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ABSTRACT

The compression of seismic data provides potential cost reduction in both storing and
transmitting the huge amount of data acquired in exploration seismology, yet there have been
limited studies on this issue. Here, I study seismic data compression from several different
aspects. Specifically, I compare several algorithms that use different transformations, in terms
of the amount of compression achievable under a specified amount of compression error. For
a given error, the cosine-based transforms are able to achieve slightly more compression than
the standard wavelet transform. As to the trade-off between the amount of compression
and the amount of error in compression, I introduce the compression ratio as a function
of the compression error. This function is then used to explain why the compression error
grows more rapidly for unstacked data than for stacked data, an empirical result observed
by some researchers. I also raise the issue of random accessing of each trace, a particular
need in treating seismic data, and give several solutions that achieve compression while
accommodating that need. In addition, I process some field data and evaluate the errors
when a certain process is applied to the original data as well as the uncompressed data.
It turns out that the error is reduced after migration and enlarged after deconvolution. Of
course, besides the amount of compression, the cost of compression and uncompression is
another important factor in possible applications of data compression. In general, the more
available computing power and less available storage and transmission bandwidth, the more
advantage can be taken of data compression.
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Seismic data compression

Chapter 1

INTRODUCTION

Seismic data volumes, these days, are huge and growing. With the emergence of 3D
technology, a typical data volume is particularly large (> 10 bytes are common in 3D
surveys). Simply archiving these data requires a vast amount of storage. Moreover, as
more data are processed and interpreted on workstations, more data transfer among the
workstations through local area networks is required.

It is therefore desirable to compress the data, in order to reduce the costs of storage and
transmission. The ability to compress the data by a factor of 10 means that 10 times as much
data could be stored in the space required to store one uncompressed dataset. Moreover,
transmitting the compressed data therefore requires only one-tenth the bandwidth that it takes
to transmit the original data, thus easing the problem of network traffic. One might suspect
that the need for data compression is obviated by wide-band technologies such as optical fiber
communication networks and optical storage disks. While it is true in some examples that
available bandwidth lessens the need for complex data compression, compression can still be
important. A prime example is the advantage gained in transmitting compressed data from
a multi-streamer ship to a land-based processing center in nearly real time (Donoho, et al.,
1995; Stigant, et al., 1995). More generally, resources such as bandwidth obey a corollary of
Parkinson’s Law: Resource use will expand to meet the resources available. This has certainly
been the experience in exploration seismology. Hence there will always be advantages to be
gained from data compression in terms of efficient use of bandwidth and storage capacity,
even though the costs of bandwidth and storage capacity continue to drop.

There are two broad categories of data compression techniques: lossless and lossy.
Lossless compression means no information is lost during the cycle of compression and de-
compression, and the original signal can be perfectly reconstructed from the compressed one.
Lossy compression, on the other hand, means some information is lost during compression.
Cost aside, lossless compression is what every customer would like since it provides a flawless
reproduction of the original. However, the compression achievable by lossless compression
is limited to around only 2:1. On the other hand, when seismic data, which inevitably are
contaminated by noise in one form or another, are sampled and recorded, some amount of
error is already introduced. So, instead of trying to reproduce the original signal perfectly, it
is realistic to make compromises that yield reproductions that are satisfactory for foreseeable
purposes, while achieving a much higher compression ratio.

Even with this said, lossy compression of seismic data has not yet represented an ac-
ceptable technical route. The main reason is that the seismic industry has been focusing on
improving data quality, and lossy compression will potentially degrade data quality. However,
some recent studies (Hewlett and Hatton, 1995; Hall et al., 1995) show that the amount of
degradation introduced by even 10:1 compression is comparable to the difference caused by
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using slightly different parameters of some processing modules, such as the filter length in
deconvolution and the velocity in stacking, and significantly smaller than the difference ex-
perienced by processing with different software packages that are designed to accomplish the
same task. These studies indicate that lossy compression can be used during the processing
and interpretation stages, even though the raw acquired data may need to be kept intact.
Another factor limiting use of data compression in practice is the cost of compressing and
decompressing data. However, as modern computers become more powerful, this cost will
become less significant. Hence, seismic data compression might find more applications.

Much of the original work in lossy compression can be found in the area of speech and
image processing (e.g. Bellamy, 1991; Wallace, 1991; Le Gall, 1991). For seismic data, Wood
(1974) discussed compression by truncating the Walsh transform of each trace. Bordley
(1983), on the other hand, used linear predictive coding (LPC) to compress marine seismic
data. Spanias et al. (1991) compared LPC with some of the transform-based compression
techniques, such as the Karhunen-Loeve transform (KLT), the Walsh-Hadamard transform
(WHT) and the discrete cosine transform (DCT). More recently, Luo and Schuster (1992)
applied the wavelet packet transform to the compression of seismic data by discarding the
small coefficients of the transform. Bosman and Reiter (1993) studied how the errors in the
wavelet transform-based compression propagate through some seismic processing modules.
Reiter and Heller (1994) compared the compression errors for normal moveout (NMO)-
corrected, common-midpoint (CMP) gathers and stacked sections, and found that stacking
can reduce the compression errors.

In this thesis, I first introduce some general concepts to gain an understanding of data
compression, in terms of what are the components in a practical data-compression algorithm,
how each of these components works, and how the amount of compression is related to the
amount of error introduced during compression. Then, using some data examples, I discuss
some practical issues involved specifically in the compression of seismic data, such as what
might be an appropriate way to distribute the compression error, how the different choices
of transformation in the algorithm influence the amount of compression achievable, what are
the different aspects of the data that determine the amount of compression achievable, and
how the different error measures can be used to evaluate the compression result. After that,
I study several approaches to dealing with the problem of randomly accessing each trace,
a problem that is specific to seismic data compression. These approaches include the one-
dimensional technique of compressing each trace independently, thus ignoring lateral (trace-
to-trace) coherency; the two-dimensional technique of compressing small two-dimensional
strips with standard two-dimensional compression techniques, and the mixed technique of
applying lateral prediction first and then compressing the predicted residuals trace-by-trace
using one-dimensional techniques. Finally, I process some real data, both the original data and
the data that have been compressed and uncompressed, using two representative processing
algorithms, migration and deconvolution, and compare the processed results to study the
behavior of the compression error for the two different processes.

& 1
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Chapter 2

BASICS OF COMPRESSION

In this chapter, I use the commonly used transform-based compression technique to
introduce some of the basic concepts of compression.

A transform-based, lossy compression technique consists of three building blocks: trans-
formation, quantization and coding (Figure 2.1). First, some transform is applied to the
signal. This step is completely lossless and invertible. The idea is that after an appropriate
transform (the discrete cosine transform, the discrete wavelet transform, etc.), the coeflicients
are much less correlated than are the original samples so that the information may be more
“compact” in the sense of being concentrated into a relatively smaller region in the trans-
formed domain than in the original data domain. Being more compact, intuitively, fewer
numbers (coefficients) are required to convey the content of the data. Even though there is
no theorem stating that uncorrelated samples can be more efficiently compressed, as a matter
of practice and experience, the more uncorrelated or independent a set of variables, the sim-
pler the compression technique that can be used. After the transform, the coefficients, which
are represented by real numbers, are converted into a finite set of integer numbers through
quantization. It is in this step that the “lossy” part of the compression process occurs. The
advantage of quantization however, is that fewer bits are needed to approximate the coeffi-
cients. Finally, the integer numbers are encoded by some lossless technique to further reduce
the number of bits required to represent the data.

Transform | —> | Quan- —>| Coding
tization
1
i
Vv
_Transmission, .|

Storage
1
!
)
= — Dequan- - De-

Transform tization Coding

F1c. 2.1. Building blocks of a transform-based compression system.

In the following, I discuss the basic concepts used in quantization and coding. We shall
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return to the topic of transforms in Chapter 3.

2.1 Quantization

Quantization is a process that maps an input signal, which can generally take on any
value from a continuous range of possible amplitudes but is actually represented by floating-
point numbers, into the output signal, which is uniquely specified by an integer in the set
1,2,3,...,N. In doing this, fewer bits are used and some resolution (or precision) is lost,
resulting in some error.

Since quantization is the only step where approximations are made in representing the
signal, how one designs a quantizer — an algorithm performing the quantization — will
determine how the error is distributed in the approximation. This, in turn, will have direct
influence on how the approximated signal looks, how the waveform in the approximation
differs from that in the original, and how the approximation error propagates through different
processing modules. Therefore, a good quantizer is one that is tuned for a specific type of
signal and the processes that will be applied to it. For example, the quantizers that are best
for speech signal compression are different from those used in image compression. Applying
the quantizers (and the compression techniques using those quantizers) designed for one type
of signal to another type is generally inappropriate.

In order to design quantizers that might be appropriate for seismic signals, it is necessary
to understand the theory of quantization, a subject that is more complicated than it appears.
In their book, Gersho and Gray (1992) discuss many different quantizers and therefore provide
many options. However, after most transformations, scalar quantizers — where each sample
is quantized independently (as opposed to vector quantizers where the samples are quantized
as a group) — are often used for simplicity.

A scalar quantizer is an operator @) that maps real numbers z within a range (a, b) into
a finite set of output levels y,, yo, ..., yn with the indexing chosen so that y; <y < --- < yn.
The domain of the operator (a,b) consists of N cells (z;_1,x;], each corresponding to an
output level. In quantization, if an input number z falls in the sth cell (z;_1, z;], then it can
be uniquely approximated by an output level y; and therefore represented by the index .
Since ¢ can take on one of only N values 1,2, ..., N, log, N bits are needed to represent one
quantized sample. The distance A; = y; — ;-1 is called the stepsize. The mazimum error
of a quantizer is defined as the maximum of the difference between the input and output,
max|z — y;|, which is obviously less than max;|z;—1 — z;|. The more commonly used error,
however, is the mean-squared-error (MSE), which is the square of the root-mean-square
(RMS) error. MSE is also called the L2-average distortion (I will simply call it average
distortion throughout the rest of the thesis). It is given by

D= [[- Q@ fx(z)ds, (2.1)

where z is the input sample, Q(z) is the output value, and fx () is the probability density
function of random variable X.
Depending on how the y;’s are distributed, scalar quantizers are further categorized
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as uniform and nonuniform. In a uniform quantizer, the output level y;’s are uniformly
distributed; they are the midpoints of the equal-sized cells, y; = (z;-1 +2:)/2, as exemplified
in Figure 2.2. Otherwise, the quantization is nonuniform, as shown in Figure 2.3.

Output
Yi
Fs Yir1
[l 1 i 1 >
a X1 Xy b Input

: FiG. 2.2. A uniform quantizer wherein the output levels y; are uniformly distributed and
g are the midpoints of the cells.

Given these definitions, following are some results important in designing a quantizer.
The proofs for most of the observations can be found in Gersho and Gray (1992). Notice
R that these results are based on the so-called high-resolution assumption, meaning the number
L of output levels N is large and the average distortion is small. (A common borderline of

’ high resolution is when the average distortion is less than 10 percent of the mean-squared
L amplitude of the signal.)

1. For a given number of output levels N, the uniform quantizer minimizes the mazimum
error, and the mazimum error for a uniform quantizer is A/2, where A is the stepsize.
(All the stepsizes are the same for the uniform quantizer.)

This observation shows that the uniform quantizer has, besides its simplicity, a useful
’ robustness so that it maintains comparable performance for a wide variety of input
= signals. '

2. The average distortion of the uniform quantizer is

2
D—A

== (2.2)

provided that fx(x) is smooth and the stepsize A is small relative to the RMS amplitude
of the signal, so that the high-resolution assumption is satisfied.
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Output -
A

b Input

FI1G. 2.3. A nonuniform quantizer. The output levels y; are non-uniformly distributed so
that the stepsizes for smaller input values are smaller than those for larger input values.

This observation relates the average distortion (or the MSE) to the stepsize in the
uniform quantizer for small errors. This relation is important in designing a uniform
quantizer given the MSE. Once an acceptable level D is specified, the stepsize is just

A = V12D. (2.3)

3. For a given number of output levels N, a nonuniform quantizer that matches the input
probability density function fx(x) minimizes the average distortion.

In this observation, it is the average distortion that needs to be minimized. Intuitively
from equation (2.1), a smaller error is desired for z values with larger fx(z). Therefore,
the error distribution needs to depend on the probability density function fx(z). This .
in turn requires that the output levels of the quantizer depend on fx(z). To be more
specific, we first define the point density function as follows. Suppose we have a family
of nonuniform quantizers each with the same relative concentration of output levels but
with a successively increasing number of levels, N. As N gets large, let N(z)dz denote
the number of quantization levels that lie between z and z + dz and assume that as
N — oo we have a limiting density function (the point density function)

Az) = lim Nj&f) (2.4) 3

With this definition, the stepsize A; can then be represented by the point density
6
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function as )
A — (2.5)
" NA(w)
where y; is the corresponding output level. Gersho and Gray (1992) show that for the
optimal nonuniform quantizer, the point density function satisfies

1/3
A(z) = "fX(x)l 3dy”
I fx(y)3dy
In most cases, the variable z is not uniformly distributed and fx(z) is not a con-

stant; therefore a nonuniform quantizer is generally necessary to minimize the average
distortion.

(2.6)

The above observations are for the case of fized-length coding, where each output sample
is represented by a fixed number of bits, given by log, NV, and each output index i can
take on one of the IV possible values.

The next two observations are for the case of variable-length coding, where the number
of bits for each sample can vary. The result for variable-length coding differs from
that for fixed-length coding. Since the results here are related to entropy, we first
introduce the concept of entropy. The Shannon’s differential entropy h(X) is defined
for a continuous-alphabet random variable X, as

h(X) = - [ fx(y)log fx (v)dy, (2.7)

where fx is the probability density function of X. This h(X) is a characteristic of the
data themselves. It quantifies the amplitude distribution of the samples in the data,
(solely in terms of how often a certain amplitude value occurs), and therefore in some
sense the complexity of the data. Note that this is a different concept from coher-
ency, which characterizes how the samples with similar amplitude values are aligned,
or distributed geometrically (spatially). The entropy I discuss here and in the rest
of the thesis is only the first-order entropy. A higher-order entropy could be used to
characterize the sample-to-sample coherency in the data. However, after an appro-
priate transform, I shall presume that the samples are uncorrelated, so that entropy
(first-order) can then be used to characterize the data. Generally after an appropriate
transform, data originally with strong coherency map into data with lower differential
entropy.

