources and receivers. Recorded traces obtained at these separations produce a variation in
reflection time with offset, for a given reflection event, known as normal moveout (NMO).
For most practical applications, NMO for a single event can be approximately described by a
hyperbola that depends on the two-way zero-offset traveltime, the distance between source
and receiver positions, and the velocity distribution of the medium above the reflecting
interface. Velocity analysis takes advantage of this hyperbolic moveout characteristic to
obtain from surface seismic data the stacking-velocity variation with reflector depth or
zero-offset reflection time. The goal of velocity analysis is to obtain interpreted velocity
values that correspond to the best coherency of the signal along hyperbolic trajectories over
the spreadlength of the CMP gather. Velocity analysis can be divided into two stages: (1)
computation of velocity spectra, which is carried out through some statistical coherence
measure, and (2) velocity picking, where interpretation comes into play. Our interest here,
however, is centered on the first stage of velocity analysis, the spectra computation.

The conventional approach to estimating stacking velocities is to pick maxima of the
velocity spectra (Taner and Koehler, 1970). For a given CMP gather, the spectrum at a
given time is computed by fixing a zero-offset reference time #o; and then sweeping over a
predetermined range of trial velocities (vy,v2, ..., v ) usually at a regular velocity interval

1

| 13




Av. Each pair of ¢; and v, will produce a particular hyperbolic moveout pattern. Then,
the velocity spectrum, for fixed time to,i, is obtained by a correlation process along those
hyperbolas. A peak in the spectrum indicates the velocity corresponding to the hyperbola
that best fits the data at a given to,i- This procedure is repeated for different uniformly
incremented zero-offset times (to,1,t0,2, - - .) until the end of the seismic record or a specified
maximum time is reached. The computed velocity spectra are displayed as a function of
zero-offset traveltime and trial velocity. Then, the picking process begins. As mentioned
above, here the focus is on the computation of velocity spectra.

Several good properties of the stacking velocity spectra can be mentioned: (1) they
provide maximum-likelihood estimates for stacking velocity of well-separated reflections in
the presence of additive uncorrelated noise with Gaussian statistics (Kirling et al., 1984;
Biondi and Kostov, 1989); (2) they are robust with respect to deviations of the noise from
being Gaussian; (3) implementation is relatively simple and computationally much less
intensive than, for example, eigenvalue methods (e.g., Biondi and Kostov, 1989; Key et
al., 1987); and (4) when two or more events have close arrival times at zero offset but
their corresponding moveouts are sufficiently different, conventional velocity spectra can
still produce good estimates. When, however, a pair of events are too close to one another
and have little moveout difference relative to the dominant period in the data, the estimates
can be biased and, even worse, the spectra may show only one maximum for a given Lo,

Resolution in velocity spectra depends primarily on cable length, depth of the reflecting
interface, magnitude of the overburden velocity (more specifically, stacking velocity), and
the dominant frequency of the data. Stacking velocity spectra often fail to separate interfer-
ing events at late times and high velocities, as well as for relatively shallow events that are
dominated by low frequencies and have relatively small moveout difference. The need for
higher-resolution velocity spectra is clear when one wishes to distinguish two neighboring
primary events coming from reflectors with conflicting dips, or to identify weak primaries
in the presence of strong multiples.

De Vries and Berkhout (1984) addressed the resolution problem using an alternative
tool for velocity analysis based on minimum entropy. This approach analyzed the spectral
content of data as a function of moveout parameters such as stacking velocity for a CMP
gather and migration velocity for a common-reflection-point (CRP) gather. To obtain an
estimate of the stacking velocity using minimum-entropy velocity analysis, one must specify
a window around the zero-offset time of a targeted reflection. This method can be applied
in either the space-frequency domain or the space-time domain; higher velocity resolution
is obtained in the space-frequency domain, whereas the approach is computationally more
attractive in the space-time domain.

Gelchinsky et al. (1985) considered algorithms of phase and group correlation based
on the concept of analytic signal (Taner et al, 1979). These correlation algorithms require
the construction of functionals that must be analyzed in order to estimate the parameters
(e.g., velocity) of the detected signal. Such analysis is performed using a system of inequal-
ities that depend on parameters whose determination and influence on velocity analysis is
unclear. Another resolution-enhancement method for seismic velocity analysis, based on
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the eigenstructure decomposition of the covariance matrix of the data, was developed by
Biondi and Kostov (1989). Their method can be powerful in resolving closely interfering
reflections; unlike conventional velocity spectra, however, the number of events in conflict
must be estimated a priori at each time level, which is impractical for field data. Further-
more, the influence of noise in data on their method is not well understood, and the method
is computationally more costly than other commonly-used velocity-analysis procedures.

A convenient alternative approach for increasing resolution in conventional velocity
analysis is through use of optimum stacking weights. Schoenberger (1996) developed a
method for multiple suppression, called optimum weighted stack, that requires knowledge of
the residual moveout of a targeted multiple and its frequency content. The weights produced
in Schoenberger’s method are used to improve velocity resolution by applying them directly
to the traces in the CMP gather prior to performing conventional velocity analysis. This
approach shares some of the philosophy that underlies the selective-correlation method
studied here.

Several other authors have dealt with the problem of optimizing the velocity-estimation
process or improving the resolution of stacking velocity analysis (e.g., Kirling et al., 1984;
Toldi, 1989). All these methods constitute a suite of approaches with advantages and
limitations: where one method fails, another may succeed, and vice versa. As a result,
tradeoffs have to be made, for instance between resolution and robustness.

Here, I present a method for increasing the resolution of stacking velocity analysis that
allows the analyst to distinguish more clearly between primary and multiple reflections, or
between neighboring primary events. This approach preserves the good properties of con-
ventional semblance mentioned above, while entailing only a relatively minor modification
(at comparable computation effort) of the conventional velocity-spectra calculation.

1.2 Approach

In the approach developed and evaluated here, I use a selective-correlation sum that
excludes from the spectrum computation crosscorrelations of pairs of traces based on differ-
ential moveout of reflections. Neidell and Taner (1971) used the sum of crosscorrelations of
traces in computing velocity spectra. In their approach, they sum all possible crosscorrela-
tions among the traces of a CMP gather along hyperbolic trajectories governed by a range
of trial velocities, giving the same weight to each contributing correlation independent of
the differential moveout between crosscorrelated traces. If the differential moveout is small,
however, as occurs for short-offset traces, the traces will be approximately in phase for a
relatively wide range of velocities, giving a broad semblance response as a function of trial
velocity (Sherwood and Poe, 1972). In contrast, crosscorrelation of a pair of traces with
large differential moveout offers more resolving power for the velocity spectra than does
that of traces with small differential moveout. Hence, the idea behind the approach in this
thesis is to allow into the summation only those crosscorrelations whose pair of traces have
a relatively large differential moveout. This discrimination process allows one to increase
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the resolution of the velocity analysis, preserving the character and features of conventional
semblance at comparable computational cost.

The methodology for this work is based on the sum of crosscorrelations described by
Neidell and Taner (1971). The new feature of the present approach is that, instead of
summing over the set of all possible crosscorrelations, the summation is performed over
selected subsets of crosscorrelations based on moveout in the data traces in a CMP or CRP
gather. In order to do the selection, I first assign a numerical significance value to each
pair of crosscorrelated traces using a parabolic trajectory as an approximation of differential
moveout. These significance values are related to the Jjudged importance of the contribution
of each crosscorrelation to the resolution in the velocity spectrum, which depends on the
normal moveout of the events. For instance, if the offsets of two traces are close to one
another or their offsets are relatively close to zero, the differential moveout will be small and
the contribution of their associated crosscorrelations to resolution will be represented by a
smaller significance value than that of those trace pairs for which the differential moveout is
larger. Each possible crosscorrelation pair is assigned a significance value that is normalized
to have values ranging from zero to one. For identical traces, as in autocorrelations, the
differential moveout is zero, so the significance value is zero. A value of unity is associated
with the maximum differential moveout possible, produced by the crosscorrelation between
traces recorded at the shortest and longest offsets.

I then specify a threshold for these values; all crosscorrelations with significance values
below this threshold are discarded, and the rest of crosscorrelations, with values above the
threshold are included in the spectra computation. Therefore, I sum only crosscorrelations
whose contribution have comparatively large associated significance values, thus helping
better constrain the estimate of stacking velocity.

Based on the significance values, one might choose to include in the summation only a
relatively small percentage (e.g., 30%) of all possible crosscorrelations, but those with the
most resolving power. This process should improve the velocity resolution of the spectra-
computation process and thus possibly reduce uncertainty in the velocity picking.

One might think that a disadvantage of the new approach with respect to conventional
ones is that with fewer crosscorrelations included in the summation the effectiveness in at-
tenuating random noise and dealing with statics distortions will be somewhat diminished.
Tests on synthetic data, however, show that accuracy of selective-correlation velocity anal-
ysis is comparable to that achieved by conventional crosscorrelation sum in the presence of
statics distortions and random noise; specifically, the peak of the spectra for both methods
is governed strongly by crosscorrelations for pairs of traces with relatively large differential
moveout, the very ones we include in the selective-correlation approach. Thus if the velocity
peak is biased, due to either statics or random noise, the bias will be about the same in
both velocity estimation methods, even where reflections are closely interfering.

Using synthetic CMP gathers, I compare the performance of selective correlation sum,
both unnormalized and normalized, with those of unnormalized crosscorrelation sum and
conventional semblance, as well as with conventional velocity analysis applied to traces with
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weights designed for optimum suppression of multiples in stacking. This comparative study
uses synthetic data in the presence of correlated and uncorrelated noise, statics distortions,
and other factors that influence the accuracy and resolution of velocity analysis such as
spreadlength, relative strength of reflections, and bandwidth of data. I also show that
reducing the fold of a CMP gather (e.g., by discarding every other trace), in order to reduce
the number of crosscorrelations in the spectra computation, by no means is equivalent to
selective-correlation sum.

Applications to field data, both marine and land, exemplify features of the selective-
correlation sum method seen in the synthetic data examples. Additionally, I present analyses
aimed at understanding the performance of the selective-correlation approach exhibited in
the results of applications to synthetic data.

1.3 Thesis content

Chapter 2 is devoted to understanding the fundamentals of velocity analysis based on
selective-correlation sum and how this approach can improve velocity resolution. There,
I review the more commonly used coherence measures for spectra computation and their
various relationships. Also, I discuss the rationale and characteristics of a parabolic ap-
proximation of differential moveout used to assign numerical significance values to each
crosscorrelation involved in the spectra calculation; I then use these values in a criterion for
discarding crosscorrelations. In addition, I describe the use of optimum stacking weights in
velocity estimation as an alternative method for improving velocity resolution. Although the
use of optimum stacking weights differs in some key respects from the selective-correlation
sum, these two methods have the most similar philosophy and performance of the var-
ious approaches for enhancing resolution. Here, I also show an implementation of the
selective-correlation approach such that its computation cost is comparable to that of the
conventional approach.

In Chapter 3, I use synthetic CMP gathers to study factors that can influence the
estimation of stacking velocity: spreadlength, bandwidth of data, random- and coherent-
noise contamination, statics distortions, and relative strength of interfering reflections. For
each of these factors, I present comparisons between conventional velocity analysis and
selective-correlation sum.

In Chapter 4, I discuss issues in velocity analysis exemplified in the tests with synthetic
data. Here, I study how traveltime errors propagate to the velocity estimates using approx-
imate expressions for the variance and bias of the velocity as a function of errors in data.
These expressions have implications for the expected performance of the conventional and
selective-correlation velocity analysis. I also analyze the bias of the locations of the peaks
in the coherence curves as a function of the breadth of the peaks of the curves as it relates
to the difference between primary and multiple velocities. These analyses use superposition
of Gaussians to model coherence curves. Although, this modeling involves the approxima-
tions of superposition and use of Gaussian shapes, it accounts well for features present in
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coherence curves obtained using selective-correlation sum.

The field-data examples in Chapter 5 show the enhanced resolution and robustness of the
selective-correlation-sum method. Finally, in Chapter 6, I summarize highlights of the work
and also offer lessons learned in stacking velocity estimation. In addition, I give my thoughts
about possible extensions of the work presented here.



Chapter 2

SELECTIVE-CORRELATION VELOCITY ANALYSIS

Various choices of coherency measure can be used in computing velocity spectra. Most
of these coherence measures are based on zero-lag crosscorrelations between the traces
along hyperbolic moveout trajectories in CMP gathers (Neidell and Taner, 1971). The
more commonly used are semblance coefficient, unnormalized and normalized crosscorrela-
tion sum, and stacked amplitude. In this thesis, I take advantage of the structure of the
crosscorrelation-sum coherence measure, both unnormalized and statistically normalized,
to select crosscorrelations whose pair of traces have a differential moveout that exceeds a
minimum pre-established threshold value. These crosscorrelations, with relatively large dif-
ferential moveout, are included in the sum while the rest, with associated differential move-
out less than the specified threshold, are excluded. The approach followed here, however,
does not use the exact differential moveout as a selection criterion; instead, for convenience
I use a parabolic approximation of differential moveout in the selection.

First, in this chapter, I give a review of the coherence measures more commonly used
in velocity estimation, and how they relate to one another. I also discuss the form in which
these coherence measures can be written to facilitate the implementation of the selective-
correlation sum method. Second, I derive the parabolic approximation of differential move-
out used in the crosscorrelation-discarding process, and discuss its characteristics. Finally,
I give a formal definition of selective-correlation sum and show examples of applying this
method to synthetic CMP gathers. I also compare these results against those obtained by
applying several other coherence measures to the same synthetic data. In addition, I discuss
and compare the velocity-resolution enhancement of the selective-correlation approach with
that of a method based on use of optimum trace weights.