Though a fundamental characteristic of the data, the differential entropy is difficult to
measure. More commonly used is the entropy for a discrete-alphabet random variable
(i.e., a random variable that can take on a discrete number of values), defined as

Ho = - P(i) log, P(i), (2.8)

=1
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where P() is the probability mass function, the discrete analog of the probability density
function, which can be approximated by the frequency of occurrence of the symbol 7 in
a sequence. Throughout the rest of the thesis, I shall refer to Ho simply as entropy. =

Entropy is a measure that characterizes the information content in a signal. The larger
the entropy, the more “complicated” and less predictable the signal, and therefore the !
more information contained. Figure 2.4 shows a very simple example consisting of two
signals, the first having an amplitude value of unity for every sample and the second
having an amplitude value of either plus or minus one for each sample. For these two
signals, if one needs to “bet” on what the amplitude of a certain sample will be, he is
sure that it is unity for the first signal. For the second signal, he will not be so sure, since
there is 50% probability that the amplitude value will be plus one, and 50% probability
that the amplitude value will be minus one. Using the definition in equation (2.8), it is
not difficult to find that the first signal has an entropy value of 0 and the second one
1. The first signal is more predictable and less complicated and therefore has a smaller
entropy value (in fact, in this case, because it is fully predictable, its entropy 1s Z€r0).

2
£
£
<
0 U T T
0 20 40 60
Sample
()]
©
=
3 01
E
<
0 20 40 60
Sample

F1G. 2.4. A simple example to illustrate the concept of entropy. The first signal is more
predictable and less complicated, and therefore has a smaller entropy value.

T 3 3

In terms of storage and transmission costs, the larger the entropy, the more bits needed
to store the signal and the more bandwidth needed to transmit the signal. For data

o
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compression, entropy is a quantity that determines the ideal average number of bits per
sample needed to represent a signal. Therefore, the lower the entropy, (i.e., the lower
the information content), the fewer bits needed to represent the signal, and the more
compression that can be obtained.

. For a fized entropy, the uniform quantizer minimizes the average distortion. Equi-

valently, for a fized average distortion, the uniform quantizer achieves the minimum
entropy.

Notice the difference between this observation and Observation 3. Observation 3 indic-
ates that for a given number of total bits, if a fixed-length coding technique is employed,
then it is a nonuniform quantizer that minimizes the average distortion. Or equival-
ently, for a given amount of error, if a fixed-length coding technique is used, then it is
a nonuniform quantizer that minimizes the number of bits needed. Observation 4, on
the other hand, gives the optimal result if a variable-length coding technique is used,
and the optimal result in this case is the uniform quantizer.

. The minimum entropy for a fized average distortion is given approzimately by

Ho ~ h(X) - %mgg 12D, (2.9)

provided that the average distortion D is small relative to the mean-squared amplitude
of the signal so that the high-resolution assumption is satisfied.

This observation, relating the entropy value Hg to the average distortion D (or the
MSE), is useful when designing a quantizer given the desired number of bits. Even
though the desired number of bits can be approximated as entropy Hg, we cannot
obtain D directly from this equation since h(X) is difficult to obtain in practice. A
practical procedure could be as follows. First, use an initial value (this can be a random
guess or something that is based on previous experience) for the average distortion D;
allowed in compressing the data, design a quantizer with the stepsize determined from
equation (2.3), and apply the entropy coding. Then, divide the number of bits after
entropy coding by the original number of samples, and obtain the resulting average
number of bits (which is approximately Hg,). With this D; and Hg,, combined with
the desired number of bits, which can be approximated as another entropy value Hg,,
we can then obtain an estimate of the average distortion D, in this case since, from
equation (2.9), we have

1. D
Hg —Ho, = 3 log, ‘5‘;‘, (2.10)
or equivalently,
D, = D,2%Ha1~Hay), (2.11)

With this D,, we can then determine the associated stepsize, again from equation (2.3).

I will use these observations in later chapters to design the quantizer for seismic data

compression. Also, I will use some of the observations to explain phenomena observed by
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Table 2.1. A simple example of Huffman coding.

i | P(i) | Natural Code | Huffman Code
0 1/2 000 0

1| 1/4 001 10

o 1/8 010 110

3| 1/16 011 1110

41 1/32 100 11110

5| 1/64 101 111110
6|1/128 110 1111110
711/128 111 1111111

other researchers.

2.2 Coding

As suggested in the previous section, good compression can be achieved by coding the
output of a uniform quantizer using a variable-length coding technique, called entropy coding.
Entropy coding is a lossless compression step that attempts to compress the data so that the
average number of bits per symbol is close to the entropy of a sequence of symbols, defined
by equation (2.8). An algorithm that performs the entropy coding is called an entropy coder.
The literature contains extensive study on entropy coding, and detailed accounts may be
found in many books and papers, e.g., Gersho and Gray (1992).

Examples of the many forms of entropy coders include Huffman coders (Huffman, 1952),
arithmetic coders (Witten et al., 1987) and dictionary-based coders (Welch, 1984). Here, I
use a simple example to show how Huffman coders compress data.

Suppose we have a sequence of symbols, wherein each symbol belongs to the set of
{0,1,2,...,7}. Their corresponding binary (natural) codes are shown in Table 2.1. The
binary code requires 3 bits per symbol, no matter what the distribution of the symbols in a
sequence. Now suppose each symbol 7 has the frequency of occurrence or probability P(i)
shown in the table. In Huffman coding, each symbol ¢ is assigned a code according to its
probability P(i). The Huffman code length for symbol i approaches — log, P(7). (The code
length needs to be an integer number. However, — log, P(%) might not be an integer number;
therefore the code length only approaches —log, P(7). In this example, the Huffman code
length for symbol i actually equals — log, P(i), since — log, P(%) is already an integer value.)
Therefore, symbols occurring more frequently will have shorter code length, as shown by their
Huffman codes in the above table. For this example, Huffman code requires

Hq = =) P(i) log, P(4)

1=1

10
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bits per sample on average. Therefore, for this example Huffman coding compresses the
sequence by a factor of more than 3 : 2 relative to binary coding. Of course, this is just an
[, idealized example. In practice, in order to recover the coded sequence, we need to store some

side information, such as the table that translates the symbols into the Huffman codes (the
so-called codebook), or other equivalent information such as the probability values. Spreading
the amount of side information required over all the samples results in an increased average
number of bits per sample needed. Therefore, due to this overhead, the average number of
bits per sample after entropy coding will be larger than the entropy value.

Since, after entropy coding, the average number of bits per sample approaches the en-
tropy, the lower the entropy of the data, the fewer bits required per sample of the represent-
ation and the more compression will be achievable. From the definition [equation (2.8)], it is
not difficult to show that the more evenly distributed is P(¢), the higher the entropy. If in
the previous example, all the symbols 7 have the same probability P(7), the entropy will be
3 bits, and no compression can be achieved. This is made precise by the following theorem
(Wickerhauser, 1994).

Theorem 1. Suppose that p and q are two probability mass functions over an N-point

t sample space, with corresponding entropies as H (p) and H(q). The sequencesp(i) :1=1,2,..., N
and q(i) :1=1,2,..., N are sorted so that they are non-increasing sequences. Define the
partial sum sequence S[p] as S[p|(k) = 5, p(). If S[p] > S[qg], then we say p is more

E concentrated than g, or equivalently q is more evenly distributed than p.

e If S[p] > Sq|, then H(p) < H(q).

e 0 < H(p) <log, N, where H(p) = 0 if and only if p(1) = 1 with p(n) = 0 for alln > 1,
and H(p) = log, N if and only if p(1) =p(2) =--- = p(N) = .

2.3 Compression ratio

With the above concepts introduced, it is now easy to discuss the quantity compression
ratio. The compression ratio r is defined as the ratio of the average number of bits per
sample before and after compression. For some given data, the number of bits per sample
generally is a fixed quantity b before compression, and it can ideally be the entropy Hg after

11
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compression, if entropy coders are used. Therefore, the ideal compression ratio is given by

b

= —, 2.12

Since Hy is related to the average distortion D according to equation (2.9), the compression
ratio is therefore a function of D

b b

(D)= 7 = Ay = Tlog, 12D

(2.13)

This equation describes the trade-off between the quantization error, or the average distortion
D, and the compression ratio r. The larger the average distortion D, or the error allowed,
the larger the ideal compression ratio r.

Generally, it is difficult to estimate the absolute h(X) and D from the data. However,
we can get some idea about the data to be compressed by performing a simple experiment.
Suppose we use a pre-defined value of the average distortion Dy, design the quantizer accord-
ing to equation (2.3), and compress the data using the entropy coder. Of course, the resulting
number of bits per sample will be larger than the true entropy value. In most cases, however,
the overhead is not significant so we will use the measured average number of bits per sample
as the true entropy value Hg, = h(X) — 3 log, 12Dy, and compute the compression ratio ro
according to equation (2.12). Therefore, we obtain a pair of values Dy and ro. With these
initial values, we can then predict the ideal compression ratio for other values of average
distortion, according to the following equation

r(D) = 0

S (2.14)
L — llog, 5’%

Expression (2.14) is obtained by eliminating h(X) in equation (2.13) and the following equa-
tion

b
h(X) — 1logy12Dq

Defining the relative error e as the MSE (which is just the average distortion D) divided by
the mean-squared amplitude of the data F,

ro = (Do) = (2.15)

e

D
i (2.16)
the compression ratio can alternatively be represented as a function of e

b
re)= g1, =
TO 2 g2 eg

(2.17)

where 7o = 7(ep).

Equation (2.17) gives a way to predict how much compression one can expect for a given
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amount of tolerated error e. Once the initial value ry is measured for a given value of eg, the
compression ratio r for any other error value e can be readily calculated from equation (2.17).

Figure 2.5 shows how the compression ratio r(e) changes with the relative error e for
two hypothetical data sets, one with 7 = 6 and the other with 7y = 4, when ¢y = .01%
and b = 32 are assumed for both cases. It looks similar to the one empirically obtained by
Reiter and Heller (1994), where they compared how the compression ratios change with the
relative error for an NMO-corrected common-midpoint (CMP) gather and a stacked section.
From comparison of the two curves, they concluded that the error increases with compression

Compression ratio

20
17.5
15
12.5

10

5 10 15 20 MSE%

F1G. 2.5. Compression ratios as a function of compression error for hypothetical data sets.
We might associate the two curves with unstacked data (lower curve) and CMP-stacked data
(upper curve).

ratio more rapidly for CMP gathers than for stacked sections. Figure 2.5 gives a possible
explanation for this phenomenon. Compared to CMP gathers, stacked sections often have
higher signal-to-noise ratios and therefore more coherency. After some appropriate transform,
they may therefore have a smaller differential entropy value h(X). (I will illustrate this in
later chapters.) Since

b

h(X) — 3 log,(12Dy)’

the stacked section will have a larger initial compression ratio ro for the same amount of

To =
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initial error than will the unstacked data. From equation (2.17), then, the error will increase
more slowly for stacked sections, as illustrated by the curves shown in Figure 2.5.
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Chapter 3

TRANSFORMATIONS

Any of a collection of transforms can be used in a transform-based lossy compression
technique. Here, I briefly introduce two types of transforms that I study: the discrete cosine-
type transform and the discrete wavelet-type transform. Detailed treatment can be found in
Wickerhauser (1994) and Daubechies (1992). Comparison of the actions of these transforms
in compression of seismic data will be left to later chapters.

3.1 Discrete Cosine Transform

The discrete cosine transform (DCT) has some of the features of a transformation to
the frequency domain. It is equivalent to a discrete Fourier transform of a symmetricized
extension of the input signal. For a given input signal z(n), the transformed coefficients can
be obtained as (e.g., Gersho and Gray, 1992)

N-1 . 1
y(m) = by »_ z(n) cos [—m(n + —)} , (3.1)
n=0

N 2
bmz{

This is a slight variation of the discrete Fourier transform of the sequence

where

, form=1,2,..,.N—-1,

, form=0.

s

2(n) = {37(”), forn=0,1,..,N—1,
" 1z(2N-n-1), forn=N,N+1,..,2N - L.

The reason that DCT is often used instead of the discrete Fourier transform is that it involves
only real-number operations; no complex-number operations are needed.

In most applications, DCT is not performed on the entire input signal. Instead, the
input signal is subdivided into segments and DCT is performed for each segment to better
describe the local (in time) frequency characteristics of the input signal. In this sense, DCT
is similar to the windowed Fourier transform, where the transformed coefficients carry local
spectral information. Figure 3.1 depicts this subdivision. Clearly, the window used here is
just a box function, and each segment is disjoint. Another way to look at this is that the
basis functions here are truncated cosine functions. The DCT applies these truncated cosine
functions to the original signal.
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amplitude

time

Fic. 3.1. Subdivision for the DCT.

3.2 Local Cosine Transform

Because the box-function window used in DCT is not smooth, applying this window
function (multiplying data by the box function) will introduce abrupt changes from nonzero
values to zero, distortions that are not generally in the original data. The local cosine trans-
form (LCT) overcomes this problem by introducing a smooth orthogonal projection, instead
of the box-shape window. Therefore, instead of using the truncated cosine functions as the
bases in DCT, LCT uses the smoothly windowed cosine functions. In terms of time-frequency
localization, the bases for DCT have perfect time localization (no overlap) but poor frequency
localization (the Fourier transform for the box function is the slowly decaying and oscillatory
sinc function), while the bases for LCT have both time and frequency localization.

In LCT (e.g., Wickerhauser, 1994), a smooth function r(t) is used to provide a smooth-
windowed cosine basis function. In order to have orthogonal projection, r(¢) needs to satisfy
the following conditions:

2 V2 . _ [0, ift< -1,
r@P +r(~t)P=1forallt € R; r(t) = { test (3.2)
One example of the function r(¢) is the so-called iterated sine function, defined as
0, ift < -1,
Tsin(t) = {sin[-}(l +t)], if-1<t<1, (3.3)
1, ift>1.
and -
T0)(2) = Tsin(t);  Thray(t) = ") (sin §t)’ (3.4)

where () € C™; that is, it has n continuous derivatives. Figure 3.2 shows the function rg(t)
and Figure 3.3 shows the function r(4(t). Clearly, ri4(t) goes to zero much more smoothly
than does ry(t).

In LCT, instead of applying the box functions, we apply the smooth windows. Fig-
ure 3.4 depicts a subdivision for LCT. Clearly, the windows are no longer disjoint; they
overlap. Therefore, the transform is no longer immediately orthogonal. One way to achieve
an orthogonal transform (Wickerhauser, 1994) is to apply the folding operator, as follows.
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F1G. 3.2. The function rg(t).
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~ FIG. 3.4. Subdivision for the LCT.
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The folding of z(n) is defined as

(n)z(n) +r(-n)z(-n), ifn>0,
Usln) = {f«{fﬁ)ﬁ(n) D mya(n), ifn<0 (3.5)
Its adjoint operator U*, the unfolding operator, is defined as
. _ (r(n)z(n) = r(—n)z(-n), ifn>0,
Uan) = {:‘(—-n)x(n) +r(n)z(-n), ifn <O0. (3.6)

Clearly, if z(n) is supported on the right half-line, i.e. (n) = 0, for n < 0, then the unfolding
is equivalent to multiplying by the window as

. _[r(n)z(n), ifn>0,
Urz(n) = {r(n)x(——n), if n <0. (3:7)

The LCT of an input signal z(n) then consists of two steps. First, z(n) is cut into
pieces and each piece is folded, using a smooth function r(t). Then, the folded pieces are
transformed by the DCT. Since < Uz, ¢ >=< z,U*¢ >, where <,> denotes the inner-
product, and ¢ denotes the truncated cosine function or the basis used in DCT, then folding
the data followed by DCT is equivalent to transforming the data by an unfolded truncated
cosine function, which is just a smoothly-windowed cosine basis function.

3.3 Wavelet Transform

The wavelet transform (Daubechies, 1992; Wickerhauser, 1994) is another orthogonal
transform that can capture the local spectral information of a given signal. Different from
the previously discussed cosine-type transforms where the window size is fixed, the wavelet
transform employs windows whose widths are adapted to the frequency content, i.e., lower
frequencies have longer windows and higher frequencies have shorter windows. The discrete
wavelet transform employs two important filters [the so-called conjugate quadrature filters
(CQFs) in signal processing literature]: the high-pass filter D and the low-pass filter A.
A signal z(n) is first decomposed by applying the two filters followed by decimation or
subsampling — retaining only one sample in two. For notation purpose, I call the operation .
of high-pass filtering followed by subsampling, G, and the corresponding one for low-pass
filtering, H. Then the output from H is further decomposed, and the process goes on until
only one sample is left for the H operator, as illustrated in Figure 3.5.

In order for the filters to qualify for CQFs, the decomposition needs to be perfectly
reconstructable. This imposes some conditions on the operators H and G, as follows (Wick-
erhauser, 1994):

e Self-duality: HH* + GG* = I;
e Independence: GH* = HG* = 0;
e Ezact reconstruction: H*H + G*G = I
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X(n) ——z

—9H -

Fic. 3.5. Flow diagram for the discrete wavelet transform. The G and H operators corres-
pond to first filtering by high-pass (for G) and low-pass (for H) filters and then subsampling
the output by a factor of two.

e Normalization: H1 = /21 and G1 =0

where H* and G* are the adjoints of H and G, I is the identity operator, 1 =
{.,1,1,1,..} and 0 = {...,0,0,0, ...}.

If the operators H and G are formed respectively from the sequences h and g, the above
conditions translate into the following equations:

> h(k)h(k +2n) = 6(n Zg g(k + 2n);
k

> g(k)h(k + 2n) —-O—Zh g(k + 2n);

2. 9(2k) == g(2k +1);
k

k

1
STh(2k)=>_h(2k+1) = 75

k k

;g(%)l =

Daubechies (1992) presents a detailed study on how to construct the filters. A list of filter
coefficients for different types of filters can be found in Wickerhauser (1994).

The action of filters A and D is to split the frequency spectrum into two symmetrical
parts, though the split is not perfect and there is some overlap. In the discrete wavelet
transform, only the averages (the results after applying H) are further decomposed and the
differences (the results after applying G) are kept as part of the output. Therefore, the
first-level difference will occupy approximately the upper half in the frequency spectrum.
The second-level difference will occupy approximately the upper half in the remaining fre-
quency spectrum, and so on (Figure 3.6). Obviously, the first-level difference has the highest-

Zk:g(Qk—{— 1)] = -1\/-5. (3.8)
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frequency component and the widest frequency window, which corresponds to the narrowest
time window. Therefore, the window sizes are adapted: the higher the frequency content, the
narrower the time window.

amplitude

frequency

FIG. 3.6. The frequency division in the discrete wavelet transform. The higher frequencies
have larger windows, and the lower frequencies have smaller windows.

3.4 'Wavelet Packet Transform

In some applications, however, the large frequency windows (small time windows) for
the high frequencies might be too crude. It is therefore desirable to further refine the high-
frequency component as well as the low-frequency component during the decomposition. This
leads to the discrete wavelet-packet transform.

In the discrete wavelet-packet transform, both the outputs from H and G are further
decomposed, as shown in Figure 3.7. Consider the structure in this figure as a tree. For
each node in the tree, there exists the choice of decomposing further or not. Therefore, there
results a huge collection of possible valid decompositions, with the discrete wavelet transform
being one of them. Another special decomposition is the so-called fixed-scale wavelet packets
where all the nodes are decomposed to the same level. I will use fixed-scale wavelet packets
and simply call it the discrete wavelet packet transform in the rest of the thesis.

As opposed to the case of the discrete wavelet transform, in the discrete wavelet packet
transform (fixed-level), the frequency spectrum is divided with equal-sized windows, as shown
in Figure 3.8.

Both the wavelet transform and the wavelet packet transform have their appropriate
applications, as I will show in the next chapter. Because of the adaptive window used,
the wavelet transform can zoom in on details (such as the edges in an image) and zoom
out on the background (such as the smooth parts in an image). Therefore, it provides an
efficient and effective representation for signals with dramatic changes in the local spectral
information. With its fixed scale, the wavelet packet transform, on the other hand, can
effectively represent bandlimited signals. This is because there is no dramatic change in
the local spectral information in a bandlimited signal. The large frequency windows for the
high-frequency components in the wavelet transform (Figure 3.6) might be too crude; the
wavelet packet transform can provide the needed refinement (Figure 3.8).
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Fic. 3.7. Flow diagram for the discrete wavelet packet transform. The G and H operat-
ors correspond to first filtering by high-pass (for G) and low-pass (for H) filters and then
subsampling the output by a factor of two.
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In practice, the DCT has found many applications in image compression, and current
standards in the compression of still and motion pictures are based on the DCT (Wallace,
1991; Le Gall, 1991). Since its introduction, the DWT has been applied to image and
seismic data compression (Zettler et al., 1990; Reiter and Heller, 1994). However, since
it is a relatively new concept, its applicability requires further investigation. The DWPT,
especially combined with the so-called “best-basis algorithm” (Coifman and Wickerhauser,
1992), has been reported to compress speech signals effectively. I will do some experiments
in the next chapter to compare the performance of these transforms in the compression of
seismic data.

Whichever transform to use depends largely on the character of the data since the idea is
to transform the strong coherency in the original data into low entropy in the coefficients. In
other words, under an appropriate transform, characteristics of the data that can potentially,
but not yet directly, contribute to good compression are converted into a quantity that will
directly give good compression. A good transform will take advantage of the coherency or
redundancy in the data, resulting in a more compact representation of the data, thus lowering
the differential entropy, so that more compression can be achieved than without transform.
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Chapter 4

COMPRESSION IN PRACTICE

Having introduced the basic concepts, in this chapter I discuss some practical issues in
the compression of seismic data in particular.

The amount of compression achievable for a given level of quality of reproduction after
decompression depends on several factors, most important among which are the quantizer
and the transform used as they relate to the nature of the data to be compressed, and the
error measure.

4.1 Quantizer

In Chapter 2, I reviewed some results on optimal quantizer design. From the observa-
tions, different optimal quantizers are best suited for different purposes. For example, in
digital telephone communication, where a fixed number of bits for each sample (fized-rate
codes) are used, Observation 3 indicates that a nonuniform quantizer that matches the stat-
istics of speech signals is most desirable. Generally, there are more small-amplitude samples
than large-amplitude samples in speech signals. Intuitively, to have as small an average distor-
tion as possible, the nonuniform quantizer will allocate smaller errors for the small-amplitude
values than for the large-amplitude values, as shown in Figure 2.3, because there are more of
them. A nonuniform quantizer similar to this is what is used in the North American standard
for digital telephony (CCITT G.711, e.g., Bellamy, 1991). It happens that, besides minim-
izing the average distortion, the nonuniform quantizer fits the purpose of telephony as well.
This is because the human auditory system is not very sensitive to the volume of the sound.
For a range of large-amplitude events, the content is already known, and the volume does not
make too much difference (it might make some difference in expressing emotions though).
In contrast, for the small-amplitude events (whispers) only small errors can be tolerated in
order that the content be understandable.

This nonuniform quantizer, however, is not necessarily appropriate for seismic signals.
This is because most seismic signals are noisy, at least to the extent of our currently limited
understanding. When a nonuniform quantizer is used, more error is allocated to large-
amplitude events, because they generally occur less frequently. However, in seismic data
large-amplitude events (the stand-outs) are what we are often most interested in. Those are
the events from which we often estimate various earth parameters. Keeping those events
in position and their amplitudes as accurate as possible, intuitively, will help alleviate the
possible exaggeration of the quantization errors in further processing. On the other hand,
the small-amplitude events have a good chance of being random or interference noise. The
nonuniform quantizer therefore might expend too much effort in approximating possible ran-
dom noise. ‘
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While the observations introduced in Chapter 2 give some guidelines for designing a
quantizer given an objective criterion, the situation will be different if some subjective criteria
are used. For speech signals, as explained above, a nonuniform quantizer similar to the one
shown in Figure 2.3 fits the purpose of telephony, perceptively. For image signals, however,
different quantizers are generally used to yield desirable visual effects. Since human eyes are
more sensitive to low-frequency features, in most image quantizers higher frequencies are
quantized more roughly, i.e., with more error. If this type of quantizer is used for seismic
data, it might cause not only amplitude errors, but phase errors as well.

It is highly desirable to design quantizers specially suited to seismic data. This is a
difficult task, however, due to the multifacet nature of the applications of seismic data. In
interpretation for example, the main concern might be the appearance of the data. Therefore,
making the reconstruction look as close as possible to the original is important. For some
of the processing modules, the main interest might be the low-frequency component of the
data, while for others, it is the high-frequency component. Therefore, using a quantizer that
favors one process might introduce large errors for others. One approach might be to design
a quantizer for each step of the processing. However, before a final image is obtained, the
data have to go through a sequence of processes, and once a “feature” is lost in the early
steps, it will no longer exist for the rest of the processing flow, resulting in possibly large
errors for processes that focus on this feature.

Until another quantizer is found to be more appropriate, the uniform quantizer might be
a safe choice. From Observation 1, the uniform quantizer minimizes the maximum error for
a given number of output levels N. Therefore, the uniform quantizer is robust in that good
performance can be maintained for a wide variety of input signals. With the error allocated
uniformly, the targeted features (large-amplitude events) are approximated accurately, while
the small-amplitude events are treated with some care as well. The above reasoning remains
valid for the transformed domain in a transform-based compression technique, as well as in
the original data domain.

The uniform quantizer might be a safe choice for allocating the error, but will it provide
enough compression for an allowed amount of error or average distortion? From Observa-
tion 4, the uniform quantizer minimizes the entropy. Since entropy coders can produce a
compressed sequence whose average number of bits per sample approaches the entropy, they
will provide the most compression for a given average distortion if the uniform quantizer is
followed by an entropy coder.

Besides the quantization and coding approach, another approach discussed in some of
the literature (e.g. Luo and Schuster, 1992) involves discarding the small transformed coef-
ficients. This perhaps intuitively appealing approach can be considered as a special form of
quantizer, where the small amplitudes are set to zero while the large amplitudes are kept in-
tact. Therefore, large-amplitude events are treated with extreme care (with no approximation
at all) while small-amplitude events are totally ignored. It is not difficult to compare the two
approaches in terms of the amount of compression for a given error in the reconstructed data.
For the stacked section shown in Figure 4.1, whose two-dimensional amplitude spectrum is
shown in Figure 4.2, I compared the compression technique of quantization with coding, with
the method of discarding small coefficients.
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Fi1G. 4.1. Brute stack.

The transformations used are identical for both cases, the two-dimensional extension of
the DWPT, with five levels of decomposition. To achieve an RMS error no larger than one
percent, the-quantization (with a uniform quantizer) and coding technique gives about 5.75:1
compression, with the RMS error defined as

DA

RMS(e) = Yo=2 2 (4.1)
1 n 2
n 2ei=17T;

where z; are the sample values of the original signal and e; are the sample values of the
difference between the original and the reconstructed signals. To achieve this same amount
of compression, the method of discarding small coefficients would require throwing away
more than 80 percent of the smallest coefficients and also storing the indices of the remaining
coefficients. This, however, gives an RMS error as large as 20 percent even though the
coefficients discarded are smaller than two percent of the largest coefficient because, after
transformation the coefficients become more compact, resulting in many small coefficients
relative to the number of large ones. This result is just an example of Observation 4: the
uniform quantizer minimizes the entropy for a given average distortion.
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F1G. 4.2. Two-dimensional amplitude spectrum of the brute stack shown in Figure 4.1.

4.2 Transform

The choice of the transform is another factor that determines the amount of compression
achievable. Since I will be adopting the approach of quantization plus coding, the amount of
compression achievable can be quantified by the entropy value. In the following, I use the
entropy value as the criterion in comparing some of the transforms.