2.1 Coherence measures

Throughout this entire section, I will follow the notation given in Yilmaz (2001). The
simplest form of coherence measure is the stacked amplitude (Garotta and Michon, 1967),
consisting of the sum of the trace amplitudes along a certain moveout path. The stacked
amplitude (SA) at two-way zero-offset travel time #o is defined as

M
SA(Virial to) = Y, fi(i): (2.1.1)
i=1
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where M is the number of traces in the CMP gather, f; ;) is the amplitude on the jth trace
along a reflection-time trajectory ¢(j). In stacking-velocity computation, this trajectory ¢(5)
is the two-way traveltime along a hyperbola governed by a trial velocity veq; :

2
1) = 4| 2 + -2 (2.1.2)
.7 0 2 ) .
Virial

where z; is the offset from the source to detector 7.

The simplicity of the stacked amplitude makes it computationally inexpensive. For
this reason, Sherwood and Poe (1972) used it as the basis of their approach for analyzing
constant-velocity stacks (CVS) in picking stacking velocities.

The unnormalized crosscorrelation sum CC (Neidell and Taner, 1971) is the sum of
all crosscorrelations between any two traces in a CMP gather within a time window. It is
given, as a function of trial velocity vy and two-way zero-offset travel time tg, by

M j-1

CC(virial, to) = Z > > Fit) Trpkys (2.1.3)

j=2k=1 w

where the window w, for the Ith trace, is determined by the expression

w(l) = t(l) +iAt,  i=—-N/2,...,0,...,N/2, (2.1.4)

where the length of the time window is N 4 1 samples. Here, t(!) is given by the hyperbola
(2.1.2), At is the data sampling interval, and i takes integer values. The window w(l)
1s symmetrically positioned about the reflection-time t(l) on the ith trace. Moreover, the
boundaries of the time window (2.1.4) are parallel to the hyperbolic trajectory (2.1.2) over
the entire spreadlength. This is not the case for all algorithms in practice, but the difference
for our purposes is immaterial.

The hyperbolic trajectory (2.1.2) and time window (2.1.4), defined for the unnormalized
crosscorrelation sum, will also be used for all subsequent coherence measures. Henceforth,
the time window (2.1.4) will be referred simply as w.

Reordering the sums in expression (2.1.3), we can write it as

M j-1

CClvriatsto) = YY" fiuis) Frai)- (2.1.5)

Equation (2.1.5) can be written as an energy difference by using the identity

M 2w \ M j—1
D Fia) p =2 FE 20D Fis) Feaw):
j=1 j=1 j=2k=1
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Solving for the double summation factor,

M j-1 1 M 2 M 9
SO0 ity Fray = 5 14 22 Fietr ¢ = 22Tkt
i=1 i=1

j=2k=1

and inserting this into expression (2.1.5), gives

2
1 M M
CC(vmiat;to) = 5D {Z fj,t(j)} =2 ik (- (2.1.6)

j=1

Equation (2.1.6) represents the unnormalized crosscorrelation sum as half the difference
between the output stacked-trace energy and the input energy computed over the window w.
This is an efficient way to implement velocity analysis because of the relatively small number
of operations involved (order M N, where N is the number of samples in the time window
w for each set of values of tg and vyiq). Although, this form of an energy difference looks
computationally attractive, is not amenable to selection of individual crosscorrelations, as
is allowed by expression (2.1.5). This latter expression, on the other hand, apparently needs
order M2N operations. However, we can achieve the smaller number of multiplications by
writing the unnormalized crosscorrelation sum (2.1.5) as

M i—1
CC(veriats o) = Y {Z Fit) {Z fk,t(k)}} : (2.1.7)
w | j=2 k=1

The inner bracket becomes just a constant after the summation, leaving only order M
multiplications times N, the number of samples inside the window w.

If all f;,(;) were equal, from either equation (2.1.6) or (2.1.7) the unnormalized cross-
correlation sum would be equal to

_ MM -1)

N, 5

(2.1.8)
times the common trace energy inside the window w. Here, N, is the number of all possible
crosscorrelations involved in the calculation.

The normalized version of equation (2.1.5), known as normalized crosscorrelation sum
NCC (Neidell and Taner, 1971), is obtained dividing expression (2.1.5) by the geometric
mean of the energy in the two channels involved in any crosscorrelation over the window
w, and introducing a constant to produce a maximum amplitude equal to unity. The
normalized crosscorrelation sum is given by
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M j-1

9 URORING
NCC(vwial,to) = g 353 3 =22k '
M(M - 1) w =2 k=1 \/Ew fj2,t(j) 2w fl?,t(k)

In expression (2.1.9), the terms Yw f]?t(j) and >, f,f t(k) Tepresent the trace energy, for
the jth and kth traces inside the window w centered at reflection times t(j) and t(k),
respectively.

(2.1.9)

To normalize expression (2.1.6), we divide it by the average energy of the traces inside
the window w, getting

2
1w { {Z;'Vil fj,t(j)} -3 fj,%(j)}
M Sw g1 £i%)

Introducing a constant to produce maximum amplitude equal to one,

M 2 M
MO 2 Lw {{Zj=1 fiein} — X3 fj,%(j)}
I b
M Zw i1 £k

and simplifying this expression, we get

2
L {{Zfil fiew} =ik f,.,%(j)}
(M- 152, 252 £3 )

Expression (2.1.10), known as the energy-normalized crosscorrelation sum (ECC), again
looks computationally attractive with only M N operations. Nevertheless, as in the unnor-
malized crosscorrelation sum (2.1.5), we can achieve the same order of multiplications by
writing the normalized crosscorrelation sum (2.1.9) as

ECC(’”trial ) tO) =

(2.1.10)

2 M Fi) o fum }}
NCC(vpri, tg) = —o <=t ’ : (2.1.11)
riab 00 MM — 1) ;{; /3w i kg /walg’t(k)

Expressions (2.1.7) and (2.1.11) favor our goal of selecting crosscorrelations, something that
is not possible when CC and NCC are written in the forms (2.1.6) and (2.1.10), with a
computational effort that is similar to that achieved for these two latter expressions.

Finally, a widely used coherency measure is the normalized output-to-input energy
ratio (Neidell and Taner, 1971), or semblance coefficient SC, given by

2
S {9 Fitt)}
MY 355 fi)
10

Sc(vtrial) tO) =

(2.1.12)



The semblance coefficient is related to the normalized crosscorrelation, in its energy-normalized
form (2.1.10), by

M x SC -1
ECC=—nr——. 2.1.13
M1 ( )
This expression shows that the semblance coefficient SC' and the energy-normalized cross-
correlation sum ECC are simply biased versions of one another.

Several observations can be made about these coherence measures. First, they all are
based on the implicit assumption that amplitude does not change with offset. Sarkar et al.
(2000) have shown that the coherence measure can degrade in the presence of large ampli-
tude variations, particularly where the wavelet polarity changes with offset; however, the
simplicity of this model of constant amplitude with offset makes these coherence measures
robust against noise. Second, selective-correlation velocity analysis is based on expressions
(2.1.3) and (2.1.9) because it allows us to select the individual crosscorrelations that we wish
to include in the sum. From the energy-difference based expressions (2.1.6) and (2.1.10),
in contrast, the selection of crosscorrelations is not possible. Finally, below I compare the
performance of selective-correlation sum to that of several coherence measures, especially
with that of semblance coefficient. According to resolution tests made by Neidell and Taner
(1971) with noise-free synthetic data, the semblance performed better than the crosscor-
relation sum. It should be pointed out, however, that since the semblance coefficient is
proportional to the energy-normalized crosscorrelation sum [expression (2.1.13)], the res-
olution for both coherence measures cannot be significantly different. In fact, the only
difference between expressions (2.1.10) and (2.1.12) is the term Ej”il fj,%(j) in the numer-
ator of energy-normalized crosscorrelation sum. Thus, the semblance coefficient includes
autocorrelations, whose contribution to the spectrum is nothing but a DC term, which gives
no information about velocity.

Now, I proceed to describe the method of selecting the crosscorrelations that are in-
cluded in the summation.

2.2 Parabolic approximation

To select crosscorrelations based on the differential moveout of events, we first assign
a numerical significance value to each pair of traces to be crosscorrelated. As explained in
the previous section, the total number of crosscorrelations in a CMP gather with M traces,
for each trial velocity v; and time to, is M (M — 1)/2. We will assign a significance value to
each of these crosscorrelations. The procedure should assign values close to zero for pairs
of traces with relatively small differential moveout, and large values for those with larger
differential moveout. Such values need only characterize moveout sufficiently well for our
purpose of selection of crosscorrelations.

For several reasons, the selection process uses a parabolic approximation to the hyper-
bolic differential moveout rather than the hyperbolic expression itself. First, at best any
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choice of hyperbolic moveout can be exact only if moveout is exactly hyperbolic (which
it never is). Moreover, since the hyperbolic moveout varies with the zero-offset time and
stacking velocity, any parameters that specify hyperbolic moveout can apply to just one
event and would not hold for the others. The parabolic approximation, in contrast, while
not exactly representative of the moveout, describes a trend in moveout from short to long
offset that is unchanged for all zero-offset times and quadratic parameters. Furthermore,
the parabolic description of differential moveout is simpler than the hyperbolic one — no
square roots need be computed.

Starting with the normal moveout equation,

2

x4
t2 =% + U—; (2.2.14)

where t; is the two-way arrival time associated with receiver j, to is two-way normal-
incidence time, z; is offset from source to receiver J, and v is the stacking velocity. This
expression can be also written as

22 1/2
— J
t; =t (1 + m) . (2.2.15)

Then, for small offset, approximation using a truncated Taylor series of first order gives

ti = to (1 + 2v2t8> to+ 202ty’ ( )

which is a parabola in z;. For the jth and kth traces, with j > k, the parabolic approxi-
mation for differential moveout, Atji, is

2 2

X T

4 i k
Atjk =t; -t =ty + 2’02to (t0+ )1

or

22— g2

At~ 25,
ik 2v2t,

Approximation (2.2.17) for differential moveout is zero when J = k and reaches its maximum
when the offset between traces j and k is maximum, that is, when xj is the shortest offset
To, and z; is the maximum offset x,,. Since we are interested in a set of relative values
to compare against a predetermined threshold, let us normalize these values over the range

zero to one. To do so, we divide expression (2.2.17) by

(2.2.17)

(‘t?nax - ‘T%)
21)2110 ’
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Differential moveout - Exact hyperbolic

Trace number k 00 Trace number j

F1G. 2.1. Normalized values of the exact hyperbolic differential moveout for a
hypothetical reflection in a CMP gather.

giving
z2 — z2
Sip = —i—F (2.2.18)
’ x?nax - x%

The quantity Sk, which ranges from zero to one, is proportional to the approximated
differential moveout. Let us define this dimensionless quantity, for traces j and k, as the
significance value.

Expression (2.2.18) is independent of velocity and normal incidence time, a significant
advantage over the expression we would have obtained if we had computed moveout from
the hyperbolic equation. It also characterizes sufficiently well, for the purpose of discarding
crosscorrelations, the relative moveout of reflections, between any pair of traces in a CMP
gather.

We can use simple numerical calculation to compare the exact differential moveout
and that approximated by expression (2.2.18). Consider the moveout for reflection from
a single horizontal reflector below a homogeneous layer with velocity 2 km/s and layer
thickness 1 km. The modeled acquisition parameters are: cable length 2250 m, ten receivers,
and distance between receivers 250 m. Figure 2.1 shows the exact differential moveout of
the reflection, for a normalized range zero to one, as a function of the two trace indices
j and k. The horizontal plane of the figure depicts all possible two-trace combinations.
Since, zero-lag crosscorrelations (along the moveout trajectory) between traces j and k,
and between k and j are the same, only crosscorrelations with j > k considered. The
vertical dimension shows the normalized values of differential moveout. A similar plot for
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Differential moveout - Parabolic approximation

Trace number k 00 Trace number j

F1G. 2.2. Normalized values of the parabolic approximation to differential moveout
(i-e., significance value) for any reflection in a CMP gather.

the parabolic approximation is presented in Figure 2.2. Based on how well the moveout
of the parabolic trajectory approximates that of the hyperbolic trajectory, we expect that
expression (2.2.18) provides a convenient approach to attaching relative importance to each
crosscorrelation through the assigned significance value Sjr. Although it is suboptimal as
compared with using hyperbolic moveout for any specific event, it is preferable in that it
accomplishes generally what one wishes at low cost, independent of details of zero-offset
time and stacking velocity, for every reflection in a CMP gather.

Although, I have chosen a parabolic approximation of differential moveout as a tool
in selecting crosscorrelations, any other method that somehow describes the differential
moveout could be used. The choice of selection method is just a detail toward our goal of
excluding certain crosscorrelations from the calculation of the velocity spectra.

2.3 Selective-correlation sum

2.3.1 Method

Figure 2.3 is a schematic representation showing all trace pairs used in conventional
crosscorrelation sum, in which all crosscorrelations are summed. The ordinate in the figure
represents trace number k, and the abscissa trace number J for trace pairs that might be
crosscorrelated. Since only trace pairs with indices k < J are considered, the triangular re-

14
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Fic. 2.3. Cartoon indicating those combination of traces j and k whose crosscor-
relations are used in the conventional crosscorrelation-sum method (shown in brick
pattern). The trace combinations of all possible crosscorrelations (100%) will be used
in the sum.
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FiG. 2.4. Cartoon indicating those combination of traces j and k whose crosscor-
relations are used in the selective-correlation sum method (shown in brick pattern)
and those combinations that are excluded from the sum (shown in dotted pattern).
(100-c)% of the crosscorrelations are summed.
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gion shown by the brick pattern of shading depicts that all the trace pairs whose crosscorre-
lations are included in the sum. For conventional crosscorrelation sum, as shown here, 100%
of the crosscorrelations are included. In a similar schematic for the selective-correlation sum
(Figure 2.4), the brick-pattern region occupies a smaller portion of the lower triangular re-
gion for which k < j; the smaller the percentage of crosscorrelations used, the smaller the
region showing trace pairs included in the computation. As depicted in (Figure 2.4), only
those trace pairs with trace indices such that the associated offsets satisfy the inequality
Sjr > T are used in the summation. Here, 7 is a user-specified threshold. The larger the
threshold value 7, the larger the percentage « of crosscorrelations that are excluded from
the computation of coherence. Discarding o percent of the crosscorrelation leaves (100-a))%
of the crosscorrelations in the summation. Thus, for the selective-correlation sum method,
the lower bound of the trace index J has been increased from 2 to jo, > 2 in conventional
crosscorrelation sum [expression (2.1.5)], and the upper bound of trace index k is now the
function k. (j) of the trace index j. Therefore, the only difference between formula (2.1.3)
and the one for selective-correlation sum will be in the lower limit for the sum over j and
the upper limit for the sum over k.

The selective-correlation sum C'Cy, is then given by

M kG)
CCse(virianto) =) D~ 3" fiet) Fruthys (2.3.19)
w j=j07 k=1

where the summation limits jo, and k: (7) are those depicted in F igure 2.4. In the appendix,
I derive expressions for these limits, for a given threshold value 7, under the assumption of
equidistant offsets in a CMP gather.

Analogously, for the normalized version of selective-correlation sum, the only change
from expression (2.1.9) is in the limits on the sums over J and k. Those new limits are the
same values jor and k. (j) as in expression (2.3.19).

Now, I exemplify, with synthetic model data, the features seen in the schematic repre-
sentations of Figures 2.3 and 2.4. Figure 2.5a shows a ten-trace synthetic CMP gather for
the same subsurface model parameters used to generate Figure 2.1. The significance values
for the offsets used here are plotted on the two-dimensional contour plot in Figure 2.5b.
Figure 2.5b depicts a matrix of trace number k versus trace number j, where the asterisks
(*) indicate the trace combinations that yield the 45 crosscorrelations involved in the cal-
culation of the velocity spectra. The shading indicates the significance value assigned by
the parabolic approximation to each of these crosscorrelations. As seen in this plot, larger
significance values (darker shades) are associated with larger differential moveout. For ex-
ample, the crosscorrelation between traces 1 and 2, has an assigned value of Sk = 0.01;
between traces 1 and 5, it is Sjr = 0.19; and between traces 1 and 10, which corresponds
to the largest differential moveout, Sjk is unity. Now, suppose we discard crosscorrelations
for which the associated significance values are smaller than a specified threshold. For in-
stance, if we wished to use only those crosscorrelations with associated Sji values larger
than, say 0.44, only 18 crosscorrelations out of the 4% will be considered (Figure 2.6b),
which represents the 40% percent of the total number of crosscorrelations.

16



Offset (km) Trace number |
2 4 6 8

0.8 0 1 2

-
[=]

Time (s)
w
A A
A

Trace number k
=2 N w & U O ~ [{]

18

(a)

FI1G. 2.5. (a) Synthetic CMP gather with ten traces; (b) trace number-versus-trace
number plot indicating with asterisks (*) the trace combinations of all possible cross-
correlations (i.e., all those for which j > k). The shading indicates the significance
value S;; assigned by the parabolic approximation.
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Fic. 2.6. (a) The same CMP gather as in Figure 2.5; (b) selected crosscorrelations
for values of S;; > 0.44, leaving only 40% of crosscorrelations to be used in the
computation of coherence.
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2.3.2 Computational effort and implementation

A common way of implementing the unnormalized crosscorrelation sum is through use
of expression (2.1.6) instead of expression (2.1.5) because of the small number of operations
involved. Although expression ( 2.1.5) seems to need order M2N operations, when written as
in expression (2.1.7) the same order of operations as in expression (2.1.6), M N, is required.
In this form, as traces are read into memory they are multiplied with an accumulating sum
of traces that had previously been read into memory. The velocity spectra computation
using conventional unnormalized crosscorrelation sum, in the form of expression (2.1.7),
may be summarized in the following pseudo code:

For v =wvy,...,v,
GNMO(t, z) = apply NMO correction to the CMP gather with velocity v
For it = 1,..., ntout Jontout = number of output time windows.
Fsym =GNMO(it, 1);
F, acc — 0;
Forj=2...,.M %M = number of traces in the CMP.

F = GNMO(it, j);
Fce :Facc+F*Fsum;
Fsum = Psum + F;
end
SPECTRA(it, v) = Fipe:
end
end

Selective correlation sum can be implemented in much the same way using expression
(2.3.19). The following pseudo code shows an implementation of the selective-correlation
sum approach using the indices jo, and k; (j),

Compute jo, for the given threshold 7

Forv=wv,...,v,
GNMO(t, z) = apply NMO correction to the CMP gather with velocity v
For it =1,... ntout Yontout = number of output time windows.
Foum = sum{GNMO(it, 1 : k; (o, ))};
Facc = 0;
For j = jor,...,.M — 1 %M = nunber of traces in the CMP.

F = GNMO(it, 5) ;
Foce = Foce + F*Fsum;
Fsum = Foum + sum{GNMO(it, ke(3) +1: k(G + 1)}
end
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SPECTRA(lt, 'U) - Facc;
end
end

2.4 Velocity resolution

2.4.1 Single, noiseless reflection

Let us now illustrate, with noise-free synthetic data, how this velocity-spectra process
alters the resolving power of velocity estimation. The first model considered consists of a
single horizontal reflector below a homogeneous layer with velocity of 4.5 km/s and layer
thickness of 6.75 km. Figure 2.7a shows a CMP gather for cable length 3150 m, 64 re-
ceivers, and distance between receivers of 50 m. The peak frequency of the Ricker wavelet
in the data is 12.5 Hz. (All tests with synthetic model data presented in this thesis are
modeled using a Ricker wavelet. I employ the value of dominant or peak frequency of the
Ricker wavelet to characterize the frequency content of the data). Figure 2.7b shows the
corresponding velocity panel computed using the conventional unnormalized crosscorrela-
tion sum for all possible crosscorrelations. Notice the spread of strong spectral amplitude
across the velocity panel, from 3.5 km/s all the way to the right end of the velocity panel
at 6.5 km/s. The smearing, here, is produced by a combinations factors: relatively low
frequency, high velocity, and large depth of the layer relative to the spreadlength. This
smearing suggests large uncertainty in the velocity picking.

Figure 2.8a is the same velocity panel as in Figure 2.7b, with 100% of the cross-
correlations included (henceforth, 100% of crosscorrelations means the conventional cross-
correlation sum with all crosscorrelations included in the sum; any reduced percentage
means that the approach of selective-crosscorrelation sum is used with that percentage of
crosscorrelations summed). The remaining velocity plots were obtained using 50% of the
crosscorrelations (Figure 2.8b), 25% of them (Figure 2.8c), and 10% of them (Figure 2.8d).
As percentage of crosscorrelations summed decreases, the apparent resolution in picking a
velocity for the reflection event of Figure 2.7a improves.

Although the same shaded contour scale is used for all four plots, the choice of shading
scale can often bias one’s interpretation. To better see the dependence of coherence on the
percentage of crosscorrelations used, Figure 2.9 shows plots of coherence curves — plots of
UC,. as a function of trial velocity vy — at fixed incidence time %, in particular the time
of the modeled reflection. Shown in Figure 2.9 are coherence curves at to = 3 s, extracted
from Figure 2.8, with each curve normalized to a peak amplitude of unity. We can make two
observations from this plot: First, the lower the percentage of summed crosscorrelations, the
sharper the peak of the curve, and, second, percentages lower than 100% yield (undesirable)
side lobes with negative values. For trial velocities that depart significantly from the correct
one, the trial moveout trajectory can cross from, for example, the peak of the event’s
wavelet at small offset to a trough at large offset. Thus some contributing crosscorrelations
will have negative values. This also happens for the conventional approach of summing
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F1G. 2.7. (a) Synthetic CMP gather with a reflection single event; (b) velocity panel
for the synthetic data, computed using a conventional method. The broad region of
large computed coherence (i.e., dark shading) indicates potential for large uncertainty
in picking stacking velocity.

all possible crosscorrelations, but in the conventional approach positive values dominate in
the crosscorrelations of traces with small differential moveout that we would have excluded
in the selective-correlation method. Later, we will consider implications of these negative
coherence values for velocities away from the correct ones.

2.4.2 Two noiseless interfering events

Because of this improvement in velocity resolution, the selective-correlation sum method
can aid in separating closely interfering events, as occurs with neighboring primaries and
multiples. Figure 2.10a shows a CMP gather containing two events with the same zero-offset
arrival time of 2 s, but different moveout velocities of 4.5 km/s and 3.5 km/s, respectively.
Only at offsets larger than 2 ki, is the difference in NMO of the two events observable. In
this example, the peak frequency of the Ricker wavelet is again 12.5 Hz. Figure 2.10b shows
the velocity panel associated with these data, computed using the conventional crosscorre-
lation sum method. Looking only at the velocity plot is impossible to distinguish the two
events present in the data, and the most probable velocity pick would be around a value
of 4 km/s. The selective-crosscorrelation sum (25%) allows separation of the two maxima,
yielding good estimates of the velocity for each reflection (Figure 2.11b).

Perhaps, however, this improvement is only apparent, dependent on the choice of shad-
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Fic. 2.8. Velocity panels computed using:(a) conventional crosscorrelation sum (100
% of crosscorrelations included) and using selective-correlation sum with the percent-
ages (b) 50%, (c) 25%, (d) 10%. All four plots use the same contour-shading scale,
with darker shading for higher coherence amplitude.
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FI1G. 2.9. Coherence curves for the conventional crosscorrelation sum (100%), and
selective-correlation sum for the percentages 50%, 25%, and 10%. The vertical line

indicates the correct stacking velocity.
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F1G. 2.10. (a) Synthetic gather with two interfering events, and (b) velocity panel for
the data computed using the conventional unnormalized crosscorrelation sum method.
From this velocity panel, it is impossible to identify the presence of two events (in
fact, as shown in Figure 2.12, the data have only a single peak).

22



Offset (km) Velocity (km/s)

0 1 2 3 4 5 6
18 187
O
° 2 2! . gy,
=
2.2 | 22k .
(a) (b)

F1G. 2.11. (a) Same CMP gather as in Figure 2.10a; (b) velocity panel computed
using selective-correlation sum using a 25% of crosscorrelations.

ing scale used for the contour plots. The coherence curves for zero-offset time of 2 s, in
Figure 2.12, reveal the substantial improvement in resolution when just the 25% of the
crosscorrelations with largest associated differential moveouts are used in the sum. The
standout of the two peaks is greater yet when only 15% of the crosscorrelations, with large
differential moveout, are used in the sum (Figure 2.13). Any percentage between 100% and
15% yields intermediate shapes between those of the two curves. Based on many tests with
synthetic data, significant improvement is achieved for percentages of 50% or less.

2.4.3 Comparison with other coherence measures

As mentioned above, Neidell and Taner (1971) suggest that the semblance coefficient,
expression (2.1.12), offers better resolution than do other coherence measures. Figure 2.14
shows coherence curves generated using the conventional crosscorrelation sum (solid line),
the selective-correlation sum for 25% of crosscorrelations (dashed-dotted line), and the
semblance coefficient (dashed line). The semblance coefficient detected the existence of two
events, giving a better result than that of the conventional crosscorrelation sum, yet its
peak locations are biased; that is, the velocities at the peak locations differ from the correct
values. This improvement in velocity resolution achieved by the semblance coefficient is
small when compared to that of the selective-correlation sum, for which the peak locations
are unbiased.

Another way to increase velocity resolution is through use of optimum trace weights
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F1G. 2.12. Coherence curves for two interfering events. Conventional crosscorrelation
sum (100%) and selective-correlation sum (25%). The vertical lines indicate the
correct velocities for the two events.
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F1G. 2.13. Coherence curves for two interfering events. Conventional crosscorrelation

sum (100%) and selective-correlation sum (15%). The vertical lines indicate the
correct velocities for the two events.
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FIG. 2.14. Coherence curves for two interfering events using conventional crosscorrela-
tion sum, selective-correlation sum (25%), and semblance. The vertical lines indicate
the correct velocities for the two events.

such as those produced by Schoenberger’s multiple-suppression method. In his method, a
weight is assigned to each data trace, prior to stacking, based on least-squares optimiza-
tion. CMP stacking with these weights constitutes a stacking filter designed to minimize
the energy in stacked multiples, based on their frequency content and residual moveout,
after data have been NMO-corrected to align primaries. This results in better multiple
attenuation than does the conventional stack, in which traces are equally weighted. For
improving resolution in velocity analysis, the weights produced in Schoenberger’s method
are applied directly to the traces in the CMP gather prior to performing conventional (i.e.,
100%) velocity analysis.