Generally speaking, the transform that “best” characterizes the data can achieve the
most compression. The wavelet transform, because of the adaptive windows used, is a good
fit for the smooth-background-plus-local-discontinuity nature of images.

Figure 4.3 shows an example of what I call “image”-type data. It is a portion of the
Marmousi velocity model (Versteeg and Grau, 1991). Compared to typical bandlimited
seismic data, (see e.g., Figure 4.1), it is smooth in each block, with discontinuities at the
boundaries between two blocks. Figure 4.4 shows one vertical slice of the section, i.e., the
velocity function at the first midpoint. Clearly, it consists of smooth parts with isolated ab-
rupt changes at the boundaries. For the section in Figure 4.3, I apply the wavelet transform,
the wavelet packet transform (again, the fixed-level) and the discrete cosine transform, all
along the vertical dimension, and compute the entropy values after the transforms. (All the
transforms I discuss in this section are one-dimensional, along the vertical dimension, since
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F1G. 4.3. Marmousi velocity model.

I want to do the comparison along this dimension.) In computing the entropy values, I first
convert the transformed coefficients from real numbers into integer values under about one
percent RMS error. (I will use one percent RMS error for all the entropy evaluations in this
chapter.) After the wavelet transform, the entropy is 1.76 (bits). Both the discrete wavelet
packet transform (DWPT) and the discrete cosine transform (DCT) have an extra parameter
— the level of decomposition for the DWPT, and the window size for the DCT — that can
be varied. Table 4.1 shows the entropy values varying with the level of decomposition in the
DWPT. Table 4.2 shows the entropy values varying with window size (in samples) in the

Table 4.1. Entropy values after the DWPT.

level 1 2 3 4 9 6 7 8 9
entropy | 3.53 | 2.63 | 2.23 | 2.16 | 2.27 | 2.45 | 2.67 | 2.84 | 2.89

Table 4.2. Entropy values after the DCT.

window size 8 16 32 64 | 128 | 256 | 512
entropy 2161196190192 11.96 | 2.10 ]| 2.26

DCT. Both of the tables show that the entropy values first decrease and then increase. Intu-

27



Tong Chen

4000- N

3500+

3000+ J\/‘

2500

Velocity

2000 4

1500 T y T T T
0 100 200 300 400 500
Depth (samples)

F1G. 4.4. Marmousi velocity model at the first midpoint.

itively, both the DWPT and the DCT employ fixed windows — in the frequency domain for
the DWPT, and in the time domain for the DCT — to capture the local spectral information
in the data. When using the window size that best matches the general characteristics of the
data (perhaps related to the average thickness of the layers, which is about 12.4 samples for
this example), the transformed coefficients will have the least entropy. That is why there is
an optimal decomposition for both the DWPT and the DCT. Even with the optimal choices,
however, the entropy values, 2.16 for the DWPT and 1.90 for the DCT, are still larger than
1.76, after the wavelet transform, where the window size is adapted to the local characterist-
ics of the data — large time windows for the smooth part within each block and small time
windows for the boundaries between two blocks.

For the velocity model, an example of the image-type of data, the wavelet transform
results in the least entropy. Which transform will do best for typical bandlimited seismic
data?

Figure 4.5 shows a shot gather from a land survey. Clearly, it has lots of events and, as
opposed to the velocity model, is bandlimited in the time direction. For this gather, again I
apply the wavelet transform, the wavelet packet transform and the discrete cosine transform,
and compare resulting entropy values. The entropy after the wavelet transform is 6.21 (bits).
Clearly, this is much larger than that of the velocity model (1.76 bits), indicating that seismic
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F1G. 4.5. AGC-corrected shot gather.

data are harder to compress than is the velocity model. (This is understandable since the
velocity model can be described by only a slope, intercept, and top-of-layer, for each layer.)
For the DWPT and the DCT, again I vary the level of decomposition and the window size.
Table 4.3 shows the result for the DWPT and Table 4.4 shows the result for the DCT.

Similar to the results in Table 4.1 and Table 4.2, there is an optimal choice of the level of
decomposition for the DWPT and window size for the DCT. With the optimal choices, the
DWPT results in smaller entropy, 6.07, than does the wavelet transform. This indicates that
the large frequency window used in the wavelet transform for high-frequency components is
too crude for seismic data. The DCT, on the other hand achieves even smaller entropy, 6.00,
than does the DWPT. Moreover, the DCT achieves small entropy values for a wide range of
window sizes (i.e., its quality is not highly sensitive to window size.). The reason why the
DCT results in smaller entropy than does the DWPT is that seismic data are bandlimited
and therefore highly oscillatory, as shown in Figure 4.6. The basis function in the DCT, the
cosine function, matches the seismic data better than do many of the wavelets. For most
types of wavelets, however, the longer the wavelet filter, the more oscillatory the wavelets
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Table 4.3. Entropy values after the DWPT.

level 1 2 3 4 S 6 7 8 9
entropy | 6.28 | 6.20 | 6.07 | 6.13 | 6.25 | 6.38 | 6.50 | 6.59 | 6.63

Table 4.4. Entropy values after the DCT.

window size | 8 16 | 32 | 64 | 128 | 256 | 512
entropy 6.08 | 6.00 | 6.00 | 6.16 | 6.25 | 6.38 | 6.60

(i.e., the basis functions) become (Daubechies, 1992). A wavelet filter longer than the one
used above might have a basis function that is oscillatory and thus might achieve results
comparable to that of the DCT.

One might be dubious that the above results might be true only for a certain type
of wavelet. Though the above experiments are performed using one of the “Coiflet” filters
Coifman 6 (Wickerhauser, 1994), the results are similar to those when other wavelet filters are
used. To see how the choice of wavelet filters influences the result, I use two types of wavelet
filters, the “Daubechies” filters and the “Coiflet” filters (Wickerhauser, 1994), with different
filter lengths. Table 4.5 shows the entropy values for the shot gather shown in Figure 4.5 after
the discrete wavelet transform (DWT) using Daubechies wavelet filters with different filter
lengths. Clearly, the entropy value decreases as the filter length increases, slightly except for

Table 4.5. Entropy values after the DWT with “Daubechies” filters.

length 2 4 6 8 10 | 12 | 14 | 16 | 18 | 20
entropy | 6.40 | 6.32 | 6.27 | 6.23 | 6.22 | 6.21 | 6.21 | 6.20 | 6.19 | 6.19

the first few filters. Intuitively this is because the longer the filter, the steeper the frequency
response of the filter, the better the separation of the data in the frequency domain after
filtering, and the less correlated the transformed data. The result of a similar experiment
using the Coiflet filters is shown in Table 4.6. Again, the entropy value decreases slightly as
the filter length increases, due to the same reason as stated above. Comparing the results for
different filters with the same filter length, e.g., Daubechies 6 with Coiflet 6, the results are
similar. This study shows that neither the type of the filter nor the filter length has much
impact on the entropy values, or the compression achievable, if the filter is not too short.
Between the two factors, the filter length is a more important choice than the filter type in
governing the entropy value after the wavelet transform. Empirically, the longer the filter the
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F1G. 4.6. One trace (receiver number one) from the shot gather shown in Figure 4.5.

better. However, the longer the filter, the higher the computational cost of the transform.
Therefore, it is reasonable to leave the user to evaluate the trade-off and make the decision.

A similar comparison can be done for the wavelet packet transform. Table 4.7 shows
entropy values varying with filter length for Daubechies filters and the level of decomposition
in DWPT. Not surprisingly, for a fixed level, the entropy value decreases as the filter length
increases, the same as for the wavelet transform. For a fixed filter, the entropy value reaches

E a minimum for a certain level, similar to the result shown before. Table 4.8 shows the result

= for the Coiflet filters. The result leads to the same conclusions as that for the Daubechies
filters.

L As seen from the previous studies, for seismic data, the discrete cosine transform res-

k.

Table 4.6. Entropy values after the DWT with “Coiflet” filters.

length 6 12 | 18 | 24 | 30
entropy | 6.29 | 6.21 | 6.16 | 6.14 | 6.13
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Table 4.7. Entropy values after the DWPT with “Daubechies” filters.

length \ level | 1 2 3 4 5 6 7 8 9
2 6.41 | 6.41 | 6.36 | 6.43 | 6.53 | 6.67 | 6.74 | 6.77 | 6.81
4 6.35 | 6.34 | 6.27 | 6.33 | 6.43 | 6.53 | 6.61 | 6.68 | 6.71
6 6.31 | 6.28 | 6.18 | 6.24 | 6.35 | 6.46 | 6.56 | 6.62 | 6.66
8 6.29 | 6.22 | 6.10 | 6.16 | 6.29 | 6.41 | 6.53 | 6.59 | 6.65
10 6.27 | 6.18 | 6.05 | 6.14 | 6.26 | 6.40 | 6.52 | 6.57 | 6.63
12 6.26 | 6.13 | 6.01 | 6.10 | 6.22 | 6.37 | 6.50 | 6.55 | 6.61
14 6.26 | 6.11 | 6.00 | 6.09 | 6.23 | 6.37 | 6.51 | 6.54 | 6.60
16 6.24 | 6.07 | 5.97 | 6.08 | 6.20 | 6.36 | 6.50 | 6.53 | 6.60
18 6.23 | 6.05 | 5.97 | 6.05 | 6.20 | 6.38 | 6.52 | 6.53 | 6.61
20 6.23 | 6.05 | 5.96 | 6.05 | 6.21 | 6.39 | 6.53 | 6.53 | 6.60

Table 4.8. Entropy values after the DWPT with “Coiflet” filters.

length \ level | 1 2 3 4 5 6 7 8 9
6 6.33 | 6.30 | 6.21 | 6.27 | 6.39 | 6.51 | 6.60 | 6.66 | 6.70
12 6.28 | 6.20 | 6.07 | 6.13 | 6.25 | 6.38 | 6.50 | 6.59 | 6.63
18 6.25 | 6.09 | 5.96 | 6.04 | 6.16 | 6.31 | 6.46 | 6.56 | 6.61
24 6.23 | 6.03 | 5.90 | 5.98 | 6.10 | 6.27 | 6.43 | 6.54 | 6.60
30 6.22 | 5.99 | 5.88 | 5.96 | 6.09 | 6.27 | 6.43 | 6.53 | 6.60

32




Seismic data compression

ults in a smaller entropy value than do either the wavelet transform or the wavelet packet
transform for many wavelet filters. As shown in Chapter 3, however, the local cosine trans-
form (LCT) which uses a smoother window than does the box function to avoid the abrupt
changes, is an alternative for the DCT. For the same shot gather shown in Figure 4.5, I ap-
plied the LCT with different window sizes and computed the entropy values. Table 4.9 shows
the result. Comparison of Table 4.9 with Table 4.4 shows that the data after the LCT with

Table 4.9. Entropy values after the LCT.

window size | 4 8 16 | 32 | 64 | 128 | 256 | 512
entropy 5.85 | 5.83 | 5.85 | 5.92 | 6.08 | 6.20 | 6.36 | 6.59

the best choice of window size have smaller entropy than does that after the DCT, and less
than that after the DWPT with most wavelet filters.

In practice, for a representative set of data, one can try a set of window sizes in DCT
or a set of levels of decomposition in DWPT, and choose the one that yields the best result.
However, from my experience, the window size of 16 samples in DCT or LCT can generally
produce reasonably good result for much seismic data. This might be because most seismic
data are sampled with a sampling frequency of 500 Hz or 250 Hz, while the typical dominant
frequency is about 40 Hz. Therefore, about seven to 13 samples can capture a dominant cycle,
so the DCT with a window size of 16 samples can represent the local spectral information of
the data.

The above tables show many entropy values, but how much difference is there if the
entropy value is 5.8 instead of 6.0?7 From the numbers, 5.8 is about three percent improvement
over 6.0. To have a better understanding of these numbers, consider some of the results shown
in Chapter 2. From equation (2.5), the entropy decreases by one bit if a doubled RMS error
is allowed in compression. Therefore, we need to specify the amount of error allowed to see
the difference in performance of techniques A and B. For example, under one percent RMS
error, one technique (A) results in an entropy value of 5.8 and the other (B) results in an
entropy value of 6.0. Suppose the original data are represented in floating-point numbers,
requiring 32 bits to represent each sample. Therefore, under one percent error, A results in a
compression ratio of 5.5 and B results in a compression ratio of 5.3. In terms of compression
ratio, A is only about four percent improvement over B. If a different amount of error, say
32 percent RMS error (which is just about 10 percent MSE), is allowed, then A results in an
entropy value of 0.8 and B results in an entropy value of 1.0. In terms of compression ratio,
A achieves 40:1 compression and B achieves 32:1 compression. In this case, A is 25 percent
better than B in compression ratio. Therefore, the entropy value gives a useful indicator for
comparison, but, to see the improvement of one technique over another, one needs to specify
the amount of error allowed in the compression.
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4.3 Data

In the previous sections, I studied how the choice of the compression technique, e.g., the
quantizer and the transform, governs the ideal compression that can be achieved. In this
section, I study how the different aspects of the data govern the ideal compression.

4.3.1 Frequency content

The frequency content of the data, or the bandwidth, is an important factor that determ-
ines the amount of compression achievable. Intuitively, the smaller the bandwidth relative
to the Nyquist frequency, the more predictable the data and the more compression achiev-
able. Figure 4.7 shows a trace and its amplitude spectrum from a stacked section that has
been deconvolved. It has significant energy for most of the frequency components; that is the
bandwidth is a large fraction of the Nyquist frequency. Figure 4.8 shows a trace from another
stacked section where no deconvolution was applied, together with its amplitude spectrum.
From its amplitude spectrum, it contains mainly low-frequency components and the band-
width is significantly smaller than the Nyquist frequency. For these two traces, I apply the
DCT and compute the entropy values after the transform. We find that the entropy for the
trace in Figure 4.7 is 6.00 (bits), while that for the trace in Figure 4.8 is 5.46 (bits). This
result supports the intuition that more compression can be achieved for data with smaller
bandwidth.