The weights designed for optimum rejection of the interfering event with larger moveout
in Figure 2.10a, and preservation of the other, are shown in Figure 2.15. These weights
are optimum for the following set of parameters: Ricker-wavelet peak frequency 12.5 Hz,
primary velocity 4.5 km/s, multiple velocity 3.5 km/s, zero-offset reflection time 2s, ratio of
rms amplitude of random noise to peak amplitude of multiple 0.3, maximum offset 2.5 km,
offset increment 50 m, and 50 receivers. As seen in this figure, the procedure gives relatively
more importance to long-offset traces than to short- and intermediate-offset ones. Applying
the weights to the traces in the CMP gather of Figure 2.10a, and then performing velocity
analysis using conventional crosscorrelation sum produced the coherence curve shown as
the dashed line in Figure 2.16. The solid line pertains to the conventional velocity-analysis
method applied to traces with uniform weights. Indeed, with the use of optimum weights,
resolution is improved when compared with that of either conventional crosscorrelation sum
or semblance coefficient (Figure 2.14), but still selective-correlation sum (Figures 2.12 and
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FIG. 2.15. Optimum stacking weights used prior to conventional velocity estimation
for the synthetic CMP gather with interfering events, shown in Figure 2.10a.

2.13) shows more standout of the two maxima. Note, as in the result using semblance
coefficient (Figure 2.14), the small bias in velocity associated with the peaks in the dashed
coherence curve in Figure 2.16.

The velocity-resolution enhancement method of selective-correlation sum and that
based on optimum trace weights are similar in that both apply weights to crosscorrelations.
These crosscorrelation weights in selective-correlation sum are zeros and ones, whereas in
the optimum-weights approach they are the result of multiplying the stacking weights of in-
dividual traces involved in each crosscorrelation. A difference between these two approaches
is that because the weights are optimized for a specific set of problem parameters, the result
for optimum weights is fixed by the weights used. Although the selective-correlation-sum
approach is not based on an optimization scheme, it provides us with a knob that we can
fully open (100 % of crosscorrelations, equivalent to conventional crosscorrelation sum) or
close until a desired percentage of crosscorrelations is reached (e.g., 50%, 30%). Also, its res-
olution performance is mantained for a wide range of primary reflection times and stacking
velocities. Aside from a scale-factor change in the coherence curves, the change as the knob
is turned is that the lower the percentage used, the higher the resolution. In principle, one
could go from including all crosscorrelations to the extreme of including only one, that being
the correlation between the shortest and longest offset traces. For field data, however, the
extreme of including only one crosscorrelation is unacceptable. In the next chapter, I show
that in order to maintain the stability of selective-correlation velocity analysis in presence of
random noise and static distortions, 20% or more of crosscorrelations should be included in
the sum. Also in that chapter, through further tests with synthetic data I examine factors
that influence velocity estimation by the conventional and the selective approaches.
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lines indicate the correct velocities. u
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Chapter 3

FACTORS THAT INFLUENCE VELOCITY ESTIMATES

The quality of velocity estimation from reflection seismic data is influenced by many
factors. Among the most important are spreadlength as it relates to the moveout and
bandwidth of the data, random and coherent noise contamination, statics distortions, inter-
fering primary events, and relative strength of primaries and multiples. Here, I compare the
performance of velocity analysis, using a conventional method and the selective-correlation
sum, applied to synthetic CMP data in presence of these factors. In addition, I show that
reducing the fold of a CMP gather (by, say deleting every other offset), in order to reduce
the number of crosscorrelations, is inferior to use of selective-correlation sum.

3.1 Spreadlength

As is well recognized in practice, for given reflector depth and moveout velocity, reso-
lution in velocity analysis increases with spreadlength. The relationship between velocity
resolution and offset can be established by starting with the NMO equation

2 = 2 + 2% /2, 3.1.1
0

where ¢ is the hyperbolic traveltime, tg is the zero-offset traveltime, z is offset, and v is
velocity. Taking the partial derivative with respect to velocity in expression (3.1.1), we get

From this, the velocity variation év can be expressed as function of time, time variation 4t,
velocity, and offset by

3
vt
v =~ —?-615. (3.1.2)
Expression (3.1.2) implies that, for given time error 6t on, say, the far-offset trace, the longer
the offset the better the velocity resolution. (This expression also supports the familiar be-
havior that velocity resolution decreases with increasing NMO velocity and reflector depth

because, at fixed z, t increases with reflector depth). Practical issues, however, typically
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FIG. 3.1. Synthetic CMP gather with three primary reflections and neighboring
multiples.
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F1G. 3.2. Velocity panels for the CMP gather in Figure 3.1 with different
spreadlengths, using conventional crosscorrelation sum.

limit the ratio of spreadlength-to-reflector depth before the assumption of hyperbolic reflec-
tions breaks down, thus further complicating the velocity-estimation problem.

The following example shows the influence of spreadlength on velocity estimation in
the presence of closely interfering events. Figure 3.1 contains a synthetic CMP gather with
three pairs of primary and multiple reflections at the same zero-offset two-way traveltimes of
the primaries (0.5, 1.0, and 1.5 s). The Ricker wavelet in the data has peak frequency of 20
Hz, and the maximum offset is 3000 m. Figures 3.2 and 3.3 show velocity panels computed
using a conventional method and the selective method (both unnormalized) for 25% of
crosscorrelations, respectively, for spreadlengths of 3000, 2000, and 1750 m. Although for
spreadlength of 3000 m the maxima are sharper for the selective method (Figure 3.3), both
methods resolve the two maxima corresponding to primaries and multiples at the three zero-
offset times. For the range 0 - 2000 m, the two coherence maxima produced by conventional
method (Figure 3.2) start to join one another at 1 s, and are completely indistinguishable at
1.5 s, while the selective method (Figure 3.3) still generates two separate maxima even for
the deeper events. For the shortest spreadlength shown here (0 -1750 m), the conventional
method (Figure 3.2) fails to separate the primaries and multiples reflections, even for the
shallower ones at 0.5 s. For this spreadlength, the selective method (Figure 3.3) produces
separate maxima except for the events at 1.5 s, for which differential moveout is so small
that the events practically overlap over the entire spreadlength.

This example demonstrates the loss of velocity resolution for smaller spreadlengths and
later reflections. That loss of resolution can reach the point of showing only one maximum
for two closely interfering events. This resolution loss and biasing of the maxima, however,
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F1G. 3.3. Velocity panels for the CMP gather in Figure 3.1 with different
spreadlengths, using selective-correlation sum (25%).

can be substantially reduced by using the selective-correlation sum method for computation
of the velocity panel.

3.2 Frequency content

Expression (3.1.2) indicates how the dependence of velocity errors on errors in reflection
times varies with spreadlength, NMO velocity, and reflection time. Even when the reflection
times have no error, however, the bandlimited wavelet in the seismic data for fixed to,
maps differential moveout into a coherence function of some breadth as a function of trial
velocity. The breadth of that coherence function, for fixed spreadlength, is larger the lower
the dominant frequency of the data wavelet. Equivalently, velocity resolution is better for
high- than for low-frequency data.

As mentioned in Chapter 2, we can use the dominant or peak frequency of the Ricker
wavelet used in the modeling of the synthetic data to characterize the frequency content in
the data.

Figures 3.4 through 3.7 are plots of coherence curves at top = 2 s, for the same two
interfering events (e.g., primary and multiple) simulated in the CMP gather shown in Figure
2.10a, but for dominant frequency in the wavelet of 12.5, 14, 18, and 25 Hz, respectively. The
bias in the coherence curve for the conventional method (100%) is so large when the peak
frequency in the modeled data is 12.5 Hz that only one peak is identifiable, but located at a
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FiG. 3.4. Coherence curves for interfering events of Figure 2.10a with peak
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F1c. 3.5. Coherence curves for interfering events of Figure 2.10a with peak
frequency of 14 Hz.
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FIG. 3.6. Coherence curves for interfering events of Figure 2.10a with peak
frequency of 18 Hz.

wrong velocity. For this same peak frequency, the selective-correlation method (25%) yields
unbiased peaks for the primary and multiple with good standout. Two different peaks,
although at biased locations, start to show up in the coherence curve corresponding to the
conventional method (100%) when the peak frequency of the modeled data is increased
from 12.5 to 14 Hz (Figure 3.5). At this peak frequency, the selective method, using 25%
of crosscorrelations, again shows unbiased peaks but with greater standout than in the
previous example. Figure 3.6 contains the coherence curves, for peak wavelet frequency of
18 Hz, in which both methods produced unbiased peaks. The selective method shows a
complete separation of the peaks indicating the correct velocities for primary and multiple,

while the conventional method (100%) exhibits a standout comparable to that seen for the

selective method when the dominant frequency in the data is only 12.5 Hz (Figure 3.4).

This suggests that the conventional approach requires higher-frequency data in order to
achieve the velocity resolution of the selective-correlation sum approach.

Similar results are shown in Figure 3.7, for peak frequency in the Ricker wavelet of
25 Hz. In general, the selective-correlation sum method produces higher resolution results
compared to that of conventional method, for data with the same frequency content.

3.3 Strong multiples

Primaries typically have smaller moveout than do multiples at comparable zero-offset
time, implying that velocity can be used as a way to discriminate between primaries and
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F1G. 3.7. Coherence curves for interfering events of Figure 2.10a with peak
frequency of 25 Hz.

multiples. If the velocity function for primaries is used in NMO correction, that correct
aligns the primaries while the multiples are undercorrected. CMP stacking will then preserve
the primaries while attenuating multiples. Picking the velocity of primaries from the peaks
in velocity spectra, however, can be a difficult task in the presence of multiples that interfere
closely with primaries. As we have seen in examples that include multiple-like features (e.g.,
Figures 2.10a and 3.1), selective-correlation velocity analysis can improve the prospects for

picking the velocity function corresponding to primaries because of its higher resolving
power.

The examples described in Figures 2.10a and 3.1 dealt with primaries and multiples of
the same signal amplitude. In coherence curves of conventional velocity estimation, however,
strong-amplitude multiples can swamp nearby weaker primaries. Figure 3.8 shows three
CMP gathers, each with four reflections and nearby multiples. The ratio shown beneath
each CMP gather is the ratio of the amplitude of primary to that of multiple. The CMP
gather on the left has primaries and multiples with the same strength. For the gather in the
middle the amplitudes of multiples are twice that of nearby primaries, and for the gather on
the right multiples amplitudes are three times those of primaries. The corresponding velocity
spectra for the CMP gathers of Figure 3.8, computed using conventional crosscorrelation
sum, are shown in Figure 3.9, and those computed using selective-correlation sum using 25%

of crosscorrelations are shown in Figure 3.10. Selective-correlation sum separates primaries
and multiples even when the amplitude of multiple is much stronger than that of primaries,
thus aiding interpretation of primary stacking velocities. The conventional correlation sum
(Figure 3.9) is so dominated by the multiples when their amplitudes are stronger than those
of primaries that no peak may be identified for later primaries. Even when amplitudes of
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FiG. 3.8. Synthetic CMP gathers with different ratios of primary-to-multiple
amplitude.

primaries and multiples are equal, no separation is evident on the deeper events.

To more closely assess these results, in Figure 3.11 are plots of velocity curves for
normal incidence time t; = 1.2 s for amplitude ratio of multiple to that of primaries, 1:2.
As before, the vertical lines indicates the correct stacking velocities. The coherence curve for
the conventional method is dominated by the presence of the multiple to the extent that the
primary event shows no evidence of a peak in the curve. The selective method, in contrast,
shows two clearly defined and well separated features, the smaller one corresponding to the
velocity of the primary.

3.4 Noise-contaminated data

Additive noise in data distorts the time shifts in the crosscorrelations used in compu-
tation of velocity spectra, thus reducing the stability of velocity estimates. Of particular
concern for the selective-correlation approach is the possibility that by discarding many
crosscorrelations we may be compromising the stability of the velocity estimates. Here, we
introduce additive bandlimited random noise and compare the performances of conventional
and selective-correlation methods. In Chapter 4, I will give an explanation of the results of
these tests.

Figure 3.12 shows a single-event CMP gather with uncorrelated, random noise bandlim-
ited to the same passband as the signal. For this gather SNR =~ 0.5, where signal-to-noise
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F1G. 3.9. Velocity panels, for different ratios of primary-to-multiple amplitude,

using conventional crosscorrelation sum.
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F1G. 3.10. Velocity panels, for different ratios of primary-to-multiple amplitude,

using selective-correlation sum (25%).
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F1G. 3.11. Coherence curves at ty =1.2 s, extracted from Figures 3.9 and 3.10, for a
ratio of primary-to-multiple amplitude of 1:2.

ratio (SNR) is computed as the ratio of the peak amplitude of the reflection signal to the
root-mean-squared (rms) amplitude of the noise. The reflector model and data parameters
in this example are the same as those in Figure 2.7a. F igure 3.13 shows the correspond-
ing coherence curves for conventional crosscorrelation sum and selective-correlation sum
using 25% of the crosscorrelations, and Figure 3.14 shows coherence curves for a similar
CMP gather but different realization of added noise. In both figures, note that for the
selective-correlation sum the peak of the curve is again sharper than that of the curve for
conventional crosscorrelation sum, implying higher resolution. Note also that, in each fig-
ure, both peaks are located at about the same velocity (which, in both Figures 3.13 and
3.14, is not the correct value), suggesting that accuracy of the two methods is comparable.
In the example of Figure 3.14, the velocity at peaks of both curves are far from the correct
velocity, indicated by the vertical line.