Besides the range of frequency components with significant energy or the bandwidth,
the shape of the amplitude spectrum within this range also plays a role in compression.
Figure 4.9 shows a synthetic trace generated from random numbers followed by band-pass
filtering, together with its frequency spectrum. Comparison of its frequency spectrum, as
shown in Figure 4.9, with that shown in Figure 4.8, shows that both have energy up to about
65 Hz. The one shown in Figure 4.9, however, has a flatter spectrum than does the one in
Figure 4.8. It turns out that the entropy of this noise trace after the DCT is 5.51 (bits),
a little larger than that for the undeconvolved stacked trace, with an entropy of 5.46 (bits),
indicating that the flatter the frequency spectrum (i.e., the broader the effective frequency
band), the larger the entropy value after applying the DCT to the data, and therefore the less
compression achievable.

When the Nyquist frequency is larger than the highest frequency for which there is
significant signal energy, one might of course just re-sample the data using a larger sampling
interval, to reduce the data storage, or alternatively, apply the DCT and save only the large
coefficients. These are, of course, viable approaches to data compression. In compression,
however, instead of running the risk either of causing some of the higher frequencies to be
aliased or of totally zeroing out all the high-frequency components, we use a few bits to
characterize those components. Of course, there are two ways to look at this risk. On the
one hand, if one is sure that the high-frequency energy corresponds mainly to noise, then the
resampling approach will result in a significant amount of compression without degrading
the signal quality. On the other hand, when talking about compression, most of the measures
such as the RMS error deal with the difference between the original and the reconstructed
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data. When zeroing out the high-frequency components, the difference will generally be large,
resulting in a large error as I showed in the example in Section 4.1.

4.3.2 Lateral coherency

For seismic data, which are multi-dimensional, lateral coherency (i.e., predictability)
is also important in compression. In the discussion so far, I have talked about only one-
dimensional transforms, along the vertical or time dimension, and have not touched on the
lateral dimension. However, seismic data have lateral coherency. As a matter of fact, lateral
coherency is the key in distinguishing between useful events and background noise in the
interpretation of seismic data. The presence of lateral coherency, again, suggests that the
data can be represented more compactly in some transform domain than in the original
space-time domain. ,

To deal with the lateral coherency, two-dimensional transforms can be useful. The
most straightforward way to generate a two-dimensional transform is to cascade two one-
dimensional transforms, i.e., apply one-dimensional transforms successively along the two
dimensions separately. To study the lateral coherency in the following, I compare entropy
values after one-dimensional and two-dimensional transforms for several data sets.

Figure 4.10 shows a section after brute stack that clearly has a strong component with lat-
eral coherency. For this section, I applied the one-dimensional wavelet transform to each trace
along the vertical dimension, as well as the two-dimensional wavelet transform to the two-
dimensional data set, and computed the entropy values of the resulting sections. The entropy
value after the one-dimensional transform is 6.26, while the one after the two-dimensional
transform is 5.77, suggesting that the lateral coherency is exploited by the extra transform
along the lateral dimension.

To support this contention, Figure 4.11 shows a synthetic section consisting of a collection
of traces generated from random numbers followed by band-pass filtering along the vertical
direction. Therefore, the data are bandlimited along the vertical axis but not along the
horizontal axis, and no lateral coherency is present in the data. For this section, I carry
out the same experiments as for the previous section. The entropy values turn out to be
6.52 after the one-dimensional transform and 6.51 after the two-dimensional transform. The
insignificant difference between the results for the one- and two-dimensional transforms results
from the lack of lateral coherency in the data. Thus, here, the extra transform along the lateral
dimension offers no gain.

Of course, lateral coherency is equivalent to bandlimiting along the horizontal direction.
Since each trace in Figure 4.11 is generated independently, there is no lateral coherency in
the data. If, however, the data are band-pass filtered along the lateral direction, as shown
in Figure 4.12, some lateral coherency is present. For this laterally bandlimited section, I
repeat the experiment. The entropy value after the one-dimensional transform is 6.54, and
the one after the two-dimensional transform is 5.81.

Perfect lateral coherency, of course, would exist if the section consisted of a repeated
trace, as shown in Figure 4.13. For this section, I repeat the experiment. The entropy value
after the one-dimensional transform is 6.23, the same as the entropy value of a single trace
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F1G. 4.10. Brute stack.

after the one-dimensional transform, because the two-dimensional section has exactly the
same amplitude distribution as the single trace. The entropy value after the two-dimensional
transform, however, is a mere 0.22. This is because the information of the entire section is
already contained in one single trace and the rest of the traces are redundant.

4.3.3 Signal-to-noise ratio

Consider data contaminated by noise that is independent from one trace to another.
Intuitively, the higher the signal-to-noise ratio (SNR), the more coherent the events in the
data, and therefore the smaller the entropy value after the transform.

To perform the experiment, I start from a relatively “clean” data set with little back-
ground noise. Figure 4.14 shows such data, a stacked section from a marine survey. Though
it contains reflections from complex structures, the level of random noise in the background
is relatively low. To obtain noisy sections, I add random noise with different levels of SNR
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to this section, with the SNR defined as

_ max [signal|/ V2
SNE = RMS(added noise)’

(4.2)

where the signal has already been gained. Notice that the added noise is not bandlimited in
either the horizontal or vertical dimensions.

Figure 4.15 shows the section with SNR = 4. To see how compression relates to SNR,
I perform both the one- and two-dimensional wavelet transforms and compute the entropy
values for SNR = 2,4,6,8,10,12,14,16 and co. SNR = 2 is admittedly poor for typical
stacked marine data, but the range of SNR tested allows us to draw useful conclusions.
Table 4.10 shows entropy values varying with SNR after both the 1D and the 2D transforms.

Table 4.10. Entropy values varying with SNR.

SNR 2 4 6 8 10 | 12 | 14 | 16 | 18 | o©
1D 6.90 | 6.90 | 6.88 | 6.86 | 6.83 | 6.80 | 6.78 | 6.76 | 6.74 | 6.55
2D 6.89 | 6.86 | 6.79 | 6.71 | 6.62 | 6.54 | 6.47 | 6.40 | 6.35 | 5.70

difference | 0.01 | 0.04 | 0.09 { 0.15 | 0.21 | 0.26 | 0.31 | 0.36 | 0.39 | 0.85

From this table, it is evident that after both the 1D and the 2D transforms, entropy
decreases as SNR increases, which supports intuition, recalling that entropy is a measure
of information content, i.e., unpredictability. Moreover, the difference of the entropy values
between the 1D and the 2D transforms increases as the SNR increases. This indicates that
the gain in performing the extra transform along the lateral dimension increases as the SNR
increases. Conversely, the gain in performing the extra transform along the lateral dimension
decreases as the SNR decreases. Therefore an increase in the amount of random noise in data
will decrease the coherency in the data along both dimensions, vertical and lateral, assuming
that the noise is not bandlimited along either direction.

The presence of random noise, in my opinion, is the major source of difficulty in com-
pressing seismic data. Even though many coherent events can often be seen in data, back-
ground noise deteriorates the coherency and, therefore, the amount of compression, under a
fixed amount of error. (The human visual system, on the other hand, is intelligent enough
to ignore much incoherent noise and recognize coherent events.) Of course, the presence of
large-amplitude noise might justify tolerating more error in the compression process, but
in that case we must recognize that in doing so, signal is less-well honored than it could
have been in a less noisy situation. Also, one should be cautious about tolerating increased
compression error merely because the data are already contaminated by noise since much of
that noise could be suppressed in subsequent processing, e.g., in CMP stacking.

The study here also gives support to the discussion on compression ratios between
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stacked sections and shot gathers in Chapter 2. Shot gathers generally have more noise
than do the stacked sections. Therefore, there is stronger coherency in the stacked sections,
resulting in smaller entropy values for the stacked sections than for shot gathers. This suggests
that unstacked data cannot be compressed as effectively as can stacked data. Unfortunately,
the far greater economic benefit in compression would be in compression of unstacked data.

4.4 Error measures

In most of the discussion so far, I used the RMS error to measure the difference between
the original and the reconstructed data, since the RMS error can be easily related to the
average distortion used in the theoretical results. Also, the RMS error is a commonly used
quantity in other geophysical applications. In the entropy evaluations, I used one percent RMS
error, since this amount of error is generally considered acceptable in seismic processing. As
an example, take NMO correction, which is used in virtually all processing flows. In NMO
correction, the traces need to be time-shifted. The time shift, possibly by an amount not
an integral multiple of the sampling interval, can be represented as a convolution with a
sinc-function, defined as

sin(wz) if = # 0’

sine(z) = {1 " g =0

In most implementations, for practical reasons the sinc-function is truncated to, say, eight
samples. This, of course, will introduce errors in the interpolation. The maximal error occurs
when time-shifting by half a sample. Through tests, I find that the maximal error is about
one percent RMS. Since time shifting is such a common building block in so many processes,
the one percent RMS error can be considered generally unavoidable (unless, of course, one
chooses to use a longer interpolation operator). Therefore, I used one percent RMS error as
the tolerable error for data compression.

Of course, one might argue that one percent RMS error, or even the RMS error measure
itself does not make much sense. In this section, I discuss some alternatives.

One alternative to the RMS error is some subjective other than objective measure, e.g.,
studying the reconstruction to see if there is any perceptible difference between the original
and reconstructed data. Although this measure is qualitative, it is the closest to the way in
which seismic data are ultimately assessed by the interpreter. A closer view of the error is
obtained by subtracting the reconstructed from the original data to generate the difference.
Any coherency in the difference section represents error that might be of concern to interpret-
ers. As study of the human visual system shows, the smaller the RMS error in compression,
the better “looking” will be a reconstructed image, if the same compression algorithm is used
in the comparison.

To relate the amount of RMS error with the perceptible result, I compressed (two-
dimensionally) the stacked section shown in Figure 4.14 for different levels of allowed RMS
error, reconstructed the data from the compressed data and generated difference sections.
Figure 4.16 shows the original, the reconstruction from compression allowing one percent

46




B ;;a:""l

Seismic data compression

RMS error and the difference sections. The difference section and subsequent ones are gained
up by a certain amount to the same amplitude scale as the original section to see details.
For example, in Figure 4.16 the difference is gained up by a factor of 130 and represented
by “(X130)”. There is hardly any difference between the reconstruction and the original;
moreover the weak difference looks random (i.e., there is no obvious pattern in it). Figure 4.17
shows a similar comparison with five percent RMS error. Again, the difference looks
random. So are the cases with 10 percent RMS, as shown in Figure 4.18, and even 20
percent RMS, as shown Figure 4.19. Comparing the original and reconstructed data, there
is hardly any difference discernible by looking at them, yet high compression ratios (12 and
19) are obtained. Note that as the RMS error level increases, the amplitudes in the difference
section also increase, as seen in the reduced gain factor. Those amplitudes, however, remain
smaller than the amplitudes of the weaker events in the original data.

When the error is allowed to become even larger, for the case of 30 percent RMS as shown
in Figure 4.20, the error starts to show some pattern, with some dipping events appearing in
the section, as shown by Figure 4.21 which is a detail of the difference section, even though
the reconstruction still looks no different from the original. The comparison for the case
of 35 percent RMS error is shown in Figure 4.22. Here, a large compression ratio of 59 is
obtained. For this case, the error has stronger amplitudes and shows a stronger pattern, as
seen in the detail of the difference section shown in Figure 4.23, and the reconstruction starts
to show degradation, seen in the loss of detail from the original to the reconstructed section
(Figure 4.24). This study indicates that if for the purpose of displaying and viewing, seismic
data can tolerate a large amount of RMS error. What remains to be determined, below, is
whether or not data that will subsequently be subjected to various seismic processing can
tolerate such a large degree of compression.

Objective error measures other than the RMS error include the L., and PSNR (Peak-
Signal-to-Noise-Ratio), defined respectively as

_ max}; |es]

Loo(e) = 4.
=) g Jal 4
PSNR = Tz lzl (4.4)
z ?:1 6%

That is, the Lo is the ratio of the maximal absolute values of the difference to that of
the original, and the PSNR is the ratio between the maximal absolute value of the original
with the RMS of the difference. Different from the RMS error, the L., error measures the
maximal error instead of the average error, and therefore gives a good indication of the most
severe distortion in the reconstruction. The PSNR, on the other hand, characterizes how
well the signal stands out in the compression error. It is a commonly-used measure in image
compression (Gersho and Gray, 1992). Here, to use an error measure rather than a signal
measure, I define its reciprocal NPSR (Noise-to-Peak-Signal-Ratio)

Iy o

NPSR=Yrtm o
maX;— |x1|
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For a comparison among these errors and the RMS error, I again compress the stacked
section shown in Figure 4.14 when different RMS errors are allowed, reconstruct from the
compressed data, generate the difference sections, and compute these errors. The result is
shown in Table 4.11. As seen from the table, the L, error is less than half the RMS error,

Table 4.11. Various error measures.

comp ratio | 5.6 | 9 | 12| 19 | 37 | 89
RMS% 1 15110]20 |30 35
L% 412147 |13]17
NPSR% |.08|.4|.8|15]25]3.1

for all the compression ratios tested. This phenomenon can be explained by the different
distributions of the error and the data. The data have a relatively large number of very
small amplitude samples, as shown in Figure 4.25, which looks like a Laplacian distribution.
Therefore, the RMS amplitude is much smaller than the maximal amplitude for the data. For

0.06

0.04 4
fj
‘ 0.02

L

-400 -200 0 200 400
integer levels

normalized hit counts

F1G. 4.25. Amplitude distribution of the data shown in Figure 4.14.

the example shown in Figure 4.25, the RMS amplitude of the signal is less than nine percent
of the maximal amplitude of the signal. For the compression error or the difference, on the
L other hand, the sample values are distributed differently, somewhat close to each other, as
shown in Figure 4.26, which looks like a Gaussian distribution. As a result, the RMS error
is more than 20 percent of the maximal error, for all the compression ratios tested. Due to
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F1G. 4.26. Amplitude distribution of the difference shown in Figure 4.16

the different RMS-to-maximal ratios between the signal and the error, the relative RMS and
the relative maximal errors differ. For the same reason that the RMS amplitude of the data
is much smaller than the maximal amplitude of the data, the NPSR is much smaller than the
RMS error, as shown in Table 4.11.
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Chapter 5

RANDOM TRACE ACCESSING

In the previous chapters, I discussed several aspects of the compression of seismic data
that mainly govern the amount of compression achievable. In this chapter, I discuss another
aspect related to the ease in manipulating the compressed data.

In most applications of seismic data compression, to reduce either the storage cost or the
network traffic, we might want to manipulate the compressed data directly. (For example, we
might want to sort the compressed data directly into different gathers, without uncompressing
them first.) Since many processes that seismic data undergo are trace-based, the random
accessing of each trace in the compressed data is thus desirable. For example, suppose we
have a 3D post-stack data volume. We can compress the data in any of several ways. One way
is to compress each line separately using the 2D version of one of the transforms. In another
way, we might compress the entire volume using the 3D version of one of the transforms. For
the former, the compressed data consist of a collection of compressed seismic lines, while for
the latter, the compressed data constitute just a single object, the compressed volume.

Now suppose we want to display one line of this 3D volume. If the data are compressed
by a 2D compression technique, then we can select the line we want, decompress this line
(only this line) and display it. If, on the other hand, the data are compressed by a 3D
compression technique, then we have to first decompress the entire data volume and then
select the line we want for display. Obviously, the former requires less computation than
does the latter. If, instead of one line, we wished to display a cross-line section of this 3D
volume, then for both of the methods, we have to decompress the entire data volume before
we can select the cross-line section. Moreover, if we want to process a single trace, then we
have to decompress one line containing this trace if the 2D compression technique is used,
and the entire volume if the 3D compression technique is used. This simple example shows
that the data after the 2D compression of each line or the 3D compression of the entire volume
are not easy to manipulate for trace-based processes.

To have random trace accessing, the most straightforward technique is to compress each
trace separately, i.e., to apply the 1D compression for each trace. This approach, however,
fails to take advantage of the lateral (trace-to-trace) coherency, resulting in limitation of
compression achievable, as indicated by the entropy values in Chapter 4. Moreover, in
addition to this degradation in compression performance, there are some practical issues
involved in trace-by-trace compression that deserve some discussion in the next section.

5.1 Single-trace compression

To compress each trace separately, we first apply a one-dimensional transform to each
trace, quantize each transformed trace by, say, a uniform quantizer, and then entropy encode
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each quantized trace. Generally, the average number of bits per sample after the entropy
coder exceeds the entropy value of each trace. One cause of the difference is that some side
information is required to decode the compressed data. In the Huffman coding for example,
we need to store the table (or the so-called codebook) that translates the symbols into the
Huffman codes required to decode the compressed data. Other entropy coding techniques,
such as the adaptive or the dictionary-based techniques, though they do not explicitly require
the codebook, generally suffer from some poorly-performing “start-up” period, only after
which can optimal compression be achieved (e.g. Gersho and Gray, 1992). In most situations,
where the sequence to be encoded is long (e.g., having 10000 samples), the overhead is spread
out over all samples and is not significant. Unfortunately, this is not the case for most
seismic traces. Typically, a seismic trace consists of about 1000 to 3000 samples. For so
short a sequence, the overhead becomes significant. For example, for the trace shown in
Figure 5.1, the entropy value after the DWPT is 6.10 under the criterion of one percent RMS
error. Using the same quantization, the Huffman compressed sequence requires about 8.92
bits on the average for each sample, considerably larger than the ideal entropy, due to the
coding overhead. As a matter of fact, the overhead is too large to make the Huffman coding

Amplitude

0 100 200 300 400 500
Time (samples)

F1G. 5.1. A single trace containing 512 samples.

even worthwhile. For example, we could transform the trace and then simply quantize the

60

i
i
0
i
i
i
0
]
|
]




|
[

i

g

Seismic data compression

transformed values without any special encoding. For the same amount of error (one percent
RMS error) as with the Huffman coding, this simplistic approach would result in about 8
bits. The overhead in Huffman coding, however, is much smaller for two-dimensional data.
For the example shown in Figure 4.14, after the two-dimensional transform the entropy value
is 5.11 while the Huffman compressed sequence requires about 5.29 bits per sample on the
average.

To efficiently encode short sequences, I adopt an alternative variable-length coding, the
variable-length integral coding technique (e.g., Wallace, 1991). As with Huffman encoding, in
this technique, the integer numbers are represented using different numbers of bits according
to some empirical statistics of the sequence, rather than using a fixed number of bits (thus the
name variable-length integral coding). The difference is that Huffman coding is adapted to
the input sequence, and therefore needs to store the statistics of the input sequence, while here
this overhead is avoided, although since the coding is not adapted to the input sequence, it
is sub-optimal. Generally speaking, for seismic data small numbers occur more often than do
large numbers; therefore, small numbers should be represented using fewer bits than should
large numbers to make the average number of bits small. In some sense, it is an entropy
coder, that uses a pre-defined codebook instead of a codebook that perfectly matches the
statistics of the input sequence. Table 5.1 shows an example of this coding technique. It
is similar to the one used in the baseline implementation of the JPEG standard (Wallace,
1991). Basically, it works like this. Every number is coded as two parts, the size part and
the amplitude part. The size indicates how many bits are needed to code the amplitude.
The amplitude is just the number itself. Both of the two parts are coded and the codes are
concatenated. As seen from the table, each code consists of two parts: the first two bits

Table 5.1. An example of variable-length integral coding.

size amplitude code
1 -1,1 000, 001
2 -3,-2,2,3 0100, 0101, 0110, 0111
3 Ty ey 4,4, 0, T 10000, ..., 10011, 10100, ..., 10111
4 |-15,..,-8,8, ..., 15 | 110000, ..., 110111, 111000, ..., 111111

represent the size since we have four possible sizes here, and the rest of the bits represent
the amplitude. In doing this, smaller numbers are coded using shorter codes. For example,
the number -1 is coded using only three bits as 000, while the number -15 is coded using six
bits as 110000. If no such technique is applied and all the numbers are coded using the fixed
length codes, then both of the two numbers -1 and -15 will need five bits since overall there
are 30 numbers from -15 to 15 (zero is not included here).

In single-trace compression, I use a similar but slightly different approach. Instead of
one table, during the compression of each trace, I may use a set of tables where each table is
a variable-length integral codebook. The tables differ from one another so as to provide some

61



Tong Chen

flexibility in matching the statistics of the input sequence. Therefore, different code books
can be used in compressing different traces as well as different parts of one trace, depending
on the range of sample amplitudes within each part. In this way, some adaptiveness remains
in the coding.

Table 5.2 and Table 5.3 are two example codebooks used in single-trace compression.

Table 5.2. One codebook for single-trace compression.

integer number | code
0 0
1 10
2 11

Table 5.3. Another codebook for single-trace compression.

integer number | code
0 00
1 01
2 10
3 110
4 111

Comparing the two tables, note that Table 5.2 can be used only when the sequence contains
only three symbols 0, 1, 2, whereas Table 5.3 can be used for sequences containing five symbols
0,1,2,3,4. Obviously, Table 5.3 can also be used instead of Table 5.2 when a sequence
contains only three symbols 0,1,2. However, it is clear that the codebook in Table 5.2 will
out-perform that in Table 5.3 in this case, since the number 0 is coded as 0 in Table 5.2
while it is coded as 00 in Table 5.3. This is why I use a set of codebooks with each one
somewhat tuned to the symbols in a sequence. Of course, this approach requires first testing
the symbols in a sequence. However, if care is taken during the quantization step, this testing
will not be necessary.

For the example of the single seismic trace shown in Figure 5.1, only 6.11 bits per sample
on the average (including overhead) is required with this coding technique. This result is
very close to the entropy value of 6.10, indicating that the empirical codebook I use is close
to optimal and that the compression is efficient.
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5.2 Lateral prediction

By compressing trace-by-trace, we can access each trace in the compressed data at
random. However, the amount of compression achieved would be less than that after the
two-dimensional compression, as indicated by the entropy evaluations in Chapter 4. This is
due to the fact that seismic data are multi-dimensional and have trace-to-trace coherency,
which is not exploited in the trace-by-trace compression.

One way to utilize this lateral coherency while maintaining some flexibility in trace
accessing is to divide the data into strips and apply some compression to each strip. In doing
this, a chosen trace can be retrieved by decompressing only the strip that contains this trace.
At the same time, by compressing the strips, the lateral coherency within each strip is taken
into account.

To compress each strip, we can, of course, apply the two-dimensional compression tech-
nique. This is just what we discussed above before, but now for data sets that are smaller than
the original one. Here, I present and analyze a new technique based on lateral prediction.

The motivation for this approach is the following. Most of the events in seismic data
can be approximated as linear, at least locally. Therefore, the data within each strip consist
mainly of linear events. After performing a linear prediction along the lateral direction, hope-
fully, the data can be decomposed into the laterally coherent (predicted) part and the non-
coherent (unpredicted) part. If the prediction is good, lateral prediction therefore provides
a separation of the coherent and non-coherent events. This, among other things, provides
the possibility of designing a quantizer with more error allocated to the unpredicted part
and less error to the predicted part. I will leave the comparison between this approach and
the 2D transform approach (also on small strips) to later sections. First, I discuss how the
prediction approach works.

5.2.1 Modeling

Since within a small region, most seismic events can be considered as approximately
linear, a small block of seismic section can be approximated as consisting of several events
with different slopes. In lateral prediction, we use one trace (or several traces) as a “pivot”
that, coupled with an appropriately designed filter, generates all (or most) of the events in
this block. The idea here is similar to one used in finding missing data in Claerbout (1992),
but here it is applied to data compression.

First, let us model the linear events. Suppose the section is the recorded wave field.
(Although this is not true if the section is a migrated section representing subsurface structure,
the derivation stands.) For the simplest case where there is only one slope, the wave field
contains just a single plane wave, i.e., u(t, ) = u(t—pz), which satisfies the following equation

Ou  Ou _
Par =

P 0. (5.1)

In the discrete form (i.e., recorded data are discretely sampled), this equation can be repres-
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ented as (t,o+Az) —ult,z)  u(t+At,z) - u(t,z)
u(t,z + Az) — u(t,z u At,z) —u(t, T
3 3 3 b] — '.2
Ac TP At % (5.2)
or equivalently as
u(t,z + Az) — (1 + q)u(t, z) + qu(t + At,z) = 0, (5.3)

where ¢ = p%%. This can be represented as a difference star shown in Table 5.4. If a higher-
order approximation is applied on ;%, then the filter can be represented as shown in Table 5.5,
where the x’s represent nonzero values and the .’s represent zeroes. Clearly, one column of

Table 5.4. First-order filter for a single slope.

z T+ Az
t —-1—gq 1
t+ At q 0

Table 5.5. High-order filter for a single slope.

R R RN
—

coefficients (the x’s) is needed to predict a single slope.
If two, instead of one, slopes are present in the section, the wave field can then be written
as u(t,z) = ui(t — p1z) + uz(t — pox). Since

0 / b O -
Fra L S Tt + Uy, (5.4)
then
d 0 ,
(—8; + P25;)u(t,$) = (p2 — Py (5.5)

Therefore u(t, z) satisfies

0 d. 0 0 _
(é—x— +P15Z)(%‘ +p25t')u(t,$) =0, (0-6)
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which is equivalent to

522 ' “ozot ' o2

where a = p; + pp and b = p;p,. Again in the discrete form, this can be represented as

2 2 2
(_8__ +a 9 + b—a—~> u(t,z) =0, (5.7)

u(t,z + Az) — 2u(t, z) + u(t, z — Az) N u(t,z) — u(t — At,z — Azx)

5.8
Az’ ¢ AzAt (5:8)
+bu(t + At,z) — Zu(t,zx) + u(t — At, z) ~0
At
which is equivalent to
u(t,z + Az) + gu(t — At,z) — (2 + q1 + 2¢2)u(t, x) (5.9)

+qou(t + At, ) + u(t,z — Az) — qu(t — At,z — Az) =0,

where ¢ = aA"” and ¢ = b &z or to the difference star as in Table 5.6. Its high-order

analogue is shown in Table 5. 7 where the x’s represent nonzero values and the .’s represent

Table 5.6. First-order filter for two slopes.

z— Az x T+ Ax
t—At| —q g2 0
t 1 -2—q —2q 1
t+ At 0 do 0

Table 5.7. High-order filter for two slopes.

R R R Rl ko]
R R R R R
—

zeroes. Here, two columns of coeflicients (the x’s) are needed to predict two slopes.

Clearly from Table 5.5, if one slope is present, one pivot trace is needed to correlate
with the filter and generate a prediction of the next trace, which then can be used to predict
the trace after the next, and so on. Therefore, one pivot trace is needed for the prediction, if
there is only one slope. Similarly from Table 5.7, if two slopes are present, two pivot traces
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are needed to predict the next trace, and so on. This, of course, can easily be extended to
cases with more than two slopes.

5.2.2 Formulation

With the above derived models, we can now formulate the problem of lateral prediction.
Literally, the problem is to find a filter of the form similar to the ones shown in Table 5.5 and
Table 5.7 (a lateral prediction filter) that can generate a block of data consisting of linear
events, given some pivot traces. Suppose we have a block of data with x; being the :th trace
in the block, where ¢ = 0,1, ..., N — 1. Suppose also that there are M slopes and therefore we
need a filter of M columns of coefficients f;, as shown in Table 5.7, where j = 0,1,..., M — 1.
The prediction then is to generate the next trace from the previous ones, as

M-1

Y Tigg * fi = Eimr, (5.10)
i=0

where * denotes convolution, and £ denotes the predicted trace. (Of course, cross-correlation
can be used instead of the convolution here, with the coefficients reordered.)

To perform the prediction, we need to find the filter first. To do this, we seek the filter
that performs the best prediction, in the sense that the filter minimizes the difference between
the predicted and the original traces, as shown in equation (5.11)

Yo s+ fi—xu
min : , (5.11)
Zﬁﬁl Ti4N-M-1* fj — TN-1
where ||.|| denotes the vector norm, for which I use the L?—norm here. After finding the
filter, the prediction involves just applying the filter and generating the residuals, defined as

the difference between the original and the predicted data shown in equation (5.12).

M-1

TitM = T M — Z Tipj * fja (512)
=0

where 1 =10,1,.... N — M — 1.