In numerous other similar tests, I have observed that the peaks in the curves for both
methods coincide when the percentage used in the sum is not too small (say, 20% or higher).
Moreover, the location of the velocity peak is strongly governed by crosscorrelations for
pairs of traces with large differential moveout. Because the selective-correlation method
includes trace pairs with relatively large differential moveout, it includes those trace pairs
that dominate the contributions in conventional velocity analysis. This argument supports
the observation that the robustness of the selective-correlation-sum method in the pres-
ence of added uncorrelated noise is comparable to that of conventional analysis while the
peaks for the selective-correlation method remain sharper than those when 100% of the
crosscorrelations are used.
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FiG. 3.12. CMP gather with the same single reflection event of Figure 2.7a, with

bandlimited random noise added such that SNR

reflection.
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F1G. 3.13. Coherence curves, for data with SNR ~ 0.5, using conventional crosscor-

relation sum (100%) and selective-correlation sum (25%). The vertical line indicates
the correct velocity.
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F1G. 3.14. Similar plot of coherence curves as that in Figure 3.13, but for a different
realization of added random noise (again with SNR = 0.5).
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F1G. 3.15. Same CMP gather as in Figure 2.10a with interfering events, now with
additive noise such that SNR ~ 1.
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F1G. 3.16. Coherence curves for the CMP data of Figure 3.15 with two interfering
events and SNR = 1. The vertical lines indicate the correct velocities.

Figure 3.15 shows another noise-contaminated synthetic CMP gather, but now two in-
terfering reflection events are contaminated by the added bandlimited random noise (SNR
~ 1, here). Figure 3.16 shows the coherence curves for the conventional and selective-
correlation methods. Although the peaks are at wrong velocity locations, the selective
method indicates the presence of two events whereas the conventional method shows only
one somewhat smoother peak, also at an incorrect velocity. In this example, the relative
error in the primary velocity, picked from the higher velocity peak of the coherence curve
computed using selective-correlation sum (25%), is about 8%. The coherence curve com-
puted using a conventional method shows no clearly distinguishable peak associated with
the primary velocity. Again the velocity errors are dominated by timing differences on
crosscorrelations of trace pairs with larger differential moveout. The errors in picking both
the ‘primary’ and ‘multiple’ have the same sign, with larger error for the event (primary)
with the larger associated stacking velocity.

3.5 Statics-contaminated data

The errors introduced by the presence of added noise result from perceived timing
errors in the crosscorrelation process. Static time distortions in data similarly distort the
time shifts obtained by crosscorrelation. Figure 3.17 shows a CMP gather with a reflection
event containing static distortions (Gaussian random) with a large standard deviation of
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F1G. 3.17. Synthetic CMP gather containing a rflection at to = 3 s, with random
static time distortions (standard deviation = 80 ms) applied.
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F1G. 3.18. Coherence curves, for the event in Figure 3.17, computed using
conventional crosscorrelation sum (100%) and selective-correlation sum (25%).

80 ms. A 5-point lateral running average was applied to the random sequence of time
distortions to introduce lateral correlation in the simulated statics. The model for this
example is a single horizontal reflector below a homogeneous layer with velocity of 3.5 km/s
and a layer thickness of 5.25 km. The cable length is 2500 m, group interval 50 m, number
of channels 50, and peak Ricker-wavelet frequency 12.5 Hz. Figure 3.18 shows the velocity
curves for the statics-distorted reflection, again using conventional crosscorrelation sum, and
selective-correlation sum for 25% of crosscorrelation. For these data, NMO is comparable
to the sizable statics distortions imposed. As seen in F igure 3.18, the peaks in the velocity
curves are biased toward velocities that, for this realization of statics, are about 500 m/s
higher than the correct velocity. Again, as happened for tests with added noise, the peaks
of the coherence curves computed using both the conventional and the selective-correlation
method coincide, but at this wrong velocity value. Also, as with added noise, the velocity
peak for 25% is narrower than that for 100%, but both are broader than the peaks for data
not contaminated by noise or statics distortions (Figure 3.19). All these observations hold
for other tests with statics-contaminated data (not shown here), the only essential difference
being a change of the location of the peak with each different realization.

Static distortions have action on coherence curve for CMP data with two interfering
events that is similar to that seen when such data were contaminated by added random noise
(Figure 3.16). The result of contaminating the data in Figure 2.10a with laterally smoothed
static shifts is shown in Figure 3.20. Figure 3.21 shows the corresponding velocity curves
in which, again, the solid curve is for the conventional method while the dashed one is
for the selective method. The conventional method produced only one maximum near the
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F1G. 3.19. Coherence curves, for the event in Figure 3.17, but with no contamina-
tion by noise or static distortions, computed using conventional crosscorrelation sum
(100%) and selective-correlation sum (25%).

velocity of the higher velocity event (biased toward a velocity between those of the primary
and of the multiple). Fortuitously this peak coincides with one of the maxima of the curve
computed with the selective-correlation method, with its higher resolution power. The
selective-correlation method has detected the presence of two reflection events, with the
lower velocity event fortuitously showing a maximum near the correct velocity.

3.6 CMP gather with many reflections

Bringing more realism into the synthetic data examples, I generated CMP gathers with
a series of 50 primary reflections and 50 multiples (both with Poisson distribution of arrival
times) for the one-dimensional velocity model of Figure 3.23. The curves in that figure
represent the interval and rms velocities for multiples (left) and primaries (right).

Figure 3.22 shows an 64-fold CMP gather with spreadlength of 3.15 km, trace spacing
of 50 m, Ricker-wavelet peak frequency of 18 Hz, and, for now, no noise. Now, primaries
are interfered with not only by multiples but also by other primaries. The velocity spectra
computed using both conventional crosscorrelation sum and selective-correlation sum are
shown in Figure 3.24. In both velocity spectra the dashed lines show the rms velocity of
multiples (lower velocity) and that of the primaries (higher velocity). As in examples above,
in the conventional method the interference between maxima corresponding to primaries
and multiples makes difficult the correct identification of peaks with primary velocities,
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F1G. 3.20. CMP gather as in Figure 2.10a with interfering events, contaminated by
randomly generated static time distortions.
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F1G. 3.21. Coherence curves at t; = 2 s for the data with interfering events of
Figure 3.20.

especially below 2 s. Considerably higher resolution is achieved in the results of selective-
correlation sum for 25% of crosscorrelations, allowing better identification of the primary
velocity function.

Adding a bit more realism to the model, I included in the CMP gather of Figure 3.22
both static distortions and added uncorrelated noise with Gaussian statistics (Figure 3.25).
These perturbed data have laterally smoothed static distortions with standard deviation
of 20 ms, and added bandlimited random noise with SNR =~ 2. Figure 3.26 shows the
velocity spectra for these data. Higher resolution, again, is achieved with the selective
method compared to that achieved by the conventional one. In this example, the results
of the selective-correlation method are biased slightly toward higher velocities due to the
perturbations in the data; however, the higher resolution achieved by this method still allows
more accurate picks compared to those made on the velocity panel with a conventional
method. Such synthetic model data are useful for testing new approaches such as selective-
correlation velocity analysis, but they still lack the complexity of field data. Ahead, in
Chapter 5, I show field data applications using selective-correlation velocity analysis in
which velocity resolution is also improved compared to that of conventional methods.

Certainly, another way to reduce the number of crosscorrelations to 25% of the original
is simply to halve the fold of the data by dropping every other trace from the CMP gather,
thereby doubling the group interval. This action, however, by no means increases the
resolution of stacking velocity. The total number of crosscorrelations performed in the
calculation of the spectrum of a 64-fold CMP gather, for fixed trial velocity and normal-
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F1G. 3.22. Noiseless synthetic CMP gather with many primary reflections and
associated multiples.
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reflections in Figure 3.22.
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F1G. 3.26. Velocity spectra, using conventional crosscorrelation (left) and selective-
correlation sum (right) for 25% of crosscorrelations, for the CMP gather (Figure 3.25)

with many reflections contaminated by random noise and statics.
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incidence two-way time, is around 2000. This means that, only about 500 crosscorrelations
are included in the sum when 25% is chosen in the selective-correlation velocity analysis
for these CMP data. The CMP gather shown in Figure 3.27 is the same as that of Figure
3.25, but with fold reduced from 64 to 32 by doubling the trace spacing. Thus, the total
number of crosscorrelations in conventional crosscorrelation sum (i.e., with no deletion
of crosscorrelations based on differential moveout) for these data is the same (= 500) as
when we applied selective-correlation sum using 25% of crosscorrelations to the 64-fold
data. Figure 3.28 shows the velocity panels for the 64- and 32-fold data using conventional
crosscorrelation sum. This demonstrates that reducing fold and performing conventional
velocity analysis fails to change velocity resolution. Besides some spurious peaks at about
1.5 s, no significant differences on the character of the velocity spectra are seen between the
velocity panels of the 64- and 32-fold data.

By lowering the fold even more, from 32- to 16-fold, again by increasing the group
interval, the conventional crosscorrelation sum uses only 120 crosscorrelations. To achieve
the same number of crosscorrelations using the selective approach for the 64-fold CMP
gather (Figure 3.25), only 6% of all crosscorrelations would be included in the sum. Figure
3.29 shows the velocity panel computed using the selective-correlation sum (6%) and that of
conventional crosscorrelation sum for the 16-fold CMP gather. Although somewhat noisier,
the velocity panel for the 16-fold CMP gather is essentially the same in character as those
for the 32- and 64-fold CMP gathers. The panel computed using selective-correlation sum
(6%), however, shows serious problems with extraneous peaks (artifacts) because of the
extremely low percentage of crosscorrelations included in the sum. Nevertheless, the good
separation of primary and multiple velocities remains.

Figure 3.29 exemplify two extreme cases: (1) in the velocity panel computed using a
conventional method the fold in the CMP gather is considerably low compared to the fold
in data acquire in modern acquisition, and (2) in the panel using the selective approach the
percentage of crosscorrelations that are included in the sum is so low that spurious peaks
complicate the interpretation. For such low percentage, the selective approach lacks the
contributions from trace pairs with intermediate as well as small differential moveout. This
leaves only those crosscorrelations with rapid variation as a function of velocity. Tests on
synthetic data (not shown here) show that in presence of additive random noise and statics
distortions for percentages of 20% or higher, the selective-correaltion sum has stability that
is comparable to that of conventional methods.
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F1G. 3.27. Same synthetic CMP gather of Figure 3.25, with fold reduced from 64 to
32, while maintaining the full spreadlength.
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F1G. 3.28. Velocity panels computed using conventional crosscorrelation sum for the
64-fold CMP gather (Figure 3.25) and the 32-fold CMP gather (Figure 3.27).
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Chapter 4

ISSUES

The examples shown in Chapter 3 illustrate familiar issues of resolution limitations and
uncertainty in velocity analysis for data contaminated by added noise, static distortions,
and interfering events. They also show improved resolution with preserved stability when
the selective-correlation is used. In this chapter, I first analyze uncertainties in velocity
estimation introduced by traveltime errors that may have been caused by either static
distortions or random noise. To do so, I use error-propagation analysis to express the
variance in the velocity, and the bias (difference between the expected velocity estimate
using the data with errors and the true velocity) in terms of the errors in the reflection
traveltimes. We will see traveltime errors magnify into velocity-estimation errors least for
trace pairs with relatively large differential moveout. We will also see that these trace pairs
have the largest influence on velocity errors and resolution.

Also, I model coherence curves as the superposition of asymmetric Gaussian functions
to address issues related to the biasing or shifting of the coherence curve peaks in the
presence interfering events. This modeling allows us to study the bias as a function of the
breadth of the curves as it relates to the difference between primary and multiple velocities.
Comparisons between the curves of velocity bias obtained by modeling and those obtained
from velocity analysis using the conventional and selective methods show similarity in the
shapes of the curves, aiding in the understanding of loss of resolution and biasing of velocity
estimates when multiples interfere with primaries. The understanding gained holds despite
the facts that coherence curves for individual events are not Gaussian-shaped and that
superposition of the coherence curves of primary and multiple is only an approximation to
the resultant curve when both events are present in the data. We find again that, all other
factors held fixed, the biasing is smaller for the selective-correlation method.

4.1 Traveltime errors ,

For a reflection with hyperbolic moveout, rms velocity v, and zero-offset two-way trav-
eltime %y, the reflection time on traces j and k are given by

2 = ¢2 Tk 4.1.1
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where z; and z; are the offsets for traces j and k. Solving for v, we get

2 _ 2\ 1/2
v=<ﬁ—£g . (4.1.3)
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Now, let us introduce perturbations in just t;, which can be due any combination of
static distortions and random noise. Let d be the time perturbations, a random variable
normally distributed with zero mean and variance 03. The perturbed traveltimes are t; =
tj + d, where the mean, or expected value is the zero-error traveltime, E [t;] = t;. When

we introduce ¢; in expression (4.1.3), v also becomes a random variable ¥

(22 -a2\Y?
v=<%—i> : (4.1.4)

Analysis of propagation of errors (Davidson et al., 1997) in expression (4.1.4) gives
estimates of the variability and bias (difference between the expected velocity estimate using
the data with errors and the true velocity) in the velocity, as a function of the variability
in the traveltimes. The variance of 7, 02, is given by
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and the velocity bias, b,, is
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These expressions are well defined when tj # tk, which holds for z; # z, as we require.
Also, the approximations in expressions (4.1.5) and (4.1.6) are valid when t; is close to its
mean value t;; that is when the variance of t; is relatively small. Note that the bias in
velocity estimate (for timing errors with zero mean) results from the nonlinearity of the
mapping from reflection time to velocity, as in equation (4.1.4). This gives a nonzero value

for the second derivative in equation (4.1.6).

Figure 4.1 shows curves of velocity standard deviation, o,, versus the magnitude of
differential moveout |At| = |t; — ¢4/, for values of the standard deviation in the traveltimes
of o4 = 10, 20, 30 and 40 ms. The modeled reflection has a zero-offset two-way traveltime
to = 1 s and rms velocity v = 2.0 km/s. In this example, z; has been set to 0.5 km, and
z; varies from 1 to 3 km. Thus ¢;, is constant and t; increases as x; increases. From Figure
4.1, the standard deviation decreases monotonically for increasing differential moveout (or
increasing separation between z; and x;). Note that the sign of the differential moveout
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F1G. 4.1. Curves of standard deviation in velocity estimate versus differential moveout
computed using formula (4.1.5), for different values of the errors o4 in the traveltimes
at offset ;. The zero-offset two-way traveltime of this reflection is to = 2 s.
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F1G. 4.2. Curves of bias in velocity estimate versus differential moveout computed
using formula (4.1.6), for different values of the errors o4 in the traveltimes at offset
z;. The zero-offset two-way traveltime of this reflection is {o = 1 s.
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tj — tk can be positive or negative depending on the relative positions of offsets z) and zj;
still these two characteristics hold as long as z; # .

The proportionality of the standard deviation of the velocity and that of traveltime
is evident in Figure 4.1. Also, as mentioned above, for large differential moveouts all the
curves converge to zero error. This confirms intuition that selecting crosscorrelation pairs
with relatively large differential moveout, as in selective-correlation sum, can improve the
resolution of velocity estimates.

At zero-offset time equal to that of a single-reflection event with traveltime errors, the
standard deviation of the velocity estimate in a coherence curve may be identified with
the breadth of the curve, and the bias with the location of its peak. Therefore, ignoring
factors such as frequency content in the data and interfering events, the standard deviation
of the velocity would be associated with resolution and bias with accuracy. The bias given
by approximation (4.1.6) thus represents by how far the expected velocity estimated using
erroneous traveltimes differs from the correct value.

Figure 4.2 shows curves of bias versus differential moveout with the same parameters
as in the example of Figure 4.1. The observations made for the variance are also valid for
the bias. Specifically, the larger the standard deviation in the traveltimes the larger the
velocity bias estimate; also, all curves of bias tend to zero for large differential moveout for
fixed standard deviation in the traveltimes. This implies that constraining the summation
to those crosscorrelation pairs with large differential moveout will reduce the bias relative
to that when we sum over all possible crosscorrelations.

Note also that the bias b, is always positive. The explanation for this is the following:
Assume that {t} ; is the traveltime of a hyperbolic reflection on trace j. If we add errors
d with zero mean and standard deviation o4 to the traveltime, the traveltime with errors
{t +d}; will fall within the time interval I = [t — At, ¢ + At ;j» Which is centered on the
zero-error traveltimes {t} e Assume also that any traveltime in the interval I is equally
likely, and we wish to estimate stacking velocity for the reflection event using only the
zero-offset trace, with no errors, and the trace j, with errors. Let us then analyze what
happens at the extremes of the interval I. Using the traveltime t + At to estimate stacking
velocity, implying larger NMO, will result in the lower bound (underestimate) of the velocity
estimates in the time interval I. In contrast, use of the traveltime ¢ — At¢, implying smaller
NMO, will result in the upper bound (overestimate) of the velocity estimates in the interval
I. Now, the range of velocities that overestimate the true velocity in the upper half of the
interval I, (¢,t — At], is much larger than the range of velocities that underestimate the true
velocity in the lower half of interval I, [t + At,t). This implies that the mean value of the
velocity estimates, within the entire interval I, will produce a velocity that overestimates
the true velocity. Bias, as I've defined it here, is the expected value of the estimator minus
the true value; therefore, the bias is always positive. This positive velocity bias holds also
when the reflections on all traces in a CMP gather have error with zero mean.

The velocity-estimation process using coherence measures, however, is more complex
than the simple approximated formulas for variance (4.1.5) and bias (4.1.6), and cannot
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be fully explained by them. As shown in Chapters 2 and 3, in the presence of static
distortions or random noise, the peak of coherence curves of conventional crosscorrelation
sum and selective-correlation sum coincide when the percentage of crosscorrelations included
in the sum, whose pair of traces have large differential moveout, exceeds 20%. That means
that the bias of the peak in the coherence curve, which indicates the expected velocity
estimated based on the data with errors in the traveltimes, is dominated by the cumulative
bias of the crosscorrelation pairs with large differential moveout. To exemplify the error
accumulation when using coherence measures, consider the simplistic case of a 3-fold CMP
gather with a hypothetical reflection at 1 s and velocity of 2 km/s, and with three traces
located at offsets 0, 1 and 2 km. If the middle trace (and only that trace) has an error
in the traveltime with a standard deviation of 20 ms, the standard deviation and bias in
the velocity estimated using only the first two traces will be 180 m/s and will be 22 m/s,
respectively; in contrast, using only the second two the standard deviation will be 60 m/s
and bias will be 4 m/s. Since the trace combination 1-3 (offsets 0 and 2 km) produce no
errors, the velocity uncertainties are determined by the uncertainties in trace combinations
1-2 and 2-3. The standard deviation of the velocity estimate, which is the sum in quadrature
of the individual standard deviations, would be 190 m/s; also, the resultant bias would be the
simple sum of each bias, 26 m/s. Clearly, the largest contribution to the resultant errors is
the trace combination with the smaller differential moveout. The analysis for a CMP gather
with much larger fold, with each trace having some random error in traveltime, would be
much more complicated, but this analysis of errors for a 3-trace gather characterizes the
dominant contributions, to errors, of traces with small differential moveout.

4.2 Interfering events

Resolution may loosely be defined as the ability to distinguish two overlapping func-
tions, usually of the same form, in a set of observations. In optics, this is called two-point
resolution, which is the ability to distinguish the images of two closely located point sources.
The classical limit to this two-point resolution is the Rayleigh resolution limit (Rayleigh,
1874), which is intended to define the minimum distance at which two overlapping sinc-
function patterns can still be distinguished in visual observations of their sum. Although
the goal here is not to give a specific resolution criterion for stacking velocity in the pres-
ence of two interfering events, the analysis below is somewhat related to that of Rayleigh
resolution.

Figure 4.3 shows unnormalized coherence curves, computed using the conventional
crosscorrelation sum, for the example with two interfering events of Figure 2.10a. The two
dashed curves are the coherence curves for each of the reflection events separately, meaning
that the velocity spectra computation used a single-reflection CMP gather as input, without
interference from the other event. The solid curve is that measured one when the input to
the spectra computation is a CMP gather containing both interfering events. The vertical
lines indicate the correct velocity of the events. Several observations can be made from
these curves: First, note how the breadth of the dashed curves vary with velocity; the
curves are narrower toward lower velocities and then, after reaching their peaks, become
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F1G. 4.3. Unnormalized coherency curves, computed using conventional crosscorre-
lation sum. The dashed curves pertain to isolated reflection events with the correct
velocity for each indicated by the vertical lines, while the solid is that measured for
a CMP gather containing both events. These curves somewhat resemble lopsided
Gaussians.

broader toward higher velocities. This asymmetry has its root in the same explanation
given for the positive velocity bias observed and explained in the previous section. Any
time shift away from that for the peak in a trace crosscorrelation will lead to a magnified
departure of the associated velocity from that of the peak, with larger magnification toward
higher velocities. Second, the peak amplitudes of the coherence curves, in dashed pattern,
are exactly the same because both reflection events were generated using identical wavelets,
with no amplitude variation in either time or offset. Third, the coherence curves for the
individual reflections resemble lopsided Gaussians, a feature that will be useful later in this
section.

Even for this noiseless simplistic example, there is no complete explanation for how
these two events interact to produce the coherence curve shown in the solid pattern. Features
to note in the solid curve are (1) it shows just one peak, (2) it has stronger amplitude toward
the higher of the two true velocities, and (3) the peak is biased from the correct primary
velocity toward the velocity of the multiple.

Here, I shall model the behavior of coherence curves in the presence of interfering re-
flection events, paying especial attention to the biasing of locations of the peaks in absence
of random noise. To do so, I assume that the coherence curves extracted from velocity
spectra, computed using conventional crosscorrelation sum, can be modeled using lopsided
Gaussians, as defined in equation (4.2.7). The same cannot be said for those coherence

60



Selective 25%

T T T T T

Coherence

3 35 4 45 5 55 6
Velocity (km/s)

F1G. 4.4. Unnormalized coherency curves, computed using selective-correlation sum.
The dashed and solid curves have the same meaning as that given in the caption for
Figure 4.3. These curves no longer resemble Gaussians.

curves generated using selective-correlation sum. Figure 4.4 shows similar coherence curves
to those shown in Figure 4.3, now using selective-correlation sum (25%); clearly, they no
longer resemble Gaussians. Again, the dashed curves were computed for each event sepa-
rately, and the solid one for both events present in the data simultaneously. The negative
side lobes present in the dashed curves will pull the peaks of the solid curve down and also
could potentially bias their locations, depending on the frequency content in the data. In the
subsequent analyses, however, for simplicity in gaining understanding I will use Gaussians
shapes to model the coherence curves.

Let us model a coherence curve C for a single reflection with stacking velocity vg as

_ ] G (v) /max [CL (v)], ifv<w
)= { Cg (v) /max[Cg (v)], ifv> vﬂ : (4.2.7)

where C, and Cp are

Cr(v) = SiLexp [-— (v—v0)2/3%] + K,

and

Cr(v) = SiR exp [~ (v v0)? /S}] + K.
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FIG. 4.5. Modeled coherence curves for v, = 4.5 km/s (indicated by the vertical
line) for diferent values of S; and Sg, which control the widths of the curves.

Here, v is velocity, Sy, and Sg control the breadth on the left and right sides of the curve,
respectively, and K and Kp control the modeled coherence amplitudes for velocities much
higher and much lower than vg. Note that the peak of C (v) =1 at v = vg. Figure 4.5
shows modeled coherence curves for a v9 = 4.5 km/s and different values of Sp, and Sg,
with K = 0.01 and Kp = 0.2; the vertical line shows the location of vg. These parameters
were chosen such that the curves are sharper toward lower velocities and broader toward
higher ones, as is observed in actual coherence curves. As the values of Sy, and Sg decrease,
the curves become sharper, which is equivalent, for fixed tg, to either (1) increasing the
peak frequency in the data used in computing actual coherence curves, or (2) applying
selective-correlation sum for a percentage of crosscorrelations used less than 100%. As we
saw in examples of Chapter 3, the resolution achieved by conventional crosscorrelation sum
for CMP data with a given peak frequency is comparable to that achieved by selective-
correlation sum for the same dataset with lower peak frequency. Thus, the solid curve
in Figure 4.5 could well represent the coherence curve corresponding to the data when
using 100% of crosscorrelations, and the dashed and dashed-dot curves would represent
coherence curves using smaller percentages of crosscorrelations, for instance 35% and 25%,
respectively.

Expression (4.2.7) can be used to model the coherence curves of a primary Cp and a
multiple Cy,, with velocities v, and v,,, respectively. Let us then assume that we can model
the coherence curve in the combined presence of primary and multiple by the superposition
of these two curves; we assume Cpyp, = Cp + Cp,. (No doubt, the superposition is only an
approximate description of the process of forming the curve Cp+m.) Henceforth, the sub-
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F1G. 4.6. Simulated coherence curves for interfering primary and multiple with v, =
4.5 km/s and v, = 3.5 km/s, respectively. The dashed curves are the modeled curves
for the isolated primary and multiple, while the solid one is the sum of two dashed
curves. The parameters that represent the widths of the curves, Sy, and Sg, decrease
in the order of plots (a), (b), (c), and (d).
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scripts p and m will be used to refer to modeled primary and modeled multiple parameters.
Figure 4.6 shows the coherence curves, modeled with superposition, for different values of
SLms SRm, SLp, and Sgp. The values Kp,, = 0.01, Kg,, = 0.02, K, =0.01, and Kp, = 0.2
are kept fixed for all the following examples. The dashed curves represent the coherence
curves of single reflection events, those with peak at 3.5 km/s correspond to the multiple
and those with peak at 4.5 km/s to the primary. The vertical lines at 3.5 km/s and 4.5
km/s show the modeled correct stacking velocities. The solid curves, which are the sum
of the dashed curves, represent the coherence curves for data containing both primary and
multiple events.