In more detail, we can expand the convolutions in equation (5.11). Suppose each trace
within the block contains K samples and there are L coefficients in each column of the filter
coefficients. Then the kth sample in the convolution z; * f; represented as (z; * f;) is

L-1
(zix fi)k = Z Tig—1.f5,- (5.13)
=0
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Substituting this into equation (5.11), we then have

M=1—L-1

215:0 Yilo Ti-1fii — T
- 1

Zj:ol 2o xj,1~lfj,l —IM1

min , (5.14)
SN T TN emo1,k1-1fi) — TN-1LK-1
which is equivalent to
min | Af -5, (5.15)
where
To,0 To,~1 ‘vt ITM-10  tt TM-11-L
A= $(.),1 33?,0 SCM'—1,1 33M—.1,2~—L , (5.16)
$N+M.—1,K—1 IN+M-1,K-2 °*'° TN-1,K—-1 *** IN-1,K-L
fo
f= f‘f" , (5.17)
fr-1,0-1
and
TM0
A (5.18)
IN-1,K-1

Formulated in the matrix form, it is clear that the problem is just a least-squares problem.
For the L?—norm case, the filter coefficients can easily be solved using the conjugate gradient
method.

5.2.3 Examples

To see how lateral prediction performs, we now look at some examples. The left in
Figure 5.2 shows a synthetic section consisting of a horizontal linear event. The middle
one shows the residual after prediction. The first trace is used as the pivot trace, therefore
it remains the same as in the original section. Not surprisingly, the prediction is perfect as
indicated by the zero residuals, since the event is perfectly linear. For comparison, the section
after the wavelet transform along the lateral direction (along only the lateral direction solely
for comparison) is shown on the right. Again, all but one trace is zero. Since the original
section contains only a horizontal event, in the wavenumber domain only the DC component
is nonzero. Therefore, after the 1D wavelet transform along the lateral direction, only the
average trace is nonzero, and all the difference traces are zero. This example shows that both
the wavelet transform and the lateral prediction can compact the energy in the horizontal
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FiG. 5.2. Comparison of lateral prediction with wavelet transform for a horizontal linear
event. The left shows the original section. The middle shows the pivot trace (on the left) and
the residual traces after the lateral prediction. The right shows the section after the wavelet
transform along the lateral direction.
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linear events.
Figure 5.3 shows the same comparison on another synthetic section, this time with a
slant linear event. The figure on the left again shows the original section, and the middle one

10 2 3 10 2 30 10 20 30
10 104 10
» ) )
2 ’5» 20 204 Ekb k \
( > ) k l
k\ k
Kl )
) % 304 kk; k
k\ ) |
kk; )
40 & oy k‘ k j
P \ k
kk\ )
. oll||¥
50. 501 50
601 601 604
Slant events Residual After horizontal DWT

F1G. 5.3. Comparison of lateral prediction with wavelet transform for a slant linear event.
The left shows the original section. The middle shows the pivot trace (on the left) and the
residual traces after the lateral prediction. The right shows the section after the wavelet
transform along the lateral direction.

shows the residual after prediction. Again, since the event is perfectly linear, the prediction
is perfect, as indicated by the zero residuals for all but the first pivot trace. For this section,
I also perform the 1D wavelet transform along the lateral direction, and the result is shown
on the right. Comparing this figure with Figure 5.2, it is clear how differently the wavelet
transform performs for horizontal and slant linear events. The wavelet transform compacts
the energy in the horizontal events but not the slant ones. This distinction was also observed
by Bosman and Reiter (1992) and motivated their approach of performing NMO-correction
on the CMP gathers to align events before applying a compression technique based on wavelet
transformation (Reiter and Heller, 1994).

If the 2D wavelet transform is applied, instead of the 1D transform along the lateral
direction, the result does not change much, as shown in Figure 5.4. From this example,
we can say that lateral prediction can compact the energy if the event is linear, no matter
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FIG. 5.4. The section in Figure 5.3 after the two-dimensional wavelet transform along the
lateral and vertical directions.

whether it is horizontal or slant. The wavelet transform, on the other hand, can handle the
horizontal events very well, but not the slant events.

This example seems to indicate that the approach of lateral prediction will be far su-
perior to the 2D wavelet transform when used for data compression. For the slant event in
Figure 5.3, the lateral prediction results in an entropy value of 0.0061 and the 2D wavelet
transform results in an entropy value of 1.8, as compared with a computed entropy of 0.12
before transformation. As a matter of fact, this significant entropy reduction is the main mo-
tivation for the study of the lateral-prediction approach. Unfortunately, the result here does
not readily extend to field data cases, as shown later in this chapter. One reason is that field
data always contain noise, which significantly deteriorates the predictability of the data and
therefore the efficiency of the lateral-prediction approach. Moreover, the events present in
field data generally have smaller wavenumber bandwidth than does the example shown here.
As shown in Chapter 4, the smaller the bandwidth, the more efficient the wavelet-transform
approach becomes. The lateral-prediction approach, however, will not be more efficient for
data with smaller wavenumber bandwidth: independent of the size of the slopes. lateral pre-
diction will have similar performance. Therefore, the noise in field data, which significantly
deteriorates the compression performance of the lateral-prediction approach, and the small
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wavenumber in most field data which improves the compression performance of the wavelet-
transform approach, result in a much less dramatic improvement of the lateral-prediction
approach over the wavelet-transform approach for field data than for the simple example
shown here.

If the event is not perfectly linear, as shown in the shot record section in Figure 5.5,
which contains some hyperbolic events, we can still apply lateral prediction to a small piece
of it. The left of Figure 5.6 shows one part of the data from receiver one through eight, and

Reciever #
50 100

F1G. 5.5. Synthetic shot record containing hyperbolic events.

the right shows the pivot and residual traces after lateral prediction. The prediction in this
case is not so perfect since the data deviate from the model used. However, the residuals are
small compared to the original, indicating that the linear model is a good approximation to
the hyperbolic events, locally. Just how good is this approximation depends on any advantage
that can be gained in data compression. That issue is addressed below.

If the data become complicated, with crossing events, then we need to use a model better
than the single-slope one. Figure 5.7 shows such an example. The figure on the left shows the
original section with two conflicting slopes. The middle shows the pivot and residual traces
after applying the single-slope model. The right shows the pivot and residual traces after
applying the two-slope model. Clearly, the single-slope model is not able to predict the two
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F1G. 5.6. One part of the section shown in Figure 5.5, from receiver one through eight
(left), and the pivot and residual traces after lateral prediction (right).
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slopes present in the data. The two-slope model, on the other hand, can predict very well, as
indicated by the zero residuals.
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Two-sloping events After single-slope prediction After two-slope prediction

F1G. 5.7. Comparison of single- and two-slope models when the data contain two dipping
events. The left shows the original section. The middle shows the pivot and residual traces
after single-slope prediction. The right shows the pivot and residual traces after two-slope
prediction.

Of course, field data with different types of noise present, will deviate more from the
linear model than do the synthetic hyperbolic events. Figure 5.8 shows a field shot gather.
The left figure in Figure 5.9 shows a small part of it, from receiver number 73 to 80. On
this part, I apply the single-slope lateral prediction, and the residual is shown in the middle.
Clearly, the prediction is not very good, with significant events in the residual. This is not
surprising, since the one-slope linear model is obviously too simple for the data, as indicated
by the several slopes that constitute the first arrivals shown in the original section. For this
section, of course, we can use a better model, say, a two-slope model, and the result is shown
on the right, plotted using the same amplitude scale as the one used in the middle. The
prediction is clearly much improved so that the residual is much smaller than that using
one-slope model; however, two pivot traces are needed in this case. I will leave the discussion
of the cost-performance trade-off to the next section.
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F1c. 5.8. Shot gather.
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FIG. 5.9. Field data example on one part of the shot gather shown in Figure 5.8, from
receiver number 73 through 80. The left shows the original section, and the middle shows the
pivot and residual traces after single-slope prediction. The right shows the pivot and residual
traces after two-slope prediction.

5.3 Putting it together

As shown in the previous examples, the lateral prediction can compact the energy so that
the amplitudes in the residual traces after the prediction are smaller than the original trace
amplitudes. However, this compaction is not equivalent to good compression performance.
To see how lateral prediction works in compression, we need to evaluate the entropy values.
Again, we need to first approximate the data using integer numbers. I will use one percent
relative RMS error again, meaning the RMS error is one percent of the RMS amplitude of the
original data. Under this criterion, the entropy value of the residual (shown in the middle of
Figure 5.9) is 5.98. Compared to the entropy value of the original data, 6.56, the entropy is
reduced, indicating that more compression can be achieved by applying the lateral prediction
than without the prediction. If the two-slope model is used instead, the entropy value of
the residual (shown in the right of Figure 5.9) becomes 5.84, a slight improvement over the
entropy value of the residual after the one-slope prediction. However, this is not a large
improvement compared to the improvement from no prediction to one-slope prediction. This
is because after the two-slope prediction, though the residual for predicted traces becomes
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much smaller than that after the one-slope prediction, there are now two pivot traces instead
of one. The added entropy of this extra pivot trace partially offsets the improvement in the
prediction. Therefore, using a more complicated model here does not help in compression.
So far, I have discussed applying only the lateral prediction to take into account the
lateral coherency in the data. There is, of course, redundancy along the vertical direction, in
both the original data and the prediction residual. Since the predicted traces are just linear
combinations of the pivot traces (after linear filtering), the residual, which is the difference
between the original and the predicted, is also a linear combination of the original traces
and should have similar bandwidth to that of the original. This is shown in Figure 5.10.
Therefore, an effective 1D compression technique for the original data should also work well
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F1G. 5.10. A comparison of the amplitude spectra before and after the lateral prediction for
the section shown in Figure 5.9.

on the residual. This naturally leads to a compression technique that combines characteristics
of seismic data in the two directions: first apply the lateral prediction along the lateral
direction and form the residuals; then apply the LCT, which is shown to be best for 1D
compression of seismic traces, to the residual traces. I will call this technique PLCT, short
for Prediction-and-LCT. Using PLCT, we can again evaluate the entropy values to see how
much compression we can achieve. For the section in Figure 5.9, after applying PLCT
(one-slope model) the entropy value becomes 5.58, as compared with the entropy value after
applying only the lateral prediction, 5.98. This improvement is due to the contribution from
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the LCT along the vertical axis. Also, compared with the entropy value after only applying
the LCT along the vertical axis, 5.92, it is again an improvement because we have taken the
lateral coherency into account in applying the lateral prediction.

5.4 Pros and cons

In this section, I perform comparisons between the compression technique PLCT and
the other techniques discussed above.

Since we desire random trace accessing, we need to do the compression on small strips
of data. I will use the small section shown in Figure 5.9 to do the comparison.

For this section, I apply different techniques, the 2D DCT, 2D DWT, 2D DWPT and
the PLCT. Table 5.8 shows the entropy values under the criterion of one percent RMS error
after applying these techniques. Clearly, the PLCT results in the least entropy.

Table 5.8. Entropy values after different techniques.

technique | 2D DCT | 2D DWT | 2D DWPT | PLCT
entropy 5.87 5.99 6.06 5.58

Unfortunately, this does not tell the whole story. In the PLCT technique, the entropy is
calculated for saved pilot trace and the prediction residual traces. However, in addition to
saving the residual traces, we also need to store the filter coefficients in order to reconstruct
the data. This overhead will offset the gain in the entropy reduction in the PLCT technique.
For the lateral prediction I used to generate the above result, I use three coefficients. If these
coefficients are also quantized, but using more bits, say 10 bits each rather than the eight bits
used for the residuals, and thus introducing a smaller error, 30 bits will be needed to store
the coefficients. Spreading this overhead out to all the samples in a 16 x 8 block, results in
about a quarter of a bit overhead. This, combined with the entropy value, will result in about
5.82 bits, which is close to the entropy after the 2D DCT. Therefore, taking the overhead
into consideration, the performance of the PLCT technique is similar to that of the 2D DCT.
How to reduce this overhead further remains to be studied.

Besides the amount of compression, the computational cost of compressing and uncom-
pressing data is another factor that needs to be considered in many applications. In terms of
complexity, the DWT is O(P), meaning the computational cost for the DWT grows linearly
with the overall number P of samples. The DCT is O(P log(P)), if the entire trace or section
is transformed. However, in practice, DCT is applied to small blocks of data only. Suppose
each block consists of N samples, where N is a small number (8 or 16 are often used), then the
computational cost of DCT becomes proportional to P log(N), or simply O(P). The DWPT,
if the decomposition is applied all the way to the last level, also requires O(P log(P)). Again,
we do not generally go to the last level in most applications. In fact, doing that would even
decrease of the amount of compression, as indicated by the entropy evaluations in Chapter 4.
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If stopped at a small fixed level (e.g., third level), however, its computational cost can also
be considered as O(P).

These computational costs are valid for both the forward transform involved in the
compression step and the inverse transform involved in the decompression step. For the
PLCT technique, the most costly part is the filter-design step. Since the conjugate-gradient
algorithm is used and the matrix used in the least-squares problem is (N — M)K x ML,
where M is the number of slopes in the model, L is the filter length, K is the number
of samples in each block and N is the number of traces in each block, the computational
cost will be proportional to ((N — M)K)2ML. Clearly, the more filter coefficients and the
more complicated model used, the higher the computational cost in the PLCT technique.
This, combined with the result shown before that complicated filters may not help much in
improving the amount of compression, leads to a preference of using the one-slope model in
practice. In terms of the total number of sample points P, the computational cost for the
PLCT technique is also O(P), since the size of each block is fixed.

Although all the algorithms can be considered as O(P), the actual execution times of
the algorithms do differ. Among them, the lateral-prediction approach is the most expensive,
followed by the DCT algorithm, then by the DWPT algorithm, and the DWT is the most
computationally efficient algorithm.