Figure 4.6a shows curves that could be associated with a relatively low frequency
content in the data. Note that the modeled resultant coherence curve, Cp4+m, has only
one peak, biased to a velocity lower than the true velocity of the primary at 4.5 km/s.
Decreasing the values Sy, and Sg for the modeled primary and multiple coherence curves is
equivalent to increasing frequencies of the data; this is observed in Figures 4.6b, 4.6¢c, and
4.6d. Figure 4.6b is particularly interesting because of its similarity with the coherence curve
of the example of Figure 2.12 and Figure 4.3, when using the conventional crosscorrelation
sum method (solid curves). Although in our modeling (Figure 4.6b), both component
coherence curves — primary and multiple — have the same peak amplitude, the resultant
curve (solid) reaches its peak closer to correct stacking velocity of the primary and has
lower values toward the multiple velocity, with no peak associated with the multiple. Two
distinct peaks occur in the example of Figure 4.6¢c, but note that the locations of both peaks
are biased away from the correct velocities and toward each other. As in Figure 4.6b, the
peak associated with the primary is higher than that associated with the multiple. When
the frequencies in the data are high, the coherence curves show no biasing of the peak
locations. This modeling is achieved with relatively small Sy, and Sg values. In Figure 4.6d
the peaks of the modeled resultant coherence curve are in their correct positions, and, unlike
the actual coherence curves, both peaks have the same amplitude (compare with those in
Figures 3.6 and 3.7). The difference in amplitude in the coherence curves diminishes with
increasing peak frequency in the data, or when applying selective-correlation sum method
to compute the curves. In the examples shown in Chapter 3, however, the peak of the event
with lower velocity (which I have called a multiple) always has a lower amplitude. This may
be related to the larger stretching of data when lower velocity is used for NMO correction.
The stretching causes the wavelet to change with offset.

With this modeling of coherence curves, let us study the biasing of peak locations, in
presence of interfering events, as a function of the breadth of the curves. The bias, here,
is the difference between the location of peak of the primary event in the modeled curve
and the correct primary stacking velocity, which in the next examples is vp = 4.5 km/s.
Parameters Sy, and Sk are proportional to the breadth of the curves. To make the study
of bias general, I plot dimensionless quantities: bias = vp — v versus Av/S, where

Av = v, — vm, (4.2.8)

5= SRm_;LSﬂ (4.2.9)
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F1G. 4.7. Dimensionless bias in the velocity of the primary event versus
dimensionless breadth of the modeled coherence curves.

and v is the velocity associated with the peak in the coherence curve closest to v,. The
quantity S is the average of the breadth parameters for the interfering Gaussian shapes
associated with the primary and multiple events. This average breadth varies inversely
with the frequency content in the data.

Figure 4.7 shows the curve of dimensionless bias in the location of the peak associated
with primary velocity versus the dimensionless separation of the peaks. This curve was
obtained from the modeled coherence curve by varying the primary velocity from 3.9 to 4.7
km/s, consequently, Av = v, — vy, varies from 0.4 to 1.2 km/s, for fixed multiple velocity of
3.5 km/s and fixed values of the breadth of the modeled curves of Sy,, = 0.3, Spmm = 0.5,
Spp = 0.4, and Sg, = 0.6. (Fixing the values of S;, and Sg is equivalent to fixing the
dominant frequency in the data). Equivalent curves for dimensionless bias can be also
drawn by fixing the difference between primary and multiple velocities Av, and varying the
values of Sy, and Sg for both primary and multiple. Figure 4.7 shows that bias decreases
rapidly with decreasing breadth of the curve, or equivalently, with increasing dominant
frequency in the data. Note that the bias is always positive because the biased peak of the
primary in the modeled curves is always located at a lower velocity than v, = 4.5 km/s
(i.e., between v, and vy,).

Under the approximate assumption that the coherence curve for interfering primary
and multiple is the superposition of the coherence curves for each of the events, the tendency
will be for the locations of the peaks in the summed curve to be shifted from the correct
velocities vy, and v,. Moreover, if Gaussian shapes are used to approximate the coherence
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curves for each of the isolated events, the shifts of both peaks will be toward the mean of v,
and v,. Figure 4.8 illustrates the underlying reason. Suppose curve 1 (Gaussian) is added
to curve 2, which is a straight line. The peak in the summed curve, 1+2, will be shifted in
the direction of increasing amplitude of curve 2; that is toward decreasing value y in this
figure. The amount of shift depends on the slope of the curve 2 and the breadth of the peak
region in curve 1. The shift is larger for larger slope and for broader peak region.

Now consider the summation of two laterally separated Gaussian curves. Since each
one slopes toward the other, summation will draw the peaks toward one another. Where the
primary and multiple velocities are well separated relative to the breadths of the two peak
regions, the shifts of the peaks is small. Where they are close to one another, the two peaks
merge into a single unresolved peak region. The breadth the individual peak regions (and
thus the amount of shifting of the peaks) are governed by a combination of reflection time,
spreadlength, stacking velocities of the events, and the frequency content of the data. Also,
pertinent to this thesis, the shift (or bias) of peaks is reduced when selective-correlation
approach is used for velocity analysis.

Similar curves of bias, computed using conventional and selective methods for the
velocity estimation rather than by modeling of superimposed Gaussian curves, are shown
in Figure 4.9. The horizontal axis here is also a dimensionless quantity that relates peak
frequency of the Ricker wavelet f,, difference in primary and multiple velocities Av, and the
group interval Az. The number 0.4 in the denominator scales this dimensionless quantity
to the same range of values of Figure 4.7. The Ricker-wavelet peak frequency in the CMP
data used here is 18 Hz, the spreadlength is 2.5 km, and zero-offset reflection time is 2 s.

The general shape of the curves in Figure 4.9 is similar to that of the curve shown Fig-
ure 4.7, but the latter is smoother because in the modeling I could readily use many values
of primary velocities inside the range between 3.9 and 4.7 km/s. I evaluated more than 40
values in this range in modeling using Gaussians, while I computed only seven using the co-
herence measures. Note that the selective-correlation approach produces unbiased values of
the primary velocity for smaller values of the dimensionless difference between primary and
multiple velocity than does the conventional approach, implying greater resolving power.

Recall that while Gaussian shapes may model coherence curves computed using con-
ventional methods, it is not a good model for the selective-correlation sum method. In
the selective approach, the negative side lobe of the multiple toward higher velocities that
are beneath the primary velocity peak can influence the position of the primary peak in
different ways depending on the lateral position of the peak with respect to that of the
lobe. Near the minimum of the lobe, the slope of the curve for the multiple event changes
from being negative, to zero, to positive. Assuming that superposition holds, this time not
for Gaussians but for these curves with negative side lobes as in Figure 4.4, the primary
peak will be biased toward lower velocities if its location is within the negative slope region
of the lobe, toward higher velocities if is within the positive slope region of the lobe, and
simply be pulled down if its position coincides with the zero-slope region in the center of
the lobe. This can partially explain the behavior of coherence curves computed using the
selective approach in presence of interference events. In many tests with synthetic data,
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F1G. 4.8. Cartoon illustrating (1) a Gaussian-shaped curve, (2) straight line, repre-
senting the local slope of an interfering event, and (142) the superposition of curves
(1) and (2). The vertical dashed lines show the peak locations before and after su-
perposition of (1) and (2).
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F1G. 4.9. Similar plot to that in Figure 4.7, using selective-correlation sum and
conventional crosscorrelation sum instead of the Gaussian modeling. The synthetic
model data used here has zero-offset reflection time 2 s, Ricker-wavelet peak frequency
18 Hz, and spreadlength 2.5 km.
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F1G. 4.10. Simulated coherence curves for a primary and a strong multiple interfering
with v, = 4.5 and v,,, = 3.5, respectively. The dashed curves are the Gaussian-shaped
modeled curves of the isolated primary and strong amplitude multiple, while the solid
one is the sum of the dashed ones. The parameters that represent the width of the
curve, Sy, and Sg, decrease in the order of plots (a), (b), (c), and (d).
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for given spreadlength, frequency content in the data, and SNR, using percentages of the
crosscorrelations included in the sum less than 50%, the selective approach produced results
that were unbiased or had substantially less bias than that of conventional methods.

All examples above are based on the assumption that the primary and multiple coher-
ence curves have equal amplitude. Now, using modeled curves, let us consider a multiple
that generates a coherence curve with twice the amplitude of that of the primary. Such a
situation might arise when the amplitude of the multiple on the data traces is v/2 times
that of the primary. Figure 4.10 shows a series of plots, similar to those shown in Figure
4.6, but now with this disparity in amplitudes. The solid curves, again, are the result of
summing the dashed curves that correspond to primary and multiple separately. The values
related to the breadth of the curves, Sy, and Sg, decrease from Figure 4.10a to Figure 4.10d.
For relatively large values of Sy, and Sg (Figure 4.10a and Figure 4.10b), implying broader
curves, only one peak — that of the multiple — appears in the modeled resultant coherence
curves. Note, that in order to even identify a peak associated with the primary, values of
51, and Sp corresponding to curves as narrow as those shown in Figure 4.10c are required.
This implies that, for a given difference between primary and multiple velocities, relatively
high frequency content in the data is needed to resolve the velocity of a primary in the
presence of a strong multiple.

Now let us consider for the selective-correlation approach the behavior of coherence
curves for a primary event in the presence of a strong multiple. The coherence curve
for just the strong multiple will have negative side lobes more pronounced than those of
the primary. Even where the selective method shows two separate peaks with no shifting
(such as the dashed curve in Figure 3.11), the pull down created by the multiple side lobe
will reduce the amplitude of the primary peak. Although no pull down and consequent
amplitude diminishing happens in the coherence curves modeled with Gaussians or in those
computed using a conventional method (solid curve in Figures 4.10 and 3.11, respectively),
the weakened-amplitude primary peak still could be identifiable in the coherence curve for
the selective method, while no primary peak is distinguishable in the coherence curve for
the conventional method.
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Chapter 5

FIELD DATA APPLICATIONS

Picking stacking velocity on velocity panels is an interpretation process that depends
mainly on two factors: the quality of the data and the experience of the interpreter. The
material to this point in this thesis indicates that for given data and interpreter, selective-
correlation velocity analysis should help in reducing uncertainty in the velocity picking.

Even though the preceding tests on synthetic CMP gathers exhibit some of the prob-
lems that arise in seismic data they do not come close to capturing all the complexity of
field data. Here, I present applications to land and marine CMP gathers, using semblance
coeflicient, unnormalized and normalized conventional crosscorrelation sum, and unnormal-
ized and normalized selective-correlation sum. We shall see that, for both datasets, use of
selective-correlation sum (either normalized or unnormalized) indeed enhances resolution in
the velocity analysis.

5.1 Land CMP gather

These data, from eastern Venezuela are split spread, with offsets ranging from -6.6
to 6.6 km, and offset increment of 200 m (Figure 5.1). This CMP gather is the result
of averaging five neighboring CMP’s to increase the signal-to-noise ratio. The dominant
frequency at 3 s is around 25 Hz.

Figure 5.2 shows the velocity spectra of these data using semblance coefficient (Fig-
ure 5.2a), unnormalized crosscorrelation sum (Figure 5.2b), and unormalized selective-
correlation sum - 25% - (Figure 5.2c). The semblance coefficient was computed using the
Seismic Un*x (SU) program (Cohen and Stockwell, 1999), suvelan. Where reflections are
strong, conventional crosscorrelation sum and selective-correlation sum (Figures 5.2b and
5.2¢, respectively) show a better standout of the velocity maxima than that of semblance
coefficient (Figure 5.2a); however, where the signal is weak, especially in the shallow part of
the data, the semblance coefficient shows higher values. The velocity maxima are sharper in
the velocity panel computed using selective-correlation sum (Figure 5.2c). Figure 5.3 is a de-
tail of Figure 5.2. The velocity values picked for the two events in the panels of semblance
coefficient and conventional crosscorrelation sum marked with the arrows are essentially
the same. In the panel computed using the higher-resolution selective-correlation method,
however, these two events have an observable velocity difference that can be important for
stratigraphic study and other purposes.
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F1G. 5.1. Land CMP gather in which five neighboring CMPs have been averaged to
increase the signal-to-noise ratio.
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FIG. 5.4. Similar plot to that in Figure 5.2, now using in the velocity panels (b) and
(¢), normalized crosscorrelation sum and normalized selective-correlation sum.
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Figure 5.4 shows a set of velocity panels similar to those shown in Figure 5.2, now
using normalized coherence measures for conventional crosscorrelation sum and selective-
correlation sum (Figures 5.4b and 5.4c). Again, the normalized version of the selective
approach shows sharper velocity maxima than those in velocity panels computed using the
semblance and the normalized conventional crosscorrelation sum (Figures 5.4a and 5.4b,
respectively). Velocity panels (b) and (c), which seem noisier than those corresponding
to the unnormalized measures shown in Figures 5.2b and 5.2¢, bring out weak spectral
amplitudes that may or may not correspond to velocities of primary events.

In this example, selective-correlation allows us to pick more precisely features that
already were present in the velocity panels of the other two coherence measures. In the
next example, the selective-correlation method brings out features with velocity for primary
events that were not evident in the panels based on conventional coherence measures.

5.2 Marine CMP gather

Figure 5.5 shows a CMP gather with strong water bottom multiples indicated by the
arrows. These data were recorded with a spreadlength of 3 km and offset increment of 50
m, and approximately 40-Hz dominant frequency at 3 s.

Figure 5.6 shows velocity panels for the data in Figure 5.5 computed using semblance
coefficient, unnormalized conventional crosscorrelation sum, and unnormalized selective-
correlation sum (Figures 5.6a, 5.6b, and 5.6c, respectively). The panels corresponding
to semblance coefficient and conventional crosscorrelation sum are largely dominated by
the velocity of the multiples, with little evidence of primary velocity. The velocity panel
computed using selective-correlation sum — 25% — (Figure 5.6c) shows features with a better
chance of being associated with primaries. These features are best evidenced in the velocity
panel computed using normalized selective-correlation sum - 25% - (Figure 5.7¢). Some
of these features also appear to some extent in the panel for the normalized conventional
crosscorrelation sum (Figure 5.7b). The difference between these velocity panels is more
clearly seen in the enlargement shown in F igure 5.8. The event at 3.5 s, marked with
the arrows in the three panels, appears more clear in the panel computed using selective-
correlation sum (Figure 5.8¢c), while the event around 3.5 s is present only in this velocity
panel. The later two events at around 4.2 and 4.7 s, indicated by the arrows, are present
in all panels but with higher resolution in the panel corresponding to selective-correlation
sum (Figure 5.8c).

Other interpretations can be made from these velocity panels. The higher resolution
achieved by the selective-correlation sum, however, can reduce uncertainty in the velocity
picking, allowing the analyst to deal with the tradeoff between resolution and effectiveness
in attenuating noise.
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F1G. 5.6. Velocity panels for the CMP gather in Figure 5.5 computed using (a)
semblance coefficient, (b) unnormalized crosscorrelation sum, and (c) unnormalized
selective-correlation sum (25%).
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F1G. 5.7. Velocity panels for the CMP gather in Figure 5.1 computed using (a) sem-
blance coefficient, (b) normalized crosscorrelation sum, and (c) normalized selective-

correlation sum (25%).
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F1G. 5.8. Enlargement of Figure 5.7 showing the higher resolution achieved by

selective-correlation sum (25%), in the events marked by arrows, compared to that
achieved by the other two methods.
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Chapter 6

DISCUSSION AND CONCLUSIONS

6.1 Summary

By including in the sum of crosscorrelations used in velocity analysis only those cross-
correlations with relatively high resolving power, one can increase velocity resolution for
data with both isolated and interfering events, including data contaminated with multiple
reflections, added Gaussian noise, and static time distortions.

I compared results of the selective-correlation sum method with those of several other
methods for computing velocity spectra: conventional crosscorrelation sum, semblance co-
efficient, and conventional crosscorrelation sum using weights designed for optimum en-
hancement of primary-to-multiple ratio in CMP stacking. In all tests, for percentages of
crosscorrelation 50% or less, selective-correlation sum yielded improved velocity resolution
relative to that achieved by the other methods. Selective-correlation sum provides a new pa-
rameter — the percentage of crosscorrelations included in the sum — that controls a tradeoff
between increasing resolution and effectiveness in attenuating random noise.

Tests on synthetic data show that in the presence of static distortions and additive
random noise, selective-correlation velocity analysis has accuracy for estimating the stack-
ing velocity that is comparable to that of conventional crosscorrelation sum. An interesting
observation in our tests is that the error that statics time distortions and random noise
introduce in picked stacking velocity is quite independent of the percentage used in the
selective-correlation method, for percentages from about 20% up to 100%. The peak in
velocity spectra for both selective-correlation velocity analysis and conventional velocity
analysis is determined largely by crosscorrelations of trace pairs with relative large differ-
ential moveout.

The implementation of selective-correlation sum described here entails only a simple
modification of conventional velocity analysis and thus achieves its increase in velocity
resolution at computational cost that is comparable to that of conventional velocity analysis.

6.2 Discussion

In this thesis, I have addressed the issues of resolution and uncertainty in velocity
analysis for data contaminated by additive noise, statics distortions, and interfering events.
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The analysis of propagation of errors in Chapter 4 gives support to intuition that selecting
crosscorrelation pairs with relatively large differential moveout can improve the accuracy
and resolution of velocity analysis. We saw that the magnification of traveltime errors into
velocity-estimation errors is least for trace pairs with relatively large differential moveout;
also, these trace pairs have the largest influence velocity resolution.

The resolving power of any method for computing velocity spectra is limited by SNR,
spreadlength, and frequency content in the data. Conventional methods provide good ve-
locity estimates for CMP gathers with well separated reflections for given values of SNR,
spreadlength, and frequency; the only gain in applying selective-correlation sum to such
data would be the sharpening of the peaks in the same location already indicated by the
conventional methods. The additional benefit of using selective-correlation sum is when ap-
plied to CMP gathers containing closely interfering events relative to the dominant period in
the data, for which conventional methods generally fail. This is the reason why throughout
this thesis I have emphasized study of interfering events, both in tests with synthetic CMP
gathers and in the modeling of coherence curves using modeling with Gaussian shapes.

In Chapter 4, I showed that a reasonable approximation of coherence curves for inter-
fering events is a superposition of Gaussians. We saw that the location of the peaks tend
to be shifted or biased toward the mean value of the interfering primary and multiple ve-
locities. For given values of stacking velocities, reflector time, spreadlength, and frequency
content of the data, the amount of shifting of the primary peak depends on the local slope
in the portion of the multiple coherence curve that overlaps the region near the primary
peak.

This approximation of superposition of Gaussian curves, however, is no longer applica-
ble to coherence curves generated with selective-correlation sum. The pattern of the curves
for isolated events is more complicated than Gaussians since these curves have negative side
lobes. Under the assumption that superposition holds, for curves that differ from Gaussian
shape these negative side lobes could potentially bias the location of the peaks. Unlike the
Gaussians form, however, they can have zero slope at the peak locations, in which case
they would reduce the amplitudes of the primary peaks in the presence of strong multiples.
Many tests with synthetic model data, however, show that the bias of the peaks is reduced
when the selective-correlation sum approach is used for velocity analysis.

For a given CMP gather, the resolving ability of computed velocity spectra can be
increased by previously applying to the data processes such as statics corrections, deconvo-
lution, and bandpass filter, which can increase the frequency content in the data. Here, 1
have assumed identical conditions in the processing of the CMP gathers used for the compu-
tation of the velocity spectra in both the conventional and selective approaches. For CMP
gathers pre-processed using the same processing seaquence, with both synthetic (Chapter 3)
and field data (Chapter 5), the selective-correlation sum method succeeded in increasing
the resolving power of the velocity spectra and allowing picks that yielded more accurate
stacking velocity estimates than those based on picks using a conventional method.

As with many parameters in seismic data processing, the new parameter introduced
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in this thesis — percentage of crosscorrelations included in the sum — needs to be chosen.
One way would be for the analyst to visually study velocity panels for different values of
the parameter taking the trade off between resolution and possible artifacts into account.
Fortunately, keeping this parameter within the confortable range 20% — 50% will increase
velocity resolution while avoiding undesirable artifacts.

I have demonstrated through field data examples the applicability of the method and
also that it can reduce uncertainty in interpreting stacking velocity (specifically, in the
marine CMP gather example), not only by increasing the resolution of the velocity spectra
but also uncovering primary peaks in the presence of strong multiples.

6.3 Future work

I have tested the method developed here on synthetic and field data under different
conditions of random noise, statics distortions, frequency content of the data, and interfer-
ing events. Much work remains, however, in the understanding of the behavior of coherence
measures, including selective-correlation sum, when, for instance, anisotropy or amplitude
variation with offset (AVO) is present in the data. Sarkar et al. (2000) study the sensi-
tivity of semblance coefficient to AVO and compared to that of others coherence measures
that account for AVO. Also, Yilmaz (2001) shows, with a simplistic example, that different
coherence measures have different sensitivity to AVO. A wider study involving other coher-
ence measures, specially those based on sum of crosscorrelations, would help understanding
AVO sensitivity of both unnormalized and normalized selective-correlation sum.

As the spreadlength increases, reflection traveltimes depart from hyperbolic trajecto-
ries, degrading rms velocity estimates based on the hyperbolic moveout assumption. De-
pending on the objective, coherence measures (including selective-correlation sum) are de-
signed to search for coherence along predetermined trajectories that can be linear, parabolic,
hyperbolic, or nonhyperbolic, as when the subsurface is anisotropic. Although possibly
computationally more costly, an extension of selective-correlation sum that accounts for
nonhyperbolic moveout can be achieved just by replacing the hyperbolic trajectory by that
of nonhyperbolic moveout. However, the parabolic approximation of differential moveout,
presented here, to compute the significance values still can be used on CMP data with non-
hyperbolic moveout as long as the traveltimes increase with offset and do not have inflection
points, as in turning waves.

One might consider implementing in the selective approach some method for optimizing
the choice of the percentage of crosscorrelations included in the sum. For instance, one
might minimize the expected mean-squared-error (MSE) in sums of specific combinations
of crosscorrelations pairs. The procedure, however it might be done, cannot be based solely
on differential moveout of reflections, since as seen in Chapter 4 the MSE (bias squared plus
variance) tends to decrease with increasing differential moveout.

Another alternative to the selective method is to generate an optimized set of weights
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that multiply each crosscorrelation pair considered in the conventional method. If M is the
number of traces in the CMP gather, M (M —1)/2 weights need to be produced for each trial
velocity and each zero-offset two-way traveltime, with the goal of increasing the resolving
power of velocity spectra. Based on ideas presented in this thesis, I infer that these optimized
weights will be higher for crosscorrelations pairs with relatively large differential moveout.
A major shortcoming of applying weights to each individual crosscorrelation is that the
number of operations required will increase from order M achieved in the conventional
method (and in the selective method) to order M?2.

In general the basic idea presented in this thesis, that of summing crosscorrelations with
the largest resolving power, can be extended to and tested on any process to enhance resolu-
tion of a measured parameter that depends on the coherence of signal along a predetermined
path in multichannel data. A trivial extension, for example, is to use selective-correlation
sum for residual velocity analysis either before or after migration. Another example is in
searching for local dip in data.

84



REFERENCES

Biondi, B. L., and Kostov, C., 1989, High-resolution velocity spectra using eigenstructure
methods: Geophysics, 54, 832-842.

Cohen, J.K. and Stockwell, Jr J. W., 2002, CWP/SU: Seismic Un*x release 35: a free
package for seismic research and processing, Center for Wave Phenomena, Colorado
School of Mines.

Davidson, A.C., and Hinkley, D.V., 1997, Boothstrap methods and their applications:
Cambridge University Press.

De Vries, D., and Berkhout, A. J., 1983, Velocity analysis based on minimum entropy:
Geophysics, 49, 2132-2142.

Garotta, R., and Michon, D., 1967, Continuous analysis of the velocity function and the
moveout corrections: Geophys. Prosp., 15, 584-597.

Gelchinsky, B., Landa, E., and Shtivelman, V., 1985, Algorithms of phase and group
correlation: Geophysics, 50, 596-608.

Key, S. C., Kirlin, L., and Smithson, S. B., 1987, Seismic velocity analysis using maximum-
likelihood weighted eigenvalue ratios: 57th Ann. Internat. Mtg., Soc. Expl. Geo-
phys., Expanded Abstracts, 461-464.

Kirling, R. L., Dewey, L. A., and Bradley, J. N, 1984, Optimum seismic velocity estimators:
Geophysics, 49, 1861-1868.

Lord Rayleigh, F.R.S, 1874, On the manufacture and theory of diffraction-gratings: Philo-
sophical Magazine and Journal of Science, Feb. 4th series, V.47, No. 310.

Neidell, N. S., and Taner, M. T., 1971, Semblance and other coherency measures for
multichannel data: Geophysics, 36, 498-509.

Sarkar, D., Baumel, B., and Larner, K., 2002, Velocity analysis in the presence of amplitude
variation: Geophysics, in press.

Schoenberger, M., 1996, Optimum weighted stack for multiple suppression: Geophysics,
61, 891-901.

Sherwood, J. W., and Poe, P. H., 1972, Continuous velocity estimation and seismic wavelet
processing: Geophysics, 37, 769-787.
85




Taner, M. T., Koehler, F., and Sheriff, R. E., 1979, Complex seismic trace analysis: Geo-
physics, 44, 1041-1063.

Taner, M. T., and Koehler, F., 1970, Velocity spectra: digital computer derivation and
applications of velocity functions: Geophysics 34, 859-881.

Toldi, J. L., 1989, Velocity analysis without picking: Geophysics, 54, 191-199.

Yilmaz, O., 2001, Seismic data analysis: V.1, Society of Exploration Geophysicists.

86



APPENDIX A

A.1 Derivation of index limits for selective-correlation sum

For a CMP gather, I derive here the summation limits, jo, and k. (j), for expression
(2.3.19) in the selective-correlation sum method. Suppose that 7 is the threshold imposed
on the significance values such that only trace pairs for which S;x > 7 are used in the
summation. Also, consider offset geometry such that shortest offset is a multiple L of the
trace increment Az, so zg = LAz. Then, xnax, x;, and i can be expressed as a function
of the number of traces M, the trace indexes j and k, and L, giving

Tmax = (M + L -1)Az,
r; = (j+L-1)Ax,
zr = (k+L-1)Azx.

Substituting these expressions into expression (2.2.18) gives expressions for the indexes j
and k, along the curve Sj; = 7, as functions of one another;

i={r[M+L-1? -]+ b+ -1} L4, (A.L1)

and
E={G+L-17—r[M+L-1?-17}" ~L+1. (A.1.2)

Based on these expressions, we can determine the range of values of j and k inside the
region in bricked pattern in Figure 2.4. The abscissa index j varies between jo, and M,
where jo, is just expression (A.1.1) evaluated at k = 1 plus unity,

/

jor = {r[M+L-1? -1 + 12} L 12, (A.13)

and the ordinate index k, which depends on the index j, varies from 1 to k, (7) minus unity,
giving

. ) 1/2
k() ={G+L-12—r[M+L-1° -2} - L (A.1.4)
Then, the selective-correlation sum CCs,, is given by
M kr(4)
CCse(viriatsto) = D > D Fiuts) Frah)- (A.1.5)

J=jor k=1 w
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