With the relative computational cost in mind, we can evaluate the trade-off between the
computational cost and the compression ratio. Throughout the thesis, however, I have used
the entropy value as the measure for compression achievable. Similar to the discussion in
Chapter 4, to understand how the entropy values are related to the the compression ratio,
we need to specify the amount of error allowed during the compression, and this error might
depend on the application of the compression. Suppose in data processing, the allowed RMS
error is one percent, and, for example, under one percent RMS error, one technique (A)
results in an entropy value of 5.0 and another (B) results in an entropy value of 6.0. Then,
if compression is applied in processing, A results in an ideal compression ratio of 6.4:1 and
B results in an ideal compression ratio of 5.3:1; A is about 20 percent improvement over
B. For data interpretation, however, the allowed RMS error is generally larger than one
percent. Suppose 16-percent RMS error (which is just 2.5-percent MSE) is allowed. From

equation (2.9), A might result in an entropy value of 1.0, and B in an entropy value of 2.0. In -

terms of compression ratio, A achieves 32:1 compression and B achieves 16:1 compression;
here A is 100 percent improvement over B. Therefore, when comparing different compression
techniques, it is important to know how the techniques will be applied and how much error
will be allowed in those applications.
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Chapter 6

INFLUENCE OF DATA PROCESSING

Our interest in seismic data arises from their ability to provide information about the
earth’s subsurface, and that information emerges only after the data have been subjected to a
number of stages in data processing. Therefore, ultimately our assessment of the performance
of compression must be done on data after they have been processed. Here, I compare errors
on data that have been compressed and uncompressed before processing with those that
remain after the uncompressed data have been processed. I concentrate on two representative
processes: migration and deconvolution, migration representing a pure-phase process and
deconvolution an inverse one. Therefore, we can expect compression error to propagate
through these two processes differently.

The processing is performed using the freely available seismic data processing package
“Seismic Unix” (SU), developed at the Center for Wave Phenomena of Colorado School of
Mines.

6.1 Migration

The stacked section (Figure 6.1) used for the migration test is from a marine survey.
The migration algorithm used in this experiment is the phase-shift migration sumigps, and
the velocity used in the migration is obtained from stacking velocity analysis on the original
data. To evaluate the compression performance, I apply the migration process to the original
data as well to data uncompressed from different levels of compression, each one allowing
a different amount of error in the compression. Figure 6.2 shows the migrated section from
the original data, the migrated section from the uncompressed data with ten percent error in
the compression (compression ratio equals to 12:1), and the difference section between these
two migrated sections. The two migrated sections look almost identical and the difference
section shows no coherency.

For a quantitative measure of this difference between the migrated sections, I calculate
the relative RMS error after migration, defined as the ratio between the RMS amplitude of
the difference of the migrated sections and the RMS amplitude of the migrated section from
the original section, shown in eqation (6.1).

_ RMS[Mig(original) — Mig(after compression)]

Err_ .. =
'mig RMS|[Mig(original))

(6.1)

As a comparison, I also compute the relative RMS error before migration, defined as the
ratio between the RMS amplitude of the difference (between the original section and the
section from uncompressed data) and the RMS amplitude of the original section, shown in
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F1aG. 6.1. Stack section.
equation (6.2).
RMS(original — after compression)
Erropie = 6.2
Horig RMS(original) (6:2)

Table 6.1 shows these relative RMS errors. From the table, the error between the migrated

Table 6.1. RMS error before and after migration.

Errorig 1.0% | 4.8% | 9.4% | 17.4% | 28.6% | 36.0%
El'l’mig 8% | 4.0% | 8.0% | 15.0% | 25.5% | 32.9%
ratio .80 .83 .85 .86 .89 91

sections is smaller than that between the original sections for all levels of error. In other words,
the migration process actually reduces the amount of error. This is possibly related to the
fact that migration is a weighted summation process and random noise becomes somewhat
weakened. Therefore, if the error during compression can be treated as some random noise
added to the original data, it will be reduced after migration. Also from the table, the amount
of error reduction after migration becomes smaller as the error gets larger. One possible
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interpretation for this is that as we allow more error in compression, as shown before, the
error becomes more coherent so the summation becomes less effective in reducing the amount
of error.

6.2 Deconvolution

Similarly, I apply the deconvolution process to the original data as well as the uncom-
pressed data. The data set used for this test is a shot gather, shown in Figure 6.3. The

Receiver #
60 80

F1G. 6.3. Shot gather before deconvolution.

deconvolution algorithm used for this experiment is the Wiener prediction-error filtering su-
pef with unit prediction distance (i.e., spiking deconvolution) and operator length 150 ms.
The relative additive noise level is set to 0.01 percent. Following the deconvolution, band-pass
filtering is then applied. Two experiments with passbands of 5 — 50 Hz and 5 — 75 Hz are
performed. The sections in Figure 6.4 show the deconvolved original data, the deconvolved
uncompressed data with ten-percent error in the compression, and the difference between
these two deconvolved sections, when the filter with a passband of 5 — 50 Hz is used. The
two deconvolved sections look almost identical, and the difference section shows no coherency.
Figure 6.5 shows a similar comparison for which the final filter has a passband of 5 — 75 Hz.
Comparing the result here with that shown in Figure 6.4, the deconvolved sections are similar.
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FIG. 6.4. Comparison of the deconvolved original data and deconvolved data after com-
pression and uncompression. The deconvolution is followed by band-pass filtering with a
passband of 5 — 50 Hz.
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However, the difference section here has higher noise level and shows coherency associated
with some of the reflections This is understandable since a larger bandwidth is used here.

Again, for a quantitative measure of this difference between the deconvolved sections,
I calculate the relative RMS errors before deconvolution, shown in equation (6.2), and after
deconvolution, shown in equation (6.3).

RMS[Decon(original) — Decon(after compression)]

_ 6.3
Errdecon RMS[Decon(original)] (6.3)

Table 6.2 shows these relative RMS errors. From the table, the error between the deconvolved

Table 6.2. RMS error before and after deconvolution.

Ertorg | 11% | 5.8% | 10.2% | 14.9% | 19.2% | 23.3%
Erldecon, o | 1-7% | 8.5% | 16.2% | 23.9% | 30.8% | 35.9%
Erldecon,. . | 1.7% | 8.6% | 16.7% | 24.7% | 31.5% | 37.0%

sections is larger than that between the original sections. In other words, the deconvolution
process enlarges the amount of error. This is understandable since deconvolution is used
to enhance the low- and high-frequency components, which are usually weaker than the -
dominant-frequency components in the signal. On the other hand, the error introduced
during the compression is distributed more or less evenly. Considering the compression
error as added noise, the signal-to-noise ratio for the low- and high-frequency components is
smaller than that for the dominant-frequency components. Deconvolution boosts the weakly-
represented frequencies, and therefore decreases the net signal-to-noise ratio, resulting in the
amplification of compression error. Also from the table, the errors are slightly larger for the
broader 5 — 75 Hz bandwidth data, which contain more contribution from the noisier and
less coherent high frequencies.

In Chapter 4, I showed that data before deconvolution can be better compressed than
those after deconvolution, if the same amount of error is allowed in compression. We have
just seen here that the error is enlarged during the deconvolution process. Suppose we al-
lowed a larger error when compressing the deconvolved data than when compressing the
undeconvolved data? How would the amount of compression for a process of compression
and uncompression followed by deconvolution (“compression+deconvolution”) differ from
that for a process of deconvolution followed by compression and uncompression (“deconvo-
lution+compression”) under the same final error? Table 6.3 shows the compression ratios for
the two processes, with the same final errors, where the final error is defined as the relative
RMS error of the uncompressed deconvolved (or the deconvolved uncompressed) data with
respect to the deconvolved data without compression applied. The passband of the band-pass
filter here is 5 — 50 Hz. As shown in the table, the “compression+deconvolution” process
achieves higher compression ratio than does the “deconvolution+compression” process, for
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pression and uncompression. The deconvolution is followed by band-pass filtering with a
passband of 5 — 75 Hz.
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Table 6.3. Compression ratios for the two processes for the 5 — 50 Hz passband.

final err 7% 13.5% [ 6.7% | 9.9% | 12.7% | 14.9%
comp-+decon | 4.77 | 7.02 | 9.08 | 10.57 | 11.79 | 13.03
decon+comp | 4.45 | 6.33 | 7.80 | 9.08 | 9.94 | 10.45

the deconvolution operator I use here. A similar test for the case of 5 — 75 Hz is shown in
Table 6.4. Again, as shown in the table, the “compression+deconvolution” process achieves

Table 6.4. Compression ratios for the two processes for the 5 — 75 Hz passband.

final err 8% | 4.0% | 7.8% | 11.6% | 14.8% | 17.3%
comp-+decon | 4.77 | 7.02 | 9.08 | 10.57 | 11.79 | 13.03
decon+comp | 4.55 | 6.58 | 8.23 | 9.56 | 10.29 | 10.78

higher compression ratio than does the “deconvolution+compression” process. Notice that
the same compression ratios for the “compression+deconvolution” process were used for both
passbands. Therefore, the errors in the compression and uncompression step are the same
for the two passbands and the final error for the 5 — 75 Hz passband is larger than that for
the 5 — 50 Hz passband, since it has a larger bandwidth. Because of this larger final error,
the compression ratio for the “deconvolution+compression” process is larger for the 5 — 75
Hz passband than for the 5 — 50 Hz one.

Of course, one could study the relationship between data compression, error, and other
seismic processes. Of the various processes other than deconvolution and migration, perhaps
CMP stacking is the one that is most important. As Bosman and Reiter (1993) have shown,
stacking can reduce the compression error, much as does migration. This result has been
used as the rationale for allowing a larger error when compressing the prestack data than
when compressing the poststack data.
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Chapter 7

DISCUSSIONS

7.1 Summary

In Chapter 2, after reviewing some results on the quantization theory, I obtained the
compression ratio as a function of compression error, thus quantitatively describing the trade-
off between the compression ratio and compression error. This theoretical result matches
well with the experimental one observed by Reiter and Heller (1994), and can be used as the
guideline in helping to design compression algorithms.

In Chapter 4, using the entropy value to measure the maximum amount of compression
achievable, I compared the performance of some transforms that have been studied in the
literature, when applied to compressing seismic data. It turns out that for both 1D and
2D data, the local cosine transform performs marginally better than does the fixed-level
wavelet packet transform for most wavelets. The standard wavelet transform, when applied
to seismic data, does not perform as well as the fixed-level wavelet packet transform, although
it is computationally less expensive. Besides the choice of transforms, other factors related
to the data, such as the frequency bandwidth, lateral coherency, signal-to-noise ratio all play
a role, in the amount of compression achievable. The smaller the frequency bandwidth, the
stronger the lateral coherency, and the higher the signal-to-noise ratio, the more compression
achievable.

In Chapter 5, I raise the issue of random trace accessing, an issue somewhat unique
to seismic data. I study several approaches in dealing with this issue. Compressing each
trace independently, though it achieves perfect random trace accessing, ignores the lateral
(trace-to-trace) coherency, resulting in degradation of compression performance. In addition,
single-trace compression requires a coding technique that introduces small coding overhead;
this disqualifies some standard coding techniques. I introduce a form of variable-length
integral coding technique that reduces the overhead.

To take into account the lateral coherency in seismic data, I compress small two-
dimensional strips, though it sacrifices some random trace accessing. On the small strips, I
compare two-dimensional techniques as well as a technique that employs lateral prediction,
where I first apply the lateral prediction to compact the lateral coherency and then compress
the residuals using one-dimensional local cosine transform. The compression performance
of the prediction approach is little different from that of the two-dimensional techniques ap-
plied on small strips while the computational cost is significantly higher. Lateral prediction,
however, somewhat compacts the energy into a smaller region (the pivot trace), and thus de-
serves further investigation since some sophisticated coding techniques might take advantage
of this compaction and achieve better compression performance.

In Chapter 6, I process some field data that have undergone the compression and un-
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compression cycle, and compare the result with that of the original data. It turns out that
migration reduces the compression error while deconvolution enlarges this error, a result that
is within expectation.

7.2 Conclusions L
The main purposes of this research have been to gain some understanding of specific &
characteristic of seismic data as they relate to data compression. , i

Here is a brief summary of the understanding drawn from the study.

e Data can be characterized by a differential entropy governed by the amplitude probab- i
ility density function h(X).

e Although the entropy (first-order) I discuss here does not directly characterize the
coherency in the data and higher-order entropy might be used to better describe the
data, after an appropriate transform, it can be used to characterize the complexity of
the data.

e With a well-chosen transformation, the transformed data can be made more compact;
the changed probability density function thus results in a lowering of the entropy relative
to that without the transform. The appropriate transformation is the one that best
exploits characteristics of the data, such as the band-limited character in time and
space.

e With suitable quantization and coding, along with a choice of allowable average distor-
tion, the entropy Hg can be further reduced, and, for the given allowed distortion, that
entropy is the ideal minimum number of average bits required to represent the data in
a compressed form.

e The storage requirements for the compressed data are dictated by Hq plus overhead
required by the particular encoding algorithm (some algorithms require less overhead
than do others).

e That overhead is a burden that becomes relatively smaller the larger the data set (usu-
ally, the larger the dimensionality of the data).

e Additional (sometimes unacceptable) cost is required to compress and to uncompress
the data.

e The cost-benefit ratio will be a moving target, but at present there seems to be benefit
in compressing larger-volume, three- and four-dimensional data for telemetering from
ship to processing center (Donoho, et al., 1995; Stigant, et al., 1995).

e An important part of the decision process as to cost-effectiveness is the perception of
the geophysicists as to what level of compression noise is acceptable; the larger the
tolerable noise level, the more cost-effective the compression effort. This is almost in
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the realm of psychology since the largest breakthrough may be nothing other than a
raising in the amount of noise that is judged tolerable. Also, the issue of subsequent
processing that will be done on uncompressed data must be taken into account.

e Data access is an issue that may come into play in possible applications such as data
retrieval.

E 7.3 Future studies

This research has produced a collection of software modules that can be used as a
platform for further investigation into new compression techniques. It is also possible to
extend the analysis to higher dimensions. Other tests, such as processing data with and
F without compression and uncompression for other processes, or applying compression after

each step of processing, can also be performed. These tests are important in a scenario
where the data volume is very large, such as the terrabytes of data in modern 3D surveys.
Therefore, one could compress the data at the beginning of a processing flow, process the
data, compress the result of subsequent processes and save these compressed results. Finally,
much room exists for theoretical analyses of the propagation of compression error through
various processes.
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